Sample records for early somatic embryogenesis

  1. Somatic embryogenesis in ferns: a new experimental system.

    PubMed

    Mikuła, Anna; Pożoga, Mariusz; Tomiczak, Karolina; Rybczyński, Jan J

    2015-05-01

    Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.

  2. Application of Somatic Embryogenesis in Woody Plants.

    PubMed Central

    Guan, Yuan; Li, Shui-Gen; Fan, Xiao-Fen; Su, Zhen-Hong

    2016-01-01

    Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means. PMID:27446166

  3. Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia

    PubMed Central

    Elbl, Paula; De Souza, Amanda P.; Jardim, Vinicius; de Oliveira, Leandro F.; Macedo, Amanda F.; dos Santos, André L. W.; Buckeridge, Marcos S.; Floh, Eny I. S.

    2017-01-01

    Three zygotic developmental stages and two somatic Araucaria angustifolia cell lines with contrasting embryogenic potential were analyzed to identify the carbohydrate-mediated responses associated with embryo formation. Using a comparison between zygotic and somatic embryogenesis systems, the non-structural carbohydrate content, cell wall sugar composition and expression of genes involved in sugar sensing were analyzed, and a network analysis was used to identify coordinated features during embryogenesis. We observed that carbohydrate-mediated responses occur mainly during the early stages of zygotic embryo formation, and that during seed development there are coordinated changes that affect the development of the different structures (embryo and megagametophyte). Furthermore, sucrose and starch accumulation were associated with the responsiveness of the cell lines. This study sheds light on how carbohydrate metabolism is influenced during zygotic and somatic embryogenesis in the endangered conifer species, A. angustifolia. PMID:28678868

  4. Insights from Proteomic Studies into Plant Somatic Embryogenesis.

    PubMed

    Heringer, Angelo Schuabb; Santa-Catarina, Claudete; Silveira, Vanildo

    2018-03-01

    Somatic embryogenesis is a biotechnological approach mainly used for the clonal propagation of different plants worldwide. In somatic embryogenesis, embryos arise from somatic cells under appropriate culture conditions. This plasticity in plants is a demonstration of true cellular totipotency and is the best approach among the genetic transformation protocols used for plant regeneration. Despite the importance of somatic embryogenesis, knowledge regarding the control of the somatic embryogenesis process is limited. Therefore, the elucidation of both the biochemical and molecular processes is important for understanding the mechanisms by which a single somatic cell becomes a whole plant. Modern proteomic techniques rely on an alternative method for the identification and quantification of proteins with different abundances in embryogenic cell cultures or somatic embryos and enable the identification of specific proteins related to somatic embryogenesis development. This review focuses on somatic embryogenesis studies that use gel-free shotgun proteomic analyses to categorize proteins that could enhance our understanding of particular aspects of the somatic embryogenesis process and identify possible targets for future studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hemoglobin promotes somatic embryogenesis in peanut cultures.

    PubMed

    Jayabalan, N; Anthony, P; Davey, M R; Power, J B; Lowe, K C

    2004-02-01

    Critical parameters influencing somatic embryogenesis include growth regulators and oxygen supply. Consequently, the present investigation has focused on optimization of a somatic embryogenic system for peanut (Arachis hypogaea L.) through media supplementation with the auxin, picloram. The latter at 30 mg L(-1) was optimal for inducing regeneration of somatic embryos from cultured explants of zygotic embryos. In contrast, somatic embryogenesis did not occur in the absence of this growth regulator. An assessment has also been made of the beneficial effect on somatic embryogenesis and plant regeneration of the commercial hemoglobin (Hb) solution, Erythrogen. Hemoglobin at 1:50 and 1:100 (v:v) stimulated increases in mean fresh weight (up to a maximum of 57% over control), mean number of explants producing somatic embryos (15%) and mean number of somatic embryos per explant (29%).

  6. Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L.

    PubMed

    Noah, Alexandre Mboene; Niemenak, Nicolas; Sunderhaus, Stephanie; Haase, Christin; Omokolo, Denis Ndoumou; Winkelmann, Traud; Braun, Hans-Peter

    2013-01-14

    Somatic embryogenesis can efficiently foster the propagation of Theobroma cacao, but the poor quality of resulted plantlet hinders the use of this technique in the commercial scale. The current study has been initiated to systematically compare the physiological mechanisms underlying somatic and zygotic embryogenesis in T. cacao on the proteome level. About 1000 protein spots per fraction could be separated by two-dimensional isoelectric focusing/SDS PAGE. More than 50 of the protein spots clearly differed in abundance between zygotic and somatic embryos: 33 proteins spots were at least 3-fold higher in abundance in zygotic embryos and 20 in somatic embryos. Analyses of these protein spots differing in volume by mass spectrometry resulted in the identification of 68 distinct proteins. Many of the identified proteins are involved in genetic information processing (21 proteins), carbohydrate metabolism (11 proteins) and stress response (7 proteins). Somatic embryos especially displayed many stress related proteins, few enzymes involved in storage compound synthesis and an exceptional high abundance of endopeptidase inhibitors. Phosphoenolpyruvate carboxylase, which was accumulated more than 3-fold higher in zygotic embryos, represents a prominent enzyme in the storage compound metabolism in cacao seeds. Implications on the improvement of somatic embryogenesis in cacao are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars.

    PubMed

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-10-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

  8. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars

    PubMed Central

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-01-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1−l). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1−1) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N6-benzyladenine (BAP, 0.75 mg 1−l) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1−l) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further. PMID:23961149

  9. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.

    PubMed

    Omar, Ahmad A; Dutt, Manjul; Gmitter, Frederick G; Grosser, Jude W

    2016-01-01

    The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.

  10. Somatic Embryogenesis in Lisianthus (Eustoma russellianum Griseb.).

    PubMed

    Ruffoni, Barbara; Bassolino, Laura

    2016-01-01

    Somatic embryogenesis is, for the main floricultural crops, a promising system for commercial scale-up, providing cloned material to be traded as seedlings. Somatic embryos, having the contemporary presence of root apical meristem and shoot apical meristem, can be readily acclimatized. For Lisianthus it is possible to induce embryogenic callus from leaf fragments of selected genotypes and to obtain embryos either in agarized substrate or in liquid suspension culture. The production of somatic embryos in liquid medium is high and can be modulated in order to synchronize the cycle and the size of the neoformed structures. The possibility to use the liquid substrate with high propagation rates reduces labor costs and could support the costs of eventual automation. In this paper we report a stepwise protocol for somatic embryogenesis in the species Eustoma russellianum.

  11. Somatic embryogenesis in Carica papaya as affected by auxins and explants, and morphoanatomical-related aspects.

    PubMed

    Cipriano, Jamile L D; Cruz, Ana Cláudia F; Mancini, Karina C; Schmildt, Edilson R; Lopes, José Carlos; Otoni, Wagner C; Alexandre, Rodrigo S

    2018-01-01

    The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).

  12. Chemical Compositions, Somatic Embryogenesis, and Somaclonal Variation in Cumin

    PubMed Central

    Tohidfar, Masoud; Sadat Noori, Seyed Ahmad; Izadi Darbandi, Ali; Rao, Rosa

    2017-01-01

    This is the first report evaluating the relationship between the chemical compositions of cumin seeds (based on the analysis of the content of catalase, ascorbate peroxidase, proline, protein, terpenic compounds, alcohol/phenols, aldehydes, and epoxides) and the induction efficiency of somatic embryogenesis in two Iranian superior cumin landraces (Golestan and North Khorasan). Cotyledons isolated from Golestan landrace seeds cultivated on MS medium supplemented with 0.1 mg/L kinetin proved to be the best primary explant for the induction of somatic embryogenesis as well as the regeneration of the whole plantlet. Results indicated that different developmental stages of somatic embryos were simultaneously observed on a callus with embryogenic potential. The high content of catalase, ascorbate peroxidase, proline, and terpenic hydrocarbons and low content of alcoholic and phenolic compositions had a stimulatory effect on somatic embryogenesis. Band patterns of RAPD markers in regenerated plants were different from those of the mother plants. This may be related to somaclonal variations or pollination system of cumin. Generally, measurement of chemical compositions can be used as a marker for evaluating the occurrence of somatic embryogenesis in cumin. Also, somaclonal variations of regenerated plants can be applied by the plant breeders in breeding programs. PMID:29234682

  13. Spaceflight reduces somatic embryogenesis in orchardgrass (Poaceae)

    NASA Technical Reports Server (NTRS)

    Conger, B. V.; Tomaszewski, Z. Jr; McDaniel, J. K.; Vasilenko, A.

    1998-01-01

    Somatic embryos initiate and develop from single mesophyll cells in in vitro cultured leaf segments of orchard-grass (Dactylis glomerata L.). Segments were plated at time periods ranging from 21 to 0.9 d (21 h) prior to launch on an 11 d spaceflight (STS-64). Using a paired t-test, there was no significant difference in embryogenesis from preplating periods of 14 d and 21 d. However, embryogenesis was reduced by 70% in segments plated 21 h before launch and this treatment was significant at P=0.0001. The initial cell divisions leading to embryo formation would be taking place during flight in this treatment. A higher ratio of anticlinal:periclinal first cell divisions observed in the flight compared to the control tissue suggests that microgravity affects axis determination and embryo polarity at a very early stage. A similar reduction in zygotic embryogenesis would reduce seed formation and have important implications for long-term space flight or colonization where seeds would be needed either for direct consumption or to grow another generation of plants.

  14. The role of chromatin modifications in somatic embryogenesis in plants

    PubMed Central

    De-la-Peña, Clelia; Nic-Can, Geovanny I.; Galaz-Ávalos, Rosa M.; Avilez-Montalvo, Randy; Loyola-Vargas, Víctor M.

    2015-01-01

    Somatic embryogenesis (SE) is a powerful tool for plant genetic improvement when used in combination with traditional agricultural techniques, and it is also an important technique to understand the different processes that occur during the development of plant embryogenesis. SE onset depends on a complex network of interactions among plant growth regulators, mainly auxins and cytokinins, during the proembryogenic early stages, and ethylene and gibberellic and abscisic acids later in the development of the somatic embryos. These growth regulators control spatial and temporal regulation of multiple genes in order to initiate change in the genetic program of somatic cells, as well as moderating the transition between embryo developmental stages. In recent years, epigenetic mechanisms have emerged as critical factors during SE. Some early reports indicate that auxins and in vitro conditions modify the levels of DNA methylation in embryogenic cells. The changes in DNA methylation patterns are associated with the regulation of several genes involved in SE, such as WUS, BBM1, LEC, and several others. In this review, we highlight the more recent discoveries in the understanding of the role of epigenetic regulation of SE. In addition, we include a survey of different approaches to the study of SE, and new opportunities to focus SE studies. PMID:26347757

  15. Somatic embryogenesis for efficient micropropagation of guava (Psidium guajava L.).

    PubMed

    Akhtar, Nasim

    2013-01-01

    Guava (Psidium guajava L.) is well known for edible fruit, environment friendly pharmaceutical and commercial products for both national and international market. The conventional propagation and in vitro organogenesis do not meet the demand for the good quality planting materials. Somatic embryogenesis for efficient micropropagation of guava (P. guajava L.) has been developed to fill up the gap. Somatic embryogenesis and plantlets regeneration are achieved from 10-week post-anthesis zygotic embryo explants by 8-day inductive treatment with different concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D) on MS agar medium containing 5% sucrose. Subsequent development and maturation of somatic embryos occur after 8 days on MS basal medium supplemented with 5% sucrose without plant growth regulator. The process of somatic embryogenesis shows the highest relative efficiency in 8-day treatment of zygotic embryo explants with 1.0 mg L(-1) 2,4-D. High efficiency germination of somatic embryos and plantlet regeneration takes place on half strength semisolid MS medium amended with 3% sucrose within 2 weeks of subculture. Somatic plantlets are grown for additional 2 weeks by subculturing in MS liquid growth medium containing 3% sucrose. Well-grown plantlets from liquid medium have survived very well following 2-4 week hardening process. The protocol of somatic embryogenesis is optimized for high efficiency micropropagation of guava species.

  16. Setting the Clock for Fail-Safe Early Embryogenesis.

    PubMed

    Fickentscher, Rolf; Struntz, Philipp; Weiss, Matthias

    2016-10-28

    The embryogenesis of the small nematode Caenorhabditis elegans is a remarkably robust self-organization phenomenon. Cell migration trajectories in the early embryo, for example, are well explained by mechanical cues that push cells into positions where they experience the least repulsive forces. Yet, how this mechanically guided progress in development is properly timed has remained elusive so far. Here, we show that cell volumes and division times are strongly anticorrelated during the early embryogenesis of C. elegans with significant differences between somatic cells and precursors of the germline. Our experimental findings are explained by a simple model that in conjunction with mechanical guidance can account for the fail-safe early embryogenesis of C. elegans.

  17. Studies on Somatic Embryogenesis in Sweetpotato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  18. [Changes in polyamine levels in Citrus sinensis Osb. cv. Valencia callus during somatic embryogenesis].

    PubMed

    Liu, Hua-Ying; Xiao, Lang-Tao; Lu, Xu-Dong; Hu, Jia-Jin; Wu, Shun; He, Chang-Zheng; Deng, Xiu-Xin

    2005-06-01

    Somatic embryogenetic capability and changes in polyamine level and their relationship were analyzed using the long-term (8 years) subcultured calli of Citrus sinensis Osb. cv. Valencia as materials. The results showed that endogenous polyamine contents in embryogenic calli were higher than those in non-embryogenic calli, and the embryogenetic capability was positively correlated to the levels of endogenous polyamines. When the calli were transferred to a differentiation medium, the putrescine content rapidly increased and reached a peak, then fell gradually. Applying exogenous putrescine raised the embryogenesis frequency and endogenous putrescine level. It indicated that increase in putrescine content at early stage of differentiation promoted embryogenesis. With the development of somatic embryo, spermidine content reached its the highest level at globular embryo stage, spermine content rose and reached a peak at a later stage of globular embryo development. Furthermore, changes of the putrescine, spermidine and spermine contents during somatic embryogenesis were similar in Valencia calli which had different ploidy levels, but their contents decreased following the increasing of ploidy level. Changes in arginine decarboxylase activity were positively correlated to the polyamine levels, which suggest that the later is a key factor in regulating the polyamine levels during somatic embryogenesis in citrus plants.

  19. Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium).

    PubMed

    da Silva, Jaime A Teixeira; Winarto, Budi

    2016-01-01

    The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon 'Day Light' and Dendrobium 'Jayakarta', D. 'Gradita 31', and D. 'Zahra FR 62') for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. 'Zahra FR 62'.

  20. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    PubMed

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.

  1. Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

  2. Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1').

    PubMed

    Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana. Copyright © Physiologia Plantarum 2011.

  3. Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br.

    PubMed

    Wang, Y-H; Bhalla, P L

    2004-01-01

    Somatic embryogenesis from leaf explants of Scaevola aemula R. Br. was achieved. Somatic embryos were induced from explants cultured on MS medium supplemented with 0.2 mg/ 2,4-dichlorophenoxyacetic acid and 0.2-0.5 mg/l 6-benzylaminopurine (BAP). Various developmental stages of somatic embryos were found on this medium-from globular embryos to germinated embryos. The transfer of globular embryos to MS medium containing 0.5 mg/l BAP resulted in a high frequency of shoot regeneration. Leaf explants cultured on MS medium containing different combinations of BAP and alpha-naphthaleneacetic acid formed adventitious shoots and roots. Histological examination confirmed the process of somatic embryogenesis. Induction of somatic embryogenesis in Scaevola provides a system for studying embryogenesis in Australian native plants and will facilitate the improvement of these plants using genetic transformation techniques.

  4. Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.

    PubMed

    Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia

    2009-09-25

    An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.

  5. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D.Don.) Endl.).

    PubMed

    Liu, Cuiqiong; Xia, Xinli; Yin, Weilun; Huang, Lichun; Zhou, Jianghong

    2006-07-01

    A rapid and effective system of somatic embryogenesis and organogenesis from the in vitro needles of redwood (Sequoia sempervirens (D.Don.) Endl.) had been established. The influences of plant growth regulators (PGRs) and days of seedlings in vitro on adventitious bud regeneration and somatic embryogenesis were studied. The process of somatic embryo formation was also observed. The results showed that embryogenic callus was induced and proliferated on Schenk and Hildebrandt (SH) medium with BA (0.5 mg/l), KT (0.5 mg/l) and IBA (1.0 mg/l). SH medium containing BA (0.5 mg/l), KT (0.2 mg/l) and IBA (0.2 mg/l) effectively promoted adventitious bud regeneration. The highest frequency (66.3%) of direct somatic embryogenesis was obtained in the combination of BA (0.5 mg/l) and IBA (0.5 mg/l). The optimal days of seedling in vitro for adventitious bud and somatic embryogenesis were 30 days and 30-40 days, respectively. The developments of somatic embryos were similar to that of zygotic embryogenesis. The result of histocytological studies indicated that proteins were gradually accumulated in the process of somatic embryo formation and there were two peaks of starch grains accumulation that one was in the embryogenic callus and the other was in the globular embryos. These results indicated that starch and protein were closely related with the energy supply and the molecular base of somatic embryogenesis, respectively.

  6. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    PubMed Central

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low

  7. In vitro somatic embryogenesis and plant regeneration of cassava.

    PubMed

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  8. Studies for Somatic Embryogenesis in Sweet Potato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  9. Cellular and molecular changes associated with somatic embryogenesis induction in Agave tequilana.

    PubMed

    Portillo, L; Olmedilla, A; Santacruz-Ruvalcaba, F

    2012-10-01

    In spite of the importance of somatic embryogenesis for basic research in plant embryology as well as for crop improvement and plant propagation, it is still unclear which mechanisms and cell signals are involved in acquiring embryogenic competence by a somatic cell. The aim of this work was to study cellular and molecular changes involved in the induction stage in calli of Agave tequilana Weber cultivar azul in order to gain more information on the initial stages of somatic embryogenesis in this species. Cytochemical and immunocytochemical techniques were used to identify differences between embryogenic and non-embryogenic cells from several genotypes. Presence of granular structures was detected after somatic embryogenesis induction in embryogenic cells; composition of these structures as well as changes in protein and polysaccharide distribution was studied using Coomassie brilliant blue and Periodic Acid-Schiff stains. Distribution of arabinogalactan proteins (AGPs) and pectins was investigated in embryogenic and non-embryogenic cells by immunolabelling using anti-AGP monoclonal antibodies (JIM4, JIM8 and JIM13) as well as an anti-methyl-esterified pectin-antibody (JIM7), in order to evaluate major modifications in cell wall composition in the initial stages of somatic embryogenesis. Our observations pointed out that induction of somatic embryogenesis produced accumulation of proteins and polysaccharides in embryogenic cells. Presence of JIM8, JIM13 and JIM7 epitopes were detected exclusively in embryogenic cells, which supports the idea that specific changes in cell wall are involved in the acquisition of embryogenic competence of A. tequilana.

  10. High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce.

    PubMed

    Helmersson, Andreas; von Arnold, Sara; Burg, Kornel; Bozhkov, Peter V

    2004-10-01

    Somatic embryos of Norway spruce (Picea abies (L.) Karst.) differentiate from proembryogenic masses (PEMs), which are subject to autodestruction through programmed cell death. In PEMs, somatic embryo formation and activation of programmed cell death are interrelated processes. We sought to determine if activation of programmed cell death in PEMs is caused by genetic aberrations during somatic embryogenesis. Based on the finding that withdrawal of auxin and cytokinin induces programmed cell death in PEMs, 1-week-old cell suspensions were cultured in medium either with or without auxin and cytokinin and then transferred to maturation medium containing abscisic acid. We analyzed the stability of three nuclear simple sequence repeat (SSR) microsatellite markers at successive stages of somatic embryogenesis in two cell lines. There were no mutations at the SSR loci at any of the successive developmental stages from PEMs to cotyledonary embryos, irrespective of whether or not the proliferation medium in which cell suspensions had been cultured contained auxin or cytokinin. The morphologies of plants regenerated from the cultures were similar, although withdrawal of auxin and cytokinin significantly stimulated the yield of both embryos and plants. We conclude, therefore, that the high genetic stability of somatic embryos in Norway spruce is unaffected by the induction of programmed cell death caused by withdrawal of auxin and cytokinin.

  11. [Direct and indirect somatic embryogenesis in Freesia refracta].

    PubMed

    Wang, L; Duan, X G; Hao, S

    1999-06-01

    Somatic embryogenesis can be induced in tissue cultures of Freesia refracta either directly from the epidermal cells of explant, or indirectly via intervening callus. In direct pathway, somatic embryos were in contact with maternal tissue in a suspensor-like structure. In indirect pathway, the explants first proliferacted to give rise to calluses before embryoids were induced. The two sorts of calluses were defined to embryogenic callus and non-embryogenic callus according to producing of somatic embryos. An indirect somatic embryo is developed from a pre-embryogenically determined cell. This kind of somatic embryo has no suspensor structure instead of a complex with maternal tissue. Somatic embryos have their own vascular tissues, and can develop new plantlets independently.

  12. Somatic embryogenesis in cell cultures of Glycine species.

    PubMed

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  13. Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis.

    PubMed

    Alemanno, L; Ramos, T; Gargadenec, A; Andary, C; Ferriere, N

    2003-10-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H- and 13C-NMR. They were hydroxycinnamic acid amides: N-trans-caffeoyl-l-DOPA or clovamide, N-trans-p-coumaroyl-l-tyrosine or deoxiclovamide, and N-trans-caffeoyl-l-tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues.

  14. Localization and Identification of Phenolic Compounds in Theobroma cacao L. Somatic Embryogenesis

    PubMed Central

    ALEMANNO, L.; RAMOS, T.; GARGADENEC, A.; ANDARY, C.; FERRIERE, N.

    2003-01-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H‐ and 13C‐NMR. They were hydroxycinnamic acid amides: N‐trans‐caffeoyl‐l‐DOPA or clovamide, N‐trans‐p‐coumaroyl‐l‐tyrosine or deoxiclovamide, and N‐trans‐caffeoyl‐l‐tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non‐embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues. PMID:12933367

  15. High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.).

    PubMed

    Nair, R Ramakrishnan; Dutta Gupta, S

    2006-01-01

    A high-frequency plantlet regeneration protocol was developed for black pepper (Piper nigrum L.) through cyclic secondary somatic embryogenesis. Secondary embryos formed from the radicular end of the primary somatic embryos which were originally derived from micropylar tissues of germinating seeds on growth regulator-free SH medium in the absence of light. The process of secondary embryogenesis continued in a cyclic manner from the root pole of newly formed embryos resulting in clumps of somatic embryos. Strength of the medium and sucrose concentration influenced the process of secondary embryogenesis and fresh weight of somatic embryo clumps. Full-strength SH medium supplemented with 1.5% sucrose produced significantly higher fresh weight and numbers of secondary somatic embryos while 3.0 and 4.5% sucrose in the medium favored further development of proliferated embryos into plantlets. Ontogeny of secondary embryos was established by histological analysis. Secondary embryogenic potential was influenced by the developmental stage of the explanted somatic embryo and stages up to "torpedo" were more suitable. A single-flask system was standardized for proliferation, maturation, germination and conversion of secondary somatic embryos in suspension cultures. The system of cyclic secondary somatic embryogenesis in black pepper described here represents a permanent source of embryogenic material that can be used for genetic manipulations of this crop species.

  16. Influence of Abscisic Acid and Sucrose on Somatic Embryogenesis in Cactus Copiapoa tenuissima Ritt. forma mostruosa

    PubMed Central

    Lema-Rumińska, J.; Goncerzewicz, K.; Gabriel, M.

    2013-01-01

    Having produced the embryos of cactus Copiapoa tenuissima Ritt. forma monstruosa at the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100 μM on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1 μM) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1 μM) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10–100 μM) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10 μM ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight. PMID:23843737

  17. Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis.

    PubMed

    Perera, Prasanthi I P; Hocher, Valerie; Verdeil, Jean Luc; Doulbeau, Sylvie; Yakandawala, Deepthi M D; Weerakoon, L Kaushalya

    2007-01-01

    Unfertilized ovaries isolated from immature female flowers of coconut (Cocos nucifera L.) were tested as a source of explants for callogenesis and somatic embryogenesis. The correct developmental stage of ovary explants and suitable in vitro culture conditions for consistent callus production were identified. The concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) and activated charcoal was found to be critical for callogenesis. When cultured in a medium containing 100 microM 2,4-D and 0.1% activated charcoal, ovary explants gave rise to 41% callusing. Embryogenic calli were sub-cultured into somatic embryogenesis induction medium containing 5 microM abscisic acid, followed by plant regeneration medium (with 5 microM 6-benzylaminopurine). Many of the somatic embryos formed were complete with shoot and root poles and upon germination they gave rise to normal shoots. However, some abnormal developments were also observed. Flow cytometric analysis revealed that all the calli tested were diploid. Through histological studies, it was possible to study the sequence of the events that take place during somatic embryogenesis including orientation, polarization and elongation of the embryos.

  18. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd

  19. Synchronization of Somatic Embryogenesis in Date Palm Suspension Culture Using Abscisic Acid.

    PubMed

    Alwael, Hussain A; Naik, Poornananda M; Al-Khayri, Jameel M

    2017-01-01

    Somatic embryogenesis is considered the most effective method for commercial propagation of date palm. However, the limitation of obtaining synchronized development of somatic embryos remains an impediment. The synchronization of somatic embryo development is ideal for the applications to produce artificial seeds. Abscisic acid (ABA) is associated with stress response and influences in vitro growth and development. This chapter describes an effective method to achieve synchronized development of somatic embryos in date palm cell suspension culture. Among the ABA concentrations tested (0, 1, 10, 50, 100 μM), the best synchronized growth was obtained in response to 50-100 μM. Here we provide a comprehensive protocol for in vitro plant regeneration of date palm starting with shoot-tip explant, callus initiation and growth, cell suspension establishment, embryogenesis synchronization with ABA treatment, somatic embryo germination, and rooting as well as acclimatized plantlet establishment.

  20. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis

    PubMed Central

    Steinmacher, D. A.; Guerra, M. P.; Saare-Surminski, K.; Lieberei, R.

    2011-01-01

    Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture. Key Results The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts

  1. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore 'Elsa'.

    PubMed

    Shen, Hui-Ju; Chen, Jen-Tsung; Chung, Hsiao-Hang; Chang, Wei-Chin

    2018-01-22

    Tolumnia genus (equitant Oncidium) is a group of small orchids with vivid flower color. Thousands of hybrids have been registered on Royal Horticulture Society and showed great potential for ornamental plant market. The aim of this study is to establish an efficient method for in vitro propagation. Leaf explants taken from in vitro-grown plants were used to induce direct somatic embryogenesis on a modified 1/2 MS medium supplemented with five kinds of cytokinins, 2iP, BA, kinetin, TDZ and zeatin at 0.3, 1 and 3 mg l -1 in darkness. TDZ at 3 mg l -1 gave the highest percentage of explants with somatic globular embryos after 90 days of culture. It was found that 2,4-D and light regime highly retarded direct somatic embryogenesis and showed 95-100% of explant browning. Histological observations revealed that the leaf cells divided into meristematic cells firstly, followed by somatic proembryos, and then somatic globular embryos. Eventually, somatic embryos developed a bipolar structure with the shoot apical meristem and the root meristem. Scanning electron microscopy observations showed that the direct somatic embryogenesis from leaf explants was asynchronously. The somatic embryos were found on the leaf tip, the adaxial surface and also the mesophyll through a cleft, and it reflected the heterogeneity of the explant. The 90-day-old globular embryos were detached from the parent explants and transferred onto a hormone-free 1/2 MS medium in light condition for about 1 month to obtain 1-cm-height plantlets. After another 3 months for growth, the plantlets were potted with Sphagnum moss and were acclimatized in a shaded greenhouse. After 1 month of culture, the survival rate was 100%. In this report, a protocol for efficient regenerating a Tolumnia orchid, Louise Elmore 'Elsa', was established via direct somatic embryogenesis and might reveal an alternative approach for mass propagation of Tolumnia genus in orchid industry.

  2. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor.

    PubMed

    Florez, Sergio L; Erwin, Rachel L; Maximova, Siela N; Guiltinan, Mark J; Curtis, Wayne R

    2015-05-16

    Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species. This work describes the use of the transcription factor Baby Boom (BBM) to promote the transition of somatic cacao cells from the vegetative to embryonic state. An ortholog of the Arabidopsis thaliana BBM gene (AtBBM) was characterized in T. cacao (TcBBM). TcBBM expression was observed throughout embryo development and was expressed at higher levels during SE as compared to zygotic embryogenesis (ZE). TcBBM overexpression in A. thaliana and T. cacao led to phenotypes associated with SE that did not require exogenous hormones. While transient ectopic expression of TcBBM provided only moderate enhancements in embryogenic potential, constitutive overexpression dramatically increased SE proliferation but also appeared to inhibit subsequent development. Our work provides validation that TcBBM is an ortholog to AtBBM and has a specific role in both somatic and zygotic embryogenesis. Furthermore, our studies revealed that TcBBM transcript levels could serve as a biomarker for embryogenesis in cacao tissue. Results from transient expression of TcBBM provide confirmation that transcription factors can be used to enhance SE without compromising plant development and avoiding GMO plant production. This strategy could compliment a hormone-based method of reprogramming somatic cells and lead to more precise manipulation of SE at the regulatory level of transcription factors. The technology would benefit the propagation of elite varieties with low regeneration potential as well as the production of transgenic plants, which

  3. Yield performance of cacao propagated by somatic embryogenesis and grafting

    USDA-ARS?s Scientific Manuscript database

    Twelve cacao (Theobroma cacao) clones propagated by grafting and somatic embryogenesis and grown on an Ultisol soil were evaluated for five years under intensive management at Corozal, Puerto Rico. Preliminary data showed no significant differences between propagation methods for yield of dry beans ...

  4. Comparison of somatic embryogenesis in Medicago sativa and Medicago truncatula.

    PubMed

    Hoori, F; Ehsanpour, A A; Mostajeran, A

    2007-02-01

    In this study, the regeneration through embryogenesis of two species of Medicago were studied. Seeds of Medicago sativa cv. Rehnani and M. truncatula line A17 were grown on MS medium. After 4-6 weeks, segments of leaf and stem from two species were transferred to MS medium containing 2 mg L(-1) NAA, 2,4-D and Kinetin. The results indicated that callus formation from leaf explants of M. sativa was higher than M. trancatula. In the next stage, media with different combinations of auxin, cytokinin or ethinyl estradiol were provided for regeneration. Then in two stages, explants of leaf and stem of two species were transferred on these media. Results after 3-6 weeks showed that in medium containing NAA and TDZ, stem pieces ofM. sativa produced shoots while leaf pieces on NAA and ethinyl estradiol formed roots. Leaf explants of M. truncatula in the medium containing NAA and BAP, produced somatic embryos. Also in media with auxin and ethinyl estradiol, somatic embryos were formed on calli of two species. Ethinyl estradiol and auxin together can induce somatic embryogenesis and root production on calli and stem or leaf explants.

  5. Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides.

    PubMed

    Duchow, Stefanie; Dahlke, Renate I; Geske, Thomas; Blaschek, Wolfgang; Classen, Birgit

    2016-11-05

    Root extracts of the medicinal plant Pelargonium sidoides, native to South Africa, are used globally for the treatment of common cold and cough. Due to an increasing economic commercialization of P. sidoides remedies, wild collections of root material should be accompanied by effective methods for plant propagation like somatic embryogenesis. Based on this, the influence of arabinogalactan-proteins (AGPs) on somatic embryogenesis and plant propagation of P. sidoides has been investigated. High-molecular weight AGPs have been isolated from dried roots as well as from cell cultures of P. sidoides with yields between 0.1% and 0.9%, respectively. AGPs are characterized by a 1,3-linked Galp backbone, branched at C6 to 1,6-linked Galp side chains terminated by Araf and to a minor extent by GlcpA, Galp or Rhap. Treatment of explants of P. sidoides with AGPs from roots or suspension culture over 5.5 weeks resulted in effective stimulation of somatic embryo development and plant regeneration. Copyright © 2016. Published by Elsevier Ltd.

  6. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope.

    PubMed

    Vlašínová, Helena; Neděla, Vilem; Đorđević, Biljana; Havel, Ladislav

    2017-07-01

    Somatic embryogenesis (SE) is an important biotechnological technique used for the propagation of many pine species in vitro. However, in bog pine, one of the most endangered tree species in the Czech Republic, limitations were observed, which negatively influenced the development and further germination of somatic embryos. Although initiation frequency was very low-0.95 %, all obtained cell lines were subjected to maturation. The best responding cell line (BC1) was used and subjected to six different variants of the maturation media. The media on which the highest number of early-precotyledonary/cotyledonary somatic embryos was formed was supplemented with 121 μM abscisic acid (ABA) and with 6 % maltose. In the end of maturation experiments, different abnormalities in formation of somatic embryos were observed. For visualization and identification of abnormalities in meristem development during proliferation and maturation processes, the environmental scanning electron microscope was used. In comparison to the classical light microscope, the non-commercial environmental scanning electron microscope AQUASEM II has been found as a very useful tool for the quick recognition of apical meristem disruption and abnormal development. To our knowledge, this is the first report discussing somatic embryogenesis in bog pine. Based on this observation, the cultivation procedure could be enhanced and the method for SE of bog pine optimized.

  7. A microdroplet cell culture based high frequency somatic embryogenesis system for pigeonpea, Cajanus cajan (L.) Millsp.

    PubMed

    Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah

    2015-09-01

    A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.

  8. Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion.

    PubMed

    Shires, Morgan E; Florez, Sergio L; Lai, Tina S; Curtis, Wayne R

    2017-11-01

    To carry out mass propagation of superior plants to improve agricultural and silvicultural production though advancements in plant cell totipotency, or the ability of differentiated somatic plant cells to regenerate an entire plant. The first demonstration of a titratable control over somatic embryo formation in a commercially relevant plant, Theobroma cacao (Chocolate tree), was achieved using a dexamethasone activatable chimeric transcription factor. This four-fold enhancement in embryo production rate utilized a glucocorticoid receptor fused to an embryogenic transcription factor LEAFY COTYLEDON 2. Where previous T. cacao somatic embryogenesis has been restricted to dissected flower parts, this construct confers an unprecedented embryogenic potential to leaves. Activatable chimeric transcription factors provide a means for elucidating the regulatory cascade associated with plant somatic embryogenesis towards improving its use for somatic regeneration of transgenics and plant propagation.

  9. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  10. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  11. Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine.

    PubMed

    Kumaravel, Marimuthu; Uma, Subbaraya; Backiyarani, Suthanthiram; Saraswathi, Marimuthu Somasundaram; Vaganan, Muthu Mayil; Muthusamy, Muthusamy; Sajith, Kallu Purayil

    2017-01-01

    Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. SE in banana is completely genome-dependent and most of the commercial cultivars exhibit recalcitrance. Thus, understanding the molecular basis of embryogenesis in Musa will help to develop strategies for mass production of quality planting material. In this study, differentially expressed proteins between embryogenic calli (EC) and non-embryogenic calli (NEC) with respect to the explant, immature male flower buds (IMFB), of cv. Grand Naine (AAA) were determined using two-dimensional gel electrophoresis (2DE). The 2DE results were validated through qRT-PCR. In total, 65 proteins were identified: 42 were highly expressed and 23 were less expressed in EC compared to NEC and IMFB. qRT-PCR analysis of five candidate proteins, upregulated in EC, were well correlated with expression at transcript level. Further analysis of proteins showed that embryogenesis in banana is associated with the control of oxidative stress. The regulation of ROS scavenging system and protection of protein structure occurred in the presence of heat shock proteins. Alongside, high accumulation of stress-related cationic peroxidase and plant growth hormone-related proteins like indole-3-pyruvate monooxygenase and adenylate isopentenyltransferase in EC revealed the association with the induction of SE.

  12. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    PubMed Central

    2012-01-01

    Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714

  13. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae).

    PubMed

    Chen, J -T.; Chang, W -C.

    2000-12-07

    An efficient method was established for high frequency somatic embryogenesis and plant regeneration from callus cultures of a hybrid of sympodial orchid (Oncidium 'Gower Ramsey'). Compact and yellow-white embryogenic calli formed from root tips and cut ends of stem and leaf segments on 1/2 MS [11] basal medium supplemented with 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ, 0.1-3 mg/l), 2,4-dichlorophenoxyacetic acid (2,4-D, 3-10 mg/l) and peptone (1 g/l) for 4-7 weeks. Embryogenic callus was maintained by subculture on the same medium for callus induction and proliferated 2-4 times (fresh weight) in 1 month. Initiation of somatic embryogenesis and development up to the protocorm-like-bodies (PLBs) from callus cultures was achieved on hormone-free basal medium. Regenerants were recovered from somatic embryos (SEs) after transfer to the same medium and showed normal development. The optimized protocol required about 12-14 weeks from the initiation of callus to the plantlet formation. Generally, the frequency of embryo formation of root-derived callus was higher than stem- and leaf-derived calli. Combinations of naphthaleneacetic acid (NAA) and TDZ significantly promoted embryo formation from callus cultures. The high-frequency (93.8%) somatic embryogenesis and an average of 29.1 SEs per callus (3x3 mm(2)) was found in root-derived callus on a basal medium supplemented with 0.1 mg/l NAA and 3 mg/l TDZ. Almost all the SEs converted and the plantlets grew well with an almost 100% survival rate when potted in sphagnum moss and acclimatized in the greenhouse.

  14. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    PubMed

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  15. Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook

    PubMed Central

    Zhou, Xiaohong; Zheng, Renhua; Liu, Guangxin; Xu, Yang; Zhou, Yanwei; Laux, Thomas; Zhen, Yan; Harding, Scott A.; Shi, Jisen; Chen, Jinhui

    2017-01-01

    Cunninghamia lanceolata (Lamb.) Hook (Chinese fir) is an important tree, commercially and ecologically, in southern China. The traditional regenerating methods are based on organogenesis and cutting propagation. Here, we report the development of a high-frequency somatic embryogenesis (SE) regeneration system synchronized via a liquid culture from immature zygotic embryos. Following synchronization, PEM II cell aggregates were developmentally equivalent in appearance to cleaved zygotic embryos. Embryo and suspensor growth and subsequent occurrence of the apical and then the cotyledonary meristems were similar for zygotic and SE embryo development. However, SE proembryos exhibited a more reddish coloration than zygotic proembryos, and SE embryos were smaller than zygotic embryos. Mature somatic embryos gave rise to plantlets on hormone-free medium. For juvenile explants, low concentrations of endogenous indole-3-acetic acid in initial explants correlated with improved proembryogenic mass formation, and high SE competency. Analysis of karyotypes and microsatellites detected no major genetic variation in the plants regenerated via SE, and suggest a potential in the further development of this system as a reliable methodology for true-to-type seedling production. Treatment with polyethylene glycol (PEG) and abscisic acid (ABA) were of great importance to proembryo formation and complemented each other. ABA assisted the growth of embryonal masses, whereas PEG facilitated the organization of the proembryo-like structures. SOMATIC EMBRYOGENESIS RECEPTOR KINASE SERK) and the WUSCHEL homeobox (WOX) transcription factor served as molecular markers during early embryogenesis. Our results show that ClSERKs are conserved and redundantly expressed during SE. SERK and WOX transcript levels were highest during development of the proembryos and lowest in developed embryos. ClWOX13 expression correlates with the critical transition from proembryogenic masses to proembryos. Both SERK

  16. Loss of CMD2‐mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis

    PubMed Central

    Chauhan, Raj Deepika; Wagaba, Henry; Moll, Theodore; Alicai, Titus; Miano, Douglas; Carrington, James C.; Taylor, Nigel J.

    2016-01-01

    Summary Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer‐preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)‐mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild‐type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2‐type varieties TME 3 and TME 7, but the CMD1‐type cultivar TMS 30572 and the CMD3‐type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2‐mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field‐level resistance in CMD2‐type cultivars presently grown by farmers in East Africa, where CMD pressure is high. PMID:26662210

  17. In vitro plant regeneration of Aster scaber via somatic embryogenesis.

    PubMed

    Boo, Kyung Hwan; Cao, Dang Viet; Pamplona, Reniel S; Lee, Doseung; Riu, Key-Zung; Lee, Dong-Sun

    2015-01-01

    We established an in vitro plant regeneration system via somatic embryogenesis of Aster scaber, an important source of various biologically active phytochemicals. We examined the callus induction and embryogenic capacities of three explants, including leaves, petioles, and roots, on 25 different media containing different combinations of α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). The optimum concentrations of NAA and BA for the production of embryogenic calli were 5.0 μM and 0.05 μM, respectively. Media containing higher concentrations of auxin and cytokinin (such as 25 μM NAA and 25 μM BA) were suitable for shoot regeneration, especially for leaf-derived calli, which are the most readily available calli and are highly competent. For root induction from regenerated shoots, supplemental auxin and/or cytokinin did not improve rooting, but instead caused unwanted callus induction or retarded growth of regenerated plants. Therefore, plant growth regulator-free medium was preferable for root induction. Normal plants were successfully obtained from calli under the optimized conditions described above. This is the first report of the complete process of in vitro plant regeneration of A. scaber via somatic embryogenesis.

  18. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis1[OPEN

    PubMed Central

    Weemen, Mieke

    2017-01-01

    Somatic embryogenesis is an example of induced cellular totipotency, where embryos develop from vegetative cells rather than from gamete fusion. Somatic embryogenesis can be induced in vitro by exposing explants to growth regulators and/or stress treatments. The BABY BOOM (BBM) and LEAFY COTYLEDON1 (LEC1) and LEC2 transcription factors are key regulators of plant cell totipotency, as ectopic overexpression of either transcription factor induces somatic embryo formation from Arabidopsis (Arabidopsis thaliana) seedlings without exogenous growth regulators or stress treatments. Although LEC and BBM proteins regulate the same developmental process, it is not known whether they function in the same molecular pathway. We show that BBM transcriptionally regulates LEC1 and LEC2, as well as the two other LAFL genes, FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3). LEC2 and ABI3 quantitatively regulate BBM-mediated somatic embryogenesis, while FUS3 and LEC1 are essential for this process. BBM-mediated somatic embryogenesis is dose and context dependent, and the context-dependent phenotypes are associated with differential LAFL expression. We also uncover functional redundancy for somatic embryogenesis among other Arabidopsis BBM-like proteins and show that one of these proteins, PLETHORA2, also regulates LAFL gene expression. Our data place BBM upstream of other major regulators of plant embryo identity and totipotency. PMID:28830937

  19. Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.)

    USDA-ARS?s Scientific Manuscript database

    Somatic embryogenesis was obtained from immature cotyledon explants that were cultured on half-strength Murashige and Skoog (MS) salts and vitamins with 5.4 uM naphthaleneacetic acid (NAA) and 0.2 uM thidiazuron (TDZ) plus a 4x4 factorial combination of 0,9.8, 34.6, or 49.2 uM indole-3-butyric acid ...

  20. A continuous culture system of direct somatic embryogenesis in microspore-derived embryos of Brassica juncea.

    PubMed

    Prabhudesai, V; Bhaskaran, S

    1993-03-01

    An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.

  1. Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.)

    Treesearch

    G. Vengadesan; Paula M. Pijut

    2009-01-01

    A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) after 4 weeks of...

  2. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    PubMed

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  3. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    PubMed

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  4. Somatic embryogenesis of East Kalimantan local upland rice varieties

    NASA Astrophysics Data System (ADS)

    Nurhasanah; Ramitha; Supriyanto, B.; Sunaryo, W.

    2018-04-01

    Somatic embryogenesis is the formation, growth and development of embryos from somatic cells. Somatic embryo induction is one of the in vitro plant propagation techniques that is very important for plant developmental purposes. Four local upland rice varieties of East Kalimantan, Mayas Pancing, Gedagai, Siam and Serai, were used in this study. A total of 200 explants (mature rice grains) for each varieties were inoculated on MS solid medium supplemented with 1 mg L-1 2,4 Dichlorophenoxy acetic acid (2,4-D) and 0.5 mg L-1 6-Benzylaminopurine (BAP). The results showed that response of each variety differed to embryosomatic induction, indicated by callus induction rate and callus quality, in terms of callus color and structure. The fastest callus formation was sobserved in Gedagai variety (8 days) while Mayas Pancing (13 days) was the latest one. The rate of callus induction varied from 60 to 98.5 %, and Serai variety has the highest callus induction rate. The highest friable callus structure was found in Siam variety (89.1%) and the lowest was in Gedagai (62.5%). Callus color was dominated by the yellowish-white (transparent) on all varieties tested. Most of the callus was potential as embryogenic callus characterized from the nodular and globular of friable callus structure and its yellowish-white color.

  5. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis.

    PubMed

    Guan, Yucheng; Ren, Haibo; Xie, He; Ma, Zeyang; Chen, Fan

    2009-10-01

    Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.

  6. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration.

    PubMed

    Xiao, Yanqing; Chen, Yanli; Ding, Yanpeng; Wu, Jie; Wang, Peng; Yu, Ya; Wei, Xi; Wang, Ye; Zhang, Chaojun; Li, Fuguang; Ge, Xiaoyang

    2018-05-01

    The WUSCHEL (WUS) gene encodes a plant-specific homeodomain-containing transcriptional regulator, which plays important roles during embryogenesis, as well as in the formation of shoot and flower meristems. Here, we isolated two homologues of Arabidopsis thaliana WUS (AtWUS), GhWUS1a_At and GhWUS1b_At, from upland cotton (Gossypium hirsutum). Domain analysis suggested that the two putative GhWUS proteins contained a highly conserved DNA-binding HOX domain and a WUS-box. Expression profile analysis showed that GhWUSs were predominantly expressed during the embryoid stage. Ectopic expression of GhWUSs in Arabidopsis could induce somatic embryo and shoot formation from seedling root tips. Furthermore, in the absence of exogenous hormone, overexpression of GhWUSs in Arabidopsis could promote shoot regeneration from excised roots, and in the presence of exogenous auxin, excised roots expressing GhWUS could be induced to produce somatic embryo. In addition, expression of the chimeric GhWUS repressor in cotton callus inhibited embryogenic callus formation. Our results show that GhWUS is an important regulator of somatic embryogenesis and shoot regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Influence of low temperature preincubation on somatic embryogenesis and ethylene emanation from orchardgrass leaves

    NASA Technical Reports Server (NTRS)

    Tomaszewski, Z. Jr; Kuklin, A. I.; Sams, C. E.; Conger, B. V.

    1994-01-01

    The objectives of this study were to determine the effects of low temperature (4 degrees C) preincubation on somatic embryogenesis from orchardgrass (Dactylis glomerata L.) leaf cultures and to relate these effects to ethylene emanation during the preincubation and incubation periods. Experiments were also conducted with an ethylene biosynthesis inhibitor aminooxyacetic acid (AOA). Segments from the innermost two leaves were cultured on SH medium with 30 micromoles dicamba at 4 degrees C for 1 to 7 d before transfer to 21 degrees C. Results from a paired design showed that the embryogenic response of leaf segments preincubated at 4 degrees C was equal or superior to nonpreincubated leaves at all time periods. Ethylene emanation was decreased during the low temperature incubation. Transfer of leaf segments from 4 degrees C to 21 degrees C was accompanied by a burst of ethylene which rose to control levels within 30 min. AOA at 20 and 40 micromoles decreased ethylene emanation but did not stimulate the embryogenic response. We conclude that the stimulation of somatic embryogenesis by low temperature is probably due to factors other than suppression of ethylene biosynthesis.

  8. PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis thaliana

    PubMed Central

    Mozgová, Iva

    2017-01-01

    Many plant cells can be reprogrammed into a pluripotent state that allows ectopic organ development. Inducing totipotent states to stimulate somatic embryo (SE) development is, however, challenging due to insufficient understanding of molecular barriers that prevent somatic cell dedifferentiation. Here we show that Polycomb repressive complex 2 (PRC2)-activity imposes a barrier to hormone-mediated transcriptional reprogramming towards somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. We identify factors that enable SE development in PRC2-depleted shoot and root tissue and demonstrate that the establishment of embryogenic potential is marked by ectopic co-activation of crucial developmental regulators that specify shoot, root and embryo identity. Using inducible activation of PRC2 in PRC2-depleted cells, we demonstrate that transient reduction of PRC2 activity is sufficient for SE formation. We suggest that modulation of PRC2 activity in plant vegetative tissue combined with targeted activation of developmental pathways will open possibilities for novel approaches to cell reprogramming. PMID:28095419

  9. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    PubMed

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  10. Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.

    PubMed

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-Graciamedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa.

  11. Micropropagation of Citrus spp. by organogenesis and somatic embryogenesis.

    PubMed

    Chiancone, Benedetta; Germanà, Maria Antonietta

    2013-01-01

    Citrus spp., the largest fruit crops produced worldwide, are usually asexually propagated by cuttings or grafting onto seedling rootstocks. Most of Citrus genotypes are characterized by polyembryony due to the occurrence of adventive nucellar embryos, which lead to the production of true-to-type plants by seed germination. Tissue culture and micropropagation, in particular, are valuable alternatives to traditional propagation to obtain a high number of uniform and healthy plants in a short time and in a small space. Moreover, in vitro propagation provides a rapid system to multiply the progeny obtained by breeding programs, allows the use of monoembryonic and seedless genotypes as rootstocks, and it is very useful also for breeding and germplasm preservation.In this chapter, two protocols regarding organogenesis of a rootstock and somatic embryogenesis of a cultivar have been described.

  12. Somatic embryogenesis from corolla tubes of interspecific amphiploids between cultivated sunflower (Helianthus annuus L.) and its wild species

    USDA-ARS?s Scientific Manuscript database

    Somatic embryogenesis in vitro provides an efficient means of plant multiplication, facilitating sunflower improvement and germplasm innovation. In the present study, using interspecific amphiploids (2n=4x=68) between cultivated sunflower and wild perennial Helianthus species as explant donors, soma...

  13. Polyamine and ethylene biosynthesis in relation to somatic embryogenesis in carrot (Daucus carota L.) cell cultures

    Treesearch

    Subhash C. Minocha; Cheryl A. Robie; Akhtar J. Khan; Nancy S. Papa; Andrew I. Samuelsen; Rakesh Minocha

    1990-01-01

    Carrot cell cultures provide a model experimental system for the analysis of biochemical and molecular events associated with morphogenesis in plants (3, 4, 5, 14). Among the biochemical changes accompanying somatic embryogenesis in this tissue is an increased biosynthesis ofpolyamines (1, 2, 7, 10, 11, 13). A variety of inhibitors of polyamine biosynthetic enzymes...

  14. Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger.

    PubMed

    Anil, V S; Rao, K S

    2000-08-01

    The possible involvement of Ca(2+)-mediated signaling in the induction/regulation of somatic embryogenesis from pro-embryogenic cells of sandalwood (Santalum album) has been investigated. (45)Ca(2+)-uptake studies and fura-2 fluorescence ratio photometry were used to measure changes in [Ca(2+)](cyt) of pro-embryogenic cells in response to culture conditions conducive for embryo development. Sandalwood pro-embryogenic cell masses (PEMs) are obtained in the callus proliferation medium that contains the auxin 2,4-dichlorophenoxyacetic acid. Subculture of PEMs into the embryo differentiation medium, which lacks 2,4-dichlorophenoxyacetic acid and has higher osmoticum, results in a 4-fold higher (45)Ca(2+) incorporation into the symplast. Fura-2 ratiometric analysis corroboratively shows a 10- to 16-fold increase in the [Ca(2+)](cyt) of PEMs, increasing from a resting concentration of 30 to 50 nM to 650 to 800 nM. Chelation of exogenous Ca(2+) with ethyleneglycol-bis(aminoethyl ether)-N,N'-tetraacetic acid arrests such an elevation in [Ca(2+)](cyt). Exogenous Ca(2+) when chelated or deprived also arrests embryo development and inhibits the accumulation of a sandalwood Ca(2+)-dependent protein kinase. However, such culture conditions do not cause cell death as the PEMs continue to proliferate to form larger cell clumps. Culture treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide reduced embryogenic frequency by 85%, indicating that blockage of Ca(2+)-mediated signaling pathway(s) involving sandalwood Ca(2+)-dependent protein kinase and/or calmodulin causes the inhibition of embryogenesis. The observations presented are evidence to suggest a second messenger role for exogenous Ca(2+) during sandalwood somatic embryogenesis.

  15. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA)

    PubMed Central

    2011-01-01

    Background Hydroxyproline rich glycoproteins (HRGPs) are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs) and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis), and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs), mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs), proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM). This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages) of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP treatment showed

  16. Annotation of Differentially Expressed Genes in the Somatic Embryogenesis of Musa and Their Location in the Banana Genome

    PubMed Central

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-GraciaMedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100–4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa. PMID:24027442

  17. Identification of expressed sequences in the coffee genome potentially associated with somatic embryogenesis.

    PubMed

    Silva, A T; Paiva, L V; Andrade, A C; Barduche, D

    2013-05-21

    Brazil possesses the most modern and productive coffee growing farms in the world, but technological development is desired to cope with the increasing world demand. One way to increase Brazilian coffee growing productivity is wide scale production of clones with superior genotypes, which can be obtained with in vitro propagation technique, or from tissue culture. These procedures can generate thousands of clones. However, the methodologies for in vitro cultivation are genotype-dependent, which leads to an almost empirical development of specific protocols for each species. Therefore, molecular markers linked to the biochemical events of somatic embryogenesis would greatly facilitate the development of such protocols. In this context, sequences potentially involved in embryogenesis processes in the coffee plant were identified in silico from libraries generated by the Brazilian Coffee Genome Project. Through these in silico analyses, we identified 15 EST-contigs related to the embryogenesis process. Among these, 5 EST-contigs (3605, 9850, 13686, 17240, and 17265) could readily be associated with plant embryogenesis. Sequence analysis of EST-contig 3605, 9850, and 17265 revealed similarity to a polygalacturonase, to a cysteine-proteinase, and to an allergenine, respectively. Results also show that EST-contig 17265 sequences presented similarity to an expansin. Finally, analysis of EST-contig 17240 revealed similarity to a protein of unknown function, but it grouped in the similarity dendrogram with the WUSCHEL transcription factor. The data suggest that these EST-contigs are related to the embryogenic process and have potential as molecular markers to increase methodological efficiency in obtaining coffee plant embryogenic materials.

  18. Plant Regeneration and Somatic Embryogenesis from Immature Embryos Derived through Interspecific Hybridization among Different Carica Species

    PubMed Central

    Azad, Md. Abul Kalam; Rabbani, Md. Golam; Amin, Latifah

    2012-01-01

    Plant regeneration and somatic embryogenesis through interspecific hybridization among different Carica species were studied for the development of a papaya ringspot virus-resistant variety. The maximum fruit sets were recorded from the cross of the native variety C. papaya cv. Shahi with the wild species C. cauliflora. The highest hybrid embryos were recorded at 90 days after pollination and the embryos were aborted at 150 days after pollination. The immature hybrid embryos were used for plant regeneration and somatic embryogenesis. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora showed the highest percentage of germination, as well as plant regeneration on growth regulators free culture medium after 7 days pre-incubation on half-strength MS medium supplemented with 0.2 mg/L BAP, 0.5 mg/L NAA and 60 g/L sucrose. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora produced maximum callus, as well as somatic embryos when cultured on half-strength MS medium containing 5 mg/L 2,4-D, 100 mg/L glutamine, 100 mg/L casein hydrolysate and 60 g/L sucrose. The somatic embryos were transferred into half-strength MS medium containing 0.5 mg/L BAP and 0.2 mg/L NAA and 60 g/L sucrose for maturation. The highest number of regenerated plants per hybrid embryo (10.33) was recorded from the cross of C. papaya cv. Shahi × C. cauliflora. Isoenzyme and dendrogram cluster analysis using UPGMA of the regenerated F1 plantlets confirmed the presence of the hybrid plantlets. PMID:23235330

  19. Calcium-Mediated Signaling during Sandalwood Somatic Embryogenesis. Role for Exogenous Calcium as Second Messenger1

    PubMed Central

    Anil, Veena S.; Rao, K. Sankara

    2000-01-01

    The possible involvement of Ca2+-mediated signaling in the induction/regulation of somatic embryogenesis from pro-embryogenic cells of sandalwood (Santalum album) has been investigated. 45Ca2+-uptake studies and fura-2 fluorescence ratio photometry were used to measure changes in [Ca2+]cyt of pro-embryogenic cells in response to culture conditions conducive for embryo development. Sandalwood pro-embryogenic cell masses (PEMs) are obtained in the callus proliferation medium that contains the auxin 2,4-dichlorophenoxyacetic acid. Subculture of PEMs into the embryo differentiation medium, which lacks 2,4-dichlorophenoxyacetic acid and has higher osmoticum, results in a 4-fold higher 45Ca2+ incorporation into the symplast. Fura-2 ratiometric analysis corroboratively shows a 10- to 16-fold increase in the [Ca2+]cyt of PEMs, increasing from a resting concentration of 30 to 50 nm to 650 to 800 nm. Chelation of exogenous Ca2+ with ethyleneglycol-bis(aminoethyl ether)-N,N′-tetraacetic acid arrests such an elevation in [Ca2+]cyt. Exogenous Ca2+ when chelated or deprived also arrests embryo development and inhibits the accumulation of a sandalwood Ca2+-dependent protein kinase. However, such culture conditions do not cause cell death as the PEMs continue to proliferate to form larger cell clumps. Culture treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide reduced embryogenic frequency by 85%, indicating that blockage of Ca2+-mediated signaling pathway(s) involving sandalwood Ca2+-dependent protein kinase and/or calmodulin causes the inhibition of embryogenesis. The observations presented are evidence to suggest a second messenger role for exogenous Ca2+ during sandalwood somatic embryogenesis. PMID:10938349

  20. Protocol for in vitro somatic embryogenesis and regeneration of rice (Oryza sativa L.).

    PubMed

    Verma, Dipti; Joshi, Rohit; Shukla, Alok; Kumar, Pramod

    2011-12-01

    Development of highly efficient and reproducible plant regeneration system has tremendous potential to provide improved technology to assist in genetic transformation of indica rice cultivars for their further exploitation in selection. For the development of a highly reproducible regeneration system through somatic embryogenesis, mature embryos of highly popular rice cultivars i.e., Govind (for rainfed areas), Pusa Basmati-1 (aromatic basmati) and Jaya (for irrigated areas) were used. Optimum callus formation (%) to MS medium supplemented with 2, 4-D was obtained at 12.0 microM in Govind, 14.0 microM in Jaya and 15.0 microM in Pusa Basmati-1. All the cultivars showed good proliferation on MS medium without hormone. In Govind, highest embryogenic response was observed in MS medium supplemented with 2, 4-D (0.4 microM) + kinetin (0.4 microM), while in Pusa Basmati-1 with 2, 4-D (0.4 microM) + kinetin (2.0 microM) and in Jaya on hormone-free MS medium. Excellent embryo regeneration in Govind was observed on MS medium supplemented with low concentrations (1.1 microM) of BAP or hormone-free MS medium, while in Pusa Basmati-1 and Jaya embryogenesis was observed on MS medium supplemented with higher concentration of BAP (2.2 microM). Similarly, maximum plantlets with proliferated roots were observed in Govind on hormone-free MS medium, while in Pusa Basmati-1 and Jaya on MS medium supplemented with high concentration of NAA (4.0 microM). Developed plantlets were further successfully acclimatized and grown under pot culture up to maturity. Further the yield potential of in vitro developed plants was accessed at par to the direct seeded one under pot culture. Present, protocol standardizes somatic embryogenesis and efficient regeneration of agronomically important, high yielding and diverse indica rice cultivars which can be utilized as an efficient tool for molecular studies and genetic transformation in future.

  1. In vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [ Cajanus cajan (L.) Millsp.] cv. JKR105.

    PubMed

    Krishna, Gaurav; Reddy, P Sairam; Ramteke, Pramod W; Rambabu, Pogiri; Sohrab, Sayed S; Rana, Debashis; Bhattacharya, Parthasarathi

    2011-10-01

    In vitro regeneration of pigeon pea through organogenesis and somatic embryogenesis was demonstrated with pigeon pea cv. JKR105. Embryonic axes explants of pigeon pea showed greater regeneration of shoot buds on 2.5 mg L(-1) 6-benzylaminopurine (BAP) in the medium, followed by further elongation at lower concentrations. Rooting of shoots was observed on half-strength Murashige and Skoog (MS) medium with 2 % sucrose and 0.5 mg L(-1) 3-indolebutyric acid (IBA). On the other hand, the regeneration of globular embryos from cotyledon explant was faster and greater with thidiazuron (TDZ) than BAP with sucrose as carbohydrate source. These globular embryos were maturated on MS medium with abscisic acid (ABA) and finally germinated on half-strength MS medium at lower concentrations of BAP. Comparison of regeneration pathways in pigeon pea cv. JKR105 showed that the turnover of successful establishment of plants achieved through organogenesis was more compared to somatic embryogenesis, despite the production of more embryos than shoot buds.

  2. Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.)

    PubMed Central

    2010-01-01

    Background In our laboratory we use cultured chicory (Cichorium intybus) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation i.e. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies [1] showed that the use of the β-D-glucosyl Yariv reagent (β-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that β-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation [2]. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used β-GlcY to block SE in order to identify genes potentially involved in this process. Results Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. β-GlcY-treatment of explants blocked in vitro SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by β-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes

  3. Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex.

    PubMed

    Kadokura, Satoshi; Sugimoto, Kaoru; Tarr, Paul; Suzuki, Takamasa; Matsunaga, Sachihiro

    2018-04-28

    Somatic embryogenesis is one of the best examples of the remarkable developmental plasticity of plants, in which committed somatic cells can dedifferentiate and acquire the ability to form an embryo and regenerate an entire plant. In Arabidopsis thaliana, the shoot apices of young seedlings have been reported as an alternative tissue source for somatic embryos (SEs) besides the widely studied zygotic embryos taken from siliques. Although SE induction from shoots demonstrates the plasticity of plants more clearly than the embryo-to-embryo induction system, the underlying developmental and molecular mechanisms involved are unknown. Here we characterized SE formation from shoot apex explants by establishing a system for time-lapse observation of explants during SE induction. We also established a method to distinguish SE-forming and non-SE-forming explants prior to anatomical SE formation, enabling us to identify distinct transcriptome profiles of these two explants at SE initiation. We show that embryonic fate commitment takes place at day 3 of SE induction and the SE arises directly, not through callus formation, from the base of leaf primordia just beside the shoot apical meristem (SAM), where auxin accumulates and shoot-root polarity is formed. The expression domain of a couple of key developmental genes for the SAM transiently expands at this stage. Our data demonstrate that SE-forming and non-SE-forming explants share mostly the same transcripts except for a limited number of embryonic genes and root genes that might trigger the SE-initiation program. Thus, SE-forming explants possess a mixed identity (SAM, root and embryo) at the time of SE specification. Copyright © 2018. Published by Elsevier Inc.

  4. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine.

    PubMed

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj; Tiwari, Siddharth

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.

  5. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine

    PubMed Central

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana. PMID:28797040

  6. Diverse roles of actin in C. elegans early embryogenesis

    PubMed Central

    Velarde, Nathalie; Gunsalus, Kristin C; Piano, Fabio

    2007-01-01

    Background The actin cytoskeleton plays critical roles in early development in Caenorhabditis elegans. To further understand the complex roles of actin in early embryogenesis we use RNAi and in vivo imaging of filamentous actin (F-actin) dynamics. Results Using RNAi, we found processes that are differentially sensitive to levels of actin during early embryogenesis. Mild actin depletion shows defects in cortical ruffling, pseudocleavage, and establishment of polarity, while more severe depletion shows defects in polar body extrusion, cytokinesis, chromosome segregation, and eventually, egg production. These defects indicate that actin is required for proper oocyte development, fertilization, and a wide range of important events during early embryogenesis, including proper chromosome segregation. In vivo visualization of the cortical actin cytoskeleton shows dynamics that parallel but are distinct from the previously described myosin dynamics. Two distinct types of actin organization are observed at the cortex. During asymmetric polarization to the anterior, or the establishment phase (Phase I), actin forms a meshwork of microfilaments and focal accumulations throughout the cortex, while during the anterior maintenance phase (Phase II) it undergoes a morphological transition to asymmetrically localized puncta. The proper asymmetric redistribution is dependent on the PAR proteins, while both asymmetric redistribution and morphological transitions are dependent upon PFN-1 and NMY-2. Just before cytokinesis, actin disappears from most of the cortex and is only found around the presumptive cytokinetic furrow. Finally, we describe dynamic actin-enriched comets in the early embryo. Conclusion During early C. elegans embryogenesis actin plays more roles and its organization is more dynamic than previously described. Morphological transitions of F-actin, from meshwork to puncta, as well as asymmetric redistribution, are regulated by the PAR proteins. Results from this study

  7. Preliminary molecular detection of the somatic embryogenesis receptor-like kinase (VpSERK) and knotted-like homeobox (VpKNOX1) genes during in vitro morphogenesis of Vanilla planifolia Jacks.

    PubMed

    Ramírez-Mosqueda, Marco A; Iglesias-Andreu, Lourdes G; Sáenz, Luis; Córdova, Iván

    2018-02-01

    This work aimed to evaluate the embryogenic competence of different tissues from different stages (friable callus, bud-regenerating callus, and whole buds) of Vanilla planifolia , through the molecular detection of the somatic embryogenesis receptor-like kinase ( VpSERK ) and knotted-like homeobox ( VpKNOX1 ) genes. RNA was extracted with Trizol ® , cDNA was obtained, and the studied transcripts were amplified. Using non-specific primers, VpSERK and VpSTM gene expression was detected in the three stages evaluated. This study might contribute to providing an explanation for the recalcitrance of this Vanilla species to somatic embryogenesis.

  8. Somatic embryogenesis in Hedychium bousigonianum

    USDA-ARS?s Scientific Manuscript database

    An efficient primary somatic embryo (SE) and secondary somatic embryo (SSE) production system was developed for the ornamental ginger Hedychium bousigonianum Pierre ex Gagnepain. Addition of two ethylene inhibitors, salicylic acid (SA) and silver nitrate (AgNO3), to the culture media improved the sy...

  9. Micropropagation of Codiaeum variegatum (L.) Blume and regeneration induction via adventitious buds and somatic embryogenesis.

    PubMed

    Radice, Silvia

    2010-01-01

    Codiaeum variegatum (L) Blume cv. "Corazon de oro" and cv. "Norma" are successfully micropropagated when culture are initiated with explants taken from newly sprouted shoots. The establishment and multiplication steps are possible when 1 mg/L BA or 1 mg/L IAA and 3 mg/L 2iP are added to MS medium, according to the cultivar respectively selected.Adventive organogenesis and somatic embryogenesis are induced from leaf explants taken from in vitro buds of croton. On leaf-sectioned of "Corazon de oro" cultured in vitro, 1 mg/L BA stimulates continuous somatic embryos development and induces some shoots too. Replacing BA with 1 mg/L TDZ induces up to 100% bud regeneration in the same explants. On the other hand, leaf-sectioned of C. variegatum cv. Norma does not start somatic embryo differentiation if 1 mg/L TDZ is not added to the MS basal medium. Incipient callus is observed after 30 days of culture, and then, subculture to MS with 1 mg/L BA allows the same process to show on the "Corazon de oro" cultivar. Somatic embryos show growth arrest that is partially overcome by transfer to hormone-free basal medium with activated charcoal. Root induction is possible on basal medium plus 1 mg/L IBA. Plantlets in the greenhouse have variegated leaves true-to-type.

  10. Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development.

    PubMed

    Sánchez-Díaz, Rosa Angélica; Castillo, Ana María; Vallés, María Pilar

    2013-09-01

    Microspore embryogenesis involves reprogramming of the pollen immature cell towards embryogenesis. We have identified and characterized a collection of 14 genes induced along different morphological phases of microspore-derived embryo development in wheat (Triticum aestivum L.) anther culture. SERKs and FLAs genes previously associated with somatic embryogenesis and reproductive tissues, respectively, were also included in this analysis. Genes involved in signalling mechanisms such as TaTPD1-like and TAA1b, and two glutathione S-transferase (GSTF2 and GSTA2) were induced when microspores had acquired a 'star-like' morphology or had undergone the first divisions. Genes associated with control of plant development and stress response (TaNF-YA, TaAGL14, TaFLA26, CHI3, XIP-R; Tad1 and WALI6) were activated before exine rupture. When the multicellular structures have been released from the exine, TaEXPB4, TaAGP31-like and an unknown embryo-specific gene TaME1 were induced. Comparison of gene expression, between two wheat cultivars with different response to anther culture, showed that the profile of genes activated before exine rupture was shifted to earlier stages in the low responding cultivar. This collection of genes constitutes a value resource for study mechanism of intra-embryo communication, early pattern formation, cell wall modification and embryo differentiation.

  11. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb.

    PubMed

    Domżalska, Lucyna; Kędracka-Krok, Sylwia; Jankowska, Urszula; Grzyb, Małgorzata; Sobczak, Mirosław; Rybczyński, Jan J; Mikuła, Anna

    2017-05-01

    Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis.

    PubMed

    Pérez-Pascual, Daniel; Jiménez-Guillen, Doribet; Villanueva-Alonzo, Hernán; Souza-Perera, Ramón; Godoy-Hernández, Gregorio; Zúñiga-Aguilar, José Juan

    2018-04-01

    Somatic embryogenesis receptor-like kinase 1 (SERK1) is a membrane receptor that might serve as common co-regulator of plant cell differentiation processes by forming heterodimers with specific receptor-like kinases. The Coffea canephora SERK1 homolog (CcSERK1) was cloned in this work, and its early function in the transcription of embryogenesis master genes and of genes encoding proteins involved in auxin metabolism was investigated by externally manipulating its expression in embryogenic leaf explants, before the appearance of embryogenic structures. Overexpression of CcSERK1 early during embryogenesis caused an increase in the number of somatic embryos when the 55-day process was completed. Suppression of CcSERK1 expression by RNA interference almost abolished somatic embryogenesis. Real time-PCR experiments revealed that the transcription of the CcAGL15, CcWUS, CcBBM, CcPKL, CcYUC1, CcPIN1 and CcPIN4 homologs was modified in direct proportion to the expression of CcSERK1 and that only CcLEC1 was inversely affected by the expression levels of CcSERK1. The expression of the CcYUC4 homolog was induced to more than 80-fold under CcSERK1 overexpression conditions, but it was also induced when CcSERK1 expression was silenced. The level of CcTIR1 was not affected by CcSERK1 overexpression but was almost abolished during CcSERK1 silencing. These results suggest that CcSERK1 co-regulates the induction of somatic embryogenesis in Coffea canephora by early activation of YUC-dependent auxin biosynthesis, auxin transport mediated by PIN1 and PIN4, and probably auxin perception by the TIR1 receptor, leading to the induction of early-stage homeotic genes (CcAGL15, CcWUS, CcPKL and CcBBM) and repression of late-stage homeotic genes (CcLec1). © 2018 Scandinavian Plant Physiology Society.

  13. Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses.

    PubMed

    Morel, Alexandre; Teyssier, Caroline; Trontin, Jean-François; Eliášová, Kateřina; Pešek, Bedřich; Beaufour, Martine; Morabito, Domenico; Boizot, Nathalie; Le Metté, Claire; Belal-Bessai, Leila; Reymond, Isabelle; Harvengt, Luc; Cadene, Martine; Corbineau, Françoise; Vágner, Martin; Label, Philippe; Lelu-Walter, Marie-Anne

    2014-09-01

    Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets. © 2014 Scandinavian Plant Physiology Society.

  14. Somatic Embryogenesis in Coffee: The Evolution of Biotechnology and the Integration of Omics Technologies Offer Great Opportunities

    PubMed Central

    Campos, Nádia A.; Panis, Bart; Carpentier, Sebastien C.

    2017-01-01

    One of the most important crops cultivated around the world is coffee. There are two main cultivated species, Coffea arabica and C. canephora. Both species are difficult to improve through conventional breeding, taking at least 20 years to produce a new cultivar. Biotechnological tools such as genetic transformation, micropropagation and somatic embryogenesis (SE) have been extensively studied in order to provide practical results for coffee improvement. While genetic transformation got many attention in the past and is booming with the CRISPR technology, micropropagation and SE are still the major bottle neck and urgently need more attention. The methodologies to induce SE and the further development of the embryos are genotype-dependent, what leads to an almost empirical development of specific protocols for each cultivar or clone. This is a serious limitation and excludes a general comprehensive understanding of the process as a whole. The aim of this review is to provide an overview of which achievements and molecular insights have been gained in (coffee) somatic embryogenesis and encourage researchers to invest further in the in vitro technology and combine it with the latest omics techniques (genomics, transcriptomics, proteomics, metabolomics, and phenomics). We conclude that the evolution of biotechnology and the integration of omics technologies offer great opportunities to (i) optimize the production process of SE and the subsequent conversion into rooted plantlets and (ii) to screen for possible somaclonal variation. However, currently the usage of the latest biotechnology did not pass the stage beyond proof of potential and needs to further improve. PMID:28871271

  15. Gene expression and metabolite profiling of gibberellin biosynthesis during induction of somatic embryogenesis in Medicago truncatula Gaertn

    PubMed Central

    Igielski, Rafał

    2017-01-01

    Gibberellins (GAs) are involved in the regulation of numerous developmental processes in plants including zygotic embryogenesis, but their biosynthesis and role during somatic embryogenesis (SE) is mostly unknown. In this study we show that during three week- long induction phase, when cells of leaf explants from non-embryogenic genotype (M9) and embryogenic variant (M9-10a) were forming the callus, all the bioactive gibberellins from non-13-hydroxylation (GA4, GA7) and 13-hydroxylation (GA1, GA5, GA3, GA6) pathways were present, but the contents of only a few of them differed between the tested lines. The GA53 and GA19 substrates synthesized by the 13-hydroxylation pathway accumulated specifically in the M9-10a line after the first week of induction; subsequently, among the bioactive gibberellins detected, only the content of GA3 increased and appeared to be connected with acquisition of embryogenic competence. We fully annotated 20 Medicago truncatula orthologous genes coding the enzymes which catalyze all the known reactions of gibberellin biosynthesis. Our results indicate that, within all the genes tested, expression of only three: MtCPS, MtGA3ox1 and MtGA3ox2, was specific to embryogenic explants and reflected the changes observed in GA53, GA19 and GA3 contents. Moreover, by analyzing expression of MtBBM, SE marker gene, we confirmed the inhibitory effect of manipulation in GAs metabolism, applying exogenous GA3, which not only impaired the production of somatic embryos, but also significantly decreased expression of this gene. PMID:28750086

  16. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.).

    PubMed

    Xu, Zhenzhen; Zhang, Chaojun; Ge, Xiaoyang; Wang, Ni; Zhou, Kehai; Yang, Xiaojie; Wu, Zhixia; Zhang, Xueyan; Liu, Chuanliang; Yang, Zuoren; Li, Changfeng; Liu, Kun; Yang, Zhaoen; Qian, Yuyuan; Li, Fuguang

    2015-07-01

    The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88-37.07% of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.

  17. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    PubMed Central

    Petrek, Jiri; Zitka, Ondrej; Adam, Vojtech; Bartusek, Karel; Anjum, Naser A.; Pereira, Eduarda; Havel, Ladislav; Kizek, Rene

    2015-01-01

    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we

  18. Maize embryogenesis.

    PubMed

    Fontanet, Pilar; Vicient, Carlos M

    2008-01-01

    Plant embryo development is a complex process that includes several coordinated events. Maize mature embryos consist of a well-differentiated embryonic axis surrounded by a single massive cotyledon called scutellum. Mature embryo axis also includes lateral roots and several developed leaves. In contrast to Arabidopsis, in which the orientation of cell divisions are perfectly established, only the first planes of cell division are predictable in maize embryos. These distinctive characteristics joined to the availability of a large collection of embryo mutants, well-developed molecular biology and tissue culture tools, an established genetics and its economical importance make maize a good model plant for grass embryogenesis. Here, we describe basic concepts and techniques necessary for studying maize embryo development: how to grow maize in greenhouses and basic techniques for in vitro embryo culture, somatic embryogenesis and in situ hybridization.

  19. Conservation of proteo-lipid nuclear membrane fusion machinery during early embryogenesis.

    PubMed

    Byrne, Richard D; Veeriah, Selvaraju; Applebee, Christopher J; Larijani, Banafshé

    2014-01-01

    The fusogenic lipid diacylglycerol is essential for remodeling gamete and zygote nuclear envelopes (NE) during early embryogenesis. It is unclear whether upstream signaling molecules are likewise conserved. Here we demonstrate PLCγ and its activator SFK1, which co-operate during male pronuclear envelope formation, also promote the subsequent male and female pronuclear fusion. PLCγ and SFK1 interact directly at the fusion site leading to PLCγ activation. This is accompanied by a spatially restricted reduction of PtdIns(4,5)P2. Consequently, pronuclear fusion is blocked by PLCγ or SFK1 inhibition. These findings identify new regulators of events in the early embryo and suggest a conserved "toolkit" of fusion machinery drives successive NE fusion events during embryogenesis.

  20. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    PubMed

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  1. Somatic embryos from culture ovules of polyembryonic Mangifera indica L.

    PubMed

    Litz, R E; Knight, R L; Gazit, S

    1982-12-01

    Ovules were aseptically removed from 2 month old fruits of 9 naturally polyembryonic cultivars and 1 monoembryonic cultivar of mango (Mangifera indica L.). Ovules were placed into culture on solid Murashige and Skoog medium that had been modified by the addition of half strength major salts and chelated iron, 6% sucrose, 400 mg/l glutamine, 100 mg/l ascorbic acid with or without the following growth regulators: 20% (v/v) CW, 1 or 2 mg/1 BA. Somatic embryogenesis occurred from the nucellus excised from the ovules of 5 of the naturally polyembryonic cultivars after 1-2 months in culture. Somatic embryogenesis was not apparently affected by the growth regulator composition of the media; however, efficient somatic embryogenesis only occurred in liquid containing 20% CW.

  2. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope.

    PubMed

    Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav

    2018-05-18

    Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Somatic Embryogenesis in Olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris).

    PubMed

    Rugini, Eddo; Silvestri, Cristian

    2016-01-01

    Protocols for olive somatic embryogenesis from zygotic embryos and mature tissues have been described for both Olea europaea sub. europaea var. sativa and var. sylvestris. Immature zygotic embryos (no more than 75 days old), used after fruit collection or stored at 12-14 °C for 2-3 months, are the best responsive explants and very slightly genotype dependent, and one single protocol can be effective for a wide range of genotypes. On the contrary, protocols for mature zygotic embryos and for mature tissue of cultivars are often genotype specific, so that they may require many adjustments according to genotypes. The use of thidiazuron and cefotaxime seems to be an important trigger for induction phase particularly for tissues derived from cultivars. Up to now, however, the application of this technique for large-scale propagation is hampered also by the low rate of embryo germination; it proves nonetheless very useful for genetic improvement.

  4. Effect of AgNO3 and BAP on Root as a Novel Explant in Date Palm (Phoenix dactylifera cv. Medjool) Somatic Embryogenesis.

    PubMed

    Roshanfekrrad, Marjan; Zarghami, Reza; Hassani, Hassan; Zakizadeh, Hedayat; Salari, Ali

    2017-01-01

    Somatic embryogenesis techniques are used for cloning a wide range of varieties of date palms around the world. The aim of the present study was to develop an efficient method with the lowest cost and the greatest potential to obtain in vitro plantlets of date palm cv. Medjool. Also, produce embryogenic callus and somatic embryos without using 2,4-dichlorophenoxyacetic acid (2,4-D). In this study, produced plantlets through somatic embryogenesis were used in vitro roots as explant cultured on Murashige and Skoog (MS) media containing three level of Silver Nitrate (AgNO3) (0, 3 and 6 mg L-1) plus two level of 6-benzylaminopurine (BAP) (0 and 2 mg L-1) plus 0.1 mg L-1 1-naphthylacetic acid (NAA) for callus induction. After 12 weeks of culture, callus induction and after 16 weeks, production of embryogenic callus and embryos were occurred from root explants. According to the results, medium containing 2 mg L-1 BAP and 3 mg L-1 silver nitrate+0.1 mg L-1 NAA showed the highest amount of embryogenic callus fresh weight (1.38 g). This treatment also cause the highest number and length of embryos by production of 90.04 embryogenic callus with length of 11.18 mm. On the other hand, shoots were appeared from germinated embryos and white roots began to appear within 8 weeks. Medium contains 3 mg L-1 BAP and 0.1 mg L-1 NAA with average of 12.27 cm shoot length and 15.48 cm root length was the best. Control treatment had the lowest average shoot (3.71 cm) and root (5.03 cm) length. This study showed that certain concentration of silver nitrate and BAP has stimulating effect on growth of produced embryonic callus from root segments of Medjool cultivar of date palm.

  5. Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants.

    PubMed

    San Pedro, Tània; Gammoudi, Najet; Peiró, Rosa; Olmos, Antonio; Gisbert, Carmina

    2017-11-29

    Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airén, Cabernet Franc, Cabernet Sauvignon, Mencía, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valencí Blanc infected by GLRaV-3, GFkV and/or GFLV. Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in

  6. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    PubMed

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  7. The role of arginine metabolic pathway during embryogenesis and germination in maritime pine (Pinus pinaster Ait.).

    PubMed

    Llebrés, María-Teresa; Pascual, María-Belén; Debille, Sandrine; Trontin, Jean-François; Harvengt, Luc; Avila, Concepción; Cánovas, Francisco M

    2018-03-01

    Vegetative propagation through somatic embryogenesis is critical in conifer biotechnology towards multivarietal forestry that uses elite varieties to cope with environmental and socio-economic issues. An important and still sub-optimal process during in vitro maturation of somatic embryos (SE) is the biosynthesis and deposition of storage proteins, which are rich in amino acids with high nitrogen (N) content, such as arginine. Mobilization of these N-rich proteins is essential for the germination and production of vigorous somatic seedlings. Somatic embryos accumulate lower levels of N reserves than zygotic embryos (ZE) at a similar stage of development. To understand the molecular basis for this difference, the arginine metabolic pathway has been characterized in maritime pine (Pinus pinaster Ait.). The genes involved in arginine metabolism have been identified and GFP-fusion constructs were used to locate the enzymes in different cellular compartments and clarify their metabolic roles during embryogenesis and germination. Analysis of gene expression during somatic embryo maturation revealed high levels of transcripts for genes involved in the biosynthesis and metabolic utilization of arginine. By contrast, enhanced expression levels were only observed during the last stages of maturation and germination of ZE, consistent with the adequate accumulation and mobilization of protein reserves. These results suggest that arginine metabolism is unbalanced in SE (simultaneous biosynthesis and degradation of arginine) and could explain the lower accumulation of storage proteins observed during the late stages of somatic embryogenesis.

  8. Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees.

    PubMed

    Corredoira, E; Ballester, A; Ibarra, M; Vieitez, A M

    2015-06-01

    A reproducible procedure for induction of somatic embryogenesis (SE) from adult trees of Eucalyptus globulus Labill. and the hybrid E. saligna Smith × E. maidenii has been developed for the first time. Somatic embryos were obtained from both shoot apex and leaf explants of all three genotypes evaluated, although embryogenic frequencies were significantly influenced by the species/genotype, auxin and explant type. Picloram was more efficient for somatic embryo induction than naphthaleneacetic acid (NAA), with the highest frequency of induction being obtained in Murashige and Skoog medium containing 40 µM picloram and 40 mg l(-1) gum Arabic, in which 64% of the shoot apex explants and 68.8% of the leaf explants yielded somatic embryos. The embryogenic response of the hybrid was higher than that of the E. globulus, especially when NAA was used. The cultures initiated on picloram-containing medium consisted of nodular embryogenic structures surrounded by a mucilaginous coating layer that emerged from a watery callus developed from the initial explants. Cotyledonary somatic embryos were differentiated after subculture of these nodular embryogenic structures on a medium lacking plant growth regulators. Histological analysis confirmed the bipolar organization of the somatic embryos, with shoot and root meristems and closed procambial tissue that bifurcated into small cotyledons. The root pole was more differentiated than the shoot pole, which appeared to be formed by a few meristematic layers. Maintenance of the embryogenic lines by secondary SE was attained by subculturing individual cotyledonary embryos or small clusters of globular and torpedo embryos on medium with 16.11 µM NAA at 4- to 5-week intervals. Somatic embryos converted into plantlets after being transferred to liquid germination medium although plant regeneration remained poor. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email

  9. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    PubMed

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  10. Embling Production in Althaea officinalis L., Through Somatic Embryogenesis and Their Appraisal via Histological and Scanning Electron Microscopical Studies.

    PubMed

    Naz, Ruphi; Anis, Mohammad; Alatar, Abdulrahman A

    2017-07-01

    In vitro propagation of a medicinally important plant, Althaea officinalis, has been achieved through somatic embryogenesis. Somatic embryos (globular to torpedo-shaped embryos) were induced on Murashige and Skoog's (MS) medium augmented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D, 5.0, 10.0, 15.0, 20.0, and 25.0) alone or combined with N6-benzylaminopurine (BA, 0.1, 0.5, 1.0, 1.5, and 2.0 μM). These were directly formed from the cut ends and subsequently spread on the whole surface of internodal explants. For embryo maturation, torpedo embryos were transferred on a medium containing different levels of BA (0.1, 0.5, or 1.0 μM) and abscisic acid (ABA) (0.5, 1.0, or 1.5 μM) or α-naphthalene acetic acid (NAA) (0.1, 0.5 or 1.0 μM). Among the different concentrations tested, 0.5 μM BA along with 1.0 μM ABA was found most effective, on which a highest yield (58.0%) with an optimum number (35.0) of mature embryos (cotyledonary stage) was observed after 2 weeks of transfer. Germination of cotyledonary embryos into plantlets with 68% were observed on ½ MS medium. Histological and scanning electron microscopical (SEM) studies proved that the regenerated structures were somatic embryos and not shoot primordia. Plants grew vigorously when transferred to a greenhouse.

  11. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl.

    PubMed

    Fraga, Hugo Pacheco de Freitas; Vieira, Leila do Nascimento; Puttkammer, Catarina Corrêa; Dos Santos, Henrique Pessoa; Garighan, Julio de Andrade; Guerra, Miguel Pedro

    2016-12-01

    Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Evolution of early embryogenesis in rhabditid nematodes

    PubMed Central

    Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio

    2009-01-01

    The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102

  13. Somatic Embryogenesis in Peach Palm Using the Thin Cell Layer Technique: Induction, Morpho-histological Aspects and AFLP Analysis of Somaclonal Variation

    PubMed Central

    Steinmacher, D. A.; Krohn, N. G.; Dantas, A. C. M.; Stefenon, V. M.; Clement, C. R.; Guerra, M. P.

    2007-01-01

    number of calli and somatic embryos produced in comparison with previously described protocols for in vitro regeneration of peach palm. Conclusions The present study suggests that the TCL somatic embryogenesis protocol developed is feasible, although it still requires further optimization for in vitro multiplication of peach palm, especially the use of similar explants obtained from adult palm trees. PMID:17670751

  14. Somatic Embryogenesis in Horse Chestnut (Aesculus hippocastanum L.).

    PubMed

    Capuana, Maurizio

    2016-01-01

    Embryogenic cultures of horse chestnut (Aesculus hippocastanum L.) can be obtained from different organs and tissues. We describe here the induction from stamen filaments and the procedures applied for the successive phases of somatic embryo development and maturation. Embryogenic tissues are obtained on Murashige and Skoog medium containing 9.0 μM 2,4-dichlorophenoxyacetic acid. Somatic embryos develop after transfer to hormone-free medium enriched with glutamine. Maturation and germination of isolated embryos are achieved by transfer to medium containing polyethylene glycol 4000 and activated charcoal, successive desiccation treatment, and cold storage at 4 °C for 8 weeks.

  15. 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar "Livin' Easy" (Rosa sp.).

    PubMed

    Estabrooks, Tammy; Browne, Robin; Dong, Zhongmin

    2007-02-01

    Somatic embryogenesis (SE) offers vast potential for the clonal propagation of high-value roses. However, some recalcitrant cultivars unresponsive to commonly employed SE-inducing agents and low induction rates currently hinder the commercialization of SE technology in rose. Rose SE technology requires improvement before it can be implemented as a production system on a commercial scale. In the present work, we assessed 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a synthetic auxin not previously tested in rose, for its effectiveness to induce SE in the rose cultivar "Livin' Easy" (Rosa sp.). We ran a parallel comparison to the commonly used 2,4-dichlorophenoxyacetic acid (2,4-D). We tested each auxin with two different basal media: Murashige and Skoog (MS) basal medium and woody plant medium (WPM). MS medium resulted in somatic embryo production, whereas WPM did not. 2,4,5-T induced SE over a greater concentration range than 2,4-D's and resulted in significantly greater embryo yields. 2,4,5-T at a concentration of 10 or 25 microM was better for embrygenic tissue initiation than 2,4,5-T at 5 microM. Further embryo development occurred when the tissue was transferred to plant growth regulator (PGR) free medium or media with 40% the original auxin concentration. However, the PGR-free medium resulted in a high percentage of abnormal embryos (32.31%) compared to the media containing auxins. Upon transfer to germination medium, somatic embryos successfully converted into plantlets at rates ranging from 33.3 to 95.2%, depending on treatment. Survival rates 3 months ex vitro averaged 14.0 and 55.6% for 2,4-D- and 2,4,5-T-derived plantlets, respectively. Recurrent SE was observed in 60.2% of the plantlets growing on germination medium. This study is the first report of SE in the commercially valuable rose cultivar 'Livin' Easy' (Rosa sp.) and a suitable methodology was developed for SE of this rose cultivar.

  16. New Insights into Somatic Embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 Are Epigenetically Regulated in Coffea canephora

    PubMed Central

    Nic-Can, Geovanny I.; López-Torres, Adolfo; Barredo-Pool, Felipe; Wrobel, Kazimierz; Loyola-Vargas, Víctor M.; Rojas-Herrera, Rafael; De-la-Peña, Clelia

    2013-01-01

    Plant cells have the capacity to generate a new plant without egg fertilization by a process known as somatic embryogenesis (SE), in which differentiated somatic cells can form somatic embryos able to generate a functional plant. Although there have been advances in understanding the genetic basis of SE, the epigenetic mechanism that regulates this process is still unknown. Here, we show that the embryogenic development of Coffea canephora proceeds through a crosstalk between DNA methylation and histone modifications during the earliest embryogenic stages of SE. We found that low levels of DNA methylation, histone H3 lysine 9 dimethylation (H3K9me2) and H3K27me3 change according to embryo development. Moreover, the expression of LEAFY COTYLEDON1 (LEC1) and BABY BOOM1 (BBM1) are only observed after SE induction, whereas WUSCHEL-RELATED HOMEOBOX4 (WOX4) decreases its expression during embryo maturation. Using a pharmacological approach, it was found that 5-Azacytidine strongly inhibits the embryogenic response by decreasing both DNA methylation and gene expression of LEC1 and BBM1. Therefore, in order to know whether these genes were epigenetically regulated, we used Chromatin Immunoprecipitation (ChIP) assays. It was found that WOX4 is regulated by the repressive mark H3K9me2, while LEC1 and BBM1 are epigenetically regulated by H3K27me3. We conclude that epigenetic regulation plays an important role during somatic embryogenic development, and a molecular mechanism for SE is proposed. PMID:23977240

  17. Somatic embryogenesis and polyamines in woody plants

    Treesearch

    Rakesh Minocha; Subhash C. Minocha; Liisa Kaarina Simola

    1995-01-01

    The formation of whole plants from cultured cells is interesting not only because of its applications for mass propagation but also as a prime example of the process of controlled development and differentiation in plants. Cultures capable of producing somatic embryos with high frequency provide ideal experimental systems to study and understand the biochemical basis...

  18. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    PubMed

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  19. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos.

    PubMed

    Li, Shui-gen; Li, Wan-feng; Han, Su-ying; Yang, Wen-hua; Qi, Li-wang

    2013-06-15

    Polar auxin transport provides a developmental signal for cell fate specification during somatic embryogenesis. Some members of the HD-ZIP III transcription factors participate in regulation of auxin transport, but little is known about this regulation in somatic embryogenesis. Here, four HD-ZIP III homologues from Larix leptolepis were identified and designated LaHDZ31, 32, 33 and 34. The occurrence of a miR165/166 target sequence in all four cDNA sequences indicated that they might be targets of miR165/166. Identification of the cleavage products of LaHDZ31 and LaHDZ32 in vivo confirmed that they were regulated by miRNA. Their mRNA accumulation patterns during somatic embryogenesis and the effects of 1-N-naphthylphthalamic acid (NPA) on their transcript levels and somatic embryo maturation were investigated. The results showed that the four genes had higher transcript levels at mature stages than at the proliferation stage, and that NPA treatment down-regulated the mRNA abundance of LaHDZ31, 32 and 33 at cotyledonary embryo stages, but had no effect on the mRNA abundance of LaHDZ34. We concluded that these four members of Larix HD-ZIP III family might participate in polar auxin transport and the development of somatic embryos, providing new insights into the regulatory mechanisms of somatic embryogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Regeneration of Solanum nigrum by somatic embryogenesis, involving frog egg-like body, a novel structure.

    PubMed

    Xu, Kedong; Chang, Yunxia; Liu, Kun; Wang, Feige; Liu, Zhongyuan; Zhang, Ting; Li, Tong; Zhang, Yi; Zhang, Fuli; Zhang, Ju; Wang, Yan; Niu, Wei; Jia, Shuzhao; Xie, Hengchang; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum.

  1. Isozyme modifications and plant regeneration through somatic embryogenesis in sweet potato (Ipomoea batatas (L.) Lam.).

    PubMed

    Cavalcante Alves, J M; Sihachakr, D; Allot, M; Tizroutine, S; Mussio, I; Servaes, A; Ducreux, G

    1994-05-01

    The potential of somatic embryogenesis was evaluated for 10 cultivars of sweet potato through extensive embryogenic response and isozyme analysis. Embryogenic callus was induced by incubating lateral buds on Murashige and Skoog medium containing 10 μM 2,4-dichlorophenoxyacetic acid for 6-8 weeks. The frequency of embryogenic response was low, and varied with genotypes, ranging from 0 to 17%. Embryo to plantlet formation could be enhanced by the use of the combination of 2,4-dichlorophenoxyacetic acid with kinetin, both used at 0.01 μM. Embryogenic callus with its potential of plantlet formation has constantly been maintained for over two years. However, after several subcultures, 0.5 to 12% of embryogenic callus reverted irreversibly into friable fast-growing non-embryogenic callus whose ability to regenerate shoots was then definitively lost. The isozymes of esterase, peroxidase, glutamate oxaloacetate transaminase and acid phosphatase investigated in this study were found appropriate to distinguish compact embryogenic from friable non-embryogenic callus in sweet potato. In fact, the callus reversion was associated with a loss of bands or a decline in isozyme activity. On the contrary, very small changes in isozyme activity or no specific changes at all were observed during the differentiation of embryogenic callus into globular embryos.

  2. RELATIONSHIPS BETWEEN BREAST-FEEDING, CO-SLEEPING, AND SOMATIC COMPLAINTS IN EARLY CHILDHOOD.

    PubMed

    Peters, Elisabeth Maria; Lusher, Joanne Marie; Banbury, Samantha; Chandler, Chris

    2016-09-01

    The central aim of this study was to expand a limited body of knowledge on the complex relationship between breast-feeding, co-sleeping, and somatic complaints in early childhood. An opportunity sample of 98 parents from the general population with children aged 18 to 60 months consented to participate in the study. Each parent completed a series of questionnaires measuring somatic complaints, sleep problems, co-sleeping, breast-feeding, and demographic factors. Findings indicated that co-sleeping was associated with increased somatic complaints and that breast-feeding associated with decreased somatic complaints. Co-sleeping also was found to be associated with an increase in sleep problems. Boys demonstrated significantly higher levels of sleep problems than did girls. These findings highlight the relationship between co-sleeping during early childhood, which could have implications for prevention, treatment, and intervention regarding somatic complaints and sleep problems in early childhood. © 2016 Michigan Association for Infant Mental Health.

  3. Morphological analyses and variation in carbohydrate content during the maturation of somatic embryos of Carica papaya.

    PubMed

    Vale, Ellen Moura; Reis, Ricardo Souza; Passamani, Lucas Zanchetta; Santa-Catarina, Claudete; Silveira, Vanildo

    2018-03-01

    Efficient protocols for somatic embryogenesis of papaya ( Carica papaya L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in C . papaya . To study the effects of PEG on somatic embryogenesis of C . papaya , we analyzed somatic embryo development and carbohydrate profile changes during maturation treatments with PEG (6%) or without PEG (control). PEG treatment (6%) increased the number of normal mature somatic embryos followed by somatic plantlet production. In both control and PEG treatments, pro-embryogenic differentiation to the cotyledonary stage was observed and was significantly higher with PEG treatment. Histomorphological analysis of embryonic cultures with PEG revealed meristematic centers containing small isodiametric cells with dense cytoplasm and evident nuclei. Concomitant with the increase in the differentiation of somatic embryos in PEG cultures, there was an increase in the endogenous content of sucrose and starch, which appears to be related to a rising demand for energy, a key point in the conversion of C . papaya somatic embryos. The endogenous carbohydrate profile may be a valuable parameter for developing optimized protocols for the maturation of somatic embryos in papaya.

  4. Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora

    PubMed Central

    Ayil-Gutiérrez, Benajmín; Galaz-Ávalos, Rosa María; Peña-Cabrera, Eduardo; Loyola-Vargas, Victor Manuel

    2013-01-01

    Most of the somatic embryogenesis (SE) process requires the presence, either before or during the embryogenic process, of at least one exogenous auxin. This exogenous auxin induces the presence of endogenous auxins, which appears to be essential for SE induction. We found that during the preincubation period of SE in Coffea canephora, there is an important increase in both free and conjugated indole-3-acetic acid (IAA), as well as indole-3-butyric acid. This increase is accompanied by an increase in the expression of YUCCA (CcYUC), TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (CcTAA1), and GRETCHEN HAGEN 3 (GH3) genes. On the other hand, most of the IAA compounds decreased during the induction of SE. The results presented in this research suggest that a balance between free IAA and its amide conjugates is necessary to allow the expression of SE-related genes. PMID:24299659

  5. Somatic embryogenesis from flower explants of cocoa (Theobroma cacao L.).

    PubMed

    Silva, J J; Debergh, P

    2001-01-01

    Two types of flower explants, staminoides and petals, were used for in vitro induction of somatic embryos in cocoa. After 14 days in culture, we observed globular structures and callus formation on both types of explants. However, the better results were obtained on staminoides: 98.3% formed callus and 86.2% somatic embryos on Murashige and Skoog (1962) medium supplemented with sucrose, coconut water, 2,4-D, kinetin and agar.

  6. The Use of Proteomic Tools to Address Challenges Faced in Clonal Propagation of Tropical Crops through Somatic Embryogenesis.

    PubMed

    Chin, Chiew Foan; Tan, Hooi Sin

    2018-05-04

    In many tropical countries with agriculture as the mainstay of the economy, tropical crops are commonly cultivated at the plantation scale. The successful establishment of crop plantations depends on the availability of a large quantity of elite seedling plants. Many plantation companies establish plant tissue culture laboratories to supply planting materials for their plantations and one of the most common applications of plant tissue culture is the mass propagation of true-to-type elite seedlings. However, problems encountered in tissue culture technology prevent its applications being widely adopted. Proteomics can be a powerful tool for use in the analysis of cultures, and to understand the biological processes that takes place at the cellular and molecular levels in order to address these problems. This mini review presents the tissue culture technologies commonly used in the propagation of tropical crops. It provides an outline of some the genes and proteins isolated that are associated with somatic embryogenesis and the use of proteomic technology in analysing tissue culture samples and processes in tropical crops.

  7. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    PubMed Central

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  8. Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures.

    PubMed

    Che, Ping; Love, Tanzy M; Frame, Bronwyn R; Wang, Kan; Carriquiry, Alicia L; Howell, Stephen H

    2006-09-01

    Gene expression patterns were profiled during somatic embryogenesis in a regeneration-proficient maize hybrid line, Hi II, in an effort to identify genes that might be used as developmental markers or targets to optimize regeneration steps for recovering maize plants from tissue culture. Gene expression profiles were generated from embryogenic calli induced to undergo embryo maturation and germination. Over 1,000 genes in the 12,060 element arrays showed significant time variation during somatic embryo development. A substantial number of genes were downregulated during embryo maturation, largely histone and ribosomal protein genes, which may result from a slowdown in cell proliferation and growth during embryo maturation. The expression of these genes dramatically recovered at germination. Other genes up-regulated during embryo maturation included genes encoding hydrolytic enzymes (nucleases, glucosidases and proteases) and a few storage genes (an alpha-zein and caleosin), which are good candidates for developmental marker genes. Germination is accompanied by the up-regulation of a number of stress response and membrane transporter genes, and, as expected, greening is associated with the up-regulation of many genes encoding photosynthetic and chloroplast components. Thus, some, but not all genes typically associated with zygotic embryogenesis are significantly up or down-regulated during somatic embryogenesis in Hi II maize line regeneration. Although many genes varied in expression throughout somatic embryo development in this study, no statistically significant gene expression changes were detected between total embryogenic callus and callus enriched for transition stage somatic embryos.

  9. Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423.

    PubMed

    Liu, Beibei; Su, Shengzhong; Wu, Ying; Li, Ying; Shan, Xiaohui; Li, Shipeng; Liu, Hongkui; Dong, Haixiao; Ding, Meiqi; Han, Junyou; Yuan, Yaping

    2015-07-01

    Intact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously. Histological analysis and scanning electron micrographs confirmed the different developmental stages of somatic embryogenesis, including globular-shaped embryo, pear-shaped embryo, scutiform embryo, and mature embryo. cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used for comparative transcript profiling between embryogenic and non-embryogenic calli of a new elite maize inbred line Y423 during somatic embryogenesis. Differentially expressed genes were cloned and sequenced. Gene Ontology analysis of 117 candidate genes indicated their involvement in cellular component, biological process and molecular function. Nine of the candidate genes were selected. The changes in their expression levels during embryo induction and regeneration were analyzed in detail using quantitative real-time PCR. Two full-length cDNA sequences, encoding ZmSUF4 (suppressor of fir 4-like protein) and ZmDRP3A (dynamin-related protein), were cloned successfully from intact somatic embryos of the elite inbred maize line Y423. Here, a procedure for maize plant regeneration from somatic embryos is described. Additionally, the possible roles of some of these genes during the somatic embryogenesis has been discussed. This study is a systematic analysis of the cellular and molecular mechanism during the formation of intact somatic embryos in maize. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Pretreatments, conditioned medium and co-culture increase the incidence of somatic embryogenesis of different Cichorium species

    PubMed Central

    Couillerot, Jean-Paul; Windels, David; Vazquez, Franck; Michalski, Jean-Claude; Hilbert, Jean-Louis; Blervacq, Anne-Sophie

    2012-01-01

    Somatic embryogenesis (SE) in Cichorium involves dedifferentiation and redifferentiation of single cells and can be induced by specific in vitro culture conditions. We have tested the effect of various treatments on the incidence of SE (ISE) of an interspecific embryogenic hybrid (C. endivia x C. intybus) and of different commercial chicories (C. endivia and C. intybus) that are typically recalcitrant to SE in standard culture conditions. We found that the ISE of the hybrid is significantly increased by pretreatment of tissues by submersion in solutions of glycerol, abscisic acid, spermine, putrescine or of combinations of these compounds. Interestingly, the most efficient of these pretreatments also had an unexpectedly high effect on the ISE of the C. intybus cultivars. The ISE of the hybrid and of the commercial chicories were increased when explants were co-cultured with highly embryogenic chicory explants or when they were cultured in conditioned medium. These observations established that unidentified SE-promoting factors are released in the culture medium. HPLC analyses of secreted Arabino-Galactan Proteins (AGPs), which are known to stimulate SE, did not allow identifying a fraction containing differentially abundant AGP candidates. However, pointing to their role in promoting SE, we found that the hybrid had a drastically higher ISE when amino sugars and L-Proline, the putative precursors of secreted AGPs, were both added to the medium. PMID:22301978

  11. Immunocytochemical localisation of the nucleolar protein fibrillarin and RNA polymerase I during mouse early embryogenesis.

    PubMed

    Cuadros-Fernández, J M; Esponda, P

    1996-02-01

    We have employed immunocytochemical procedures to localise the nucleolar protein fibrillarin and the enzyme RNA polymerase I in the numerous dense fibrillar bodies (nucleolar precursor bodies) which appear in the nuclei of mammalian early embryos. The aim of this study was to search for relationships between the localisation of these proteins, the changes in the structure of the nucleolar precursor bodies and the resumption of rRNA gene transcription during mouse early embryogenesis. Three human autoimmune sera which recognised fibrillarin and a rabbit antiserum created against RNA polymerase I were employed for fluorescence and electron microscopic immunocytochemical assays. A statistical analysis was also applied. Immunocytochemistry revealed that fibrillarin and RNA polymerase I showed the same localisation in the nucleolar precursor bodies. These proteins were immunolocalised only from the late 2-cell stage onward. Fibrillarin was initially detected at the periphery of the nucleolar precursor bodies and the labelling gradually increased until the morula and blastocyst stages, where normally active nucleoli are found. The pattern of increase of fibrillarin during early embryogenesis shows a parallelism with the rise in rRNA gene transcription occurring during these embryonic stages, and a possible correlation between these two phenomena is suggested. Results demonstrated that nucleolar precursor bodies differ in their biochemical composition from the nucleolus and also from the prenucleolar bodies which appear during mitosis. When anti-fibrillarin antibodies were microinjected into the male pronucleus of mouse embryos to analyse the functions of fibrillarin during early development, they partially blocked the early development of mouse embryos and only 23.8% of injected embryos reach the blastocyst stage.

  12. Somatic embryogenesis in forestry: A practical approach to cloning the best trees

    Treesearch

    Alex M. Diner

    1999-01-01

    Trees as well as humans have two basic cell types based on genetic content: somatic cells and gametic or reproductive cells. Somatic cells, such as skin cells or the sapwood cells in a tree, have at least twice (2n) the base set of chromosomes. The reproductive cells (gametic cells) have a single (n) set of chromosomes.

  13. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.

    PubMed

    Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A

    2001-06-01

    Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.

  14. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum.

    PubMed

    Schwager, Evelyn E; Meng, Yue; Extavour, Cassandra G

    2015-06-15

    Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Comparative proteomic analysis of somatic embryo maturation in Carica papaya L.

    PubMed Central

    2014-01-01

    Background Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). Results The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). Conclusions The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya. PMID:25076862

  16. Somatic hybridization in Citrus: navel orange (C. sinensis Osb.) and grapefruit (C. paradisi Macf.).

    PubMed

    Ohgawara, T; Kobayashi, S; Ishii, S; Yoshinaga, K; Oiyama, I

    1989-11-01

    Protoplasts of navel orange, isolated from embryogenic nucellar cell suspension culture, were fused with protoplasts of grapefruit isolated from leaf tissue. The fusion products were cultured in the hormone-free medium containing 0.6 M sucrose. Under the culture conditions, somatic embryogenesis of navel orange protoplasts was suppressed, while cell division of grapefruit mesophyll protoplasts was not induced. Six embryoids were obtained and three lines regenerated to complete plants through embryogenesis. Two of the regenerated lines exhibited intermediate morphological characteristics of the parents in the leaf shape. Chromosome counts showed that these regenerated plants had expected 36 chromosomes (2n=2x=18 for each parent). The rDNA analysis using biotin-labeled rRNA probes confirmed the presence of genomes from both parents in these plants. This somatic hybridization system would be useful for the practical Citrus breeding.

  17. Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood.

    PubMed

    Anil, V S; Harmon, A C; Rao, K S

    2000-04-01

    Western-blot analysis and protein kinase assays identified two Ca(2+)-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes.

  18. Anxious Depression and early changes in the HAMD-17 anxiety-somatization factor items and antidepressant treatment outcome

    PubMed Central

    Farabaugh, Amy H.; Bitran, Stella; Witte, Janet; Alpert, Jonathan; Chuzi, Sarah; Clain, Alisabet J.; Baer, Lee; Fava, Maurizio; McGrath, Patrick J.; Dording, Christina; Mischoulon, David; Papakostas, George I

    2010-01-01

    Objective To assess the relationship between early changes in anxiety/somatization symptoms and treatment outcome among MDD subjects during a 12-week trial of fluoxetine. We also examined the relationship between anxious depression and treatment response. Methods 510 MDD patients received 12 weeks of fluoxetine with flexible dosing (target dosages: 10 mg/day (week 1), 20 mg/day (weeks 2–4), 40 mg/day (weeks 4–8), and 60 mg/day (weeks 5–12)). We assessed the relationship between early changes in HAMD-17- anxiety/somatization factor items and depressive remission, as well as whether anxious depression at baseline predicted remission at study endpoint. . Baseline HAMD-17 scores were considered as covariates and the Bonferroni correction (p ≤ .008) was used for multiple comparisons. Results Adjusting for baseline HAMD-17 scores, patients who experienced greater early improvement in somatic symptoms (gastrointestinal) were significantly more likely to attain remission (HAMD-17 < 8) at endpoint than those without early improvement (p = .006). Early changes in the remaining items did not predict remission, nor did anxious depression at baseline. Conclusions Among the anxiety/somatization factor items, only early changes in somatic symptoms (gastrointestinal) predicted remission. Future studies are warranted to further investigate this relationship, as well as that between anxious depression and treatment outcome. PMID:20400905

  19. Four queries concerning the metaphysics of early human embryogenesis.

    PubMed

    Howsepian, A A

    2008-04-01

    In this essay, I attempt to provide answers to the following four queries concerning the metaphysics of early human embryogenesis. (1) Following its first cellular fission, is it coherent to claim that one and only one of two "blastomeric" twins of a human zygote is identical with that zygote? (2) Following the fusion of two human pre-embryos, is it coherent to claim that one and only one pre-fusion pre-embryo is identical with that postfusion pre-embryo? (3) Does a live human being come into existence only when its brain comes into existence? (4) At implantation, does a pre-embryo become a mere part of its mother? I argue that either if things have quidditative properties or if criterialism is false, then queries (1) and (2) can be answered in the affirmative; that in light of recent developments in theories of human death and in light of a more "functional" theory of brains, query (3) can be answered in the negative; and that plausible mereological principles require a negative answer to query (4).

  20. Somatic hybrid plants from sexually incompatible woody species: Citrus reticulata and Citropsis gilletiana.

    PubMed

    Grosser, J W; Gmitter, F G; Tusa, N; Chandler, J L

    1990-04-01

    Allotetraploid intergeneric somatic hybrid plants between Citrus reticulata Blanco cv. Cleopatra mandarin and Citropsis gilletiana Swing. & M. Kell. (common name Gillet's cherry orange) were regenerated following protoplast fusion. Cleopatra protoplasts were isolated from an ovule-derived embryogenic suspension culture and fused chemically with leaf-derived protoplasts of Citropsis gilletiana. Cleopatra mandarin and somatic hybrid plants were regenerated via somatic embryogenesis. Hybrid plant identification was based on differential leaf morphology, root-tip cell chromosome number, and electrophoretic analyses of phosphoglucose mutase (PGM) and phosphohexose isomerase (PHI) isozyme banding patterns. This is the first somatic hybrid within the Rutaceae reported that does not have Citrus sinensis (sweet orange) as a parent, and the first produced with a commercially important citrus rootstock and a complementary but sexually incompatible, related species.

  1. Spatio-Temporal Accumulation and Activity of Calcium-Dependent Protein Kinases during Embryogenesis, Seed Development, and Germination in Sandalwood1

    PubMed Central

    Anil, Veena S.; Harmon, Alice C.; Rao, K. Sankara

    2000-01-01

    Western-blot analysis and protein kinase assays identified two Ca2+-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes. PMID:10759499

  2. 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels.

    PubMed

    Fraga, Hugo P F; Vieira, Leila N; Caprestano, Clarissa A; Steinmacher, Douglas A; Micke, Gustavo A; Spudeit, Daniel A; Pescador, Rosete; Guerra, Miguel P

    2012-12-01

    DNA methylation is an epigenetic regulatory mechanism of gene expression which can be associated with developmental phases and in vitro morphogenetic competence in plants. The present work evaluated the effects of 5-azacytidine (AzaC) and 2,4-dichlorophenoxyacetic acid (2,4-D) on Acca sellowiana somatic embryogenesis (SE) and global DNA methylation levels by high-performance liquid chromatography mass spectrometry (HPLC/MS/MS). 2,4-D-free treatments revealed no somatic embryo formation in both accessions tested. Treatments supplemented with 2,4-D pulse plus AzaC in the culture medium resulted in increased embryo formation. In AzaC-free treatment, HPLC/MS/MS analysis showed a gradual increase in methylation levels in cultures of both accessions tested during SE induction. Treatment with AzaC and 2,4-D-free resulted in a marked decrease in methylation for both accessions, ranging from 37.6 to 20.8 %. In treatment with 2,4-D and AzaC combined, the 85 accession showed increasing global methylation levels. Otherwise, the 101X458 accession, in the same treatment, showed a decrease between 10 and 20 days, followed by an increase after 30 days (39.5, 36.2 and 41.6 %). These results indicate that 2,4-D pulse combined with AzaC improves SE induction. However, the conversion phase showed that although positively influencing SE induction, AzaC had a dysregulatory effect on the stage of autotrophic plant formation, resulting in significantly lower conversion rates. The results suggest that DNA methylation dramatically influences SE in Acca sellowiana, and global DNA methylation dynamics are related to morphogenetic response. 5-Azacytidine combined with 2,4-D increases the number of Acca sellowiana somatic embryos. Global DNA methylation is directly affected by these compounds.

  3. Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng.

    PubMed

    Kang, Tae-Jin; Lee, Won-Seok; Choi, Eun-Gyung; Kim, Jae-Whune; Kim, Bang-Geul; Yang, Moon-Sik

    2006-01-24

    The B subunit of Escherichia coli heat-labile toxin (LTB) is a potent mucosal immunogen and immunoadjuvant for co-administered antigens. In order to produce large scale of LTB for the development of edible vaccine, we used transgenic somatic embryos of Siberian ginseng, which is known as medicinal plant. When transgenic somatic embryos were cultured in 130L air-lift type bioreactor, they were developed to mature somatic embryos through somatic embryogenesis and contained approximately 0.36% LTB of the total soluble protein. Enzyme-linked immunosorbent assay indicated that the somatic embryo-synthesized LTB protein bound specifically to GM1-ganglioside, suggesting the LTB subunits formed active pentamers. Therefore, the use of the bioreactor system for expression of LTB proteins in somatic embryos allows for continuous mass production in a short-term period.

  4. Cell dedifferentiation, callus induction and somatic embryogenesis in Crataegus spp.

    PubMed

    Taimori, N; Kahrizi, D; Abdossi, V; Papzan, A H

    2016-09-30

    The present study describes the effects of light conditions, different kinds and concentrations of auxins [Naphthylacetic acid (NAA) and dichlorophenoxyacetic acid (2,4-D)] with cytokinin (Kin) in MS medium on callus induction and embryogenesis in Crataegus pseudoheterophylla, C. aronia and C.meyeri. At first leave explants sections were cultured on different combinations of plant growth regulators in dark and light for callus initiation and light conditions to evaluation the percentage and duration of survival, callus diameter, callus fresh weight and dry. Results of effects of plant growth regulators and light conditions on callus initiation revealed that highest percentage of callus initiation leaves in treatment (0.5 mg/l 2.4-D+0.5 mg/l KIN) for species C.pseudoheterophylla in dark conditions (100%). Dark conditions (100%) were more effective on callogenesis than light conditions (Photoperiodicity of 16-h and at light intensity of 40 µmol m-2 s-1). The callus induction of in vitro (64-100%) leaves was better than the ex vitro ones (0-100%). The combination of 2,4-D and Kin of in vitro leaves callogenesis has been indicated faster (one weeks) than the other combinations. The results also showed that the highest percentage (100%) and survival duration (6 months) was found in species C. pseudoheterophylla and C. meyeri in 0.1 mg/l 2,4.D + 0.5 mg/l KIN and 0.5 mg/l 2,4.D + 0.5 mg/l Kin. The minimum survival (0%) was absorbed in species C. aronia in 1 mg/l NAA. Maximum callus (10.63 and 10.00 mm respectively) was shown in 0.1 mg/l 2,4.D + 0.5 mg/l Kin and 0.5 mg/l 2,4.D + 0.5 mg/l Kin and was not significant differences after five week among species. The results showed that the highest fresh (1081.49 mg) and dry weight (506.88 and 506.98 mg respectively) was absorbed in species C. pseudoheterophylla in 0.1 mg/l 2,4.D + 0.5 mg/l Kin and 0.5 mg/l 2,4.D + 0.5 mg/l Kin. The embryogenesis was not occurred in any plant growth regulator combinations and species. The

  5. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.).

    PubMed

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.

  6. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.)

    PubMed Central

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Key message: Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation. PMID:27403857

  7. The relationship between early changes in the HAMD-17 anxiety/somatization factor items and treatment outcome among depressed outpatients.

    PubMed

    Farabaugh, Amy; Mischoulon, David; Fava, Maurizio; Wu, Shirley L; Mascarini, Alessandra; Tossani, Eliana; Alpert, Jonathan E

    2005-03-01

    The 17-item Hamilton Rating Scale for Depression (HAMD-17) Anxiety/Somatization factor includes six items: Anxiety (psychic), Anxiety (somatic), Somatic Symptoms (gastrointestinal), Somatic Symptoms (general), Hypochondriasis and Insight. This study examines the relationship between early changes (defined as those observed between baseline and week 1) in these HAMD-17 Anxiety/Somatization Factor items and treatment outcome among major depressive disorder (MDD) patients who participated in a study comparing the antidepressant efficacy of a standardized extract of hypericum with both placebo and fluoxetine. Following a 1-week, single-blind washout, patients with MDD diagnosed by the Structured Clinical Interview for DSM-IV (SCID) were randomized to 12 weeks of double-blind treatment with hypericum extract (900 mg/day), fluoxetine (20 mg/day) or placebo. The relationship between early changes in HAMD-17 anxiety/somatization factor items and treatment outcome was assessed separately for patients who received study treatment (hypericum or fluoxetine) versus placebo with a logistic regression method. One hundred and thirty-five patients (female 57%, mean age=37.3+/-11.0 years; mean baseline HAMD-17=19.7+/-3.2 years) were randomized to double-blind treatment and were included in the intent-to-treat (ITT) analyses. After adjusting for baseline HAMD-17 scores and for multiple comparisons with the Bonferroni correction, patients who remitted (HAMD-17 score <8) after study treatment had significantly greater early improvement in Somatic Symptoms (General) scores than non-remitters. No other significant differences in early changes were noted for the remaining items between remitters versus non-remitters who received active treatment. For patients treated with placebo, early change was not predictive of remission for any of the items after Bonferroni correction. In conclusion, the presence of early improvement on the HAMD-17 item concerning fatigue and general somatic symptoms

  8. Somatic Complaints in Early Adolescence: The Role of Parents' Emotion Socialization

    ERIC Educational Resources Information Center

    Kehoe, Christiane E.; Havighurst, Sophie S.; Harley, Ann E.

    2015-01-01

    This study investigated the relationship between parent emotion socialization and youth somatic complaints (SC) in an early adolescent sample using a longitudinal experimental design. An emotion-focused parenting intervention, which taught parent's skills to improve their emotional competence and emotion socialization, was used to examine whether…

  9. A lower pH value benefits regeneration of Trichosanthes kirilowii by somatic embryogenesis, involving rhizoid tubers (RTBs), a novel structure.

    PubMed

    Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei

    2015-03-06

    A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0-9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids.

  10. A Lower pH Value Benefits Regeneration of Trichosanthes kirilowii by Somatic Embryogenesis, Involving Rhizoid Tubers (RTBs), a Novel Structure

    PubMed Central

    Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei

    2015-01-01

    A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0–9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids. PMID:25744384

  11. Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree.

    PubMed

    Maximova, Siela N; Florez, Sergio; Shen, Xiangling; Niemenak, Nicolas; Zhang, Yufan; Curtis, Wayne; Guiltinan, Mark J

    2014-07-16

    Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene

  12. Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree

    PubMed Central

    2014-01-01

    Background Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. Results The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Conclusions Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation

  13. Characterization of conservative somatic instability of the CAG repeat region in Huntington`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.

    1994-09-01

    Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onsetmore » and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.« less

  14. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis.

    PubMed

    Del Toro-De León, Gerardo; García-Aguilar, Marcelina; Gillmor, C Stewart

    2014-10-30

    Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.

  15. Transcriptome Analysis of mRNA and miRNA in Somatic Embryos of Larix leptolepis Subjected to Hydrogen Treatment.

    PubMed

    Liu, Yali; Han, Suying; Ding, Xiangming; Li, Xinmin; Zhang, Lifeng; Li, Wanfeng; Xu, Haiyan; Li, Zhexin; Qi, Liwang

    2016-11-22

    Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H₂ treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA) libraries to identify global transcriptome changes at different time points during H₂ treatment of larch pro-embryogenic masses (PEMs). A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS) homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H₂ during somatic embryogenesis.

  16. Transcriptome Analysis of mRNA and miRNA in Somatic Embryos of Larix leptolepis Subjected to Hydrogen Treatment

    PubMed Central

    Liu, Yali; Han, Suying; Ding, Xiangming; Li, Xinmin; Zhang, Lifeng; Li, Wanfeng; Xu, Haiyan; Li, Zhexin; Qi, Liwang

    2016-01-01

    Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H2 treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA) libraries to identify global transcriptome changes at different time points during H2 treatment of larch pro-embryogenic masses (PEMs). A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS) homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H2 during somatic embryogenesis. PMID:27879674

  17. Effect of genotype, gelling agent, and auxin on the induction of somatic embryogenesis in sweet potato (Ipomoea batatas Lam.).

    PubMed

    El Abidine Triqui, Zine; Guédira, Abdelkarim; Chlyah, Averil; Chlyah, Hassane; Souvannavong, Vongthip; Haïcour, Robert; Sihachakr, Darasinh

    2008-03-01

    Lateral buds of six cultivars of sweet potato were induced to form embryogenic callus in a culture medium solidified with two types of gelling agents, Agar or Gelrite, and supplemented with various concentrations of auxins, 2,4-D, 2,4,5-T and Picloram. Of the six cultivars screened, only three gave an embryogenic response. Best results with an average of 3.53% embryogenic response were obtained with the medium solidified with Agar, while in Gelrite only 0.45% of lateral buds gave rise to embryogenic callus. The interaction between the genotype and auxins was highly significant; particularly the optimal response was obtained with cv. Zho and 865 yielding 10.7 and 14.7% somatic embryogenesis, respectively, in the medium containing 2,4,5-T or Picloram. The plant conversion was dramatically improved by subculture of the embryogenic callus on the medium with the combination of 1 microM 2,4-D and 1 microM Kinetin or 5 microM ABA alone before transfer of mature embryos onto hormone-free medium. The embryogenic callus of sweet potato and its sustained ability to further regenerate plants have regularly been maintained for several years by frequent subculture in 5 microM 2,4,5-T or the combination of 10 microM 2,4-D and 1 microM BAP or kinetin. The embryo-derived plants seemed apparently genetically stable and similar to the hexaploid parental plants, based on morphological analysis and their ploidy level determined by using flow cytometry.

  18. MICROSPOROGENESIS AND EMBRYOGENESIS IN QUERCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stairs, G. R.

    1962-01-01

    Representative species from two subgenera in the genus Quercus were examined for floral structure and phenology, microsporogenesis, and embryogenesis. The species selected for investigation were: Quercus alba in the Lepidobalanus subgenera, and Quercus coccinea and Quercus ilicifolia from the Erythrobalanus group. Photographs of flowering and photomicrographs of microsporogensis and embryogenesis are used for illustration. The male flowers of the three species are borne on catkins which develop in the scale leaf axils of the current vegetative bud or in separate male buds. Meiosis occurred in the spring at the beginning of bud enlargement; division figures were regular in all themore » material observed. A haploid chromosome number of 12 was confirmed for the three species. Pollen was shed on May 10, 1962, from trees of Quercus coccinea and Quercus ilicifolia; and on May 26, 1962 from Quercus alba. The female flowers are located in the axils of the new leaves. Seed development requires one growing season in Quercus alba, but two growing seasons are required to mature seed of Quercus coccinea and Quercus ilicifolia. The chronology of embryo development was similar for Quercus coccinea and Quercus ilicifolia; embryo development of Quercus alba was about two weeks behind that of the other two species. Definition of ovule dominance within a seed occurred at the time of early embryo development. Failure of this physiological expression of dominance results in multiseeded acorns. No abnormal embryogenesis per se was observed in relation to multiple embryo development. (auth)« less

  19. Enhanced Indirect Somatic Embryogenesis of Date Palm Using Low Levels of Seawater.

    PubMed

    Taha, Rania A

    2017-01-01

    Date palm tolerates salinity, drought, and high temperatures. Arid and semiarid zones, especially the Middle East region, need a huge number of date palms for cultivation. To meet this demand, tissue culture techniques have great potential for mass production of plantlets, especially using the indirect embryogenesis technique; any improvement of these techniques is a worthy objective. Low levels of salinity can enhance growth and development of tolerant plants. A low level of seawater, a natural source of salinity, reduces the time required for micropropagation processes of date palm cv. Malkaby when added to MS medium. Medium containing seawater at 500 ppm total dissolved solid (TDS) (12.2 mL/L) improves callus proliferation, whereas 1500 ppm (36.59 mL/L) enhances plant regeneration including multiplication of secondary embryos, embryo germination, and rooting.

  20. Expression of the homeotic gene mab-5 during Caenorhabditis elegans embryogenesis.

    PubMed

    Cowing, D W; Kenyon, C

    1992-10-01

    mab-5 is a member of a complex of homeobox-containing genes evolutionarily related to the Antennapedia and bithorax complexes of Drosophila melanogaster. Like the homeotic genes in Drosophila, mab-5 is required in a particular region along the anterior-posterior body axis, and acts during postembryonic development to give cells in this region their characteristic identities. We have used a mab-5-lacZ fusion integrated into the C. elegans genome to study the posterior-specific expression of mab-5 during embryogenesis. The mab-5-lacZ fusion was expressed in the posterior of the embryo by 180 minutes after the first cleavage, indicating that the mechanisms responsible for the position-specific expression of mab-5-lacZ act at a relatively early stage of embryogenesis. In embryos homozygous for mutations in the par genes, which disrupt segregation of factors during early cleavages, expression of mab-5-lacZ was no longer localized to the posterior. This suggests that posterior-specific expression of mab-5 depends on the appropriate segregation of developmental factors during early embryogenesis. After extrusion of any blastomere of the four-cell embryo, descendants of the remaining three cells could still express the mab-5-lacZ fusion. In these partial embryos, however, the fusion was often expressed in cells scattered throughout the embryo, suggesting that cell-cell interactions and/or proper positioning of early blastomeres are required for mab-5 expression to be localized to the posterior.

  1. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development.

    PubMed

    Gao, Chao; Wang, Pengfei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Hou, Lei; Ju, Zheng; Zhang, Ye; Li, Changsheng; Wang, Xingjun

    2017-03-02

    As a typical geocarpic plant, peanut embryogenesis and pod development are complex processes involving many gene regulatory pathways and controlled by appropriate hormone level. MicroRNAs (miRNAs) are small non-coding RNAs that play indispensable roles in post-transcriptional gene regulation. Recently, identification and characterization of peanut miRNAs has been described. However, whether miRNAs participate in the regulation of peanut embryogenesis and pod development has yet to be explored. In this study, small RNA and degradome libraries from peanut early pod of different developmental stages were constructed and sequenced. A total of 70 known and 24 novel miRNA families were discovered. Among them, 16 miRNA families were legume-specific and 12 families were peanut-specific. 30 known and 10 novel miRNA families were differentially expressed during pod development. In addition, 115 target genes were identified for 47 miRNA families by degradome sequencing. Several new targets that might be specific to peanut were found and further validated by RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM 5'-RACE). Furthermore, we performed profiling analysis of intact and total transcripts of several target genes, demonstrating that SPL (miR156/157), NAC (miR164), PPRP (miR167 and miR1088), AP2 (miR172) and GRF (miR396) are actively modulated during early pod development, respectively. Large numbers of miRNAs and their related target genes were identified through deep sequencing. These findings provided new information on miRNA-mediated regulatory pathways in peanut pod, which will contribute to the comprehensive understanding of the molecular mechanisms that governing peanut embryo and early pod development.

  2. Convergent occurrence of the developmental hourglass in plant and animal embryogenesis?

    PubMed

    Cridge, Andrew G; Dearden, Peter K; Brownfield, Lynette R

    2016-04-01

    The remarkable similarity of animal embryos at particular stages of development led to the proposal of a developmental hourglass. In this model, early events in development are less conserved across species but lead to a highly conserved 'phylotypic period'. Beyond this stage, the model suggests that development once again becomes less conserved, leading to the diversity of forms. Recent comparative studies of gene expression in animal groups have provided strong support for the hourglass model. How and why might such an hourglass pattern be generated? More importantly, how might early acting events in development evolve while still maintaining a later conserved stage? The discovery that an hourglass pattern may also exist in the embryogenesis of plants provides comparative data that may help us explain this phenomenon. Whether the developmental hourglass occurs in plants, and what this means for our understanding of embryogenesis in plants and animals is discussed. Models by which conserved early-acting genes might change their functional role in the evolution of gene networks, how networks buffer these changes, and how that might constrain, or confer diversity, of the body plan are also discused. Evidence of a morphological and molecular hourglass in plant and animal embryogenesis suggests convergent evolution. This convergence is likely due to developmental constraints imposed upon embryogenesis by the need to produce a viable embryo with an established body plan, controlled by the architecture of the underlying gene regulatory networks. As the body plan is largely laid down during the middle phases of embryo development in plants and animals, then it is perhaps not surprising this stage represents the narrow waist of the hourglass where the gene regulatory networks are the oldest and most robust and integrated, limiting species diversity and constraining morphological space. © The Author 2016. Published by Oxford University Press on behalf of the Annals of

  3. Protocols for Callus and Somatic Embryo Initiation for Hibiscus sabdariffa L. (Malvaceae): Influence of Explant Type, Sugar, and Plant Growth Regulators

    USDA-ARS?s Scientific Manuscript database

    A significant work on callus induction and somatic embryogenesis was realized for Hibiscus sabdariffa. Two genotypes (Hibiscus sabdariffa and Hibiscus sabdariffa var. altissima) two sugars (sucrose and glucose) and three concentrations (1 %, 2%, 3%) of each sugar, 3 explant types (root, hypocotyl, c...

  4. The use of centrifugation to study early Drosophila embryogenesis

    NASA Technical Reports Server (NTRS)

    Abbott, M. K.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    By the end of 10th nuclear cycle, the somatic nuclei of the Drosophila embryo have migrated to the periphery of the egg. Centrifugation of embryos did not result in the displacement of these nuclei, since cytoskeletal elements anchor them to the cortex. But, mild centrifugal forces displace the centrally located, nascent yolk nuclei. If this increased sensitivity to hypergravity occurs before the beginning of nuclear differentiation during cycle 8, when the nascent yolk and somatic nuclei physically separate, then it would mark the earliest functional difference between these two lineages.

  5. Plant regeneration from protoplasts ofVicia narbonensis via somatic embryogenesis and shoot organogenesis.

    PubMed

    Tegeder, M; Kohn, H; Nibbe, M; Schieder, O; Pickardt, T

    1996-11-01

    Protoplasts ofVicia narbonensis isolated from epicotyls and shoot tips of etiolated seedlings were embedded in 1.4% sodium-alginate at a final density of 2.5×10(5) protoplasts/ml and cultivated in Kao and Michayluk-medium containing 0.5 mg/I of each of 2,4- dichlorophenoxyacetic acid, naphthylacetic acid and 6 -benzylaminopurine. A division frequency of 36% and a plating efficiency of 0.40-0.5% were obtained. Six weeks after embedding, protoplast-derived calluses were transferred onto gelrite-solidified Murashige and Skoog-media containing various growth regulators. Regeneration of plants was achieved via two morphologically distinguishable pathways. A two step protocol (initially on medium with a high auxin concentration followed by a culture phase with lowered auxin amount) was used to regenerate somatic embryos, whereas cultivation on medium containing thidiazuron and naphthylacetic acid resulted in shoot morphogenesis. Mature plants were recovered from both somatic embryos as well as from thidiazuron-induced shoots.

  6. Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

    PubMed

    Xia, Jian-Hong; Liu, Jing-Xia; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2008-01-01

    Apo-14 is a fish-specific apolipoprotein and its biological function remains unknown. In this study, CagApo-14 was cloned from gibel carp (Carassius auratus gibelio) and its expression pattern was investigated during embryogenesis and early larval development. The CagApo-14 transcript and its protein product were firstly localized in the yolk syncytial layer at a high level during embryogenesis, and then found to be restricted to the digestive system including liver and intestine in later embryos and early larvae. Immunofluorescence staining in larvae and adults indicated that Cag Apo-14 protein was predominantly synthesized in and excreted from sinusoidal endothelial cells of liver tissue. Morpholino knockdown of Cag Apo-14 resulted in severe disruption of digestive organs including liver, intestine, pancreas and swim bladder. Moreover, yolk lipid transportation and utilization were severely affected in the Cag Apo-14 morphants. Overall, this data indicates that Cag Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

  7. Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species.

    PubMed

    Kuntz, Steven G; Eisen, Michael B

    2014-04-01

    Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5 °C and 32.5 °C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes [Formula: see text]33 hours at 17.5 °C, and accelerates with increasing temperature to a low of 16 hours at 27.5 °C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5 °C and have drastically slowed development by 30 °C. Despite ranging from 13 hours for D. erecta at 30 °C to 46 hours for D. virilis at 17.5 °C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the

  8. Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis

    PubMed Central

    Chávez-Hernández, Elva C.; Alejandri-Ramírez, Naholi D.; Juárez-González, Vasti T.; Dinkova, Tzvetanka D.

    2015-01-01

    Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process. PMID:26257760

  9. Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum.

    PubMed

    Fernández-Bussy, Rodrigo; Mouguelar, Valeria; Banchio, Claudia; Coux, Gabriela

    2015-04-01

    In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.

  10. The effects of microgravity on gametogenesis, fertilization, and early embryogenesis

    NASA Astrophysics Data System (ADS)

    Tan, X.

    Gametogenesis fertilization and early embryogenesis are crucial periods for normal development afterwards In past three decades many experiments have been conducted in space and in simulated weightlessness induced by clinostats to elucidate the issue Different animal species including Drosophila wasp shrimp fish amphibian mouse rats etc have been used for the study Oogenesis and spermatogenesis are affected by microgravity in different ways Some researches found that microgravity condition perturbed the process of oogenesis in many species A significant increased frequency of chromosomal non-disjunction was found in Drosophila females resulting the loss of chromosomes during meiosis and inhibition of cell division Studies on wasp showed a decreased hatchability and accumulation of unhatched eggs when the insects were exposed to spaceflight at different stages of oogenesis For experiments conducted on vertebrate animal models the results are somehow different however Microgravity has no significant effect for fish Medaka etc amphibian South African clawed toad Xenopus laevis or mammals mouse Spermatogenesis on the other hand is more significantly affected by microgravity condition Some researches indicated sperm are sensitive to changes in gravitational force and this sensitivity affects the ability of sperm to fertilize eggs Sperm swim with higher velocity in microgravity which is coupled with altered protein phosphorylation level in sperm under microgravity condition Microgravity also induced activation of the

  11. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook

    PubMed Central

    Shi, Jisen; Zhen, Yan; Zheng, Ren-Hua

    2010-01-01

    Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir. PMID:20363864

  12. Selection of Norway spruce somatic embryos by computer vision

    NASA Astrophysics Data System (ADS)

    Hamalainen, Jari J.; Jokinen, Kari J.

    1993-05-01

    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  13. Yield performance and bean quality traits of cacao propagated by somatic embryogenesis and grafting

    USDA-ARS?s Scientific Manuscript database

    Twelve cacao (Theobroma cacao) clones propagated by grafting and rooted cuttings of somatic embryo-derived plants were grown on an Ultisol soil at Corozal, Puerto Rico and evaluated for six years under intensive management. Year, variety, the year x variety and propagation treatment x variety intera...

  14. A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation

    NASA Astrophysics Data System (ADS)

    Delile, Julien; Herrmann, Matthieu; Peyriéras, Nadine; Doursat, René

    2017-01-01

    The study of multicellular development is grounded in two complementary domains: cell biomechanics, which examines how physical forces shape the embryo, and genetic regulation and molecular signalling, which concern how cells determine their states and behaviours. Integrating both sides into a unified framework is crucial to fully understand the self-organized dynamics of morphogenesis. Here we introduce MecaGen, an integrative modelling platform enabling the hypothesis-driven simulation of these dual processes via the coupling between mechanical and chemical variables. Our approach relies upon a minimal `cell behaviour ontology' comprising mesenchymal and epithelial cells and their associated behaviours. MecaGen enables the specification and control of complex collective movements in 3D space through a biologically relevant gene regulatory network and parameter space exploration. Three case studies investigating pattern formation, epithelial differentiation and tissue tectonics in zebrafish early embryogenesis, the latter with quantitative comparison to live imaging data, demonstrate the validity and usefulness of our framework.

  15. Telomere length regulation during cloning, embryogenesis and ageing.

    PubMed

    Schaetzlein, S; Rudolph, K L

    2005-01-01

    Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes with an essential role in chromosome capping. Owing to the end-replication problem of DNA polymerase, telomeres shorten during each cell division. When telomeres become critically short, they loose their capping function, which in turn induces a DNA damage-like response. This mechanism inhibits cell proliferation at the senescence stage and there is evidence that it limits the regenerative capacity of tissues and organs during chronic diseases and ageing. The holoenzyme telomerase synthesises telomeric DNA de novo, but, in humans, it is active only during embryogenesis, in immature germ cells and in a subset of stem/progenitor cells during postnatal life. Telomere length can be maintained or increased by telomerase, a process that appears to be regulated by a variety of telomere-binding proteins that control telomerase recruitment and activity at the telomeres. During embryogenesis, telomerase is strongly activated at the morula/blastocyst transition. At this transition, telomeres are significantly elongated in murine and bovine embryos. Early embryonic telomere elongation is telomerase dependent and leads to a rejuvenation of telomeres in cloned bovine embryos. Understanding of the molecular mechanisms underlying this early embryonic telomere elongation programme is of great interest for medical research in the fields of regeneration, cell therapies and therapeutic cloning.

  16. Intergeneric somatic hybrid plants of Citrus sinensis cv. Hamlin and Poncirus trifoliata cv. Flying Dragon.

    PubMed

    Grosser, J W; Gmitter, F G; Chandler, J L

    1988-01-01

    Intergeneric somatic hybrid plants between 'Hamlin' sweet orange [Citrus sinensis (L.) Osbeck] and 'Flying Dragon' trifoliate orange (Poncirus trifoliata Raf.) were regenerated following protoplast fusion. 'Hamlin' protoplasts, isolated from an habituated embryogenic suspension culture, were fused chemically with 'Flying Dragon' protoplasts isolated from juvenile leaf tissue. The hybrid selection scheme was based on complementation of the regenerative ability of the 'Hamlin' protoplasts with the subsequent expression of the trifoliate leaf character of 'Flying Dragon.' Hybrid plants were regenerated via somatic embryogenesis and multiplied organogenically. Hybrid morphology was intermediate to that of the parents. Chromosome counts indicated that the hybrids were allotetraploids (2n=4x=36). Malate dehydrogenase (MDH) isozyme patterns confirmed the hybrid nature of the regenerated plants. These genetically unique somatic hybrid plants will be evaluated for citrus rootstock potential. The cell fusion, selection, and regeneration scheme developed herein should provide a general means to expand the germplasm base of cultivated Citrus by intergeneric hybridization with related sexually incompatible genera.

  17. Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L.

    PubMed

    Chee, P P; Tricoli, D M

    1988-06-01

    A procedure for the regeneration of whole cucumber plants (Cucumis sativus L. cv. Poinsett 76) by embryogenesis from cell suspension cultures is described. Embryogenic callus was initiated from the primary leaves of 14-17 day old plants. Suspension cultures of embryogenic cells were grown in liquid Murashige and Skoog basal medium containing 5 uM 2,4,5-trichlorophenoxyacetic acid and 4 uM 6-benzylaminopurine. Suspension cultures were composed of a population of cells that were densely cytoplasmic and potentially embryogenic. Differentiation of embryos was enhanced by washing the suspension culture cells with MS basal medium containing 0.5% activated charcoal and twice with MS basal medium followed by liquid shake cultures in MS basal medium. Sixty to 70 percent of the embryos prewashed with activated charcoal germinated into plantlets with normal morphology. Embryos obtained from suspension cultured cells without prewashing with activated charcoal organized into plantlets with abnormal primary leaves. Morphologically normal plantlets were obtained by excising the shoot tips and transferring them to fresh medium.

  18. The effect of temperature and light on embryogenesis and post-embryogenesis of the spider Eratigena atrica (Araneae, Agelenidae).

    PubMed

    Napiórkowska, Teresa; Kobak, Jarosław; Napiórkowski, Paweł; Templin, Julita

    2018-02-01

    Embryogenesis and post-embryogenesis of spiders depend on several environmental factors including light and temperature. This study was aimed at evaluating the impact of different thermal and lighting conditions on embryonic and early post-embryonic development of Eratigena atrica. Embryos, larvae, nymphs I and II were incubated at constant temperatures of 12, 22, 25 and 32°C under three different light regimes: light, dark, light/dark. Extreme temperatures (12 and 32°C) significantly increased mortality of embryos (to 100%) and nymphs II, whereas larvae and nymphs I suffered reduced survival only at the lowest temperature. Moreover, the lowest temperature reduced the development rate of all stages. The impact of light conditions was less pronounced and more variable: constant light reduced the survival of nymphs I at lower temperatures, but increased that of larvae. Moreover, light increased the time of embryonic development and duration of nymphal stages, particularly at lower temperatures (12-22°C). Thus, the most optimal locations for spiders seem to be dark (though except larval stage) and warm (25°C) sites, where their development is fastest and mortality lowest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Potential link between biotic defense activation and recalcitrance to induction of somatic embryogenesis in shoot primordia from adult trees of white spruce (Picea glauca)

    PubMed Central

    2013-01-01

    Background Among the many commercial opportunities afforded by somatic embryogenesis (SE), it is the ability to clonally propagate individual plants with rare or elite traits that has some of the most significant implications. This is particularly true for many long-lived species, such as conifers, but whose long generation times pose substantive challenges, including increased recalcitrance for SE as plants age. Identification of a clonal line of somatic embryo-derived trees whose shoot primordia have remained responsive to SE induction for over a decade, provided a unique opportunity to examine the molecular aspects underpinning SE within shoot tissues of adult white spruce trees. Results Microarray analysis was used to conduct transcriptome-wide expression profiling of shoot explants taken from this responsive genotype following one week of SE induction, which when compared with that of a nonresponsive genotype, led to the identification of four of the most differentially expressed genes within each genotype. Using absolute qPCR to expand the analysis to three weeks of induction revealed that differential expression of all eight candidate genes was maintained to the end of the induction treatment, albeit to differing degrees. Most striking was that both the magnitude and duration of candidate gene expression within the nonresponsive genotype was indicative of an intense physiological response. Examining their putative identities further revealed that all four encoded for proteins with similarity to angiosperm proteins known to play prominent roles in biotic defense, and that their high-level induction over an extended period is consistent with activation of a biotic defense response. In contrast, the more temperate response within the responsive genotype, including induction of a conifer-specific dehydrin, is more consistent with elicitation of an adaptive stress response. Conclusions While additional evidence is required to definitively establish an association

  20. Homologue of Sox10 in Misgurnus anguillicaudatus: sequence, expression pattern during early embryogenesis.

    PubMed

    Xia, Xiaohua; Nan, Ping; Zhang, Linxia; Sun, Jinsheng; Chang, Zhongjie

    2013-10-01

    A number of genetic studies have established that Sox10 is a transcription factor associated with neurogenesis in vertebrates. We have isolated a homologue of Sox10 gene from the brain of Misgurnus anguillicaudatus by using homologous cloning and RACE method, designated as MaSox10b. The full-length cDNA of MaSox10b contained a 311 bp 5'UTR, a 312 bp 3'UTR and an ORF encoding a putative protein of 490 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa: 105-183). Phylogenetic tree shows that the MaSOX10b fits within the Sox10 clade and clusters firmly into Sox10b branches. During embryogenesis, MaSox10b was first detected in gastrulae stage. From somitogenesis stage and thereafter, distinct expression was observed in the medial neural tube, extending from the hindbrain through the posterior trunk. Taken together, these preliminary findings suggested that MaSox10b is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis and neurogenesis.

  1. The Conformation of a Plasma Membrane-Localized Somatic Embryogenesis Receptor Kinase Complex Is Altered by a Potato Aphid-Derived Effector1[OPEN

    PubMed Central

    Peng, Hsuan-Chieh; Hicks, Glenn R.; Kaloshian, Isgouhi

    2016-01-01

    Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding. PMID:27208261

  2. High Genetic and Epigenetic Stability in Coffea arabica Plants Derived from Embryogenic Suspensions and Secondary Embryogenesis as Revealed by AFLP, MSAP and the Phenotypic Variation Rate

    PubMed Central

    Bobadilla Landey, Roberto; Cenci, Alberto; Georget, Frédéric; Bertrand, Benoît; Camayo, Gloria; Dechamp, Eveline; Herrera, Juan Carlos; Santoni, Sylvain; Lashermes, Philippe; Simpson, June; Etienne, Hervé

    2013-01-01

    Embryogenic suspensions that involve extensive cell division are risky in respect to genome and epigenome instability. Elevated frequencies of somaclonal variation in embryogenic suspension-derived plants were reported in many species, including coffee. This problem could be overcome by using culture conditions that allow moderate cell proliferation. In view of true-to-type large-scale propagation of C. arabica hybrids, suspension protocols based on low 2,4-D concentrations and short proliferation periods were developed. As mechanisms leading to somaclonal variation are often complex, the phenotypic, genetic and epigenetic changes were jointly assessed so as to accurately evaluate the conformity of suspension-derived plants. The effects of embryogenic suspensions and secondary embryogenesis, used as proliferation systems, on the genetic conformity of somatic embryogenesis-derived plants (emblings) were assessed in two hybrids. When applied over a 6 month period, both systems ensured very low somaclonal variation rates, as observed through massive phenotypic observations in field plots (0.74% from 200 000 plant). Molecular AFLP and MSAP analyses performed on 145 three year-old emblings showed that polymorphism between mother plants and emblings was extremely low, i.e. ranges of 0–0.003% and 0.07–0.18% respectively, with no significant difference between the proliferation systems for the two hybrids. No embling was found to cumulate more than three methylation polymorphisms. No relation was established between the variant phenotype (27 variants studied) and a particular MSAP pattern. Chromosome counting showed that 7 of the 11 variant emblings analyzed were characterized by the loss of 1–3 chromosomes. This work showed that both embryogenic suspensions and secondary embryogenesis are reliable for true-to-type propagation of elite material. Molecular analyses revealed that genetic and epigenetic alterations are particularly limited during coffee somatic

  3. Do early changes in the HAM-D-17 anxiety/somatization factor items affect treatment outcome among depressed outpatients? Comparison of two controlled trials of St John’s Wort (Hypericum Perforatum) versus an SSRI

    PubMed Central

    Bitran, Stella; Farabaugh, Amy H; Ameral, Victoria E; LaRocca, Rachel A; Clain, Alisabet J; Fava, Maurizio; Mischoulon, David

    2011-01-01

    Objective To assess whether early changes in HAM-D-17 anxiety/somatization items predict remission in two controlled studies of hypericum perforatum (St. John’s wort) versus an SSRI for major depressive disorder (MDD). Methods The Hypericum Depression Trial Study Group (NIMH) study randomized 340 subjects to hypericum, sertraline, or placebo for 8 weeks. The MGH study randomized 135 subjects to hypericum, fluoxetine, or placebo for 12 weeks. We examined whether remission was associated with early changes in anxiety/somatization symptoms. Results In the NIMH study, significant associations were observed between remission and early improvement in the anxiety-psychic item (sertraline arm), somatic-gastrointestinal item (hypericum arm), and somatic symptoms-general (placebo arm). None of the three treatment arms of the MGH study showed significant associations between anxiety/somatization symptoms and remission. When both study samples were pooled, we found associations for anxiety-psychic (SSRI arm), somatic-gastrointestinal and hypochondriasis (hypericum arm), and anxiety-psychic and somatic symptoms-general (placebo arm). In the entire sample, remission was associated with improvement in the anxiety-psychic, somatic-gastrointestinal, and somatic symptoms-general items. Conclusions The number and type of anxiety/somatization items associated with remission varied depending on the intervention. Early scrutiny of the HAM-D-17 anxiety/somatization items may help predict remission of MDD. PMID:21278577

  4. Somatic embryo-like structures of strawberry regenerated in vitro on media supplemented with 2,4-D and BAP.

    PubMed

    Omar, Genesia F; Mohamed, Fouad H; Haensch, Klaus-Thomas; Sarg, Sawsan H; Morsey, Mohamed M

    2013-09-01

    Somatic embryo-like structures (SELS) were produced in vitro from leaf disk and petiole explants of two cultivars of strawberry (Fragaria x ananassa Duch) on Murashige and Skoog medium with different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and sucrose to check the embryonic nature of these structures histologically. A large number of SELS could be regenerated in both cultivars on media with 2-4 mg L(-1) 2,4-D in combination with 0.5 -1 mg L(-1) BAP and 50 g x L(-1) sucrose. Histological examination of SELS revealed the absence of a root pole. Therefore these structures cannot be strictly classified as somatic embryos. The SELS formed under the tested culture conditions represent malformed shoot-like and leaf-like structures. The importance of these results for the propagation of strawberries via somatic embryogenesis is discussed.

  5. Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A.

    PubMed

    Pandey, Pooja; Daghma, Diaa S; Houben, Andreas; Kumlehn, Jochen; Melzer, Michael; Rutten, Twan

    2017-06-01

    Improving pollen embryogenesis. Despite the agro-economic importance of pollen embryogenesis, the mechanisms underlying this process are still poorly understood. We describe the dynamics of chromatin modifications (histones H3K4me2, H3K9ac, H3K9me2, and H3K27me3) and chromatin marks (RNA polymerase II CDC phospho-Ser5, and CENH3) during barley pollen embryogenesis. Immunolabeling results show that, in reaction to stress, immature pollen rapidly starts reorganizing several important chromatin modifications indicative of a change in cell fate. This new chromatin modification pattern was accomplished within 24 h from whereon it remained unaltered during subsequent mitotic activity. This indicates that cell fate transition, the central element of pollen embryogenesis, is completed early on during the induction process. Application of the histone deacetylase inhibitor trichostatin A stimulated pollen embryogenesis when used on pollen with a gametophytic style chromatin pattern. However, when this drug was administered to embryogenic pollen, the chromatin markers reversed toward a gametophytic profile, embryogenesis was halted and all pollen invariably died.

  6. (Why) Does Evolution Favour Embryogenesis?

    PubMed

    Rensing, Stefan A

    2016-07-01

    Complex multicellular organisms typically possess life cycles in which zygotes (formed by gamete fusion) and meiosis occur. Canonical animal embryogenesis describes development from zygote to birth. It involves polarisation of the egg/zygote, asymmetric cell divisions, establishment of axes, symmetry breaking, formation of organs, and parental nutrition (at least in early stages). Similar developmental patterns have independently evolved in other eukaryotic lineages, including land plants and brown algae. The question arises whether embryo-like structures and associated developmental processes recurrently emerge because they are local optima of the evolutionary landscape. To understand which evolutionary principles govern complex multicellularity, we need to analyse why and how similar processes evolve convergently - von Baer's and Haeckel's phylotypic stage revisited in other phyla. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. LONO1 Encoding a Nucleoporin Is Required for Embryogenesis and Seed Viability in Arabidopsis1[C][W][OA

    PubMed Central

    Braud, Christopher; Zheng, Wenguang; Xiao, Wenyan

    2012-01-01

    Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in early embryogenesis, and eventually arrest embryo development. LNO1 is highly expressed in anthers of flower buds, stigma papilla of open flowers, and embryo and endosperm during early embryogenesis, which is correlated with its functions in reproductive development. The homozygous lno1-1 seed is not viable. LNO1, a homolog of the nucleoporin NUP214 in human (Homo sapiens) and Nup159 in yeast (Saccharomyces cerevisiae), encodes a nucleoporin protein containing phenylalanine-glycine repeats in Arabidopsis. We demonstrate that LNO1 can functionally complement the defect in the yeast temperature-sensitive nucleoporin mutant nup159. We show that LNO1 specifically interacts with the Arabidopsis DEAD-box helicase/ATPase LOS4 in the yeast two-hybrid assay. Furthermore, mutations in AtGLE1, an Arabidopsis homolog of the yeast Gle1 involved in the same poly(A) mRNA export pathway as Nup159, also result in seed abortion. Our results suggest that LNO1 is a component of the nuclear pore complex required for mature mRNA export from the nucleus to the cytoplasm, which makes LNO1 essential for embryogenesis and seed viability in Arabidopsis. PMID:22898497

  8. Do early changes in the HAM-D-17 anxiety/somatization factor items affect the treatment outcome among depressed outpatients? Comparison of two controlled trials of St John's wort (Hypericum perforatum) versus a SSRI.

    PubMed

    Bitran, Stella; Farabaugh, Amy H; Ameral, Victoria E; LaRocca, Rachel A; Clain, Alisabet J; Fava, Maurizio; Mischoulon, David

    2011-07-01

    To assess whether early changes in Hamilton Depression Rating Scale-17 anxiety/somatization items predict remission in two controlled studies of Hypericum perforatum (St John's wort) versus selective serotonin reuptake inhibitors for major depressive disorder. The Hypericum Depression Trial Study Group (National Institute of Mental Health) randomized 340 patients to Hypericum, sertraline, or placebo for 8 weeks, whereas the Massachusetts General Hospital study randomized 135 patients to Hypericum, fluoxetine, or placebo for 12 weeks. The investigators examined whether remission was associated with early changes in anxiety/somatization symptoms. In the National Institute of Mental Health study, significant associations were observed between remission and early improvement in the anxiety (psychic) item (sertraline arm), somatic (gastrointestinal item; Hypericum arm), and somatic (general) symptoms (placebo arm). None of the three treatment arms of the Massachusetts General Hospital study showed significant associations between anxiety/somatization symptoms and remission. When both study samples were pooled, we found associations for anxiety (psychic; selective serotonin reuptake inhibitors arm), somatic (gastrointestinal), and hypochondriasis (Hypericum arm), and anxiety (psychic) and somatic (general) symptoms (placebo arm). In the entire sample, remission was associated with the improvement in the anxiety (psychic), somatic (gastrointestinal), and somatic (general) items. The number and the type of anxiety/somatization items associated with remission varied depending on the intervention. Early scrutiny of the Hamilton Depression Rating Scale-17 anxiety/somatization items may help to predict remission of major depressive disorder.

  9. FLASH is essential during early embryogenesis and cooperates with p73 to regulate histone gene transcription.

    PubMed

    De Cola, A; Bongiorno-Borbone, L; Bianchi, E; Barcaroli, D; Carletti, E; Knight, R A; Di Ilio, C; Melino, G; Sette, C; De Laurenzi, V

    2012-02-02

    Replication-dependent histone gene expression is a fundamental process occurring in S-phase under the control of the cyclin-E/CDK2 complex. This process is regulated by a number of proteins, including Flice-Associated Huge Protein (FLASH) (CASP8AP2), concentrated in specific nuclear organelles known as HLBs. FLASH regulates both histone gene transcription and mRNA maturation, and its downregulation in vitro results in the depletion of the histone pull and cell-cycle arrest in S-phase. Here we show that the transcription factor p73 binds to FLASH and is part of the complex that regulates histone gene transcription. Moreover, we created a novel gene trap to disrupt FLASH in mice, and we show that homozygous deletion of FLASH results in early embryonic lethality, owing to arrest of FLASH(-/-) embryos at the morula stage. These results indicate that FLASH is an essential, non-redundant regulator of histone transcription and cell cycle during embryogenesis.

  10. Embryogenesis-promoting factors in rat serum.

    PubMed

    Katoh, M; Kimura, R; Shoji, R

    1998-06-15

    Regarding whole rat embryo cultures in vitro, rat serum as a culture medium is known to support the normal growth of rat embryos in the organogenesis phase. The purpose of the present study was to isolate the embryogenesis-promoting factors from rat serum as a first step in the development of a defined serum-free medium for a whole embryo culture system. Pooled rat serum after heat inactivation was fractionated into three major peaks (frA, containing a region of void volume, frB, and frC) by gel filtration. The 9.5-day rat embryos that were cultivated for 48 hr in essential salt medium containing frB (with a molecular size range of 100-500 kDa) revealed normal growth. Three proteins (27 kDa, 76 kDa, and 190 kDa) that had the embryogenesis-promoting effects were isolated from 3-hr delayed centrifuged rat serum by the ion exchange chromatography. The 76-kDa protein was found to be rat transferrin by immunoblotting. The 27-kDa protein was identified as apo-AI (the major apoprotein of high-density lipoprotein) by immunoblotting. High-density lipoprotein obtained from pooled rat serum by a NaBr density gradient ultracentrifugation was found to have a positive effect on embryogenesis. The 10-kDa protein was also identified as alpha 1-inhibitor 3 by immunoblotting. In addition, the embryogenesis-promoting effect of the fraction containing 27-kDa and 190-kDa proteins declined within a short period of storage at -20 degrees C. This decrease was countered by supplementing its fraction (D-2) with albumin isolated from rat serum. These results in the present study suggest that transferrin, high-density lipoprotein, and alpha 1-inhibitor 3 in rat serum may be embryogenesis-promoting factors, and that albumin appeared to play a role in the embryogenesis of rat embryos in whole embryo cultures.

  11. Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors

    PubMed Central

    Bouamama-Gzara, Badra; Selmi, Ilhem; Chebil, Samir; Melki, Imene; Mliki, Ahmed; Ghorbel, Abdelwahed; Carra, Angela; Carimi, Francesco; Mahfoudhi, Naima

    2017-01-01

    Prospecting of local grapevine (Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. ‘Hencha’ were successfully induced from filament, when cultured on Chée and Pool (1987). based-medium, enriched with 2 mg 1−1 of 2,4-dichlorophenoxyacetic acid and 2.5 mg 1−1 of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPa-V as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% ‘Hencha’ somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination. PMID:29238279

  12. Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors.

    PubMed

    Bouamama-Gzara, Badra; Selmi, Ilhem; Chebil, Samir; Melki, Imene; Mliki, Ahmed; Ghorbel, Abdelwahed; Carra, Angela; Carimi, Francesco; Mahfoudhi, Naima

    2017-12-01

    Prospecting of local grapevine ( Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. 'Hencha' were successfully induced from filament, when cultured on Chée and Pool (1987). based-medium, enriched with 2 mg 1 -1 of 2,4-dichlorophenoxyacetic acid and 2.5 mg 1 -1 of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPa-V as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% 'Hencha' somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination.

  13. De novo DNA methylation during monkey pre-implantation embryogenesis.

    PubMed

    Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao

    2017-04-01

    Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis.

  14. De novo DNA methylation during monkey pre-implantation embryogenesis

    PubMed Central

    Gao, Fei; Niu, Yuyu; Sun, Yi Eve; Lu, Hanlin; Chen, Yongchang; Li, Siguang; Kang, Yu; Luo, Yuping; Si, Chenyang; Yu, Juehua; Li, Chang; Sun, Nianqin; Si, Wei; Wang, Hong; Ji, Weizhi; Tan, Tao

    2017-01-01

    Critical epigenetic regulation of primate embryogenesis entails DNA methylome changes. Here we report genome-wide composition, patterning, and stage-specific dynamics of DNA methylation in pre-implantation rhesus monkey embryos as well as male and female gametes studied using an optimized tagmentation-based whole-genome bisulfite sequencing method. We show that upon fertilization, both paternal and maternal genomes undergo active DNA demethylation, and genome-wide de novo DNA methylation is also initiated in the same period. By the 8-cell stage, remethylation becomes more pronounced than demethylation, resulting in an increase in global DNA methylation. Promoters of genes associated with oxidative phosphorylation are preferentially remethylated at the 8-cell stage, suggesting that this mode of energy metabolism may not be favored. Unlike in rodents, X chromosome inactivation is not observed during monkey pre-implantation development. Our study provides the first comprehensive illustration of the 'wax and wane' phases of DNA methylation dynamics. Most importantly, our DNA methyltransferase loss-of-function analysis indicates that DNA methylation influences early monkey embryogenesis. PMID:28233770

  15. The union of somatic gonad precursors and primordial germ cells during C. elegans embryogenesis

    PubMed Central

    Rohrschneider, Monica R.; Nance, Jeremy

    2013-01-01

    Somatic gonadal niche cells control the survival, differentiation, and proliferation of germline stem cells. The establishment of this niche-stem cell relationship is critical, and yet the precursors to these two cell types are often born at a distance from one another. The simple C. elegans gonadal primordium, which contains two somatic gonad precursors (SGPs) and two primordial germ cells (PGCs), provides an accessible model for determining how stem cell and niche cell precursors first assemble during development. To visualize the morphogenetic events that lead to formation of the gonadal primordium, we generated transgenic strains to label the cell membranes of the SGPs and PGCs and captured time-lapse movies as the gonadal primordium formed. We identify three distinct phases of SGP behavior: posterior migration along the endoderm towards the PGCs, extension of a single long projection around the adjacent PGC, and a dramatic wrapping over the PGC surfaces. We show that the endoderm and PGCs are dispensable for SGP posterior migration and initiation of projections. However, both tissues are required for the final positioning of the SGPs and the morphology of their projections, and PGCs are absolutely required for SGP wrapping behaviors. Finally, we demonstrate that the basement membrane component laminin, which localizes adjacent to the developing gonadal primordium, is required to prevent the SGPs from over-extending past the PGCs. Our findings provide a foundation for understanding the cellular and molecular regulation of the establishment of a niche-stem cell relationship. PMID:23562590

  16. Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa).

    PubMed

    Feng, Bi-Hong; Wu, Bei; Zhang, Chun-Rong; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2012-01-15

    Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl₂, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl₂. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl₂ reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl₂ either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  17. Spatial Anisotropies and Temporal Fluctuations in Extracellular Matrix Network Texture during Early Embryogenesis

    PubMed Central

    Loganathan, Rajprasad; Potetz, Brian R.; Rongish, Brenda J.; Little, Charles D.

    2012-01-01

    Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time

  18. Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Bag, Indira; Hunt, Clayton R; Ramaiah, M Janaki; Pandita, Tej K; Bhadra, Utpal; Pal-Bhadra, Manika

    2014-02-01

    The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.

  19. Pollen embryogenesis to induce, detect, and analyze mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, M.J.

    The development of fully differentiated plants from individual pollen grains through a series of developmental phases that resemble embryogenesis beginning with the zygote was demonstrated during the mid-1960's. This technology opened the door to the use of haploid plants (sporophytes with the gametic number of chromosomes) for plant breeding and genetic studies, biochemical and metabolic studies, and the selection of mutations. Although pollen embryogenesis has been demonstrated successfully in numerous plant genera, the procedure cannot as yet be used routinely to generate large populations of plants for experiments. Practical results from use of the technology in genetic toxicology research tomore » detect mutations have failed to fully realize the theoretical potential; further developments of the technology could overcome the limitations. Pollen embryogenesis could be used to develop plants from mutant pollen grains to verify that genetic changes are involved. Through either spontaneous or induced chromosome doubling, these plants can be made homozygous and used to analyze genetically the mutants involved. The success of this approach will depend on the mutant frequency relative to the fraction of pollen grains that undergo embryogenesis; these two factors will dictate population size needed for success. Research effort is needed to further develop pollen embryogenesis for use in the detection of genotoxins under both laboratory and in situ conditions.« less

  20. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation.

    PubMed

    Langer, Diana; Martianov, Igor; Alpern, Daniel; Rhinn, Muriel; Keime, Céline; Dollé, Pascal; Mengus, Gabrielle; Davidson, Irwin

    2016-03-30

    TAF4 (TATA-binding protein-associated factor 4) and its paralogue TAF4b are components of the TFIID core module. We inactivated the murine Taf4a gene to address Taf4 function during embryogenesis. Here we show that Taf4a(-/-) embryos survive until E9.5 where primary germ layers and many embryonic structures are identified showing Taf4 is dispensable for their specification. In contrast, Taf4 is required for correct patterning of the trunk and anterior structures, ventral morphogenesis and proper heart positioning. Overlapping expression of Taf4a and Taf4b during embryogenesis suggests their redundancy at early stages. In agreement with this, Taf4a(-/-) embryonic stem cells (ESCs) are viable and comprise Taf4b-containing TFIID. Nevertheless, Taf4a(-/-) ESCs do not complete differentiation into glutamatergic neurons and cardiomyocytes in vitro due to impaired preinitiation complex formation at the promoters of critical differentiation genes. We define an essential role of a core TFIID TAF in differentiation events during mammalian embryogenesis.

  1. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation

    PubMed Central

    Langer, Diana; Martianov, Igor; Alpern, Daniel; Rhinn, Muriel; Keime, Céline; Dollé, Pascal; Mengus, Gabrielle; Davidson, Irwin

    2016-01-01

    TAF4 (TATA-binding protein-associated factor 4) and its paralogue TAF4b are components of the TFIID core module. We inactivated the murine Taf4a gene to address Taf4 function during embryogenesis. Here we show that Taf4a−/− embryos survive until E9.5 where primary germ layers and many embryonic structures are identified showing Taf4 is dispensable for their specification. In contrast, Taf4 is required for correct patterning of the trunk and anterior structures, ventral morphogenesis and proper heart positioning. Overlapping expression of Taf4a and Taf4b during embryogenesis suggests their redundancy at early stages. In agreement with this, Taf4a−/− embryonic stem cells (ESCs) are viable and comprise Taf4b-containing TFIID. Nevertheless, Taf4a−/− ESCs do not complete differentiation into glutamatergic neurons and cardiomyocytes in vitro due to impaired preinitiation complex formation at the promoters of critical differentiation genes. We define an essential role of a core TFIID TAF in differentiation events during mammalian embryogenesis. PMID:27026076

  2. Mitotic waves in the early embryogenesis of Drosophila: Bistability traded for speed.

    PubMed

    Vergassola, Massimo; Deneke, Victoria E; Di Talia, Stefano

    2018-03-06

    Early embryogenesis of most metazoans is characterized by rapid and synchronous cleavage divisions. Chemical waves of Cdk1 activity were previously shown to spread across Drosophila embryos, and the underlying molecular processes were dissected. Here, we present the theory of the physical mechanisms that control Cdk1 waves in Drosophila The in vivo dynamics of Cdk1 are captured by a transiently bistable reaction-diffusion model, where time-dependent reaction terms account for the growing level of cyclins and Cdk1 activation across the cell cycle. We identify two distinct regimes. The first one is observed in mutants of the mitotic switch. There, waves are triggered by the classical mechanism of a stable state invading a metastable one. Conversely, waves in wild type reflect a transient phase that preserves the Cdk1 spatial gradients while the overall level of Cdk1 activity is swept upward by the time-dependent reaction terms. This unique mechanism generates a wave-like spreading that differs from bistable waves for its dependence on dynamic parameters and its faster speed. Namely, the speed of "sweep" waves strikingly decreases as the strength of the reaction terms increases and scales as the powers 3/4, -1/2, and 7/12 of Cdk1 molecular diffusivity, noise amplitude, and rate of increase of Cdk1 activity in the cell-cycle S phase, respectively. Theoretical predictions are supported by numerical simulations and experiments that couple quantitative measurements of Cdk1 activity and genetic perturbations of the accumulation rate of cyclins. Finally, our analysis bears upon the inhibition required to suppress Cdk1 waves at the cell-cycle pause for the maternal-to-zygotic transition.

  3. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons

    PubMed Central

    Pagano, Johanna F.B.; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P.; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.

    2017-01-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. PMID:28003516

  4. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    PubMed

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. 3D early embryogenesis image filtering by nonlinear partial differential equations.

    PubMed

    Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O

    2010-08-01

    We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which

  6. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center.

    PubMed

    Castro Colabianchi, Aitana M; Revinski, Diego R; Encinas, Paula I; Baez, María Verónica; Monti, Renato J; Abinal, Mateo Rodríguez; Kodjabachian, Laurent; Franchini, Lucía F; López, Silvia L

    2018-06-04

    Based on functional evidence, we have previously demonstrated that an early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase-3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of the embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a , bmp4 and ventxs genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knock-down experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis, ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side. © 2018. Published by The Company of Biologists Ltd.

  7. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    PubMed

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Problems and potentialities of cultured plant cells in retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Steward, F. C.; Krikorian, A. D.

    1979-01-01

    The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.

  9. De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing.

    PubMed

    Rajesh, M K; Fayas, T P; Naganeeswaran, S; Rachana, K E; Bhavyashree, U; Sajini, K K; Karun, Anitha

    2016-05-01

    Production and supply of quality planting material is significant to coconut cultivation but is one of the major constraints in coconut productivity. Rapid multiplication of coconut through in vitro techniques, therefore, is of paramount importance. Although somatic embryogenesis in coconut is a promising technique that will allow for the mass production of high quality palms, coconut is highly recalcitrant to in vitro culture. In order to overcome the bottlenecks in coconut somatic embryogenesis and to develop a repeatable protocol, it is imperative to understand, identify, and characterize molecular events involved in coconut somatic embryogenesis pathway. Transcriptome analysis (RNA-Seq) of coconut embryogenic calli, derived from plumular explants of West Coast Tall cultivar, was undertaken on an Illumina HiSeq 2000 platform. After de novo transcriptome assembly and functional annotation, we have obtained 40,367 transcripts which showed significant BLASTx matches with similarity greater than 40 % and E value of ≤10(-5). Fourteen genes known to be involved in somatic embryogenesis were identified. Quantitative real-time PCR (qRT-PCR) analyses of these 14 genes were carried in six developmental stages. The result showed that CLV was upregulated in the initial stage of callogenesis. Transcripts GLP, GST, PKL, WUS, and WRKY were expressed more in somatic embryo stage. The expression of SERK, MAPK, AP2, SAUR, ECP, AGP, LEA, and ANT were higher in the embryogenic callus stage compared to initial culture and somatic embryo stages. This study provides the first insights into the gene expression patterns during somatic embryogenesis in coconut.

  10. Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion.

    PubMed

    Malinowski, Andrzej R; Fisher, Amanda G

    2016-01-01

    Pluripotent reprogramming can be dominantly induced in a somatic nucleus upon fusion with a pluripotent cell such as embryonic stem (ES) cell. Cell fusion between ES cells and somatic cells results in the formation of heterokaryons, in which the somatic nuclei begin to acquire features of the pluripotent partner. The generation of interspecies heterokaryons between mouse ES- and human somatic cells allows an experimenter to distinguish the nuclear events occurring specifically within the reprogrammed nucleus. Therefore, cell fusion provides a simple and rapid approach to look at the early nuclear events underlying pluripotent reprogramming. Here, we describe a polyethylene glycol (PEG)-mediated cell fusion protocol to generate interspecies heterokaryons and intraspecies hybrids between ES cells and B lymphocytes or fibroblasts.

  11. Somatic mutations in early onset luminal breast cancer

    PubMed Central

    de Lyra, Eduardo Carneiro; Hirata Katayama, Maria Lucia; Maistro, Simone; de Vasconcellos Valle, Pedro Wilson Mompean; de Lima Pereira, Gláucia Fernanda; Rodrigues, Lívia Munhoz; de Menezes Pacheco Serio, Pedro Adolpho; de Gouvêa, Ana Carolina Ribeiro Chaves; Geyer, Felipe Correa; Basso, Ricardo Alves; Pasini, Fátima Solange; del Pilar Esteves Diz, Maria; Brentani, Maria Mitzi; Guedes Sampaio Góes, João Carlos; Chammas, Roger; Boutros, Paul C.; Koike Folgueira, Maria Aparecida Azevedo

    2018-01-01

    Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation. PMID:29854292

  12. Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling.

    PubMed

    Fayos, Oreto; Vallés, María P; Garcés-Claver, Ana; Mallor, Cristina; Castillo, Ana M

    2015-01-01

    The use of doubled haploids in onion breeding is limited due to the low gynogenesis efficiency of this species. Gynogenesis capacity from Spanish germplasm, including the sweet cultivar Fuentes de Ebro, the highly pungent landrace BGHZ1354 and the two Valenciana type commercial varieties Recas and Rita, was evaluated and optimized in this study. The OH-1 population, characterized by a high gynogenesis induction, was used as control. Growing conditions of the donor plants were tested with a one-step protocol and field plants produced a slightly higher percentage of embryogenesis induction than growth chamber plants. A one-step protocol was compared with a two-step protocol for embryogenesis induction. Spanish germplasm produced a 2-3 times higher percentage of embryogenesis with the two-step protocol, Recas showing the highest percentage (2.09%) and Fuentes de Ebro the lowest (0.53%). These percentages were significantly lower than those from the OH-1 population, with an average of 15% independently of the protocol used. The effect of different containers on plant regeneration was tested using both protocols. The highest percentage of acclimated plants was obtained with the two-step protocol in combination with Eco2box (70%), whereas the lowest percentage was observed with glass tubes in the two protocols (20-23%). Different amiprofos-methyl (APM) treatments were applied to embryos for chromosome doubling. A similar number of doubled haploid plants were recovered with 25 or 50 μM APM in liquid medium. However, the application of 25 μM in solid medium for 24 h produced the highest number of doubled haploid plants. Somatic regeneration from flower buds of haploid and mixoploid plants proved to be a successful approach for chromosome doubling, since diploid plants were obtained from the four regenerated lines. In this study, doubled haploid plants were produced from the four Spanish cultivars, however further improvements are needed to increase their gynogenesis

  13. An Organismal CNV Mutator Phenotype Restricted to Early Human Development.

    PubMed

    Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B; Wuster, Arthur; Walter, Klaudia; Zhang, Ling; Gambin, Tomasz; Chong, Zechen; Campbell, Ian M; Coban Akdemir, Zeynep; Gelowani, Violet; Writzl, Karin; Bacino, Carlos A; Lindsay, Sarah J; Withers, Marjorie; Gonzaga-Jauregui, Claudia; Wiszniewska, Joanna; Scull, Jennifer; Stankiewicz, Paweł; Jhangiani, Shalini N; Muzny, Donna M; Zhang, Feng; Chen, Ken; Gibbs, Richard A; Rautenstrauss, Bernd; Cheung, Sau Wai; Smith, Janice; Breman, Amy; Shaw, Chad A; Patel, Ankita; Hurles, Matthew E; Lupski, James R

    2017-02-23

    De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs.

    PubMed

    Hutchins, Andrew Paul; Pei, Duanqing

    Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.

  15. Somatic embryogenesis in wild relatives of cotton (Gossypium Spp.)

    PubMed Central

    Rao, Abdul Qayyum; Hussain, S. Sarfraz; Shahzad, M. Saqib; Bokhari, S. Yassir Abbas; Raza, M. Hashim; Rakha, Allah; Majeed, A.; Shahid, A. Ali; Saleem, Zafar; Husnain, Tayyab; Riazuddin, S.

    2006-01-01

    Wild cotton species can contribute a valuable gene pool for agronomically desirable cultivated tetraploid cultivars. In order to exploit diploid cotton a regeneration system is required to achieve transformation based goals. The present studies aimed at optimizing the conditions for regeneration of local varieties as well as wild species of cotton. Different callus induction media were tested with varying concentrations of hormones in which sucrose was used as nutritional source. Different explants (hypocotyls, cotyledon, root) were used to check the regeneration of both local cotton plants and wild relatives using T & G medium, BAP medium, CIM medium, EMMS medium, and cell suspension medium. Different stages of embryogenicity such as early torpedo stage, late torpedo stage, heart stage, globular stage and cotyledonary stage were observed in wild relatives of cotton. The results of this study pave the way for establishing future transformation methods. PMID:16532531

  16. Bone Morphogenetic Protein 15 (BMP15) Acts as a BMP and Wnt Inhibitor during Early Embryogenesis*

    PubMed Central

    Di Pasquale, Elisa; Brivanlou, Ali H.

    2009-01-01

    Bone morphogenetic protein 15 (BMP15) belongs to an unusual subgroup of the transforming growth factor β (TGFβ) superfamily of signaling ligands as it lacks a key cysteine residue in the mature region required for proper intermolecular dimerization. Naturally occurring BMP15 mutation leads to early ovarian failure in humans, and BMP15 has been shown to activate the Smad1/5/8 pathway in that context. Despite its important role in germ cell specification, the embryological function of BMP15 remains unknown. Surprisingly, we find that during early Xenopus embryogenesis BMP15 acts solely as an inhibitor of the Smad1/5/8 pathway and the Wnt pathway. BMP15 gain-of-function leads to embryos with secondary ectopic heads and to direct neural induction in intact explants. BMP15 inhibits BMP4-mediated epidermal induction in dissociated explants. BMP15 strongly inhibits BRE response induced by BMP4 and blocks phosphorylation and activation of Smad1/5/8 MH2-domain. Mechanistically, BMP15 protein specifically interacts with BMP4 protein, suggesting inhibition upstream of receptor binding. Loss-of-function experiments using morpholinos or a naturally occurring human BMP15 dominant-negative mutant (BMP15-Y235C) leads to embryos lacking head. BMP15-Y235C also eliminates the inhibitory activity of BMP15 on BRE (BMP-responsive element). Finally, we show that BMP15 inhibits the canonical branch of the Wnt pathway, upstream of β-catenin. We, thus, demonstrate that BMP15 is necessary and sufficient for the specification of dorso-anterior structures and highlight novel mechanisms of BMP15 function that strongly suggest a reinterpretation of its function in ovaries specially for ovarian failure. PMID:19553676

  17. Differential expression of two scribble isoforms during Drosophila embryogenesis.

    PubMed

    Li, M; Marhold, J; Gatos, A; Török, I; Mechler, B M

    2001-10-01

    The tumour suppressor gene scribble (scrib) is required for epithelial polarity and growth control in Drosophila. Here, we report the identification and embryonic expression pattern of two Scrib protein isoforms resulting from alternative splicing during scrib transcription. Both proteins are first ubiquitously expressed during early embryogenesis. Then, during morphogenesis each Scrib protein displays a specific pattern of expression in the central and peripheral nervous systems, CNS and PNS, respectively. During germ band extension, the expression of the longer form Scrib1 occurs predominantly in the neuroblasts derived from the neuro-ectoderm and becomes later restricted to CNS neurones as well as to the pole cells in the gonads. By contrast, the shorter form Scrib2 is strongly expressed in the PNS and a subset of CNS neurones.

  18. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration

    PubMed Central

    Davies, Erin L; Lei, Kai; Seidel, Christopher W; Kroesen, Amanda E; McKinney, Sean A; Guo, Longhua; Robb, Sofia MC; Ross, Eric J; Gotting, Kirsten; Alvarado, Alejandro Sánchez

    2017-01-01

    Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration. DOI: http://dx.doi.org/10.7554/eLife.21052.001 PMID:28072387

  19. Somatic Host Cell Alterations in HPV Carcinogenesis

    PubMed Central

    Litwin, Tamara R.; Clarke, Megan A.; Dean, Michael; Wentzensen, Nicolas

    2017-01-01

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and phosphatase and tensin homolog (PTEN), human leukocyte antigen A and B (HLA-A and HLA-B)-A/B, and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions. PMID:28771191

  20. Somatic Host Cell Alterations in HPV Carcinogenesis.

    PubMed

    Litwin, Tamara R; Clarke, Megan A; Dean, Michael; Wentzensen, Nicolas

    2017-08-03

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) and phosphatase and tensin homolog ( PTEN ), human leukocyte antigen A and B ( HLA-A and HLA-B ) -A/B , and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 ( TP53 ) and RB transcriptional corepressor 1 ( RB1 ) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  1. Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers.

    PubMed

    Seguí-Simarro, José M; Nuez, Fernando

    2007-01-01

    In this work, some of the different in vitro developmental pathways into which tomato microspores or microsporocytes can be deviated experimentally were explored. The two principal ones are direct embryogenesis from isolated microspores and callus formation from meiocyte-containing anthers. By means of light and electron microscopy, the process of early embryogenesis from isolated microspores and the disruption of normal meiotic development and change of developmental fate towards callus proliferation, morphogenesis, and plant regeneration have been shown. From microspores isolated at the vacuolate stage, embryos can be directly induced, thus avoiding non-androgenic products. In contrast, several different morphogenic events can be triggered in cultures of microsporocyte-containing anthers under adequate conditions, including indirect embryogenesis, adventitious organogenesis, and plant regeneration. Both callus and regenerated plants may be haploid, diploid, and mostly mixoploid. The results demonstrate that both gametophytic and sporophytic calli occur in cultured tomato anthers, and point to an in vitro-induced disturbance of cytokinesis and subsequent fusion of daughter nuclei as a putative cause for mixoploidy and genome doubling during both tetrad compartmentalization and callus proliferation. The potential implications of the different alternative pathways are discussed in the context of their application to the production of doubled-haploid plants in tomato, which is still very poorly developed.

  2. Epilepsy as a systemic condition: Link with somatic comorbidities.

    PubMed

    Novy, J; Bell, G S; Peacock, J L; Sisodiya, S M; Sander, J W

    2017-10-01

    People with epilepsy have more concomitant medical conditions than the general population; these comorbidities play an important role in premature mortality. We sought to generate explanatory hypotheses about the co-occurrence of somatic comorbidities and epilepsy, avoiding causal and treatment-resultant biases. We collected clinical, demographic and somatic comorbidity data for 2016 consecutive adults with epilepsy undergoing assessment at a tertiary centre and in 1278 people with epilepsy in the community. Underlying causes of epilepsy were not classed as comorbidities. Somatic comorbidities were more frequent in the referral centre (49%) where people more frequently had active epilepsy than in the community (36%). Consistent risk factors for comorbidities were found in both cohorts. Using multivariable ordinal regression adjusted for age, longer epilepsy duration and an underlying brain lesion were independently associated with a smaller burden of somatic conditions. The treatment burden, measured by the number of drugs to which people were exposed, was not an independent predictor. Shorter epilepsy duration was a predictor for conditions that conceivably harbour significant mortality risks. Somatic comorbidities do not occur randomly in relation to epilepsy; having more severe epilepsy seems to be a risk factor. Independently from age, the early period after epilepsy onset appears to be at particular risk, although it is not clear whether this relates to an early mortality or to a later decrease in the burden of comorbidities. These results suggest that, for some people, epilepsy should be considered a systemic condition not limited to the CNS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation.

    PubMed

    Zhang, Yufan; Clemens, Adam; Maximova, Siela N; Guiltinan, Mark J

    2014-04-24

    The Arabidopsis thaliana LEC2 gene encodes a B3 domain transcription factor, which plays critical roles during both zygotic and somatic embryogenesis. LEC2 exerts significant impacts on determining embryogenic potential and various metabolic processes through a complicated genetic regulatory network. An ortholog of the Arabidopsis Leafy Cotyledon 2 gene (AtLEC2) was characterized in Theobroma cacao (TcLEC2). TcLEC2 encodes a B3 domain transcription factor preferentially expressed during early and late zygotic embryo development. The expression of TcLEC2 was higher in dedifferentiated cells competent for somatic embryogenesis (embryogenic calli), compared to non-embryogenic calli. Transient overexpression of TcLEC2 in immature zygotic embryos resulted in changes in gene expression profiles and fatty acid composition. Ectopic expression of TcLEC2 in cacao leaves changed the expression levels of several seed related genes. The overexpression of TcLEC2 in cacao explants greatly increased the frequency of regeneration of stably transformed somatic embryos. TcLEC2 overexpressing cotyledon explants exhibited a very high level of embryogenic competency and when cultured on hormone free medium, exhibited an iterative embryogenic chain-reaction. Our study revealed essential roles of TcLEC2 during both zygotic and somatic embryo development. Collectively, our evidence supports the conclusion that TcLEC2 is a functional ortholog of AtLEC2 and that it is involved in similar genetic regulatory networks during cacao somatic embryogenesis. To our knowledge, this is the first detailed report of the functional analysis of a LEC2 ortholog in a species other then Arabidopsis. TcLEC2 could potentially be used as a biomarker for the improvement of the SE process and screen for elite varieties in cacao germplasm.

  4. The Theobroma cacao B3 domain transcription factor TcLEC2 plays a duel role in control of embryo development and maturation

    PubMed Central

    2014-01-01

    Background The Arabidopsis thaliana LEC2 gene encodes a B3 domain transcription factor, which plays critical roles during both zygotic and somatic embryogenesis. LEC2 exerts significant impacts on determining embryogenic potential and various metabolic processes through a complicated genetic regulatory network. Results An ortholog of the Arabidopsis Leafy Cotyledon 2 gene (AtLEC2) was characterized in Theobroma cacao (TcLEC2). TcLEC2 encodes a B3 domain transcription factor preferentially expressed during early and late zygotic embryo development. The expression of TcLEC2 was higher in dedifferentiated cells competent for somatic embryogenesis (embryogenic calli), compared to non-embryogenic calli. Transient overexpression of TcLEC2 in immature zygotic embryos resulted in changes in gene expression profiles and fatty acid composition. Ectopic expression of TcLEC2 in cacao leaves changed the expression levels of several seed related genes. The overexpression of TcLEC2 in cacao explants greatly increased the frequency of regeneration of stably transformed somatic embryos. TcLEC2 overexpressing cotyledon explants exhibited a very high level of embryogenic competency and when cultured on hormone free medium, exhibited an iterative embryogenic chain-reaction. Conclusions Our study revealed essential roles of TcLEC2 during both zygotic and somatic embryo development. Collectively, our evidence supports the conclusion that TcLEC2 is a functional ortholog of AtLEC2 and that it is involved in similar genetic regulatory networks during cacao somatic embryogenesis. To our knowledge, this is the first detailed report of the functional analysis of a LEC2 ortholog in a species other then Arabidopsis. TcLEC2 could potentially be used as a biomarker for the improvement of the SE process and screen for elite varieties in cacao germplasm. PMID:24758406

  5. Cortisol and somatization.

    PubMed

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  6. Axes, planes and tubes, or the geometry of embryogenesis.

    PubMed

    Brauckmann, Sabine

    2011-12-01

    The paper presents selected figures of chick embryogenesis as depicted in the classic studies of Caspar Friedrich Wolff (1734-1794), Christian Heinrich Pander (1794-1865) and Karl Ernst von Baer (1792-1786). My main objective here is (1) to demonstrate how the imagery of Wolff, Pander and Baer attempted to project an image of a 3-dimensional rotating body into static figures on paper by means of linear contours, and (2) to ponder on the efficacy and pervasiveness of dots, lines and arrows for depicting embryogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Animal cloning by somatic cell nuclear transfer.

    PubMed

    Smith, Lawrence C; Yoo, Jae-Gyu

    2009-01-01

    Animal cloning is becoming increasingly useful for its applications in biological inquiry and for its potential use in pharmaceutical, medical, and agricultural fields. Due to the complexity of the numerous steps required in reconstructing oocytes by nuclear transfer, detailed protocols are required to minimize the developmental damages inflicted during these manipulations and to standardize procedures across laboratories. Moreover, because oogenesis and early embryogenesis differ widely among mammalian species, it is essential that protocols be adapted according to each species concerned. Our objective here is to detail the protocols that have been most successful in producing laboratory and domestic animal clones.

  8. Recent advances in the study of somatic mosaicism and diseases other than cancer.

    PubMed

    Erickson, Robert P

    2014-06-01

    Somatic mosaicism is well appreciated as a cause of cancer and, possibly, aging. Somatic mosaicism as the cause of other diseases is becoming more appreciated. It is especially important in the causation of deforming diseases (e.g., Proteus syndrome; Sturge-Weber syndrome) which are not inherited because early developmental expression is lethal. It also known to make an important contribution to neurological, dermatological, hematological and other diseases (and probably all diseases but many in which it is harder to detect). There have been exciting recent advances in the detection of somatic mosaicism. In particular, for many diseases of somatic overgrowth in which somatic mosaicism as the sole cause was predicted, the gene somatically mutated has been found. A limited number of pathways seem involved in these disorders, some of which are also implicated in cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    PubMed Central

    2013-01-01

    Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry

  10. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  11. Effects of gravity on meiosis, fertilization and early embryogenesis in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sasagawa, Y.; Saito, Y.; Shimizu, M.; Ishioka, N.; Yamashita, M.; Takahashi, H.; Higashitani, A.

    The embryonic development of the nematode Caenorhabditis elegans was examined under different gravitational conditions. The first cleavage plane in the 1-cell embryo was slid to some extent by re-orientation of liquid culture vessel, but the pattern and timing of cleavages were not affected. Under 100G of hypergravity condition with swing-centrifuge, the number of eggs laid from an adult hermaphrodite decreased and their hatching rate was drastically reduced. On the other hand, the embryonic development after fertilization normally occurred and grew to adulthood at more than 100G of hypergravity. When the adult hermaphrodites cultured under 100G of hypergravity transferred to a ground condition (1G), the newly fertilized embryos normally developed and their hatching rate was fully recovered. These results indicated that the reproductive process except spermatogenesis, oogenesis and embryogenesis after fertilization is impaired under 100G of hypergravity condition, and the effect is transient. Namely, the fertilization process including meiotic divisions I and II is sensitive to hypergravity in the nematode C. elegans.

  12. Micropropagation of Iris sp.

    PubMed

    Jevremović, Slađana; Jeknić, Zoran; Subotić, Angelina

    2013-01-01

    Irises are perennial plants widely used as ornamental garden plants or cut flowers. Some species accumulate secondary metabolites, making them highly valuable to the pharmaceutical and perfume industries. Micropropagation of irises has successfully been accomplished by culturing zygotic embryos, different flower parts, and leaf base tissues as starting explants. Plantlets are regenerated via somatic embryogenesis, organogenesis, or both processes at the same time depending on media composition and plant species. A large number of uniform plants are produced by somatic embryogenesis, however, some species have decreased morphogenetic potential overtime. Shoot cultures obtained by organogenesis can be multiplied for many years. Somatic embryogenic tissue can be reestablished from leaf bases of in vitro-grown shoots. The highest number of plants can be obtained by cell suspension cultures. This chapter describes effective in vitro plant regeneration protocols for Iris species from different types of explants by somatic embryogenesis and/or organogenesis suitable for the mass propagation of ornamental and pharmaceutical irises.

  13. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    PubMed Central

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  14. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis

    PubMed Central

    Tachibana, Makoto; Sugimoto, Kenji; Nozaki, Masami; Ueda, Jun; Ohta, Tsutomu; Ohki, Misao; Fukuda, Mikiko; Takeda, Naoki; Niida, Hiroyuki; Kato, Hiroyuki; Shinkai, Yoichi

    2002-01-01

    Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has strong HMTase activity towards H3-K9 in vitro. To investigate the in vivo functions of G9a, we generated G9a-deficient mice and embryonic stem (ES) cells. We found that H3-K9 methylation was drastically decreased in G9a-deficient embryos, which displayed severe growth retardation and early lethality. G9a-deficient ES cells also exhibited reduced H3-K9 methylation compared to wild-type cells, indicating that G9a is a dominant H3-K9 HMTase in vivo. Importantly, the loss of G9a abolished methylated H3-K9 mostly in euchromatic regions. Finally, G9a exerted a transcriptionally suppressive function that depended on its HMTase activity. Our results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes. PMID:12130538

  15. Somatic embryogenesis, pigment accumulation, and synthetic seed production in Digitalis davisiana Heywood.

    PubMed

    Verma, Sandeep Kumar; Sahin, Gunce; Gurel, Ekrem

    2016-04-01

    Digitalis davisiana, commonly called Alanya foxglove, from Turkey, is an important medicinal herb as the main source of cardiac glycosides, cardenolides, anthraquinones, etc. It is also known in the Indian Medicine for treatment of wounds and burns. It has ornamental value as well. Overexploitation of D. davisiana has led this species to be declared protected, and thereby encouraged various methods for its propagation. In this study, an optimized and efficient plant tissue culture protocol was established using cotyledonary leaf, hypocotyl and root explants of D. davisiana. Callus tissues were obtained from the cotyledonary leaf, hypocotyl and root segments cultured on Murashige and Skoog's (MS) medium containing different plant growth regulators. The maximum number of somatic embryos were achieved by the MS medium containing 6-benzyladenine (1.0 mg/L BAP) or 2,4-dichlorophenoxy acetic acids (0.1 mg/L 2,4-D), which produced an average of 8.3 ± 1.5 or 5.3 ± 1.5 embryos per cotyledonary leaf, respectively. After 3 wk of culture in MS medium supplemented with 1.0 mg/L 2,4-D, callus showed a clear accumulation of orange pigmentation. Shoot regeneration was remarkably higher (14.3 indirect shoots) in a combination of α-naphthalene acetic acid (0.25 mg/L NAA) plus 3.0 mg/L BAP than 2.0 mg/L zeatin (10.3 ± 0.5 direct shoots) alone. The shoots were successfully rooted on MS medium supplemented with NAA (0.1-1.0 mg/L). In addition, synthetic seeds were produced by encapsulating shoot tips in 4% sodium alginate solution. Maximum conversion frequency of 76.6% was noted from encapsulated shoot tips cultured on 0.25 mg/L NAA with 1.0 mg/L BAP. The encapsulated shoot tips could be stored up to 60 days at 4 °C. Regenerated plantlets of D. davisiana were successfully acclimatized and transferred to soil. This study has demonstrated successful preservation of elite genotypes of D. davisiana.

  16. Dual specificity of activin type II receptor ActRIIb in dorso-ventral patterning during zebrafish embryogenesis.

    PubMed

    Nagaso, H; Suzuki, A; Tada, M; Ueno, N

    1999-04-01

    Members of the transforming growth factor-beta (TGF-beta) superfamily are thought to regulate specification of a variety of tissue types in early embryogenesis. These effects are mediated through a cell surface receptor complex, consisting of two classes of ser/thr kinase receptor, type I and type II. In the present study, cDNA encoding zebrafish activin type II receptors, ActRIIa and ActRIIb was cloned and characterized. Overexpression of ActRIIb in zebrafish embryos caused dorsalization of embryos, as observed in activin-overexpressing embryos. However, in blastula stage embryos, ActRIIb induced formation of both dorsal and ventro-lateral mesoderm. It has been suggested that these inducing signals from ActRIIb are mediated through each specific type I receptor, TARAM-A and BMPRIA, depending on activin and bone morphogenetic protein (BMP), respectively. In addition, it was shown that a kinase-deleted form of ActRIIb (dnActRIIb) suppressed both activin- and BMP-like signaling pathways. These results suggest that ActRIIb at least has dual roles in both activin and BMP signaling pathways during zebrafish embryogenesis.

  17. Aberrant ligand-induced activation of G protein-coupled estrogen receptor 1 (GPER) results in developmental malformations during vertebrate embryogenesis.

    PubMed

    Jayasinghe, B Sumith; Volz, David C

    2012-01-01

    G protein-coupled estrogen receptor 1 (GPER) is a G protein-coupled receptor (GPCR) unrelated to nuclear estrogen receptors but strongly activated by 17β-estradiol in both mammals and fish. To date, the distribution and functional characterization of GPER within reproductive and nonreproductive vertebrate organs have been restricted to juvenile and adult animals. In contrast, virtually nothing is known about the spatiotemporal distribution and function of GPER during vertebrate embryogenesis. Using zebrafish as an animal model, we investigated the potential functional role and expression of GPER during embryogenesis. Based on real-time PCR and whole-mount in situ hybridization, gper was expressed as early as 1 h postfertilization (hpf) and exhibited strong stage-dependent expression patterns during embryogenesis. At 26 and 38 hpf, gper mRNA was broadly distributed throughout the body, whereas from 50 to 98 hpf, gper expression was increasingly localized to the heart, brain, neuromasts, craniofacial region, and somite boundaries of developing zebrafish. Continuous exposure to a selective GPER agonist (G-1)-but not continuous exposure to a selective GPER antagonist (G-15)-from 5 to 96 hpf, or within three developmental windows ranging from 10 to 72 hpf, resulted in adverse concentration-dependent effects on survival, gross morphology, and somite formation within the trunk of developing zebrafish embryos. Importantly, based on co-exposure studies, G-15 blocked severe G-1-induced developmental toxicity, suggesting that G-1 toxicity is mediated via aberrant activation of GPER. Overall, our findings suggest that xenobiotic-induced GPER activation represents a potentially novel and understudied mechanism of toxicity for environmentally relevant chemicals that affect vertebrate embryogenesis.

  18. The Roles of the Wnt-Antagonists Axin and Lrp4 during Embryogenesis of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Prühs, Romy

    2017-01-01

    In both vertebrates and invertebrates, the Wnt-signaling pathway is essential for numerous processes in embryogenesis and during adult life. Wnt activity is fine-tuned at various levels by the interplay of a number of Wnt-agonists (Wnt ligands, Frizzled-receptors, Lrp5/6 coreceptors) and Wnt-antagonists (among them Axin, Secreted frizzled and Lrp4) to define anterior–posterior polarity of the early embryo and specify cell fate in organogenesis. So far, the functional analysis of Wnt-pathway components in insects has concentrated on the roles of Wnt-agonists and on the Wnt-antagonist Axin. We depict here additional features of the Wnt-antagonist Axin in the flour beetle Tribolium castaneum. We show that Tc-axin is dynamically expressed throughout embryogenesis and confirm its essential role in head development. In addition, we describe an as yet undetected, more extreme Tc-axin RNAi-phenotype, the ectopic formation of posterior abdominal segments in reverse polarity and a second hindgut at the anterior. For the first time, we describe here that an lrp4 ortholog is involved in axis formation in an insect. The Tribolium Lrp4 ortholog is ubiquitously expressed throughout embryogenesis. Its downregulation via maternal RNAi results in the reduction of head structures but not in axis polarity reversal. Furthermore, segmentation is impaired and larvae develop with a severe gap-phenotype. We conclude that, as in vertebrates, Tc-lrp4 functions as a Wnt-inhibitor in Tribolium during various stages of embryogenesis. We discuss the role of both components as negative modulators of Wnt signaling in respect to axis formation and segmentation in Tribolium. PMID:29615567

  19. Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis.

    PubMed

    Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C

    1998-05-01

    Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.

  20. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae).

    PubMed

    Douétts-Peres, Jackellinne C; Cruz, Marco Antônio L; Reis, Ricardo S; Heringer, Angelo S; de Oliveira, Eduardo A G; Elbl, Paula M; Floh, Eny I S; Silveira, Vanildo; Santa-Catarina, Claudete

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants.

  1. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae)

    PubMed Central

    Douétts-Peres, Jackellinne C.; Cruz, Marco Antônio L.; Reis, Ricardo S.; Heringer, Angelo S.; de Oliveira, Eduardo A. G.; Elbl, Paula M.; Floh, Eny I. S.; Silveira, Vanildo

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899

  2. Cracking the egg: virtual embryogenesis of real robots.

    PubMed

    Cussat-Blanc, Sylvain; Pollack, Jordan

    2014-01-01

    All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.

  3. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce.

    PubMed

    Yakovlev, Igor A; Carneros, Elena; Lee, YeonKyeong; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2016-05-01

    A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and histones, as well as sRNAs, are pivotal for the establishment of the epigenetic memory. As a forest tree species with long generation times, Norway spruce is remarkably well adapted to local environmental conditions despite having recently, from an evolutionary perspective, recolonized large areas following the last glaciation. In this species, there is an enigmatic epigenetic memory of the temperature conditions during embryogenesis that allows rapid adaptation to changing environment. We used a transcriptomic approach to investigate the molecular mechanisms underlying the formation of the epigenetic memory during somatic embryogenesis in Norway spruce. Nine mRNA libraries were prepared from three epitypes of the same genotype resulting from exposure to epitype-inducing temperatures of 18, 23 and 28 °C. RNA-Seq analysis revealed more than 10,000 differentially expressed genes (DEGs). The epitype-inducing conditions during SE were accompanied by marked transcriptomic changes for multiple gene models related to the epigenetic machinery. Out of 735 putative orthologs of epigenetic regulators, 329 were affected by the epitype-inducing temperatures and differentially expressed. The majority of DEGs among the epigenetic regulators was related to DNA and histone methylation, along with sRNA pathways and a range of putative thermosensing and signaling genes. These genes could be the main epigenetic regulators involved in formation of the epigenetic memory. We suggest considerable expansion of gene families of epigenetic regulators in Norway spruce compared to orthologous gene families in Populus and Arabidopsis. Obtained results provide a solid basis for further genome annotation and studies focusing on the importance of these candidate genes for the epigenetic memory formation.

  4. Refining the application of direct embryogenesis in sugarcane: Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency.

    PubMed

    Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I

    2006-10-01

    A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.

  5. Bloom syndrome: a mendelian prototype of somatic mutational disease.

    PubMed

    German, J

    1993-11-01

    Spontaneous mutations in human somatic cells occur far more often than normal in individuals with Bloom syndrome. The basis for understanding these mutations and their developmental consequences emerges from examination of BS at the molecular, cellular, and clinical levels. The major clinical feature of BS, proportional dwarfism, as well as its major clinical complication, an exceptionally early emergence of neoplasia of the types and sites that affect the general population, are attributable to the excessive occurrence of mutations in somatic cells. Here, the following aspects of BS are discussed: (i) the BS phenotype; (ii) neoplasia in BS, including the means--the Bloom's Syndrome Registry--by which the significant risk for diverse sites and types of cancer in these patients was revealed; (iii) the biological basis for the cancer proneness of BS; and, finally, (iv) the significance for both basic human biology and clinical medicine of BS as the prototype of somatic mutational disease.

  6. Role of polyamines in somatic embryogenesis

    Treesearch

    S.C. Minocha; R. Minocha

    1995-01-01

    The aliphatic amines putrescine, spermidine, and spermine are present in all living organisms. Since the demonstration of "an essential nutritional function" for putrescine in the bacterium Hemophilus parainfluenzae (Herbst and Snell 1948), polyamines have attracted a great deal of attention from workers in diverse fields of the life...

  7. New theory of uterovaginal embryogenesis.

    PubMed

    Makiyan, Zograb

    2016-01-02

    The explanation of uterine and vaginal embryogenesis in humans still poses many controversies, because it is difficult to assess early stages of an embryo. The literature review revealed many disagreements in Mullerian theory, inciting some authors to propose new embryological hypotheses. In the original Mullerian theory: the paramesonephral ducts form the Fallopian tubes, uterus and vagina; the mesonephral ducts regress in female embryos. The aim of this article is to investigate the development of Mullerian ducts in humans, using comparative analysis of fundamental embryological theory and various utero-vaginal anomalies. Between 1998 and 2015, 434 patients with various uterovaginal malformations had been operated on at the Scientific Centre of Obstetrics Gynaecology and Perynatology in Moscow. The anatomies of the uterovaginal malformations in these patients were diagnosed with ultrasound and MRI and then verified during surgical correction by laparoscopy. A systematic comparison of uterovaginal malformations to those in the literature has allowed us to formulate a new theory of embryonic morphogenesis. The new theory is significantly different: ovary, ovarian ligamentum proprium, and ligamentum teres uteri derive from gonadal ridges; Fallopian tubes and vagina completely develop from mesonephral ducts. The uterus develops in the area of intersection between the mesonephral ducts with gonadal ridges by the fusion of the two. The new theory may to induce future embryological studies. The hypothetic possibility that the ovary and endometrium derive from the gonadal ridges could be the key to understanding the enigmatic aetiologies of extragenital and ovarian endometriosis.

  8. Further evidence for a broader concept of somatization disorder using the somatic symptom index.

    PubMed

    Hiller, W; Rief, W; Fichter, M M

    1995-01-01

    Somatization syndromes were defined in a sample of 102 psychosomatic inpatients according to the restrictive criteria of DSM-III-R somatization disorder and the broader diagnostic concept of the Somatic Symptom Index (SSI). Both groups showed a qualitatively similar pattern of psychopathological comorbidity and had elevated scores on measures of depression, hypochondriasis, and anxiety. A good discrimination between mild and severe forms of somatization was found by using the SSI criterion. SSI use accounted for a substantial amount of comorbidity variance, with rates of 15%-20% for depression, 16% for hypochondriasis, and 13% for anxiety. The results provide further evidence for the validity of the SSI concept, which reflects the clinical relevance of somatization in addition to the narrow definition of somatization disorder.

  9. Is somatic comorbidity associated with more somatic symptoms, mental distress, or unhealthy lifestyle in elderly cancer survivors?

    PubMed

    Grov, Ellen Karine; Fosså, Sophie D; Dahl, Alv A

    2009-06-01

    The associations of lifestyle factors, somatic symptoms, mental distress, and somatic comorbidity in elderly cancer survivors have not been well studied. This study examines these associations among elderly cancer survivors (age >or=65 years) in a population-based sample. A cross-sectional comparative study of Norwegian elderly cancer survivors. Combining information from The Norwegian Cancer Registry, and by self-reporting, 972 elderly cancer survivors were identified, of whom 632 (65%) had somatic comorbidity and 340 did not. Elderly cancer survivors with somatic comorbidity had significantly higher BMI, more performed minimal physical activity, had more somatic symptoms, used more medication, and had more frequently seen a medical doctor than survivors without somatic comorbidity. In multivariable analyses, unhealthy lifestyle and higher somatic symptoms scores were significantly associated with cancer cases with somatic comorbidity. In univariate analyses those with somatic comorbidity were significantly older, had lower levels of education, higher proportions of BMI >or= 30, less physical activity, poorer self-rated health, higher somatic symptoms score, more mental distress, had more frequently seen a medical doctor last year, and more frequently used daily medication. Our outcome measures of lifestyle, somatic symptoms and mental distress were all significantly associated with somatic comorbidity in elderly cancer survivors, however only lifestyle and somatic symptoms were significant in multivariable analyses. In elderly cancer survivors not only cancer, but also somatic comorbidity, deserve attention. Such comorbidity is associated with unhealthy lifestyles, more somatic symptoms and mental distress which should be evaluated and eventually treated.

  10. Research on Somatization and Somatic Symptom Disorders: Ars longa, vita brevis.

    PubMed

    Dimsdale, Joel E

    The new Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition defines somatic symptom and related disorders as long-standing somatic symptoms that are associated with disproportionate thoughts, feelings, and behaviors, irrespective of whether or not a medical cause for these symptoms can be determined. In this Special Section of Psychosomatic Medicine, several articles address diagnostic issues and the central nervous system correlates of somatic symptom and related disorder and document new developments in its treatment.

  11. Regulation of early Xenopus development by ErbB signaling

    PubMed Central

    Nie, Shuyi; Chang, Chenbei

    2008-01-01

    ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939

  12. [Crucial stages of embryogenesis of R. arvalis: Part 1. Linear measurements of embryonic structures].

    PubMed

    Severtsova, E A; Severtsov, A S

    2011-01-01

    Investigations of individual variability have allowed us to reveal the crucial (= nodal) stages in embryogenesis of the moor frog (Rana arvalis Nills.). These crucial stages are: the late gastrula stage (stages 18-20), the hatching stages (stages 32-33) and, apparently, early metamorphosis (stage 39). Moreover, we have found that each embryonic structure passes through its specific crucial stages. For example, stage 34 is crucial for the trait "tail width" but is internodal for all other embryonic traits. At this stage, larva passes from an attached to a free-swimming life style. We also found considerable differences between the different frog populations in the the level of developmental variability. These differences were associated with internodal developmental stages.

  13. Survival of ovarian somatic cells during sex change in the protogynous wrasse, Halichoeres trimaculatus.

    PubMed

    Nozu, Ryo; Horiguchi, Ryo; Murata, Ryosuke; Kobayashi, Yasuhisa; Nakamura, Masaru

    2013-02-01

    The three-spot wrasse (Halichoeres trimaculatus), which inhabits the coral reefs of Okinawa, changes sex from female to male. Sex change in this species is controlled by a social system. Oocytes disappear completely from the ovary, and male germ cells and somatic cells comprising testicular tissue arise a new during the sex change process. However, little is known of the fate and origin of the gonadal tissue-forming cells during sex change. In particular, the fate of ovarian somatic cells has not been determined, although the ovarian tissue regresses histologically. To approach this question, we analyzed apoptosis and cell proliferation in the sex-changing gonads. Unexpectedly, we found that few apoptotic somatic cells were present during sex change, suggesting that ovarian somatic cells might survive during the regression of the ovarian tissue. On the other hand, cell proliferation was detected in many granulosa cells surrounding the degenerating oocytes, a few epithelial cells covering ovigerous lamella and a few somatic cells associated with gonial germ cells at an early stage of sex change. Then, we found that proliferative ovarian somatic cells remained in the gonads late in the sex change process. Based on these results, we concluded that some functional somatic cells of the ovary are reused as testicular somatic cells during the gonadal sex change in the three-spot wrasse.

  14. From fibroblasts and stem cells: implications for cell therapies and somatic cloning.

    PubMed

    Kues, Wilfried A; Carnwath, Joseph W; Niemann, Heiner

    2005-01-01

    Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.

  15. A Small RNA-Catalytic Argonaute Pathway Tunes Germline Transcript Levels to Ensure Embryonic Divisions

    PubMed Central

    Gerson-Gurwitz, Adina; Wang, Shaohe; Sathe, Shashank; Green, Rebecca; Yeo, Gene W.; Oegema, Karen; Desai, Arshad

    2016-01-01

    SUMMARY Multiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline loads proteins and RNAs into oocytes to support these divisions, which lack many quality control mechanisms operating in somatic cells undergoing growth. Here we describe a small RNA-Argonaute pathway that ensures early embryonic divisions in C. elegans by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major phenotype associated with pathway loss. Tuning of target transcript levels is guided by density of homologous small RNAs, whose generation must ultimately be related to target sequence. Thus, the tuning action of a small RNA-catalytic Argonaute pathway generates oocytes capable of supporting embryogenesis. We speculate that the specialized nature of germline chromatin led to emergence of small RNA-catalytic Argonaute pathways in the female germline as a post-transcriptional control layer to optimize oocyte composition. PMID:27020753

  16. Somatization symptoms in pediatric abdominal pain patients: relation to chronicity of abdominal pain and parent somatization.

    PubMed

    Walker, L S; Garber, J; Greene, J W

    1991-08-01

    Symptoms of somatization were investigated in pediatric patients with recurrent abdominal pain (RAP) and comparison groups of patients with organic etiology for abdominal pain and well patients. Somatization scores were higher in RAP patients than well patients at the clinic visit, and higher than in either well patients or organic patients at a 3-month followup. Higher somatization scores in mothers and fathers were associated with higher somatization scores in RAP patients, but not in organic or well patients. Contrary to the findings of Ernst, Routh, and Harper (1984), chronicity of abdominal pain in RAP patients was not significantly associated with their level of somatization symptoms. Psychometric information about the Children's Somatization Inventory is presented.

  17. Somatic Symptom and Related Disorders

    MedlinePlus

    ... caused by somatic symptom and related disorders are real, they are not imagined. Like many medical problems, somatic symptom and related disorders often run in families. They also tend to come and go over time. How is somatic symptom and related disorders diagnosed? ...

  18. Effects of High Magneto-Gravitational Environment on Silkworm Embryogenesis

    NASA Astrophysics Data System (ADS)

    Tian, Zongcheng; Li, Muwang; Qian, Airong; Xu, Huiyun; Wang, Zhe; Di, Shengmeng; Yang, Pengfei; Hu, Lifang; Ding, Chong; Zhang, Wei; Luo, Mingzhi; Han, Jing; Gao, Xiang; Huang, Yongping; Shang, Peng

    2010-04-01

    The objective of this research was to observe whether silkworm embryos can survive in a high magneto-gravitational environment (HMGE) and what significant phenotype changes can be produced. The hatching rate, hatching time, life span, growth velocity and cocoon weight of silkworm were measured after silkworm embryos were exposed to HMGE (0 g, 12 T; 1 g, 16 T; and 2 g, 12 T) for a period of time. Compared with the control group, 0 g exposure resulted in a lower hatching rate and a shorter life span. Statistically insignificant morphological changes had been observed for larvae growth velocity, incidence of abnormal markings and weight of cocoons. These results suggest that the effect of HMGE on silkworm embryogenesis is not lethal. Bio-effects of silkworm embryogenesis at 0 g in a HMGE were similar with those of space flight. The hatching time, life span and hatching rates of silkworm may be potential phenotype markers related to exposure in a weightless environment.

  19. Are reproductive and somatic senescence coupled in humans? Late, but not early, reproduction correlated with longevity in historical Sami women

    PubMed Central

    Helle, Samuli; Lummaa, Virpi; Jokela, Jukka

    2005-01-01

    Evolutionary theory of senescence emphasizes the importance of intense selection on early reproduction owing to the declining force of natural selection with age that constrains lifespan. In humans, recent studies have, however, suggested that late-life mortality might be more closely related to late rather than early reproduction, although the role of late reproduction on fitness remains unclear. We examined the association between early and late reproduction with longevity in historical post-reproductive Sami women. We also estimated the strength of natural selection on early and late reproduction using path analysis, and the effect of reproductive timing on offspring survival to adulthood and maternal risk of dying at childbirth. We found that natural selection favoured both earlier start and later cessation of reproduction, and higher total fe cundity. Maternal age at childbirth was not related to offspring or maternal survival. Interestingly, females who produced their last offspring at advanced age also lived longest, while age at first reproduction and total fecundity were unrelated to female longevity. Our results thus suggest that reproductive and somatic senescence may have been coupled in these human populations, and that selection could have favoured late reproduction. We discuss alternative hypotheses for the mechanisms which might have promoted the association between late reproduction and longevity. PMID:15875567

  20. Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale.

    PubMed

    Niu, R Q; Zhang, Y; Tong, Y; Liu, Z Y; Wang, Y H; Feng, H

    2015-04-27

    To improve embryogenesis in microspore cultures of kale (Brassica oleracea L. var. acephala DC.), 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), arabinogalactan (AG), p-chlorophenoxyisobutyric acid (PCIB), and activated charcoal (AC) were added to the medium using four varieties of kale. The results showed that the addition of AG (0.1-0.2 g/L), AC (0.1-0.2 g/L) or a combination of 6-BA (0.1-0.2 mg/L) and NAA (0.1-0.2 mg/L) promoted embryo-genesis. Adding 40 μM PCIB or a combination of 40 μM PCIB and 0.2 g/L AC to NLN-13 medium at pH 5.8 effectively enhanced embryogenesis. Treatment with a combination of 40 μM PCIB and 10 mg/L AG gave the highest rate of embryonic induction, especially in genotype "Y007," which showed a twelve-fold increase in yield.

  1. Hypochondriasis and somatization.

    PubMed

    Kellner, R

    1987-11-20

    Between 60% and 80% of healthy individuals experience somatic symptoms in any one week. About 10% to 20% of a random sample of people worry intermittently about illness. A substantial proportion of patients present physicians with somatic complaints for which no organic cause can be found. Patients who are hypochondriacal do not understand the benign nature of functional somatic symptoms and interpret these as evidence of disease. Hypochondriacal concerns range from common short-lived worries to persistent and distressing fears or convictions of having a disease. Hypochondriasis can be secondary to other psychiatric disorders (eg, melancholia or panic disorder), and hypochondriacal attitudes remit when the primary disorder is successfully treated. Patients with primary hypochondriasis are also anxious or depressed, but the fear of disease, or the false belief of having a disease, persists and is the most important feature of their psychopathology. There are substantial differences among hypochondriacal patients in their personalities and psychopathologies. Psychotherapy as well as psychotropic drugs are effective in the treatment of functional somatic symptoms. There are no adequate controlled studies on the value of psychotherapy in hypochondriasis; the recommended guidelines are based on uncontrolled studies of hypochondriasis and on controlled studies of the psychotherapy in similar disorders. The prognosis of functional somatic symptoms as well as that of hypochondriasis is good in a substantial proportion of patients.

  2. Alexithymia and Somatization in Depressed Patients: The Role of the Type of Somatic Symptom Attribution

    PubMed Central

    TAYCAN, Okan; ÖZDEMİR, Armağan; ERDOĞAN TAYCAN, Serap

    2017-01-01

    Introduction This study aimed to establish the association between alexithymia and various factors, mainly somatization, and to determine the predictors of alexithymia in depressed patients. Methods A total of 90 patients with major depressive disorder who met The Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) diagnostic criteria were administered the Toronto Alexithymia Scale (TAS), Beck Depression Inventory, Symptom Checklist-90 (SCL-90), Somatosensory Amplification Scale, and Symptom Interpretation Questionnaire. The patients were classified into two groups as alexithymic and non-alexithymic with respect to the TAS cut-off points (≥59=alexithymic). Predictors of alexithymia were tested by multiple linear regression analysis. Results Of all patients, 36 (40%) were in the alexithymic group. The percentage of women, depression severity, level of general psychopathology and distress, and somatic symptom reporting (SCL-90), as well as the tendency to somatosensory amplification and three forms of somatic symptom attributions, were significantly higher in alexithymic patients than in non-alexithymic patients. Furthermore, age, depression severity, somatic symptom reporting, and the tendency to attribute physical symptoms to somatic causes were predictors of alexithymia. Conclusion The results indicated an intimate association between alexithymia and somatization in depressed patients. Therefore, when evaluating depressed patients with alexithymia, their tendency for somatization should be considered, and alexithymic individuals should be assessed with particular attention, considering that somatization can mask the underlying depressive condition. PMID:28680305

  3. Somatic symptoms, peer and school stress, and family and community violence exposure among urban elementary school children.

    PubMed

    Hart, Shayla L; Hodgkinson, Stacy C; Belcher, Harolyn M E; Hyman, Corine; Cooley-Strickland, Michele

    2013-10-01

    Somatic symptoms are a common physical response to stress and illness in childhood. This study assessed 409, primarily African American (85.6 %), urban elementary school children to examine the association between: (1) somatic symptoms and potential external stressors (school and peer stress, family conflict, and community violence) and (2) parent and child agreement on children's self-report of somatic symptoms. The odds of self-report of somatic complaints were significantly associated with family conflict, school and peer stress, and community violence exposure (OR = 1.26, 95 % CI: 1.05-1.50; OR = 1.18, 95 % CI 1.08-1.28; and OR = 1.02, 95 % CI: 1.00-1.05, respectively). Identifying the associations between social, family, and community based stress and somatic symptoms may improve the quality of life for children living in urban environments through early identification and treatment.

  4. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  5. Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation.

    PubMed

    Álvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-01-01

    Pinus pinaster is one of the most economically important conifers in the world. Somatic embryogenesis is a powerful tool in breeding programmes because it allows the generation of a great number of different clonal lines from seeds of superior genotypes. Unfortunately, embryogenic competence decreases with the age of cultures. Therefore, it is necessary to have a cryopreservation protocol that ensures a continuous supply of juvenile mass while allowing good maturation and conversion rates into vigorously growing plants. In this work we studied the influence of several cryopreservation parameters, such as cryoprotectant solution and pre-cooling temperature, on embryogenic culture regrowth and embryo maturation. Recovery of rewarmed samples after cryopreservation in a -150 degree C freezer depended on the cooling temperature reached prior to plunging the tubes into liquid nitrogen. As a result, we present an optimised cryopreservation protocol that ensures high recovery and embryo maturation rates. The protocol presented is a simple and fast alternative and enabled successful cryopreservation and recovery of 100 percent of the lines tested. Cryopreserved lines presented the same maturation rates as non-cryopreserved controls.

  6. The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information.

    PubMed

    Irie, Naoki; Sehara-Fujisawa, Atsuko

    2007-01-12

    Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0-8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues

  7. Predictors of somatic symptoms: a five year follow up of adolescents

    PubMed Central

    Poikolainen, K; Aalto-Setala, T; Marttunen, M; Tuulio-Henriksson, A; Lonnqvist, J

    2000-01-01

    BACKGROUND—Somatisation is common among adolescents.
AIMS—To study factors predicting somatisation later in adulthood.
METHODS—Self report questionnaires were administered at baseline examination in 1990 to students (mean age 16.8 years) in schools, and by mail five years later. Results are based on the 615 subjects with no serious disease or injury at baseline.
RESULTS—Regression analyses showed that in men the level of somatic symptoms in 1995 was significantly predicted by the respective level in 1990 and by relief smoking. In women, the level of somatic symptoms in 1995 was significantly predicted by the respective level in 1990, self esteem, and the number of negative life events in 1990. After exclusion of cases with a long standing disease in 1995, the multivariate results remained materially similar except that self esteem was no longer significant among women.
CONCLUSION—These findings may help in early identification of adolescents with somatisation persisting into early adulthood.

 PMID:11040143

  8. Somatization among older primary care attenders.

    PubMed

    Sheehan, B; Bass, C; Briggs, R; Jacoby, R

    2003-07-01

    The importance of somatization among older primary care attenders is unclear. We aimed to establish the prevalence, persistence and associations of somatization among older primary care attenders, and the associations of frequent attendance. One hundred and forty primary care attenders over 65 years were rated twice, 10 months apart, on measures of somatization, psychiatric status, physical health and attendance. The syndrome of GMS hypochondriacal neurosis had a prevalence of 5% but was transient. Somatized symptoms and attributions were persistent and associated with depression, physical illness and perceived poor social support. Frequent attenders (top third) had higher rates of depression, physical illness and somatic symptoms, and lower perceived support. Somatization is common among older primary care attenders and has similar correlates to younger primary care somatizers. Psychological distress among older primary care attenders is associated with frequent attendance. Improved recognition should result in benefits to patients and services.

  9. ADP-ribosyl cyclases regulate early development of the sea urchin.

    PubMed

    Ramakrishnan, Latha; Uhlinger, Kevin; Dale, Leslie; Hamdoun, Amro; Patel, Sandip

    2016-06-01

    ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca 2+ signalling such as cADPR and NAADP. Although Ca 2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca 2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.

  10. [Somatization disorders of the urogenital tract].

    PubMed

    Günthert, E A

    2002-11-01

    Diffuse symptoms in the urogenital region can frequently be explained by somatization disorders. Since they cannot be proven either by laboratory tests or with common technical diagnostic methods, somatization disorders should always be taken into consideration. Somatization disorders are to be considered functional disorders. Since somatization disorders due to muscular tension prevail in the urogenital region, the functional disturbance can be explained by the muscular tension. Subsequently, muscular tension causes the pathophysiological development of symptoms. As a rule they appear as myofascial pain or disorder. Muscular tension can have a psychic origin. The absence of urological findings is typical. Males and females between the ages of 16 and 75 can be affected by somatization disorders in the urogenital region. Somatization disorders due to muscular tension belong to the large group of symptoms due to tension. Diagnostic and therapeutic procedures as well as the pathophysiology of somatization disorders due to muscular tension are illustrated by two detailed case-reports.

  11. Truncation of LEAFY COTYLEDON1 Protein Is Required for Asexual Reproduction in Kalanchoë daigremontiana1[OPEN

    PubMed Central

    Garcês, Helena M.P.; Koenig, Daniel; Townsley, Brad T.; Kim, Minsung; Sinha, Neelima R.

    2014-01-01

    Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively. PMID:24664206

  12. Truncation of LEAFY COTYLEDON1 protein is required for asexual reproduction in Kalanchoë daigremontiana.

    PubMed

    Garcês, Helena M P; Koenig, Daniel; Townsley, Brad T; Kim, Minsung; Sinha, Neelima R

    2014-05-01

    Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively.

  13. Somatic symptoms, peer and school stress, and family and community violence exposure among urban elementary school children

    PubMed Central

    Hart, Shayla L.; Hodgkinson, Stacy C.; Hyman, Corine; Cooley-Strickland, Michele

    2013-01-01

    Somatic symptoms are a common physical response to stress and illness in childhood. This study assessed 409, primarily African American (85.6 %), urban elementary school children to examine the association between: (1) somatic symptoms and potential external stressors (school and peer stress, family conflict, and community violence) and (2) parent and child agreement on children’s self-report of somatic symptoms. The odds of self-report of somatic complaints were significantly associated with family conflict, school and peer stress, and community violence exposure (OR = 1.26, 95 % CI: 1.05–1.50; OR = 1.18, 95 % CI 1.08–1.28; and OR = 1.02, 95 % CI: 1.00–1.05, respectively). Identifying the associations between social, family, and community based stress and somatic symptoms may improve the quality of life for children living in urban environments through early identification and treatment. PMID:22772584

  14. Rapid quantification of neutral lipids and triglycerides during zebrafish embryogenesis.

    PubMed

    Yoganantharjah, Prusothman; Byreddy, Avinesh R; Fraher, Daniel; Puri, Munish; Gibert, Yann

    2017-01-01

    The zebrafish is a useful vertebrate model to study lipid metabolism. Oil Red-O (ORO) staining of zebrafish embryos, though sufficient for visualizing the localization of triglycerides, was previously inadequate to quantify neutral lipid abundance. For metabolic studies, it is crucial to be able to quantify lipids during embryogenesis. Currently no cost effective, rapid and reliable method exists to quantify the deposition of neutral lipids and triglycerides. Thin layer chromatography (TLC), gas chromatography and mass spectrometry can be used to accurately measure lipid levels, but are time consuming and costly in their use. Hence, we developed a rapid and reliable method to quantify neutral lipids and triglycerides. Zebrafish embryos were exposed to Rimonabant (Rimo) or WIN 55,212-2 mesylate (WIN), compounds previously shown to modify lipid content during zebrafish embryogenesis. Following this, ORO stain was extracted out of both the zebrafish body and yolk sac and optical density was measured to give an indication of neutral lipid and triglyceride accumulation. Embryos treated with 0.3 microM WIN resulted in increased lipid accumulation, whereas 3 microM Rimo caused a decrease in lipid accumulation during embryogenesis. TLC was performed on zebrafish bodies to validate the developed method. In addition, BODIPY free fatty acids were injected into zebrafish embryos to confirm quantification of changes in lipid content in the embryo. Previously, ORO was limited to qualitative assessment; now ORO can be used as a quantitative tool to directly determine changes in the levels of neutral lipids and triglycerides.

  15. The near demise and subsequent revival of classical genetics for investigating Caenorhabditis elegans embryogenesis: RNAi meets next-generation DNA sequencing.

    PubMed

    Bowerman, Bruce

    2011-10-01

    Molecular genetic investigation of the early Caenorhabditis elegans embryo has contributed substantially to the discovery and general understanding of the genes, pathways, and mechanisms that regulate and execute developmental and cell biological processes. Initially, worm geneticists relied exclusively on a classical genetics approach, isolating mutants with interesting phenotypes after mutagenesis and then determining the identity of the affected genes. Subsequently, the discovery of RNA interference (RNAi) led to a much greater reliance on a reverse genetics approach: reducing the function of known genes with RNAi and then observing the phenotypic consequences. Now the advent of next-generation DNA sequencing technologies and the ensuing ease and affordability of whole-genome sequencing are reviving the use of classical genetics to investigate early C. elegans embryogenesis.

  16. Somatization Increases Disability Independent of Comorbidity

    PubMed Central

    Orav, E. John; Bates, David W.; Barsky, Arthur J.

    2008-01-01

    Background Somatoform disorders are an important factor in functional disability and role impairment, though their independent contribution to disability has been unclear because of prevalent medical and psychiatric comorbidity. Objectives To assess the extent of the overlap of somatization with other psychiatric disorders and medical problems, to compare the functional disability and role impairment of somatizing and non-somatizing patients, and to determine the independent contribution of somatization to functional disability and role impairment. Design Patients were surveyed with self-report questionnaires assessing somatization, psychiatric disorder, and role impairment. Medical morbidity was indexed with a computerized medical record audit. Participants Consecutive adults making scheduled visits to their primary care physicians at two hospital-affiliated primary care practices on randomly chosen days. Measurements Intermediate activities of daily living, social activities, and occupational disability. Results Patients with somatization, as well as those with serious medical and psychiatric illnesses, had significantly more impairment of activities of daily life and social activities. When these predictors were considered simultaneously in a multivariable regression, the association with somatization remained highly significant and was comparable to or greater than many major medical conditions. Conclusions Patients with somatization had substantially greater functional disability and role impairment than non-somatizing patients. The degree of disability was equal to or greater than that associated with many major, chronic medical disorders. Adjusting the results for psychiatric and medical co-morbidity had little effect on these findings. PMID:19031038

  17. In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera ligustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-09-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24-48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48-72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during

  18. In-depth Proteomics Characterization of Embryogenesis of the Honey Bee Worker (Apis mellifera ligustica) *

    PubMed Central

    Fang, Yu; Feng, Mao; Han, Bin; Lu, Xiaoshan; Ramadan, Haitham; Li, Jianke

    2014-01-01

    Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24–48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48–72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during

  19. Predictors of a functional somatic syndrome diagnosis in patients with persistent functional somatic symptoms.

    PubMed

    Kingma, Eva M; de Jonge, Peter; Ormel, Johan; Rosmalen, Judith G M

    2013-06-01

    Functional somatic syndromes (FSS) are characterized by the existence of multiple persistent functional somatic symptoms. Not many patients fulfilling the criteria for an FSS, receive a formal diagnosis, and it is unknown which factors explain this discrepancy. Patients that tend to worry and patients that gather more health information may have an increased chance of an FSS diagnosis. We hypothesized that high intelligence and high neuroticism increase the probability of an FSS diagnosis in patients with persistent functional somatic symptoms. This study aims to investigate patient factors that might be important in the process of syndrome labeling. Our study was performed in a large, representative population cohort (n = 976) in Groningen, The Netherlands, and included two assessment waves. Intelligence was measured using the General Aptitude Test Battery version B 1002-B. Neuroticism was measured using the 12-item neuroticism scale of the Eysenck Personality Questionnaire-Revised. Functional somatic symptoms were measured with the somatization section of the Composite International Diagnostic Interview. Current FSS diagnosis was assessed with a questionnaire. We performed multivariable logistic regression analyses including sum scores of neuroticism, intelligence scores, sex, number of functional somatic symptoms, and age as potential predictors of having an FSS diagnosis. From the 976 participants that completed measurements at follow-up, 289 (26.4 %) participants reported at least one persistent functional somatic symptom, and these subjects were included in the main analyses (38.4 % males, mean age of 55.2 years (SD = 10.7), 36-82 years). High numbers of functional somatic symptoms ((OR) = 1.320; 95 % (CI) = 1.097-1.588), female sex (OR = 9.068; 95 % CI = 4.061-20.251), and high intelligence (OR = 1.402; 95 % CI = 1.001-1.963) were associated with an FSS diagnosis, while age (OR = 0.989; 95 % CI = 960-1.019) and

  20. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly.

    PubMed

    DiStasio, Andrew; Driver, Ashley; Sund, Kristen; Donlin, Milene; Muraleedharan, Ranjith M; Pooya, Shabnam; Kline-Fath, Beth; Kaufman, Kenneth M; Prows, Cynthia A; Schorry, Elizabeth; Dasgupta, Biplab; Stottmann, Rolf W

    2017-12-15

    Primary microcephaly is a congenital brain malformation characterized by a head circumference less than three standard deviations below the mean for age and sex and results in moderate to severe mental deficiencies and decreased lifespan. We recently studied two children with primary microcephaly in an otherwise unaffected family. Exome sequencing identified an autosomal recessive mutation leading to an amino acid substitution in a WD40 domain of the highly conserved Coatomer Protein Complex, Subunit Beta 2 (COPB2). To study the role of Copb2 in neural development, we utilized genome-editing technology to generate an allelic series in the mouse. Two independent null alleles revealed that Copb2 is essential for early stages of embryogenesis. Mice homozygous for the patient variant (Copb2R254C/R254C) appear to have a grossly normal phenotype, likely due to differences in corticogenesis between the two species. Strikingly, mice heterozygous for the patient mutation and a null allele (Copb2R254C/Zfn) show a severe perinatal phenotype including low neonatal weight, significantly increased apoptosis in the brain, and death within the first week of life. Immunostaining of the Copb2R254C/Zfnbrain revealed a reduction in layer V (CTIP2+) neurons, while the overall cell density of the cortex is unchanged. Moreover, neurospheres derived from animals with Copb2 variants grew less than control. These results identify a general requirement for COPB2 in embryogenesis and a specific role in corticogenesis. We further demonstrate the utility of CRISPR-Cas9 generated mouse models in the study of potential pathogenicity of variants of potential clinical interest. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep

    2002-09-24

    Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significancemore » or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.« less

  2. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory

    PubMed Central

    Kaji, Tomohiro; Ishige, Akiko; Hikida, Masaki; Taka, Junko; Hijikata, Atsushi; Kubo, Masato; Nagashima, Takeshi; Takahashi, Yoshimasa; Kurosaki, Tomohiro; Okada, Mariko; Ohara, Osamu

    2012-01-01

    One component of memory in the antibody system is long-lived memory B cells selected for the expression of somatically mutated, high-affinity antibodies in the T cell–dependent germinal center (GC) reaction. A puzzling observation has been that the memory B cell compartment also contains cells expressing unmutated, low-affinity antibodies. Using conditional Bcl6 ablation, we demonstrate that these cells are generated through proliferative expansion early after immunization in a T cell–dependent but GC-independent manner. They soon become resting and long-lived and display a novel distinct gene expression signature which distinguishes memory B cells from other classes of B cells. GC-independent memory B cells are later joined by somatically mutated GC descendants at roughly equal proportions and these two types of memory cells efficiently generate adoptive secondary antibody responses. Deletion of T follicular helper (Tfh) cells significantly reduces the generation of mutated, but not unmutated, memory cells early on in the response. Thus, B cell memory is generated along two fundamentally distinct cellular differentiation pathways. One pathway is dedicated to the generation of high-affinity somatic antibody mutants, whereas the other preserves germ line antibody specificities and may prepare the organism for rapid responses to antigenic variants of the invading pathogen. PMID:23027924

  3. Custos controls β-catenin to regulate head development during vertebrate embryogenesis.

    PubMed

    Komiya, Yuko; Mandrekar, Noopur; Sato, Akira; Dawid, Igor B; Habas, Raymond

    2014-09-09

    Precise control of the canonical Wnt pathway is crucial in embryogenesis and all stages of life, and dysregulation of this pathway is implicated in many human diseases including cancers and birth defect disorders. A key aspect of canonical Wnt signaling is the cytoplasmic to nuclear translocation of β-catenin, a process that remains incompletely understood. Here we report the identification of a previously undescribed component of the canonical Wnt signaling pathway termed Custos, originally isolated as a Dishevelled-interacting protein. Custos contains casein kinase phosphorylation sites and nuclear localization sequences. In Xenopus, custos mRNA is expressed maternally and then widely throughout embryogenesis. Depletion or overexpression of Custos produced defective anterior head structures by inhibiting the formation of the Spemann-Mangold organizer. In addition, Custos expression blocked secondary axis induction by positive signaling components of the canonical Wnt pathway and inhibited β-catenin/TCF-dependent transcription. Custos binds to β-catenin in a Wnt responsive manner without affecting its stability, but rather modulates the cytoplasmic to nuclear translocation of β-catenin. This effect on nuclear import appears to be the mechanism by which Custos inhibits canonical Wnt signaling. The function of Custos is conserved as loss-of-function and gain-of-function studies in zebrafish also demonstrate a role for Custos in anterior head development. Our studies suggest a role for Custos in fine-tuning canonical Wnt signal transduction during embryogenesis, adding an additional layer of regulatory control in the Wnt-β-catenin signal transduction cascade.

  4. Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response.

    PubMed

    Temko, Daniel; Van Gool, Inge C; Rayner, Emily; Glaire, Mark; Makino, Seiko; Brown, Matthew; Chegwidden, Laura; Palles, Claire; Depreeuw, Jeroen; Beggs, Andrew; Stathopoulou, Chaido; Mason, John; Baker, Ann-Marie; Williams, Marc; Cerundolo, Vincenzo; Rei, Margarida; Taylor, Jenny C; Schuh, Anna; Ahmed, Ahmed; Amant, Frédéric; Lambrechts, Diether; Smit, Vincent Thbm; Bosse, Tjalling; Graham, Trevor A; Church, David N; Tomlinson, Ian

    2018-03-31

    Genomic instability, which is a hallmark of cancer, is generally thought to occur in the middle to late stages of tumourigenesis, following the acquisition of permissive molecular aberrations such as TP53 mutation or whole genome doubling. Tumours with somatic POLE exonuclease domain mutations are notable for their extreme genomic instability (their mutation burden is among the highest in human cancer), distinct mutational signature, lymphocytic infiltrate, and excellent prognosis. To what extent these characteristics are determined by the timing of POLE mutations in oncogenesis is unknown. Here, we have shown that pathogenic POLE mutations are detectable in non-malignant precursors of endometrial and colorectal cancer. Using genome and exome sequencing, we found that multiple driver mutations in POLE-mutant cancers show the characteristic POLE mutational signature, including those in genes conventionally regarded as initiators of tumourigenesis. In POLE-mutant cancers, the proportion of monoclonal predicted neoantigens was similar to that in other cancers, but the absolute number was much greater. We also found that the prominent CD8 + T-cell infiltrate present in POLE-mutant cancers was evident in their precursor lesions. Collectively, these data indicate that somatic POLE mutations are early, quite possibly initiating, events in the endometrial and colorectal cancers in which they occur. The resulting early onset of genomic instability may account for the striking immune response and excellent prognosis of these tumours, as well as their early presentation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  5. The somatic symptom scale-8 (SSS-8): a brief measure of somatic symptom burden.

    PubMed

    Gierk, Benjamin; Kohlmann, Sebastian; Kroenke, Kurt; Spangenberg, Lena; Zenger, Markus; Brähler, Elmar; Löwe, Bernd

    2014-03-01

    Somatic symptoms are the core features of many medical diseases, and they are used to evaluate the severity and course of illness. The 8-item Somatic Symptom Scale (SSS-8) was recently developed as a brief, patient-reported outcome measure of somatic symptom burden, but its reliability, validity, and usefulness have not yet been tested. To investigate the reliability, validity, and severity categories as well as the reference scores of the SSS-8. A national, representative general-population survey was performed between June 15, 2012, and July 15, 2012, in Germany, including 2510 individuals older than 13 years. The SSS-8 mean (SD), item-total correlations, Cronbach α, factor structure, associations with measures of construct validity (Patient Health Questionnaire-2 depression scale, Generalized Anxiety Disorder-2 scale, visual analog scale for general health status, 12-month health care use), severity categories, and percentile rank reference scores. The SSS-8 had excellent item characteristics and good reliability (Cronbach α = 0.81). The factor structure reflects gastrointestinal, pain, fatigue, and cardiopulmonary aspects of the general somatic symptom burden. Somatic symptom burden as measured by the SSS-8 was significantly associated with depression (r = 0.57 [95% CI, 0.54 to 0.60]), anxiety (r = 0.55 [95% CI, 0.52 to 0.58]), general health status (r = -0.24 [95% CI, -0.28 to -0.20]), and health care use (incidence rate ratio, 1.12 [95% CI, 1.10 to 1.14]). The SSS-8 severity categories were calculated in accordance with percentile ranks: no to minimal (0-3 points), low (4-7 points), medium (8-11 points), high (12-15 points), and very high (16-32 points) somatic symptom burden. For every SSS-8 severity category increase, there was a 53% (95% CI, 44% to 63%) increase in health care visits. The SSS-8 is a reliable and valid self-report measure of somatic symptom burden. Cutoff scores identify individuals with low, medium, high, and very high somatic

  6. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Endogenous Nod-Factor-Like Signal Molecules Promote Early Somatic Embryo Development in Norway Spruce1

    PubMed Central

    Dyachok, Julia V.; Wiweger, Malgorzata; Kenne, Lennart; von Arnold, Sara

    2002-01-01

    Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PEM aggregates in auxin-deficient cultures. Partial characterization of the conditioning factor shows that it is a lipophilic, low-molecular-weight molecule, which is sensitive to chitinase and contains GlcNAc residues. On the basis of this information, we propose that the factor is a lipophilic chitin oligosaccharide (LCO). The amount of LCO correlates to the developmental stages of PEMs and embryos, with the highest level in the media conditioned by developmentally blocked cultures. LCO is not present in nonembryogenic cultures. Cell death, induced by withdrawal of auxin, is suppressed by extra supply of endogenous LCO or Nod factor from Rhizobium sp. NGR234. The effect can be mimicked by a chitotetraose or chitinase from Streptomyces griseus. Taken together, our data suggest that endogenous LCO acts as a signal molecule stimulating PEM and early embryo development in Norway spruce. PMID:11842156

  8. Effects of biotic and abiotic factors on the oxygen content of green sea turtle nests during embryogenesis.

    PubMed

    Chen, Chiu-Lin; Wang, Chun-Chun; Cheng, I-Jiunn

    2010-10-01

    Several biotic and abiotic factors can influence nest oxygen content during embryogenesis. Several of these factors were determined during each developmental stage of green sea turtle embryos on Wan-an Island, Penghu Archipelago, Taiwan. We examined oxygen content in 7 nests in 2007 and 11 in 2008. Oxygen in the adjacent sand, total and viable clutch sizes, air, sand and nest temperatures, and sand characters of each nest were also determined. Oxygen content was lower in late stages than in the early and middle stages. It was also lower in the middle layer than in the upper and bottom layers. Nest temperature showed opposite trends, reaching its maximum value in late stages of development. Nest oxygen content was influenced by fraction of viable eggs, total clutch sizes, sand temperatures, maximum nest temperature and maximum change in the nest temperature during incubation. Clutch size during embryogenesis was the most influential factor overall. However, the major influential factors were different for different developmental stages. In the first half of the incubation, the development rate was low, and the change in the nest oxygen content was influenced mainly by the clutch size. During the second half, the rapid embryonic development rate became the dominant factor, and hatchling activities caused even greater oxygen consumption during the last stage of development.

  9. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    PubMed

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  10. Functional Somatic Symptoms Across Cultures: Perceptual and Health Care Issues.

    PubMed

    Löwe, Bernd; Gerloff, Christian

    2018-06-01

    Functional neurological disorders are conceptualized as patterns of neurological symptoms that cannot be attributed to a clear organic etiology. The study by Wilkins et al. in this issue of Psychosomatic Medicine reveals that 8.2% of patients who were initially presented with suspected stroke were later diagnosed with functional disorders, i.e., "functional stroke mimics." However, the percentage of functional stroke mimics varied substantially with patients' nationality, age, and sex. In this editorial comment, we discuss potential reasons for the intercultural variation of the frequency of functional stroke mimics.The current models of symptom perception, in which symptom perception is guided by top-down processes of the central nervous system, are helpful in explaining the intercultural variation of functional symptoms. According to these models, cultural beliefs, previous illnesses, and stressful life situations influence patients' expectations, sensory input, and finally the perception of somatic symptoms. In addition, differences in insurance status, health literacy, and health care experiences are strong predictors of health care use in patients who experience somatic symptoms.This article provides a conceptual model that integrates sociocultural factors with symptom perception and health care use relevant to the different rates of functional somatic symptoms in emergency departments across nationalities. Considering these factors, future attempts to improve care for patients with functional disorders should enhance access to effective treatment for all patient groups, empower patients through education and early participation in the treatment process, and foster interdisciplinary collaboration among specialists from somatic and mental health disciplines.

  11. Alexithymia, emotion, and somatic complaints.

    PubMed

    Lundh, L G; Simonsson-Sarnecki, M

    2001-06-01

    Alexithymia, by definition, involves difficulties in identifying and describing emotions and has been assumed to be associated with somatization (i.e., a tendency to express psychological distress in somatic rather than emotional form). Empirical research so far, however, has produced no convincing evidence that alexithymia is more associated with somatic complaints than with emotional complaints or that alexithymia correlates with somatic complaints when negative affect is controlled for. In the present study, alexithymia, as measured by the TAS-20, showed no association with somatic complaints in a community sample of 137 individuals when trait anxiety and depression were controlled. Alexithymia did correlate negatively with positive affect, and positively with negative affect. The former association, however, was much more robust, whereas the latter association was found mainly on subjective trait measures of negative affect (as distinct from state measures and more objective trait measures derived from daily recordings during an 8-week period). It is suggested that the association between alexithymia and lack of positive affect deserves more attention in future research.

  12. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  13. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    PubMed Central

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637

  14. The pea aphid uses a version of the terminal system during oviparous, but not viviparous, development

    PubMed Central

    2013-01-01

    Background In most species of aphid, female nymphs develop into either sexual or asexual adults depending on the length of the photoperiod to which their mothers were exposed. The progeny of these sexual and asexual females, in turn, develop in dramatically different ways. The fertilized oocytes of sexual females begin embryogenesis after being deposited on leaves (oviparous development) while the oocytes of asexual females complete embryogenesis within the mother (viviparous development). Compared with oviparous development, viviparous development involves a smaller transient oocyte surrounded by fewer somatic epithelial cells and a smaller early embryo that comprises fewer cells. To investigate whether patterning mechanisms differ between the earliest stages of the oviparous and viviparous modes of pea aphid development, we examined the expression of pea aphid orthologs of genes known to specify embryonic termini in other insects. Results Here we show that pea aphid oviparous ovaries express torso-like in somatic posterior follicle cells and activate ERK MAP kinase at the posterior of the oocyte. In addition to suggesting that some posterior features of the terminal system are evolutionarily conserved, our detection of activated ERK in the oocyte, rather than in the embryo, suggests that pea aphids may transduce the terminal signal using a mechanism distinct from the one used in Drosophila. In contrast with oviparous development, the pea aphid version of the terminal system does not appear to be used during viviparous development, since we did not detect expression of torso-like in the somatic epithelial cells that surround either the oocyte or the blastoderm embryo and we did not observe restricted activated ERK in the oocyte. Conclusions We suggest that while oviparous oocytes and embryos may specify posterior fate through an aphid terminal system, viviparous oocytes and embryos employ a different mechanism, perhaps one that does not rely on an interaction

  15. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke

    2015-09-04

    The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.

  16. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis.

    PubMed

    Warner, Jacob F; Guerlais, Vincent; Amiel, Aldine R; Johnston, Hereroa; Nedoncelle, Karine; Röttinger, Eric

    2018-05-17

    For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present N ematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org. © 2018. Published by The Company of Biologists Ltd.

  17. Extending a structural model of somatization to South Koreans: Cultural values, somatization tendency, and the presentation of depressive symptoms.

    PubMed

    Zhou, Xiaolu; Min, Seongho; Sun, Jiahong; Kim, Se Joo; Ahn, Joung-Sook; Peng, Yunshi; Noh, Samuel; Ryder, Andrew G

    2015-05-01

    Somatization refers to the tendency to emphasize somatic symptoms when experiencing a psychiatric disturbance. This tendency has been widely reported in patients from East Asian cultural contexts suffering from depression. Recent research in two Chinese samples have demonstrated that the local cultural script for depression, involving two aspects-the experience and expression of distress (EED) and conceptualization and communication of distress (CCD)-can be evoked to help explain somatization. Given the beliefs and practices broadly shared across Chinese and South Korean cultural contexts, the current study seeks to replicate this explanatory model in South Koreans. Our sample included 209 psychiatric outpatients from Seoul and Wonju, South Korea. Self-report questionnaires were used to assess somatization tendency, adherence to traditional values, and psychological and somatic symptoms of depression. Results from SEM showed that the EED and CCD factors of somatization tendency were differently associated with cultural values and somatic symptoms, replicating our previous findings in Chinese outpatients. The reliance on a brief self-report measure of somatization tendency, not originally designed to assess separate EED and CCD factors, highlights the need for measurement tools for the assessment of cultural scripts in cross-cultural depression research. The replication of the Chinese structural model of somatization in South Korea lends empirical support to the view that somatization can be understood as the consequence of specific cultural scripts. These scripts involve the experience and expression of distress as well as culturally meaningful ways in which this distress is conceptualized and communicated to others. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. [Personality and somatic disorders].

    PubMed

    Darves-Bornoz, J-M

    2018-06-08

    In the title of this text, by somatic disorders we mean those physical illnesses clearly related to a non-psychiatric medical field, frequently termed psychosomatic illnesses and somatoform disorders. For forty years, a trend of thought has focused with pertinence on the psychological peculiarities in patients with severe somatic diseases. Moreover, causality was often supposed in the regularly mentioned association between personality features and somatoform disorders. However, the revival of the study of the earlier field of relationships between mind and body by Briquet, Charcot, Janet and Freud in his first period has led to the reassessment of the meaning of these observations. This reexamination is marked out by several assertions. Two of them work as preliminaries to argumentation: 1. existential wounds may produce long-lasting personality alterations; 2. existential wounds may produce somatoform disorders. These phenomena have been rediscovered over the last few years among assaulted subjects as well as war veterans in whom a frequent occurrence of somatizations has been, in addition, closely linked to the incidence of behavior or personality disorders. Two theses then emerge: 1. somatic diseases may produce long-lasting personality alterations; 2. until now no premorbid personality univocally predisposing to somatic diseases could be found. Indeed, during the 1980s a growing body of negative results coming from retrospective and prospective studies as well as anatomical comparisons have accumulated upon the potential role of certain personality factors in the incidence of somatic illnesses. This dialectic leads to the connection of two corollary assertions: 1. "pensée opératoire" and "alexithymia" in patients with somatic diseases may represent only an effect of the announcement or chronicity of the organic disease; 2. the old "dissociative hysteria" with somatic manifestations finds its substratum in existential wounds and not in pre-trauma personality

  19. [Management of somatization in depression].

    PubMed

    Azorin, J M

    1995-12-01

    Management of somatization in depression depends on understanding its mechanisms. This kind of somatization is the product of both specific and nonspecific factors which interact to create a chronic and hypocondriacal picture. Biological treatment looks like treatment of chronic depression. Antidepressants with anxiolytic properties have a place of choice. Psychotherapy is frequently used, particularly cognitive behavior therapy which allows the reattribution of somatic symptoms to psychological events. General practitioners need to be trained to these techniques as they are, more frequently than psychiatrists, involved in the management of these patients.

  20. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    PubMed

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  1. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  2. MMPI screening scales for somatization disorder.

    PubMed

    Wetzel, R D; Brim, J; Guze, S B; Cloninger, C R; Martin, R L; Clayton, P J

    1999-08-01

    44 items on the MMPI were identified which appear to correspond to some of the symptoms in nine of the 10 groups on the Perley-Guze checklist for somatization disorder (hysteria). This list was organized into two scales, one reflecting the total number of symptoms endorsed and the other the number of organ systems with at least one endorsed symptom. Full MMPIs were then obtained from 29 women with primary affective disorder and 37 women with somatization disorder as part of a follow-up study of a consecutive series of 500 psychiatric clinic patients seen at Washington University. Women with the diagnosis of somatization disorder scored significantly higher on the somatization disorder scales created from the 44 items than did women with only major depression. These new scales appeared to be slightly more effective in identifying somatization disorder than the use of the standard MMPI scales for hypochondriasis and hysteria. Further development is needed.

  3. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer

    2005-07-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requiresmore » permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.« less

  4. The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean.

    PubMed

    Barraza, Aarón; Cabrera-Ponce, José L; Gamboa-Becerra, Roberto; Luna-Martínez, Francisco; Winkler, Robert; Álvarez-Venegas, Raúl

    2015-01-01

    Common bean is the most important grain legume in the human diet. Bean improvement efforts have been focused on classical breeding techniques because bean is recalcitrant to both somatic embryogenesis and in vitro regeneration. This study was undertaken to better understand the process of somatic embryogenesis in the common bean. We focused on the mechanisms by which somatic embryogenesis in plants is regulated and the interaction of these mechanisms with plant hormones. Specifically, we examined the role of the gene PvTRX1h, an ortholog of a major known histone lysine methyltransferase in plants, in somatic embryo generation. Given the problems with regeneration and transformation, we chose to develop and use regeneration-competent callus that could be successively transformed. Embryogenic calli of common bean were generated and transformed with the PvTRX1hRiA construction to down-regulate, by RNA interference, expression of the PvTRX1h gene. Plant hormone content was measured by mass spectrometry and gene expression was assessed by q-PCR. Detailed histological analysis was performed on selected transgenic embryogenic calli. It was determined that down-regulation of PvTRX1h gene was accompanied by altered concentrations of plant hormones in the calli. PvTRX1h regulated the expression of genes involved in auxin biosynthesis and embryogenic calli in which PvTRX1h was down-regulated were capable of differentiation into somatic embryos. Also, down-regulation of PvTRX1h showed increased transcript abundance of a gene coding for a second histone lysine methyltransferase, PvASHH2h. Accordingly, the PvTRX1h gene is involved in the synthesis of plant hormones in common bean callus. These results shed light on the crosstalk among histone methyltransferases and plant hormone signaling and on gene regulation during somatic embryo generation.

  5. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.

    PubMed

    Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena

    2017-04-14

    Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.

  6. Somatic tinnitus prevalence and treatment with tinnitus retraining therapy.

    PubMed

    Ostermann, K; Lurquin, P; Horoi, M; Cotton, P; Hervé, V; Thill, M P

    2016-01-01

    Somatic tinnitus originates from increased activity of the dorsal cochlear nucleus, a cross-point between the somatic and auditory systems. Its activity can be modified by auditory stimulation or somatic system manipulation. Thus, sound enrichment and white noise stimulation might decrease tinnitus and associated somatic symptoms. The present uncontrolled study sought to determine somatic tinnitus prevalence among tinnitus sufferers, and to investigate whether sound therapy with counselling (tinnitus retraining therapy; TRT) may decrease tinnitus-associated somatic symptoms. To determine somatic tinnitus prevalence, 70 patients following the TRT protocol completed the Jastreboff Structured Interview (JSI) with additional questions regarding the presence and type of somatic symptoms. Among 21 somatic tinnitus patients, we further investigated the effects of TRT on tinnitus-associated facial dysesthesia. Before and after three months of TRT, tinnitus severity was evaluated using the Tinnitus Handicap Inventory (THI), and facial dysesthesia was assessed with an extended JSI-based questionnaire. Among the evaluated tinnitus patients, 56% presented somatic tinnitus-including 51% with facial dysesthesia, 36% who could modulate tinnitus by head and neck movements, and 13% with both conditions. Self-evaluation indicated that TRT significantly improved tinnitus and facial dysesthesia in 76% of patients. Three months of TRT led to a 50% decrease in mean THI and JSI scores regarding facial dysesthesia. Somatic tinnitus is a frequent and underestimated condition. We suggest an extension of the JSI, including specific questions regarding somatic tinnitus. TRT significantly improved tinnitus and accompanying facial dysesthesia, and could be a useful somatic tinnitus treatment.

  7. Somatic symptoms and psychological concerns in a general adolescent population: Exploring the relevance of DSM-5 somatic symptom disorder.

    PubMed

    van Geelen, Stefan M; Rydelius, Per-Anders; Hagquist, Curt

    2015-10-01

    DSM-5 somatic symptom disorder (SSD) constitutes a major change for psychosomatic medicine and psychiatry, as well as for epidemiological research in these fields. This study investigates somatic symptoms and psychological concerns among adolescents in order to systematically explore the relevance of SSD for general adolescent populations. A cross-sectional population-based design, with a symptoms-based strategy and a symptom-and-psychological-concern-based strategy, was used to estimate the prevalence of somatic symptoms and psychological concerns in a general adolescent population (n=2476, mean age=16years, 49% boys, 51% girls). Somatic symptoms and psychological concerns in relation to gender, and self-reported medical and psychiatric conditions were investigated. The association between somatic symptoms, psychological concerns, and functional impairment in school-, family-, peer- and physical activities was studied. Reporting 3+ persistent distressing somatic symptoms was significantly more common than reporting one or more persistent distressing somatic symptom(s) combined with serious psychological concern. The prevalence of such complaints was significantly higher in girls. The proportion of medical and psychiatric conditions was highest in the group reporting 3+ persistent distressing somatic symptoms combined with serious psychological concern. Belonging to this group most significantly increased odds ratios for functional impairment. For large-scale studies on SSD, results suggest the use of measures based on multiple somatic items in combination with psychological concerns, and a methodologically sound standardized measure of functional impairment. To further enhance clinical decision-making, the relation of symptoms to functional impairment, and the substantial overlap of SSD with medical and psychiatric conditions during adolescence should be addressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Comparative Developmental Staging of Female and Male Water Fleas Daphnia pulex and Daphnia magna During Embryogenesis.

    PubMed

    Toyota, Kenji; Hiruta, Chizue; Ogino, Yukiko; Miyagawa, Shinichi; Okamura, Tetsuro; Onishi, Yuta; Tatarazako, Norihisa; Iguchi, Taisen

    2016-02-01

    The freshwater crustacean genus Daphnia has been used extensively in ecological, developmental and ecotoxicological studies. Daphnids produce only female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable conditions and external stimuli, they produce male offspring. Although we reported that exogenous exposure to juvenile hormones and their analogs can induce male offspring even under female-producing conditions, we recently established a male induction system in the Daphnia pulex WTN6 strain simply by changing day-length. This male and female induction system is suitable for understanding the innate mechanisms of sexual dimorphic development in daphnids. Embryogenesis has been described as a normal plate (developmental staging) in various daphnid species; however, all studies have mainly focused on female development. Here, we describe the developmental staging of both sexes during embryogenesis in two representative daphnids, D. pulex and D. magna, based on microscopic time-course observations. Our findings provide the first detailed insights into male embryogenesis in both species, and contribute to the elucidation of the mechanisms underlying sexual differentiation in daphnids.

  9. DNA methylation dynamics during early plant life.

    PubMed

    Bouyer, Daniel; Kramdi, Amira; Kassam, Mohamed; Heese, Maren; Schnittger, Arp; Roudier, François; Colot, Vincent

    2017-09-25

    Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10-20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis.

  10. The cellular and molecular biology of conifer embryogenesis.

    PubMed

    Cairney, John; Pullman, Gerald S

    2007-01-01

    Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.

  11. [Somatic complaints, emotional awareness and maladjustment in schoolchildren].

    PubMed

    Ordóñez, A; Maganto, C; González, R

    2015-05-01

    Somatic complaints are common in childhood. Research has shown their relationship with emotional awareness and maladjustment. The study had three objectives: 1) to analyze the prevalence of somatic complaints; 2) To explore the relationships between the variables evaluated: somatic complaints, differentiating emotions, verbal sharing of emotions, not hiding emotions, body awareness, attending to others' emotions, analysis of emotions, and personal, social, family, and school maladjustments; and 3) To identify predictors of somatic complaints. The study included a total of 1,134 randomly selected schoolchildren of both sexes between 10-12 years old (M=10.99; SD=0.88). The Somatic Complaint List, Emotional Awareness Questionnaire, and Self-reported Multifactor Test of Childhood Adaptation were used to gather information. The results showed that the prevalence of somatic complaints was 90.2%, with fatigue, headache and stomachache being the most frequently. Dizziness and headache were more common in girls, and the frequency of complaints decreases with age. Somatic complaints are negatively related to emotional awareness, and positively related to maladjustment. The variables that contribute the most to the prediction of somatic complaints are personal maladjustment (25.1%) and differentiating emotions (2.5%). The study shows that personal maladjustment is the best predictor of somatic complaints; the more emotional awareness and better adapted the child, the fewer somatic complaints they lodge. Childhood is a stage with significant physical discomfort. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  12. The Role of Somatic Symptoms in Sexual Medicine: Somatization as Important Contextual Factor in Male Sexual Dysfunction.

    PubMed

    Fanni, Egidia; Castellini, Giovanni; Corona, Giovanni; Boddi, Valentina; Ricca, Valdo; Rastrelli, Giulia; Fisher, Alessandra Daphne; Cipriani, Sarah; Maggi, Mario

    2016-09-01

    An important feature of somatic symptom disorder is the subjective perception of the physical symptoms and its maladaptive interpretation. Considering that psychological distress is often expressed through somatic symptoms, it is possible that they underlie at least a part of the symptoms in subjects complaining of sexual dysfunction. Nevertheless, studies on the impact of somatoform disorders in sexual dysfunction are scanty. To define the psychological, relational, and organic correlates of somatic symptoms in a large sample of patients complaining of sexual problems. A consecutive series of 2833 men (mean age 50.2 ± 13.5 years) was retrospectively studied. Somatic symptoms were assessed using the "somatized anxiety symptoms" subscale of the Middlesex Hospital Questionnaire (MHQ-S). Several clinical, biochemical, psychological, and relational parameters were studied. Patients were interviewed with the previously validated Structured Interview on Erectile Dysfunction (SIEDY), and ANDROTEST (a structured interview for the screening of hypogonadism in patients with sexual dysfunction). Among the 2833 patients studied, subjects scoring higher on somatic symptoms were older, more obese, reporting unhealthy lifestyle (current smoking, alcohol consumption), and a lower education (all P < .05). Moreover, they reported a general impairment of their sexuality more often, including erectile problems (spontaneous or sexual-related), low sexual desire, decreased frequency of intercourse, and perceived reduction of ejaculate volume (all P < .005). Interestingly, we observed a significant association between MHQ-S scoring with a reduced testosterone level and hypogonadism symptoms (both P < .05). Finally, we found a significant association between somatic symptoms and both SIEDY Scales 1 (organic domain of ED) and 3 (intrapsychic domain of ED) (both P < .0001). The present study demonstrates that the presence of somatic symptoms can represent an important contextual factor in

  13. [Comorbide somatic pathology in servicemen with neurotic disorders].

    PubMed

    Kurasov, E S; Marchenko, A A; Krasnov, A A; Golovach, I G; Kozlova, S N

    2012-04-01

    Prevalence and structure of comorbidity a somatic pathology in military men with neurotic disorders was studied. It was established that 40,4% of surveyed noted concomitant somatic pathology, the structure of which was dominated by gastro-intestinal tract (26,8%), and pathology of the cardiovascular system (21,6%). It is shown that concomitant somatic pathology provided aggravating effect on clinic neurotic disorders in serviceman, making it difficult to diagnose mental disorders. The greatest risk concomitant a somatic pathology was marked in patients with depressive and somatoform disorders. Indicates the need for specialized standards of care for persons with comorbid mental and somatic disorders.

  14. Experimentally Manipulated Somatic Information and Somatization Tendencies and their Impact on Physical Symptom Reporting and Performance in a Physically Strenuous Task

    PubMed Central

    CASTO, KATHLEEN; LECCI, LEN

    2012-01-01

    This study attempts to determine whether the presentation of an experimentally manipulated somatic experience during a physically strenuous task can influence physical performance and symptom reporting. The study also compares the relative influence of experimentally manipulated somatic information (state somatization) with stable individual differences in the tendency to amplify physical symptoms (trait somatization) on performance and symptom reporting. 194 participants completed standardized measures of somatization tendencies, state anxiety, neuroticism and conscientiousness. Participants where then given a mock physical exam, with individuals randomly assigned to receive either favorable or unfavorable somatic information. All participants then had their body mass index assessed and completed a rigorous exercise task, with quantification of performance. Physiological measures of blood pressure and pulse were also assessed before and after the exercise task. The experimentally manipulated presentation of somatic information predicted both performance and physical symptoms, even after controlling for BMI, neuroticism, conscientiousness, and state anxiety. Moreover, expected performance uniquely and significantly predicted performance above and beyond condition, anxiety, BMI, neuroticism, and conscientiousness. Somatosensory amplification tendencies also predicted symptom endorsement, but not performance. Findings suggest that both state and trait expectations with respect to somatic experiences influence symptom reporting and to a lesser extent performance, even after controlling for variables known to strongly influence each of these outcomes. Results are consistent with the cognitive-perceptual and the cognitive-appraisal models of somatic interpretation. PMID:27182375

  15. Shoot regeneration and embryogenesis in lily shoot tips cryopreserved by droplet vitrification

    USDA-ARS?s Scientific Manuscript database

    Shoot regeneration and embryogenesis were, for the first time, achieved directly in shoot tips of Lilium Oriental hybrid ‘Siberia’ following cryopreservation by droplet-vitrification. Shoot tips (2 mm in length) including 2-3 leaf primordia were excised from 4-week-old adventitious shoots directly r...

  16. Optimally achieving milk bulk tank somatic cell count thresholds.

    PubMed

    Troendle, Jason A; Tauer, Loren W; Gröhn, Yrjo T

    2017-01-01

    High somatic cell count in milk leads to reduced shelf life in fluid milk and lower processed yields in manufactured dairy products. As a result, farmers are often penalized for high bulk tank somatic cell count or paid a premium for low bulk tank somatic cell count. Many countries also require all milk from a farm to be lower than a specified regulated somatic cell count. Thus, farms often cull cows that have high somatic cell count to meet somatic cell count thresholds. Rather than naïvely cull the highest somatic cell count cows, a mathematical programming model was developed that determines the cows to be culled from the herd by maximizing the net present value of the herd, subject to meeting any specified bulk tank somatic cell count level. The model was applied to test-day cows on 2 New York State dairy farms. Results showed that the net present value of the herd was increased by using the model to meet the somatic cell count restriction compared with naïvely culling the highest somatic cell count cows. Implementation of the model would be straightforward in dairy management decision software. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Excess caffeine exposure impairs eye development during chick embryogenesis

    PubMed Central

    Ma, Zheng-lai; Wang, Guang; Cheng, Xin; Chuai, Manli; Kurihara, Hiroshi; Lee, Kenneth Ka Ho; Yang, Xuesong

    2014-01-01

    Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over-exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK-1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti-oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression. PMID:24636305

  18. CENH3-GFP: a visual marker for gametophytic and somatic ploidy determination in Arabidopsis thaliana.

    PubMed

    De Storme, Nico; Keçeli, Burcu Nur; Zamariola, Linda; Angenon, Geert; Geelen, Danny

    2016-01-05

    The in vivo determination of the cell-specific chromosome number provides a valuable tool in several aspects of plant research. However, current techniques to determine the endosystemic ploidy level do not allow non-destructive, cell-specific chromosome quantification. Particularly in the gametophytic cell lineages, which are physically encapsulated in the reproductive organ structures, direct in vivo ploidy determination has been proven very challenging. Using Arabidopsis thaliana as a model, we here assess the applicability of recombinant CENH3-GFP reporters for the labeling of the cell's chromocenters and for the monitoring of the gametophytic and somatic chromosome number in vivo. By modulating expression of a CENH3-GFP reporter cassette using different promoters, we isolated two reporter lines that allow for a clear and highly specific labeling of centromeric chromosome regions in somatic and gametophytic cells respectively. Using polyploid plant series and reproductive mutants, we demonstrate that the pWOX2-CENH3-GFP recombinant fusion protein allows for the determination of the gametophytic chromosome number in both male and female gametophytic cells, and additionally labels centromeric regions in early embryo development. Somatic centromere labeling through p35S-CENH3-GFP shows a maximum of ten centromeric dots in young dividing tissues, reflecting the diploid chromosome number (2x = 10), and reveals a progressive decrease in GFP foci frequency throughout plant development. Moreover, using chemical and genetic induction of endomitosis, we demonstrate that CENH3-mediated chromosome labeling provides an easy and valuable tool for the detection and characterization of endomitotic polyploidization events. This study demonstrates that the introgression of the pWOX2-CENH3-GFP reporter construct in Arabidopsis thaliana provides an easy and reliable methodology for determining the chromosome number in developing male and female gametes, and during early embryo

  19. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  20. [Functional somatization: a conceptual review].

    PubMed

    Fabião, Cristina; Fleming, Manuela; Barbosa, António

    2011-01-01

    The authors have brought together and analised texts about the history of the concept of hysteria. In these texts hysteria is fundamentally considered a disease of organic origin (of the womb), and, in the Middle Age, evidence of demonic possession. From the XVII century onwards, apart from the etiopathogenic concepts, also taken into consideration are aspects connected to the differential diagnosis with other similar entities and the therapy used each period. Even, in subsequent centuries, authors such as Syndenham, who consider hysteria to be a multidimensional entity, are rare. Empiricism has contributed to discoveries in biology and physiology, both general and of the nervous system itself, and given birth to the formulation of the Spinal Irritation Theory and Reflex Theory. These theories have led to strictly organic treatment of hysteria, in the same way that hysterectomies were performed to alleviate somatic symptoms connected to this disease. The introduction of hypnosis in medical practice, with Charcot in X1X century, allowed for the element of suggestion to be observed ( a non organic element) which accompanies the symptoms of hysteria. Two of his disciples, Janet and Freud, would define and isolate psychic mechanisms in the symptoms of hysteria: Dissociation of the consciousness (Janet) and Conversion (Freud). The last one developed a therapeutic method of a psychological nature for hysteria. The therapeutic implications and the pertinence of the distinction between unspecific somatization or functional (of somatic origin) somatization and somatization linked to disassociation mechanisms and conversion (psychic origin) are discussed as well as the evolution of international classification systems of somatization and the questions posed by the algorithms chosen for the cataloguing of symptoms. A revision of the relevant empirical studies about the association of somatization with depressive and anxiety disorders, within the general population, is made

  1. Exopolyphosphatases in nuclear and mitochondrial fractions during embryogenesis of the hard tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Campos, Eldo; Façanha, Arnoldo R; Costa, Evenilton P; da Silva Vaz, Itabajara; Masuda, Aoi; Logullo, Carlos

    2008-11-01

    The present work evaluated polyphosphate (poly P) metabolism in nuclear and mitochondrial fractions during Rhipicephalus microplus embryogenesis. Nuclear poly P decreased and activity of exopolyphosphatase (PPX - polyphosphate-phosphohydrolases; EC 3.6.1.11) increased after embryo cellularization until the end of embryogenesis. The utilization of mitochondrial poly P content occurred between embryo cellularization and segmentation stages. Increasing amounts of total RNA extracted from eggs progressively enhanced nuclear PPX activity, whereas it exerted no effect on mitochondrial PPX activity. The decline in total poly P content after the 7th day of embryogenesis does not reflect the free P(i) increase and the total poly P chain length decrease after embryo cellularization. The Km(app) utilizing poly P(3), poly P(15) and poly P(65) as substrate was almost the same for the nuclear fraction (around 1muM), while the affinity for substrate in mitochondrial fraction was around 10 times higher for poly P(3) (Km(app) = 0.2muM) than for poly P(15) (Km(app) = 2.8muM) and poly P(65) (Km(app) = 3.6muM). PPX activity was stimulated by a factor of two by Mg2+ and Co2+ in the nuclear fraction and only by Mg2+ in the mitochondrial fraction. Heparin (20microg/mL) inhibited nuclear and mitochondrial PPX activity in about 90 and 95% respectively. Together, these data are consistent with the existence of two different PPX isoforms operating in the nuclei and mitochondria of the hard tick R. microplus with distinct metal dependence, inhibitor and activator sensitivities. The data also shed new light on poly P biochemistry during arthropod embryogenesis, opening new routes for future comparative studies on the physiological roles of different poly P pools distributed over cell compartments.

  2. High utilizers of medical care: a crucial subgroup among somatizing patients.

    PubMed

    Hiller, Wolfgang; Fichter, Manfred M

    2004-04-01

    Patients with somatoform disorders (SFD) are likely to overutilize healthcare services. This study investigates (a) whether extraordinarily high medical costs can be predicted from patient characteristics or psychopathology, and (b) whether high-utilizing patients respond differently to cognitive-behavioral treatment. We compared 42 SFD high utilizers with 53 SFD average utilizers and 29 patients suffering from other than SFD mental disorders. High utilization was defined by healthcare expenditures of > or = 2500 euros during the past 2 years. Costs were computed from medical and billing records of health insurance companies. Somatization distress, hypochondriasis, depression, dysfunctional cognitions related to bodily symptoms, general psychopathology, personality profiles, and psychosocial disabilities were assessed before treatment. High utilizers had higher levels of self- and observer-rated illness behavior, self-perceived bodily weakness, and psychosocial disabilities. Although they did not report more somatization symptoms, their subjective symptom distress was higher. There were no differences between high and average utilizers concerning general psychopathology, DSM-IV comorbidity, and personality profiles. Treatment improvements were similar. High- and average-utilizing somatizers represent distinguishable subgroups. The results emphasize the importance of mechanisms specifically related to SFD and may enhance the early detection of patients who are likely to develop overutilization. Copyright 2004 Elsevier Inc.

  3. Somatization: a perspective from self psychology.

    PubMed

    Rodin, G M

    1991-01-01

    Somatization is a complex phenomenon that occurs in many forms and diverse settings. It is not necessarily pathological and may be found in a variety of psychiatric disorders. Much of the psychiatric literature has focused on patients with conversion disorders and hypochondriasis. Psychoanalytic theories regarding such conditions were largely based upon concepts of drive, conflict, and defense. The perspective from self psychology, with its emphasis on subjective experience and the sense of self, may further enhance the psychoanalytic understanding of somatization. Individuals with disturbances in the stability and organization of the self may present with somatic symptoms and disturbances in emotional awareness. Somatization in such cases may be the experiential manifestation of a disturbance in the cohesion of the self and/or may result from defensive operations to ward off affect. The latter may be prominent when affective arousal triggers the psychological threat of fragmentation. Somatization may diminish in such individuals when a self-object relationship is formed that bolsters and consolidates the sense of self. The integration of affect into ongoing subjective experience may also be an important aspect of psychoanalytic treatment in such patients.

  4. Somatization in survivors of catastrophic trauma: a methodological review.

    PubMed Central

    North, Carol S

    2002-01-01

    The literature on mental health effects of catastrophic trauma such as community disasters focuses on posttraumatic stress disorder. Somatization disorder is not listed among the classic responses to disaster, nor have other somatoform disorders been described in this literature. Nondiagnostic "somatization," "somatization symptoms," and "somatic symptoms" form the basis of most information about somatization in the literature. However, these concepts have not been validated, and therefore this work suffers from multiple methodological problems of ascertainment and interpretation. Future research is encouraged to consider many methodological issues in obtaining adequate data to address questions about the association of somatization with traumatic events, including a) appropriate comparison groups, b) satisfactory definition and measurement of somatization, c) exclusion of medical explanations for the symptoms, d) recognition of somatizers' spurious attribution of symptoms to medical causes, e) collection of data from additional sources beyond single-subject interviews, f) validation of diagnosis-unrelated symptom reporting or reconsideration of symptoms within diagnostic frameworks, g) separation of somatization after an event into new (incident) and preexisting categories, h) development of research models that include sufficient variables to examine the broader scope of potential relationships, and i) novel consideration of alternative causal directionalities. PMID:12194899

  5. Anxiety-related somatic reactions during missile attacks.

    PubMed

    Carmeli, A; Liberman, N; Mevorach, L

    1991-01-01

    During the Persian Gulf war the Israeli civilian population was the target of missile attacks that could have carried poison gas warheads. During the attacks all civilians were ordered to wear gas masks and move into sealed rooms. Four telephone surveys studied the somatic reactions to this anxiety-arousing situation. The percent of subjects reporting the somatic reactions declined from 38% after the first attack to 20% 12 days later. Somatic reactions were more prevalent among females than males, and among those who completed elementary school only compared to those with an academic education. A complex pattern of relationships between expectancies about chemical warfare attacks and somatic reactions is discussed.

  6. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs.

    PubMed

    Li, Hongmei; Hu, Chuansheng; Bai, Ling; Li, Hua; Li, Mingfa; Zhao, Xiaodong; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-12-01

    There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  7. Somatic Point Mutation Calling in Low Cellularity Tumors

    PubMed Central

    Kassahn, Karin S.; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Miller, David K.; Christ, Angelika N.; Harliwong, Ivon; Bruxner, Timothy J.; Xu, Qinying; Anderson, Matthew; Wood, Scott; Leonard, Conrad; Taylor, Darrin; Newell, Felicity; Song, Sarah; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Steptoe, Anita; Pajic, Marina; Cowley, Mark J.; Pinese, Mark; Chang, David K.; Gill, Anthony J.; Johns, Amber L.; Wu, Jianmin; Wilson, Peter J.; Fink, Lynn; Biankin, Andrew V.; Waddell, Nicola; Grimmond, Sean M.; Pearson, John V.

    2013-01-01

    Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform. PMID:24250782

  8. Effect of a 1800 MHz electromagnetic field emitted during embryogenesis on chick development and hatchability.

    PubMed

    Pawlak, K; Nieckarz, Z; Sechman, A; Wojtysiak, D; Bojarski, B; Tombarkiewicz, B

    2018-06-01

    The level of artificial electromagnetic field (EMF) has steadily increased with the development of human civilization. The developing chicken embryo has been considered a good model to study the effects of EMF on living organisms. The aim of the study was to determine the effect of a 1800 MHz electromagnetic field during embryogenesis on the frequency of chick embryo malformations, morphometric parameters of the heart and liver and concentration of corticosterone in blood plasma, lipid and glycogen content in the liver of newly hatched chicks. A 1800 MHz EMF was found to shorten the duration of embryogenesis (earlier pipping and hatching of chicks) while having no effect on the quantity and quality of chicks and on increasing the incidence of embryo malformations. Exposure of chick embryos to EMF caused decreases in relative heart weight and right ventricle wall thickness. The pipping and hatching of chicks can be accelerated by stressful impact of EMF, which is confirmed by a significant increase in plasma corticosterone concentrations and decrease in fat and glycogen in the liver of chicks exposed during embryogenesis on the electromagnetic field with a frequency of 1800 MHz. © 2018 Blackwell Verlag GmbH.

  9. Innexin2 gap junctions in somatic support cells are required for cyst formation and for egg chamber formation in Drosophila.

    PubMed

    Mukai, Masanori; Kato, Hirotaka; Hira, Seiji; Nakamura, Katsuhiro; Kita, Hiroaki; Kobayashi, Satoru

    2011-01-01

    Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood. We have identified a female sterile allele of innexin2 (inx2), which encodes a gap junction protein in Drosophila. In females bearing this inx2 allele, cyst formation and egg chamber formation are impaired. In wild-type germaria, Inx2 is strongly expressed in escort cells and follicle cells, both of which make close contact with germline cells. We show that inx2 function in germarial somatic cells is required for the survival of early germ cells and promotes cyst formation, probably downstream of EGFR pathway, and that inx2 function in follicle cells promotes egg chamber formation through the regulation of DE-cadherin and Bazooka (Baz) at the boundary between germ cells and follicle cells. Furthermore, genetic experiments demonstrate that inx2 interacts with the zero population growth (zpg) gene, which encodes a germline-specific gap junction protein. These results indicate a multifunctional role for Inx2 gap junctions in somatic support cells in the regulation of early germ cell survival, cyst formation and egg chamber formation. Inx2 gap junctions may mediate the transfer of nutrients and signal molecules between germ cells and somatic support cells, as well as play a role in the regulation of cell adhesion. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Somatic embryogenesis from immature fruit of Juglans cinerea

    Treesearch

    Paula M. Pijut

    1999-01-01

    Butternut (Juglans cinerea L.) (Fig. 1a), also known as white walnut or oilnut, is a hardwood species in the family Juglandaceae, section Trachycaryon (Manning, 1978), or more appropriately, section Cardiocaryon (Fjellstrom & Parfitt, 1994). This hardwood species is valued for its wood and edible...

  11. Historical aspects of somatic embryogenesis in woody plants

    Treesearch

    Subhash C. Minocha; Rakesh Minocha

    1995-01-01

    During the next few decades, the world demand for wood products is expected to rise sharply. To meet this growing demand, there will be an increasing need for mass production of improved-quality planting stock of many tree species. The conventional methods of tree improvement and selection offer only limited possibility of meeting the growing demands. Therefore, new...

  12. Predictive factors for somatization in a trauma sample

    PubMed Central

    2009-01-01

    Background Unexplained somatic symptoms are common among trauma survivors. The relationship between trauma and somatization appears to be mediated by posttraumatic stress disorder (PTSD). However, only few studies have focused on what other psychological risk factors may predispose a trauma victim towards developing somatoform symptoms. Methods The present paper examines the predictive value of PTSD severity, dissociation, negative affectivity, depression, anxiety, and feeling incompetent on somatization in a Danish sample of 169 adult men and women who were affected by a series of explosions in a firework factory settled in a residential area. Results Negative affectivity and feelings of incompetence significantly predicted somatization, explaining 42% of the variance. PTSD was significant until negative affectivity was controlled for. Conclusion Negative affectivity and feelings of incompetence significantly predicted somatization in the trauma sample whereas dissociation, depression, and anxiety were not associated with degree of somatization. PTSD as a risk factor was mediated by negative affectivity. PMID:19126224

  13. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.

    PubMed

    Minkina, Anna; Lindeman, Robin E; Gearhart, Micah D; Chassot, Anne-Amandine; Chaboissier, Marie-Christine; Ghyselinck, Norbert B; Bardwell, Vivian J; Zarkower, David

    2017-04-15

    Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Depression and hypochondriasis in family practice patients with somatization disorder.

    PubMed

    Oxman, T E; Barrett, J

    1985-10-01

    The relationships specified in DSM-III between somatization disorder and depression, and somatization disorder and hypochondriasis require further validation and easier methods of detection for use by primary care physicians. The authors investigated hypochondriacal and depressive symptoms in 13 family practice outpatients with somatization disorder. Pain complaints and depressive symptomatology were present in over 75% of this group, while hypochondriacal symptoms were present in 38%. The mean score on the somatization scale of the Hopkins Symptom Check List (HSCL-90) was greater than that reported for any other group. These findings support the separation of somatization disorder and hypochondriasis and suggest the need for better delineation of depressive subtypes in somatization disorder. The somatization scale of the HSCL-90 should be a useful screen for somatization disorder in future research.

  15. Somatic mosaicism in a case of apparently sporadic Creutzfeldt-Jakob disease carrying a de novo D178N mutation in the PRNP gene.

    PubMed

    Alzualde, A; Moreno, F; Martínez-Lage, P; Ferrer, I; Gorostidi, A; Otaegui, D; Blázquez, L; Atares, B; Cardoso, S; Martínez de Pancorbo, M; Juste, R; Rodríguez-Martínez, A B; Indakoetxea, B; López de Munain, A

    2010-10-05

    Transmissible spongiform encephalopathies (TSEs) are a group of rare fatal neurodegenerative disorders. Creutzfeldt-Jakob disease (CJD) represents the most common form of TSE and can be classified into sporadic, genetic, iatrogenic and variant forms. Genetic cases are related to prion protein gene mutations but they only account for 10-20% of cases. Here we report an apparently sporadic CJD case with negative family history carrying a mutation at codon 178 of prion protein gene. This mutation is a de novo mutation as the parents of the case do not show it. Furthermore the presence of three different alleles (wild type 129M-178D and 129V-178D and mutated 129V-178N), confirmed by different methods, indicates that this de novo mutation is a post-zygotic mutation that produces somatic mosaicism. The proportion of mutated cells in peripheral blood cells and in brain tissue was similar and was estimated at approximately 97%, suggesting that the mutation occurred at an early stage of embryogenesis. Neuropathological examination disclosed spongiform change mainly involving the caudate and putamen, and the cerebral cortex, together with proteinase K-resistant PrP globular deposits in the cerebrum and cerebellum. PrP typing was characterized by a lower band of 21 kDa. This is the first case of mosaicism described in prion diseases and illustrates a potential etiology for apparently sporadic neurodegenerative diseases. In light of this case, genetic counseling for inherited and sporadic forms of transmissible encephalopathies should take into account this possibility for genetic screening procedures.

  16. Multicellularity makes somatic differentiation evolutionarily stable

    PubMed Central

    Wahl, Mary E.; Murray, Andrew W.

    2016-01-01

    Many multicellular organisms produce two cell lineages: germ cells, whose descendants produce the next generation, and somatic cells, which support, protect, and disperse the germ cells. This germ-soma demarcation has evolved independently in dozens of multicellular taxa but is absent in unicellular species. A common explanation holds that in these organisms, inefficient intercellular nutrient exchange compels the fitness cost of producing nonreproductive somatic cells to outweigh any potential benefits. We propose instead that the absence of unicellular, soma-producing populations reflects their susceptibility to invasion by nondifferentiating mutants that ultimately eradicate the soma-producing lineage. We argue that multicellularity can prevent the victory of such mutants by giving germ cells preferential access to the benefits conferred by somatic cells. The absence of natural unicellular, soma-producing species previously prevented these hypotheses from being directly tested in vivo: to overcome this obstacle, we engineered strains of the budding yeast Saccharomyces cerevisiae that differ only in the presence or absence of multicellularity and somatic differentiation, permitting direct comparisons between organisms with different lifestyles. Our strains implement the essential features of irreversible conversion from germ line to soma, reproductive division of labor, and clonal multicellularity while maintaining sufficient generality to permit broad extension of our conclusions. Our somatic cells can provide fitness benefits that exceed the reproductive costs of their production, even in unicellular strains. We find that nondifferentiating mutants overtake unicellular populations but are outcompeted by multicellular, soma-producing strains, suggesting that multicellularity confers evolutionary stability to somatic differentiation. PMID:27402737

  17. Coherent Somatic Mutation in Autoimmune Disease

    PubMed Central

    Ross, Kenneth Andrew

    2014-01-01

    Background Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. Results Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. Conclusions The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases. PMID:24988487

  18. Is the replication of somatic coliphages in water environments significant?

    PubMed

    Jofre, J

    2009-04-01

    Somatic coliphages are amid several groups of bacteriophages that have been suggested as indicators in water quality assessment. One of the limitations frequently endorsed to somatic coliphages as indicators is that they can replicate in the water environment. This review intends to evaluate the significance of this potential replication. In view of: the threshold densities of somatic coliphages and host bacteria needed for productive infection to occur, the densities of both host cells supporting somatic coliphages replication and these phages in water environments, and the poor contribution of lysogenic induction to the free somatic coliphage numbers in water, it can be concluded that replication of somatic coliphages in waters is very unlikely. Consequently, the contribution of replication in the environment of somatic coliphages is expected to have a non-noticeable influence on the numbers of somatic coliphages detected in water environments. Thus, the replication in the environment should not be argued as a limitation to the use of somatic coliphages as indicators.

  19. The mRNA-bound proteome of the early fly embryo

    PubMed Central

    Wessels, Hans-Hermann; Imami, Koshi; Baltz, Alexander G.; Kolinski, Marcin; Beldovskaya, Anastasia; Selbach, Matthias; Small, Stephen; Ohler, Uwe; Landthaler, Markus

    2016-01-01

    Early embryogenesis is characterized by the maternal to zygotic transition (MZT), in which maternally deposited messenger RNAs are degraded while zygotic transcription begins. Before the MZT, post-transcriptional gene regulation by RNA-binding proteins (RBPs) is the dominant force in embryo patterning. We used two mRNA interactome capture methods to identify RBPs bound to polyadenylated transcripts within the first 2 h of Drosophila melanogaster embryogenesis. We identified a high-confidence set of 476 putative RBPs and confirmed RNA-binding activities for most of 24 tested candidates. Most proteins in the interactome are known RBPs or harbor canonical RBP features, but 99 exhibited previously uncharacterized RNA-binding activity. mRNA-bound RBPs and TFs exhibit distinct expression dynamics, in which the newly identified RBPs dominate the first 2 h of embryonic development. Integrating our resource with in situ hybridization data from existing databases showed that mRNAs encoding RBPs are enriched in posterior regions of the early embryo, suggesting their general importance in posterior patterning and germ cell maturation. PMID:27197210

  20. Embryogenic competence acquisition in sugarcane callus is associated with differential H+ pump abundance and activity.

    PubMed

    Passamani, Lucas Z; Bertolazi, Amanda A; Ramos, Alessandro C; Santa-Catarina, Claudete; Thelen, Jay J; Silveira, Vanildo

    2018-06-22

    Somatic embryogenesis is an important biological process in several plant species, including sugarcane. Proteomics approaches have shown that H + pumps are differentially regulated during somatic embryogenesis; however, the relationship between H + flux and embryogenic competence is still unclear. This work aimed to elucidate the association between extracellular H + flux and somatic embryo maturation in sugarcane. We performed a microsomal proteomics analysis and analyzed changes in extracellular H + flux and H + pump (P-H + -ATPase, V-H + -ATPase and H + -PPase) activity in embryogenic and non-embryogenic callus. A total of 657 proteins were identified, 16 of which were H + pumps. We observed that P-H + -ATPase and H + -PPase were more abundant in embryogenic callus. Compared with non-embryogenic callus, embryogenic callus showed higher H + influx, especially on maturation day 14, as well as higher H+ pump activity (mainly P-H+-ATPase and H+-PPase activity). H+-PPase appears to be the major H + pump in embryogenic callus during somatic embryo formation, functioning in both vacuole acidification and PPi homeostasis. These results provide evidence for an association between higher H + pump protein abundance and, consequently, higher H + flux and embryogenic competence acquisition in the callus of sugarcane, allowing for optimization of the somatic embryo conversion process by modulating the activities of these H + pumps.

  1. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus.

    PubMed

    Techa, Sirinart; Alvarez, Javier V; Sook Chung, J

    2015-04-01

    Embryogenesis requires the involvement and coordination of multiple networks of various genes, according to a timeline governing development. Crustacean embryogenesis usually includes the first molt, a process that is known to be positively controlled by ecdysteroids. We determined the amounts of ecdysteroids, as well as other related factors: the ecdysone receptor (CasEcR), the retinoid X receptor (CasRXR), the molt-inhibiting hormone (CasMIH), and crustacean hyperglycemic hormone (CasCHH) during the ovarian and embryonic developments of Callinectes sapidus. In summary, the ovaries at stages 1-4 have expression levels of maternal CasEcR and CasRXR 10-50 times higher than levels seen in embryos at the yolk stage. This large difference in the amount of the these factors in C. sapidus ovaries suggests that these maternal ecdysteroid-responsive factors may be utilized at the initiation of embryogenesis. During embryogenesis, the changes in total ecdysteroids and levels of CasEcR and CasRXR expression are similar to those observed in juvenile molts. The full-length cDNA sequence of the C. sapidus BTB domain protein (CasBTBDP) initially isolated from Y-organ cDNA, contains only Broad-Complex, Tramtrack, and Bric a brac (BTB) domains. The levels of CasBTBDP are kept constant throughout embryogenesis. The expression profiles of CasMIH and CasCHH are similar to the titers of ecdysteroids. However, the timing of their appearance is followed by increases in CasEcRs and CasRXRs, implying that the expressions of these neuropeptides may be influenced by ecdysteroids. Moreover, the ecdysteroid profile during embryogenesis may track directly with the timing of organogenesis of Y-organs and their activity. Our work reports, for first time, the observed expression and changes of ecdysteroid-responsive factors, along with CasCHH and CasMIH, during embryogenesis in the crustacean C. sapidus. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg.

    PubMed

    Wang, Zhengjia; Huang, Ruiming; Sun, Zhichao; Zhang, Tong; Huang, Jianqin

    2017-05-01

    MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.

  3. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley

    PubMed Central

    Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C.; Testillano, Pilar S.

    2015-01-01

    Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs. PMID:26161085

  4. Arsenic Exposure to Killifish During Embryogenesis Alters Muscle Development

    PubMed Central

    Gaworecki, Kristen M.; Chapman, Robert W.; Neely, Marion G.; D’Amico, Angela R.; Bain, Lisa J.

    2012-01-01

    Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D–binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation. PMID:22058191

  5. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour

    PubMed Central

    Halliday, Benjamin J.; Markie, David M.; Grundy, Richard G.; Ludgate, Jackie L.; Black, Michael A.; Weeks, Robert J.; Catchpoole, Daniel R.; Reeve, Anthony E.

    2018-01-01

    Wilms tumour is a childhood tumour that arises as a consequence of somatic and rare germline mutations, the characterisation of which has refined our understanding of nephrogenesis and carcinogenesis. Here we report that germline loss of function mutations in TRIM28 predispose children to Wilms tumour. Loss of function of this transcriptional co-repressor, which has a role in nephrogenesis, has not previously been associated with cancer. Inactivation of TRIM28, either germline or somatic, occurred through inactivating mutations, loss of heterozygosity or epigenetic silencing. TRIM28-mutated tumours had a monomorphic epithelial histology that is uncommon for Wilms tumour. Critically, these tumours were negative for TRIM28 immunohistochemical staining whereas the epithelial component in normal tissue and other Wilms tumours stained positively. These data, together with a characteristic gene expression profile, suggest that inactivation of TRIM28 provides the molecular basis for defining a previously described subtype of Wilms tumour, that has early age of onset and excellent prognosis. PMID:29912901

  6. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  7. Non-staining visualization of embryogenesis and energy metabolism in medaka fish eggs using near-infrared spectroscopy and imaging.

    PubMed

    Puangchit, Paralee; Ishigaki, Mika; Yasui, Yui; Kajita, