Science.gov

Sample records for early skeletal development

  1. [Size of lower jaw as an early indicator of skeletal class III development].

    PubMed

    Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag

    2008-08-01

    Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.

  2. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements.

    PubMed

    Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko

    2015-04-21

    Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.

  3. Early asthma prophylaxis, natural history, skeletal development and economy (EASE): a pilot randomised controlled trial.

    PubMed

    Baxter-Jones, A D; Helms, P J; Russell, G; Grant, A; Ross, S; Cairns, J A; Ritchie, L; Taylor, R; Reid, D M; Osman, L M; Robins, S; Fletcher, M E

    2000-01-01

    (1) To establish recruitment rates of newly presenting asthmatic children. (2) To establish acceptability of study protocols. (3) To pilot age-specific quality of life (QoL) assessment. (4) To assess short-term (6 months) outcomes of inhaled corticosteroids (ICS) treatment. (5) To refine sample size calculations for a definitive study. A randomised pragmatic longitudinal trial design was used, with no blinding or placebo, to examine early ICS introduction similar to its use in practice. Subjects were assessed at entry, 3 and 6 months. Subjects were recruited from six general practices. Children under 6 years were assessed at the Craig Research and Investigation Unit, Royal Aberdeen Children's Hospital, or their family home, and subjects 6 years and over were assessed at their general practice. Children (aged 6 months-16 years) with symptoms suggestive of asthma/wheeze that had commenced no longer than 12 months before were identified retrospectively and prospectively from general practices. Subjects were also required to be naïve to prophylactic therapy with no other lung disease/concomitant illness. Subjects were randomised to ss2-agonist (ss2-only group) or ss2-agonist and ICS (ICS group) for 6 months. Physicians could later prescribe ICS in controls if needed. (1) Pulmonary function. (2) Asthma symptom diary. (3) Symptomatic health status questionnaire. (4) Caregiver's and child's QoL. (5) Growth. (6) Bone mass. (7) Bone turnover. (8) Economic issues. Of over 15,000 children yielded from general practice records, 11% had symptoms suggestive of asthma/wheeze, and two-thirds of these already used ICS. Of the remaining, 141 subjects met the criterion of early asthma, and 86 were randomised. Two-thirds of those randomised were < 6 years old, the males:females ratio was 2:1, and 67% had a family history of atopy. RESULTS - PHYSIOLOGICAL DEVELOPMENT: Pulmonary function did not significantly improve in the older children. Although tidal breathing measures in the pre

  4. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).

    PubMed

    Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N

    2017-09-01

    Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation

    PubMed Central

    Merrick, Deborah; Stadler, Lukas Kurt Josef; Larner, Dean; Smith, Janet

    2009-01-01

    SUMMARY Examination of embryonic myogenesis of two distinct, but functionally related, skeletal muscle dystrophy mutants (mdx and cav-3−/−) establishes for the first time that key elements of the pathology of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy type 1C (LGMD-1c) originate in the disruption of the embryonic cardiac and skeletal muscle patterning processes. Disruption of myogenesis occurs earlier in mdx mutants, which lack a functional form of dystrophin, than in cav-3−/− mutants, which lack the Cav3 gene that encodes the protein caveolin-3; this finding is consistent with the milder phenotype of LGMD-1c, a condition caused by mutations in Cav3, and the earlier [embryonic day (E)9.5] expression of dystrophin. Myogenesis is severely disrupted in mdx embryos, which display developmental delays; myotube morphology and displacement defects; and aberrant stem cell behaviour. In addition, the caveolin-3 protein is elevated in mdx embryos. Both cav-3−/− and mdx mutants (from E15.5 and E11.5, respectively) exhibit hyperproliferation and apoptosis of Myf5-positive embryonic myoblasts; attrition of Pax7-positive myoblasts in situ; and depletion of total Pax7 protein in late gestation. Furthermore, both cav-3−/− and mdx mutants have cardiac defects. In cav-3−/− mutants, there is a more restricted phenotype comprising hypaxial muscle defects, an excess of malformed hypertrophic myotubes, a twofold increase in myonuclei, and reduced fast myosin heavy chain (FMyHC) content. Several mdx mutant embryo pathologies, including myotube hypotrophy, reduced myotube numbers and increased FMyHC, have reciprocity with cav-3−/− mutants. In double mutant (mdxcav-3+/−) embryos that are deficient in dystrophin (mdx) and heterozygous for caveolin-3 (cav-3+/−), whereby caveolin-3 is reduced to 50% of wild-type (WT) levels, these phenotypes are severely exacerbated: intercostal muscle fibre density is reduced by 71%, and Pax7-positive

  7. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes.

    PubMed

    Bleau, Christian; Karelis, Antony D; St-Pierre, David H; Lamontagne, Lucie

    2015-09-01

    Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    PubMed

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  9. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    There were two major goals for my project. One was to examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter. This initial goal was subsequently modified so that additional developmental measures were taken (e.g. body weight, eye opening) as the progeny developed, and the study period was lengthened to eighty days. Also videotapes taken shortly after the pregnant Flight dams returned to Earth were scored for locomotor activity and compared to those for the Synchronous control dams at the same stage of pregnancy. The second goal was to examine skeletal muscle. Selected hindlimb skeletal muscles were to be identified, weighed, and examined for the presence and integrity of muscle receptors, (both muscle spindles and tendon organs), at the level of the light and electron microscope. Muscles were examined from rats that were at fetal (G20), newborn (postnatal day 1 or P1, where P1 = day of birth), and young adult (approx. P100) stages. At the present time data from only the last group of rats (i.e. P100) has been completely examined.

  10. Matrilin-3 Is Dispensable for Mouse Skeletal Growth and Development

    PubMed Central

    Ko, Yaping; Kobbe, Birgit; Nicolae, Claudia; Miosge, Nicolai; Paulsson, Mats; Wagener, Raimund; Aszódi, Attila

    2004-01-01

    Matrilin-3 belongs to the matrilin family of extracellular matrix (ECM) proteins and is primarily expressed in cartilage. Mutations in the gene encoding human matrilin-3 (MATN-3) lead to autosomal dominant skeletal disorders, such as multiple epiphyseal dysplasia (MED), which is characterized by short stature and early-onset osteoarthritis, and bilateral hereditary microepiphyseal dysplasia, a variant form of MED characterized by pain in the hip and knee joints. To assess the function of matrilin-3 during skeletal development, we have generated Matn-3 null mice. Homozygous mutant mice appear normal, are fertile, and show no obvious skeletal malformations. Histological and ultrastructural analyses reveal endochondral bone formation indistinguishable from that of wild-type animals. Northern blot, immunohistochemical, and biochemical analyses indicated no compensatory upregulation of any other member of the matrilin family. Altogether, our findings suggest functional redundancy among matrilins and demonstrate that the phenotypes of MED disorders are not caused by the absence of matrilin-3 in cartilage ECM. PMID:14749384

  11. Surgical management of patients with a history of early Le Fort III advancement after they have attained skeletal maturity.

    PubMed

    Caterson, E J; Shetye, Pradip R; Grayson, Barry H; McCarthy, Joseph G

    2013-10-01

    The classic Le Fort III procedure was recommended in syndromic craniosynostotic children to reduce exorbitism, improve airway function, and decrease dysmorphism. This study reports on a cohort of syndromic craniosynostosis patients who have undergone early primary subcranial (classic Tessier) Le Fort III advancement and who have been followed longitudinally through skeletal maturity and beyond. In this study, the Le Fort III advancements all occurred between the ages of 3 to 5 years, with a mean age of 4.6 years. Subsequently, these early Le Fort III patients were followed throughout development with longitudinal dental, medical, radiographic, and photographic evaluations conducted through skeletal maturity and beyond. For study inclusion, the patients had to have preoperative medical photographs and cephalometric studies at 6 months and 1, 5, and 10 years postoperatively after the primary Le Fort III advancement as well as cephalometric documentation 6 months and 1 year after the secondary midface advancement after skeletal maturity. After early or primary Le Fort III advancement, there was no evidence of relapse and only minimal anterior or horizontal postoperative growth of the midface. However, there was also a return of occlusal disharmony from "anticipated" mandibular growth, approaching a maximum at skeletal maturity. The dysmorphic concave facial profile and malocclusion, and airway and ocular considerations, provided the impetus for secondary midface surgery after skeletal maturity was attained. The data demonstrate that early Le Fort III advancement performed before the age of mixed dentition does not obviate the need for a secondary advancement after skeletal maturity is reached. Therapeutic, IV.

  12. Role of skeletal muscle in ear development.

    PubMed

    Rot, Irena; Baguma-Nibasheka, Mark; Costain, Willard J; Hong, Paul; Tafra, Robert; Mardesic-Brakus, Snjezana; Mrduljas-Djujic, Natasa; Saraga-Babic, Mirna; Kablar, Boris

    2017-10-01

    The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants' cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.

  13. Fibroblast growth factor signaling in skeletal development and disease.

    PubMed

    Ornitz, David M; Marie, Pierre J

    2015-07-15

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. © 2015 Ornitz and Marie; Published by Cold Spring Harbor Laboratory Press.

  14. Fibroblast growth factor signaling in skeletal development and disease

    PubMed Central

    Ornitz, David M.; Marie, Pierre J.

    2015-01-01

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. PMID:26220993

  15. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    The two major goals for this project is to (1) examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter; and (2) examine skeletal muscle.

  16. Effects of audiogenic hazard on fetal skeletal development in mice

    NASA Astrophysics Data System (ADS)

    Murata, M.; Kawade, F.; Kondo, M.; Takigawa, H.; Sakamoto, H.

    1990-06-01

    The effects of noise on fetal skeletal development in mice were examined. Pregnant ICR mice were exposed to a wide octave-band noise at 100 dB(C) for 6 hours a day in three ways: the first group was continuously exposed only on day 7 of pregnancy (group "N"); the second was exposed intermittently (15 min on/15 min off) only on day 7 of pregnancy (group "IN"); and the third was exposed to a continuous noise recurrently during days 7-12 of pregnancy (group "RN"). On day 18 of pregnancy, fetuses were removed and prepared as skeletons of cleared specimens stained with alizarin red S for examining skeletal development. Skeletal immaturity was observed in group "RN". The percentage of fetuses with skeletal malformations was significantly increased in group "N", as compared with the control. Significantly higher percentages of fetuses with variations in cervical vertebral arches were observed in groups "N" and "RN".

  17. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).

    PubMed

    Wolfe, Kennedy; Dworjanyn, Symon A; Byrne, Maria

    2013-09-01

    Co-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near-future projected change (+2-4 °C, -0.3-0.5 pH units; pCO2 400-1820; ΩCa 5.0-1.6; ΩAr 3.3-1.1), and extreme conditions experienced at low tide (+4 °C, -0.3-0.7 pH units; pCO2 2850-2967; ΩCa 1.1-1.0; ΩAr 0.7-0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near-future warming and acidification. Spine development, however, was negatively affected by near-future increased temperature (+2-4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near-future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature-pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits. © 2013 John Wiley & Sons Ltd.

  18. Skeletal development in Pan paniscus with comparisons to Pan troglodytes.

    PubMed

    Bolter, Debra R; Zihlman, Adrienne L

    2012-04-01

    Fusion of skeletal elements provides markers for timing of growth and is one component of a chimpanzee's physical development. Epiphyseal closure defines bone growth and signals a mature skeleton. Most of what we know about timing of development in chimpanzees derives from dental studies on Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a wild range restricted to central Africa. Here, we report on the timing of skeletal fusion for female captive P. paniscus (n = 5) whose known ages range from 0.83 to age 11.68 years. Observations on the skeletons were made after the individuals were dissected and bones cleaned. Comparisons with 10 female captive P. troglodytes confirm a generally uniform pattern in the sequence of skeletal fusion in the two captive species. We also compared the P. paniscus to a sample of three unknown-aged female wild P. paniscus, and 10 female wild P. troglodytes of known age from the Taï National Park, Côte d'Ivoire. The sequence of teeth emergence to bone fusion is generally consistent between the two species, with slight variations in late juvenile and subadult stages. The direct-age comparisons show that skeletal growth in captive P. paniscus is accelerated compared with both captive and wild P. troglodytes populations. The skeletal data combined with dental stages have implications for estimating the life stage of immature skeletal materials of wild P. paniscus and for more broadly comparing the skeletal growth rates among captive and wild chimpanzees (Pan), Homo sapiens, and fossil hominins. Copyright © 2012 Wiley Periodicals, Inc.

  19. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  20. Developing bones are differentially affected by compromised skeletal muscle formation

    PubMed Central

    Nowlan, Niamh C.; Bourdon, Céline; Dumas, Gérard; Tajbakhsh, Shahragim; Prendergast, Patrick J.; Murphy, Paula

    2010-01-01

    Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two ‘muscleless’ mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5nlacZ/nlacZ:MyoD−/− and Pax3Sp/Sp (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5nlacZ/nlacZ:MyoD−/− mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3Sp/Sp mutants. We also examined skeletal development in a ‘reduced muscle’ model, the Myf5nlacZ/+:MyoD−/− mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location

  1. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  2. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. [Calcium in the developing skeletal muscles of the chick embryo].

    PubMed

    Samosudova, N V; Enenko, S O; Larin, Iu S; Shungskaia, V E

    1982-07-01

    The osmium-pyroantimonate technique was used for the ultrastructural study of Ca2+-localization in two types of chick embryo skeletal muscles: m. pectoralis and m. soleus. In 8- and 12-day old embryos the pyroantimonate precipitate was found on plasmalemma, condensed chromatine and ribosomes and in N-lines of I-band. During myogenesis (15-, 21-day old embryos) the calcium precipitate is redistributed from the above mentioned sites to terminal cisternae and N-line of I-band. It is proposed that calcium of N-lines may be involved in the glycogenolysis, its association with the muscle contraction occurring particularly at early developmental stages.

  4. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    PubMed

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  5. An analysis of dental development in Pleistocene Homo using skeletal growth and chronological age.

    PubMed

    Šešelj, Maja

    2017-07-01

    This study takes a new approach to interpreting dental development in Pleistocene Homo in comparison with recent modern humans. As rates of dental development and skeletal growth are correlated given age in modern humans, using age and skeletal growth in tandem yields more accurate dental development estimates. Here, I apply these models to fossil Homo to obtain more individualized predictions and interpretations of their dental development relative to recent modern humans. Proportional odds logistic regression models based on three recent modern human samples (N = 181) were used to predict permanent mandibular tooth development scores in five Pleistocene subadults: Homo erectus/ergaster, Neanderthals, and anatomically modern humans (AMHs). Explanatory variables include a skeletal growth indicator (i.e., diaphyseal femoral length), and chronological age. AMHs Lagar Velho 1 and Qafzeh 10 share delayed incisor development, but exhibit considerable idiosyncratic variation within and across tooth types, relative to each other and to the reference samples. Neanderthals Dederiyeh 1 and Le Moustier 1 exhibit delayed incisor coupled with advanced molar development, but differences are reduced when femoral diaphysis length is considered. Dental development in KNM-WT 15,000 Homo erectus/ergaster, while advanced for his age, almost exactly matches the predictions once femoral length is included in the models. This study provides a new interpretation of dental development in KNM-WT 15000 as primarily reflecting his faster rates of skeletal growth. While the two AMH specimens exhibit considerable individual variation, the Neanderthals exhibit delayed incisor development early and advanced molar development later in ontogeny. © 2017 Wiley Periodicals, Inc.

  6. Early Developments, 1998.

    ERIC Educational Resources Information Center

    Little, Loyd, Ed.

    1998-01-01

    This document consists of the two 1998 issues of a journal reporting new research in early child development conducted by the Frank Porter Graham Child Development Center at the University of North Carolina at Chapel Hill. In the Spring 1998 issue, articles highlight the Center's diverse cross-cultural projects and global research, training and…

  7. Early Childhood Development.

    ERIC Educational Resources Information Center

    Koh, Edgar, Ed.

    1989-01-01

    Focused on early childhood development, this "UNICEF Intercom" asserts that developmental programs should aim to give children a fair chance at growth beyond survival. First presented are moral, scientific, social equity, economic, population, and programatic arguments for looking beyond the fundamental objective of saving young lives.…

  8. Early Program Development

    1971-01-01

    This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.

  9. Early Program Development

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle docked to an Orbital Propellant Depot and an early Space Shuttle. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle, in either manned or unmanned mode, would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additonal missions.

  10. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Nelson, Campbell S.

    2003-10-01

    Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be

  11. Early-onset type 2 diabetes impairs skeletal acquisition in the male TALLYHO/JngJ mouse.

    PubMed

    Devlin, M J; Van Vliet, M; Motyl, K; Karim, L; Brooks, D J; Louis, L; Conlon, C; Rosen, C J; Bouxsein, M L

    2014-10-01

    Type 2 diabetes (T2D) incidence in adolescents is rising and may interfere with peak bone mass acquisition. We tested the effects of early-onset T2D on bone mass, microarchitecture, and strength in the TALLYHO/JngJ mouse, which develops T2D by 8 weeks of age. We assessed metabolism and skeletal acquisition in male TALLYHO/JngJ and SWR/J controls (n = 8-10/group) from 4 weeks to 8 and 17 weeks of age. Tallyho mice were obese; had an approximately 2-fold higher leptin and percentage body fat; and had lower bone mineral density vs SWR at all time points (P < .03 for all). Tallyho had severe deficits in distal femur trabecular bone volume fraction (-54%), trabecular number (-27%), and connectivity density (-82%) (P < .01 for all). Bone formation was higher in Tallyho mice at 8 weeks but lower by 17 weeks of age vs SWR despite similar numbers of osteoblasts. Bone marrow adiposity was 7- to 50-fold higher in Tallyho vs SWR. In vitro, primary bone marrow stromal cell differentiation into osteoblast and adipocyte lineages was similar in SWR and Tallyho, suggesting skeletal deficits were not due to intrinsic defects in Tallyho bone-forming cells. These data suggest the Tallyho mouse might be a useful model to study the skeletal effects of adolescent T2D.

  12. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.

  13. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record

    PubMed Central

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  14. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.

    PubMed

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R

    2014-12-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  15. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  16. Passive stiffness of rat skeletal muscle undernourished during fetal development

    PubMed Central

    Toscano, Ana Elisa; Ferraz, Karla Mônica; de Castro, Raul Manhães; Canon, Francis

    2010-01-01

    OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet) and an isocaloric low‐protein group (mothers fed a 7.8% protein diet). At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL) muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s) enabling us to measure, for each extension stepwise, the dynamic stress (σd) and the steady stress (σs). A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress–strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness. PMID:21340228

  17. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance

    PubMed Central

    Bassett, J. H. Duncan

    2016-01-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  18. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    PubMed

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  19. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation

    PubMed Central

    Matthews, Mary P.; Martin, Sally K.; Xie, Jianling; Ooi, Soo Siang; Walkley, Carl R.; Codrington, John D.; Ruegg, Markus A.; Hall, Michael N.; Proud, Christopher G.; Gronthos, Stan; Zannettino, Andrew C. W.

    2017-01-01

    ABSTRACT The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor (Rptor) in Osterix-expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro, osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation. PMID:28069737

  20. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Genovese, Nicholas J.; Domeier, Timothy L.; Telugu, Bhanu Prakash V. L.; Roberts, R. Michael

    2017-01-01

    The pig is recognized as a valuable model in biomedical research in addition to its agricultural importance. Here we describe a means for generating skeletal muscle efficiently from porcine induced pluripotent stem cells (piPSC) in vitro thereby providing a versatile platform for applications ranging from regenerative biology to the ex vivo cultivation of meat. The GSK3B inhibitor, CHIR99021 was employed to suppress apoptosis, elicit WNT signaling events and drive naïve-type piPSC along the mesoderm lineage, and, in combination with the DNA methylation inhibitor 5-aza-cytidine, to activate an early skeletal muscle transcription program. Terminal differentiation was then induced by activation of an ectopically expressed MYOD1. Myotubes, characterized by myofibril development and both spontaneous and stimuli-elicited excitation-contraction coupling cycles appeared within 11 days. Efficient lineage-specific differentiation was confirmed by uniform NCAM1 and myosin heavy chain expression. These results provide an approach for generating skeletal muscle that is potentially applicable to other pluripotent cell lines and to generating other forms of muscle. PMID:28165492

  1. Histone Deacetylases in Bone Development and Skeletal Disorders

    PubMed Central

    Bradley, Elizabeth W.; Carpio, Lomeli R.; van Wijnen, Andre J.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.

    2015-01-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn2+ for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2+. Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of

  2. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice.

    PubMed

    Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei

    2006-12-01

    Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P < .01). In addition, alpha

  3. Skeletal features and growth patterns in 14 patients with haploinsufficiency of SHOX: implications for the development of Turner syndrome.

    PubMed

    Kosho, T; Muroya, K; Nagai, T; Fujimoto, M; Yokoya, S; Sakamoto, H; Hirano, T; Terasaki, H; Ohashi, H; Nishimura, G; Sato, S; Matsuo, N; Ogata, T

    1999-12-01

    We report on clinical features in 14 Japanese patients (4 males and 10 females) with partial monosomy of the short arm pseudoautosomal region involving SHOX (n = 11) or total monosomy of the pseudoautosomal region with no involvement of disease genes on the sex-differential regions (n = 3). Skeletal assessment showed that three patients had no discernible skeletal abnormalities, one patient exhibited short 4th metacarpals and borderline cubitus valgus, and the remaining 10 patients had Madelung deformity and/or mesomelia characteristic of Léri-Weill dyschondrosteosis (LWD), together with short 4th metacarpals and/or cubitus valgus. Skeletal lesions were more severe in females and became obvious with age. Growth evaluation revealed that patients without LWD grew along by the -2 SD growth curve before puberty and showed a normal or exaggerated pubertal growth spurt, whereas those with LWD grew along by the standard growth curves before puberty but exhibited an attenuated pubertal growth spurt and resultant short stature. Maturational assessment indicated a tendency of relatively early maturation in patients with LWD. There was no correlation between the clinical phenotype and the deletion size. These findings suggest that haploinsufficiency of SHOX causes not only short stature but also Turner skeletal anomalies (such as short 4th metacarpals, cubitus valgus, and LWD) and that growth pattern is primarily dependent on the presence or absence of LWD. Because skeletal lesions have occurred in a female-dominant and age-influenced fashion, it is inferred that estrogens exert a maturational effect on skeletal tissues that are susceptible to premature fusion of growth plates because of haploinsufficiency of SHOX, facilitating the development of skeletal lesions.

  4. Forward Genetics Defines Xylt1 as a Key, Conserved Regulator of Early Chondrocyte Maturation and Skeletal Length

    PubMed Central

    Mis, Emily K.; Liem, Karel F.; Kong, Yong; Schwartz, Nancy B.; Domowicz, Miriam; Weatherbee, Scott D.

    2014-01-01

    The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation. PMID:24161523

  5. Forward genetics defines Xylt1 as a key, conserved regulator of early chondrocyte maturation and skeletal length.

    PubMed

    Mis, Emily K; Liem, Karel F; Kong, Yong; Schwartz, Nancy B; Domowicz, Miriam; Weatherbee, Scott D

    2014-01-01

    The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation. © 2013 Published by Elsevier Inc.

  6. Skeletal variation among early Holocene North American humans: implications for origins and diversity in the Americas.

    PubMed

    Auerbach, Benjamin M

    2012-12-01

    The movement of humans into the Americas remains a major topic of debate among scientific disciplines. Central to this discussion is ascertaining the timing and migratory routes of the earliest colonizers, in addition to understanding their ancestry. Molecular studies have recently argued that the colonizing population was isolated from other Asian populations for an extended period before proceeding to colonize the Americas. This research has suggested that Beringia was the location of this "incubation," though archaeological and skeletal data have not yet supported this hypothesis. This study employs the remains of the five most complete North American male early Holocene skeletons to examine patterns of human morphology at the earliest observable time period. Stature, body mass, body breadth, and limb proportions are examined in the context of male skeletal samples representing the range of morphological variation in North America in the last two millennia of the Holocene. These are also compared with a global sample. Results indicate that early Holocene males have variable postcranial morphologies, but all share the common trait of wide bodies. This trait, which is retained in more recent indigenous North American groups, is associated with adaptations to cold climates. Peoples from the Americas exhibit wider bodies than other populations sampled globally. This pattern suggests the common ancestral population of all of these indigenous American groups had reduced morphological variation in this trait. Furthermore, this provides support for a single, possibly high latitude location for the genetic isolation of ancestors of the human colonizers of the Americas. Copyright © 2012 Wiley Periodicals, Inc.

  7. Human age estimation combining third molar and skeletal development.

    PubMed

    Thevissen, P W; Kaur, J; Willems, G

    2012-03-01

    The wide prediction intervals obtained with age estimation methods based on third molar development could be reduced by combining these dental observations with age-related skeletal information. Therefore, on cephalometric radiographs, the most accurate age-estimating skeletal variable and related registration method were searched and added to a regression model, with age as response and third molar stages as explanatory variable. In a pilot set up on a dataset of 496 (283 M; 213 F) cephalometric radiographs, the techniques of Baccetti et al. (2005) (BA), Seedat et al. (2005) (SE), Caldas et al. (2007) and Rai et al. (2008) (RA) were verified. In the main study, data from 460 (208 F, 224 M) individuals in an age range between 3 and 26 years, for which at the same day an orthopantogram and a cephalogram were taken, were collected. On the orthopantomograms, the left third molar development was registered using the scoring system described by Gleiser and Hunt (1955) and modified by Köhler (1994) (GH). On the cephalograms, cervical vertebrae development was registered according to the BA and SE techniques. A regression model, with age as response and the GH scores as explanatory variable, was fitted to the data. Next, information of BA, SE and BA + SE was, respectively, added to this model. From all obtained models, the determination coefficients and the root mean squared errors were calculated. Inclusion of information from cephalograms based on the BA, as well as the SE, technique improved the amount of explained variance in age acquired from panoramic radiographs using the GH technique with 48%. Inclusion of cephalometric BA + SE information marginally improved the previous result (+1%). The RMSE decreased with 1.93, 1.85 and 2.03 years by adding, respectively, BA, SE and BA + SE information to the GH model. The SE technique allows clinically the fastest and easiest registration of the degree of development of the cervical vertebrae. Therefore, the choice of

  8. Low Skeletal Muscle Density Is Associated with Early Death in Patients with Perihilar Cholangiocarcinoma Regardless of Subsequent Treatment.

    PubMed

    van Vugt, Jeroen L A; Gaspersz, Marcia P; Vugts, Jaynee; Buettner, Stefan; Levolger, Stef; de Bruin, Ron W F; Polak, Wojciech G; de Jonge, Jeroen; Willemssen, François E J A; Groot Koerkamp, Bas; IJzermans, Jan N M

    2018-02-16

    Low skeletal muscle mass is associated with increased postoperative morbidity and worse survival following resection for perihilar cholangiocarcinoma (PHC). We investigated the predictive value of skeletal muscle mass and density for overall survival (OS) of all patients with suspected PHC, regardless of treatment. Baseline characteristics and parameters regarding disease and treatment were collected from all patients with PHC from 2002 to 2014. Skeletal muscle mass and density were measured at the level of the third lumbar vertebra on CT. The association between skeletal muscle mass and density with OS was investigated using the Kaplan-Meier method and Cox survival. Median OS in 233 included patients did not differ between those with and without low skeletal muscle mass (p = 0.203), whereas a significantly different median OS (months) was observed between patients with low (HR 7.0, 95% CI 4.7-9.3) and high (HR 12.1, 95% CI 8.1-16.1) skeletal muscle density (p = 0.004). Low skeletal muscle density was independently associated with decreased OS (HR 1.78, 95% CI 1.03-3.07, p = 0.040) within the first 6 months but not after 6 months (HR 0.68, 95% CI 0.44-1.07, p = 0.093), after adjusting for age, tumour size and suspected peritoneal or other distant metastases on imaging. A time-dependent effect of skeletal muscle density on OS was found in patients with PHC, regardless of subsequent treatment. Low skeletal muscle density may identify patients at risk for early death. © 2018 The Author(s) Published by S. Karger AG, Basel.

  9. Genomic architecture of histone 3 lysine 27 trimethylation during late ovine skeletal muscle development.

    PubMed

    Byrne, K; McWilliam, S; Vuocolo, T; Gondro, C; Cockett, N E; Tellam, R L

    2014-06-01

    The ruminant developmental transition from late foetus to lamb is associated with marked changes in skeletal muscle structure and function that reflect programming for new physiological demands following birth. To determine whether epigenetic changes are involved in this transition, we investigated the genomic architecture of the chromatin modification, histone 3 lysine 27 trimethylation (H3K27me3), which typically regulates early life developmental processes; however, its role in later life processes is unclear. Chromatin immunoprecipitation coupled with next-generation sequencing was used to map H3K27me3 nucleosomes in ovine longissimus lumborum skeletal muscle at 100 days of gestation and 12 weeks post-partum. In both states, H3K27me3 modification was associated with genes, transcription start sites and CpG islands and with transcriptional silencing. The H3K27me3 peaks consisted of two major categories, promoter specific and regional, with the latter the dominant feature. Genes encoding homeobox transcription factors regulating early life development and genes involved in neural functions, particularly gated ion channels, were strongly modified by H3K27me3. Gene promoters differentially modified by H3K27me3 in the foetus and lamb were enriched for gated ion channels, which may reflect changes in neuromuscular function. However, most modified genes showed no changes, indicating that H3K27me3 does not have a large role in late muscle maturation. Notably, promyogenic transcription factors were strongly modified with H3K27me3 but showed no differences between the late gestation foetus and lamb, likely reflecting their lack of involvement in the myofibre fusion process occurring in this transition. H3K27me3 is a major architectural feature of the epigenetic landscape of ruminant skeletal muscle, and it comments on gene transcription and gene function in the context of late skeletal muscle development. © 2014 The Authors. Animal Genetics published by John Wiley

  10. Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling

    PubMed Central

    Lengner, Christopher J.; Steinman, Heather A.; Gagnon, James; Smith, Thomas W.; Henderson, Janet E.; Kream, Barbara E.; Stein, Gary S.; Lian, Jane B.; Jones, Stephen N.

    2006-01-01

    Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2–p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre–transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditional Col3.6-Cre mice die at birth and display multiple skeletal defects. Osteoblast progenitor cells deleted for Mdm2 have elevated p53 activity, reduced proliferation, reduced levels of the master osteoblast transcriptional regulator Runx2, and reduced differentiation. In contrast, p53-null osteoprogenitor cells have increased proliferation, increased expression of Runx2, increased osteoblast maturation, and increased tumorigenic potential, as mice specifically deleted for p53 in osteoblasts develop osteosarcomas. These results demonstrate that p53 plays a critical role in bone organogenesis and homeostasis by negatively regulating bone development and growth and by suppressing bone neoplasia and that Mdm2-mediated inhibition of p53 function is a prerequisite for Runx2 activation, osteoblast differentiation, and proper skeletal formation. PMID:16533949

  11. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Embryonic development of Python sebae - I: Staging criteria and macroscopic skeletal morphogenesis of the head and limbs.

    PubMed

    Boughner, Julia C; Buchtová, Marcela; Fu, Katherine; Diewert, Virginia; Hallgrímsson, Benedikt; Richman, Joy M

    2007-01-01

    This study explores the post-ovipositional craniofacial development of the African Rock Python (Python sebae). We first describe a staging system based on external characteristics and next use whole-mount skeletal staining supplemented with Computed tomography (CT) scanning to examine skeletal development. Our results show that python embryos are in early stages of organogenesis at the time of laying, with separate facial prominences and pharyngeal clefts still visible. Limb buds are also visible. By 11 days (stage 3), the chondrocranium is nearly fully formed; however, few intramembranous bones can be detected. One week later (stage 4), many of the intramembranous upper and lower jaw bones are visible but the calvaria are not present. Skeletal elements in the limbs also begin to form. Between stages 4 (day 18) and 7 (day 44), the complete set of intramembranous bones in the jaws and calvaria develops. Hindlimb development does not progress beyond stage 6 (33 days) and remains rudimentary throughout adult life. In contrast to other reptiles, there are two rows of teeth in the upper jaw. The outer tooth row is attached to the maxillary and premaxillary bones, whereas the inner row is attached to the pterygoid and palatine bones. Erupted teeth can be seen in whole-mount stage 10 specimens and are present in an unerupted, mineralized state at stage 7. Micro-CT analysis reveals that all the young membranous bones can be recognized even out of the context of the skull. These data demonstrate intrinsic patterning of the intramembranous bones, even though they form without a cartilaginous template. In addition, intramembranous bone morphology is established prior to muscle function, which can influence bone shape through differential force application. After careful staging, we conclude that python skeletal development occurs slowly enough to observe in good detail the early stages of craniofacial skeletogenesis. Thus, reptilian animal models will offer unique

  13. DMP-1-mediated Ghr gene recombination compromises skeletal development and impairs skeletal response to intermittent PTH.

    PubMed

    Liu, Zhongbo; Kennedy, Oran D; Cardoso, Luis; Basta-Pljakic, Jelena; Partridge, Nicola C; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2016-02-01

    Bone minerals are acquired during growth and are key determinants of adult skeletal health. During puberty, the serum levels of growth hormone (GH) and its downstream effector IGF-1 increase and play critical roles in bone acquisition. The goal of the current study was to determine how bone cells integrate signals from the GH/IGF-1 to enhance skeletal mineralization and strength during pubertal growth. Osteocytes, the most abundant bone cells, were shown to orchestrate bone modeling during growth. We used dentin matrix protein (Dmp)-1-mediated Ghr knockout (DMP-GHRKO) mice to address the role of the GH/IGF axis in osteocytes. We found that DMP-GHRKO did not affect linear growth but compromised overall bone accrual. DMP-GHRKO mice exhibited reduced serum inorganic phosphate and parathyroid hormone (PTH) levels and decreased bone formation indices and were associated with an impaired response to intermittent PTH treatment. Using an osteocyte-like cell line along with in vivo studies, we found that PTH sensitized the response of bone to GH by increasing Janus kinase-2 and IGF-1R protein levels. We concluded that endogenously secreted PTH and GHR signaling in bone are necessary to establish radial bone growth and optimize mineral acquisition during growth. © FASEB.

  14. Early Adolescent Ego Development.

    ERIC Educational Resources Information Center

    James, Michael A.

    1980-01-01

    Presented are the theoretical characteristics of social identity in early adolescence (ages 10 to 15). It is suggested that no longer is identity thought to begin with adolescence, but may have its beginnings in the preteen years. The article draws heavily on Eriksonian concepts. (Editor/KC)

  15. Early Program Development

    1969-01-01

    As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.

  16. Role of FGFs/FGFRs in skeletal development and bone regeneration.

    PubMed

    Du, Xiaolan; Xie, Yangli; Xian, Cory J; Chen, Lin

    2012-12-01

    Fibroblast growth factor (FGF)/FGF (FGFR) signaling is an important pathway involved in skeletal development. Missense mutations in FGFs and FGFRs were found clinically to cause multiple congenital skeleton diseases including chondrodysplasia, craniosynostosis, syndromes with dysregulated phosphate metabolism. FGFs/FGFRs also have crucial roles in bone fracture repair and bone regeneration. Understanding the molecular mechanisms for the role of FGFs/FGFRs in the regulation of skeletal development, genetic skeletal diseases, and fracture healing will ultimately lead to better treatment of skeleton diseases caused by mutations of FGFs/FGFRs and fracture. This review summarizes the major findings on the role of FGF signaling in skeletal development, genetic skeletal diseases and bone healing, and discusses issues that remain to be resolved in applying FGF signaling-related measures to promote bone healing. This review has also provided a perspective view on future work for exploring the roles and action mechanisms of FGF signaling in skeletal development, genetic skeletal diseases, and fracture healing. Copyright © 2012 Wiley Periodicals, Inc.

  17. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development.

    PubMed

    Cho, Ok Hyun; Mallappa, Chandrashekara; Hernández-Hernández, J Manuel; Rivera-Pérez, Jaime A; Imbalzano, Anthony N

    2015-01-01

    Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage-specific genes. The lineage-determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation-specific genes is established remains unclear. Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co-activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification before myogenic regulatory factor binding. At the same time, the MCK promoter was bound by HDAC2 and MyoD, and activating histone marks were largely absent. The association of HDAC2 and MyoD was confirmed by co-immunoprecipitation, proximity ligation assay (PLA), and sequential ChIP. MyoD differentially promotes activated and repressed chromatin structures at myogenic genes early after the onset of skeletal muscle differentiation in the developing mouse embryo. © 2014 Wiley Periodicals, Inc.

  18. Skeletal Morphogenesis of Microbrachis and Hyloplesion (Tetrapoda: Lepospondyli), and Implications for the Developmental Patterns of Extinct, Early Tetrapods

    PubMed Central

    Olori, Jennifer C.

    2015-01-01

    The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis pelikani and Hyloplesion longicostatum using the largest samples examined for either taxon. Nearly all known specimens were re-examined, allowing for substantial anatomical revisions that affect the scoring of characters commonly used in phylogenetic analyses of early tetrapods. The palate of H. longicostatum is re-interpreted and suggested to be more similar to that of M. pelikani, especially in the nature of the contact between the pterygoids. Both taxa possess lateral lines, and M. pelikani additionally exhibits branchial plates. However, early and rapid ossification of the postcranial skeleton, including a well-developed pubis and ossified epipodials, suggests that neither taxon metamorphosed nor were they neotenic in the sense of branchiosaurids and salamanders. Morphogenetic patterns in the foot suggest that digit 5 was developmentally delayed and the final digit to ossify in M. pelikani and H. longicostatum. Overall patterns of postcranial ossification may indicate postaxial dominance in limb and digit formation, but also more developmental variation in early tetrapods than has been appreciated. The phylogenetic position and developmental patterns of M. pelikani and H. longicostatum are congruent with the hypothesis that early tetrapods lacked metamorphosis ancestrally and that stem-amniotes exhibited derived features of development, such as rapid and complete ossification of the skeleton, potentially prior to the evolution of the amniotic egg. PMID:26083733

  19. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development

    PubMed Central

    Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  20. Advances on microRNA in regulating mammalian skeletal muscle development.

    PubMed

    Li, Xin-Yun; Fu, Liang-Liang; Cheng, Hui-Jun; Zhao, Shu-Hong

    2017-11-20

    MicroRNA (miRNA) is a class of short non-coding RNA, which is about 22 bp in length. In mammals, miRNA exerts its funtion through binding with the 3°-UTR region of target genes and inhibiting their translation. Skeletal muscle development is a complex event, including: proliferation, migration and differentiation of skeletal muscle stem cells; proliferation, differentiation and fusion of myocytes; as well as hypertrophy, energy metabolism and conversion of muscle fiber types. The miRNA plays important roles in all processes of skeletal muscle development through targeting the key factors of different stages. Herein we summarize the miRNA related to muscle development, providing a better understanding of the skeletal muscle development.

  1. Early Program Development

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  2. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  3. Early Program Development

    1970-01-01

    In 1970, NASA initiated Phase A contracts to study alternate Space Shuttle designs in addition to the two-stage fully-reusable Space Shuttle system already under development. A number of alternate systems were developed to ensure the development of the optimum earth-to-orbit system, including the Stage-and-a-half Chemical Interorbital Shuttle, shown here. The concept would utilize a reusable marned spacecraft with an onboard propulsion system attached to an expendable fuel tank to provide supplementary propellants.

  4. Development in Early Childhood.

    ERIC Educational Resources Information Center

    Elkind, David

    1991-01-01

    Reviews some of the major cognitive, social, and emotional achievements of young children and discusses some of their limitations. Divides description of development into intellectual, language, social, and emotional development. Notes that this division represents adult categories of thought and does not represent young children's actual modes of…

  5. Early life vitamin D depletion alters the postnatal response to skeletal loading in growing and mature bone

    PubMed Central

    Buckley, Harriet; Owen, Robert; Marin, Ana Campos; Lu, Yongtau; Eyles, Darryl; Lacroix, Damien; Reilly, Gwendolen C.; Skerry, Tim M.; Bishop, Nick J.

    2018-01-01

    There is increasing evidence of persistent effects of early life vitamin D exposure on later skeletal health; linking low levels in early life to smaller bone size in childhood as well as increased fracture risk later in adulthood, independently of later vitamin D status. A major determinant of bone mass acquisition across all ages is mechanical loading. We tested the hypothesis in an animal model system that early life vitamin D depletion results in abrogation of the response to mechanical loading, with consequent reduction in bone size, mass and strength during both childhood and adulthood. A murine model was created in which pregnant dams were either vitamin D deficient or replete, and their offspring moved to a vitamin D replete diet at weaning. Tibias of the offspring were mechanically loaded and bone structure, extrinsic strength and growth measured both during growth and after skeletal maturity. Offspring of vitamin D deplete mice demonstrated lower bone mass in the non loaded limb and reduced bone mass accrual in response to loading in both the growing skeleton and after skeletal maturity. Early life vitamin D depletion led to reduced bone strength and altered bone biomechanical properties. These findings suggest early life vitamin D status may, in part, determine the propensity to osteoporosis and fracture that blights later life in many individuals. PMID:29370213

  6. Diffusion tensor imaging and T2 mapping in early denervated skeletal muscle in rats.

    PubMed

    Ha, Dong-Ho; Choi, Sunseob; Kang, Eun-Ju; Park, Hwan Tae

    2015-09-01

    To evaluate the temporal changes of diffusion tensor imaging (DTI) indices, T2 values, and visual signal intensity on various fat suppression techniques in the early state of denervated skeletal muscle in a rat model. Institutional Animal Care and Use Committee approval was obtained. Sciatic nerves of eight rats were transected for irreversible neurotmesis model. We examined normal lower leg and denervated muscles at 3 days, 1 week, and 2 weeks on a 3 Tesla MR. fractional anisotropy (FA), mean apparent diffusion coefficient (mADC), and T2 values were measured by using DTI and T2 mapping scan. We subjectively classified the signal intensity change on various fat suppression images into the following three grades: negative, suspicious, and definite change. Wilcoxon-sign rank test and Kruskal-Wallis test were used for the comparison of FA, mADC, T2 values. McNemar's test was used for comparing signal intensity change among fat suppression techniques. FA values of denervated muscles at 3 days (0.35 ± 0.06), 1 week (0.29 ± 0.04), and 2 weeks (0.34 ± 0.05) were significantly (P < 0.05) lower than that in the control group (0.54 ± 0.17). mADC of denervated muscles decreased without statistically significant (P > 0.05) change. T2 values were significantly increased at 1 week (38.11 ± 6.42 ms, P = 0.017) and markedly increased at 2 weeks (46.53 ± 5.17 ms, P = 0.012). The grade of visual signal intensity change on chemical shift selective fat saturation, STIR and IDEAL images were identical in all cases (P = 1.000). FA and T2 values can demonstrate the early temporal changes in denervated rat skeletal muscle. © 2014 Wiley Periodicals, Inc.

  7. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I.

    PubMed

    Heppner, Jonathan M; Zaucke, Frank; Clarke, Lorne A

    2015-02-01

    Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis

  8. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    PubMed

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  9. Margaret Buckingham, discoveries in skeletal and cardiac muscle development, elected to the National Academy of Science.

    PubMed

    Rudnicki, Michael A

    2012-06-07

    Margaret Buckingham was presented as a newly elected member to the National Academy of Sciences on 28 April 2012. Over the course of her career, Dr Buckingham made many seminal contributions to the understanding of skeletal muscle and cardiac development. Her studies on cardiac progenitor populations has provided insight into understanding heart malformations, while her work on skeletal muscle progenitors has elucidated their embryonic origins and the transcriptional hierarchies controlling their developmental progression.

  10. Early Program Development

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle taking on fuel from an orbiting Liquid Hydrogen Depot. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  11. Early Program Development

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  12. Early Program Development

    1971-01-01

    In this 1971 artist's concept, the Nuclear Shuttle is shown in various space-based applications. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to geosychronous Earth orbits or lunar orbits then return to low Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.

  13. Early Program Development

    1971-01-01

    This 1971 artist's concept shows the Nuclear Shuttle in both its lunar logistics configuraton and geosynchronous station configuration. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbits or other destinations then return to Earth orbit for refueling and additional missions.

  14. Early Program Development

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  15. Early Program Development

    2004-04-15

    This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.

  16. Early Program Development

    1970-01-01

    In this 1970 artist's concept, the Nuclear Shuttle is shown in its lunar and geosynchronous orbit configuration and in its planetary mission configuration. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.

  17. Early Program Development

    1996-06-20

    Engineers at one of MSFC's vacuum chambers begin testing a microthruster model. The purpose of these tests are to collect sufficient data that will enabe NASA to develop microthrusters that will move the Space Shuttle, a future space station, or any other space related vehicle with the least amount of expended energy. When something is sent into outer space, the forces that try to pull it back to Earth (gravity) are very small so that it only requires a very small force to move very large objects. In space, a force equal to a paperclip can move an object as large as a car. Microthrusters are used to produce these small forces.

  18. Biomechanics of Early Cardiac Development

    PubMed Central

    Goenezen, Sevan; Rennie, Monique Y.

    2012-01-01

    Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming. PMID:22760547

  19. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    PubMed

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  20. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning.

    PubMed

    Anishchenko, Evgeniya; Arnone, Maria Ina; D'Aniello, Salvatore

    2018-01-01

    Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1 , SoxC and Elav . Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning.

  1. Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice.

    PubMed

    Watkins, Adam J; Sirovica, Slobodan; Stokes, Ben; Isaacs, Mark; Addison, Owen; Martin, Richard A

    2017-06-01

    Defining the mechanisms underlying the programming of early life growth is fundamental for improving adult health and wellbeing. While the association between maternal diet, offspring growth and adult disease risk is well-established, the effect of father's diet on offspring development is largely unknown. Therefore, we fed male mice an imbalanced low protein diet (LPD) to determine the impact on post-fertilisation development and fetal growth. We observed that in preimplantation embryos derived from LPD fed males, expression of multiple genes within the central metabolic AMPK pathway was reduced. In late gestation, paternal LPD programmed increased fetal weight, however, placental weight was reduced, resulting in an elevated fetal:placental weight ratio. Analysis of gene expression patterns revealed increased levels of transporters for calcium, amino acids and glucose within LPD placentas. Furthermore, placental expression of the epigenetic regulators Dnmt1 and Dnmt3L were increased also, coinciding with altered patterns of maternal and paternal imprinted genes. More strikingly, we observed fetal skeletal development was perturbed in response to paternal LPD. Here, while offspring of LPD fed males possessed larger skeletons, their bones comprised lower volumes of high mineral density in combination with reduced maturity of bone apatite. These data offer new insight in the underlying programming mechanisms linking poor paternal diet at the time of conception with the development and growth of his offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of nasoalveolar molding on skeletal development in patients with unilateral cleft lip and palate at 5 years of age.

    PubMed

    Akarsu-Guven, Bengisu; Arisan, Arda; Ozgur, Figen; Aksu, Muge

    2018-04-01

    The aim of this retrospective study was to assess the influence of presurgical nasoalveolar molding (NAM) on skeletal development in patients with operated unilateral cleft lip and palate at 5 years of age. Lateral cephalometric radiographs of 26 unilateral cleft lip and palate patients who had undergone presurgical NAM (NAM group) and 20 unilateral cleft lip and palate patients who did not have any presurgical NAM (non-NAM group) were analyzed. The radiographs were digitally traced using Quick Ceph Studio software (version 3.5.1.r (1151); Quick Ceph Systems, San Diego, Calif). Independent samples t tests were performed for statistical analysis. No significant differences were observed in sagittal and vertical skeletal measurements between the NAM and non-NAM groups. NAM resulted in no significant difference in skeletal development in unilateral cleft lip and palate patients compared with those without NAM in early childhood. Copyright © 2018. Published by Elsevier Inc.

  3. Development and external validation of nomograms to predict the risk of skeletal metastasis at the time of diagnosis and skeletal metastasis-free survival in nasopharyngeal carcinoma.

    PubMed

    Yang, Lin; Xia, Liangping; Wang, Yan; He, Shasha; Chen, Haiyang; Liang, Shaobo; Peng, Peijian; Hong, Shaodong; Chen, Yong

    2017-09-06

    The skeletal system is the most common site of distant metastasis in nasopharyngeal carcinoma (NPC); various prognostic factors have been reported for skeletal metastasis, though most studies have focused on a single factor. We aimed to establish nomograms to effectively predict skeletal metastasis at initial diagnosis (SMAD) and skeletal metastasis-free survival (SMFS) in NPC. A total of 2685 patients with NPC who received bone scintigraphy (BS) and/or 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 2496 patients without skeletal metastasis were retrospectively assessed to develop individual nomograms for SMAD and SMFS. The models were validated externally using separate cohorts of 1329 and 1231 patients treated at two other institutions. Five independent prognostic factors were included in each nomogram. The SMAD nomogram had a significantly higher c-index than the TNM staging system (training cohort, P = 0.005; validation cohort, P < 0.001). The SMFS nomogram had significantly higher c-index values in the training and validation sets than the TNM staging system (P < 0.001 and P = 0.005, respectively). Three proposed risk stratification groups were created using the nomograms, and enabled significant discrimination of SMFS for each risk group. The prognostic nomograms established in this study enable accurate stratification of distinct risk groups for skeletal metastasis, which may improve counseling and facilitate individualized management of patients with NPC.

  4. Telomere lengthening early in development.

    PubMed

    Liu, Lin; Bailey, Susan M; Okuka, Maja; Muñoz, Purificación; Li, Chao; Zhou, Lingjun; Wu, Chao; Czerwiec, Eva; Sandler, Laurel; Seyfang, Andreas; Blasco, Maria A; Keefe, David L

    2007-12-01

    Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.

  5. A contemporary Colombian skeletal reference collection: A resource for the development of population specific standards.

    PubMed

    Sanabria-Medina, Cesar; González-Colmenares, Gretel; Restrepo, Hadaluz Osorio; Rodríguez, Juan Manuel Guerrero

    2016-09-01

    Several authors who have discussed human variability and its impact on the forensic identification of bodies pose the need for regional studies documenting the global variation of the attributes analyzed osteological characteristics that aid in establishing biological profile (sex, ancestry, biological age and height). This is primarily accomplished by studying documented human skeletal collections in order to investigate secular trends in skeletal development and aging, among others in the Colombian population. The purpose of this paper is to disclose the details of the new "Contemporary Colombian Skeletal Reference Collection" that currently comprises 600 identified skeletons of both sexes, who died between 2005 and 2008; and which contain information about their cause of death. This collection has infinite potential for research, open to the national and international community, and still has pending opportunities to address a variety of topics such as studies on osteopathology, bone trauma and taphonomic studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Correlation among chronologic age, skeletal maturity, and dental age.

    PubMed

    Sukhia, Rashna H; Fida, Mubassar

    2010-01-01

    To determine the correlation among chronologic age, skeletal maturity, and dental age in reference to both sexes. In 380 subjects (147 males and 233 females) between 7 and 17 years of age, skeletal maturity was assessed using the cervical vertebral maturation stages described by Baccetti et al. Dental age was determined using the Demirjian method. The correlation between skeletal maturity and chronologic age on one side and between skeletal maturity and dental age on the other was assessed with Spearman rank correlation coefficients. Pearson correlation coefficients were used to assess the correlation between chronologic and dental age. For both sexes, significant correlations among chronologic age, skeletal maturity, and dental age were found. The mandibular first premolar had the highest correlation with skeletal maturation in both sexes. As skeletal maturity and dental age are significantly correlated, tooth development may be used to assess a patient's skeletal maturity at an early age. © 2011 BY QUINTESSENCE PUBLISHING CO, INC.

  7. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Criswell, D. S.

    1997-01-01

    Skeletal muscle adapts to loading; atrophying when exposed to unloading on Earth or in spaceflight. Significant atrophy (decreases in muscle fiber cross-section of 11-24%) in humans has been noted after only 5 days in space. Since muscle strength is determined both by muscle cross-section and synchronization of motor unit recruitment, a loss in muscle size weakens astronauts, which would increase risks to their safety if an emergency required maximal muscle force. Numerous countermeasures have been tested to prevent atrophy. Resistant exercise together with growth hormone and IGF-I are effective countermeasures to unloading as most atrophy is prevented in animal models. The loss of muscle protein is due to an early decrease in protein synthesis rate and a later increase in protein degradation. The initial decrease in protein synthesis is a result of decreased protein translation, caused by a prolongation in the elongation rate. A decrease in HSP70 by a sight increase in ATP may be the factors prolonging elongation rate. Increases in the activities of proteolytic enzymes and in ubiquitin contribute to the increased protein degradation rate in unloaded muscle. Numerous mRNA concentrations have been shown to be altered in unloaded muscles. Decreases in mRNAs for contractile proteins usually occur after the initial fall in protein synthesis rates. Much additional research is needed to determine the mechanism by which muscle senses the absence of gravity with an adaptive atrophy. The development of effective countermeasures to unloading atrophy will require more research.

  8. Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development

    PubMed Central

    Qin, Lijun; Chen, Yaosheng; Liu, Xiaohong; Ye, Sanxing; Yu, Kaifan; Huang, Zheng; Yu, Jingwei; Zhou, Xingyu; Chen, Hu; Mo, Delin

    2013-01-01

    Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development. PMID:24039761

  9. EFFECTS OF HYPERTHERMIA AND BORIC ACID ON SKELETAL DEVELOPMENT IN RAT EMBRYOS

    EPA Science Inventory

    BACKGROUND: The individual effects of boric acid (BA) and hyperthermia on the development of the axial skeleton have previously been reported. Both cause an increased incidence of axial skeletal defects including a decrease in the total number of ribs and vertebrae. Because of th...

  10. Serum PTHrP level as a biomarker in assessing skeletal maturation during circumpubertal development.

    PubMed

    Hussain, Mohammed Zahid; Talapaneni, Ashok Kumar; Prasad, Mandava; Krishnan, Ramalingam

    2013-04-01

    Many investigators have studied the cellular organization and the local and systemic factors regulating endochondral bone growth in the growth plate and condylar cartilage. Parathyroid hormone-related protein (PTHrP) and Indian hedgehog protein have been reported to regulate multiple steps during such skeletal morphogenesis. The aims of this study were to quantify serum PTHrP levels at 6 cervical vertebral stages and to correlate serum PTHrP levels to the 6 skeletal maturation stages for use as a biologic indicator of skeletal maturation. Mean serum PTHrP levels were measured in 90 subjects categorized into 6 cervical vertebral stages. Mean serum PTHrP levels were significantly higher in the late pubertal stages than in the early pubertal stages. Pearson correlation showed that serum PTHrP levels had a positive correlation with cervical vertebral maturation stages from the prepubertal to the late pubertal stages, and a negative correlation from the late pubertal to the postpubertal stages. Peak serum PTHrP levels do not correlate with early pubertal stages characterized by maximum growth increments. Hence, the validity of using serum PTHrP levels to predict peak growth velocity is questionable. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Association between growth stunting with dental development and skeletal maturation stage.

    PubMed

    Flores-Mir, Carlos; Mauricio, Franco Raul; Orellana, Maria Fernanda; Major, Paul William

    2005-11-01

    The aim of this study was to determine the influence of growth stunting on the maturation stage of the medium phalanx of the third finger (MP3) and the dental development of the left mandibular canine in 280 high school children (140 stunted and 140 normal controls; equally distributed by sex) between 9.5 and 16.5 years of age, from a representative Peruvian school. Periapical radiographs of the MP3 from the left hand were used to determine the skeletal maturity stage, according to an adaptation of the Hägg and Taranger method. Panoramic radiographs were used to determine the dental maturity stage of the lower left canine, according to Demirjian method. Stunting was determined by relating height and age, according to the World Health Organization recommendations. There was no statistically significant difference in the skeletal maturation stage (P = .134) and the dental development stage (P = .497) according to nutritional status, even when considering different age groups (P > .183). A high correlation (r = 0.85) was found between both maturity indicators regardless of the nutritional status (growth stunted, r = 0.855 and normal controls, r = 0.863) or sex (boys, r = 0.809 and girls, r = 0.892). When skeletal level was considered, correlations values were similar between advanced (r = 0.903) and average (r = 0.895) maturers but lower (r = 0.751) for delayed maturers. Growth stunting was not associated with dental development and skeletal maturity stages in Peruvian school children.

  12. Activity Participation Intensity Is Associated with Skeletal Development in Pre-Pubertal Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Tsang, William W. N.; Guo, X.; Fong, Shirley S. M.; Mak, Kwok-Kei; Pang, Marco Y. C.

    2012-01-01

    Purpose: This study aimed (1) to compare the skeletal maturity and activity participation pattern between children with and without developmental coordination disorder (DCD); and (2) to determine whether activity participation pattern was associated with the skeletal development among children with DCD. Materials and methods: Thirty-three children…

  13. Skeletal development and abnormalities of the vertebral column and of the fins in hatchery-reared turbot Scophthalmus maximus.

    PubMed

    Tong, X H; Liu, Q H; Xu, S H; Ma, D Y; Xiao, Z Z; Xiao, Y S; Li, J

    2012-03-01

    To describe the skeletal development and abnormalities in turbot Scophthalmus maximus, samples were collected every day from hatching to 60 days after hatching (DAH). A whole-mount cartilage and bone-staining technique was used. Vertebral ontogeny started with the formation of anterior haemal arches at 5·1 mm standard length (L(S) ) c. 11 DAH, and was completed by the full attainment of parapophyses at 16·9 mm L(S) c. 31 DAH. Vertebral centra started to develop at 6·3 mm L(S) c. 16 DAH and ossification in all centra was visible at 11·0 mm L(S) c. 25 DAH. The caudal fin appeared at 5·1 mm L(S) c. 11 DAH and ossification was visible at 20·6 mm L(S) c. 37 DAH. The onset of dorsal and anal fin elements appeared at 5·8 mm L(S) c. 15 DAH and 6·3 mm L(S) c. 16 DAH, respectively. Ossifications of both dorsal fin and anal fin were visible at 20·6 mm L(S) c. 37 DAH. The pectorals were the only fins present before first feeding, their ossifications were completed at 23·5 mm L(S) c. 48 DAH. Pelvic fins began forming at 7·2 mm L(S) c. 19 DAH and calcification of the whole structure was visible at 19·8 mm L(S) c. 36 DAH. In the present study, 24 types of skeletal abnormalities were observed. About 51% of individuals presented skeletal abnormalities, and the highest occurrence was found in the haemal region of the vertebral column. As for each developmental stage, the most common abnormalities were in the dorsal fin during early metamorphic period (stage 2), vertebral fusion during climax metamorphosis (stage 3) and caudal fin abnormality during both late-metamorphic period (stage 4) and post-metamorphic period (stage 5). Such research will be useful for early detection of skeletal malformations during different growth periods of reared S. maximus. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  14. Development of a novel spike-like auxiliary skeletal anchorage device to enhance miniscrew stability.

    PubMed

    Miyawaki, Shouichi; Tomonari, Hiroshi; Yagi, Takakazu; Kuninori, Takaharu; Oga, Yasuhiko; Kikuchi, Masafumi

    2015-08-01

    Miniscrews are frequently used for skeletal anchorage during edgewise treatment, and their clinical use has been verified. However, their disadvantage is an approximately 15% failure rate, which is primarily attributed to the low mechanical stability between the miniscrew and cortical bone and to the miniscrew's close proximity to the dental root. To solve these problems, we developed a novel spike-like auxiliary skeletal anchorage device for use with a miniscrew to increase its stability. The retention force was compared between miniscrews with and without the auxiliary skeletal anchorage device at each displacement of the miniscrew. The combined unit was also implanted into the bones of 2 rabbits in vivo, and implantation was visually assessed at 4 weeks postoperatively while the compression force was applied. The retention force of the combined unit was significantly and approximately 3 to 5 times stronger on average than that of the miniscrew alone at each displacement. The spiked portion of the auxiliary anchorage device embedded into the cortical bone of the hind limb at approximately a 0.3-mm depth at 4 weeks postimplantation in both rabbits. The auxiliary skeletal anchorage device may increase miniscrew stability, allow a shortened miniscrew, and enable 3-dimensional absolute anchorage. Further evaluation of its clinical application is necessary. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    PubMed

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  16. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish

    PubMed Central

    Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.

    2016-01-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  17. Cognitive Development in Early Readers.

    ERIC Educational Resources Information Center

    Briggs, Chari; Elkind, David

    Some studies of early readers are discussed. It is pointed out that study of early readers has relevance for practical and theoretical issues in psychology and education. Of interest in this document are the following questions: (1) Are there any special talents or traits distinguishing early from non-early readers? (2) Do children who read early…

  18. [Early childhood growth and development].

    PubMed

    Arce, Melitón

    2015-01-01

    This article describes and discusses issues related to the process of childhood growth and development, with emphasis on the early years, a period in which this process reaches critical speed on major structures and functions of the human economy. We reaffirm that this can contribute to the social availability of a generation of increasingly better adults, which in turn will be able to contribute to building a better world and within it a society that enjoys greater prosperity. In the first chapter, we discuss the general considerations on the favorable evolution of human society based on quality of future adults, meaning the accomplishments that today’s children will gain. A second chapter mentions the basics of growth and development in the different fields and the various phenomena that occur in it. In the third we refer to lost opportunities and negative factors that can affect delaying the process and thereby result in not obtaining the expected accomplishments. In the fourth, conclusions and recommendations are presented confirming the initial conception that good early child care serves to build a better society and some recommendations are formulated to make it a good practice.

  19. Skeletal muscle and fetal alcohol spectrum disorder.

    PubMed

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  20. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  1. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development.

    PubMed

    Bonilla-Claudio, Margarita; Wang, Jun; Bai, Yan; Klysik, Elzbieta; Selever, Jennifer; Martin, James F

    2012-02-01

    We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.

  2. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

    PubMed

    Luo, Guo; Yi, Jianxun; Ma, Changling; Xiao, Yajuan; Yi, Frank; Yu, Tian; Zhou, Jingsong

    2013-01-01

    Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1(G93A)). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A) in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A) forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A) model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1(G93A) action on mitochondrial dynamics, indicating SOD1(G93A) likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A) inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may

  3. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity.

    PubMed

    Jensen, Jeanette H; Conley, Lene N; Hedegaard, Jakob; Nielsen, Mathilde; Young, Jette F; Oksbjerg, Niels; Hornshøj, Henrik; Bendixen, Christian; Thomsen, Bo

    2012-07-01

    Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact of unaccustomed exercise on global transcriptional profiles in porcine skeletal muscles. Using a combined microarray and candidate gene approach, we identified a suite of genes that are differentially expressed in muscles during postexercise recovery. Several members of the heat shock protein family and proteins associated with proteolytic events, such as the muscle-specific E3 ubiquitin ligase atrogin-1, were significantly upregulated, suggesting that protein breakdown, prevention of protein aggregation and stabilization of unfolded proteins are important processes for restoration of cellular homeostasis. We also detected an upregulation of genes that are associated with muscle cell proliferation and differentiation, including MUSTN1, ASB5 and CSRP3, possibly reflecting activation, differentiation and fusion of satellite cells to facilitate repair of muscle damage. In addition, exercise increased expression of the orphan nuclear hormone receptor NR4A3, which regulates metabolic functions associated with lipid, carbohydrate and energy homeostasis. Finally, we observed an unanticipated induction of the long non-coding RNA transcript NEAT1, which has been implicated in RNA processing and nuclear retention of adenosine-to-inosine edited mRNAs in the ribonucleoprotein bodies called paraspeckles. These findings expand the complexity of pathways affected by acute contractile activity of skeletal muscle, contributing to a better understanding of the molecular processes that occur in muscle tissue in the recovery phase.

  4. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    PubMed

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Risedronate Prevents Early Radiation-Induced Osteoporosis in Mice at Multiple Skeletal Locations

    PubMed Central

    Willey, Jeffrey S.; Livingston, Eric W.; Robbins, Michael E.; Bourland, J. Daniel; Tirado-Lee, Leidamarie; Smith-Sielicki, Hope; Bateman, Ted A.

    2009-01-01

    Introduction Irradiation of normal, non-malignant bone during cancer therapy can lead to atrophy and increased risk of fracture at several skeletal sites, particularly the hip. This bone loss has been largely attributed to damaged osteoblasts. Little attention has been given to increased bone resorption as a contributor to radiation-induced osteoporosis. Our aims were to identify if radiation increases bone resorption resulting in acute bone loss, and if bone loss could be prevented by administering risedronate. Methods Twenty-week old female C57BL/6 mice were either: not irradiated and treated with placebo (NR+PL); whole-body irradiated with 2 Gy X-rays and treated with placebo (IR+PL); or irradiated and treated with risedronate (IR+RIS; 30μg/kg every other day). Calcein injections were administered 7 and 2 days before sacrifice. Bones were collected 1, 2, and 3 weeks after exposure. MicroCT analysis was performed at 3 sites: proximal tibial metaphysis; distal femoral metaphysis; and the body of the 5th lumbar vertebra (L5). Osteoclasts were identified from TRAP-stained histological sections. Dynamic histomorphometry of cortical and trabecular bone was performed. Circulating TRAP5b and osteocalcin concentrations were quantified. Results In animals receiving IR+PL, significant (P < 0.05) reduction in trabecular volume fraction relative to non-irradiated controls was observed at all three skeletal sites and time points. Likewise, radiation-induced loss of connectivity and trabecular number relative to NR+PL were observed at all skeletal sites throughout the study. Bone loss primarily occurred during the first week post-exposure. Trabecular and endocortical bone formation was not reduced until Week 2. Loss of bone volume was absent in animals receiving IR+RIS. Histology indicated greater osteoclast numbers at Week 1 within IR+PL mice. Serum TRAP5b concentration was increased in IR+PL mice only at Week 1 compared to NR+PL (P = 0.05). Risedronate treatment prevented

  6. Role of HIF-1α in skeletal development

    PubMed Central

    Wan, Chao; Shao, Jin; Gilbert, Shawn R.; Riddle, Ryan C.; Long, Fanxin; Johnson, Randall S.; Schipani, Ernestina; Clemens, Thomas L.

    2011-01-01

    Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration. Mesenchymal cells in the developing stroma elicit angiogenic signals to recruit new blood vessels into bone. Reciprocal signals, likely emanating from the incoming vascular endothelium, stimulate mesenchymal cell specification through additional interactions with cells within the vascular stem cell niche. The hypoxia-inducible factor-1 alpha (HIF-1) pathway has been identified as a key component in this process. We demonstrated that overexpression of HIF-1 in mature osteoblasts through disruption of the von Hippel-Lindau protein profoundly increases angiogenesis and osteogenesis; these processes appear to be coupled by cell nonautonomous mechanisms involving the action of vascular endothelial growth factor (VEGF) on the endothelial cells. The same occurred in the model of injury-mediated bone regeneration (distraction osteogenesis). Surprisingly, manipulation of HIF-1 does not influence angiogenesis of the skull bones, where earlier activation of HIF-1 in the condensing mesenchyme upregulates osterix during cranial bone formation. PMID:20392254

  7. Core-binding factor beta interacts with Runx2 and is required for skeletal development.

    PubMed

    Yoshida, Carolina A; Furuichi, Tatsuya; Fujita, Takashi; Fukuyama, Ryo; Kanatani, Naoko; Kobayashi, Shinji; Satake, Masanobu; Takada, Kenji; Komori, Toshihisa

    2002-12-01

    Core-binding factor beta (CBFbeta, also called polyomavirus enhancer binding protein 2beta (PEBP2B)) is associated with an inversion of chromosome 16 and is associated with acute myeloid leukemia in humans. CBFbeta forms a heterodimer with RUNX1 (runt-related transcription factor 1), which has a DNA binding domain homologous to the pair-rule protein runt in Drosophila melanogaster. Both RUNX1 and CBFbeta are essential for hematopoiesis. Haploinsufficiency of another runt-related protein, RUNX2 (also called CBFA1), causes cleidocranial dysplasia in humans and is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Mice deficient in Cbfb (Cbfb(-/-)) die at midgestation, so the function of Cbfbeta in skeletal development has yet to be ascertained. To investigate this issue, we rescued hematopoiesis of Cbfb(-/-) mice by introducing Cbfb using the Gata1 promoter. The rescued Cbfb(-/-) mice recapitulated fetal liver hematopoiesis in erythroid and megakaryocytic lineages and survived until birth, but showed severely delayed bone formation. Although mesenchymal cells differentiated into immature osteoblasts, intramembranous bones were poorly formed. The maturation of chondrocytes into hypertrophic cells was markedly delayed, and no endochondral bones were formed. Electrophoretic mobility shift assays and reporter assays showed that Cbfbeta was necessary for the efficient DNA binding of Runx2 and for Runx2-dependent transcriptional activation. These findings indicate that Cbfbeta is required for the function of Runx2 in skeletal development.

  8. Influence of complex childhood diseases on variation in growth and skeletal development.

    PubMed

    Zemel, Babette S

    2017-03-01

    The study of human growth and skeletal development by human biologists is framed by the larger theoretical concerns regarding the underpinnings of population variation and human evolution. This unique perspective is directly relevant to the assessment of child health and well-being at the individual and group level, as well as the construction of growth charts. Environmental, behavioral (nutrition and physical activity), and disease-related factors can prevent attainment of full genetic potential for growth. Undernutrition is most often the cause of growth faltering and poor skeletal development. Disease related factors, such as malabsorption, inflammation, and immobility also have profound effects. These effects will be illustrated with examples from diseases such as cystic fibrosis, inflammatory bowel disease, and Down syndrome. The need for separate growth charts for children with genetic disorders is often controversial because of potential medical and/or nutritional complications associated with some disorders. Children with Alagille syndrome and Down syndrome will be used to illustrate the advantages and limitations of syndrome-specific charts. This overview of health and disease effects on growth and skeletal development provides insights into the plasticity of human growth and its sensitivity to overall health and well-being. © 2017 Wiley Periodicals, Inc.

  9. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease.

    PubMed

    Swallow, E A; Aref, M W; Chen, N; Byiringiro, I; Hammond, M A; McCarthy, B P; Territo, P R; Kamocka, M M; Winfree, S; Dunn, K W; Moe, S M; Allen, M R

    2018-06-11

    This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.

  10. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    PubMed

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Reversing sex steroid deficiency and optimizing skeletal development in the adolescent with gonadal failure.

    PubMed

    Vanderschueren, Dirk; Vandenput, Liesbeth; Boonen, Steven

    2005-01-01

    During puberty, the acquisition of skeletal mass and areal bone mineral density (BMD) mainly reflects an increase in bone size (length and perimeters) and not true volumetric BMD. Sexual dimorphism in bone mass and areal BMD is also explained by differences in bone size (longer and wider bones in males) and not by differences in volumetric BMD. Androgens stimulate skeletal growth by activation of the androgen receptor, whereas estrogens (following aromatization of androgens and stimulation of estrogen receptors) have a biphasic effect on skeletal growth during puberty. Recent evidence from clinical cases has shown that many of the growth-promoting effects of the sex steroids are mediated through estrogens rather than androgens. In addition, skeletal maturation and epiphyseal fusion are also estrogen-dependent in both sexes. Nevertheless, independent actions of androgens in these processes also occur. Both sex steroids maintain volumetric BMD during puberty. Androgens interact with the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis neonatally, resulting in a sexual dimorphic GH pattern during puberty, whereas estrogens stimulate GH and hereby IGF-I in both sexes. Hypogonadism in adolescents impairs not only bone size but also maintenance of volumetric BMD, hereby severely reducing peak areal BMD. Delayed puberty in boys and Turner's syndrome in women impair both bone length and size, reducing areal BMD. Whether volumetric BMD is also reduced and whether fracture risk is increased in these conditions remains controversial. Replacing sex steroids according to a biphasic pattern (starting at low doses and ending at high-normal doses) seems the safest approach to reach targeted height and to optimize bone development.

  12. Taiwanese Early Childhood Educators' Professional Development

    ERIC Educational Resources Information Center

    Hsu, Ching-Yun

    2008-01-01

    This study was designed based on a qualitative paradigm to explore the professional development of Taiwanese early childhood educators. The method of phenomenology was employed. The main research question addressed was "How do early childhood educators construe their professional development experience?" Seven Taiwanese early childhood…

  13. Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique.

    PubMed

    Tallis, Jason; James, Rob S; Little, Alexander G; Cox, Val M; Duncan, Michael J; Seebacher, Frank

    2014-09-15

    Previous isolated muscle studies examining the effects of ageing on contractility have used isometric protocols, which have been shown to have poor relevance to dynamic muscle performance in vivo. The present study uniquely uses the work-loop technique for a more realistic estimation of in vivo muscle function to examine changes in mammalian skeletal muscle mechanical properties with age. Measurements of maximal isometric stress, activation and relaxation time, maximal power output, and sustained power output during repetitive activation and recovery are compared in locomotory extensor digitorum longus (EDL) and core diaphragm muscle isolated from 3-, 10-, 30-, and 50-wk-old female mice to examine the early onset of ageing. A progressive age-related reduction in maximal isometric stress that was of greater magnitude than the decrease in maximal power output occurred in both muscles. Maximal force and power developed earlier in diaphragm than EDL muscle but demonstrated a greater age-related decline. The present study indicates that ability to sustain skeletal muscle power output through repetitive contraction is age- and muscle-dependent, which may help rationalize previously reported equivocal results from examination of the effect of age on muscular endurance. The age-related decline in EDL muscle performance is prevalent without a significant reduction in muscle mass, and biochemical analysis of key marker enzymes suggests that although there is some evidence of a more oxidative fiber type, this is not the primary contributor to the early age-related reduction in muscle contractility. Copyright © 2014 the American Physiological Society.

  14. Early Childhood Diplomacy: Policy Planning for Early Childhood Development

    ERIC Educational Resources Information Center

    Vargas-Barón, Emily; Diehl, Kristel

    2018-01-01

    Children who are well nurtured, appropriately cared for, and provided with positive learning opportunities in their early years have a better chance of becoming healthy and productive citizens of nations and of the world. This article reviews the art and science of policy planning for early childhood development (ECD) from a diplomacy perspective.…

  15. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.

    PubMed

    Al-Shanti, Nasser; Stewart, Claire E

    2009-11-01

    The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases

  16. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    PubMed Central

    2011-01-01

    Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes

  17. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    PubMed

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features.

    PubMed

    Kothary, Shefali; Rosenberg, Zehava Sadka; Poncinelli, Leonardo L; Kwong, Steven

    2014-09-01

    To assess the MRI appearance of normal skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population. To the best of our knowledge, this has not yet been studied in detail in the literature. An IRB-approved, HIPAA-compliant retrospective review of 105 consecutive shoulder MRI studies in children, ages 2 months to 18 years was performed. The morphology, MR signal, and development of the following were assessed: (1) scapular-coracoid bipolar growth plate, (2) glenoid and glenoid-coracoid interface secondary ossification centers, (3) glenoid advancing osseous surface. The glenoid and glenoid-coracoid interface were identified in infancy as a contiguous, cartilaginous mass. A subcoracoid secondary ossification center in the superior glenoid was identified and fused in all by age 12 and 16, respectively. In ten studies, additional secondary ossification centers were identified in the inferior two-thirds of the glenoid. The initial concavity of the glenoid osseous surface gradually transformed to convexity, matching the convex glenoid articular surface. The glenoid growth plate fused by 16 years of age. Our study, based on MRI, demonstrated a similar pattern of development of the glenoid and glenoid coracoid interface to previously reported anatomic and radiographic studies, except for an earlier development and fusion of the secondary ossification centers of the inferior glenoid. The pattern of skeletal development of the glenoid and glenoid-coracoid interface follows a chronological order, which can serve as a guideline when interpreting MRI studies in children.

  19. Kentucky's Statewide Early Childhood Professional Development System

    ERIC Educational Resources Information Center

    Rous, Beth; Grove, Jaime; Townley, Kim

    2007-01-01

    Public school systems have recently become major players in providing services for children in their early years. In addition, a number of other services are available to young children including child care, Head Start, and Early Head Start programs. The link between program quality and professional development of early care and education…

  20. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development.

    PubMed

    Swarnkar, Gaurav; Zhang, Kaihua; Mbalaviele, Gabriel; Long, Fanxin; Abu-Amer, Yousef

    2014-01-01

    and alkaline phosphatase, and the early markers Aggrecan and type-II collagen were reduced in Cre+IKK2ca_w/f and Cre+IKK2ca_f/f mice. Altogether, the in-vitro, in vivo and ex-vivo evidence suggest that IKK2ca perturbs osteoblast and chondrocyte maturation and impairs skeletal development.

  1. Regulatory elements driving the expression of skeletal lineage reporters differ during bone development and adulthood.

    PubMed

    Stiers, Pieter-Jan; van Gastel, Nick; Moermans, Karen; Stockmans, Ingrid; Carmeliet, Geert

    2017-12-01

    To improve bone healing or regeneration more insight in the fate and role of the different skeletal cell types is required. Mouse models for fate mapping and lineage tracing of skeletal cells, using stage-specific promoters, have advanced our understanding of bone development, a process that is largely recapitulated during bone repair. However, validation of these models is often only performed during development, whereas proof of the activity and specificity of the used promoters during the bone regenerative process is limited. Here, we show that the regulatory elements of the 6kb collagen type II promoter are not adequate to drive gene expression during bone repair. Similarly, the 2.3kb promoter of collagen type I lacks activity in adult mice, but the 3.2kb promoter is suitable. Furthermore, Cre-mediated fate mapping allows the visualization of progeny, but this label retention may hinder to distinguish these cells from ones with active expression of the marker at later time points. Together, our results show that the lineage-specific regulatory elements driving gene expression during bone development differ from those required later in life and during bone repair, and justify validation of lineage-specific cell tracing and gene silencing strategies during fracture healing and bone regenerative applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Accentuated lines in the enamel of primary incisors from skeletal remains: A contribution to the explanation of early childhood mortality in a medieval population from Poland.

    PubMed

    Żądzińska, Elżbieta; Lorkiewicz, Wiesław; Kurek, Marta; Borowska-Strugińska, Beata

    2015-07-01

    Physiological disruptions resulting from an impoverished environment during the first years of life are of key importance for the health and biological status of individuals and populations. Studies of growth processes in archaeological populations point to the fact that the main causes of childhood mortality in the past are to be sought among extrinsic factors. Based on this assumption, one would expect random mortality of children, with the deceased individuals representing the entire subadult population. The purpose of this study is to explore whether differences in early childhood survival are reflected in differences in deciduous tooth enamel, which can provide an insight into the development of an individual during prenatal and perinatal ontogeny. Deciduous incisors were taken from 83 individuals aged 2.0-6.5 years from a medieval inhumation cemetery dated AD 1300-1600. Prenatal and postnatal enamel formation time, neonatal line width, and the number of accentuated lines were measured using an optical microscope. The significantly wider neonatal line and the higher frequency of accentuated lines in the enamel of the incisors of children who died at the age of 2-3 years suggest the occurrence of stronger or more frequent stress events in this group. These results indicate that in skeletal populations mortality was not exclusively determined by random external factors. Individuals predisposed by an unfavorable course of prenatal and perinatal growth were more likely to die in early childhood. © 2015 Wiley Periodicals, Inc.

  3. Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2*

    PubMed Central

    Dudakovic, Amel; Camilleri, Emily T.; Xu, Fuhua; Riester, Scott M.; McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Paradise, Christopher R.; Lewallen, Eric A.; Thaler, Roman; Deyle, David R.; Larson, A. Noelle; Lewallen, David G.; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2015-01-01

    Epigenetic control of gene expression is critical for normal fetal development. However, chromatin-related mechanisms that activate bone-specific programs during osteogenesis have remained underexplored. Therefore, we investigated the expression profiles of a large cohort of epigenetic regulators (>300) during osteogenic differentiation of human mesenchymal cells derived from the stromal vascular fraction of adipose tissue (AMSCs). Molecular analyses establish that the polycomb group protein EZH2 (enhancer of zeste homolog 2) is down-regulated during osteoblastic differentiation of AMSCs. Chemical inhibitor and siRNA knockdown studies show that EZH2, a histone methyltransferase that catalyzes trimethylation of histone 3 lysine 27 (H3K27me3), suppresses osteogenic differentiation. Blocking EZH2 activity promotes osteoblast differentiation and suppresses adipogenic differentiation of AMSCs. High throughput RNA sequence (mRNASeq) analysis reveals that EZH2 inhibition stimulates cell cycle inhibitory proteins and enhances the production of extracellular matrix proteins. Conditional genetic loss of Ezh2 in uncommitted mesenchymal cells (Prrx1-Cre) results in multiple defects in skeletal patterning and bone formation, including shortened forelimbs, craniosynostosis, and clinodactyly. Histological analysis and mRNASeq profiling suggest that these effects are attributable to growth plate abnormalities and premature cranial suture closure because of precocious maturation of osteoblasts. We conclude that the epigenetic activity of EZH2 is required for skeletal patterning and development, but EZH2 expression declines during terminal osteoblast differentiation and matrix production. PMID:26424790

  4. Effect of public symphysiodesis on pelvic development in the skeletally immature greyhound.

    PubMed

    Swainson, S W; Conzemius, M G; Riedesel, E A; Smith, G K; Riley, C B

    2000-01-01

    To evaluate the effect of pubic symphysiodesis (PS) on pelvic development in skeletally immature dogs. Prospective randomized clinical trial. Eight 4 month-old, sexually intact female Greyhounds. Initial PS was performed at 4 months of age using a powered stapling device. Because of failure of the initial surgery, a second PS was performed 1 month later by resecting the pubic symphysis with a rongeur followed by placement of handmade bone staples in four dogs. Sham PS was performed in four control dogs at 4 months of age. Pubic growth rate and pelvic development were evaluated using standard plane radiography and computed tomography. Specific measurements included acetabular ventroversion, Norberg angle, lateral center-edge angle, and pelvic inlet dimensions. Hip distraction indices were determined as well. PS at 4 months of age using a stapling device failed. Pubic symphysiodesis using hand made staples was successful at 5 months of age and did not result in any clinically significant intraoperative or postoperative complications. Pubic symphysiodesis markedly decreased pubic symphysis growth in the treatment group. Hip distraction indices and pelvic inlet circumference, area, and width significantly decreased in treated dogs compared to those in the control group. Acetabular ventroversion was significantly increased in treated dogs compared to those in the control group. PS decreases pelvic canal size, increases acetabular ventroversion, and does not appear to have any clinically significant complications. PS performed in skeletally immature dogs with hip dysplasia may provide an effect similar to a triple pelvic osteotomy and warrants further investigation.

  5. The Development of STAR Early Literacy. Report.

    ERIC Educational Resources Information Center

    School Renaissance Inst., Inc., Madison, WI.

    This report describes the development and testing of a computerized early literacy diagnostic assessment for students in prekindergarten to grade 3 that can measure skills across a variety of preliteracy and reading domains. The STAR Early Literacy assessment was developed by a team of more than 50 people, including literacy experts,…

  6. Critical Issues in Early Childhood Professional Development

    ERIC Educational Resources Information Center

    Zaslow, Martha, Ed.; Martinez-Beck, Ivelisse, Ed.

    2005-01-01

    Effective teaching leads to positive student outcomes, and professional development for early childhood teachers is key to improving both. But what exactly is meant by "professional development"? What effect does it have on school readiness? Which models and approaches really work? This is the book the early childhood field needs to take the…

  7. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  8. Control of early seed development.

    PubMed

    Chaudhury, A M; Koltunow, A; Payne, T; Luo, M; Tucker, M R; Dennis, E S; Peacock, W J

    2001-01-01

    Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.

  9. Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice.

    PubMed

    Sun, Jingyu; Zhang, Chen; Kim, MinJeong; Su, Yajuan; Qin, Lili; Dong, Jingmei; Zhou, Yunhe; Ding, Shuzhe

    2018-04-01

    Exercise and resveratrol supplementation exhibit anti-obesity functions in the long term but have not been fully investigated yet in terms of their early potential effectiveness. Mice fed with high-fat diet were categorized into control (Cont), exercise (Ex), resveratrol supplementation (Res), and exercise combined with resveratrol supplementation (Ex + Res) groups. In the four-week period of weight loss, exercise combined with resveratrol supplementation exerted no additional effects on body weight loss but significantly improved whole-body glucose and lipid homeostasis. The combined treatment significantly decreased intrahepatic lipid content but did not affect intramyocellular lipid content. Moreover, the treatment significantly increased the contents of mtDNA and cytochrome c, the expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and its downstream transcription factors, and the activities of ATPase and citrate synthase. However, exercise, resveratrol, and their combination did not promote myofiber specification toward slow-twitch type. The effects of exercise combined with resveratrol supplementation on weight loss could be partly due to enhanced mitochondrial biogenesis and not to fiber-type shift in skeletal muscle tissues. [BMB Reports 2018; 51(4): 200-205].

  10. Skeletal development in the African elephant and ossification timing in placental mammals

    PubMed Central

    Hautier, Lionel; Stansfield, Fiona J.; Allen, W. R. Twink; Asher, Robert J.

    2012-01-01

    We provide here unique data on elephant skeletal ontogeny. We focus on the sequence of cranial and post-cranial ossification events during growth in the African elephant (Loxodonta africana). Previous analyses on ossification sequences in mammals have focused on monotremes, marsupials, boreoeutherian and xenarthran placentals. Here, we add data on ossification sequences in an afrotherian. We use two different methods to quantify sequence heterochrony: the sequence method and event-paring/Parsimov. Compared with other placentals, elephants show late ossifications of the basicranium, manual and pedal phalanges, and early ossifications of the ischium and metacarpals. Moreover, ossification in elephants starts very early and progresses rapidly. Specifically, the elephant exhibits the same percentage of bones showing an ossification centre at the end of the first third of its gestation period as the mouse and hamster have close to birth. Elephants show a number of features of their ossification patterns that differ from those of other placental mammals. The pattern of the initiation of the ossification evident in the African elephant underscores a possible correlation between the timing of ossification onset and gestation time throughout mammals. PMID:22298853

  11. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    PubMed Central

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  12. [Development and prospect on skeletal age evaluation methods of X-ray film].

    PubMed

    Wang, Ya-hui; Zhu, Guang-you; Qiao, Ke; Bian, Shi-zhong; Fan, Li-hua; Cheng, Yi-bin; Ying, Chong-liang; Shen, Yan

    2007-10-01

    The traditional methods of skeletal age estimation mainly include Numeration, Atlas, and Counting scores. In recent years, other new methods were proposed by several scholars. Utilizing image logical characteristics of X-ray film to extrapolate skeletal age is a key means by present forensic medicine workers in evaluating skeletal age. However, there exist some variations when we present the conclusion of skeletal age as an "evidence" directly to the Justice Trial Authority. In order to enhance the accuracy of skeletal age determination, further investigation for appropriate methodology should be undertaken. After a collective study of pertinent domestic and international literatures, we present this review of the research and advancement on skeletal age evaluation methods of X-ray film.

  13. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions

    PubMed Central

    Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald

    2017-01-01

    Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478

  14. Transcriptome analysis reveals long intergenic non-coding RNAs involved in skeletal muscle growth and development in pig.

    PubMed

    Zou, Cheng; Li, Jingxuan; Luo, Wenzhe; Li, Long; Hu, An; Fu, Yuhua; Hou, Ye; Li, Changchun

    2017-08-18

    Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.

  15. A Murine Model for Human ECO Syndrome Reveals a Critical Role of Intestinal Cell Kinase in Skeletal Development.

    PubMed

    Ding, Mengmeng; Jin, Li; Xie, Lin; Park, So Hyun; Tong, Yixin; Wu, Di; Chhabra, A Bobby; Fu, Zheng; Li, Xudong

    2018-03-01

    An autosomal-recessive inactivating mutation R272Q in the human intestinal cell kinase (ICK) gene caused profound multiplex developmental defects in human endocrine-cerebro-osteodysplasia (ECO) syndrome. ECO patients exhibited a wide variety of skeletal abnormalities, yet the underlying mechanisms by which ICK regulates skeletal development remained largely unknown. The goal of this study was to understand the structural and mechanistic basis underlying skeletal anomalies caused by ICK dysfunction. Ick R272Q knock-in transgenic mouse model not only recapitulated major ECO skeletal defects such as short limbs and polydactyly but also revealed a deformed spine with defective intervertebral disk. Loss of ICK function markedly reduced mineralization in the spinal column, ribs, and long bones. Ick mutants showed a significant decrease in the proliferation zone of long bones and the number of type X collagen-expressing hypertrophic chondrocytes in the spinal column and the growth plate of long bones. These results implicate that ICK plays an important role in bone and cartilage development by promoting chondrocyte proliferation and maturation. Our findings provided new mechanistic insights into the skeletal phenotype of human ECO and ECO-like syndromes.

  16. NPPB and ACAN, Two Novel SHOX2 Transcription Targets Implicated in Skeletal Development

    PubMed Central

    Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E.

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2. PMID:24421874

  17. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    PubMed

    Aza-Carmona, Miriam; Barca-Tierno, Veronica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  18. Gene expression during skeletal development in three osteopetrotic rat mutations. Evidence for osteoblast abnormalities.

    PubMed

    Shalhoub, V; Jackson, M E; Lian, J B; Stein, G S; Marks, S C

    1991-05-25

    Osteopetrosis is a group of metabolic bone diseases characterized by reductions in osteoclast development and/or function. These aspects of osteoclast biology are known to be influenced by osteoblasts and their products. To ascertain whether osteoblast dysfunction contributes to aberrations in the structural and functional properties of osteoclasts in osteopetrosis, we systematically examined gene expression as reflected by mRNA levels for a series of cell growth- and tissue-related genes associated with the osteoblast phenotype during skeletal development in normal and mutant rats of three different osteopetrotic stocks. We show that the methods used permit the reproducible isolation of undegraded total cellular RNA from bone and that mRNA levels can be reliably quantitated in these preparations. Each osteopetrotic mutation exhibits a distinct aberrant pattern of osteoblast gene expression that may be correlated with and explain some abnormalities in extracellular matrix composition, mineralization, osteoclast development, and effects of elevated serum levels of 1 alpha,25-dihydroxyvitamin D3, depending upon the mutation. Normal rats show minor variations in gene expression that reflect the genetic background (stock). This, the first comprehensive molecular analysis of osteoblast gene expression in osteopetrosis, suggests that some osteopetroses, particularly in the toothless rat, are associated with and potentially related to mechanisms associated with aberrations in osteoblast function. More generally, the present studies demonstrate alterations in gene expression as reflected by mRNA levels that are associated with functional properties of the osteoblast, particularly those contributing to the recruitment and/or differentiation of osteoclasts, thereby influencing skeletal modeling.

  19. Skeletal morphology and development of the olfactory region of Spea (Anura: Scaphiopodidae)

    PubMed Central

    Pugener, L A; Maglia, A M

    2007-01-01

    The nasal capsules of anurans are formed by an intricate set of sac-like cavities that house the olfactory organ and constitute the beginning of the respiratory system. In tadpoles, nasal capsules do not have a respiratory function, but each is composed of a single soft tissue cavity lined with olfactory epithelium. Our study has revealed that in Spea the nasal cartilages and septomaxillae are de novo adult structures that form dorsal to the larval skeleton of the ethmoid region. The only element of the adult nasal capsule that is partially derived from the larval skeleton is the solum nasi. Development of the nasal skeleton begins at about Gosner Stage 31, with chondrification of the septum nasi and lamina orbitonasalis. The alary cartilage and superior prenasal cartilage are the first of the anterior nasal cartilages to chondrify at Gosner Stage 37. By Gosner Stages 40/41, the ethmoid region is composed of the larval structures ventrally and the adult structures dorsally. By Stage 44, the larval structures have eroded. The adult nasal capsule is characterized by: (1) a septum nasi that projects ventrally beyond the plane of the nasal floor; (2) a paranasal commissure that forms the ventral margin of the fenestra nasolateralis; and (3) a large skeletal support for the eminentia olfactoria formed by the nasal floor and vomer. The timing of chondrification of the anterior nasal cartilages and the development of the postnasal wall, inferior prenasal cartilage, fenestra nasolateralis, and paranasal commissure are discussed and compared with those of other anuran species. This study also includes a discussion of the morphology of the skeletal support for the eminentia olfactoria, a structure best developed in distinctly ground-dwelling frogs such as spadefoot toads. Finally, we propose a more precise restriction of the terminology that is used to designate the posterior structures of the olfactory region of anurans. PMID:18045351

  20. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development.

    PubMed

    Yan, Jianyun; Li, Jun; Hu, Jun; Zhang, Lu; Wei, Chengguo; Sultana, Nishat; Cai, Xiaoqiang; Zhang, Weijia; Cai, Chen-Leng

    2018-06-15

    Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre ( Tbx18 Cre /+ ) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 ( Smad4 f/f ) in the limbs of mice. We found that the Smad4 -deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan , in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 ( Runx2 ), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4 -deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia. © 2018 Yan et al.

  1. Development of the turtle plastron, the order-defining skeletal structure.

    PubMed

    Rice, Ritva; Kallonen, Aki; Cebra-Thomas, Judith; Gilbert, Scott F

    2016-05-10

    The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed transition forms lack a fully developed carapace and show a progression of bony elements ancestral to the plastron. To understand the evolutionary development of the plastron, it is essential to know how it has formed. Here we studied the molecular development and patterning of plastron bones in a cryptodire turtle Trachemys scripta We show that plastron development begins at developmental stage 15 when osteochondrogenic mesenchyme forms condensates for each plastron bone at the lateral edges of the ventral mesenchyme. These condensations commit to an osteogenic identity and suppress chondrogenesis. Their development overlaps with that of sternal cartilage development in chicks and mice. Thus, we suggest that in turtles, the sternal morphogenesis is prevented in the ventral mesenchyme by the concomitant induction of osteogenesis and the suppression of chondrogenesis. The osteogenic subroutines later direct the growth and patterning of plastron bones in an autonomous manner. The initiation of plastron bone development coincides with that of carapacial ridge formation, suggesting that the development of dorsal and ventral shells are coordinated from the start and that adopting an osteogenesis-inducing and chondrogenesis-suppressing cell fate in the ventral mesenchyme has permitted turtles to develop their order-specific ventral morphology.

  2. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography.

    PubMed

    Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C

    2012-10-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal

  3. A Novel Approach for Studying the Temporal Modulation of Embryonic Skeletal Development Using Organotypic Bone Cultures and Microcomputed Tomography

    PubMed Central

    Smith, Emma L.; Roberts, Carol A.

    2012-01-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal

  4. FOXL2 modulates cartilage, skeletal development and IGF1-dependent growth in mice.

    PubMed

    Marongiu, Mara; Marcia, Loredana; Pelosi, Emanuele; Lovicu, Mario; Deiana, Manila; Zhang, Yonqing; Puddu, Alessandro; Loi, Angela; Uda, Manuela; Forabosco, Antonino; Schlessinger, David; Crisponi, Laura

    2015-07-02

    Haploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dysgenesis. We report here that mice lacking Foxl2 also show defects in postnatal growth and embryonic bone and cartilage formation. Foxl2 (-/-) male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR. Compared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus. Our results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development.

  5. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  6. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    PubMed

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  7. Early Mitochondrial Adaptations in Skeletal Muscle to Obesity and Obesity Resistance Differentially Regulated by High-Fat Diet.

    PubMed

    Sun, Jingyu; Huang, Tao; Qi, Zhengtang; You, Songhui; Dong, Jingmei; Zhang, Chen; Qin, Lili; Zhou, Yunhe; Ding, Shuzhe

    2017-09-01

    The mechanism for different susceptibilities to obesity after short-term high-fat diet (HFD) feeding is largely unknown. Given the close association between obesity occurrence and mitochondrial dysfunction, the early events in skeletal muscle mitochondrial adaptations between HFD-induced obesity (DIO) and HFD-induced obesity resistant (DIO-R) lean phenotype under excess nutritional environment were explored.ICR/JCL male mice were randomly divided into 2 groups, as follows: low-fat diet (LFD) and HFD groups. After 6 weeks on HFD, HFD-fed mice were classified as DIO or DIO-R according to their body weight gain. Serum parameters, oxidative stress biomarkers, the activation of AMPK/ACC axis, and the expression profiles of mitochondrial biogenesis were measured by using corresponding methods among the LFD control, DIO, and DIO-R groups. Serum glucose, total cholesterol, low-density lipoprotein, and high-density lipoprotein levels were significantly increased in DIO and DIO-R mice compared with LFD controls. However, DIO-R mice had significantly higher MDA levels and exhibited a significantly higher level of AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inactivation than DIO mice. Furthermore, the transcript and protein levels of transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) and estrogen-related receptor-α (ERRα) in DIO-R mice were significantly up-regulated compared with the DIO mice. Although the body weight gain differed, the DIO and DIO-R mice had similar metabolic disturbance of glucose and lipids after short-term HFD consumption. The diverse alterations on fatty acid oxidation and mitochondrial biogenesis pathway induced by AMPK activation might be involved in different susceptibilities to obesity when consuming HFD. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations.

    PubMed

    Gliemann, Lasse; Mortensen, Stefan P; Hellsten, Ylva

    2018-06-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures. One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate for the determination of blood flow during maximal exercise. For resting blood flow and light-to-moderate exercise, the non-invasive ultrasound Doppler methodology, if handled by a skilled operator, is recommendable. Positron emission tomography with radiolabeled water is an advanced method which requires highly sophisticated equipment and allows for the determination of muscle-specific blood flow, regional blood flows and estimate of blood flow heterogeneity within a muscle. Finally, the contrast-enhanced ultrasound method holds promise for assessment of muscle-specific blood flow, but the interpretation of the data obtained remains uncertain. Currently lacking is high-resolution methods for continuous visualization and monitoring of the skeletal muscle microcirculation in humans.

  9. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.

    PubMed

    Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  10. Early childhood development in deprived urban settlements.

    PubMed

    Nair, M K C; Radhakrishnan, S Rekha

    2004-03-01

    Poverty, the root cause of the existence of slums or settlement colonies in urban areas has a great impact on almost all aspects of life of the urban poor, especially the all-round development of children. Examples from countries, across the globe provide evidence of improved early child development, made possible through integrated slum improvement programs, are few in numbers. The observed 2.5% prevalence of developmental delay in the less than 2 year olds of deprived urban settlements, the presence of risk factors for developmental delay like low birth weight, birth asphyxia, coupled with poor environment of home and alternate child care services, highlights the need for simple cost effective community model for promoting early child development. This review on early child development focuses on the developmental status of children in the deprived urban settlements, who are yet to be on the priority list of Governments and international agencies working for the welfare of children, the contributory nature-nurture factors and replicable working models like infant stimulation, early detection of developmental delay in infancy itself, developmental screening of toddlers, skill assessment for preschool children, school readiness programs, identification of mental sub-normality and primary education enhancement program for primary school children. Further, the review probes feasible intervention strategies through community owned early child care and development facilities, utilizing existing programs like ICDS, Urban Basic Services and by initiating services like Development Friendly Well Baby Clinics, Community Extension services, Child Development Referral Units at district hospitals and involving trained manpower like anganwadi/creche workers, public health nurses and developmental therapists. With the decentralization process the local self-government at municipalities and city corporations are financially equipped to be the prime movers to initiate, monitor and

  11. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

    PubMed Central

    Su, Nan; Jin, Min; Chen, Lin

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis. PMID:26273516

  12. Early Brain Development Research Review and Update

    ERIC Educational Resources Information Center

    Schiller, Pam

    2010-01-01

    Thanks to imaging technology used in neurobiology, people have access to useful and critical information regarding the development of the human brain. This information allows them to become much more effective in helping children in their early development. In fact, when people base their practices on the findings from medical science research,…

  13. Synergistic effects of TGFβ2, WNT9a, and FGFR4 signals attenuate satellite cell differentiation during skeletal muscle development.

    PubMed

    Zhang, Weiya; Xu, Yueyuan; Zhang, Lu; Wang, Sheng; Yin, Binxu; Zhao, Shuhong; Li, Xinyun

    2018-06-04

    Satellite cells play a key role in the aging, generation, and damage repair of skeletal muscle. The molecular mechanism of satellite cells in these processes remains largely unknown. This study systematically investigated for the first time the characteristics of mouse satellite cells at ten different ages. Results indicated that the number and differentiation capacity of satellite cells decreased with age during skeletal muscle development. Transcriptome analysis revealed that 2,907 genes were differentially expressed at six time points at postnatal stage. WGCNA and GO analysis indicated that 1,739 of the 2,907 DEGs were mainly involved in skeletal muscle development processes. Moreover, the results of WGCNA and protein interaction analysis demonstrated that Tgfβ2, Wnt9a, and Fgfr4 were the key genes responsible for the differentiation of satellite cells. Functional analysis showed that TGFβ2 and WNT9a inhibited, whereas FGFR4 promoted the differentiation of satellite cells. Furthermore, each two of them had a regulatory relationship at the protein level. In vivo study also confirmed that TGFβ2 could regulate the regeneration of skeletal muscle, as well as the expression of WNT9a and FGFR4. Therefore, we concluded that the synergistic effects of TGFβ2, WNT9a, and FGFR4 were responsible for attenuating of the differentiation of aging satellite cells during skeletal muscle development. This study provided new insights into the molecular mechanism of satellite cell development. The target genes and signaling pathways investigated in this study would be useful for improving the muscle growth of livestock or treating muscle diseases in clinical settings. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. [Regulatory mechanism for lncRNAs in skeletal muscle development and progress on its research in domestic animals].

    PubMed

    Zhou, Rui; Wang, Yi Xin; Long, Ke Ren; Jiang, An An; Jin, Long

    2018-04-20

    Skeletal muscle is an essential tissue to maintain the normal functions of an organism. It is also closely associated with important economic performance, such as carcass weight, of domestic animals. In recent years, studies using high-throughput sequencing techniques have identified numerous long non-coding RNAs (lncRNAs) with myogenic functions involved in regulation of gene expression at multiple levels, including epigenetic, transcriptional and post-transcriptional regulation. These lncRNAs target myogenic factors, which participate in all processes of skeletal muscle development, including proliferation, migration and differentiation of skeletal muscle stem cells, proliferation, differentiation and fusion of myocytes, muscle hypertrophy and conversion of muscle fiber types. In this review, we summarize the functional roles of lncRNAs in regulation of myogenesis in humans and mice, describe the methods for the analysis of lncRNA function, discuss the progress of lncRNA research in domestic animals, and highlight the current problems and challenges in lncRNA research on livestock production. We hope to provide a useful reference for research on lncRNA in domestic animals, thereby further identifying the molecular regulatory mechanisms in skeletal muscle growth and development.

  15. GSK-3β Function in Bone Regulates Skeletal Development, Whole-Body Metabolism, and Male Life Span

    PubMed Central

    Gillespie, J. R.; Bush, J. R.; Bell, G. I.; Aubrey, L. A.; Dupuis, H.; Ferron, M.; Kream, B.; DiMattia, G.; Patel, S.; Woodgett, J. R.; Karsenty, G.; Hess, D. A.; Beier, F.

    2016-01-01

    Glycogen synthase kinase 3 β (GSK-3β) is an essential negative regulator or “brake” on many anabolic-signaling pathways including Wnt and insulin. Global deletion of GSK-3β results in peri-natal lethality and various skeletal defects. The goal of our research was to determine GSK-3β cell-autonomous effects and postnatal roles in the skeleton. We used the 3.6-kb Col1a1 promoter to inactivate the Gsk3b gene (Col1a1-Gsk3b knockout) in skeletal cells. Mutant mice exhibit decreased body fat and postnatal bone growth, as well as delayed development of several skeletal elements. Surprisingly, the mutant mice display decreased circulating glucose and insulin levels despite normal expression of GSK-3β in metabolic tissues. We showed that these effects are due to an increase in global insulin sensitivity. Most of the male mutant mice died after weaning. Prior to death, blood glucose changed from low to high, suggesting a possible switch from insulin sensitivity to resistance. These male mice die with extremely large bladders that are preceded by damage to the urogenital tract, defects that are also seen type 2 diabetes. Our data suggest that skeletal-specific deletion of GSK-3β affects global metabolism and sensitizes male mice to developing type 2 diabetes. PMID:23904355

  16. Development of the turtle plastron, the order-defining skeletal structure

    PubMed Central

    Rice, Ritva; Kallonen, Aki; Cebra-Thomas, Judith; Gilbert, Scott F.

    2016-01-01

    The dorsal and ventral aspects of the turtle shell, the carapace and the plastron, are developmentally different entities. The carapace contains axial endochondral skeletal elements and exoskeletal dermal bones. The exoskeletal plastron is found in all extant and extinct species of crown turtles found to date and is synaptomorphic of the order Testudines. However, paleontological reconstructed transition forms lack a fully developed carapace and show a progression of bony elements ancestral to the plastron. To understand the evolutionary development of the plastron, it is essential to know how it has formed. Here we studied the molecular development and patterning of plastron bones in a cryptodire turtle Trachemys scripta. We show that plastron development begins at developmental stage 15 when osteochondrogenic mesenchyme forms condensates for each plastron bone at the lateral edges of the ventral mesenchyme. These condensations commit to an osteogenic identity and suppress chondrogenesis. Their development overlaps with that of sternal cartilage development in chicks and mice. Thus, we suggest that in turtles, the sternal morphogenesis is prevented in the ventral mesenchyme by the concomitant induction of osteogenesis and the suppression of chondrogenesis. The osteogenic subroutines later direct the growth and patterning of plastron bones in an autonomous manner. The initiation of plastron bone development coincides with that of carapacial ridge formation, suggesting that the development of dorsal and ventral shells are coordinated from the start and that adopting an osteogenesis-inducing and chondrogenesis-suppressing cell fate in the ventral mesenchyme has permitted turtles to develop their order-specific ventral morphology. PMID:27114549

  17. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems.

    PubMed

    Kemp, C M; Oliver, W T; Wheeler, T L; Chishti, A H; Koohmaraie, M

    2013-07-01

    Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P < 0.01) and activity (P < 0.001), and greater caspase 3/7 activity (P < 0.05). At 30 wk of age, KO mice showed increased protein:DNA (P < 0.05) and RNA:DNA ratios (P < 0.01), greater protein content (P < 0.01) at the expense of lipid deposition (P < 0.05), and an increase in size and number of fast-twitch glycolytic muscle fibers (P < 0.05), suggesting that KO mice exhibit an increased capacity to accumulate and maintain protein in their skeletal muscle. Also, expression of proteins associated with muscle regeneration (neural cell adhesion molecule and myoD) were both reduced in the mature KO mice (P < 0.05 and P < 0.01, respectively), indicating less muscle regeneration and, therefore, less muscle damage. These findings indicate the concerted action of proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.

  18. Androgen effects on skeletal muscle: implications for the development and management of frailty

    PubMed Central

    O’Connell, Matthew DL; Wu, Frederick CW

    2014-01-01

    Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well–tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs) suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies. PMID:24457838

  19. Early executive function predicts reasoning development.

    PubMed

    Richland, Lindsey E; Burchinal, Margaret R

    2013-01-01

    Analogical reasoning is a core cognitive skill that distinguishes humans from all other species and contributes to general fluid intelligence, creativity, and adaptive learning capacities. Yet its origins are not well understood. In the study reported here, we analyzed large-scale longitudinal data from the Study of Early Child Care and Youth Development to test predictors of growth in analogical-reasoning skill from third grade to adolescence. Our results suggest an integrative resolution to the theoretical debate regarding contributory factors arising from smaller-scale, cross-sectional experiments on analogy development. Children with greater executive-function skills (both composite and inhibitory control) and vocabulary knowledge in early elementary school displayed higher scores on a verbal analogies task at age 15 years, even after adjusting for key covariates. We posit that knowledge is a prerequisite to analogy performance, but strong executive-functioning resources during early childhood are related to long-term gains in fundamental reasoning skills.

  20. Bioecological Theory, Early Child Development and the Validation of the Population-Level Early Development Instrument

    ERIC Educational Resources Information Center

    Guhn, Martin; Goelman, Hillel

    2011-01-01

    The Early Development Instrument (EDI; Janus and Offord in "Canadian Journal of Behavioural Science" 39:1-22, 2007) project is a Canadian population-level, longitudinal research project, in which teacher ratings of Kindergarten children's early development and wellbeing are linked to health and academic achievement variables at the…

  1. Reassessment of the Evidence for Postcranial Skeletal Pneumaticity in Triassic Archosaurs, and the Early Evolution of the Avian Respiratory System

    PubMed Central

    Butler, Richard J.; Barrett, Paul M.; Gower, David J.

    2012-01-01

    Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present

  2. [Treatment of pelvic Ewing's sarcoma in children and the effect on the skeletal growth and development].

    PubMed

    Fu, Jun; Guo, Zheng; Wang, Zhen; Li, Xiang-dong; Li, Jing; Chen, Guo-jing; Wu, Zhi-gang

    2012-12-01

    To explore the effect of neo-adjuvant chemotherapy and computer-assisted surgery on children and adolescents with primary pelvic Ewing's sarcoma, and assess the therapeutic effect on the pelvic skeletal growth and development. This is a retrospective analysis of 10 children with primary pelvic Ewing's sarcoma treated between Jan 2001 and Oct 2010 at the Department of Oncologic Orthopaedics at Xijing Hospital. There were 3 girls and 7 boys in the age of 7 to 16 years (average 12.7 years). All patients were pathologically diagnosed as Ewing's sarcoma. There were two cases in the sacroiliac joint, one in the ilium, one in the pubic bone, and 6 cases in peri-acetabular area including 5 below the triradiate cartilage and one above the triradiate cartilage, without cartilage invasion. All patients underwent neo-adjuvant chemotherapy, resection and reconstruction surgery and postoperative chemotherapy. CDP, ADM and IFO regimen chemotherapy were given as the main treatment. Five cases were treated by traditional resection and reconstruction, and after 2008, five cases were treated by computer-assisted surgery. During the reconstruction, the hip rotation center was put at a depressed location. All of the 10 cases underwent postoperative radiotherapy in a dose of 45-55 Gy. All patients were followed-up for 12-72 months (mean: 37.8 months). One child had tumor recurrence and lung metastasis and 9 patients had no evidence of disease (NED). After neo-adjuvant chemotherapy, the oncologic statuses (RECIST) were: 1 CR, 8 PR and 1 SD. The functional recoveries after surgery (Enneking's) were: 4 cases excellent, 4 good, 1 fair and 1 poor. Five cases who underwent computer-assisted surgery achieved a good reconstruction without local recurrence. There were no effects on skeletal growth in 8 cases. An unbalanced hip rotational center occurred in one case, and a compemsatory scoliosis was found in another case. There were no serious complications in all patients. The comprehensive

  3. Development of prediction equations for estimating appendicular skeletal muscle mass in Japanese men and women.

    PubMed

    Furushima, Taishi; Miyachi, Motohiko; Iemitsu, Motoyuki; Murakami, Haruka; Kawano, Hiroshi; Gando, Yuko; Kawakami, Ryoko; Sanada, Kiyoshi

    2017-08-29

    This study aimed to develop and cross-validate prediction equations for estimating appendicular skeletal muscle mass (ASM) and to examine the relationship between sarcopenia defined by the prediction equations and risk factors for cardiovascular diseases (CVD) or osteoporosis in Japanese men and women. Subjects were healthy men and women aged 20-90 years, who were randomly allocated to the following two groups: the development group (D group; 257 men, 913 women) and the cross-validation group (V group; 119 men, 112 women). To develop prediction equations, stepwise multiple regression analyses were performed on data obtained from the D group, using ASM measured by dual-energy X-ray absorptiometry (DXA) as a dependent variable and five easily obtainable measures (age, height, weight, waist circumference, and handgrip strength) as independent variables. When the prediction equations for ASM estimation were applied to the V group, a significant correlation was found between DXA-measured ASM and predicted ASM in both men and women (R 2  = 0.81 and R 2  = 0.72). Our prediction equations had higher R 2 values compared to previously developed equations (R 2  = 0.75-0.59 and R 2  = 0.69-0.40) in both men and women. Moreover, sarcopenia defined by predicted ASM was related to risk factors for osteoporosis and CVD, as well as sarcopenia defined by DXA-measured ASM. In this study, novel prediction equations were developed and cross-validated in Japanese men and women. Our analyses validated the clinical significance of these prediction equations and showed that previously reported equations were not applicable in a Japanese population.

  4. Early Phonological Development: Creating an Assessment Test

    ERIC Educational Resources Information Center

    Stoel-Gammon, Carol; Williams, A. Lynn

    2013-01-01

    This paper describes a new protocol for assessing the phonological systems of two-year-olds with typical development and older children with delays in vocabulary acquisition. The test (Profiles of Early Expressive Phonological Skills ("PEEPS"), Williams & Stoel-Gammon, in preparation) differs from currently available assessments in…

  5. Early Intervention, Maternal Development and Children's Play.

    ERIC Educational Resources Information Center

    Slaughter, Diana T.

    The purposes of this longitudinal study of early intervention with 83 black mother-child dyads were (a) to test the thesis that sociocultural transmission influences childhood development in educationally significant ways, and (b) to describe the process through which such transmission can occur. Two social intervention programs were contrasted;…

  6. The Early Years: Development, Learning and Teaching.

    ERIC Educational Resources Information Center

    Boulton-Lewis, Gillian, Ed.; Catherwood, Di, Ed.

    Designed for teachers, students, caregivers, and health professionals who work with children from birth to age 8, this book provides a review of recent research and theories of development and learning in the early childhood years, with an emphasis on implications for effective teaching. Where appropriate, the book takes an Australian perspective,…

  7. EARLY CRANIOFACIAL DEVELOPMENT: LIFE AMONG THE SIGNALS

    EPA Science Inventory

    Early Craniofacial Development: Life Among the Signals. Sid Hunter and Keith Ward. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC, 27711

    Haloacetic acids (HAA) are chemicals formed during drinking water disinfection and present in finished tap water. Exposure o...

  8. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    PubMed

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii).

    PubMed

    D'Souza, Damian G; Rana, Kesha; Milley, Kristi M; MacLean, Helen E; Zajac, Jeffrey D; Bell, Justin; Brenner, Sydney; Venkatesh, Byrappa; Richardson, Samantha J; Danks, Janine A

    2013-11-01

    Jawed vertebrates (Gnasthostomes) are broadly separated into cartilaginous fishes (Chondricthyes) and bony vertebrates (Osteichthyes). Cartilaginous fishes are divided into chimaeras (e.g. ratfish, rabbit fish and elephant shark) and elasmobranchs (e.g. sharks, rays and skates). Both cartilaginous fish and bony vertebrates are believed to have a common armoured bony ancestor (Class Placodermi), however cartilaginous fish are believed to have lost bone. This study has identified and investigated genes involved in skeletal development in vertebrates, in the cartilaginous fish, elephant shark (Callorhinchus milii). Ctnnb1 (β-catenin), Sfrp (secreted frizzled protein) and a single Sost or Sostdc1 gene (sclerostin or sclerostin domain-containing protein 1) were identified in the elephant shark genome and found to be expressed in a number of tissues, including cartilage. β-catenin was also localized in several elephant shark tissues. The expression of these genes, which belong to the Wnt/β-catenin pathway, is required for normal bone formation in mammals. These findings in the cartilaginous skeleton of elephant shark support the hypothesis that the common ancestor of cartilaginous fishes and bony vertebrates had the potential for making bone. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. MyoD and Myf6 gene expression patterns in skeletal muscle during embryonic and posthatch development in the domestic duck (Anas platyrhynchos domestica).

    PubMed

    Li, H; Zhu, C; Tao, Z; Xu, W; Song, W; Hu, Y; Zhu, W; Song, C

    2014-06-01

    The MyoD and Myf6 genes, which are muscle regulatory factors (MRFs), play major roles in muscle growth and development and initiate muscle fibre formation via the regulation of muscle-specific gene translation. Therefore, MyoD and Myf6 are potential candidate genes for meat production traits in animals and poultry. The objective of this study was to evaluate MyoD and Myf6 gene expression patterns in the skeletal muscle during early developmental stage of ducks. Gene expression levels were detected using the quantitative RT-PCR method in the breast muscle (BM) and leg muscle (LM) at embryonic days 13, 17, 21, 25, 27, as well as at 1 week posthatching in Gaoyou and Jinding ducks (Anas platyrhynchos domestica). The MyoD and Myf6 gene profiles in the two duck breeds were consistent during early development, and MyoD gene expression showed a 'wave' trend in BM and an approximate 'anti-√' trend in LM. Myf6 gene expression in BM showed the highest level at embryonic day 21, which subsequently decreased, although remained relatively high, while levels at embryonic days 13, 17 and 21 were higher in LM. The results of correlation analysis showed that MyoD and Myf6 gene expression levels were more strongly correlated in LM than in BM in both duck breeds. These results indicated that different expression patterns of the MyoD and Myf6 genes in BM and LM may be related to muscle development and differentiation, suggesting that MyoD and Myf6 are integral to skeletal muscle development. © 2013 Blackwell Verlag GmbH.

  11. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study.

    PubMed

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun; Kim, Kyung-Ho

    2018-01-01

    The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t -tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion.

  12. Dentofacial transverse development in Koreans according to skeletal maturation: A cross-sectional study

    PubMed Central

    Hwang, Soonshin; Noh, Yoonjeong; Choi, Yoon Jeong; Chung, Chooryung; Lee, Hye Sun

    2018-01-01

    Objective The aim of this study was to establish the normative data of dentofacial transverse dimensions according to the skeletal maturation stage in Korean adolescents with good occlusion, assess gender differences and determine correlations between transverse variables. Methods A total of 577 Korean subjects between ages 7 to 19 years and exhibiting skeletal Class I occlusion were categorized by skeletal maturation index (SMI) of Fishman using hand-wrist radiographs. Dentofacial transverse dimensions were assessed using posteroanterior cephalograms. Independent two-sample t-tests were used to analyze differences between genders. Pearson correlation coefficient was used to determine the correlation between transverse measurements. Results Dentofacial transverse norms relevant to skeletal maturation stages were established. The average maxillomandibular width difference and ratio at growth completion was 22.16 mm and 77.01% for males; 23.70 mm and 74.06% for females, respectively. Males had greater facial, maxillary and mandibular widths compared to females at every SMI stage. The maxillary and mandibular intermolar widths showed the strongest correlation for both sexes (r = 0.826 for males, r = 0.725 for females). Conclusions Dentofacial transverse norms of Korean adolescents were established according to developmental stage. All dentofacial widths were greater in males at growth completion. Maxillary and mandibular intermolar widths were strongly correlated. This study may serve as a guideline for the assessment of dentofacial transverse growth according to skeletal maturation stage in Korean adolescents with good occlusion. PMID:29291187

  13. Breastfeeding, parenting, and early cognitive development.

    PubMed

    Gibbs, Benjamin G; Forste, Renata

    2014-03-01

    To explain why breastfeeding is associated with children's cognitive development. By using a nationally representative longitudinal survey of early childhood (N = 7500), we examined how breastfeeding practices, the early introduction of solid foods, and putting an infant to bed with a bottle were associated with cognitive development across early childhood. We also explored whether this link can be explained by parenting behaviors and maternal education. There is a positive relationship between predominant breastfeeding for 3 months or more and child reading skills, but this link is the result of cognitively supportive parenting behaviors and greater levels of education among women who predominantly breastfed. We found little-to-no relationship between infant feeding practices and the cognitive development of children with less-educated mothers. Instead, reading to a child every day and being sensitive to a child's development were significant predictors of math and reading readiness outcomes. Although breastfeeding has important benefits in other settings, the encouragement of breastfeeding to promote school readiness does not appear to be a key intervention point. Promoting parenting behaviors that improve child cognitive development may be a more effective and direct strategy for practitioners to adopt, especially for disadvantaged children. Copyright © 2014 Mosby, Inc. All rights reserved.

  14. Abnormal lipid metabolism in skeletal muscle tissue of patients with muscular dystrophy: In vitro, high-resolution NMR spectroscopy based observation in early phase of the disease.

    PubMed

    Srivastava, Niraj Kumar; Yadav, Ramakant; Mukherjee, Somnath; Pal, Lily; Sinha, Neeraj

    2017-05-01

    Qualitative (assignment of lipid components) and quantitative (quantification of lipid components) analysis of lipid components were performed in skeletal muscle tissue of patients with muscular dystrophy in early phase of the disease as compared to control/normal subjects. Proton nuclear magnetic resonance (NMR) spectroscopy based experiment was performed on the lipid extract of skeletal muscle tissue of patients with muscular dystrophy in early phase of the disease and normal individuals for the analysis of lipid components [triglycerides, phospholipids, total cholesterol and unsaturated fatty acids (arachidonic, linolenic and linoleic acid)]. Specimens of muscle tissue were obtained from patients with Duchenne muscular dystrophy (DMD) [n=11; Age, Mean±SD; 9.2±1.4years; all were males], Becker muscular dystrophy (BMD) [n=12; Age, Mean±SD; 21.4±5.0years; all were males], facioscapulohumeral muscular dystrophy (FSHD) [n=11; Age, Mean±SD; 23.7±7.5years; all were males] and limb girdle muscular dystrophy-2B (LGMD-2B) [n=18; Age, Mean±SD; 24.2±4.1years; all were males]. Muscle specimens were also obtained from [n=30; Mean age±SD 23.1±6.0years; all were males] normal/control subjects. Assigned lipid components in skeletal muscle tissue were triglycerides (TG), phospholipids (PL), total cholesterol (CHOL) and unsaturated fatty acids (arachidonic, linolenic and linoleic acid)]. Quantity of lipid components was observed in skeletal muscle tissue of DMD, BMD, FSHD and LGMD-2B patients as compared to control/normal subjects. TG was significantly elevated in muscle tissue of DMD, BMD and LGMD-2B patients. Increase level of CHOL was found only in muscle of DMD patients. Level of PL was found insignificant for DMD, BMD and LGMD-2B patients. Quantity of TG, PL and CHOL was unaltered in the muscle of patients with FSHD as compared to control/normal subjects. Linoleic acids were significantly reduced in muscle tissue of DMD, BMD, FSHD and LGMD-2B as compared to normal

  15. Early Life Conditions and Physiological Stress following the Transition to Farming in Central/Southeast Europe: Skeletal Growth Impairment and 6000 Years of Gradual Recovery

    PubMed Central

    Macintosh, Alison A.; Pinhasi, Ron; Stock, Jay T.

    2016-01-01

    Early life conditions play an important role in determining adult body size. In particular, childhood malnutrition and disease can elicit growth delays and affect adult body size if severe or prolonged enough. In the earliest stages of farming, skeletal growth impairment and small adult body size are often documented relative to hunter-gatherer groups, though this pattern is regionally variable. In Central/Southeast Europe, it is unclear how early life stress, growth history, and adult body size were impacted by the introduction of agriculture and ensuing long-term demographic, social, and behavioral change. The current study assesses this impact through the reconstruction and analysis of mean stature, body mass, limb proportion indices, and sexual dimorphism among 407 skeletally mature men and women from foraging and farming populations spanning the Late Mesolithic through Early Medieval periods in Central/Southeast Europe (~7100 calBC to 850 AD). Results document significantly reduced mean stature, body mass, and crural index in Neolithic agriculturalists relative both to Late Mesolithic hunter-gatherer-fishers and to later farming populations. This indication of relative growth impairment in the Neolithic, particularly among women, is supported by existing evidence of high developmental stress, intensive physical activity, and variable access to animal protein in these early agricultural populations. Among subsequent agriculturalists, temporal increases in mean stature, body mass, and crural index were more pronounced among Central European women, driving declines in the magnitude of sexual dimorphism through time. Overall, results suggest that the transition to agriculture in Central/Southeast Europe was challenging for early farming populations, but was followed by gradual amelioration across thousands of years, particularly among Central European women. This sex difference may be indicative, in part, of greater temporal variation in the social status afforded

  16. Early energy metabolism-related molecular events in skeletal muscle of diabetic rats: The effects of l-arginine and SOD mimic.

    PubMed

    Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2017-06-25

    Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    PubMed

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  18. Nurturing care: promoting early childhood development.

    PubMed

    Britto, Pia R; Lye, Stephen J; Proulx, Kerrie; Yousafzai, Aisha K; Matthews, Stephen G; Vaivada, Tyler; Perez-Escamilla, Rafael; Rao, Nirmala; Ip, Patrick; Fernald, Lia C H; MacMillan, Harriet; Hanson, Mark; Wachs, Theodore D; Yao, Haogen; Yoshikawa, Hirokazu; Cerezo, Adrian; Leckman, James F; Bhutta, Zulfiqar A

    2017-01-07

    The UN Sustainable Development Goals provide a historic opportunity to implement interventions, at scale, to promote early childhood development. Although the evidence base for the importance of early childhood development has grown, the research is distributed across sectors, populations, and settings, with diversity noted in both scope and focus. We provide a comprehensive updated analysis of early childhood development interventions across the five sectors of health, nutrition, education, child protection, and social protection. Our review concludes that to make interventions successful, smart, and sustainable, they need to be implemented as multi-sectoral intervention packages anchored in nurturing care. The recommendations emphasise that intervention packages should be applied at developmentally appropriate times during the life course, target multiple risks, and build on existing delivery platforms for feasibility of scale-up. While interventions will continue to improve with the growth of developmental science, the evidence now strongly suggests that parents, caregivers, and families need to be supported in providing nurturing care and protection in order for young children to achieve their developmental potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: a 7-year retrospective cohort study.

    PubMed

    Kim, Gyuri; Lee, Seung-Eun; Jun, Ji Eun; Lee, You-Bin; Ahn, Jiyeon; Bae, Ji Cheol; Jin, Sang-Man; Hur, Kyu Yeon; Jee, Jae Hwan; Lee, Moon-Kyu; Kim, Jae Hyeon

    2018-02-05

    Skeletal muscle mass was negatively associated with metabolic syndrome prevalence in previous cross-sectional studies. The aim of this study was to investigate the impact of baseline skeletal muscle mass and changes in skeletal muscle mass over time on the development of metabolic syndrome in a large population-based 7-year cohort study. A total of 14,830 and 11,639 individuals who underwent health examinations at the Health Promotion Center at Samsung Medical Center, Seoul, Korea were included in the analyses of baseline skeletal muscle mass and those changes from baseline over 1 year, respectively. Skeletal muscle mass was estimated by bioelectrical impedance analysis and was presented as a skeletal muscle mass index (SMI), a body weight-adjusted appendicular skeletal muscle mass value. Using Cox regression models, hazard ratio for developing metabolic syndrome associated with SMI values at baseline or changes of SMI over a year was analyzed. During 7 years of follow-up, 20.1% of subjects developed metabolic syndrome. Compared to the lowest sex-specific SMI tertile at baseline, the highest sex-specific SMI tertile showed a significant inverse association with metabolic syndrome risk (adjusted hazard ratio [AHR] = 0.61, 95% confidence interval [CI] 0.54-0.68). Furthermore, compared with SMI changes < 0% over a year, multivariate-AHRs for metabolic syndrome development were 0.87 (95% CI 0.78-0.97) for 0-1% changes and 0.67 (0.56-0.79) for > 1% changes in SMI over 1 year after additionally adjusting for baseline SMI and glycometabolic parameters. An increase in relative skeletal muscle mass over time has a potential preventive effect on developing metabolic syndrome, independently of baseline skeletal muscle mass and glycometabolic parameters.

  20. Early childhood development: putting knowledge into action.

    PubMed

    2000-11-01

    As part of its continuing mission to serve trustees and staff of health foundations and corporate giving programs, Grantmakers In Health (GIH) convened a select group of grantmakers and national experts who have made a major commitment to improve the health and well being of young children. The roundtable explored the latest research examining early childhood development, as well as public and private programs serving families with young children. The discussion ultimately centered upon the importance of grantmaker involvement to improve early childhood development, including the services delivered to young children and their families, training for professionals, and continued research and evaluation. This report brings together key points from the day's discussion with factual information on demographic, health and human services, and public policy trends drawn from a background paper prepared for the meeting. When available, recent findings, facts, and figures have been incorporated.

  1. QCD development in the early universe

    SciT

    Gromov, N. A., E-mail: gromov@dm.komisc.ru

    The high-energy limit of Quantum Chromodynamics is generated by the contraction of its gauge groups. Contraction parameters are taken identical with those of the Electroweak Model and tend to zero when energy increases. At the infinite energy limit all quarks lose masses and have only one color degree of freedom. The limit model represents the development of Quantum Chromodynamics in the early Universe from the Big Bang up to the end of several milliseconds.

  2. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.

    PubMed

    Park, Chong Yon; Pierce, Stephanie A; von Drehle, Morgan; Ivey, Kathryn N; Morgan, Jayson A; Blau, Helen M; Srivastava, Deepak

    2010-11-30

    Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.

  3. Development of skeletal system for mesh-type ICRP reference adult phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  4. Development of Hospital-Based Guidelines for Skeletal Survey in Young Children With Bruises

    PubMed Central

    Fakeye, Oludolapo; Mondestin, Valerie; Rubin, David M.; Localio, Russell; Feudtner, Chris

    2015-01-01

    OBJECTIVE: To develop guidelines for performing an initial skeletal survey (SS) for children <24 months of age presenting with bruising in the hospital setting, combining available evidence with expert opinion. METHODS: Applying the Rand/UCLA Appropriateness Method, a multispecialty panel of 10 experts relied on evidence from the literature and their own clinical expertise in rating the appropriateness of performing SS for 198 clinical scenarios characterizing children <24 months old with bruising. After a moderated discussion of initial ratings, the scenarios were revised. Panelists re-rated SS appropriateness for 219 revised scenarios. For the 136 clinical scenarios in which SS was deemed appropriate, the panel finally assessed the necessity of SS. RESULTS: Panelists agreed that SS is “appropriate” for 62% (136/219) of scenarios, and “inappropriate” for children ≥12 months old with nonpatterned bruising on bony prominences. Panelists agreed that SS is “necessary” for 95% (129/136) of the appropriate scenarios. SS was deemed necessary for infants <6 months old regardless of bruise location, with rare exceptions, but the necessity of SS in older children depends on bruise location. According to the panelists, bruising on the cheek, eye area, ear, neck, upper arm, upper leg, hand, foot, torso, buttock, or genital area necessitates SS in children <12 months. CONCLUSIONS: The appropriateness and necessity of SS in children presenting for care to the hospital setting with bruising, as determined by a diverse panel of experts, depends on age of the child and location of bruising. PMID:25601982

  5. Evaluation of Vocational Technical Education. Phase II. A Skeletal Model with Suggested Research and Development Activities.

    ERIC Educational Resources Information Center

    New Educational Directions, Crawfordsville, IN.

    Phase 2 of this project presents a skeletal model for evaluating vocational education programs which can be applied to secondary, post-secondary, and adult education programs. The model addresses 13 main components of the vocational education system: descriptive information, demonstration of need, student recruitment and selection, curriculum,…

  6. Flight feather development: its early specialization during embryogenesis.

    PubMed

    Kondo, Mao; Sekine, Tomoe; Miyakoshi, Taku; Kitajima, Keiichi; Egawa, Shiro; Seki, Ryohei; Abe, Gembu; Tamura, Koji

    2018-01-01

    Flight feathers, a type of feather that is unique to extant/extinct birds and some non-avian dinosaurs, are the most evolutionally advanced type of feather. In general, feather types are formed in the second or later generation of feathers at the first and following molting, and the first molting begins at around two weeks post hatching in chicken. However, it has been stated in some previous reports that the first molting from the natal down feathers to the flight feathers is much earlier than that for other feather types, suggesting that flight feather formation starts as an embryonic event. The aim of this study was to determine the inception of flight feather morphogenesis and to identify embryological processes specific to flight feathers in contrast to those of down feathers. We found that the second generation of feather that shows a flight feather-type arrangement has already started developing by chick embryonic day 18, deep in the skin of the flight feather-forming region. This was confirmed by shh gene expression that shows barb pattern, and the expression pattern revealed that the second generation of feather development in the flight feather-forming region seems to start by embryonic day 14. The first stage at which we detected a specific morphology of the feather bud in the flight feather-forming region was embryonic day 11, when internal invagination of the feather bud starts, while the external morphology of the feather bud is radial down-type. The morphogenesis for the flight feather, the most advanced type of feather, has been drastically modified from the beginning of feather morphogenesis, suggesting that early modification of the embryonic morphogenetic process may have played a crucial role in the morphological evolution of this key innovation. Co-optation of molecular cues for axial morphogenesis in limb skeletal development may be able to modify morphogenesis of the feather bud, giving rise to flight feather-specific morphogenesis of traits.

  7. Early colonial health developments in Mauritius.

    PubMed

    Parahoo, K A

    1986-01-01

    The historical development of Mauritius and in particular the early developments in health care are crucial to an understanding of the contemporary health system. The introduction of major epidemic diseases through the movements of French soldiers to and from India and the immigration of indentured laborers from India account for the high mortality and morbidity rates in the 18th and 19th centuries and later. The colonial economy created and fortified the dependence on a single cash crop and on imported food. It also contributed toward the impoverization of large sections of the Mauritian population. The colonial era is also responsible for initiating a three tier system of health care.

  8. From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease

    PubMed Central

    Zhang, Yong; Yu, Bing; He, Jun; Chen, Daiwen

    2016-01-01

    Skeletal muscle is a remarkably complicated organ comprising many different cell types, and it plays an important role in lifelong metabolic health. Nutrients, as an external regulator, potently regulate skeletal muscle development through various internal regulatory factors, such as mammalian target of rapamycin (mTOR) and microRNAs (miRNAs). As a nutrient sensor, mTOR, integrates nutrient availability to regulate myogenesis and directly or indirectly influences microRNA expression. MiRNAs, a class of small non-coding RNAs mediating gene silencing, are implicated in myogenesis and muscle-related diseases. Meanwhile, growing evidence has emerged supporting the notion that the expression of myogenic miRNAs could be regulated by nutrients in an epigenetic mechanism. Therefore, this review presents a novel insight into the cell signaling network underlying nutrient-mTOR-miRNA pathway regulation of skeletal myogenesis and summarizes the epigenetic modifications in myogenic differentiation, which will provide valuable information for potential therapeutic intervention. PMID:27766039

  9. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    PubMed

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Dietary supplementation with β-hydroxy-β-methylbutyrate calcium during the early postnatal period accelerates skeletal muscle fibre growth and maturity in intra-uterine growth-retarded and normal-birth-weight piglets.

    PubMed

    Wan, Haifeng; Zhu, Jiatao; Su, Guoqi; Liu, Yan; Hua, Lun; Hu, Liang; Wu, Caimei; Zhang, Ruinan; Zhou, Pan; Shen, Yong; Lin, Yan; Xu, Shengyu; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De

    2016-04-01

    Intra-uterine growth restriction (IUGR) impairs postnatal growth and skeletal muscle development in neonatal infants. This study evaluated whether dietary β-hydroxy-β-methylbutyrate Ca (HMB-Ca) supplementation during the early postnatal period could improve muscle growth in IUGR neonates using piglets as a model. A total of twelve pairs of IUGR and normal-birth-weight (NBW) male piglets with average initial weights (1·85 (sem 0·36) and 2·51 (sem 0·39) kg, respectively) were randomly allotted to groups that received milk-based diets (CON) or milk-based diets supplemented with 800 mg/kg HMB-Ca (HMB) during days 7-28 after birth. Blood and longissimus dorsi (LD) samples were collected and analysed for plasma amino acid content, fibre morphology and the expression of genes related to muscle development. The results indicate that, regardless of diet, IUGR piglets had a significantly decreased average daily weight gain (ADG) compared with that of NBW piglets (P<0·05). However, IUGR piglets fed HMB-Ca had a net weight and ADG similar to that of NBW piglets fed the CON diet. Irrespective of body weight (BW), HMB-Ca supplementation markedly increased the type II fibre cross-sectional area and the mRNA expression of mammalian target of rapamycin (mTOR), insulin-like growth factor-1 and myosin heavy-chain isoform IIb in the LD of piglets (P<0·05). Moreover, there was a significant interaction between the effects of BW and HMB on mTOR expression in the LD (P<0·05). In conclusion, HMB-Ca supplementation during the early postnatal period could improve skeletal muscle growth and maturity by accelerating fast-twitch glycolytic fibre development in piglets.

  11. Advances in Skeletal Dysplasia Genetics

    PubMed Central

    Geister, Krista A.; Camper, Sally A.

    2017-01-01

    Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design. PMID:25939055

  12. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    PubMed Central

    2011-01-01

    Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx

  13. Pharmacogenomics in early-phase clinical development

    PubMed Central

    Burt, Tal; Dhillon, Savita

    2015-01-01

    Pharmacogenomics (PGx) offers the promise of utilizing genetic fingerprints to predict individual responses to drugs in terms of safety, efficacy and pharmacokinetics. Early-phase clinical trial PGx applications can identify human genome variations that are meaningful to study design, selection of participants, allocation of resources and clinical research ethics. Results can inform later-phase study design and pipeline developmental decisions. Nevertheless, our review of the clinicaltrials.gov database demonstrates that PGx is rarely used by drug developers. Of the total 323 trials that included PGx as an outcome, 80% have been conducted by academic institutions after initial regulatory approval. Barriers for the application of PGx are discussed. We propose a framework for the role of PGx in early-phase drug development and recommend PGx be universally considered in study design, result interpretation and hypothesis generation for later-phase studies, but PGx results from underpowered studies should not be used by themselves to terminate drug-development programs. PMID:23837482

  14. The developing hypopharyngeal microbiota in early life.

    PubMed

    Mortensen, Martin Steen; Brejnrod, Asker Daniel; Roggenbuck, Michael; Abu Al-Soud, Waleed; Balle, Christina; Krogfelt, Karen Angeliki; Stokholm, Jakob; Thorsen, Jonathan; Waage, Johannes; Rasmussen, Morten Arendt; Bisgaard, Hans; Sørensen, Søren Johannes

    2016-12-30

    The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand the establishment of the airway microbiota within the first 3 months of life. We investigated the hypopharyngeal microbiota in the unselected COPSAC 2010 cohort of 700 infants, using 16S rRNA gene sequencing of hypopharyngeal aspirates from 1 week, 1 month, and 3 months of age. Our analysis shows that majority of the hypopharyngeal microbiota of healthy infants belong to each individual's core microbiota and we demonstrate five distinct community pneumotypes. Four of these pneumotypes are dominated by the genera Staphylococcus, Streptococcus, Moraxella, and Corynebacterium, respectively. Furthermore, we show temporal pneumotype changes suggesting a rapid development towards maturation of the hypopharyngeal microbiota and a significant effect from older siblings. Despite an overall common trajectory towards maturation, individual infants' microbiota are more similar to their own, than to others, over time. Our findings demonstrate a consolidation of the population of indigenous bacteria in healthy airways and indicate distinct trajectories in the early development of the hypopharyngeal microbiota.

  15. Testicular receptor 2, Nr2c1, is associated with stem cells in the developing olfactory epithelium and other cranial sensory and skeletal structures.

    PubMed

    Baker, Jennifer L; Wood, Bernard; Karpinski, Beverly A; LaMantia, Anthony-S; Maynard, Thomas M

    2016-01-01

    Comparative genomic analysis of the nuclear receptor family suggests that the testicular receptor 2, Nr2c1, undergoes positive selection in the human-chimpanzee clade based upon a significant increase in nonsynonymous compared to synonymous substitutions. Previous in situ analyses of Nr2c1 lacked the temporal range and spatial resolution necessary to characterize cellular expression of this gene from early to mid gestation, when many nuclear receptors are key regulators of tissue specific stem or progenitor cells. Thus, we asked whether Nr2c1 protein is associated with stem cell populations in the mid-gestation mouse embryo. Nr2c1 is robustly expressed in the developing olfactory epithelium. Its expression in the olfactory epithelium shifts from multiple progenitor classes at early stages to primarily transit amplifying cells later in olfactory epithelium development. In the early developing central nervous system, Nr2c1 is limited to the anterior telencephalon/olfactory bulb anlagen, coincident with Nestin-positive neuroepithelial stem cells. Nr2c1 is also seen in additional cranial sensory specializations including cells surrounding the mystacial vibrissae, the retinal pigment epithelium and Scarpa's ganglion. Nr2c1 was also detected in a subset of mesenchymal cells in developing teeth and cranial bones. The timing and distribution of embryonic expression suggests that Nr2c1 is primarily associated with the early genesis of mammalian cranial sensory neurons and craniofacial skeletal structures. Thus, Nr2c1 may be a candidate for mediating parallel adaptive changes in cranial neural sensory specializations such as the olfactory epithelium, retina and mystacial vibrissae and in non-neural craniofacial features including teeth. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Early androgen exposure and human gender development.

    PubMed

    Hines, Melissa; Constantinescu, Mihaela; Spencer, Debra

    2015-01-01

    During early development, testosterone plays an important role in sexual differentiation of the mammalian brain and has enduring influences on behavior. Testosterone exerts these influences at times when the testes are active, as evidenced by higher concentrations of testosterone in developing male than in developing female animals. This article critically reviews the available evidence regarding influences of testosterone on human gender-related development. In humans, testosterone is elevated in males from about weeks 8 to 24 of gestation and then again during early postnatal development. Individuals exposed to atypical concentrations of testosterone or other androgenic hormones prenatally, for example, because of genetic conditions or because their mothers were prescribed hormones during pregnancy, have been consistently found to show increased male-typical juvenile play behavior, alterations in sexual orientation and gender identity (the sense of self as male or female), and increased tendencies to engage in physically aggressive behavior. Studies of other behavioral outcomes following dramatic androgen abnormality prenatally are either too small in their numbers or too inconsistent in their results, to provide similarly conclusive evidence. Studies relating normal variability in testosterone prenatally to subsequent gender-related behavior have produced largely inconsistent results or have yet to be independently replicated. For studies of prenatal exposures in typically developing individuals, testosterone has been measured in single samples of maternal blood or amniotic fluid. These techniques may not be sufficiently powerful to consistently detect influences of testosterone on behavior, particularly in the relatively small samples that have generally been studied. The postnatal surge in testosterone in male infants, sometimes called mini-puberty, may provide a more accessible opportunity for measuring early androgen exposure during typical development. This

  17. Relationship between Body Mass Index, Skeletal Maturation and Dental Development in 6- to 15- Year Old Orthodontic Patients in a Sample of Iranian Population.

    PubMed

    Hedayati, Zohreh; Khalafinejad, Fatemeh

    2014-12-01

    The prevalence of overweight and obesity has been increasing markedly in recent years. It may influence growth in pre pubertal children. The purpose of this study was to determine whether increased Body Mass Index (BMI) is associated with accelerated skeletal maturation and dental maturation in six to fifteen years old orthodontic patients in Shiraz, Iran. Skeletal maturation and dental development of 95 orthodontic patients (65 females and 30 males), aged 6 to 15 years, were determined. Dental development was assessed using the Demerjian method and skeletal maturation was evaluated by cervical vertebral method as presented by Bacetti. The BMI was determined for each patient. T-test was applied to compare the mean difference between chronologic and dental age among the study groups. A regression model was used to assess the relationship between BMI percentile, skeletal maturation, and dental development. 18.9% of subjects were overweight and obese. The mean differences between dental age and chronologic age were 0.73±1.3 for underweight and normal weight children and 1.8±1.08 for overweight and obese children. These results highlighted the correlation between accelerated dental maturity and increasing BMI percentile (p= 0.002). A new formula was introduced for this relationship. There was not any significant relationship between BMI percentile and skeletal maturation. Children who were overweight or obese had accelerated dental development whereas they did not have accelerated skeletal maturation significantly after being adjusted for age and gender.

  18. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes.

    PubMed

    Dos Santos, Julia Matzenbacher; de Oliveira, Denise Silva; Moreli, Marcos Lazaro; Benite-Ribeiro, Sandra Aparecida

    2018-04-20

    Reduced cellular response to insulin in skeletal muscle is one of the major components of the development of type 2 diabetes (T2D). Mitochondrial dysfunction involves in the accumulation of toxic reactive oxygen species (ROS) that leads to insulin resistance. The aim of this study was to verify the involvement of mitochondrial DNA damage at ROS generation in skeletal muscle during development of T2D. Wistar rats were fed a diet containing 60% fat over 8 weeks and at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). Control rats received standard food and an injection of citrate buffer. Blood and soleus muscle were collected. Abdominal fat was quantified as well as glucose, triglyceride, LDL, HDL, and total cholesterol in plasma and mtDNA copy number, cytochrome b (cytb) mRNA, 8-hydroxyguanosine, and 8-isoprostane (a marker of ROS) in soleus muscle. T2D-induced animal presented similar characteristics to humans that develop T2D such as changes in blood glucose, abdominal fat, LDL, HDL and cholesterol total. In soleus muscle 8-isoprostane, mtDNA copy number and 8-hydroxyguanosine were increased, while cytb mRNA was decreased in T2D. Our results suggest that in the development of T2D, when risks factors of T2D are present, intracellular oxidative stress increases in skeletal muscle and is associated with a decrease in cytb transcription. To overcome this process mtDNA increased but due to the proximity of ROS generation, mtDNA remains damaged by oxidation leading to an increase in ROS in a vicious cycle accounting to the development of insulin resistance and further T2D.

  19. The Not-so-Dark Ages: ecology for human growth in medieval and early twentieth century Portugal as inferred from skeletal growth profiles.

    PubMed

    Cardoso, Hugo F V; Garcia, Susana

    2009-02-01

    This study attempts to address the issue of relative living standards in Portuguese medieval and early 20th century periods. Since the growth of children provides a good measure of environmental quality for the overall population, the skeletal growth profiles of medieval Leiria and early 20th century Lisbon were compared. Results show that growth in femur length of medieval children did not differ significantly from that of early 20th century children, but after puberty medieval adolescents seem to have recovered, as they have significantly longer femora as adults. This is suggestive of greater potential for catch-up growth in medieval adolescents. We suggest that this results from distinct child labor practices, which impact differentially on the growth of Leiria and Lisbon adolescents. Work for medieval children and adolescents were related to family activities, and care and attention were provided by family members. Conversely, in early 20th century Lisbon children were more often sent to factories at around 12 years of age as an extra source of family income, where they were exploited for their labor. Since medieval and early 20th century children were stunted at an early age, greater potential for catch-up growth in medieval adolescents results from exhausting work being added to modern adolescent's burdens of disease and poor diet, when they entered the labor market. Although early 20th century Lisbon did not differ in overall unfavorable living conditions from medieval Leiria, after puberty different child labor practices may have placed modern adolescents at greater risk of undernutrition and poor growth. 2008 Wiley-Liss, Inc.

  20. Evaluation of skeletal maturation using mandibular third molar development in Indian adolescents.

    PubMed

    Mehta, Nishit; Patel, Dolly; Mehta, Falguni; Gupta, Bhaskar; Zaveri, Grishma; Shah, Unnati

    2016-01-01

    This study was done with the following objectives: to estimate dental maturity using the Demirjian Index (DI) for the mandibular third molar; to investigate the relationship between dental maturity and skeletal maturity among growing patients; to evaluate the use of the mandibular third molar as an adjunctive tool for adolescent growth assessment in combination with the cervical vertebrae; to evaluate the clinical value of the third molar as a growth evaluation index. Samples were derived from panoramic radiographs and lateral cephalograms of 615 subjects (300 males and 315 females) of ages ranging 9-18 years, and estimates of dental maturity (DI) and skeletal maturity [cervical vertebrae maturation indicators (CVMI)] were made. A highly significant association (r = 0.81 for males and r = 0.72 for females) was found between DI and CVMI. DI Stage B corresponded to Stage 2 of CVMI (prepeak of pubertal growth spurt) in both sexes. In males, DI stages C and D represent the peak of the pubertal growth spurt. In females, stages B and C show that the peak of the pubertal growth spurt has not been passed. DI stage E in females and DI Stage F in males correlate that the peak of the pubertal growth spurt has been passed. A highly significant association exists between DI and CVMI. Mandibular third molar DI stages are reliable adjunctive indicators of skeletal maturity.

  1. Early Literacy and Early Numeracy: The Value of Including Early Literacy Skills in the Prediction of Numeracy Development

    ERIC Educational Resources Information Center

    Purpura, David J.; Hume, Laura E.; Sims, Darcey M.; Lonigan, Cristopher J.

    2011-01-01

    The purpose of this study was to examine whether early literacy skills uniquely predict early numeracy skills development. During the first year of the study, 69 3- to 5-year-old preschoolers were assessed on the Preschool Early Numeracy Skills (PENS) test and the Test of Preschool Early Literacy Skills (TOPEL). Participants were assessed again a…

  2. Traditional growing rod versus magnetically controlled growing rod for treatment of early onset scoliosis: Cost analysis from implantation till skeletal maturity.

    PubMed

    Wong, Carlos King Ho; Cheung, Jason Pui Yin; Cheung, Prudence Wing Hang; Lam, Cindy Lo Kuen; Cheung, Kenneth Man Chee

    2017-01-01

    To compare the yearly cost involved per patient in the use of magnetically controlled growing rod (MCGR) and traditional growing rods (TGRs) in the treatment of early onset scoliosis (EOS) and to assess the overall cost burden of MCGR with reference to patient and health-care infrastructure. For a hypothetical case of a 5-year-old girl with a diagnosis of EOS, a decision-tree model using TreeAge Software was developed to simulate annual health state transitions and compare the 8-year accumulative direct, indirect, and total cost among the four groups: (1) dual MCGRs with exchange every 2 years, (2) dual MCGRs with exchange every 3 years, (3) TGR with surgical distraction every year, and (4) TGR with surgical distraction every 6 months. Base-case values and ranges of clinical parameters reflecting complication rate after each type of surgical distraction were determined from a review of literature and expert opinion. Government gazette and expert opinion provided cost estimation of growing rods, surgeries, surgical complications, and routine follow-up. Microsimulation of 1000 individuals was conducted to test the variation in total direct costs (in 2016 Hong Kong dollars (HKD)) between individuals, and estimated the standard deviations of total direct costs for each group. Over the projected treatment period, indirect costs incurred by patients and family were higher for the MCGR as compared to the TGR. However, the total costs incurred by MCGR groups (group 1: HKD164k; group 2: HKD138k) were lower than those incurred by TGR groups (group 3: HKD191k; group 4: HKD290k). Although the accumulative costs of three groups (TGR with distraction every year and MCGR replacing every 2 and 3 years) were approaching each other in the first 2 years after initial implantation, at year 3 the accumulative cost of MCGR exchange every 2 years was HKD36k more than the yearly TGR surgery due to the cost of implant exchange. The cost incurred by both the MCGR groups was less than that

  3. Development of Life on Early Mars

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2009-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution encompassed conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water- as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at 3.9 Gy, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H20, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 My?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve). The commonly stated requirement that life would need hundreds of millions of year to get started is only an assumption; we know of no evidence that requires such a long interval for the development of life, if the proper habitable

  4. Cell fate regulation in early mammalian development

    NASA Astrophysics Data System (ADS)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  5. How Early Hormones Shape Gender Development

    PubMed Central

    Berenbaum, Sheri A.; Beltz, Adriene M.

    2015-01-01

    Many important psychological characteristics show sex differences, and are influenced by sex hormones at different developmental periods. We focus on the role of sex hormones in early development, particularly the differential effects of prenatal androgens on aspects of gender development. Increasing evidence confirms that prenatal androgens have facilitative effects on male-typed activity interests and engagement (including child toy preferences and adult careers), and spatial abilities, but relatively minimal effects on gender identity. Recent emphasis has been directed to the psychological mechanisms underlying these effects (including sex differences in propulsive movement, and androgen effects on interest in people versus things), and neural substrates of androgen effects (including regional brain volumes, and neural responses to mental rotation, sexually arousing stimuli, emotion, and reward). Ongoing and planned work is focused on understanding the ways in which hormones act jointly with the social environment across time to produce varying trajectories of gender development, and clarifying mechanisms by which androgens affect behaviors. Such work will be facilitated by applying lessons from other species, and by expanding methodology. Understanding hormonal influences on gender development enhances knowledge of psychological development generally, and has important implications for basic and applied questions, including sex differences in psychopathology, women’s underrepresentation in science and math, and clinical care of individuals with variations in gender expression. PMID:26688827

  6. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb.

    PubMed

    Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N; Toole, Bryan P; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A

    2009-08-01

    The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb.

  7. Early development and osteoporosis and bone health.

    PubMed

    Dennison, E M; Cooper, C; Cole, Z A

    2010-06-01

    Osteoporosis is a skeletal disorder characterized by low bone mass and micro-architectural deterioration of bone tissue with a consequent increase in bone fragility and susceptibility to fracture. Evidence is now accumulating from human studies that programming of bone growth might be an important contributor to the later risk of osteoporotic fracture. Body weight in infancy is a determinant of adult bone mineral content, as well as of the basal levels of activity of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) and hypothalamo-pituitary-adrenal (HPA) axes, and recent work has suggested a central role for vitamin D. Epidemiological studies have shown that maternal smoking and nutrition during pregnancy influence intrauterine skeletal mineralization. Childhood growth rates have been directly linked to the risk of hip fracture many decades later, and now evidence is emerging from experimental animal studies that support these observational data. Recent studies have also highlighted epigenetic phenomena as potential mechanisms underlying the findings from epidemiological studies.

  8. PI3K-mediated PDGFRα signaling regulates survival and proliferation in skeletal development through p53-dependent intracellular pathways

    PubMed Central

    Fantauzzo, Katherine A.; Soriano, Philippe

    2014-01-01

    Previous studies have identified phosphatidylinositol 3-kinase (PI3K) as the main downstream effector of PDGFRα signaling during murine skeletal development. Autophosphorylation mutant knock-in embryos in which PDGFRα is unable to bind PI3K (PdgfraPI3K/PI3K) exhibit skeletal defects affecting the palatal shelves, shoulder girdle, vertebrae, and sternum. To identify proteins phosphorylated by Akt downstream from PI3K-mediated PDGFRα signaling, we immunoprecipitated Akt phosphorylation substrates from PDGF-AA-treated primary mouse embryonic palatal mesenchyme (MEPM) lysates and analyzed the peptides by nanoliquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS). Our analysis generated a list of 56 proteins, including 10 that regulate cell survival and proliferation. We demonstrate that MEPM cell survival is impaired in the presence of a PI3K inhibitor and that PdgfraPI3K/PI3K-derived MEPMs do not proliferate in response to PDGF-AA treatment. Several of the identified Akt phosphorylation targets, including Ybox1, mediate cell survival through regulation of p53. We show that Ybox1 binds both the Trp53 promoter and the p53 protein and that expression of Trp53 is significantly decreased upon PDGF-AA treatment in MEPMs. Finally, we demonstrate that introduction of a Trp53-null allele attenuates the vertebral defects found in PdgfraPI3K/PI3K neonates. Our findings identify p53 as a novel effector downstream from PI3K-engaged PDGFRα signaling that regulates survival and proliferation during skeletal development in vivo. PMID:24788519

  9. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    PubMed

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  10. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways

    PubMed Central

    2014-01-01

    Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a

  11. Early Vascular Ageing - A Concept in Development.

    PubMed

    M Nilsson, Peter

    2015-04-01

    Cardiovascular disease (CVD) is a prevalent condition in the elderly, often associated with metabolic disturbance and type 2 diabetes. For a number of years, research dedicated to understand atherosclerosis dominated, and for many good reasons, this pathophysiological process being proximal to the CVD events. In recent years, research has been devoted to an earlier stage of vascular pathology named arteriosclerosis (arterial stiffness) and the new concept of early vascular ageing (EVA), developed by a group of mostly European researchers. This overview describes recent developments in research dedicated to EVA and new emerging aspects found in studies of families at high cardiovascular risk. There are new aspects related to genetics, telomere biology and the role of gut microbiota. However, there is still no unifying definition available of EVA and no direct treatment, but rather only recommendations for conventional cardiovascular risk factor control. New interventions are being developed - not only new antihypertensive drugs, but also new drugs for vascular protection - the selective angiotensin-II (AT2) agonist Compound 21 (C21). Human studies are eagerly awaited. Even new functional food products could have the potential to positively influence cardiometabolic regulation, to be confirmed.

  12. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  13. Early Years Practitioners' Views on Early Personal, Social and Emotional Development

    ERIC Educational Resources Information Center

    Aubrey, Carol; Ward, Karen

    2013-01-01

    Current policy guidance stresses the need for early identification of obstacles to learning and appropriate intervention. New standards for learning (Early Years Foundation Stage) place personal, social and emotional development (PSED) as central to learning and development. This paper reports a survey and follow-up interviews with early years…

  14. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    PubMed

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Early Parental Depression and Child Language Development

    ERIC Educational Resources Information Center

    Paulson, James F.; Keefe, Heather A.; Leiferman, Jenn A.

    2009-01-01

    Objective: To examine the effects of early maternal and paternal depression on child expressive language at age 24 months and the role that parent-to-child reading may play in this pathway. Participants and methods: The 9-month and 24-month waves from a national prospective study of children and their families, the Early Childhood Longitudinal…

  16. Determinants of relative skeletal maturity in South African children.

    PubMed

    Hawley, Nicola L; Rousham, Emily K; Johnson, William; Norris, Shane A; Pettifor, John M; Cameron, Noël

    2012-01-01

    The variation of skeletal maturity about chronological age is a sensitive indicator of population health. Age appropriate or advanced skeletal maturity is a reflection of adequate environmental and social conditions, whereas delayed maturation suggests inadequate conditions for optimal development. There remains a paucity of data, however, to indicate which specific biological and environmental factors are associated with advancement or delay in skeletal maturity. The present study utilises longitudinal data from the South African Birth to Twenty (Bt20) study to indentify predictors of relative skeletal maturity (RSM) in early adolescence. A total of 244 black South African children (n=131 male) were included in this analysis. Skeletal maturity at age 9/10 years was assessed using the Tanner and Whitehouse III RUS technique. Longitudinal data on growth, socio-economic position and pubertal development were entered into sex-specific multivariable general linear regression models with relative skeletal maturity (skeletal age-chronological age) as the outcome. At 9/10 years of age males showed an average of 0.66 years delay in skeletal maturation relative to chronological age. Females showed an average of 1.00 year delay relative to chronological age. In males, being taller at 2 years (p<0.01) and heavier at 2 years (p<0.01) predicted less delay in RSM at age 9/10 years, independent of current size and body composition. In females, both height at 2 years and conditional weight at 2 years predicted less delay in RSM at 9/10 years (p<0.05) but this effect was mediated by current body composition. Having greater lean mass at 9/10 years was associated with less delayed RSM in females (p<0.01) as was pubertal status at the time of skeletal maturity assessment (p<0.01). This study identifies several predictors of skeletal maturation at 9/10 years, indicating a role for early life exposures in determining the rate of skeletal maturation during childhood independently of

  17. The early research and development of ebselen.

    PubMed

    Parnham, Michael J; Sies, Helmut

    2013-11-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one; PZ-51, DR-3305), is an organoselenium compound with glutathione peroxidase (GPx)-like, thiol-dependent, hydroperoxide reducing activity. As an enzyme mimic for activity of the selenoenzyme GPx, this compound has proved to be highly useful in research on mechanisms in redox biology. Furthermore, the reactivity of ebselen with protein thiols has helped to identify novel, selective targets for inhibitory actions on several enzymes of importance in pharmacology and toxicology. Importantly, the selenium in ebselen is not released and thus is not bioavailable, ebselen metabolites being excreted in bile and urine. As a consequence, initial concerns about selenium toxicity, fortunately, were unfounded. Potential applications in medical settings have been explored, notably in brain ischemia and stroke. More recently, there has been a surge in interest as new medical applications have been taken into consideration. The first publication on the biochemical effects of ebselen appeared 30 years ago (Müller et al.), which prompted the authors to retrace the early development from their perspective. It is a fascinating example of fruitful interaction between research-oriented industry and academia. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Parental Obesity and Early Childhood Development.

    PubMed

    Yeung, Edwina H; Sundaram, Rajeshwari; Ghassabian, Akhgar; Xie, Yunlong; Buck Louis, Germaine

    2017-02-01

    Previous studies identified associations between maternal obesity and childhood neurodevelopment, but few examined paternal obesity despite potentially distinct genetic/epigenetic effects related to developmental programming. Upstate KIDS (2008-2010) recruited mothers from New York State (excluding New York City) at ∼4 months postpartum. Parents completed the Ages and Stages Questionnaire (ASQ) when their children were 4, 8, 12, 18, 24, 30, and 36 months of age corrected for gestation. The ASQ is validated to screen for delays in 5 developmental domains (ie, fine motor, gross motor, communication, personal-social functioning, and problem-solving ability). Analyses included 3759 singletons and 1062 nonrelated twins with ≥1 ASQs returned. Adjusted odds ratios (aORs) and 95% confidence intervals were estimated by using generalized linear mixed models accounting for maternal covariates (ie, age, race, education, insurance, marital status, parity, and pregnancy smoking). Compared with normal/underweight mothers (BMI <25), children of obese mothers (26% with BMI ≥30) had increased odds of failing the fine motor domain (aOR 1.67; confidence interval 1.12-2.47). The association remained after additional adjustment for paternal BMI (1.67; 1.11-2.52). Paternal obesity (29%) was associated with increased risk of failing the personal-social domain (1.75; 1.13-2.71), albeit attenuated after adjustment for maternal obesity (aOR 1.71; 1.08-2.70). Children whose parents both had BMI ≥35 were likely to additionally fail the problem-solving domain (2.93; 1.09-7.85). Findings suggest that maternal and paternal obesity are each associated with specific delays in early childhood development, emphasizing the importance of family information when screening child development. Copyright © 2017 by the American Academy of Pediatrics.

  19. Parental Obesity and Early Childhood Development

    PubMed Central

    Sundaram, Rajeshwari; Ghassabian, Akhgar; Xie, Yunlong; Buck Louis, Germaine

    2017-01-01

    BACKGROUND: Previous studies identified associations between maternal obesity and childhood neurodevelopment, but few examined paternal obesity despite potentially distinct genetic/epigenetic effects related to developmental programming. METHODS: Upstate KIDS (2008–2010) recruited mothers from New York State (excluding New York City) at ∼4 months postpartum. Parents completed the Ages and Stages Questionnaire (ASQ) when their children were 4, 8, 12, 18, 24, 30, and 36 months of age corrected for gestation. The ASQ is validated to screen for delays in 5 developmental domains (ie, fine motor, gross motor, communication, personal-social functioning, and problem-solving ability). Analyses included 3759 singletons and 1062 nonrelated twins with ≥1 ASQs returned. Adjusted odds ratios (aORs) and 95% confidence intervals were estimated by using generalized linear mixed models accounting for maternal covariates (ie, age, race, education, insurance, marital status, parity, and pregnancy smoking). RESULTS: Compared with normal/underweight mothers (BMI <25), children of obese mothers (26% with BMI ≥30) had increased odds of failing the fine motor domain (aOR 1.67; confidence interval 1.12–2.47). The association remained after additional adjustment for paternal BMI (1.67; 1.11–2.52). Paternal obesity (29%) was associated with increased risk of failing the personal-social domain (1.75; 1.13–2.71), albeit attenuated after adjustment for maternal obesity (aOR 1.71; 1.08–2.70). Children whose parents both had BMI ≥35 were likely to additionally fail the problem-solving domain (2.93; 1.09–7.85). CONCLUSIONS: Findings suggest that maternal and paternal obesity are each associated with specific delays in early childhood development, emphasizing the importance of family information when screening child development. PMID:28044047

  20. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development.

    PubMed

    Maruyama, Takamitsu; Jiang, Ming; Abbott, Alycia; Yu, H-M Ivy; Huang, Qirong; Chrzanowska-Wodnicka, Magdalena; Chen, Emily I; Hsu, Wei

    2017-09-01

    Recent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans. The fate determination and subsequent differentiation of Axin2+ stem cells are highly orchestrated by a variety of evolutionary conserved signaling pathways including Wnt, FGF, and BMP. These signals are often antagonistic of each other and possess differential effects on osteogenic and chondrogenic cell types. However, the mechanisms underlying the interplay of these signaling transductions remain largely elusive. Here we identify Rap1b acting downstream of Axin2 as a signaling interrogator for FGF and BMP. Genetic analysis reveals that Rap1b is essential for development of craniofacial and body skeletons. Axin2 regulates Rap1b through modulation of canonical BMP signaling. The BMP-mediated activation of Rap1b promotes chondrogenic fate and chondrogenesis. Furthermore, by inhibiting MAPK signaling, Rap1b mediates the antagonizing effect of BMP on FGF to repress osteoblast differentiation. Disruption of Rap1b in mice not only enhances osteoblast differentiation but also impairs chondrocyte differentiation during intramembranous and endochondral ossifications, respectively, leading to severe defects in craniofacial and body skeletons. Our findings reveal a dual role of Rap1b in development of the skeletogenic cell types. Rap1b is critical for balancing the signaling effects of BMP and FGF during skeletal development and disease. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  1. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.

    PubMed

    Nah, H D; Pacifici, M; Gerstenfeld, L C; Adams, S L; Kirsch, T

    2000-03-01

    Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can

  2. Skeletal muscle

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  3. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs.

    PubMed

    Yang, Yalan; Sun, Wei; Wang, Ruiqi; Lei, Chuzhao; Zhou, Rong; Tang, Zhonglin; Li, Kui

    2015-03-08

    The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation

  4. Humeral development from neonatal period to skeletal maturity--application in age and sex assessment.

    PubMed

    Rissech, Carme; López-Costas, Olalla; Turbón, Daniel

    2013-01-01

    The goal of the present study is to examine cross-sectional information on the growth of the humerus based on the analysis of four measurements, namely, diaphyseal length, transversal diameter of the proximal (metaphyseal) end of the shaft, epicondylar breadth and vertical diameter of the head. This analysis was performed in 181 individuals (90 ♂ and 91 ♀) ranging from birth to 25 years of age and belonging to three documented Western European skeletal collections (Coimbra, Lisbon and St. Bride). After testing the homogeneity of the sample, the existence of sexual differences (Student's t- and Mann-Whitney U-test) and the growth of the variables (polynomial regression) were evaluated. The results showed the presence of sexual differences in epicondylar breadth above 20 years of age and vertical diameter of the head from 15 years of age, thus indicating that these two variables may be of use in determining sex from that age onward. The growth pattern of the variables showed a continuous increase and followed first- and second-degree polynomials. However, growth of the transversal diameter of the proximal end of the shaft followed a fourth-degree polynomial. Strong correlation coefficients were identified between humeral size and age for each of the four metric variables. These results indicate that any of the humeral measurements studied herein is likely to serve as a useful means of estimating sub-adult age in forensic samples.

  5. A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation

    PubMed Central

    Frederick, Joshua P.; Tafari, A. Tsahai; Wu, Sheue-Mei; Megosh, Louis C.; Chiou, Shean-Tai; Irving, Ryan P.; York, John D.

    2008-01-01

    Sulfation is an important biological process that modulates the function of numerous molecules. It is directly mediated by cytosolic and Golgi sulfotransferases, which use 3′-phosphoadenosine 5′-phosphosulfate to produce sulfated acceptors and 3′-phosphoadenosine 5′-phosphate (PAP). Here, we identify a Golgi-resident PAP 3′-phosphatase (gPAPP) and demonstrate that its activity is potently inhibited by lithium in vitro. The inactivation of gPAPP in mice led to neonatal lethality, lung abnormalities resembling atelectasis, and dwarfism characterized by aberrant cartilage morphology. The phenotypic similarities of gPAPP mutant mice to chondrodysplastic models harboring mutations within components of the sulfation pathway lead to the discovery of undersulfated chondroitin in the absence of functional enzyme. Additionally, we observed loss of gPAPP leads to perturbations in the levels of heparan sulfate species in lung tissue and whole embryos. Our data are consistent with a model that clearance of the nucleotide product of sulfotransferases within the Golgi plays an important role in glycosaminoglycan sulfation, provide a unique genetic basis for chondrodysplasia, and define a function for gPAPP in the formation of skeletal elements derived through endochondral ossification. PMID:18695242

  6. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration.

    PubMed

    Ryall, James G

    2013-09-01

    Adult skeletal muscle contains a resident population of stem cells, termed satellite cells, that exist in a quiescent state. In response to an activating signal (such as physical trauma), satellite cells enter the cell cycle and undergo multiple rounds of proliferation, followed by differentiation, fusion, and maturation. Over the last 10-15 years, our understanding of the transcriptional regulation of this stem cell population has greatly expanded, but there remains a dearth of knowledge with regard to the initiating signal leading to these changes in transcription. The recent renewed interest in the metabolic regulation of both cancer and stem cells, combined with previous findings indicating that satellite cells preferentially colocalize with blood vessels, suggests that satellite cell function may be regulated by changes in cellular metabolism. This review aims to describe what is currently known about satellite cell metabolism during changes in cell fate, as well as to describe some of the exciting findings in other cell types and how these might relate to satellite cells. © 2013 The Author Journal compilation © 2013 FEBS.

  7. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments.

    PubMed

    Ferrari, Marco; Muthalib, Makii; Quaresima, Valentina

    2011-11-28

    This article provides a snapshot of muscle near-infrared spectroscopy (NIRS) at the end of 2010 summarizing the recent literature, offering the present status and perspectives of the NIRS instrumentation and methods, describing the main NIRS studies on skeletal muscle physiology, posing open questions and outlining future directions. So far, different NIRS techniques (e.g. continuous-wave (CW) and spatially, time- and frequency-resolved spectroscopy) have been used for measuring muscle oxygenation during exercise. In the last four years, approximately 160 muscle NIRS articles have been published on different physiological aspects (primarily muscle oxygenation and haemodynamics) of several upper- and lower-limb muscle groups investigated by using mainly two-channel CW and spatially resolved spectroscopy commercial instruments. Unfortunately, in only 15 of these studies were the advantages of using multi-channel instruments exploited. There are still several open questions in the application of NIRS in muscle studies: (i) whether NIRS can be used in subjects with a large fat layer; (ii) the contribution of myoglobin desaturation to the NIRS signal during exercise; (iii) the effect of scattering changes during exercise; and (iv) the effect of changes in skin perfusion, particularly during prolonged exercise. Recommendations for instrumentation advancements and future muscle NIRS studies are provided.

  8. FGFR3 induces degradation of BMP type I receptor to regulate skeletal development.

    PubMed

    Qi, Huabing; Jin, Min; Duan, Yaqi; Du, Xiaolan; Zhang, Yuanquan; Ren, Fangli; Wang, Yinyin; Tian, Qingyun; Wang, Xiaofeng; Wang, Quan; Zhu, Ying; Xie, Yangli; Liu, Chuanju; Cao, Xu; Mishina, Yuji; Chen, Di; Deng, Chu-xia; Chang, Zhijie; Chen, Lin

    2014-07-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Early Intervention Paraprofessional Standards: Development and Field Validation

    ERIC Educational Resources Information Center

    Banerjee, Rashida; Chopra, Ritu V.; DiPalma, Geraldine

    2017-01-01

    Personnel standards are the foundations for how states and nations approve a program, engage in systemic assessment, and provide effective professional development to its early childhood professionals. However, despite the extensive use of paraprofessionals in early intervention/early childhood special education programs, there is a lack of…

  10. Exercise, Hormones, and Skeletal Adaptations During Childhood and Adolescence

    PubMed Central

    Farr, Joshua N.; Laddu, Deepika R.; Going, Scott B.

    2015-01-01

    Although primarily considered a disorder of the elderly, emerging evidence suggests the antecedents of osteoporosis are established during childhood and adolescence. A complex interplay of genetic, environmental, hormonal and behavioral factors determines skeletal development, and a greater effort is needed to identify the most critical factors that establish peak bone strength. Indeed, knowledge of modifiable factors that determine skeletal development may permit optimization of skeletal health during growth and could potentially offset reductions in bone strength with aging. The peripubertal years represent a unique period when the skeleton is particularly responsive to loading exercises, and there is now overwhelming evidence that exercise can optimize skeletal development. While this is not controversial, the most effective exercise prescription and how much investment in this prescription is needed to significantly impact bone health continues to be debated. Despite considerable progress, these issues are not easy to address, and important questions remain unresolved. This review focuses on the key determinants of skeletal development, whether exercise during childhood and adolescence should be advocated as a safe and effective strategy for optimizing peak bone strength, and whether investment in exercise early in life protects against the development of osteoporosis and fractures later in life. PMID:25372373

  11. Effects of seawater acidification on the early development of sea urchin Glyptocidaris crenularis

    NASA Astrophysics Data System (ADS)

    Zhan, Yaoyao; Hu, Wanbin; Duan, Lizhu; Liu, Minbo; Zhang, Weijie; Chang, Yaqing; Li, Cong

    2017-10-01

    In this study, we evaluated the effects of CO2-induced seawater acidification on fertilization, embryogenesis and early larval development in the sea urchin Glyptocidaris crenularis, that inhabits subtidal coastal areas in northern China. The range in seawater pH used in experiments was based on the projections of the Intergovernmental Panel on Climate Change (IPCC), to the year 2100. A natural seawater treatment (pHnbs=7.98±0.03) and three laboratory-controlled acidified treatments (OA1, ΔpHnbs=-0.3 units; OA2, ΔpHnbs=-0.4 units; OA3, ΔpHnbs=-0.5 units) were used in experiments. Results show that: (1) there was a negative effect of seawater acidification on fertilization and on the percentage of abnormal fertilized eggs; (2) the size of early cleavage stage embryos decreased in a dose-dependent manner with decreasing pH; (3) both the hatching rate of blastulae and the survival rate of four-armed pluteus larvae decreased as pH declined; (4) larval abnormalities including asymmetrical development, changes in the length of skeletal elements, and corroded spicules were observed in all seawater acidified-treatments compared with the control. These data indicate that seawater acidification has a negative impact on the early development of G. crenularis, and supports the hypothesis that the response of echinoderms to ocean acidification (OA) varies among species. Further research is required to clarify the specific cellular mechanisms involved.

  12. Early Developments in Argumentation in Physics.

    ERIC Educational Resources Information Center

    Bazerman, Charles

    An evaluation of four seventeenth and eighteenth century essays on optics revealed early trends in the evolution of scientific articles. The later articles showed a growing tendency to (1) separate practice from pure knowledge, (2) organize information around problems of knowledge and theory rather than around chronological events, (3) emphasize…

  13. The Development of Self-Regulation across Early Childhood

    ERIC Educational Resources Information Center

    Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.

    2016-01-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and…

  14. Early Development and the Brain: Teaching Resources for Educators

    ERIC Educational Resources Information Center

    Gilkerson, Linda, Ed.; Klein, Rebecca, Ed.

    2008-01-01

    This nine-unit curriculum translates current scientific research on early brain development into practical suggestions to help early childhood professionals understand the reciprocal link between caregiving and brain development. The curriculum was created and extensively field-tested by the Erikson Institute Faculty Development Project on the…

  15. Parents' Role in the Early Head Start Children's Language Development

    ERIC Educational Resources Information Center

    Griswold, Cecelia Smalls

    2014-01-01

    The development of language during a child's early years has been linked to parental involvement. While Early Head Start (EHS) researchers have theorized that parental involvement is an important factor in language development, there has been little research on how parents view their roles in the language development process. The purpose of this…

  16. Classroom Effects of an Early Childhood Educator Professional Development Partnership

    ERIC Educational Resources Information Center

    Algozzine, Bob; Babb, Julie; Algozzine, Kate; Mraz, Maryann; Kissel, Brian; Spano, Sedra; Foxworth, Kimberly

    2011-01-01

    We evaluated an Early Childhood Educator Professional Development (ECEPD) project that provided high-quality, sustained, and intensive professional development designed to support developmentally appropriate instruction for preschool-age children based on the best available research on early childhood pedagogy, child development, and preschool…

  17. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb

    PubMed Central

    Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N.; Toole, Bryan P.; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A.

    2009-01-01

    Summary The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb. PMID:19633173

  18. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    PubMed Central

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  19. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome.

    PubMed

    Marcus, R; Leary, D; Schneider, D L; Shane, E; Favus, M; Quigley, C A

    2000-03-01

    Although androgen status affects bone mass in women and men, an androgen requirement for skeletal normalcy has not been established. Women with androgen insensitivity syndrome (AIS) have 46,XY genotypes with androgen receptor abnormalities rendering them partially or completely refractory to androgen. Twenty-eight women with AIS (22 complete and 6 high grade partial), aged 11-65 yr, responded to questionnaires about health history, gonadal surgery, and exogenous estrogen use and underwent bone mineral density (BMD) assessment by dual energy x-ray absortiometry. BMD values at the lumbar spine and proximal femur were compared to age-specific female normative values and listed as z-scores. Average height for adults in this cohort, 174 cm (68.5 in.), was moderately increased compared with the average height of adult American women of 162.3 cm, with skewing toward higher values: 5 women exceeded 6 ft in height, and 30% of the 18 adult women with complete AIS exceeded 5 ft, 11 in. in height. The average lumbar spine and hip BMD z-scores of the 6 women with partial AIS did not differ from population norms. In contrast, the average lumbar spine BMD z-score of women with complete AIS was significantly reduced at -1.08 (P = 0.0003), whereas the average value for hip BMD did not differ from normal. When BMD was compared between women who reported good estrogen replacement therapy compliance and those who reported poor compliance, there was a significantly greater deficit at the spine for women with poor compliance (z = -2.15 +/- 0.15 vs. -0.75 +/- 0.28; P < .0001). Furthermore, hip BMD was also significantly reduced in the noncompliant group (z = -0.95 +/- .40). Comparison of BMD values to normative male standards gave z-score reductions (z = -1.81 +/- 0.36) greater than those observed with female standards. Because of the high prevalence of tall stature in this study sample, we calculated bone mineral apparent density, a variable that adjusts for differences in bone size

  20. The Human 343delT HSPB5 Chaperone Associated with Early-onset Skeletal Myopathy Causes Defects in Protein Solubility*

    PubMed Central

    Mitzelfelt, Katie A.; Limphong, Pattraranee; Choi, Melinda J.; Kondrat, Frances D. L.; Lai, Shuping; Kolander, Kurt D.; Kwok, Wai-Meng; Dai, Qiang; Grzybowski, Michael N.; Zhang, Huali; Taylor, Graydon M.; Lui, Qiang; Thao, Mai T.; Hudson, Judith A.; Barresi, Rita; Bushby, Kate; Jungbluth, Heinz; Wraige, Elizabeth; Geurts, Aron M.; Benesch, Justin L. P.; Riedel, Michael; Christians, Elisabeth S.; Minella, Alex C.; Benjamin, Ivor J.

    2016-01-01

    Mutations of HSPB5 (also known as CRYAB or αB-crystallin), a bona fide heat shock protein and molecular chaperone encoded by the HSPB5 (crystallin, alpha B) gene, are linked to multisystem disorders featuring variable combinations of cataracts, cardiomyopathy, and skeletal myopathy. This study aimed to investigate the pathological mechanisms involved in an early-onset myofibrillar myopathy manifesting in a child harboring a homozygous recessive mutation in HSPB5, 343delT. To study HSPB5 343delT protein dynamics, we utilize model cell culture systems including induced pluripotent stem cells derived from the 343delT patient (343delT/343delT) along with isogenic, heterozygous, gene-corrected control cells (WT KI/343delT) and BHK21 cells, a cell line lacking endogenous HSPB5 expression. 343delT/343delT and WT KI/343delT-induced pluripotent stem cell-derived skeletal myotubes and cardiomyocytes did not express detectable levels of 343delT protein, contributable to the extreme insolubility of the mutant protein. Overexpression of HSPB5 343delT resulted in insoluble mutant protein aggregates and induction of a cellular stress response. Co-expression of 343delT with WT prevented visible aggregation of 343delT and improved its solubility. Additionally, in vitro refolding of 343delT in the presence of WT rescued its solubility. We demonstrate an interaction between WT and 343delT both in vitro and within cells. These data support a loss-of-function model for the myopathy observed in the patient because the insoluble mutant would be unavailable to perform normal functions of HSPB5, although additional gain-of-function effects of the mutant protein cannot be excluded. Additionally, our data highlight the solubilization of 343delT by WT, concordant with the recessive inheritance of the disease and absence of symptoms in carrier individuals. PMID:27226619

  1. Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3.

    PubMed Central

    Nabhani, Thomas; Zhu, Xinsheng; Simeoni, Ilenia; Sorrentino, Vincenzo; Valdivia, Héctor H; García, Jesús

    2002-01-01

    Most adult mammalian skeletal muscles contain only one isoform of ryanodine receptor (RyR1), whereas neonatal muscles contain two isoforms (RyR1 and RyR3). Membrane depolarization fails to evoke calcium release in muscle cells lacking RyR1, demonstrating an essential role for this isoform in excitation-contraction coupling. In contrast, the role of RyR3 is unknown. We studied the participation of RyR3 in calcium release in wild type (containing both RyR1 and RyR3 isoforms) and RyR3-/- (containing only RyR1) myotubes in the presence or absence of imperatoxin A (IpTxa), a high-affinity agonist of ryanodine receptors. IpTxa significantly increased the amplitude and the rate of release only in wild-type myotubes. Calcium currents, recorded simultaneously with the transients, were not altered with IpTxa treatment. [(3)H]ryanodine binding to RyR1 or RyR3 was significantly increased in the presence of IpTxa. Additionally, IpTxa modified the gating and conductance level of single RyR1 or RyR3 channels when studied in lipid bilayers. Our data show that IpTxa can interact with both RyRs and that RyR3 is functional in myotubes and it can amplify the calcium release signal initiated by RyR1, perhaps through a calcium-induced mechanism. In addition, our data indicate that when RyR3-/- myotubes are voltage-clamped, the effect of IpTxa is not detected because RyR1s are under the control of the dihydropyridine receptor. PMID:11867448

  2. Early literacy and early numeracy: the value of including early literacy skills in the prediction of numeracy development.

    PubMed

    Purpura, David J; Hume, Laura E; Sims, Darcey M; Lonigan, Christopher J

    2011-12-01

    The purpose of this study was to examine whether early literacy skills uniquely predict early numeracy skills development. During the first year of the study, 69 3- to 5-year-old preschoolers were assessed on the Preschool Early Numeracy Skills (PENS) test and the Test of Preschool Early Literacy Skills (TOPEL). Participants were assessed again a year later on the PENS test and on the Applied Problems and Calculation subtests of the Woodcock-Johnson III Tests of Achievement. Three mixed effect regressions were conducted using Time 2 PENS, Applied Problems, and Calculation as the dependent variables. Print Knowledge and Vocabulary accounted for unique variance in the prediction of Time 2 numeracy scores. Phonological Awareness did not uniquely predict any of the mathematics domains. The findings of this study identify an important link between early literacy and early numeracy development. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Conceptions of and Early Childhood Educators' Experiences in Early Childhood Professional Development Programs: A Qualitative Metasynthesis

    ERIC Educational Resources Information Center

    Brown, Christopher P.; Englehardt, Joanna

    2016-01-01

    Policy makers and early childhood stakeholders across the United States continue to seek policy solutions that improve early educators' instruction of young children. A primary vehicle for attaining this goal is professional development. This has led to an influx of empirical studies that seek to develop a set of best practices for professional…

  4. Constructivist Early Education for Moral Development.

    ERIC Educational Resources Information Center

    DeVries, Rheta; Hildebrandt, Carolyn; Zan, Betty

    2000-01-01

    Examines role that constructivist teachers play in fostering moral development in young children. Traces development of perspective taking, autonomy, and self- regulation, and examines effects of different teaching and parenting practices on children's character development. Provides suggestions for teachers to promote optimal moral development by…

  5. Dynamic changes in genes related to glucose uptake and utilization during pig skeletal and cardiac muscle development.

    PubMed

    Guo, Yanqin; Jin, Long; Wang, Fengjiao; He, Mengnan; Liu, Rui; Li, Mingzhou; Shuai, Surong

    2014-01-01

    Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.

  6. Redefining Leadership: Lessons from an Early Education Leadership Development Initiative

    ERIC Educational Resources Information Center

    Douglass, Anne

    2018-01-01

    This study examined how experienced early educators developed as change agents in the context of a leadership development program. Unlike in many other professions, experienced early educators lack opportunities to grow throughout their careers and access the supports they need to lead change in their classrooms, organizations, the profession, and…

  7. Promoting Professional Development for Physical Therapists in Early Intervention

    ERIC Educational Resources Information Center

    Catalino, Tricia; Chiarello, Lisa A.; Long, Toby; Weaver, Priscilla

    2015-01-01

    Early intervention service providers are expected to form cohesive teams to build the capacity of a family to promote their child's development. Given the differences in personnel preparation across disciplines of service providers, the Early Childhood Personnel Center is creating integrated and comprehensive professional development models for…

  8. Investments for Future: Early Childhood Development and Education

    ERIC Educational Resources Information Center

    Kartal, Hulya

    2007-01-01

    Investments relevant to the first years of life are directly connected to the future of societies. It can be argued that investments for early childhood development and education are one of the best ways of decreasing social inequality caused by adverse environments which hinder development in early ages and tackling poverty by reducing the rate…

  9. Assessing Home Environment for Early Child Development in Pakistan

    ERIC Educational Resources Information Center

    Nadeem, Sanober; Rafique, Ghazala; Khowaja, Liaquat; Yameen, Anjum

    2014-01-01

    Family environment plays a very important role in early child development and the availability of stimulating material in the early years of a child's life is crucial for optimising development. The Home Observation for Measurement of the Environment (HOME) inventory is one of the most widely used measures to assess the quality and quantity of…

  10. Early Communication Development and Intervention for Children with Autism

    ERIC Educational Resources Information Center

    Landa, Rebecca

    2007-01-01

    Autism is a neurodevelopmental disorder defined by impairments in social and communication development, accompanied by stereotyped patterns of behavior and interest. The focus of this paper is on the early development of communication in autism, and early intervention for impairments in communication associated with this disorder. An overview of…

  11. Immunology Guides Skeletal Muscle Regeneration.

    PubMed

    Sass, F Andrea; Fuchs, Michael; Pumberger, Matthias; Geissler, Sven; Duda, Georg N; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-03-13

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  12. Immunology Guides Skeletal Muscle Regeneration

    PubMed Central

    Sass, F. Andrea; Pumberger, Matthias; Geissler, Sven; Duda, Georg N.; Perka, Carsten; Schmidt-Bleek, Katharina

    2018-01-01

    Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues. PMID:29534011

  13. Gestational and Early Postnatal Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants: General Toxicity and Skeletal Variations.

    PubMed

    Tung, Emily W Y; Yan, Han; Lefèvre, Pavine L C; Berger, Robert G; Rawn, Dorothea F K; Gaertner, Dean W; Kawata, Alice; Rigden, Marc; Robaire, Bernard; Hales, Barbara F; Wade, Michael G

    2016-06-01

    Brominated flame retardants (BFRs) are stable environmental contaminants known to exert endocrine-disrupting effects. Developmental exposure to polybrominated diphenyl ethers (PBDEs) is correlated with impaired thyroid hormone signaling, as well as estrogenic and anti-androgenic effects. As previous studies have focused on a single congener or technical mixture, the purpose of the current study was to examine the effects of gestational and early postnatal exposure to an environmentally relevant mixture of BFRs designed to reflect house dust levels of PBDEs and hexabromocyclododecane on postnatal developmental outcomes. Pregnant Sprague-Dawley rats were exposed to the PBDE mixture from preconception to weaning (PND 21) through the diet containing 0, 0.75, 250, and 750 mg mixture/kg diet. BFR exposure induced transient reductions in body weight at PND 35 in male and from PND 30-45 in female offspring (250 and 750 mg/kg). Liver weights (PND 21) and xenobiotic metabolizing enzyme activities (PND 21 and 46) were increased in both male and female offspring exposed to 250 and 750 mg/kg diets. Furthermore, serum T4 levels were reduced at PND 21 in both,male and female offspring (250 and 750 mg/kg). At PND 21, Serum alkaline phosphatase (ALP) was decreased in males exposed to 750 mg/kg dietat, and females exposed to 250 and 750 mg/kg diets. At PND 46 ALP was significantly elevated in males (250 and 750 mg/kg). Variations in the cervical vertebrae and phalanges were observed in pups at PND 4 (250 and 750 mg/kg). Therefore, BFR exposure during gestation through to weaning alters developmental programming in the offspring. The persistence of BFRs in the environment remains a cause for concern with regards to developmental toxicity. © 2016 Wiley Periodicals, Inc.

  14. Comparative transcriptomics of early dipteran development

    PubMed Central

    2013-01-01

    Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies). PMID:23432914

  15. History and early development of INCAP.

    PubMed

    Scrimshaw, Nevin S

    2010-02-01

    Nevin Scrimshaw was the founding Director of the Institute of Nutrition of Central America and Panama (INCAP), serving as Director from 1949 to 1961. In this article, he reviews the history of the founding of INCAP, including the role of the Rockefeller and Kellogg Foundations, the Central American governments, and the Pan American Health Organization. The objectives pursued by INCAP in its early years were to assess the nutrition and related health problems of Central America, to carry out research to find practical solutions to these problems, and to provide technical assistance to its member countries to implement solutions. INCAP pursued a strategy of selecting promising Central Americans for advanced education and training in the US who assumed positions of leadership on their return. After this early phase, talented non-Central Americans of diverse origins were brought to INCAP, as well as additional researchers from the region. Growth of INCAP, as reflected in its annual budget and in the physical plant, was rapid and this was accompanied by high scientific productivity. Several field studies were launched that contributed impetus and design elements for the Oriente Longitudinal Study, which is the focus of this supplement.

  16. Developments in early intervention for psychosis in Hong Kong.

    PubMed

    Wong, G H Y; Hui, C L M; Wong, D Y; Tang, J Y M; Chang, W C; Chan, S K W; Lee, E H M; Xu, J Q; Lin, J J X; Lai, D C; Tam, W; Kok, J; Chung, D W S; Hung, S F; Chen, E Y H

    2012-09-01

    The year 2011 marked the 10-year milestone of early intervention for psychosis in Hong Kong. Since 2001, the landscape of early psychosis services has changed markedly in Hong Kong. Substantial progress has been made in the areas of early intervention service implementation, knowledge generation, and public awareness promotion. Favourable outcomes attributable to the early intervention service are supported by solid evidence from local clinical research studies; early intervention service users showed improved functioning, ameliorated symptoms, and decreased hospitalisation and suicide rates. Continued development of early intervention in Hong Kong over the decade includes the introduction and maturation of several key platforms, such as the Hospital Authority Early Assessment Service for Young People with Psychosis programme, the Psychosis Studies and Intervention Unit by the University of Hong Kong, the Hong Kong Early Psychosis Intervention Society, the Jockey Club Early Psychosis Project, and the postgraduate Psychological Medicine (Psychosis Studies) programme. In this paper, we reviewed some of the major milestones in local service development with reference to features of the Hong Kong mental health system. We describe chronologically the implementation and consolidation of public early intervention services as well as recent progresses in public awareness work that are tied in with knowledge generation and transfer, and outline the prospects for early intervention in the next decade and those that follow.

  17. Sex Role Development in Early Adolescence.

    ERIC Educational Resources Information Center

    Wittig, Michele Andrisin

    1983-01-01

    Research involving adolescent identification with and development of sex roles is reviewed in the areas of cognitive skills and personality traits, theories of sex role development, and minority group adolescent sex role development. Emerging issues and educational implications in these areas are discussed. (CJ)

  18. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    PubMed Central

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  19. Early Numeracy Assessment: The Development of the Preschool Early Numeracy Scales

    ERIC Educational Resources Information Center

    Purpura, David J.; Lonigan, Christopher J.

    2015-01-01

    Research Findings: The focus of this study was to construct and validate 12 brief early numeracy assessment tasks that measure the skills and concepts identified as key to early mathematics development by the National Council of Teachers of Mathematics (2006) and the National Mathematics Advisory Panel (2008)-as well as critical developmental…

  20. Parents Resourcing Children's Early Development and Learning

    ERIC Educational Resources Information Center

    Nichols, Sue; Nixon, Helen; Pudney, Valerie; Jurvansuu, Sari

    2009-01-01

    Parents deal with a complex web of choices when seeking and using knowledge and resources related to their young children's literacy development. Information concerning children's learning and development comes in many forms and is produced by an increasingly diverse range of players including governments, non-government organizations and…

  1. Jump starting skeletal health: a 4-year longitudinal study assessing the effects of jumping on skeletal development in pre and circum pubertal children.

    PubMed

    Gunter, Katherine; Baxter-Jones, Adam D G; Mirwald, Robert L; Almstedt, Hawley; Fuller, Arwen; Durski, Shantel; Snow, Christine

    2008-04-01

    Evidence suggests bone mineral increases attributable to exercise training prior to puberty may confer a significant advantage into adulthood. However, there is a dearth of supportive prospective longitudinal data. The purpose of this study was to assess bone mineral content (BMC) of the whole body (WB), total hip (TH), femoral neck (FN) and lumbar spine (LS) over four years in pre-pubertal boys and girls following a 7-month jumping intervention. The study population included 107 girls and 98 boys aged 8.6+/-0.88 years at baseline. Participating schools were randomly assigned as either intervention or control school. Children at the intervention school (n=101) participated in a jumping intervention embedded within the standard PE curriculum. The control school children (n=104) had similar exposure to PE without the jumping intervention. BMC was assessed by DXA at baseline, at 7-month post intervention, and annually thereafter for three years totaling 5 measurement opportunities. Multi-level random effects models were constructed and used to predict change from study entry in BMC parameters at each measurement occasion. A significant intervention effect was found at all bone sites. The effect was greatest immediately following the intervention (at 7 months) but still significant three years after the intervention. At 7 months, intervention participants had BMC values that were 7.9%, 8.4%, 7.7% and 7.3% greater than the controls at the LS, TH, FN and WB, respectively (p<0.05), when the confounders of age, maturity and tissue mass were controlled. Three years after the intervention had concluded the intervention group had 2.3%, 3.2%, 4.4% and 2.9% greater BMC than controls at the LS, TH, FN and WB respectively (p<0.05), when the confounders of age, maturity and tissue mass were controlled. This provides evidence that short-term high impact exercise in pre-puberty has a persistent effect over and above the effects of normal growth and development. If the benefits are

  2. Early psychosis workforce development: Core competencies for mental health professionals working in the early psychosis field.

    PubMed

    Osman, Helen; Jorm, Anthony F; Killackey, Eoin; Francey, Shona; Mulcahy, Dianne

    2017-08-09

    The aim of this study was to identify the core competencies required of mental health professionals working in the early psychosis field, which could function as an evidence-based tool to support the early psychosis workforce and in turn assist early psychosis service implementation and strengthen early psychosis model fidelity. The Delphi method was used to establish expert consensus on the core competencies. In the first stage, a systematic literature search was conducted to generate competency items. In the second stage, a panel consisting of expert early psychosis clinicians from around the world was formed. Panel members then rated each of the competency items on how essential they are to the clinical practice of all early psychosis clinicians. In total, 1023 pieces of literature including textbooks, journal articles and grey literature were reviewed. A final 542 competency items were identified for inclusion in the questionnaire. A total of 63 early psychosis experts participated in 3 rating rounds. Of the 542 competency items, 242 were endorsed as the required core competencies. There were 29 competency items that were endorsed by 62 or more experts, and these may be considered the foundational competencies for early psychosis practice. The study generated a set of core competencies that provide a common language for early psychosis clinicians across professional disciplines and country of practice, and potentially are a useful professional resource to support early psychosis workforce development and service reform. © 2017 John Wiley & Sons Australia, Ltd.

  3. Early development of fern gametophytes in microgravity

    NASA Technical Reports Server (NTRS)

    Roux, Stanley J.; Chatterjee, Ani; Hillier, Sheila; Cannon, Tom

    2003-01-01

    Dormant spores of the fern Ceratopteris richardii were flown on Shuttle mission STS-93 to evaluate the effects of micro-g on their development and on their pattern of gene expression. Prior to flight the spores were sterilized and sown into one of two environments: (1) Microscope slides in a video-microscopy module; and (2) Petri dishes. All spores were then stored in darkness until use. Spore germination was initiated on orbit after exposure to light. For the spores on microscope slides, cell level changes were recorded through the clear spore coat of the spores by video microscopy. After their exposure to light, spores in petri dishes were frozen in orbit at four different time points during which on earth gravity fixes the polarity of their development. Spores were then stored frozen in Biological Research in Canister units until recovery on earth. The RNAs from these cells and from 1-g control cells were extracted and analyzed on earth after flight to assay changes in gene expression. Video microscopy results revealed that the germinated spores developed normally in microgravity, although the polarity of their development, which is guided by gravity on earth, was random in space. Differential Display-PCR analyses of RNA extracted from space-flown cells showed that there was about a 5% change in the pattern of gene expression between cells developing in micro-g compared to those developing on earth. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  4. Cartilage oligomeric matrix protein-deficient mice have normal skeletal development.

    PubMed

    Svensson, Liz; Aszódi, Attila; Heinegård, Dick; Hunziker, Ernst B; Reinholt, Finn P; Fässler, Reinhard; Oldberg, Ake

    2002-06-01

    Cartilage oligomeric matrix protein (COMP) belongs to the thrombospondin family and is a homopentamer primarily expressed in cartilage. Mutations in the COMP gene result in the autosomal dominant chondrodysplasias pseudoachondroplasia (PSACH) and some types of multiple epiphyseal dysplasia (MED), which are characterized by mild to severe short-limb dwarfism and early-onset osteoarthritis. We have generated COMP-null mice to study the role of COMP in vivo. These mice show no anatomical, histological, or ultrastructural abnormalities and show none of the clinical signs of PSACH or MED. Northern blot analysis and immunohistochemical analysis of cartilage indicate that the lack of COMP is not compensated for by any other member of the thrombospondin family. The results also show that the phenotype in PSACH/MED cartilage disorders is not caused by the reduced amount of COMP.

  5. Chaos, Poverty, and Parenting: Predictors of Early Language Development

    ERIC Educational Resources Information Center

    Vernon-Feagans, Lynne; Garrett-Peters, Patricia; Willoughby, Michael; Mills-Koonce, Roger

    2012-01-01

    Studies have shown that distal family risk factors like poverty and maternal education are strongly related to children's early language development. Yet, few studies have examined these risk factors in combination with more proximal day-to-day experiences of children that might be critical to understanding variation in early language. Young…

  6. Childhood Immunization: A Key Component of Early Childhood Development

    ERIC Educational Resources Information Center

    Messonnier, Nancy

    2017-01-01

    Physical health is a key component of early childhood development and school readiness. By keeping children healthy and decreasing the chances of disease outbreaks, immunizations help early childhood programs create a safe environment for children. While overall vaccination rates are high nationally for most vaccines routinely recommended for…

  7. Online Professional Development: Choices for Early Childhood Educators

    ERIC Educational Resources Information Center

    Olsen, Heather; Donaldson, Ana J.; Hudson, Susan D.

    2010-01-01

    Early childhood educators are responsible for providing young children with the best possible early care and education. Research on child care workers' education has shown that professional preparation makes a significant impact on children's cognitive and emotional development (National Association for the Education of Young Children [NAEYC],…

  8. Alberta Learning: Early Development Instrument Pilot Project Evaluation.

    ERIC Educational Resources Information Center

    Meaney, Wanda; Harris-Lorenze, Elayne

    The Early Development Instrument (EDI) was designed by McMaster University to measure the outcomes of childrens early years as they influence their readiness to learn at school. The EDI was piloted in several Canadian cities in recent years through two national initiatives. Building on these initiatives, Alberta Learning piloted the EDI as a…

  9. Activities for Career Development in Early Childhood Curriculum.

    ERIC Educational Resources Information Center

    Yawkey, Thomas Daniels; Aronin, Eugene L.

    The book presents career education activities and approaches for use by teachers, administrators, counselors, and students involved in early childhood education (ages three through eight). Part One stresses the importance of and rationale for career development in the early childhood curriculum. Research support for the approach to career…

  10. Family Strategies to Support and Develop Resilience in Early Childhood

    ERIC Educational Resources Information Center

    Taket, A. R.; Nolan, A.; Stagnitti, K.

    2014-01-01

    Early childhood is an important time for the development of resilience. A recently completed study has followed three cohorts of resilient children and young people living in disadvantaged areas in Victoria, Australia, through different transitions in their educational careers. This paper focuses on the early childhood cohort, where we have…

  11. Developing Prosocial Behaviors in Early Adolescence with Reactive Aggression

    ERIC Educational Resources Information Center

    Fung, Annis L. C.

    2008-01-01

    Despite the alarming rise of early adolescence aggression in Hong Kong, it is the pioneer evidence-based outcome study on Anger Coping Training (ACT) program for early adolescence with reactive aggression to develop their prosocial behaviors. This research program involved experimental and control groups with pre- and post-comparison using a …

  12. Early Speech Motor Development: Cognitive and Linguistic Considerations

    ERIC Educational Resources Information Center

    Nip, Ignatius S. B.; Green, Jordan R.; Marx, David B.

    2009-01-01

    This longitudinal investigation examines developmental changes in orofacial movements occurring during the early stages of communication development. The goals were to identify developmental trends in early speech motor performance and to determine how these trends differ across orofacial behaviors thought to vary in cognitive and linguistic…

  13. ECR-MAPK regulation in liver early development.

    PubMed

    Zhao, Xiu-Ju; Zhuo, Hexian

    2014-01-01

    Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  14. Reading Development Subtypes and Their Early Characteristics

    ERIC Educational Resources Information Center

    Torppa, Minna; Tolvanen, Asko; Poikkeus, Anna-Maija; Eklund, Kenneth; Lerkkanen, Marja-Kristiina; Leskinen, Esko; Lyytinen, Heikki

    2007-01-01

    The present findings are drawn from the Jyvaskyla Longitudinal Study of Dyslexia (JLD), in which approximately 100 children with familial risk of dyslexia and 100 control children have been followed from birth. In this paper we report data on the reading development of the JLD children and their classmates, a total of 1,750 children from four…

  15. Developing an Engineering Identity in Early Childhood

    ERIC Educational Resources Information Center

    Pantoya, Michelle L.; Aguirre-Munoz, Zenaida; Hunt, Emily M.

    2015-01-01

    This project describes a strategy to introduce young children to engineering in a way that develops their engineering identity. The targeted age group is 3-7 year old students because they rarely experience purposeful engineering instruction. The curriculum was designed around an engineering storybook and included interactive academic discussions…

  16. Early developments in solar cooling equipment

    NASA Technical Reports Server (NTRS)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  17. School Building in Early Development. Part 2.

    ERIC Educational Resources Information Center

    Dijkgraaf, C.; Giertz, L. M.

    1975-01-01

    Development is characterized by urbanization. New settlements grow either as enlargements of existing ones or as new population concentrations. Three periods may be distinguished in the growth of a settlement: (1) the wild period of first settling, (2) the consolidation period, and (3) the stabilized society. The number of school-aged children per…

  18. Economic Deprivation and Early Childhood Development.

    ERIC Educational Resources Information Center

    Duncan, Greg J.; And Others

    1994-01-01

    Examined the relationship between poverty and children's developmental outcomes, the effects of the timing and duration of poverty, and the effects of poverty at the family and neighborhood level, analyzing data from two longitudinal surveys. Found that poverty status was strongly related to low levels of cognitive development, even after…

  19. The Early Development of Programmable Machinery.

    ERIC Educational Resources Information Center

    Collins, Martin D.

    1985-01-01

    Programmable equipment innovations, precursors of today's technology, are examined, including the development of the binary code and feedback control systems, such as temperature sensing devices, interchangeable parts, punched cards carrying instructions, continuous flow oil refining process, assembly lines for mass production, and the…

  20. Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis.

    PubMed

    Wang, Guqi; Burczynski, Frank J; Hasinoff, Brian B; Zhang, Kaidong; Lu, Qilong; Anderson, Judy E

    2009-01-01

    Nitric oxide (NO) mediates activation of satellite precursor cells to enter the cell cycle. This provides new precursor cells for skeletal muscle growth and muscle repair from injury or disease. Targeting a new drug that specifically delivers NO to muscle has the potential to promote normal function and treat neuromuscular disease, and would also help to avoid side effects of NO from other treatment modalities. In this research, we examined the effectiveness of the NO donor, iosorbide dinitrate (ISDN), and a muscle relaxant, methocarbamol, in promoting satellite cell activation assayed by muscle cell DNA synthesis in normal adult mice. The work led to the development of guaifenesin dinitrate (GDN) as a new NO donor for delivering nitric oxide to muscle. The results revealed that there was a strong increase in muscle satellite cell activation and proliferation, demonstrated by a significant 38% rise in DNA synthesis after a single transdermal treatment with the new compound for 24 h. Western blot and immunohistochemistry analyses showed that the markers of satellite cell myogenesis, expression of myf5, myogenin, and follistatin, were increased after 24 h oral administration of the compound in adult mice. This research extends our understanding of the outcomes of NO-based treatments aimed at promoting muscle regeneration in normal tissue. The potential use of such treatment for conditions such as muscle atrophy in disuse and aging, and for the promotion of muscle tissue repair as required after injury or in neuromuscular diseases such as muscular dystrophy, is highlighted.

  1. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

    PubMed

    Endo, Toyoshi; Kobayashi, Tetsuro

    2013-09-01

    Hypothyroidism in the young leads to irreversible growth failure. hyt/hyt Mice have a nonfunctional TSH receptor (TSHR) and are severely hypothyroid, but growth retardation was not observed in adult mice. We found that epiphysial cartilage as well as cultured chondrocytes expressed functional TSHR at levels comparable to that seen in the thyroid, and that addition of TSH to cultured chondrocytes suppressed expression of chondrocyte differentiation marker genes such as Sox-9 and type IIa collagen. Next, we compared the long bone phenotypes of two distinct mouse models of hypothyroidism: thyroidectomized (THYx) mice and hyt/hyt mice. Although both THYx and hyt/hyt mice were severely hypothyroid and had similar serum Ca(2+) and growth hormone levels, the tibia was shorter and the proliferating and hypertrophic zones in the growth plate was significantly narrower in THYx mice than in hyt/hyt mice. Supplementation of hyt/hyt mice thyroid hormone resulted in a wider growth plate compared with that of wild-type mice. Expressions of chondrocyte differentiation marker genes Sox-9 and type IIa collagen in growth plate from THYx mice were 52 and 60% lower than those of hyt/hyt mice, respectively. High serum TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

  2. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish

    SciT

    Yang, Jie; Zeng, Zhen; Wei, Juncheng

    2013-04-05

    Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responsesmore » and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.« less

  3. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    PubMed

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.

  4. Resource Prospector (RP) - Early Prototyping and Development

    NASA Technical Reports Server (NTRS)

    Andrews, D.; Colaprete, A.; Quinn, J.; Bluethmann, B.; Trimble, J.

    2015-01-01

    The Resource Prospector (RP) is an In-Situ Resource Utilization (ISRU) technology demonstration mission under study by the NASA Human Exploration and Operations Mission Directorate's (HEOMD) Advanced Exploration Systems (AES) Division. The mission, currently planned to launch in 2020, will demonstrate extraction of oxygen from lunar regolith to validate ISRU capability. The mission will address key Strategic Knowledge Gaps (SKGs) for robotic and human exploration to the Moon, Near Earth Asteroids (NEAs), and ultimately Mars, as well as meet the strategic goals of the Global Exploration Roadmap (GER), offered by the International Space Exploration Coordination Group (ISECG). In this roadmap, the use of local resources is specifically addressed relating to human exploration. RP will provide knowledge to inform the selection of future mission destinations, support the development of exploration systems, and reduce the risk associated with human exploration. Expanding human presence beyond low-Earth orbit to asteroids and Mars will require the maximum possible use of local materials, so-called in-situ resources. The moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. Lunar regolith contains useful resources such as oxygen, water, silicon, and light metals, like aluminum and titanium. Oxygen can be separated from the regolith for life support (breathable air), or used to create rocket propellant (oxidizer). Regolith can be used to protect against radiation exposure, be processed into solar cells, or used to manufacture construction materials such as bricks and glass. RP will characterize the constituents and distribution of water and other volatiles at the poles of the Moon, enabling innovative uses of local resources, in addition to validating ISRU capabilities. This capability, as well as a deeper understanding of regolith, will be valuable in the

  5. Contrasting expression of membrane metalloproteinases, MT1-MMP and MT3-MMP, suggests distinct functions in skeletal development.

    PubMed

    Yang, Maozhou; Zhang, Bingbing; Zhang, Liang; Gibson, Gary

    2008-07-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.

  6. Early intestinal growth and development in poultry.

    PubMed

    Lilburn, M S; Loeffler, S

    2015-07-01

    While there are many accepted "facts" within the field of poultry science that are in truth still open for discussion, there is little debate with respect to the tremendous genetic progress that has been made with commercial broilers and turkeys (Havenstein et al., 2003, 2007). When one considers the changes in carcass development in poultry meat strains, these genetic "improvements" have not always been accompanied by correlated changes in other physiological systems and this can predispose some birds to developmental anomalies (i.e. ascites; Pavlidis et al., 2007; Wideman et al., 2013). Over the last decade, there has been increased interest in intestinal growth/health as poultry nutritionists have attempted to adopt new approaches to deal with the broader changes in the overall nutrition landscape. This landscape includes not only the aforementioned genetic changes but also a raft of governmental policies that have focused attention on the environment (phosphorus and nitrogen excretion), consumer pressure on the use of antibiotics, and renewable biofuels with its consequent effects on ingredient costs. Intestinal morphology has become a common research tool for assessing nutritional effects on the intestine but it is only one metric among many that can be used and histological results can often be interpreted in a variety of ways. This study will address the broader body of research on intestinal growth and development in commercial poultry and will attempt to integrate the topics of the intestinal: microbial interface and the role of the intestine as an immune tissue under the broad umbrella of intestinal physiology. © 2015 Poultry Science Association Inc.

  7. Advancing Early Childhood Development: from Science to Scale 1

    PubMed Central

    Black, Maureen M; Walker, Susan P; Fernald, Lia C H; Andersen, Christopher T; DiGirolamo, Ann M; Lu, Chunling; McCoy, Dana C; Fink, Günther; Shawar, Yusra R; Shiffman, Prof Jeremy; Devercelli, Amanda E; Wodon, Quentin T; Vargas-Barón, Emily; Grantham-McGregor, Sally

    2018-01-01

    Early childhood development programmes vary in coordination and quality, with inadequate and inequitable access, especially for children younger than 3 years. New estimates, based on proxy measures of stunting and poverty, indicate that 250 million children (43%) younger than 5 years in low-income and middle-income countries are at risk of not reaching their developmental potential. There is therefore an urgent need to increase multisectoral coverage of quality programming that incorporates health, nutrition, security and safety, responsive caregiving, and early learning. Equitable early childhood policies and programmes are crucial for meeting Sustainable Development Goals, and for children to develop the intellectual skills, creativity, and wellbeing required to become healthy and productive adults. In this paper, the first in a three part Series on early childhood development, we examine recent scientific progress and global commitments to early childhood development. Research, programmes, and policies have advanced substantially since 2000, with new neuroscientific evidence linking early adversity and nurturing care with brain development and function throughout the life course. PMID:27717614

  8. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  9. 45 CFR 1304.21 - Education and early childhood development.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as art, music, movement, and dialogue; (iii) Promoting interaction and language use among children... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... early childhood development. (a) Child development and education approach for all children. (1) In order...

  10. 45 CFR 1304.21 - Education and early childhood development.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as art, music, movement, and dialogue; (iii) Promoting interaction and language use among children... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... early childhood development. (a) Child development and education approach for all children. (1) In order...

  11. 45 CFR 1304.21 - Education and early childhood development.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as art, music, movement, and dialogue; (iii) Promoting interaction and language use among children... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... early childhood development. (a) Child development and education approach for all children. (1) In order...

  12. 45 CFR 1304.21 - Education and early childhood development.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as art, music, movement, and dialogue; (iii) Promoting interaction and language use among children... DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND... early childhood development. (a) Child development and education approach for all children. (1) In order...

  13. Gne depletion during zebrafish development impairs skeletal muscle structure and function.

    PubMed

    Daya, Alon; Vatine, Gad David; Becker-Cohen, Michal; Tal-Goldberg, Tzukit; Friedmann, Adam; Gothilf, Yoav; Du, Shao Jun; Mitrani-Rosenbaum, Stella

    2014-07-01

    GNE Myopathy is a rare recessively inherited neuromuscular disorder caused by mutations in the GNE gene, which codes for the key enzyme in the metabolic pathway of sialic acid synthesis. The process by which GNE mutations lead to myopathy is not well understood. By in situ hybridization and gne promoter-driven fluorescent transgenic fish generation, we have characterized the spatiotemporal expression pattern of the zebrafish gne gene and have shown that it is highly conserved compared with the human ortholog. We also show the deposition of maternal gne mRNA and maternal GNE protein at the earliest embryonic stage, emphasizing the critical role of gne in embryonic development. Injection of morpholino (MO)-modified antisense oligonucleotides specifically designed to knockdown gne, into one-cell embryos lead to a variety of phenotypic severity. Characterization of the gne knockdown morphants showed a significantly reduced locomotor activity as well as distorted muscle integrity, including a reduction in the number of muscle myofibers, even in mild or intermediate phenotype morphants. These findings were further confirmed by electron microscopy studies, where large gaps between sarcolemmas were visualized, although normal sarcomeric structures were maintained. These results demonstrate a critical novel role for gne in embryonic development and particularly in myofiber development, muscle integrity and activity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Adipose tissue development during early life: novel insights into energy balance from small and large mammals.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2012-08-01

    Since the rediscovery of brown adipose tissue (BAT) in adult human subjects in 2007, there has been a dramatic resurgence in research interest in its role in heat production and energy balance. This has coincided with a reassessment of the origins of BAT and the suggestion that brown preadipocytes could share a common lineage with skeletal myoblasts. In precocial newborns, such as sheep, the onset of non-shivering thermogenesis through activation of the BAT-specific uncoupling protein 1 (UCP1) is essential for effective adaptation to the cold exposure of the extra-uterine environment. This is mediated by a combination of endocrine adaptations which accompany normal parturition at birth and further endocrine stimulation from the mother's milk. Three distinct adipose depots have been identified in all species studied to date. These contain either primarily white, primarily brown or a mix of brown and white adipocytes. The latter tissue type is present, at least, in the fetus and, thereafter, appears to take on the characteristics of white adipose tissue during postnatal development. It is becoming apparent that a range of organ-specific mechanisms can promote UCP1 expression. They include the liver, heart and skeletal muscle, and involve unique endocrine systems that are stimulated by cold exposure and/or exercise. These multiple pathways that promote BAT function vary with age and between species that may determine the potential to be manipulated in early life. Such interventions could modify, or reverse, the normal ontogenic pathway by which BAT disappears after birth, thereby facilitating BAT thermogenesis through the life cycle.

  15. Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity.

    PubMed

    Thrush, A Brianne; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen

    2013-10-01

    Understanding the metabolic factors that contribute to obesity development and weight loss success are critical for combating obesity and obesity-related disorders. This review provides an overview of energy metabolism with a particular focus on mitochondrial function in health and in obesity. Mitochondrial proton leak contributes significantly to whole body energy expenditure and the potential role of energy uncoupling in weight loss success is discussed. We provide evidence to support the hypothesis that differences in energy efficiency are important regulators of body weight and weight loss success. © 2013 FEBS.

  16. Early development of an enterprise health data warehouse.

    PubMed

    Househ, Mowafa Said; Al-Tuwaijri, Majid

    2011-01-01

    The purpose of this study is to describe early development challenges of an enterprise data warehouse within a Saudi Arabian academic healthcare facility. An action case research method was selected for this paper. The study took place between December 2009 and February 2010. Data collection included interviews, meeting observations, and meeting minutes. Early development challenges centered on the development of clear contracts with vendors; development of a clear project plan; a need to fast-track bureaucracy; and educate clinicians and staff about the project; and lack of data standardization.

  17. Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle.

    PubMed Central

    O'Brien, R A; Ostberg, A J; Vrbová, G

    1978-01-01

    1. The mechanism responsible for the elimination of polyneuronal innervation in developing rat soleus muscles was studied electrophysiologically and histologically. 2. Initially all the axons contacting a single end-plate have simple bulbous terminals. As elimination proceeds one axon develops terminal branches while the other terminals remain bulbous and may be seen in contact with, or a short distance away from, the end-plate. It is suggested that the branched terminal remains in contact with the muscle fibre while the other terminals withdraw. 3. At a time when polyneuronal innervation can no longer be detected electrophysiologically, the histological technique still shows the presence of end-plates contacted by more than one nerve terminal. 4. The effect of activity on the disappearance of polyneuronal innervation was examined. Activity was increased by electrical stimulation of the right sciatic nerve. This procedure also produced reflex activity in the contralateral limb. In both cases polyneuronal innervation was eliminated more rapidly in the active muscles. 5. The finding that proteolytic enzymes are released from muscles treated with acetylcholine (ACh), and the observation of the more rapid elimination of supernumerary terminals at the end-plates of active muscles, lead to the suggestion that superfluous nerve-muscle contacts are removed by the proteolytic enzymes in response to neuromuscular activity. The selective stabilization of only one of the terminals is discussed in the light of these results. Images Plate 1 Plate 2 PMID:722562

  18. Advanced skeletal maturity in children and adolescents with myelomeningocele.

    PubMed

    Roiz, Ronald; Mueske, Nicole M; Van Speybroeck, Alexander; Ryan, Deirdre D; Gilsanz, Vicente; Wren, Tishya A L

    2017-12-11

    Atypical skeletal development is common in youth with myelomeningocele (MM), though the underlying reasons have not been fully elucidated. This study assessed skeletal maturity in children and adolescents with MM and examined the effects of sex, age, sexual development, ethnicity, anthropometrics and shunt status. Forty-three males and 35 females with MM, 6-16 years old, underwent hand radiographs for bone age determination. The difference between bone age and chronological age was evaluated using Wilcoxon sign rank tests. Relationships between age discrepancy (skeletal-chronological) and participant characteristics were assessed using multiple linear regression with forward selection. Overall, forty percent (31/78) of MM participants had an advanced bone age of 1 year or greater (median: 2.5 years), while 47% (37/78) were within 1 year above or below their chronological age (-0.001 years) and 13% (10/78) were delayed by more than 1 year (-1.4 years). Bone age was advanced compared to chronologic age in both males and females (p⩽ 0.024). Advanced bone age was observed in early to late puberty and after maturation (p⩽ 0.07), as well as in Hispanic participants (p= 0.003) and in those with a shunt (p= 0.0004). Advanced bone age was positively correlated with height, weight and body mass index (BMI) percentiles (p= 0.004). In multiple linear regression analysis, advanced bone age was most strongly associated with higher Tanner stage of sexual development, and higher weight, height or BMI percentile. Advanced skeletal maturity is common in children/adolescents with MM over 8 years of age who have reached puberty (65%), particularly those who are overweight (80%). Hormonal effects associated with adiposity and sexual maturity likely influence skeletal maturation. Clinicians may use Tanner stage and weight or BMI to gain insight into skeletal maturity.

  19. Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development

    PubMed Central

    Depew, Michael J; Simpson, Carol A; Morasso, Maria; Rubenstein, John LR

    2005-01-01

    The branchial arches are meristic vertebrate structures, being metameric both between each other within the rostrocaudal series along the ventrocephalic surface of the embryonic head and within each individual arch: thus, just as each branchial arch must acquire a unique identity along the rostrocaudal axis, each structure within the proximodistal axis of an arch must also acquire a unique identity. It is believed that regional specification of metameric structures is controlled by the nested expression of related genes resulting in a regional code, a principal that is though to be demonstrated by the regulation of rostrocaudal axis development in animals exerted by the nested HOM-C/Hox homeobox genes. The nested expression pattern of the Dlx genes within the murine branchial arch ectomesenchyme has more recently led to the proposal of a Dlx code for the regional specification along the proximodistal axis of the branchial arches (i.e. it establishes intra-arch identity). This review re-examines this hypothesis, and presents new work on an allelic series of Dlx loss-of-function mouse mutants that includes various combinations of Dlx1, Dlx2, Dlx3, Dlx5 and Dlx6. Although we confirm fundamental aspects of the hypothesis, we further report a number of novel findings. First, contrary to initial reports, Dlx1, Dlx2 and Dlx1/2 heterozygotes exhibit alterations of branchial arch structures and Dlx2−/− and Dlx1/2−/− mutants have slight alterations of structures derived from the distal portions of their branchial arches. Second, we present evidence for a role for murine Dlx3 in the development of the branchial arches. Third, analysis of compound Dlx mutants reveals four grades of mandibular arch transformations and that the genetic interactions of cis first-order (e.g. Dlx5 and Dlx6), trans second-order (e.g. Dlx5 and Dlx2) and trans third-order paralogues (e.g. Dlx5 and Dlx1) result in significant and distinct morphological differences in mandibular arch development

  20. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.

  1. Early Brain and Child Development: Connections to Early Education and Child Care

    ERIC Educational Resources Information Center

    Romano, Judith T.

    2013-01-01

    The vast majority of young children spend time in settings outside of the home, and the nature of those settings directly impacts the child's health and development. The ecobiodevelopmental framework of early brain and child development serve as the backdrop for establishing quality. This article describes the use of quality rating systems,…

  2. Integrated and Early Childhood Education: Preparation for Social Development. Theme A: Relevant Provision for Early Childhood.

    ERIC Educational Resources Information Center

    Axton, J. H. M.

    Factors which influence child development are listed and briefly discussed. These factors are (1) mother's childhood, (2) mother's age, (3) care during pregnancy and delivery, (4) early neonatal factors, (5) birth interval, (6) effect of repeated infection and malnutrition on brain growth and intellectual development, and (7) home environment. The…

  3. Getting an Early Start on Early Child Development. Education Notes. 30194

    ERIC Educational Resources Information Center

    Young, Mary Eming; Dunkelberg, Erika

    2004-01-01

    The children born this year--2004--will be eleven years old in 2015--the age of primary school completion in most countries. This is the MDG (Millennium Development Goal) generation--for whom the international community has pledged that by 2015, all children will be able to complete primary schooling. Ensuring good early child development is the…

  4. Skeletal muscle performance and ageing

    PubMed Central

    Trouwborst, Inez; Clark, Brian C.

    2017-01-01

    Abstract The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co‐morbidity, and premature death. An important cause of physical limitations is the age‐related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation–contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. PMID:29151281

  5. Skeletal muscle performance and ageing.

    PubMed

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  6. Mandibular growth and dentoalveolar development in the treatment of class II, division 1, malocclusion using Balters Bionator according to the skeletal maturation.

    PubMed

    dos Santos-Pinto, Paulo Roberto; Martins, Lídia Parsekian; dos Santos-Pinto, Ary; Gandini Júnior, Luiz Gonzaga; Raveli, Dirceu Barnabé; dos Santos-Pinto, Cristiane Celli Matheus

    2013-01-01

    The purpose of the study was to evaluate the influence of the skeletal maturation in the mandibular and dentoalveolar growth and development during the Class II, division 1, malocclusion correction with Balters bionator. Three groups of children with Class II, division 1, malocclusion were evaluated. Two of them were treated for one year with the bionator of Balters appliance in different skeletal ages (Group 1: 6 children, 7 to 8 years old and Group 2: 10 children, 9 to 10 years old) and the other one was followed without treatment ( 7 children, 8 to 9 years old). Lateral 45 degree cephalometric radiographs were used for the evaluation of the mandibular growth and dentoalveolar development. Tantalum metallic implants were used as fixed and stable references for radiograph superimposition and data acquisition. Student's t test was used in the statistical analysis of the displacement of the points in the condyle, ramus, mandibular base and dental points. One-fixed criteria analysis of variance was used to evaluate group differences (95% of level of significance). The intragroup evaluation showed that all groups present significant skeletal growth for all points analyzed (1.2 to 3.7 mm), but in an intergroup comparison, the increments of the mandibular growth in the condyle, ramus and mandibular base were not statically different. For the dentoalveolar modifications, the less mature children showed greater labial inclination of the lower incisors (1.86 mm) and the most mature children showed greater first permanent molar extrusion (4.8 mm).

  7. Skeletal development of hallucal tarsometatarsal joint curvature and angulation in extant apes and modern humans.

    PubMed

    Gill, Corey M; Bredella, Miriam A; DeSilva, Jeremy M

    2015-11-01

    The medial cuneiform, namely the curvature and angulation of its distal facet with metatarsal 1, is crucial as a stabilizer in bipedal locomotion and an axis upon which the great toe medially deviates during arboreal locomotion in extant apes. Previous work has shown that facet curvature and angulation in adult dry-bone specimens can distinguish African apes from Homo, and can even distinguish among species of Gorilla. This study provides the first ontogenetic assessment of medial cuneiform curvature and angulation in juvenile (n = 68) and adult specimens (n = 102) using computed tomography in humans and extant ape specimens, including Pongo. Our data find that modern human juveniles initially have a convex and slightly medially oriented osseous surface of the developing medial cuneiform distal facet that flattens and becomes more distally oriented with age. The same pattern (though of a different magnitude) occurs developmentally in the chimpanzee medial cuneiform, but not in Gorilla or Pongo, whose medial cuneiform facet angulation remains unchanged ontogenetically. These data suggest that the medial cuneiform ossifies in a distinguishable pattern between Pongo, Gorilla, Pan, and Homo, which may in part be due to subtle differences in the loading environment at the hallucal tarsometatarsal joint-a finding that has important implications for interpreting fossil medial cuneiforms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  9. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  10. Promoting equity through integrated early child development and nutrition interventions.

    PubMed

    Black, Maureen M; Dewey, Kathryn G

    2014-01-01

    Sustainable development, a foundation of the post-2015 global agenda, depends on healthy and productive citizens. The origins of adult health begin early in life, stemming from genetic-environmental interactions that include adequate nutrition and opportunities for responsive learning. Inequities associated with inadequate nutrition and early learning opportunities can undermine children's health and development, thereby compromising their productivity and societal contributions. Transactional theory serves as a useful framework for examining the associations that link early child development and nutrition because it emphasizes the interplay that occurs between children and the environment, mediated through caregiver interactions. Although single interventions targeting early child development or nutrition can be effective, there is limited evidence on the development, implementation, evaluation, and scaling up of integrated interventions. This manuscript introduces a special edition of papers on six topics central to integrated child development/nutrition interventions: (1) review of integrated interventions; (2) methods and topics in designing integrated interventions; (3) economic considerations related to integrated interventions; (4) capacity-building considerations; (5) examples of integrated interventions; and (6) policy implications of integrated interventions. Ensuring the health and development of infants and young children through integrated child development/nutrition interventions promotes equity, a critical component of sustainable development. © 2014 New York Academy of Sciences.

  11. Early childhood traumatic development and its impact on gender identity.

    PubMed

    Cohen, Y

    2001-03-01

    The author clarifies issues of gender identity typical to contemporary Western societies. Nowadays, we tend to emphasize self-autonomy as the main target of the individual's development. In adolescence this may cause many questions as to the adolescent's conception of his or her gender and sexual identity. These questions are the outcome of early development, and thus early traumas may impact the entire gender development. In this context, trauma includes not only major violations such as sexual abuse, terror attacks, and so forth, but also comprises events heretofore considered minor.

  12. Early Learning and Development: Cultural-Historical Concepts in Play

    ERIC Educational Resources Information Center

    Fleer, Marilyn

    2010-01-01

    "Early Learning and Development" provides a unique synthesis of cultural-historical theory from Vygotsky, Elkonin and Leontiev in the 20th century to the ground-breaking research of scholars such as Siraj-Blatchford, Kratsova and Hedegaard today. It demonstrates how development and learning are culturally embedded and institutionally defined, and…

  13. Child Development, Early Childhood Education and Family Life: A Bibliography.

    ERIC Educational Resources Information Center

    Reardon, Beverly, Comp.

    This bibliographical listing of approximately 2500 books on child development, early childhood education and family life was compiled as a resource for parents and students. Books are listed alphabetically by author and are grouped according to the following categories: child development; observation of children; adolescence; language…

  14. Helping Families Connect Early Literacy with Social-Emotional Development

    ERIC Educational Resources Information Center

    Santos, Rosa Milagros; Fettig, Angel; Shaffer, LaShorage

    2012-01-01

    Early childhood educators know that home is a child's first learning environment. From birth, children are comforted by hearing and listening to their caregivers' voices. The language used by families supports young children's development of oral language skills. Exposure to print materials in the home also supports literacy development. Literacy…

  15. Aesthetic Experience and Early Language and Literacy Development

    ERIC Educational Resources Information Center

    Johnson, Helen L.

    2007-01-01

    The present paper explores the connections between theory and research in language development and aesthetic education and their implications for early childhood classroom practice. The present paper posits that arts experiences make a unique and vital contribution to the child's development of language and literacy, as well as to the sense of…

  16. Professional development session for early career scientists at SITC 2012

    PubMed Central

    2013-01-01

    The Society for Immunotherapy of Cancer (SITC) 2012 Professional Development Session was held as part of the SITC 27th Annual Meeting, Washington, DC, on October 24, 2012. The session was designed as a new opportunity for early career investigators to learn about relevant career development topics in a didactic setting. PMID:25742323

  17. Promising Directions for Research and Development in Early Childhood Education.

    ERIC Educational Resources Information Center

    Elliott, David L.

    A survey of research and development studies currently needed in early childhood education stresses child development and its relation to instruction. Topics which have been discussed are perception, oral language, concept formation, learning set, motivation, and the psychology of learning. Universities and public school systems working together…

  18. Instructional Development for Early Career Academics: An Overview of Impact

    ERIC Educational Resources Information Center

    Stes, Ann; Van Petegem, Peter

    2011-01-01

    Background: Over the past decades, the issue of improving teaching in higher education has been seriously addressed. Centres for instructional development, aimed at enhancing teaching, have been set up in many countries. Instructional development for early career academics is perceived to be of particular importance. Given the considerable…

  19. Early Markers of Vulnerable Language Skill Development in Galactosaemia

    ERIC Educational Resources Information Center

    Lewis, Fiona M.; Coman, David J.; Syrmis, Maryanne

    2014-01-01

    There are no known biomedical or genetic markers to identify which infants with galactosaemia (GAL) are most at risk of poor language skill development, yet pre-linguistic communicative "red flag" behaviours are recognised as early identifiers of heightened vulnerability to impaired language development. We report on pre-linguistic…

  20. Understanding Emotional Development: Helping Early Childhood Providers Better Support Families

    ERIC Educational Resources Information Center

    Edwards, Nicole Megan

    2012-01-01

    This article is intended to provide early childhood providers with a concise overview of emerging emotional development in young children (birth-5), the important role of primary caregivers, and the link between parenting, emotional development, and behavior. Specific suggestions that have been shared with urban Head Start mothers are offered,…

  1. Culture and Early Language Development: Implications for Assessment and Intervention

    ERIC Educational Resources Information Center

    Parada, Patricia M.

    2013-01-01

    The purpose of this qualitative study--"Culture and Early Language Development: Implications for Assessment and Intervention"--was to explore and describe the perceptions and beliefs of Salvadoran mothers of low socioeconomic status regarding the language development of their young children in order to identify cultural variations in…

  2. Confocal Imaging of Early Heart Development in Xenopus laevis

    PubMed Central

    Kolker, Sandra J.; Tajchman, Urszula; Weeks, Daniel L.

    2013-01-01

    Xenopus laevis provides a number of advantages for studies on cardiovascular development. The embryos are fairly large, easy to obtain, and can develop at ambient temperature in simple buffer solutions. Although classic descriptions of heart development exist, the ability to use whole mount immunohistochemical methods and confocal microscopy may enhance the ability to understand both normal and experimentally perturbed cardiovascular development. We have started to examine the early stages of cardiac development in Xenopus, seeking to identify antibodies and fixatives that allow easy examination of the developing heart. We have used monoclonal antibodies (mAbs) raised against bovine cardiac troponin T and chicken tropomyosin to visualize cardiac muscle, a goat antibody recognizing bovine type VI collagen to stain the lining of vessels, and the JB3 mAb raised against chicken fibrillin which allows the visualization of a variety of cardiovascular tissues during early development. Results from embryonic stages 24–46 are presented. PMID:10644411

  3. Characterization of porcine SKIP gene in skeletal muscle development: polymorphisms, association analysis, expression and regulation of cell growth in C2C12 cells.

    PubMed

    Xiong, Qi; Chai, Jin; Deng, Changyan; Jiang, Siwen; Liu, Yang; Huang, Tao; Suo, Xiaojun; Zhang, Nian; Li, Xiaofeng; Yang, Qianping; Chen, Mingxin; Zheng, Rong

    2012-12-01

    Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3) to PI(3,4)P2 and negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, two new single nucleotide polymorphisms (SNPs) in porcine SKIP introns 1 and 6 were detected. The C1092T locus in intron 1 showed significant associations with some meat traits, whereas the A17G locus in intron 6 showed significant associations with some carcass traits. Expression analysis showed that porcine SKIP is upregulated at d 65 of gestation and Meishan fetuses have higher and prolonged expression of SKIP compared to Large White at d 100 of gestation. Ectopic expression of porcine SKIP decreased insulin-induced cell proliferation and promoted serum starvation-induced cell cycle arrest in G0/G1 phase in C2C12. Our results suggest that SKIP plays a negative regulatory role in skeletal muscle development partly by preventing cell proliferation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Challenges in early clinical development of adjuvanted vaccines.

    PubMed

    Della Cioppa, Giovanni; Jonsdottir, Ingileif; Lewis, David

    2015-06-08

    A three-step approach to the early development of adjuvanted vaccine candidates is proposed, the goal of which is to allow ample space for exploratory and hypothesis-generating human experiments and to select dose(s) and dosing schedule(s) to bring into full development. Although the proposed approach is more extensive than the traditional early development program, the authors suggest that by addressing key questions upfront the overall time, size and cost of development will be reduced and the probability of public health advancement enhanced. The immunogenicity end-points chosen for early development should be critically selected: an established immunological parameter with a well characterized assay should be selected as primary end-point for dose and schedule finding; exploratory information-rich end-points should be limited in number and based on pre-defined hypothesis generating plans, including system biology and pathway analyses. Building a pharmacodynamic profile is an important aspect of early development: to this end, multiple early (within 24h) and late (up to one year) sampling is necessary, which can be accomplished by sampling subgroups of subjects at different time points. In most cases the final target population, even if vulnerable, should be considered for inclusion in early development. In order to obtain the multiple formulations necessary for the dose and schedule finding, "bed-side mixing" of various components of the vaccine is often necessary: this is a complex and underestimated area that deserves serious research and logistical support. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of Early Measures of Comprehension: Innovation in Individual Growth and Development Indicators

    ERIC Educational Resources Information Center

    Wackerle-Hollman, Alisha K.; Rodriguez, Megan I.; Bradfield, Tracy A.; Rodriguez, Michael C.; McConnell, Scott R.

    2015-01-01

    Early comprehension is an important, but not well-understood, contribution to early literacy and language development. Specifically, research regarding the nature of skills representative of early comprehension, including how they contribute to later reading success, is needed to support best practices to adequately prepare students. This article…

  6. Cardiac troponin T and fast skeletal muscle denervation in ageing

    PubMed Central

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong‐Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M.; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian‐Ping; Delbono, Osvaldo

    2017-01-01

    Abstract Background Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast‐twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow‐twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre‐type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle‐specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Methods Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real‐time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Results Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region—but mainly in the fast‐twitch, not the slow‐twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ—again, preferentially in fast‐twitch but not slow‐twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i

  7. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    PubMed

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  8. The development of self-regulation across early childhood.

    PubMed

    Montroy, Janelle J; Bowles, Ryan P; Skibbe, Lori E; McClelland, Megan M; Morrison, Frederick J

    2016-11-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and 7 years, with a direct focus on possible heterogeneity in the developmental trajectories, and a set of potential indicators that distinguish unique behavioral self-regulation trajectories. Across 3 diverse samples, 1,386 children were assessed on behavioral self-regulation from preschool through first grade. Results indicated that majority of children develop self-regulation rapidly during early childhood, and that children follow 3 distinct developmental patterns of growth. These 3 trajectories were distinguishable based on timing of rapid gains, as well as child gender, early language skills, and maternal education levels. Findings highlight early developmental differences in how self-regulation unfolds, with implications for offering individualized support across children. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. The Development of Self-Regulation across Early Childhood

    PubMed Central

    Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.

    2016-01-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of three and seven, with a direct focus on possible heterogeneity in the developmental trajectories, and a set of potential indicators that distinguish unique behavioral self-regulation trajectories. Across three diverse samples, 1,386 children were assessed on behavioral self-regulation from preschool through first grade. Results indicated that majority of children develop self-regulation rapidly during early childhood, and that children follow three distinct developmental patterns of growth. These three trajectories were distinguishable based on timing of rapid gains, as well as child gender, early language skills, and maternal education levels. Findings highlight early developmental differences in how self-regulation unfolds with implications for offering individualized support across children. PMID:27709999

  10. Altered Axial Skeletal Development

    EPA Science Inventory

    The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory anima...

  11. Comparative study of MSX-2, DLX-5, and DLX-7 gene expression during early human tooth development.

    PubMed

    Davideau, J L; Demri, P; Hotton, D; Gu, T T; MacDougall, M; Sharpe, P; Forest, N; Berdal, A

    1999-12-01

    Msx and Dlx family transcription factors are key elements of craniofacial development and act in specific combinations with growth factors to control the position and shape of various skeletal structures in mice. In humans, the mutations of MSX and DLX genes are associated with specific syndromes, such as tooth agenesis, craniosynostosis, and tricho-dento-osseous syndrome. To establish some relationships between those reported human syndromes, previous experimental data in mice, and the expression patterns of MSX and DLX homeogenes in the human dentition, we investigated MSX-2, DLX-5, and DLX-7 expression patterns and compared them in orofacial tissues of 7.5- to 9-wk-old human embryos by using in situ hybridization. Our data showed that MSX-2 was strongly expressed in the progenitor cells of human orofacial skeletal structures, including mandible and maxilla bones, Meckel's cartilage, and tooth germs, as shown for DLX-5. DLX-7 expression was restricted to the vestibular lamina and, later on, to the vestibular part of dental epithelium. The comparison of MSX-2, DLX-5, and DLX-7 expression patterns during the early stages of development of different human tooth types showed the existence of spatially ordered sequences of homeogene expression along the vestibular/lingual axis of dental epithelium. The expression of MSX-2 in enamel knot, as well as the coincident expression of MSX-2, DLX-5, and DLX-7 in a restricted vestibular area of dental epithelium, suggests the existence of various organizing centers involved in the control of human tooth morphogenesis.

  12. Temperament, Executive Control, and ADHD across Early Development

    PubMed Central

    Rabinovitz, Beth B.; O’Neill, Sarah; Rajendran, Khushmand; Halperin, Jeffrey M.

    2015-01-01

    Research examining factors linking early temperament and later ADHD is limited by cross-sectional approaches and having the same informant rate both temperament and psychopathology. We used multi-informant/multi-method longitudinal data to test the hypothesis that negative emotionality during preschool is positively associated with ADHD symptom severity in middle childhood, but developing executive control mediates this relation. Children (N=161) with and without ADHD were evaluated three times: Parent and teacher temperament ratings and NEPSY Visual Attention at ages 3–4 years; WISC-IV Working Memory Index and NEPSY Response Set at age 6 years; and ADHD symptoms using the Kiddie-SADS at age 7 years. Parent and teacher ratings of preschoolers’ temperament were combined to form an Anger/Frustration composite. Similarly, an Executive Functioning composite was derived from age 6 measures. Bootstrapping was used to determine whether age 6 Executive Functioning mediated the relation between early Anger/Frustration and later ADHD symptom severity, while controlling for early executive functioning. Preschoolers’ Anger/Frustration was significantly associated with later ADHD symptoms, with this relation partially mediated by age 6 Executive Functioning. Developing executive control mediates the relation between early Anger/Frustration and later ADHD symptom severity, suggesting that Anger/Frustration influences ADHD symptom severity through its impact on developing executive control. Early interventions targeting the harmful influences of negative emotionality or enhancing executive functioning may diminish later ADHD severity. PMID:26854505

  13. Embedded Professional Development and Classroom-Based Early Reading Intervention: Early Diagnostic Reading Intervention through Coaching

    ERIC Educational Resources Information Center

    Amendum, Steven J.

    2014-01-01

    The purpose of the current mixed-methods study was to investigate a model of professional development and classroom-based early reading intervention implemented by the 1st-grade teaching team in a large urban/suburban school district in the southeastern United States. The intervention provided teachers with ongoing embedded professional…

  14. New Hampshire Early Childhood Professional Development System: Guide to Early Childhood Careers.

    ERIC Educational Resources Information Center

    McDonnell, Tessa, Ed.

    The community of child care providers in New Hampshire has adopted the Early Childhood Professional Development System as an initial step toward assuring quality care and education for children. This guide describes the components of that system and is presented in eight sections. Section 1 of the guide introduces the system based on a set of two…

  15. The Australian Early Development Index: Reshaping Family-Child Relationships in Early Childhood Education

    ERIC Educational Resources Information Center

    Peers, Chris

    2011-01-01

    This article addresses the cultural significance of the Australian Early Development Index (AEDI) and discusses changes that the discourse of this instrument makes to the way in which the child is conceptualised. It analyses the technological function of the AEDI to examine how it makes the child a universal resource for human capital. The article…

  16. Early Learning Foundations. Indiana's Early Learning Development Framework Aligned to the Indiana Academic Standards, 2014

    ERIC Educational Resources Information Center

    Indiana Department of Education, 2015

    2015-01-01

    The "Foundations" (English/language arts, mathematics, social emotional skills, approaches to play and learning, science, social studies, creative arts, and physical health and growth) are Indiana's early learning development framework and are aligned to the 2014 Indiana Academic Standards. This framework provides core elements that…

  17. Skeletal responses to spaceflight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Arnaud, Sara B.

    1991-01-01

    The effect of gravity on the skeletal development and on the bone composition and its regulation in vertebrates is discussed. Results are presented from spaceflight and ground studies in both man and rat on the effect of microgravity on the bone-mineral metabolism (in both species) and on bone maturation and growth (in rats). Special attention is given to a ground-based flight-simulation rat model developed at NASA's Ames Research Center for studies of bone structure at the molecular, organ, and whole-body levels and to comparisons of estimated results with spaceflight data.

  18. Early childhood obesity is associated with compromised cerebellar development.

    PubMed

    Miller, Jennifer L; Couch, Jessica; Schwenk, Krista; Long, Michelle; Towler, Stephen; Theriaque, Douglas W; He, Guojun; Liu, Yijun; Driscoll, Daniel J; Leonard, Christiana M

    2009-01-01

    As part of a study investigating commonalities between Prader-Willi syndrome (PWS-a genetic imprinting disorder) and early-onset obesity of unknown etiology (EMO) we measured total cerebral and cerebellar volume on volumetric magnetic resonance imaging (MRI) images. Individuals with PWS (N = 16) and EMO (N = 12) had smaller cerebellar volumes than a control group of 15 siblings (p = .02 control vs. EMO; p = .0005 control vs. PWS), although there was no difference among the groups in cerebral volume. Individuals with PWS and EMO also had impaired cognitive function: general intellectual ability (GIA): PWS 65 +/- 25; EMO 81 +/- 19; and Controls 112 +/- 13 (p < .0001 controls vs. PWS and controls vs. EMO). As both conditions are characterized by early-onset obesity and slowed cognitive development, these results raise the possibility that early childhood obesity retards both cerebellar and cognitive development.

  19. STIM1 signaling controls store operated calcium entry required for development and contractile function in skeletal muscle

    PubMed Central

    Stiber, Jonathan; Hawkins, April; Zhang, Zhu-Shan; Wang, Sunny; Burch, Jarrett; Graham, Victoria; Ward, Cary C.; Seth, Malini; Finch, Elizabeth; Malouf, Nadia; Williams, R. Sanders; Eu, Jerry P.; Rosenberg, Paul

    2009-01-01

    It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated muscle where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells. PMID:18488020

  20. Activated ovarian endothelial cells promote early follicular development and survival.

    PubMed

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  1. Early development of synchrony in cortical activations in the human.

    PubMed

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Regulation of early Xenopus development by ErbB signaling

    PubMed Central

    Nie, Shuyi; Chang, Chenbei

    2008-01-01

    ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939

  3. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    PubMed

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Family Concepts in Early Learning and Development Standards

    ERIC Educational Resources Information Center

    Walsh, Bridget A.; Sanchez, Claudia; Lee, Angela M.; Casillas, Nicole; Hansen, Caitlynn

    2016-01-01

    This exploratory study investigated the use of concepts related to families, parents, and the home in 51 state-level early learning and development standards documents. Guidelines from six national family involvement, engagement, and school-partnership models were used to create the Family Involvement Models Analysis Chart (FIMAC), which served as…

  5. Regionalism and Development in Early Nineteenth Century Spanish America.

    ERIC Educational Resources Information Center

    Friedman, Douglas

    An understanding of regionalism in early 19th century Spanish America is crucial to any understanding of this region's economic development. Regionalism became the barrier to the kind of integrated national economy that some writers claim could have been implemented had it not been for the imposition of dependency by external forces. This…

  6. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    ERIC Educational Resources Information Center

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  7. Applying cognitive training to target executive functions during early development.

    PubMed

    Wass, Sam V

    2015-01-01

    Developmental psychopathology is increasingly recognizing the importance of distinguishing causal processes (i.e., the mechanisms that cause a disease) from developmental outcomes (i.e., the symptoms of the disorder as it is eventually diagnosed). Targeting causal processes early in disordered development may be more effective than waiting until outcomes are established and then trying to reverse the pathogenic process. In this review, I evaluate evidence suggesting that neural and behavioral plasticity may be greatest at very early stages of development. I also describe correlational evidence suggesting that, across a number of conditions, early emerging individual differences in attentional control and working memory may play a role in mediating later-developing differences in academic and other forms of learning. I review the currently small number of studies that applied direct and indirect cognitive training targeted at young individuals and discuss methodological challenges associated with targeting this age group. I also discuss a number of ways in which early, targeted cognitive training may be used to help us understand the developmental mechanisms subserving typical and atypical cognitive development.

  8. The Ecology of Early Reading Development for Children in Poverty

    ERIC Educational Resources Information Center

    Kainz, Kirsten; Vernon-Feagans, Lynne

    2007-01-01

    In this study we investigated reading development from kindergarten to third grade for 1,913 economically disadvantaged children from the Early Childhood Longitudinal Study-Kindergarten Cohort. Characteristics of the child, the family, classroom instruction, and school composition were used to model influences from multiple levels of children's…

  9. Rethinking Early Learning and Development Standards in the Ugandan Context

    ERIC Educational Resources Information Center

    Ejuu, Godfrey

    2013-01-01

    Concerns that the African child is being tailored to be a "global child," alongside other homogenizing and dominating projections, such as early learning and development standards (ELDS), have increased. African communities need to be assured that global standards and global indicators will not further homogenize nations and thereby risk…

  10. Changing the Perspective on Early Development of Rett Syndrome

    ERIC Educational Resources Information Center

    Marschik, Peter B.; Kaufmann, Walter E.; Sigafoos, Jeff; Wolin, Thomas; Zhang, Dajie; Bartl-Pokorny, Katrin D.; Pini, Giorgio; Zappella, Michele; Tager-Flusberg, Helen; Einspieler, Christa; Johnston, Michael V.

    2013-01-01

    We delineated the achievement of early speech-language milestones in 15 young children with Rett syndrome ("MECP2" positive) in the first two years of life using retrospective video analysis. By contrast to the commonly accepted concept that these children are normal in the pre-regression period, we found markedly atypical development of…

  11. Model of Early Support of Child Development in Poland

    ERIC Educational Resources Information Center

    Czyz, Anna Katarzyna

    2018-01-01

    The development of a child, especially a child with a disability, is conditional upon the initiation of rehabilitation measures immediately after the problem has been identified. The quality of the reaction is conditioned by the functioning of the therapeutic team. The main purpose of the research was the diagnosis of early support system for…

  12. Identification of the Social Development in Early Childhood in Pakistan

    ERIC Educational Resources Information Center

    Malik, Asif; Sarwar, Muhammad; Khan, Naeemullah

    2010-01-01

    This study was conducted to identify the social development in early childhood years. It was delimited to eight private schools of Lahore City from the area of Faisal Town and Shadman. Forty students (male and female) were randomly selected as the sample. Five students from Nursery, Prep and grade one were selected from each school. A checklist…

  13. The Use of Electrophysiology in the Study of Early Development

    ERIC Educational Resources Information Center

    Szucs, Denes

    2005-01-01

    Electrophysiology is a timely and important tool in the study of early cognitive development. This commentary polishes the definition of event-related potential (ERP) components; often interpreted as expressions of mental processes. Further, attention is drawn to time-frequency analysis of the electroencephalogram (EEG) which conveys much more…

  14. Development of the Life Story in Early Adolescence

    ERIC Educational Resources Information Center

    Steiner, Kristina L.; Pillemer, David B.

    2018-01-01

    Life span developmental psychology proposes that the ability to create a coherent life narrative does not develop until early adolescence. Using a novel methodology, 10-, 12-, and 14-year-old participants were asked to tell their life stories aloud to a researcher. Later, participants separated their transcribed narratives into self-identified…

  15. MAMMARY GLAND DEVELOPMENT: EARLY LIFE EFFECTS FROM THE ENVIRONMENT

    EPA Science Inventory

    Mammary Gland Development: Early Life Effects from the Environment

    S.E. Fenton. Reproductive Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA, Research Triangle Park, NC 27711.

    As signs of precocious puberty in girls reach ...

  16. Predictors of Early versus Later Spelling Development in Danish

    ERIC Educational Resources Information Center

    Nielsen, Anne-Mette Veber; Juul, Holger

    2016-01-01

    The present study examined phoneme awareness, phonological short term memory, letter knowledge, rapid automatized naming (RAN), and visual-verbal paired associate learning (PAL) as longitudinal predictors of spelling skills in an early phase (Grade 2) and a later phase (Grade 5) of development in a sample of 140 children learning to spell in the…

  17. Career Planning and Development for Early-Career Scientists

    EPA Science Inventory

    Early career development can be looked at as being of two major phases. The first phase is the formal educational process leading to an awarded degree, postdoctoral training, and potentially formal certification in a scientific discipline. The second phase is the informal educa...

  18. Early Intervention and Its Effects on Maternal and Child Development.

    ERIC Educational Resources Information Center

    Slaughter, Diana T.

    1983-01-01

    The longitudinal study reported used an intervention strategy to test the thesis that sociocultural background, mediated by maternal attitudes and behaviors, influences Black children's early development in educationally significant ways. Two models of parent education were contrasted: the Levenstein toy demonstration program and the…

  19. Developing Early Undergraduate Research at a Two-Year College

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2013-01-01

    Two-year college (TYC) physics teachers are not often required to provide student research experiences as a part of their contracted duties. However, some TYC physics faculty members are interested in developing research opportunities for their freshman- and sophomore-level students, often called "early undergraduate research" (EUR).…

  20. Applying cognitive training to target executive functions during early development

    PubMed Central

    Wass, Sam V.

    2015-01-01

    Developmental psychopathology is increasingly recognizing the importance of distinguishing causal processes (i.e., the mechanisms that cause a disease) from developmental outcomes (i.e., the symptoms of the disorder as it is eventually diagnosed). Targeting causal processes early in disordered development may be more effective than waiting until outcomes are established and then trying to reverse the pathogenic process. In this review, I evaluate evidence suggesting that neural and behavioral plasticity may be greatest at very early stages of development. I also describe correlational evidence suggesting that, across a number of conditions, early emerging individual differences in attentional control and working memory may play a role in mediating later-developing differences in academic and other forms of learning. I review the currently small number of studies that applied direct and indirect cognitive training targeted at young individuals and discuss methodological challenges associated with targeting this age group. I also discuss a number of ways in which early, targeted cognitive training may be used to help us understand the developmental mechanisms subserving typical and atypical cognitive development. PMID:24511910

  1. Guidelines for Making a Video Presentation on Early Development.

    ERIC Educational Resources Information Center

    Cooper, Carolyn S.; And Others

    This paper discusses the production of videotape recordings illustrating developmental milestones of early childhood to serve as a reference point in working with parents or staff caring for young children who have disabilities. Procedures for making a video presentation include the following steps: select a topic (such as motor development,…

  2. Approaches to Developing Health in Early Years Settings

    ERIC Educational Resources Information Center

    Mooney, Ann; Boddy, Janet; Statham, June; Warwick, Ian

    2008-01-01

    Purpose: The purpose of the paper is to consider the opportunities and difficulties in developing health-promotion work in early years settings in the UK. Design/methodology/approach: As the first study of its kind conducted in the UK, a multi-method approach was adopted involving: an overview of health-related guidance and of effective…

  3. Formative Evaluation of the Early Development Instrument: Progress and Prospects

    ERIC Educational Resources Information Center

    Keating, Daniel P.

    2007-01-01

    This article is a commentary for the special issue on the Early Development Instrument (EDI), a community tool to assess children's school readiness and developmental outcomes at a group level. The EDI is administered by kindergarten teachers, who assess their kindergarten students on 5 developmental domains: physical health and well-being, social…

  4. State Guide to Developing Successful Early Childhood Data Systems

    ERIC Educational Resources Information Center

    ICF International (NJ1), 2012

    2012-01-01

    Early education leaders--inside and outside of government--are looking for new ways to improve quality, accountability, and efficiency across many different programs serving young children and their families, and they see investment in data systems as a pivotal part of that effort. However, it can be challenging to develop and implement effective…

  5. Towards Sustainable National Development through Well Managed Early Childhood Education

    ERIC Educational Resources Information Center

    Abraham, Nath M.

    2012-01-01

    This paper discusses issues relating to sustainable development and effective management of early childhood education. The child is the "owner" of the future. The problems that confront the current generation are complex and serious that cannot be addressed in the same way they were created. But they can be addressed. The concept of…

  6. More Alike than Different: Early Childhood Professional Development in Guatemala

    ERIC Educational Resources Information Center

    Hardin, Belinda J.; Vardell, Rosemarie; de Castaneda, Albertina

    2008-01-01

    This article describes an early childhood professional development project that took place in the summer of 2005 in Guatemala City. Located in Central America, Guatemala has a population of approximately 12.3 million people, including more than two million children under the age of 5 (UNESCO Institute for Statistics, 2007; UNICEF, 2004). Events…

  7. Black Female Faculty Success and Early Career Professional Development

    ERIC Educational Resources Information Center

    Jones, Tamara Bertrand; Osborne-Lampkin, La'Tara

    2013-01-01

    In recent years, a number of Black female junior scholars have participated in an early career professional development program designed to address socialization issues through individual and small group mentoring. This descriptive qualitative study investigated scholars' perceptions of the importance and effectiveness of a research…

  8. HIV Infection: Transmission, Effects on Early Development, and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara

    1997-01-01

    Describes the modes of transmission of HIV and the course of the disease in infants and toddlers. Information is provided on its effects on early development, medical screening and treatments, therapies, psychosocial assistance, and interventions, including nutritional therapy, occupational and physical therapies, and speech and language therapy.…

  9. Cholinergic Mechanisms, Early Brain Development, and Risk for Schizophrenia

    PubMed Central

    Ross, Randal G; Stevens, Karen E; Proctor, William R; Leonard, Sherry; Kisley, Michael A; Hunter, Sharon K; Freedman, Robert; Adams, Catherine E

    2009-01-01

    Neuropsychiatric diseases are complex illnesses where the onset of diagnostic symptomology is often the end result of a decades-long process of aberrant brain development. The identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal; however, there are few models for how this goal might be achieved. This report uses the attentional deficits of schizophrenia as an example and reviews data from genetic, anatomical, physiological, and pharmacologic studies to hypothesize a developmental model with translational primary prevention implications. Specifically, the model suggests that an early interaction between α7 nicotinic receptor density and choline availability may contribute to the development of schizophrenia-associated attentional deficits. Translational implications, including perinatal dietary choline supplementation, are discussed. It is hoped that presentation of this model will stimulate other efforts to develop empirically-driven primary prevention strategies. PMID:19925602

  10. Developing International Collaborations for Early Career Researchers in Psychology

    PubMed Central

    Flanagan, Julianne C.; Barrett, Emma L.; Crome, Erica; Forbes, Miriam

    2015-01-01

    International collaboration is becoming increasingly vital as the emphasis on unmet need for mental health across cultures and nations grows. Opportunities exist for early career researchers to engage in international collaboration. However, little information is provided about such opportunities in most current psychology training models. The authors are early career researchers in psychology from U.S. and Australia who have developed a collaborative relationship over the past two years. Our goal is to increase awareness of funding opportunities to support international research and to highlight the benefits and challenges associated with international collaboration based on our experience. PMID:27453624

  11. Early development of Xenopus embryos is affected by simulated gravity

    NASA Technical Reports Server (NTRS)

    Yokota, Hiroki; Neff, Anton W.; Malacinski, George M.

    1994-01-01

    Early amphibian (Xenopus laevis) development under clinostat-simulated weightlessness and centrifuge-simulated hypergravity was studied. The results revealed significant effects on (i) 'morphological patterning' such as the cleavage furrow pattern in the vegetal hemisphere at the eight-cell stage and the shape of the dorsal lip in early gastrulae and (ii) 'the timing of embryonic events' such as the third cleavage furrow completion and the dorsal lip appearance. Substantial variations in sensitivity to simulated force fields were observed, which should be considered in interpreting spaceflight data.

  12. Effects of early life stress on amygdala and striatal development

    PubMed Central

    Fareri, Dominic S.; Tottenham, Nim

    2016-01-01

    Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS) in the form of the absence of species expected caregiving (i.e., caregiver deprivation), can drastically impact one’s social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction. PMID:27174149

  13. Effects of early life stress on amygdala and striatal development.

    PubMed

    Fareri, Dominic S; Tottenham, Nim

    2016-06-01

    Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS) in the form of the absence of species expected caregiving (i.e., caregiver deprivation), can drastically impact one's social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Fathers' sensitive parenting and the development of early executive functioning.

    PubMed

    Towe-Goodman, Nissa R; Willoughby, Michael; Blair, Clancy; Gustafsson, Hanna C; Mills-Koonce, W Roger; Cox, Martha J

    2014-12-01

    Using data from a diverse sample of 620 families residing in rural, predominately low-income communities, this study examined longitudinal links between fathers' sensitive parenting in infancy and toddlerhood and children's early executive functioning, as well as the contribution of maternal sensitive parenting. After accounting for the quality of concurrent and prior parental care, children's early cognitive ability, and other child and family factors, fathers' and mothers' sensitive and supportive parenting during play at 24 months predicted children's executive functioning at 3 years of age. In contrast, paternal parenting quality during play at 7 months did not make an independent contribution above that of maternal care, but the links between maternal sensitive and supportive parenting and executive functioning seemed to operate in similar ways during infancy and toddlerhood. These findings add to prior work on early experience and children's executive functioning, suggesting that both fathers and mothers play a distinct and complementary role in the development of these self-regulatory skills.

  15. Early development of physical aggression and early risk factors for chronic physical aggression in humans.

    PubMed

    Tremblay, Richard E

    2014-01-01

    This chapter describes the state of knowledge on the development of physical aggression from early childhood to adulthood, the long term outcomes of chronic physical aggression during childhood and the risk factors for chronic physical aggression. Unraveling the development of physical aggression is important to understand when and why humans start using physical aggression, to understand why some humans suffer from chronic physical aggression and to understand how to prevent the development of this disorder which causes much distress to the aggressors and their victims. The study of the developmental origins of aggression also sheds light on the reasons why situational prevention of aggression is important at all ages and in all cultures.

  16. Alternatives to the fish early life-stage test: Developing a conceptual model for early fish development

    EPA Science Inventory

    Chronic fish toxicity is a key parameter for hazard classification and environmental risk assessment of chemicals, and the OECD 210 fish early life-stage (FELS) test is the primary guideline test used for various international regulatory programs. There exists a need to develop ...

  17. Gross Motor Development, Movement Abnormalities, and Early Identification of Autism

    PubMed Central

    Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.

    2015-01-01

    Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with the DD and Autism-No Regression groups both showing later developing motor maturity than typical children. The only statistically significant differences in movement abnormalities were in the DD group; the two autism groups did not differ from the typical group in rates of movement abnormalities or lack of protective responses. These findings do not replicate previous investigations suggesting that early motor abnormalities seen on home video can assist in early identification of autism. PMID:17805956

  18. Early stress and human behavioral development: emerging evolutionary perspectives.

    PubMed

    Del Giudice, M

    2014-08-01

    Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field.

  19. Tight glycemic control with insulin does not affect skeletal muscle degradation during the early post-operative period following pediatric cardiac surgery

    PubMed Central

    Fisher, Jeremy G.; Sparks, Eric A.; Khan, Faraz A.; Alexander, Jamin L.; Asaro, Lisa A.; Wypij, David; Gaies, Michael; Modi, Biren P.; Duggan, Christopher; Agus, Michael S.D.; Yu, Yong-Ming; Jaksic, Tom

    2015-01-01

    Objective Critical illness is associated with significant catabolism and persistent protein loss correlates with increased morbidity and mortality. Insulin is a potent anti-catabolic hormone; high-dose insulin decreases skeletal muscle protein breakdown in critically ill pediatric surgical patients. However, insulin's effect on protein catabolism when given at clinically utilized doses has not been studied. The objective was to evaluate the effect of post-operative tight glycemic control and clinically-dosed insulin on skeletal muscle degradation in children after cardiac surgery with cardiopulmonary bypass. Design Secondary analysis of a two-center, prospective randomized trial comparing tight glycemic control with standard care. Randomization was stratified by study center. Patients Children 0-36 months who were admitted to the ICU after cardiac surgery requiring cardiopulmonary bypass. Interventions In the tight glycemic control (TGC) arm, insulin was titrated to maintain blood glucose between 80-110 mg/dL. Patients in the control arm received standard care. Skeletal muscle breakdown was quantified by a ratio of urinary 3-methylhistidine to urinary creatinine (3MH:Cr). Main Results A total of 561 patients were included: 281 in the TGC arm and 280 receiving standard care. There was no difference in 3MH:Cr between groups (TGC 249 ± 127 vs. standard care 253 ± 112, mean ± standard deviation in μmol/g, P=0.72). In analyses restricted to the TGC patients, higher 3MH:Cr correlated with younger age as well as lower weight, weight-for-age z-score, length, and body surface area (P<0.005 for each), and lower post-operative day 3 serum creatinine (r=-0.17, P=0.02). Sex, prealbumin, and albumin were not associated with 3MH:Cr. During urine collection, 245 patients (87%) received insulin. However, any insulin exposure did not impact 3MH:Cr (t-test, P=0.45), and there was no dose-dependent effect of insulin on 3MH:Cr (r=-0.03, P=0.60). Conclusion Though high-dose insulin

  20. Induction of Sirt1 by Mechanical Stretch of Skeletal Muscle through the Early Response Factor EGR1 Triggers an Antioxidative Response*

    PubMed Central

    Pardo, Patricia S.; Mohamed, Junaith S.; Lopez, Michael A.; Boriek, Aladin M.

    2011-01-01

    Mechanical loading of muscles by intrinsic muscle activity or passive stretch leads to an increase in the production of reactive oxygen species (1, 2). The NAD-dependent protein deacetylase SIRT1 is involved in the protection against oxidative stress by enhancing FOXO-driven Sod2 transcription (3–5). In this report, we unravel a mechanism triggered by mechanical stretch of skeletal muscle cells that leads to an EGR1-dependent transcriptional activation of the Sirt1 gene. The resulting transient increase in SIRT1 expression generates an antioxidative response that contributes to reactive oxygen species scavenging. PMID:20971845

  1. Conditions on Early Mars Might Have Fostered Rapid and Early Development of Life

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2007-01-01

    The exploration of Mars during the past decades has begun to unveil the history of the planet. The combinations of remote sensing, in situ geochemical compositional measurements and photographic observations from both above and on the surface have shown Mars to have a dynamic and active geologic evolution. Mars geologic evolution clearly had conditions that were suitable for supporting life. For a planet to be able to be habitable, it must have water, carbon sources, energy sources and a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water-carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001 well-dated at approx.3.9 Gy., (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, early active volcanism continuing throughout Martian history, and, and continuing impact processes, (iii) Carbon and water from possibly extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) some crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust. The question arises: "Why would life not evolve from these favorable conditions on early Mars in its first 600 My?" During this period, it seems likely that environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would all favor the formation of early life. Even if life developed elsewhere (on Earth, Venus, or on other solar systems) and was transported to Mars, the surface conditions were likely very hospitable for that introduced life to multiply and evolve.

  2. Characteristics of effective professional development for early career science teachers

    NASA Astrophysics Data System (ADS)

    Simon, Shirley; Campbell, Sandra; Johnson, Sally; Stylianidou, Fani

    2011-04-01

    The research reported here set out to investigate the features in schools and science departments that were seen as effective in contributing to the continuing professional development (CPD) of early career science teachers. Ten schools took part in the study, selected on the basis of their reputation for having effective CPD practices. To gain different perspectives from within the organisations we conducted interviews with senior members of staff, heads of science departments and early career teachers. A thematic analysis of the interviews is presented, drawing on findings from across the 10 schools, and exemplified in more detail by a vignette to show specific features of effective CPD practice. The study has revealed a wealth of practice across the 10 schools, which included a focus on broadening experience beyond the classroom, having an open, sharing, non-threatening culture and systemic procedures for mentoring and support that involved ring-fenced budgets. The schools also deployed staff judiciously in critical roles that model practice and motivate early career science teachers. Early career teachers were concerned primarily with their overall development as teachers, though some science specific examples such as observing practical work and sessions to address subject knowledge were seen as important.

  3. Endosperm turgor pressure decreases during early Arabidopsis seed development.

    PubMed

    Beauzamy, Léna; Fourquin, Chloé; Dubrulle, Nelly; Boursiac, Yann; Boudaoud, Arezki; Ingram, Gwyneth

    2016-09-15

    In Arabidopsis, rapid expansion of the coenocytic endosperm after fertilisation has been proposed to drive early seed growth, which is in turn constrained by the seed coat. This hypothesis implies physical heterogeneity between the endosperm and seed coat compartments during early seed development, which to date has not been demonstrated. Here, we combine tissue indentation with modelling to show that the physical properties of the developing seed are consistent with the hypothesis that elevated endosperm-derived turgor pressure drives early seed expansion. We provide evidence that whole-seed turgor is generated by the endosperm at early developmental stages. Furthermore, we show that endosperm cellularisation and seed growth arrest are associated with a drop in endosperm turgor pressure. Finally, we demonstrate that this decrease is perturbed when the function of POLYCOMB REPRESSIVE COMPLEX 2 is lost, suggesting that turgor pressure changes could be a target of genomic imprinting. Our results indicate a developmental role for changes in endosperm turgor pressure in the Arabidopsis seed. © 2016. Published by The Company of Biologists Ltd.

  4. [Dental caries and early childhood development: a pilot study].

    PubMed

    Núñez, F Loreto; Sanz, B Javier; Mejía, L Gloria

    2015-01-01

    To investigate the association between dental caries and early childhood development in 3-year-olds from Talca, Chile. A pilot study with a convenience sample of 3-year-olds from Talca (n = 39) who attend public healthcare centers. Child development was measured by the Psychomotor Development Index (PDI), a screening tool used nationally among pre-school children to assess language development, fine motor skills and coordination areas. Dental caries prevalence was evaluated by decayed, missing, filled teeth (DFMT) and decayed, missing, filled tooth surfaces (DFMS) ceo-d and ceo-s indexes. The children were divided into two groups according to the PDIscore: those with a score of 40 or more were considered developmentally normal (n = 32), and those with a score below 40 were considered as having impaired development (n = 7). The severity of caries (DMFT) was negatively correlated with PDI (r = -0.82), and children with the lowest TEPSI score had the highest DFMT values. The average DMFT in children with normal development was 1.31, and 3.57 for those with impaired development. This pilot study indicates that the severity of dental caries is correlated with early childhood development. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  5. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan

    PubMed Central

    2017-01-01

    Early Cambrian Pseudooides prima has been described from embryonic and post-embryonic stages of development, exhibiting long germ-band development. There has been some debate about the pattern of segmentation, but this interpretation, as among the earliest records of ecdysozoans, has been generally accepted. Here, we show that the ‘germ band’ of P. prima embryos separates along its mid axis during development, with the transverse furrows between the ‘somites’ unfolding into the polar aperture of the ten-sided theca of Hexaconularia sichuanensis, conventionally interpreted as a scyphozoan cnidarian; co-occurring post-embryonic remains of ecdysozoans are unrelated. We recognize H. sichuanensis as a junior synonym of P. prima as a consequence of identifying these two form-taxa as distinct developmental stages of the same organism. Direct development in P. prima parallels the co-occuring olivooids Olivooides, and Quadrapyrgites and Bayesian phylogenetic analysis of a novel phenotype dataset indicates that, despite differences in their tetra-, penta- and pseudo-hexa-radial symmetry, these hexangulaconulariids comprise a clade of scyphozoan medusozoans, with Arthrochites and conulariids, that all exhibit direct development from embryo to thecate polyp. The affinity of hexangulaconulariids and olivooids to extant scyphozoan medusozoans indicates that the prevalence of tetraradial symmetry and indirect development are a vestige of a broader spectrum of body-plan symmetries and developmental modes that was manifest in their early Phanerozoic counterparts. PMID:29237861

  6. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan.

    PubMed

    Duan, Baichuan; Dong, Xi-Ping; Porras, Luis; Vargas, Kelly; Cunningham, John A; Donoghue, Philip C J

    2017-12-20

    Early Cambrian Pseudooides prima has been described from embryonic and post-embryonic stages of development, exhibiting long germ-band development. There has been some debate about the pattern of segmentation, but this interpretation, as among the earliest records of ecdysozoans, has been generally accepted. Here, we show that the 'germ band' of P. prima embryos separates along its mid axis during development, with the transverse furrows between the 'somites' unfolding into the polar aperture of the ten-sided theca of Hexaconularia sichuanensis , conventionally interpreted as a scyphozoan cnidarian; co-occurring post-embryonic remains of ecdysozoans are unrelated. We recognize H. sichuanensis as a junior synonym of P. prima as a consequence of identifying these two form-taxa as distinct developmental stages of the same organism. Direct development in P. prima parallels the co-occuring olivooids Olivooides, and Quadrapyrgites and Bayesian phylogenetic analysis of a novel phenotype dataset indicates that, despite differences in their tetra-, penta- and pseudo-hexa-radial symmetry, these hexangulaconulariids comprise a clade of scyphozoan medusozoans, with Arthrochites and conulariids, that all exhibit direct development from embryo to thecate polyp. The affinity of hexangulaconulariids and olivooids to extant scyphozoan medusozoans indicates that the prevalence of tetraradial symmetry and indirect development are a vestige of a broader spectrum of body-plan symmetries and developmental modes that was manifest in their early Phanerozoic counterparts. © 2017 The Authors.

  7. Social conversational skills development in early implanted children.

    PubMed

    Guerzoni, Letizia; Murri, Alessandra; Fabrizi, Enrico; Nicastri, Maria; Mancini, Patrizia; Cuda, Domenico

    2016-09-01

    Social conversational skills are a salient aspect of early pragmatic development in young children. These skills include two different abilities, assertiveness and responsiveness. This study investigated the development of these abilities in early implanted children and their relationships with lexical development and some language-sensitive variables. Prospective, observational, nonrandomized study. Participants included 28 children with congenital profound sensorineural hearing loss. The mean age at device activation was 13.3 months (standard deviation [SD] ±4.2). The Social-Conversational Skills Rating Scale was used to evaluate assertiveness and responsiveness. The MacArthur-Bates Communicative Development Inventory (Words and Sentences form) was used to analyze the lexical development. The device experience was 12 months for each child, and the mean age at testing was 25.9 months (SD ±4.6). Assertiveness and responsiveness scores were within the normal range of normal-hearing age-matched peers. Age at cochlear implant activation exerted a significant impact, with the highest scores associated to the youngest patients. The residual correlations between assertiveness and responsiveness with the lexical development were positive and strongly significant (r = 0.69 and 0.73, respectively). Preoperative hearing threshold demonstrated an associated significant coefficient on the assertiveness score. Age at diagnosis and maternal education level were not correlated with the social conversational skills. Early-implanted children developed social conversational skills that are similar to normal-hearing peers matched for age 1 year after device activation. Social conversational skills and lexical development were strongly correlated, but the present study design cannot specify the direction of this relationship. Children with better preoperative residual hearing exhibited better assertive ability. 4 Laryngoscope, 126:2098-2105, 2016. © 2015 The American Laryngological

  8. Studies Toward Birth and Early Mammalian Development in Space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Successful reproduction is the hallmark of a species' ability to adapt to its environment and must be realized to sustain life beyond Earth. Before taking this immense step, we need to understand the effects of altered gravity on critical phases of mammalian reproduction, viz., those events surrounding pregnancy, birth and the early development of offspring. No mammal has yet undergone birth in space. however studies spanning the gravity continuum from 0 to 2-g are revealing insights into how birth and early postnatal development will proceed in space. In this presentation, I will report the results of behavioral studies of rat mothers and offspring exposed from mid- to late pregnancy to either hypogravity (0-g) or hypergravity (1.5 or 2-g).

  9. Relationship between the neighbourhood built environment and early child development.

    PubMed

    Christian, Hayley; Ball, Stephen J; Zubrick, Stephen R; Brinkman, Sally; Turrell, Gavin; Boruff, Bryan; Foster, Sarah

    2017-11-01

    The relationship between features of the neighbourhood built environment and early child development was investigated using area-level data from the Australian Early Development Census. Overall 9.0% of children were developmentally vulnerable on the Physical Health and Well-being domain, 8.1% on the Social Competence domain and 8.1% on the Emotional Maturity domain. After adjustment for socio-demographic factors, Local Communities with the highest quintile of home yard space had significantly lower odds of developmental vulnerability on the Emotional Maturity domain. Residing in a Local Community with fewer main roads was associated with a decrease in the proportion of children developmentally vulnerable on the Social Competence domain. Overall, sociodemographic factors were more important than aspects of the neighbourhood physical environment for explaining variation between Local Communities in the developmental vulnerability of children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Lexically-based learning and early grammatical development.

    PubMed

    Lieven, E V; Pine, J M; Baldwin, G

    1997-02-01

    Pine & Lieven (1993) suggest that a lexically-based positional analysis can account for the structure of a considerable proportion of children's early multiword corpora. The present study tests this claim on a second, larger sample of eleven children aged between 1;0 and 3;0 from a different social background, and extends the analysis to later in development. Results indicate that the positional analysis can account for a mean of 60% of all the children's multiword utterances and that the great majority of all other utterances are defined as frozen by the analysis. Alternative explanations of the data based on hypothesizing underlying syntactic or semantic relations are investigated through analyses of pronoun case marking and of verbs with prototypical agent-patient roles. Neither supports the view that the children's utterances are being produced on the basis of general underlying rules and categories. The implications of widespread distributional learning in early language development are discussed.

  11. Overexpression of NF90-NF45 Represses Myogenic MicroRNA Biogenesis, Resulting in Development of Skeletal Muscle Atrophy and Centronuclear Muscle Fibers

    PubMed Central

    Todaka, Hiroshi; Higuchi, Takuma; Yagyu, Ken-ichi; Sugiyama, Yasunori; Yamaguchi, Fumika; Morisawa, Keiko; Ono, Masafumi; Fukushima, Atsuki; Tsuda, Masayuki; Taniguchi, Taketoshi

    2015-01-01

    MicroRNAs (miRNAs) are involved in the progression and suppression of various diseases through translational inhibition of target mRNAs. Therefore, the alteration of miRNA biogenesis induces several diseases. The nuclear factor 90 (NF90)-NF45 complex is known as a negative regulator in miRNA biogenesis. Here, we showed that NF90-NF45 double-transgenic (dbTg) mice develop skeletal muscle atrophy and centronuclear muscle fibers in adulthood. Subsequently, we found that the levels of myogenic miRNAs, including miRNA 133a (miR-133a), which promote muscle maturation, were significantly decreased in the skeletal muscle of NF90-NF45 dbTg mice compared with those in wild-type mice. However, levels of primary transcripts of the miRNAs (pri-miRNAs) were clearly elevated in NF90-NF45 dbTg mice. This result indicated that the NF90-NF45 complex suppressed miRNA production through inhibition of pri-miRNA processing. This finding was supported by the fact that processing of pri-miRNA 133a-1 (pri-miR-133a-1) was inhibited via binding of NF90-NF45 to the pri-miRNA. Finally, the level of dynamin 2, a causative gene of centronuclear myopathy and concomitantly a target of miR-133a, was elevated in the skeletal muscle of NF90-NF45 dbTg mice. Taken together, we conclude that the NF90-NF45 complex induces centronuclear myopathy through increased dynamin 2 expression by an NF90-NF45-induced reduction of miR-133a expression in vivo. PMID:25918244

  12. Different dietary energy intake affects skeletal muscle development through an Akt-dependent pathway in Dorper × Small Thin-Tailed crossbred ewe lambs.

    PubMed

    Zhao, J X; Liu, X D; Li, K; Liu, W Z; Ren, Y S; Zhang, J X

    2016-10-01

    The objective of this experiment was to investigate the mechanisms through which different levels of dietary energy affect postnatal skeletal muscle development in ewe lambs. Twelve Dorper × Small Thin-Tailed crossbred ewe lambs (100 d of age; 20 ± 0.5 kg BW) were selected randomly and divided into 2 groups in a completely randomized design. Animals were offered identical diets at 100% or 65% of ad libitum intake. Lambs were euthanized when BW in the ad libitum group reached 35 kg and the semitendinosus muscle was sampled. Final BW and skeletal muscle weight were decreased (P < 0.01) by feed restriction. Both muscle fiber size distribution and myofibril cross-sectional area were altered by feed restriction. Insulin-like growth factor 1 (IGF-1) messenger RNA (mRNA) content was decreased (P < 0.05) when lambs were underfed, whereas no difference for IGF-2 mRNA expression was observed (P > 0.05). Feed restriction altered phosphor-Akt protein abundance (P < 0.01). Moreover, the mammalian target of rapamycin (mTOR) pathway was inhibited by feed restriction, which was associated with decreased phosphor-mTOR, phosphorylated eukaryotic initiation factor 4E binding protein 1 (phosphor-4EBP1), and phosphorylated ribosomal protein S6 kinase (phosphor-S6K). Both mRNA expression of myostatin and its protein content were elevated in feed-restricted ewe lambs (P < 0.05). In addition, mRNA expression of both muscle RING finger 1 and muscle atrophy F-box was increased when ewe lambs were underfed. In summary, feed restriction in young growing ewe lambs attenuates skeletal muscle hypertrophy by inhibiting protein synthesis and increasing protein degradation, which may act through the Akt-dependent pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Hazards to Early Development: The Biological Embedding of Early Life Adversity.

    PubMed

    Nelson, Charles A

    2017-10-11

    The number of children under 18 years of age has increased worldwide over the past decade. This growth spurt is due, in part, to remarkable progress in child survival. Alas, surviving early hazards, like prematurity or infectious disease, does not guarantee that children's development will not be compromised by other hazards as they grow older. Throughout the world, children continue to be confronted with a large number of biological and psychosocial challenges that greatly limit their developmental potential. The focus of this article is how such adverse experiences impact the developing brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Early zebrafish development: It’s in the maternal genes

    PubMed Central

    Abrams, Elliott W.; Mullins, Mary C.

    2009-01-01

    Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405

  15. Reading Instruction Affects the Cognitive Skills Supporting Early Reading Development

    ERIC Educational Resources Information Center

    McGeown, Sarah P.; Johnston, Rhona S.; Medford, Emma

    2012-01-01

    This study examined the cognitive skills associated with early reading development when children were taught by different types of instruction. Seventy-nine children (mean age at pre-test 4;10 (0.22 S.D.) and post-test 5;03 (0.21 S.D.)) were taught to read either by an eclectic approach which included sight-word learning, guessing from context and…

  16. Dynamic Self-Organization and Early Lexical Development in Children

    ERIC Educational Resources Information Center

    Li, Ping; Zhao, Xiaowei; Whinney, Brian Mac

    2007-01-01

    In this study we present a self-organizing connectionist model of early lexical development. We call this model DevLex-II, based on the earlier DevLex model. DevLex-II can simulate a variety of empirical patterns in children's acquisition of words. These include a clear vocabulary spurt, effects of word frequency and length on age of acquisition,…

  17. Early Life Growth Predicts Pubertal Development in South African Adolescents.

    PubMed

    Lundeen, Elizabeth A; Norris, Shane A; Martorell, Reynaldo; Suchdev, Parminder S; Mehta, Neil K; Richter, Linda M; Stein, Aryeh D

    2016-03-01

    Given global trends toward earlier onset of puberty and the adverse psychosocial consequences of early puberty, it is important to understand the childhood predictors of pubertal timing and tempo. We examined the association between early growth and the timing and tempo of puberty in adolescents in South Africa. We analyzed prospectively collected data from 1060 boys and 1135 girls participating in the Birth-to-Twenty cohort in Soweto, South Africa. Height-for-age z scores (HAZs) and body mass index-for-age z scores (BMIZs) were calculated based on height (centimeters) and body mass index (kilograms per meter squared) at ages 5 y and 8 y. The development of genitals, breasts, and pubic hair was recorded annually from 9 to 16 y of age with the use of the Tanner sexual maturation scale (SMS). We used latent class growth analysis to identify pubertal trajectory classes and also characterized children as fast or slow developers based on the SMS score at 12 y of age. We used multinomial logistic regression to estimate associations of HAZ and BMIZ at ages 5 and 8 y with pubertal development. We identified 3 classes for pubic hair development (for both girls and boys) and 4 classes for breast (for girls) and genital (for boys) development. In girls, both HAZ and BMIZ at age 5 y were positively associated with pubic hair development [relative risk ratio (RRR): 1.57, P < 0.001 and RRR: 1.51, P < 0.01, respectively], as was BMI at age 8 y (RRR: 2.06, P = 0.03); similar findings were observed for breast development. In boys, HAZ and BMIZ at age 5 y were positively associated with pubic hair development (RRR: 1.78, P < 0.001 and RRR: 1.43, P < 0.01, respectively); HAZ at age 5 y was associated with development of genitals (RRR: 2.19, P < 0.01). In boys and girls, both height and body mass index in early childhood predicted the trajectory of pubertal development. This may provide a tool to identify children at risk of early pubertal onset.

  18. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  19. Early development and replacement of the stickleback dentition

    PubMed Central

    Ellis, Nicholas A.; Donde, Nikunj N.; Miller, Craig T.

    2017-01-01

    Teeth have long served as a model system to study basic questions about vertebrate organogenesis, morphogenesis, and evolution. In non-mammalian vertebrates, teeth typically regenerate throughout adult life. Fish have evolved a tremendous diversity in dental patterning in both their oral and pharyngeal dentitions, offering numerous opportunities to study how morphology develops, regenerates, and evolves in different lineages. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a new system to study how morphology evolves, and provide a particularly powerful system to study the development and evolution of dental morphology. Here we describe the oral and pharyngeal dentitions of stickleback fish, providing additional morphological, histological, and molecular evidence for homology of oral and pharyngeal teeth. Focusing on the ventral pharyngeal dentition in a dense developmental time course of lab-reared fish, we describe the temporal and spatial consensus sequence of early tooth formation. Early in development, this sequence is highly stereotypical and consists of seventeen primary teeth forming the early tooth field, followed by the first tooth replacement event. Comparing this detailed morphological and ontogenetic sequence to that described in other fish reveals that major changes to how dental morphology arises and regenerates have evolved across different fish lineages. PMID:27145214

  20. Development and refinement of computer-assisted planning and execution system for use in face-jaw-teeth transplantation to improve skeletal and dento-occlusal outcomes.

    PubMed

    Hashemi, Sepehr; Armand, Mehran; Gordon, Chad R

    2016-10-01

    To describe the development and refinement of the computer-assisted planning and execution (CAPE) system for use in face-jaw-teeth transplants (FJTTs). Although successful, some maxillofacial transplants result in suboptimal hybrid occlusion and may require subsequent surgical orthognathic revisions. Unfortunately, the use of traditional dental casts and splints pose several compromising shortcomings in the context of FJTT and hybrid occlusion. Computer-assisted surgery may overcome these challenges. Therefore, the use of computer-assisted orthognathic techniques and functional planning may prevent the need for such revisions and improve facial-skeletal outcomes. A comprehensive CAPE system for use in FJTT was developed through a multicenter collaboration and refined using plastic models, live miniature swine surgery, and human cadaver models. The system marries preoperative surgical planning and intraoperative execution by allowing on-table navigation of the donor fragment relative to recipient cranium, and real-time reporting of patient's cephalometric measurements relative to a desired dental-skeletal outcome. FJTTs using live-animal and cadaveric models demonstrate the CAPE system to be accurate in navigation and beneficial in improving hybrid occlusion and other craniofacial outcomes. Future refinement of the CAPE system includes integration of more commonly performed orthognathic/maxillofacial procedures.

  1. Developing an Early Childhood Teacher Workforce Development Strategy for Rural and Remote Communities

    ERIC Educational Resources Information Center

    Price, Anne; Jackson-Barrett, Elizabeth

    2009-01-01

    The North West Early Childhood and Primary Teacher Workforce Development Strategy offers students in the Pilbara and Kimberley the opportunity to enrol in a Western Australian University's fully accredited Bachelor of Education (Early Childhood and Primary) part time and externally--so they can continue to live and work in their communities. The…

  2. Early mathematics development and later achievement: Further evidence

    NASA Astrophysics Data System (ADS)

    Aubrey, Carol; Godfrey, Ray; Dahl, Sarah

    2006-05-01

    There is a growing international recognition of the importance of the early years of schooling as well as an interest being shown in the relationship of early education to later achievement. This article focuses on a cohort of English pupils who have been tracked through primary school during the first five years of the new National Numeracy Strategy. It reports a limited longitudinal study of young children's early mathematical development, initially within three testing cycles: at the mid-point and towards the end of their reception year (at five years-of-age) and again at the mid-point of Year 1 (at six years-ofage). These cycles were located within the broader context of progress through to the end of Key Stage 1 (at seven years) and Key Stage 2 (at eleven years) on the basis of national standardised assessment tests (SATs). Results showed that children who bring into school early mathematical knowledge do appear to be advantaged in terms of their mathematical progress through primary school. Numerical attainment increases in importance across the primary years and practical problem solving remains an important element of this. This finding is significant given the current emphasis on numerical calculation in the English curriculum. It is concluded that without active intervention, it is likely that children with little mathematical knowledge at the beginning of formal schooling will remain low achievers throughout their primary years and, probably, beyond.

  3. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    PubMed Central

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  4. Reflections on the early development of poxvirus vectors.

    PubMed

    Moss, Bernard

    2013-09-06

    Poxvirus expression vectors were described in 1982 and quickly became widely used for vaccine development as well as research in numerous fields. Advantages of the vectors include simple construction, ability to accommodate large amounts of foreign DNA and high expression levels. Numerous poxvirus-based veterinary vaccines are currently in use and many others are in human clinical trials. The early reports of poxvirus vectors paved the way for and stimulated the development of other viral vectors and recombinant DNA vaccines. Published by Elsevier Ltd.

  5. Early career professional development issues for military academic psychiatrists.

    PubMed

    Warner, Christopher H; Bobo, William V; Flynn, Julianne

    2005-01-01

    Academically motivated graduates of military psychiatric residency programs confront serious challenges. In this article, the authors present a junior faculty development model organized around four overlapping domains: mentorship, scholarship, research, and career planning/development. Using these four domains as a platform for discussion, the authors focus on challenges facing academically oriented early-career military psychiatrists and provide guidance. The authors believe that a proactive stance, skillful mentoring, self-awareness through conscious planning and effort, ability to capitalize on existing opportunities for growth, and attention to detail are all vital to the junior military psychiatrist.

  6. Development of an assisting detection system for early infarct diagnosis

    SciT

    Sim, K. S.; Nia, M. E.; Ee, C. S.

    2015-04-24

    In this paper, a detection assisting system for early infarct detection is developed. This new developed method is used to assist the medical practitioners to diagnose infarct from computed tomography images of brain. Using this assisting system, the infarct could be diagnosed at earlier stages. The non-contrast computed tomography (NCCT) brain images are the data set used for this system. Detection module extracts the pixel data from NCCT brain images, and produces the colourized version of images. The proposed method showed great potential in detecting infarct, and helps medical practitioners to make earlier and better diagnoses.

  7. Early childhood development: impact of national human development, family poverty, parenting practices and access to early childhood education.

    PubMed

    Tran, T D; Luchters, S; Fisher, J

    2017-05-01

    This study was to describe and quantify the relationships among family poverty, parents' caregiving practices, access to education and the development of children living in low- and middle-income countries (LAMIC). We conducted a secondary analysis of data collected in UNICEF's Multiple Indicator Cluster Surveys (MICS). Early childhood development was assessed in four domains: language-cognitive, physical, socio-emotional and approaches to learning. Countries were classified into three groups on the basis of the Human Development Index (HDI). Overall, data from 97 731 children aged 36 to 59 months from 35 LAMIC were included in the after analyses. The mean child development scale score was 4.93 out of a maximum score of 10 (95%CI 4.90 to 4.97) in low-HDI countries and 7.08 (95%CI 7.05 to 7.12) in high-HDI countries. Family poverty was associated with lower child development scores in all countries. The total indirect effect of family poverty on child development score via attending early childhood education, care for the child at home and use of harsh punishments at home was -0.13 SD (77.8% of the total effect) in low-HDI countries, -0.09 SD (23.8% of the total effect) in medium-HDI countries and -0.02 SD (6.9% of the total effect) in high-HDI countries. Children in the most disadvantaged position in their societies and children living in low-HDI countries are at the greatest risk of failing to reach their developmental potential. Optimizing care for child development at home is essential to reduce the adverse effects of poverty on children's early development and subsequent life. © 2016 John Wiley & Sons Ltd.

  8. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  9. Early Intravascular Events are Associated with Development of ARDS.

    PubMed

    Abdulnour, Raja-Elie E; Gunderson, Tina; Barkas, Ioanna; Timmons, Jack Y; Barnig, Cindy; Gong, Michelle; Kor, Daryl J; Gajic, Ognjen; Talmor, Daniel; Carter, Rickey E; Levy, Bruce D

    2018-05-21

    The acute respiratory distress syndrome (ARDS) is a devastating illness with limited therapeutic options. A better understanding of early biochemical and immunological events in ARDS could inform the development of new preventive and treatment strategies. To determine select peripheral blood lipid mediator and leukocyte responses in patients at-risk for ARDS. Patients at risk for ARDS were randomized as part of a multicenter, double-blind clinical trial of aspirin versus placebo (LIPS-A; NCT01504867). Plasma thromboxane B2 (TxB2), 15-epi-LXA4 (aspirin-triggered lipoxin A4, ATL), and peripheral blood leukocyte number and activation were determined upon enrollment and after treatment with either aspirin or placebo. Thirty-three of 367 subjects (9.0%) developed ARDS after randomization. Baseline ATL levels, total monocyte counts, intermediate monocyte (IntMo) counts, and Mo-PA were associated with the development of ARDS. Peripheral blood neutrophil count and monocyte-platelet aggregates significantly decreased over time. Of note, 9 subjects developed ARDS after randomization yet prior to study drug initiation, including 7 subjects assigned to aspirin treatment. Subjects without ARDS at the time of first dose demonstrated a lower incidence of ARDS with aspirin treatment. Compared with placebo, aspirin significantly decreased TxB2 and increased the ATL/TxB2 ratio. Biomarkers of intravascular monocyte activation in at-risk patients were associated with development of ARDS. The potential clinical benefit of early aspirin for prevention of ARDS remains uncertain. Together, results of the biochemical and immunological analyses provide a window into the early pathogenesis of human ARDS, and represent potential vascular biomarkers of ARDS risk.

  10. Biomaterial-based delivery for skeletal muscle repair

    PubMed Central

    Cezar, Christine A.; Mooney, David J.

    2015-01-01

    Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446

  11. Illinois Early Learning Project Tip Sheets: Physical Development and Health.

    ERIC Educational Resources Information Center

    2003

    The Illinois Early Learning Project (IEL) is funded by the Illinois State Board of Education to provide information resources on early learning and training related to implementing the Illinois Early Learning Standards for parents and for early childhood personnel in all settings. The IEL tip sheets offer suggestions to parents and early childhood…

  12. Excess iron: considerations related to development and early growth.

    PubMed

    Wessling-Resnick, Marianne

    2017-12-01

    What effects might arise from early life exposures to high iron? This review considers the specific effects of high iron on the brain, stem cells, and the process of erythropoiesis and identifies gaps in our knowledge of what molecular damage may be incurred by oxidative stress that is imparted by high iron status in early life. Specific areas to enhance research on this topic include the following: longitudinal behavioral studies of children to test associations between iron exposures and mood, emotion, cognition, and memory; animal studies to determine epigenetic changes that reprogram brain development and metabolic changes in early life that could be followed through the life course; and the establishment of human epigenetic markers of iron exposures and oxidative stress that could be monitored for early origins of adult chronic diseases. In addition, efforts to understand how iron exposure influences stem cell biology could be enhanced by establishing platforms to collect biological specimens, including umbilical cord blood and amniotic fluid, to be made available to the research community. At the molecular level, there is a need to better understand stress erythropoiesis and changes in iron metabolism during pregnancy and development, especially with respect to regulatory control under high iron conditions that might promote ineffective erythropoiesis and iron-loading anemia. These investigations should focus not only on factors such as hepcidin and erythroferrone but should also include newly identified interactions between transferrin receptor-2 and the erythropoietin receptor. Finally, despite our understanding that several key micronutrients (e.g., vitamin A, copper, manganese, and zinc) support iron's function in erythropoiesis, how these nutrients interact remains, to our knowledge, unknown. It is necessary to consider many factors when formulating recommendations on iron supplementation. © 2017 American Society for Nutrition.

  13. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  14. Early somatosensory processing in individuals at risk for developing psychoses.

    PubMed

    Hagenmuller, Florence; Heekeren, Karsten; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram

    2014-01-01

    Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia.

  15. Early somatosensory processing in individuals at risk for developing psychoses

    PubMed Central

    Hagenmuller, Florence; Heekeren, Karsten; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram

    2014-01-01

    Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia. PMID:25309363

  16. Dual effects of fluoxetine on mouse early embryonic development.

    PubMed

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50μM) for different durations. When late 2-cells were incubated with 5μM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5μM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The Proteomic Signature of Aspergillus fumigatus During Early Development*

    PubMed Central

    Cagas, Steven E.; Jain, Mohit Raja; Li, Hong; Perlin, David S.

    2011-01-01

    Aspergillus fumigatus is a saprophytic fungus that causes a range of diseases in humans including invasive aspergillosis. All forms of disease begin with the inhalation of conidia, which germinate and develop. Four stages of early development were evaluated using the gel free system of isobaric tagging for relative and absolute quantitation to determine the full proteomic profile of the pathogen. A total of 461 proteins were identified at 0, 4, 8, and 16 h and fold changes for each were established. Ten proteins including the hydrophobin rodlet protein RodA and a protein involved in melanin synthesis Abr2 were found to decrease relative to conidia. To generate a more comprehensive view of early development, a whole genome microarray analysis was performed comparing conidia to 8 and 16 h of growth. A total of 1871 genes were found to change significantly at 8 h with 1001 genes up-regulated and 870 down-regulated. At 16 h, 1235 genes changed significantly with 855 up-regulated and 380 down-regulated. When a comparison between the proteomics and microarray data was performed at 8 h, a total of 22 proteins with significant changes also had corresponding genes that changed significantly. When the same comparison was performed at 16 h, 12 protein and gene combinations were found. This study, the most comprehensive to date, provides insights into early pathways activated during growth and development of A. fumigatus. It reveals a pathogen that is gearing up for rapid growth by building translation machinery, generating ATP, and is very much committed to aerobic metabolism. PMID:21825280

  18. Clinical assessment of early language development: a simplified short form of the Mandarin communicative development inventory.

    PubMed

    Soli, Sigfrid D; Zheng, Yun; Meng, Zhaoli; Li, Gang

    2012-09-01

    The purpose of this study was to develop a practical mean for clinical evaluation of early pediatric language development by establishing developmental trajectories for receptive and expressive vocabulary growth in children between 6 and 32 months of age using a simple, time-efficient assessment tool. Simplified short form versions of the Words and Gestures and Words and Sentences vocabulary inventories in the Mandarin Communicative Development Inventory [1] were developed and used to assess early language development in developmentally normal children from 6 to 32 months of age during routine health checks. Developmental trajectories characterizing the rate of receptive and expressive vocabulary growth between 6 and 32 months of age are reported. These trajectories allow the equivalent age corresponding to a score to be determined after a brief structured interview with the child's parents that can be conducted in a busy clinical setting. The simplified short forms of the Mandarin Communicative Development Inventories can serve as a clinically useful tool to assess early child language development, providing a practical mean of objectively assessing early language development following early interventions to treat young children with hearing impairment as well as speech and language delays. Objective evidence of language development is essential for achievement of effective (re)habilitation outcomes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Studies toward birth and early mammalian development in space

    NASA Astrophysics Data System (ADS)

    Ronca, April E.

    2003-10-01

    Sustaining life beyond Earth on either space stations or other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction and development. Pregnancy, parturition (birth) and the early development of offspring are complex processes essential for successful reproduction and the proliferation of mammalian species. While no mammal has yet undergone birth within the space environment, studies spanning the gravity continuum from 0- to 2-g are revealing startling insights into how reproduction and development may proceed under gravitational conditions deviating from those typically experienced on Earth. In this report, I review studies of pregnant Norway rats and their offspring flown in microgravity (μg) onboard the NASA Space Shuttle throughout the period corresponding to mid- to late gestation, and analogous studies of pregnant rats exposed to hypergravity ( ht) onboard the NASA Ames Research Center 24-ft centrifuge. Studies of postnatal rats flown in space or exposed to centrifugation are reviewed. Although many important questions remain unanswered, the available data suggest that numerous aspects of pregnancy, birth and early mammalian development can proceed under altered gravity conditions. Published by Elsevier Ltd on behalf of COSPAR.

  20. Toward an Integrated View of Early Language and Communication Development and Socioemotional Development.

    ERIC Educational Resources Information Center

    Prizant, Barry M.; Wetherby, Amy M.

    1990-01-01

    The article reviews literature on the integrated nature of early communication and socioemotional development in children. It discusses two models, one addressing the role of the development of mutual (interactive) and self-regulatory capacities in young children's socioemotional development, and a transactional model conceptualizing the complex…

  1. Chaos, Poverty, and Parenting: Predictors of Early Language Development

    PubMed Central

    Vernon-Feagans, Lynne; Garrett-Peters, Patricia; Willoughby, Mike; Mills-Koonce, Roger

    2011-01-01

    Studies have shown that distal family risk factors like poverty and maternal education are strongly related to children's early language development. Yet, few studies have examined these risk factors in combination with more proximal day-to-day experiences of children that might be critical to understanding variation in early language. Young children's exposure to a chronically chaotic household may be one critical experience that is related to poorer language, beyond the contribution of SES and other demographic variables. In addition, it is not clear whether parenting might mediate the relationship between chaos and language. The purpose of this study was to understand how multiple indicators of chaos over children's first three years of life, in a representative sample of children living in low wealth rural communities, were related to child expressive and receptive language at 36 months. Factor analysis of 10 chaos indicators over five time periods suggested two factors that were named household disorganization and instability. Results suggested that after accounting for thirteen covariates like maternal education and poverty, one of two chaos composites (household disorganization) accounted for significant variance in receptive and expressive language. Parenting partially mediated this relationship although household disorganization continued to account for unique variance in predicting early language. PMID:23049162

  2. Macrosomia has its roots in early placental development

    PubMed Central

    Schwartz, Nadav; Quant, Hayley S.; Sammel, Mary D.; PARRY, Samuel

    2014-01-01

    Introduction We sought to determine if early placental size, as measured by 3-dimensional ultrasonography, is associated with an increased risk of delivering a macrosomic or large-for-gestational age (LGA) infant. Methods We prospectively collected 3-dimensional ultrasound volume sets of singleton pregnancies at 11–14 weeks and 18–24 weeks. Birth weights were collected from the medical records. After delivery, the ultrasound volume set were used to measure the placental volume (PV) and placental quotient (PQ=PV/gestational age), as well as the mean placental and chorionic diameters (MPD and MCD, respectively). Placental measures were analyzed as predictors of macrosomia (birth weight ≥4000 grams) and LGA (birth weight ≥90th percentile). Results The 578 pregnancies with first trimester volumes included 44 (7.6%) macrosomic and 43 (7.4%) LGA infants. 373 subjects also had second trimester volumes available. A higher PV and PQ were both significantly associated with macrosomia and LGA in both the first and second trimesters. Second trimester MPD was significantly associated with both outcomes as well, while second trimester MCD was only associated with LGA. The above associations remained significant after adjusting for maternal demographic variables such as race, ethnicity, age and diabetes. Adjusted models yielded moderate prediction of macrosomia and LGA (AUC: 0.71–0.77). Conclusions Sonographic measurement of the early placenta can identify pregnancies at greater risk of macrosomia and LGA. Macrosomia and LGA are already determined in part by early placental growth and development. PMID:25064071

  3. Fathers’ Sensitive Parenting and the Development of Early Executive Functioning

    PubMed Central

    Towe-Goodman, Nissa R.; Willoughby, Michael; Blair, Clancy; Gustafsson, Hanna C.; Mills-Koonce, W. Roger; Cox, Martha J.

    2014-01-01

    Using data from a diverse sample of 620 families residing in rural, predominately low-income communities, this study examined longitudinal links between fathers’ sensitive parenting in infancy and toddlerhood and children’s early executive functioning, as well as the contribution of maternal sensitive parenting. After accounting for the quality of concurrent and prior parental care, children’s early cognitive ability, and other child and family factors, fathers’ and mothers’ sensitive and supportive parenting during play at 24-months predicted children’s executive functioning at 3-years of age. In contrast, paternal parenting quality during play at 7-months did not make an independent contribution above that of maternal care, but the links between maternal sensitive and supportive parenting and executive functioning seemed to operate in similar ways during infancy and toddlerhood. These findings add to prior work on early experience and children’s executive functioning, suggesting that both fathers and mothers play a distinct and complementary role in the development of these self-regulatory skills. PMID:25347539

  4. Regional early development and eruption of permanent teeth: case report.

    PubMed

    Al Mullahi, A M; Bakathir, A; Al Jahdhami, S

    2017-02-01

    Early development and eruption of permanent teeth are rarely reported in scientific literature. Early eruption of permanent teeth has been reported to occur due to local factors such as trauma or dental abscesses in primary teeth, and in systemic conditions. Congenital diffuse infiltrating facial lipomatosis (CDIFL) is a rare condition that belongs to a group of lipomatosis tumours. In this disorder, the mature adipocytes invade adjacent soft and hard tissues in the facial region. Accelerated tooth eruption is one of the dental anomalies associated with CDIFL. A 3-year-old boy presented with a swelling of the lower lip localised early development and eruption of permanent teeth and dental caries involving many primary teeth. The planned treatment included biopsy of the swollen lower lip to confirm the diagnosis, surgical reduction and reconstruction of lip aesthetics. The management of the carious primary teeth included preventative and comprehensive dental care and extractions. These procedures were completed under general anaesthesia due to the child's young age and poor cooperation. The lip biopsy showed features of CDIFL such as the presence of infiltrating adipose tissue, prominent number of nerve bundles and thickened vessels. The high recurrence rate of CDIFL mandates long-term monitoring during the facial growth period of the child. Follow-up care by the paediatric dentist and maxillofacial surgeon has been required to manage all aspects of this congenital malformation. This rare disorder has many implications affecting child's facial aesthetics, psychological well being, developing occlusion and risk of dental caries. A multi-disciplinary approach is needed for management of this condition.

  5. Environmental estrogens alter early development in Xenopus laevis.

    PubMed

    Bevan, Cassandra L; Porter, Donna M; Prasad, Anita; Howard, Marthe J; Henderson, Leslie P

    2003-04-01

    A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants.

  6. Development of a GNSS-Enhanced Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Bawden, G. W.; Melbourne, T. I.; Bock, Y.; Song, Y. T.; Komjathy, A.

    2015-12-01

    The past decade has witnessed a terrible loss of life and economic disruption caused by large earthquakes and resultant tsunamis impacting coastal communities and infrastructure across the Indo-Pacific region. NASA has funded the early development of a prototype real-time Global Navigation Satellite System (RT-GNSS) based rapid earthquake and tsunami early warning (GNSS-TEW) system that may be used to enhance seismic tsunami early warning systems for large earthquakes. This prototype GNSS-TEW system geodetically estimates fault parameters (earthquake magnitude, location, strike, dip, and slip magnitude/direction on a gridded fault plane both along strike and at depth) and tsunami source parameters (seafloor displacement, tsunami energy scale, and 3D tsunami initials) within minutes after the mainshock based on dynamic numerical inversions/regressions of the real-time measured displacements within a spatially distributed real-time GNSS network(s) spanning the epicentral region. It is also possible to measure fluctuations in the ionosphere's total electron content (TEC) in the RT-GNSS data caused by the pressure wave from the tsunami. This TEC approach can detect if a tsunami has been triggered by an earthquake, track its waves as they propagate through the oceanic basins, and provide upwards of 45 minutes early warning. These combined real-time geodetic approaches will very quickly address a number of important questions in the immediate minutes following a major earthquake: How big was the earthquake and what are its fault parameters? Could the earthquake have produced a tsunami and was a tsunami generated?

  7. Gross motor development is delayed following early cardiac surgery.

    PubMed

    Long, Suzanne H; Harris, Susan R; Eldridge, Beverley J; Galea, Mary P

    2012-10-01

    To describe the gross motor development of infants who had undergone cardiac surgery in the neonatal or early infant period. Gross motor performance was assessed when infants were 4, 8, 12, and 16 months of age with the Alberta Infant Motor Scale. This scale is a discriminative gross motor outcome measure that may be used to assess infants from birth to independent walking. Infants were videotaped during the assessment and were later evaluated by a senior paediatric physiotherapist who was blinded to each infant's medical history, including previous clinical assessments. Demographic, diagnostic, surgical, critical care, and medical variables were considered with respect to gross motor outcomes. A total of 50 infants who underwent elective or emergency cardiac surgery at less than or up to 8 weeks of age, between July 2006 and January 2008, were recruited to this study and were assessed at 4 months of age. Approximately, 92%, 84%, and 94% of study participants returned for assessment at 8, 12, and 16 months of age, respectively. Study participants had delayed gross motor development across all study time points; 62% of study participants did not have typical gross motor development during the first year of life. Hospital length of stay was associated with gross motor outcome across infancy. Active gross motor surveillance of all infants undergoing early cardiac surgery is recommended. Further studies of larger congenital heart disease samples are required, as are longitudinal studies that determine the significance of these findings at school age and beyond.

  8. Early anther ablation triggers parthenocarpic fruit development in tomato.

    PubMed

    Medina, Mónica; Roque, Edelín; Pineda, Benito; Cañas, Luis; Rodriguez-Concepción, Manuel; Beltrán, José Pío; Gómez-Mena, Concepción

    2013-08-01

    Fruit set and fruit development in tomato is largely affected by changes in environmental conditions, therefore autonomous fruit set independent of fertilization is a highly desirable trait in tomato. Here, we report the production and characterization of male-sterile transgenic plants that produce parthenocarpic fruits in two tomato cultivars (Micro-Tom and Moneymaker). We generated male-sterility using the cytotoxic gene barnase targeted to the anthers with the PsEND1 anther-specific promoter. The ovaries of these plants grew in the absence of fertilization producing seedless, parthenocarpic fruits. Early anther ablation is essential to trigger the developing of the transgenic ovaries into fruits, in the absence of the signals usually generated during pollination and fertilization. Ovaries are fully functional and can be manually pollinated to obtain seeds. The transgenic plants obtained in the commercial cultivar Moneymaker show that the parthenocarpic development of the fruit does not have negative consequences in fruit quality. Throughout metabolomic analyses of the tomato fruits, we have identified two elite lines which showed increased levels of several health promoting metabolites and volatile compounds. Thus, early anther ablation can be considered a useful tool to promote fruit set and to obtain seedless and good quality fruits in tomato plants. These plants are also useful parental lines to be used in hybrid breeding approaches. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Early Numeracy Assessment: The Development of the Preschool Numeracy Scales

    PubMed Central

    Purpura, David J.; Lonigan, Christopher J.

    2015-01-01

    Research Findings The focus of this study was to construct and validate twelve brief early numeracy assessment tasks that measure the skills and concepts identified as key to early mathematics development by the National Council of Teachers of Mathematics (2006) and the National Mathematics Advisory Panel (2008)—as well as critical developmental precursors to later mathematics skill by the Common Core State Standards (CCSS; 2010). Participants were 393 preschool children ages 3 to 5 years old. Measure development and validation occurred through three analytic phases designed to ensure that the measures were brief, reliable, and valid. These measures included: one-to-one counting, cardinality, counting subsets, subitizing, number comparison, set comparison, number order, numeral identification, set-to-numerals, story problems, number combinations, and verbal counting. Practice or Policy Teachers have extensive demands on their time, yet, they are tasked with ensuring that all students’ academic needs are met. To identify individual instructional needs and measure progress, they need to be able to efficiently assess children’s numeracy skills. The measures developed in this study are not only reliable and valid, but also easy to use and can be utilized for measuring the effects of targeted instruction on individual numeracy skills. PMID:25709375

  10. APECS: A Network for Polar Early Career Scientist Professional Development

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.

    2014-12-01

    The Association of Polar Early Career Researchers (APECS) is an international and interdisciplinary organization for undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in the polar regions, alpine regions and the wider Cryosphere. APECS is a scientific, non-profit organization with free individual membership that aims to stimulate research collaborations and develop effective future leaders in polar research, education, and outreach. APECS grew out of the 4th International Polar Year (2007-08), which emphasized the need to stimulate and nurture the next generation of scientists in order to improve the understanding and communication of the polar regions and its global connections. The APECS organizational structure includes a Council and an elected Executive Committee that are supported by a Directorate. These positions are open to all individual members through a democratic process. The APECS Directorate is funded by the Norwegian Research Council, the University of Tromsø and the Norwegian Polar Institute and is hosted by the University of Tromsø. Early career scientists benefit from a range of activities hosted/organized by APECS. Every year, numerous activities are run with partner organizations and in conjunction with major polar conferences and meetings. In-person and online panels and workshops focus on a range of topics, from developing field skills to applying for a job after graduate school. Career development webinars are hosted each fall and topical research webinars are hosted throughout the year and archived online (http://www.apecs.is). The APECS website also contains abundant information on polar news, upcoming conferences and meetings, and job postings for early career scientists. To better respond to members' needs, APECS has national/regional committees that are linked to the international overarching organization. Many of these committees organize regional meetings or

  11. Prenatal programming of skeletal development in the offspring: effects of maternal treatment with beta-hydroxy-beta-methylbutyrate (HMB) on femur properties in pigs at slaughter age.

    PubMed

    Tatara, Marcin R; Sliwa, Ewa; Krupski, Witold

    2007-06-01

    Alteration in fetal growth and development in response to prenatal environmental conditions such as nutrition has long-term or permanent effects during postnatal life. The aim of this study was to investigate effects of beta-hydroxy-beta-methylbutyrate (HMB) treatment of sows during the last 2 weeks of pregnancy on programming of skeletal development in the offspring. The study was performed on 141 pigs born by 12 sows of Polish Landrace breed. Two weeks before delivery, pregnant sows were divided into two groups. The first group consisted of control sows (N=6) that were treated with placebo. Sows that were orally treated with beta-hydroxy-beta-methylbutyrate (N=6) at the dosage of 0.05 g/kg of body weight per day belonged to the second group. Newborn piglets were weighed and subjected to blood collection for determination of serum levels of growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin, leptin, glucose and bone alkaline phosphatase (BAP) activity and lipid profile. At the age of 6 months, the piglets were slaughtered, their femur was isolated for analysis and assessment of lean meat content of carcasses was performed. The effects of maternal administration with HMB on skeletal properties in the offspring were evaluated in relation to bone mineral density and geometrical and mechanical properties. Maternal treatment with HMB increased serum levels of GH, IGF-1 and BAP activity in the newborns by 38.0%, 20.0% and 26.0%, respectively (P<0.01). HMB administration significantly increased volumetric bone mineral density of the trabecular and cortical bone of femur in the offspring at the age of 6 months (P<0.001). The weight of femur and geometrical parameters such as cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were significantly increased after HMB treatment (P<0.05). HMB induced higher values of maximum elastic strength and ultimate strength of femur (P<0.01). Furthermore, lean meat content of

  12. Brief Communication: Skeletal and dental development in a sub-adult western lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Joganic, Jessica L

    2016-01-01

    Non-human primate growth trajectories are often used to estimate the age and life history traits of fossil taxa. The exclusive use of chimpanzee growth patterns to estimate developmental stages for the earliest hominins is problematic because incomplete lineage sorting in the hominoid clade has produced a mosaic human genome that contains different regions shared with any one of the great apes. The accidental death of a sub-adult male western lowland gorilla (Gorilla gorilla gorilla) provides not only an opportunity to compare the degree of dentoskeletal maturation in this individual with published data from conspecifics, but also insight into gorilla growth and development as it applies to modeling that of early hominins. Dental stage was assessed for a sub-adult male western lowland gorilla by comparing dental eruption and calcification to established relative age categories. Ectocranial suture fusion, epiphyseal union, and long bone dimensions were compared to growth standards for wild male gorillas of a similar dental stage to determine developmental timing variability. Results suggest that greater variability exists in developmental rates and patterns and in morphological parameters than is often acknowledged. These results have implications for selecting appropriate models for studying extinct taxa. Ecological and physical characteristics shared between humans and gorillas may make gorilla life history equally valid in a comparative framework and encourage non-exclusive use of chimpanzee life history for paleoanthropological models. © 2015 Wiley Periodicals, Inc.

  13. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  14. Medical students' professional identity development in an early nursing attachment.

    PubMed

    Helmich, Esther; Derksen, Els; Prevoo, Mathieu; Laan, Roland; Bolhuis, Sanneke; Koopmans, Raymond

    2010-07-01

    The importance of early clinical experience for medical training is well documented. However, to our knowledge there are no studies that assess the influence of very early nursing attachments on the professional development and identity construction of medical students. Working as an assistant nurse while training to be a doctor may offer valuable learning experiences, but may also present the student with difficulties with respect to identity and identification issues. The aim of the present study was to describe first-year medical students' perceptions of nurses, doctors and their own future roles as doctors before and after a nursing attachment. A questionnaire containing open questions concerning students' perceptions of nurses, doctors and their own future roles as doctors was administered to all Year 1 medical students (n=347) before and directly after a 4-week nursing attachment in hospitals and nursing homes. We carried out two confirmatory focus group interviews. We analysed the data using qualitative and quantitative content analyses. The questionnaire was completed by 316 students (response rate 91%). Before starting the attachment students regarded nurses as empathic, communicative and responsible. After the attachment students reported nurses had more competencies and responsibilities than they had expected. Students' views of doctors were ambivalent. Before and after the attachment, doctors were seen as interested and reliable, but also as arrogant, detached and insensible. However, students maintained positive views of their own future roles as doctors. Students' perceptions were influenced by age, gender and place of attachment. An early nursing attachment engenders more respect for the nursing profession. The ambivalent view of doctors needs to be explored further in relation to students' professional development. It would seem relevant to attune supervision to the age and gender differences revealed in this study.

  15. Stage of perinatal development regulates skeletal muscle mitochondrial biogenesis and myogenic regulatory factor genes with little impact of growth restriction or cross-fostering.

    PubMed

    Laker, R C; Wadley, G D; McConell, G K; Wlodek, M E

    2012-02-01

    Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.

  16. Early Childhood Development and Iranian Parents' Knowledge: A Qualitative Study.

    PubMed

    Habibi, Elham; Sajedi, Firouzeh; Afzali, Hosein Malek; Hatamizadeh, Nikta; Shahshahanipour, Soheila; Glascoe, Frances Page

    2017-01-01

    Early childhood is the most important step throughout the lifespan and it is a critical period continuing to the end of 8-year-old. Mothers' knowledge is one of the important aspects of child development. The goals of this study were to determine the situation of knowledge in Iranian parents about the concept and the importance of early childhood development (ECD) and determining the sources of parental knowledge about ECD from the perspective of parents and grandparents. This qualitative study was conducted based on the directional content analysis in 2016. The purposive sampling method is utilized to select 24 participants among parents and grandparents in Tehran. The inclusion criteria consisted of speaking in Persian and having a child or grandchild <3-year-old. Data were collected through four focus group discussions and four individual interviews. Iranian parental knowledge about integrative ECD is not enough, their knowledge about motor development and speech and language are relatively better, about cognitive development is little and socialemotional is very little. They said parents and other caregivers influence the process of children's development. Parents' knowledge resources about ECD included human resources, physical resources, virtual space, and the media. According to the majority of participants, "pediatricians are the most reliable source of parents' knowledge about ECD" even though the main focus of pediatricians is on treating diseases, physical health, and growth of children. According to the results, the knowledge of Iranian parent is not enough about ECD; therefore, actions must be taken to increase their knowledge in these domains. Parents look for reliable and valid sources to enhance their knowledge and they rely the most on pediatricians in this regard. Therefore, more studies on assessing parents' knowledge in community and the practical methods for knowledge promotion in this field is recommended.

  17. Early-stage aeolian protodune development and migration

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Baddock, M. C.; Wiggs, G.

    2017-12-01

    Early-stage bedforms, or protodunes, can be observed to form on sandy beaches, desert gravels or superimposed on the surfaces of larger dunes and can develop topography of 0.1 m or more over several hours. These protodunes are the precursors to embryo and eventually mature dunes, and so it is important to understand how feedbacks between flow, transport and form contribute to this development sequence. Whilst theory and conceptual models have offered some explanation for protodune existence and development, we know surprisingly little about how these bedforms initiate and migrate because it is difficult to measure small changes in form (millimetres; seconds) on highly active surfaces of limited topographic expression. Here, we employ terrestrial laser scanning (TLS) to measure morphological change at the high frequency and spatial resolution (sub-millimetre) required to gain new insights into protodune behaviour. Along with TLS derived saltation and surface moisture, additional sediment flux and windspeed measurements help to elucidate how the protodune topography interacts with airflow and sand transport. We focus on a number of coastal bedforms in various development stages including a 0.06 m high protodune which grew vertically by 0.005 m in two hours with the switch from erosion to deposition identified to occur at a point 0.07 m upwind of the crest. This growth was associated with a reduction in time-averaged sediment flux of 18% over the crestal region. We also observed a decline in lower stoss slope steepness (by 3°) and a steepening of the lee slope, indicating a reshaping of initial protodune form towards the morphology of a more mature dune. Our findings highlight the crucial role of form-flow feedbacks, even on very small bedforms, in driving early-stage bedform growth and development, and show how the use of high resolution TLS to measure both surface topography and grains moving above the surface, can offer new insights into a long standing deficiency

  18. Determinants of early child development in rural Tanzania.

    PubMed

    Ribe, Ingeborg G; Svensen, Erling; Lyngmo, Britt A; Mduma, Estomih; Hinderaker, Sven G

    2018-01-01

    It has been estimated that more than 200 million children under the age of five do not reach their full potential in cognitive development. Much of what we know about brain development is based on research from high-income countries. There is limited evidence on the determinants of early child development in low-income countries, especially rural sub-Saharan Africa. The present study aimed to identify the determinants of cognitive development in children living in villages surrounding Haydom, a rural area in north-central Tanzania. This cohort study is part of the MAL-ED (The Interactions of Malnutrition & Enteric Infections: Consequences for Child Health and Development) multi-country consortium studying risk factors for ill health and poor development in children. Descriptive analysis and linear regression analyses were performed. Associations between nutritional status, socio-economic status, and home environment at 6 months of age and cognitive outcomes at 15 months of age were studied. The third edition of the Bayley Scales for Infant and Toddler Development was used to assess cognitive, language and motor development. There were 262 children enrolled into the study, and this present analysis included the 137 children with data for 15-month Bayley scores. Univariate regression analysis, weight-for-age and weight-for-length z-scores at 6 months were significantly associated with 15-month Bayley gross motor score, but not with other 15-month Bayley scores. Length-for-age z-scores at 6 months were not significantly associated with 15-month Bayley scores. The socio-economic status, measured by a set of assets and monthly income was significantly associated with 15-month Bayley cognitive score, but not with language, motor, nor total 15-month Bayley scores. Other socio-economic variables were not significantly associated with 15-month Bayley scores. No significant associations were found between the home environment and 15-month Bayley scores. In multivariate

  19. Downregulation of ribosome biogenesis during early forebrain development

    PubMed Central

    Chau, Kevin F; Shannon, Morgan L; Fame, Ryann M; Fonseca, Erin; Mullan, Hillary; Johnson, Matthew B; Sendamarai, Anoop K; Springel, Mark W; Laurent, Benoit

    2018-01-01

    Forebrain precursor cells are dynamic during early brain development, yet the underlying molecular changes remain elusive. We observed major differences in transcriptional signatures of precursor cells from mouse forebrain at embryonic days E8.5 vs. E10.5 (before vs. after neural tube closure). Genes encoding protein biosynthetic machinery were strongly downregulated at E10.5. This was matched by decreases in ribosome biogenesis and protein synthesis, together with age-related changes in proteomic content of the adjacent fluids. Notably, c-MYC expression and mTOR pathway signaling were also decreased at E10.5, providing potential drivers for the effects on ribosome biogenesis and protein synthesis. Interference with c-MYC at E8.5 prematurely decreased ribosome biogenesis, while persistent c-MYC expression in cortical progenitors increased transcription of protein biosynthetic machinery and enhanced ribosome biogenesis, as well as enhanced progenitor proliferation leading to subsequent macrocephaly. These findings indicate large, coordinated changes in molecular machinery of forebrain precursors during early brain development. PMID:29745900

  20. Early Development of the Gut Microbiota and Immune Health

    PubMed Central

    Francino, M. Pilar

    2014-01-01

    In recent years, the increase in human microbiome research brought about by the rapidly evolving “omic” technologies has established that the balance among the microbial groups present in the human gut, and their multipronged interactions with the host, are crucial for health. On the other hand, epidemiological and experimental support has also grown for the ‘early programming hypothesis’, according to which factors that act in utero and early in life program the risks for adverse health outcomes later on. The microbiota of the gut develops during infancy, in close interaction with immune development, and with extensive variability across individuals. It follows that the specific process of gut colonization and the microbe-host interactions established in an individual during this period have the potential to represent main determinants of life-long propensity to immune disease. Although much remains to be learnt on the progression of events by which the gut microbiota becomes established and initiates its intimate relationships with the host, and on the long-term repercussions of this process, recent works have advanced significatively in this direction. PMID:25438024

  1. Elevated aminopeptidase N affects sperm motility and early embryo development

    PubMed Central

    Ryu, Do-Yeal; Kwon, Woo-Sung

    2017-01-01

    Aminopeptidase N (APN) is a naturally occurring ectopeptidase present in mammalian semen. Previous studies have demonstrated that APN adversely affects male fertility through the alteration of sperm motility. This enzyme constitutes 0.5 to 1% of the seminal plasma proteins, which can be transferred from the prostasomes to sperms by a fusion process. In the present study, we investigated the molecular mechanism of action of APN and its role in regulating sperm functions and male fertility. In this in vitro study, epididymal mouse spermatozoa were incubated in a capacitating media (pH 7) containing 20 ng/mL of recombinant mouse APN for 90 min. Our results demonstrated that the supplementation of recombinant APN in sperm culture medium significantly increased APN activity, and subsequently altered motility, hyperactivated motility, rapid and medium swimming speeds, viability, and the acrosome reaction of mouse spermatozoa. These effects were potentially caused by increased toxicity in the spermatozoa. Further, altered APN activity in sperm culture medium affected early embryonic development. Interestingly, the effect of elevated APN activity in sperm culture medium was independent of protein tyrosine phosphorylation and protein kinase A activity. On the basis of these results, we concluded that APN plays a significant role in the regulation of several sperm functions and early embryonic development. In addition, increased APN activity could potentially lead to several adverse consequences related to male fertility. PMID:28859152

  2. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  3. Early lexical development in Spanish-speaking infants and toddlers.

    PubMed

    Jackson-Maldonado, D; Thal, D; Marchman, V; Bates, E; Gutierrez-Clellen, V

    1993-10-01

    This paper describes the early lexical development of a group of 328 normal Spanish-speaking children aged 0;8 to 2;7. First the development and structure of a new parent report instrument, Inventario del Desarollo de Habilidades Communicativas is described. Then five studies carried out with the instrument are presented. In the first study vocabulary development of Spanish-speaking infants and toddlers is compared to that of English-speaking infants and toddlers. The English data were gathered using a comparable parental report, the MacArthur Communicative Development Inventories. In the second study the general characteristics of Spanish language acquisition, and the effects of various demographic factors on that process, are examined. Study 3 examines the differential effects of three methods of collecting the data (mail-in, personal interview, and clinic waiting room administration). Studies 4 and 5 document the reliability and validity of the instrument. Results show that the trajectories of development are very similar for Spanish- and English-speaking children in this age range, that children from varying social groups develop similarly, and that mail-in and personal interview administration techniques produce comparable results. Inventories administered in a medical clinic waiting room, on the other hand, produced lower estimates of toddler vocabulary than the other two models.

  4. Altered Gravity and Early Heart Development in Culture

    NASA Technical Reports Server (NTRS)

    Wiens, Darrell J.; Lwigale, P.; Denning, J.

    1996-01-01

    The macromolecules comprising the cytoskeleton and extracellular matrix of cells may be sensitive to gravitation. Since early development of organs depends on dynamic interactions across cell surfaces, altered gravity may disturb development. We investigated this possibility for heart development. Previous studies showed that the extracellular matrix glycoprotein fibronectin (Fn) is necessary for normal heart development. We cultured precardiac tissue explants in a high aspect ratio bioreactor vessel (HARV) to simulate microgravity. We observed tissue morphology, contraction, and Fn distribution by immunolocalization in HARV rotated and control (lxg) explants, cultured 18 hr. We also measured Fn amount by immunoassay. Explants in HARV were rotated at 6 rpm to achieve continuous freefall. Thirty-five of 37 control, but only 1 of 37 matched rotated explants exhibited contractions. Tissue architecture was identical. Immunolocalization of Fn showed remarkable differences which may be related to the development of contractions. The Fn staining in the HARV explants was less intense in all areas. Areas of linear staining along epithelia were present but shorter, and there was less intercellular staining in both mesenchymal tissue and myocardium. Initial immunoassay results of 5 matched pairs of explants showed a 22% reduction in total tissue Fn in the HARV rotated samples. Our results indicate that altered gravity in the HARV reduced the amount and distribution of Fn, as assessed by two independent criteria. This was correlated with a reduction in the development of contractile activity.

  5. Antenatal/early postnatal hypothyroidism increases the contribution of Rho-kinase to contractile responses of mesenteric and skeletal muscle arteries in adult rats.

    PubMed

    Gaynullina, Dina K; Sofronova, Svetlana I; Shvetsova, Anastasia A; Selivanova, Ekaterina K; Sharova, Anna P; Martyanov, Andrey A; Tarasova, Olga S

    2018-05-23

    Maternal thyroid deficiency can increase Rho-kinase procontractile influence in arteries of 2-week-old progeny. Here we hypothesized that augmented role of Rho-kinase persists in arteries from adult progeny of hypothyroid rats. Dams were treated with 6-propyl-2-thiouracil (PTU) in drinking water (0.0007%) during pregnancy and 2 weeks postpartum; control (CON) females received PTU-free water. At the age of 10-12-weeks, serum T 3 /T 4 levels did not differ between PTU and CON male offspring. Cutaneous (saphenous), mesenteric, and skeletal muscle (sural) arteries were studied by wire myography, qPCR, and Western blotting. Saphenous arteries of PTU and CON groups showed similar responses to α 1 -adrenoceptor agonist methoxamine and were equally suppressed by Rho-kinase inhibitor Y27632. Responses of mesenteric arteries also did not differ between PTU and CON, but the effects of Y27632 were more prominent in the PTU group. Sural arteries of PTU rats compared to CON demonstrated augmented responses to methoxamine, increased RhoA mRNA contents and higher levels of MYPT1 phosphorylation at Thr 855 . Intergroup differences in contractile responses and phospho-MYPT1-Thr 855 were eliminated by Y27632. Rho-kinase contribution to contractile responses of mesenteric and especially sural arteries is augmented in adult PTU rats. Therefore, maternal thyroid deficiency may have long-term detrimental consequences for vasculature in adult offspring.

  6. Behavioral development in embryonic and early juvenile cuttlefish (Sepia officinalis).

    PubMed

    O'Brien, Caitlin E; Mezrai, Nawel; Darmaillacq, Anne-Sophie; Dickel, Ludovic

    2017-03-01

    Though a mollusc, the cuttlefish Sepia officinalis possesses a sophisticated brain, advanced sensory systems, and a large behavioral repertoire. Cuttlefish provide a unique perspective on animal behavior due to their phylogenic distance from more traditional (vertebrate) models. S. officinalis is well-suited to addressing questions of behavioral ontogeny. As embryos, they can perceive and learn from their environment and experience no direct parental care. A marked progression in learning and behavior is observed during late embryonic and early juvenile development. This improvement is concomitant with expansion and maturation of the vertical lobe, the cephalopod analog of the mammalian hippocampus. This review synthesizes existing knowledge regarding embryonic and juvenile development in this species in an effort to better understand cuttlefish behavior and animal behavior in general. It will serve as a guide to future researchers and encourage greater awareness of the utility of this species to behavioral science. © 2016 Wiley Periodicals, Inc.

  7. Transposable elements as genetic regulatory substrates in early development.

    PubMed

    Gifford, Wesley D; Pfaff, Samuel L; Macfarlan, Todd S

    2013-05-01

    The abundance and ancient origins of transposable elements (TEs) in eukaryotic genomes has spawned research into the potential symbiotic relationship between these elements and their hosts. In this review, we introduce the diversity of TEs, discuss how distinct classes are uniquely regulated in development, and describe how they appear to have been coopted for the purposes of gene regulation and the orchestration of a number of processes during early embryonic development. Although young, active TEs play an important role in somatic tissues and evolution, we focus mostly on the contributions of the older, fixed elements in mammalian genomes. We also discuss major challenges inherent in the study of TEs and contemplate future experimental approaches to further investigate how they coordinate developmental processes. Published by Elsevier Ltd.

  8. Transposable elements as genetic regulatory substrates in early development

    PubMed Central

    Gifford, Wesley D.; Pfaff, Samuel L.; Macfarlan, Todd S.

    2014-01-01

    The abundance and ancient origins of transposable elements (TEs) in eukaryotic genomes has spawned research into the potential symbiotic relationship between these elements and their hosts. In this review, we introduce the diversity of TEs, discuss how distinct classes are uniquely regulated in development, and describe how they appear to have been coopted for the purposes of gene regulation and the orchestration of a number of processes during early embryonic development. Although young, active TEs play an important role in somatic tissues and evolution, we focus mostly on the contributions of the older, fixed elements in mammalian genomes. We also discuss major challenges inherent in the study of TEs and contemplate future experimental approaches to further investigate how they coordinate developmental processes. PMID:23411159

  9. Modeling and managing risk early in software development

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.

    1993-01-01

    In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.

  10. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  11. Mechanotransduction in skeletal muscle.

    PubMed

    Burkholder, Thomas J

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3' kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction.

  12. Brain Development and Early Learning: Research on Brain Development. Quality Matters. Volume 1, Winter 2007

    ERIC Educational Resources Information Center

    Edie, David; Schmid, Deborah

    2007-01-01

    For decades researchers have been aware of the extraordinary development of a child's brain during the first five years of life. Recent advances in neuroscience have helped crystallize earlier findings, bringing new clarity and understanding to the field of early childhood brain development. Children are born ready to learn. They cultivate 85…

  13. Development of a Human Neurovascular Unit Organotypic Systems Model of Early Brain Development

    EPA Science Inventory

    The inability to model human brain and blood-brain barrier development in vitro poses a major challenge in studies of how chemicals impact early neurogenic periods. During human development, disruption of thyroid hormone (TH) signaling is related to adverse morphological effects ...

  14. Loss of ephrinB1 in osteogenic progenitor cells impedes endochondral ossification and compromises bone strength integrity during skeletal development.

    PubMed

    Nguyen, Thao M; Arthur, Agnieszka; Paton, Sharon; Hemming, Sarah; Panagopoulos, Romana; Codrington, John; Walkley, Carl R; Zannettino, Andrew C W; Gronthos, Stan

    2016-12-01

    The EphB receptor tyrosine kinase family and their ephrinB ligands have been implicated as mediators of skeletal development and bone homeostasis in humans, where mutations in ephrinB1 contribute to frontonasal dysplasia and coronal craniosynostosis. In mouse models, ephrinB1 has been shown to be a critical factor mediating osteoblast function. The present study examined the functional importance of ephrinB1 during endochondral ossification using the Cre recombination system with targeted deletion of ephrinB1 (EfnB1 fl/fl ) in osteogenic progenitor cells, under the control of the osterix (Osx:Cre) promoter. The Osx:EfnB1 -/- mice displayed aberrant bone growth during embryonic and postnatal skeletal development up to 4weeks of age, when compared to the Osx:Cre controls. Furthermore, compared to the Osx:Cre control mice, the Osx:EfnB1 -/- mice exhibited significantly weaker and less rigid bones, with a reduction in trabecular/ cortical bone formation, reduced trabecular architecture and a reduction in the size of the growth plates at the distal end of the femora from newborn through to 4weeks of age. The aberrant bone formation correlated with increased numbers of tartrate resistant acid phosphatase positive osteoclasts and decreased numbers of bone lining osteoblasts in 4week old Osx:EfnB1 -/- mice, compared to Osx:Cre control mice. Taken together, these observations demonstrate the importance of ephrinB1 signalling between cells of the skeleton required for endochondral ossification. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava

    NASA Technical Reports Server (NTRS)

    Henry, J. Q.; Tagawa, K.; Martindale, M. Q.

    2001-01-01

    Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister-phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect-developing representative of the enteropneust hemichordates, Ptychodera flava. Single blastomeres were iontophoretically labeled with Dil at the 2- through 16-cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct-developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect-developing echinoids. The 16-celled embryo contains eight animal "mesomeres," four slightly larger "macromeres," and four somewhat smaller vegetal "micromeres." The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct-developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two- or the four-cell stage are capable of forming normal-appearing, miniature tornaria larvae. These findings indicate that the fates of these

  16. Dual effects of fluoxetine on mouse early embryonic development

    SciT

    Kim, Chang-Woon; Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723; Choe, Changyong

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetinemore » (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  17. GATA-3 is required for early T lineage progenitor development

    PubMed Central

    Hosoya, Tomonori; Kuroha, Takashi; Moriguchi, Takashi; Cummings, Dustin; Maillard, Ivan; Lim, Kim-Chew

    2009-01-01

    Most T lymphocytes appear to arise from very rare early T lineage progenitors (ETPs) in the thymus, but the transcriptional programs that specify ETP generation are not completely known. The transcription factor GATA-3 is required for the development of T lymphocytes at multiple late differentiation steps as well as for the development of thymic natural killer cells. However, a role for GATA-3 before the double-negative (DN) 3 stage of T cell development has to date been obscured both by the developmental heterogeneity of DN1 thymocytes and the paucity of ETPs. We provide multiple lines of in vivo evidence through the analysis of T cell development in Gata3 hypomorphic mutant embryos, in irradiated mice reconstituted with Gata3 mutant hematopoietic cells, and in mice conditionally ablated for the Gata3 gene to show that GATA-3 is required for ETP generation. We further show that Gata3 loss does not affect hematopoietic stem cells or multipotent hematopoietic progenitors. Finally, we demonstrate that Gata3 mutant lymphoid progenitors exhibit neither increased apoptosis nor diminished cell-cycle progression. Thus, GATA-3 is required for the cell-autonomous development of the earliest characterized thymic T cell progenitors. PMID:19934022

  18. Exercise Promotes Healthy Aging of Skeletal Muscle

    PubMed Central

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  19. Deciphering skeletal patterning: clues from the limb.

    PubMed

    Mariani, Francesca V; Martin, Gail R

    2003-05-15

    Even young children can distinguish a Tyrannosaurus rex from a Brontosaurus by observing differences in bone size, shape, number and arrangement, that is, skeletal pattern. But despite our extensive knowledge about cartilage and bone formation per se, it is still largely a mystery how skeletal pattern is established. Much of what we do know has been learned from studying limb development in chicken and mouse embryos. Based on the data from such studies, models for how limb skeletal pattern is established have been proposed and continue to be hotly debated.

  20. Short National Early Warning Score - Developing a Modified Early Warning Score.

    PubMed

    Luís, Leandro; Nunes, Carla

    2017-12-11

    Early Warning Score (EWS) systems have been developed for detecting hospital patients clinical deterioration. Many studies show that a National Early Warning Score (NEWS) performs well in discriminating survival from death in acute medical and surgical hospital wards. NEWS is validated for Portugal and is available for use. A simpler EWS system may help to reduce the risk of error, as well as increase clinician compliance with the tool. The aim of the study was to evaluate whether a simplified NEWS model will improve use and data collection. We evaluated the ability of single and aggregated parameters from the NEWS model to detect patients' clinical deterioration in the 24h prior to an outcome. There were 2 possible outcomes: Survival vs Unanticipated intensive care unit admission or death. We used binary logistic regression models and Receiver Operating Characteristic Curves (ROC) to evaluate the parameters' performance in discriminating among the outcomes for a sample of patients from 6 Portuguese hospital wards. NEWS presented an excellent discriminating capability (Area under the Curve of ROC (AUCROC)=0.944). Temperature and systolic blood pressure (SBP) parameters did not contribute significantly to the model. We developed two different models, one without temperature, and the other by removing temperature and SBP (M2). Both models had an excellent discriminating capability (AUCROC: 0.965; 0.903, respectively) and a good predictive power in the optimum threshold of the ROC curve. The 3 models revealed similar discriminant capabilities. Although the use of SBP is not clearly evident in the identification of clinical deterioration, it is recognized as an important vital sign. We recommend the use of the first new model, as its simplicity may help to improve adherence and use by health care workers. Copyright © 2017 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Early motor development and cognitive abilities among Mexican preschoolers.

    PubMed

    Osorio-Valencia, Erika; Torres-Sánchez, Luisa; López-Carrillo, Lizbeth; Rothenberg, Stephen J; Schnaas, Lourdes

    2017-07-18

    Psychomotricity plays a very important role in children's development, especially for learning involving reading-writing and mathematical calculations. Evaluate motor development in children 3 years old and its relationship with their cognitive abilities at the age of 5 years. Based on a cohort study, we analyzed the information about motor performance evaluated at 3 years old by Peabody Motor Scale and cognitive abilities at 5 years old. The association was estimated using linear regression models adjusted by mother's intelligence quotient, sex, Bayley mental development index at 18 months, and quality of the environment at home (HOME scale). 148 children whose motor performance was determined at age 3 and was evaluated later at age 5 to determine their cognitive abilities. Cognitive abilities (verbal, quantitative, and memory) measured by McCarthy Scales. Significant positive associations were observed between stationary balance at age 3 with verbal abilities (β = 0.67, p = .04) and memory (β = 0.81, p = .02) at 5 years. Grasping and visual-motor integration were significant and positively associated with quantitative abilities (β = 0.74, p = .005; β = 0.61, p = .01) and memory (β = 2.11, p = .001; β = 1.74, p = .004). The results suggest that early motor performance contributes to the establishment of cognitive abilities at 5 years. Evaluation and early motor stimulation before the child is faced with formal learning likely helps to create neuronal networks that facilitate the acquisition of academic knowledge.

  2. Development of Mechanochemically Active Polymers for Early Damage Detection

    NASA Astrophysics Data System (ADS)

    Zou, Jin

    Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.

  3. Investigational drugs in early development for treating dengue infection.

    PubMed

    Beesetti, Hemalatha; Khanna, Navin; Swaminathan, Sathyamangalam

    2016-09-01

    Dengue has emerged as the most significant arboviral disease of the current century. A drug for dengue is an urgent unmet need. As conventional drug discovery efforts have not produced any promising clinical candidates, there is a shift toward re-positioning pre-existing drugs for dengue to fast-track dengue drug development. This article provides an update on the current status of recently completed and ongoing dengue drug trials. All dengue drug trials described in this article were identified from a list of >230 trials that were returned upon searching the World Health Organization's International Clinical Trials Registry Platform web portal using the search term 'dengue' on December 31(st), 2015. None of the handful of drugs tested so far has yielded encouraging results. Early trial experience has served to emphasize the challenge of drug testing in the short therapeutic time window available, the need for tools to predict 'high-risk' patients early on and the limitations of the existing pre-clinical model systems. Significant investment of efforts and resources is a must before the availability of a safe, effective and inexpensive dengue drug becomes a reality. Currently, supportive fluid therapy remains the only option available for dengue treatment.

  4. Measuring the implementation of early childhood development programs.

    PubMed

    Aboud, Frances E; Prado, Elizabeth L

    2018-05-01

    In this paper we describe ways to measure variables of interest when evaluating the implementation of a program to improve early childhood development (ECD). The variables apply to programs delivered to parents in group sessions and home or clinic visits, as well as in early group care for children. Measurements for four categories of variables are included: training and assessment of delivery agents and supervisors; program features such as quality of delivery, reach, and dosage; recipients' acceptance and enactment; and stakeholders' engagement. Quantitative and qualitative methods are described, along with when measures might be taken throughout the processes of planning, preparing, and implementing. A few standard measures are available, along with others that researchers can select and modify according to their goals. Descriptions of measures include who might collect the information, from whom, and when, along with how information might be analyzed and findings used. By converging on a set of common methods to measure implementation variables, investigators can work toward improving programs, identifying gaps that impede the scalability and sustainability of programs, and, over time, ascertain program features that lead to successful outcomes. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  5. Early Miocene sequence development across the New Jersey margin

    Monteverde, D.H.; Mountain, Gregory S.; Miller, K.G.

    2008-01-01

    Sequence stratigraphy provides an understanding of the interplay between eustasy, sediment supply and accommodation in the sedimentary construction of passive margins. We used this approach to follow the early to middle Miocene growth of the New Jersey margin and analyse the connection between relative changes of sea level and variable sediment supply. Eleven candidate sequence boundaries were traced in high-resolution multi-channel seismic profiles across the inner margin and matched to geophysical log signatures and lithologic changes in ODP Leg 150X onshore coreholes. Chronologies at these drill sites were then used to assign ages to the intervening seismic sequences. We conclude that the regional and global correlation of early Miocene sequences suggests a dominant role of global sea-level change but margin progradation was controlled by localized sediment contribution and that local conditions played a large role in sequence formation and preservation. Lowstand deposits were regionally restricted and their locations point to both single and multiple sediment sources. The distribution of highstand deposits, by contrast, documents redistribution by along shelf currents. We find no evidence that sea level fell below the elevation of the clinoform rollover, and the existence of extensive lowstand deposits seaward of this inflection point indicates efficient cross-shelf sediment transport mechanisms despite the apparent lack of well-developed fluvial drainage. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.

  6. AMPK in skeletal muscle function and metabolism

    PubMed Central

    Kjøbsted, Rasmus; Hingst, Janne R.; Fentz, Joachim; Foretz, Marc; Sanz, Maria-Nieves; Pehmøller, Christian; Shum, Michael; Marette, André; Mounier, Remi; Treebak, Jonas T.; Wojtaszewski, Jørgen F. P.; Viollet, Benoit; Lantier, Louise

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism. PMID:29242278

  7. Redox Control of Skeletal Muscle Regeneration.

    PubMed

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  8. Redox Control of Skeletal Muscle Regeneration

    PubMed Central

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane

    2017-01-01

    Abstract Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276–310. PMID:28027662

  9. Longitudinal development of prefrontal function during early childhood.

    PubMed

    Moriguchi, Yusuke; Hiraki, Kazuo

    2011-04-01

    This is a longitudinal study on development of prefrontal function in young children. Prefrontal areas have been observed to develop dramatically during early childhood. To elucidate this development, we gave children cognitive shifting tasks related to prefrontal function at 3 years of age (Time 1) and 4 years of age (Time 2). We then monitored developmental changes in behavioral performance and examined prefrontal activation using near infrared spectroscopy. We found that children showed better behavioral performance and significantly stronger inferior prefrontal activation at Time 2 than they did at Time 1. Moreover, we demonstrated individual differences in prefrontal activation for the same behavioral tasks. Children who performed better in tasks at Time 1 showed significant activation of the right inferior prefrontal regions at Time 1 and significant activation of the bilateral inferior prefrontal regions at Time 2. Children who showed poorer performance at Time 1 exhibited no significant inferior prefrontal activation at Time 1 but significant left inferior prefrontal activation at Time 2. These results indicate the importance of the longitudinal method to address the link between cognitive and neural development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The development of phonological skills in late and early talkers

    PubMed Central

    KEHOE, Margaret; CHAPLIN, Elisa; MUDRY, Pauline; FRIEND, Margaret

    2016-01-01

    This study examined the relationship between phonological and lexical development in a group of French-speaking children (n=30), aged 29 months. The participants were divided into three sub-groups based on the number of words in their expressive vocabulary : low vocabulary (below the 15th percentile) (<< late-talkers >>) ; average-sized vocabulary (40-60th percentile) (<< middle group >>) and advanced vocabulary (above the 90th percentile) (<< precocious >> or “early talkers”). The phonological abilities (e.g., phonemic inventory, percentage of correct consonants, and phonological processes) of the three groups were compared. The comparison was based on analyses of spontaneous language samples. Most findings were consistent with previous results found in English-speaking children, indicating that the phonological abilities of late talkers are less well developed than those of children with average-sized vocabularies which in turn are less well-developed than those of children with advanced vocabularies. Nevertheless, several phonological measures were not related to vocabulary size, in particular those concerning syllable-final position. These findings differ from those obtained in English. The article finally discusses the clinical implications of the findings for children with delayed language development. PMID:26924855

  11. Oligodendrocytes as Regulators of Neuronal Networks during Early Postnatal Development

    PubMed Central

    Ramos, Maria; Ikrar, Taruna; Kinoshita, Chisato; De Mei, Claudia; Tirotta, Emanuele; Xu, Xiangmin; Borrelli, Emiliana

    2011-01-01

    Oligodendrocytes are the glial cells responsible for myelin formation. Myelination occurs during the first postnatal weeks and, in rodents, is completed during the third week after birth. Myelin ensures the fast conduction of the nerve impulse; in the adult, myelin proteins have an inhibitory role on axon growth and regeneration after injury. During brain development, oligodendrocytes precursors originating in multiple locations along the antero-posterior axis actively proliferate and migrate to colonize the whole brain. Whether the initial interactions between oligodendrocytes and neurons might play a functional role before the onset of myelination is still not completely elucidated. In this article, we addressed this question by transgenically targeted ablation of proliferating oligodendrocytes during cerebellum development. Interestingly, we show that depletion of oligodendrocytes at postnatal day 1 (P1) profoundly affects the establishment of cerebellar circuitries. We observed an impressive deregulation in the expression of molecules involved in axon growth, guidance and synaptic plasticity. These effects were accompanied by an outstanding increase of neurofilament staining observed 4 hours after the beginning of the ablation protocol, likely dependent from sprouting of cerebellar fibers. Oligodendrocyte ablation modifies localization and function of ionotropic glutamate receptors in Purkinje neurons. These results show a novel oligodendrocyte function expressed during early postnatal brain development, where these cells participate in the formation of cerebellar circuitries, and influence its development. PMID:21589880

  12. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  13. Mechanical origins of rightward torsion in early chick brain development

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  14. Probable influence of early Carboniferous (Tournaisian-early Visean) geography on the development of Waulsortian and Waulsortian-like mounds

    NASA Astrophysics Data System (ADS)

    King, David T., Jr.

    1990-07-01

    All of the known Tournaisian-early Visean (ca. 360-348 Ma) age carbonate mud mounds (Waulsortian and Waulsortian-like mounds) developed in low paleolatitudes on the southern shelf margin of Laurussia and in the Laurussian interior seaway. The Tournaisian-early Visean geography probably prevented hurricanes, tropical storms, and winter storms from crossing the shelf margin or interior seaway where these mounds developed. Implications of the lack of storm energy on mound development are discussed.

  15. Investing in the foundation of sustainable development: pathways to scale up for early childhood development.

    PubMed

    Richter, Linda M; Daelmans, Bernadette; Lombardi, Joan; Heymann, Jody; Boo, Florencia Lopez; Behrman, Jere R; Lu, Chunling; Lucas, Jane E; Perez-Escamilla, Rafael; Dua, Tarun; Bhutta, Zulfiqar A; Stenberg, Karin; Gertler, Paul; Darmstadt, Gary L

    2017-01-07

    Building on long-term benefits of early intervention (Paper 2 of this Series) and increasing commitment to early childhood development (Paper 1 of this Series), scaled up support for the youngest children is essential to improving health, human capital, and wellbeing across the life course. In this third paper, new analyses show that the burden of poor development is higher than estimated, taking into account additional risk factors. National programmes are needed. Greater political prioritisation is core to scale-up, as are policies that afford families time and financial resources to provide nurturing care for young children. Effective and feasible programmes to support early child development are now available. All sectors, particularly education, and social and child protection, must play a role to meet the holistic needs of young children. However, health provides a critical starting point for scaling up, given its reach to pregnant women, families, and young children. Starting at conception, interventions to promote nurturing care can feasibly build on existing health and nutrition services at limited additional cost. Failure to scale up has severe personal and social consequences. Children at elevated risk for compromised development due to stunting and poverty are likely to forgo about a quarter of average adult income per year, and the cost of inaction to gross domestic product can be double what some countries currently spend on health. Services and interventions to support early childhood development are essential to realising the vision of the Sustainable Development Goals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Investing in the foundation of sustainable development: pathways to scale up for early childhood development

    PubMed Central

    Richter, Linda M; Daelmans, Bernadette; Lombardi, Joan; Heymann, Jody; Boo, Florencia Lopez; Behrman, Jere R; Lu, Chunling; Lucas, Jane E; Perez-Escamilla, Rafael; Dua, Tarun; Bhutta, Zulfiqar A; Stenberg, Karin; Gertler, Paul; Darmstadt, Gary L

    2018-01-01

    Building on long-term benefits of early intervention (Paper 2 of this Series) and increasing commitment to early childhood development (Paper 1 of this Series), scaled up support for the youngest children is essential to improving health, human capital, and wellbeing across the life course. In this third paper, new analyses show that the burden of poor development is higher than estimated, taking into account additional risk factors. National programmes are needed. Greater political prioritisation is core to scale-up, as are policies that afford families time and financial resources to provide nurturing care for young children. Effective and feasible programmes to support early child development are now available. All sectors, particularly education, and social and child protection, must play a role to meet the holistic needs of young children. However, health provides a critical starting point for scaling up, given its reach to pregnant women, families, and young children. Starting at conception, interventions to promote nurturing care can feasibly build on existing health and nutrition services at limited additional cost. Failure to scale up has severe personal and social consequences. Children at elevated risk for compromised development due to stunting and poverty are likely to forgo about a quarter of average adult income per year, and the cost of inaction to gross domestic product can be double what some countries currently spend on health. Services and interventions to support early childhood development are essential to realising the vision of the Sustainable Development Goals. PMID:27717610

  17. Late Cretaceous-Early Palaeogene tectonic development of SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2012-10-01

    The Late Cretaceous-Early Palaeogene history of the continental core of SE Asia (Sundaland) marks the time prior to collision of India with Asia when SE Asia, from the Tethys in the west to the Palaeo-Pacific in the east, lay in the upper plate of subduction zones. In Myanmar and Sumatra, subduction was interrupted in the Aptian-Albian by a phase of arc accretion (Woyla and Mawgyi arcs) and in Java, eastern Borneo and Western Sulawesi by collision of continental fragments rifted from northern Australia. Subsequent resumption of subduction in the Myanmar-Thailand sector explains: 1) early creation of oceanic crust in the Andaman Sea in a supra-subduction zone setting ~ 95 Ma, 2) the belt of granite plutons of Late Cretaceous-Early Palaeogene age (starting ~ 88 Ma) in western Thailand and central Myanmar, and 3) amphibolite grade metamorphism between 70 and 80 Ma seen in gneissic outcrops in western and central Thailand, and 4) accretionary prism development in the Western Belt of Myanmar, until glancing collision with the NE corner of Greater India promoted ophiolite obduction, deformation and exhumation of marine sediments in the early Palaeogene. The Ranong strike-slip fault and other less well documented faults, were episodically active during the Late Cretaceous-Palaeogene time. N to NW directed subduction of the Palaeo-Pacific ocean below Southern China, Vietnam and Borneo created a major magmatic arc, associated with rift basins, metamorphic core complexes and strike-slip deformation which continued into the Late Cretaceous. The origin and timing of termination of subduction has recently been explained by collision of a large Luconia continental fragment either during the Late Cretaceous or Palaeogene. Evidence for such a collision is absent from the South China Sea well and seismic reflection record and here collision is discounted. Instead relocation of the subducting margin further west, possibly in response of back-arc extension (which created the Proto

  18. The quantum defect: Early history and recent developments

    SciT

    Rau, A.R.; Inokuti, M.

    1997-03-01

    The notion of the quantum defect is important in atomic and molecular spectroscopy and also in unifying spectroscopy with collision theory. In the latter context, the quantum defect may be viewed as an ancestor of the phase shift. However, the origin of the term {open_quotes}quantum defect{close_quotes} does not seem to be explained in standard textbooks. It occurred in a 1921 paper by Schr{umlt o}dinger, preceding quantum mechanics, yet giving the correct meaning as an index of the short-range interactions with the core of an atom. We present the early history of the quantum-defect idea, and sketch its recent developments. {copyright}more » {ital 1997 American Association of Physics Teachers.}« less

  19. Nuclear lamins during gametogenesis, fertilization and early development

    NASA Technical Reports Server (NTRS)

    Maul, G. G.; Schatten, G.

    1986-01-01

    The distribution of lamins (described by Gerace, 1978, as major proteins of nuclear envelope) during gametogenesis, fertilization, and early development was investigated in germ cells of a mouse (Mus musculus), an echinoderm (Lytechinus variegatus), and the surf clam (Spisula solidissima) was investigated in order to determine whether the differences detected could be correlated with differences in the function of cells in these stages of the germ cells. In order to monitor the behavior of lamins, the gametes and embryos were labeled with antibodies to lamins A, C, and B extracted from autoimmune sera of patients with scleroderma and Lupus erythematosus. Results indicated that lamin B could be identified in nuclear envelopes on only those nuclei where chromatin is attached and where RNA synthesis takes place.

  20. Exploring Parental Involvement in Early Years Education in China: Development and Validation of the Chinese Early Parental Involvement Scale (CEPIS)

    ERIC Educational Resources Information Center

    Lau, Eva Yi Hung; Li, Hui; Rao, Nirmala

    2012-01-01

    This study developed and validated an instrument, the Chinese Early Parental Involvement Scale (CEPIS), that can be widely used in both local and international contexts to assess Chinese parental involvement in early childhood education. The study was carried out in two stages: (1) focus group interviews were conducted with 41 teachers and 35…

  1. Ethnic Group Differences in Early Head Start Parents Parenting Beliefs and Practices and Links to Children's Early Cognitive Development

    ERIC Educational Resources Information Center

    Keels, Micere

    2009-01-01

    Data from the Early Head Start Research and Evaluation study were used to examine the extent to which several factors mediate between- and within-ethnic-group differences in parenting beliefs and behaviors, and children's early cognitive development (analysis sample of 1198 families). The findings indicate that Hispanic-, European-, and…

  2. The Legacy of Early Experiences in Development: Formalizing Alternative Models of How Early Experiences Are Carried Forward over Time

    ERIC Educational Resources Information Center

    Fraley, R. Chris; Roisman, Glenn I.; Haltigan, John D.

    2013-01-01

    Psychologists have long debated the role of early experience in social and cognitive development. However, traditional approaches to studying this issue are not well positioned to address this debate. The authors present simulations that indicate that the associations between early experiences and later outcomes should approach different…

  3. Documenting with Early Childhood Education Teachers: Pedagogical Documentation as a Tool for Developing Early Childhood Pedagogy and Practises

    ERIC Educational Resources Information Center

    Rintakorpi, Kati

    2016-01-01

    The Finnish social pedagogical curriculum for early childhood education directs early childhood teachers to use documentation to assess and develop pedagogy and practise. This empirical study examines the challenges and benefits a group of Finnish preschool teachers experienced when they learned to document their work. Although the idea of…

  4. Improving Latino Children's Early Language and Literacy Development: Key Features of Early Childhood Education within Family Literacy Programmes

    ERIC Educational Resources Information Center

    Jung, Youngok; Zuniga, Stephen; Howes, Carollee; Jeon, Hyun-Joo; Parrish, Deborah; Quick, Heather; Manship, Karen; Hauser, Alison

    2016-01-01

    Noting the lack of research on how early childhood education (ECE) programmes within family literacy programmes influence Latino children's early language and literacy development, this study examined key features of ECE programmes, specifically teacher-child interactions and child engagement in language and literacy activities and how these…

  5. Sex steroids in relation to sexual and skeletal maturation in obese male adolescents.

    PubMed

    Vandewalle, S; Taes, Y; Fiers, T; Van Helvoirt, M; Debode, P; Herregods, N; Ernst, C; Van Caenegem, E; Roggen, I; Verhelle, F; De Schepper, J; Kaufman, J M

    2014-08-01

    Childhood obesity is associated with an accelerated skeletal maturation. However, data concerning pubertal development and sex steroid levels in obese adolescents are scarce and contrasting. To study sex steroids in relation to sexual and skeletal maturation and to serum prostate specific antigen (PSA), as a marker of androgen activity, in obese boys from early to late adolescence. Ninety obese boys (aged 10-19 y) at the start of a residential obesity treatment program and 90 age-matched controls were studied cross-sectionally. Pubertal status was assessed according to the Tanner method. Skeletal age was determined by an x-ray of the left hand. Morning concentrations of total testosterone (TT) and estradiol (E2) were measured by liquid chromatography-tandem mass spectrometry, free T (FT) was measured by equilibrium dialysis, and LH, FSH, SHBG, and PSA were measured by immunoassays. Genital staging was comparable between the obese and nonobese groups, whereas skeletal bone advancement (mean, 1 y) was present in early and midadolescence in the obese males. Although both median SHBG and TT concentrations were significantly (P < .001) lower in obese subjects during mid and late puberty, median FT, LH, FSH, and PSA levels were comparable to those of controls. In contrast, serum E2 concentrations were significantly (P < .001) higher in the obese group at all pubertal stages. Obese boys have lower circulating SHBG and TT, but similar FT concentrations during mid and late puberty in parallel with a normal pubertal progression and serum PSA levels. Our data indicate that in obese boys, serum FT concentration is a better marker of androgen activity than TT. On the other hand, skeletal maturation and E2 were increased from the beginning of puberty, suggesting a significant contribution of hyperestrogenemia in the advancement of skeletal maturation in obese boys.

  6. Development of global cortical networks in early infancy.

    PubMed

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  7. Napping facilitates word learning in early lexical development.

    PubMed

    Horváth, Klára; Myers, Kyle; Foster, Russell; Plunkett, Kim

    2015-10-01

    Little is known about the role that night-time sleep and daytime naps play in early cognitive development. Our aim was to investigate how napping affects word learning in 16-month-olds. Thirty-four typically developing infants were assigned randomly to nap and wake groups. After teaching two novel object-word pairs to infants, we tested their initial performance with an intermodal preferential looking task in which infants are expected to increase their target looking time compared to a distracter after hearing its auditory label. A second test session followed after approximately a 2-h delay. The delay contained sleep for the nap group or no sleep for the wake group. Looking behaviour was measured with an automatic eye-tracker. Vocabulary size was assessed using the Oxford Communicative Development Inventory. A significant interaction between group and session was found in preferential looking towards the target picture. The performance of the nap group increased after the nap, whereas that of the wake group did not change. The gain in performance correlated positively with the expressive vocabulary size in the nap group. These results indicate that daytime napping helps consolidate word learning in infancy. © 2015 European Sleep Research Society.

  8. Recent early clinical drug development for acute kidney injury.

    PubMed

    Gallagher, Kevin M; O'neill, Stephen; Harrison, Ewen M; Ross, James A; Wigmore, Stephen J; Hughes, Jeremy

    2017-02-01

    Despite significant need and historical trials, there are no effective drugs in use for the prevention or treatment of acute kidney injury (AKI). There are several promising agents in early clinical development for AKI and two trials have recently been terminated. There are also exciting new findings in pre-clinical AKI research. There is a need to take stock of current progress in the field to guide future drug development for AKI. Areas covered: The main clinical trial registries, PubMed and pharmaceutical company website searches were used to extract the most recent clinical trials for sterile, transplant and sepsis-associated AKI. We summarise the development of the agents recently in clinical trial, update on their trial progress, consider reasons for failed efficacy of two agents, and discuss new paradigms in pre-clinical targets for AKI. Agents covered include- QPI-1002, THR-184, BB-3, heme arginate, human recombinant alkaline phosphatase (recAP), ciclosporin A, AB103, levosimendan, AC607 and ABT-719. Expert opinion: Due to the heterogenous nature of AKI, agents with the widest pleiotropic effects on multiple pathophysiological pathways are likely to be most effective. Linking preclinical models to clinical indication and improving AKI definition and diagnosis are key areas for improvement in future clinical trials.

  9. The obesogenic effect of high fructose exposure during early development

    PubMed Central

    Goran, Michael I.; Dumke, Kelly; Bouret, Sebastien G.; Kayser, Brandon; Walker, Ryan W.; Blumberg, Bruce

    2016-01-01

    Obesogens are compounds that disrupt the function and development of adipose tissue or the normal metabolism of lipids, leading to an increased risk of obesity and associated diseases. Evidence for the adverse effects of industrial and agricultural obesogens, such as tributyltin, bisphenol A and other organic pollutants is well-established. Current evidence suggests that high maternal consumption of fat promotes obesity and increased metabolic risk in offspring, but less is known about the effects of other potential nutrient obesogens. Widespread increase in dietary fructose consumption over the past 30 years is associated with chronic metabolic and endocrine disorders and alterations in feeding behaviour that promote obesity. In this Perspectives, we examine the evidence linking high intakes of fructose with altered metabolism and early obesity. We review the evidence suggesting that high fructose exposure during critical periods of development of the fetus, neonate and infant can act as an obesogen by affecting lifelong neuroendocrine function, appetite control, feeding behaviour, adipogenesis, fat distribution and metabolic systems. These changes ultimately favour the long-term development of obesity and associated metabolic risk. PMID:23732284

  10. Structural and Maturational Covariance in Early Childhood Brain Development.

    PubMed

    Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H

    2017-03-01

    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The SCL gene specifies haemangioblast development from early mesoderm.

    PubMed

    Gering, M; Rodaway, A R; Göttgens, B; Patient, R K; Green, A R

    1998-07-15

    The SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co-expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural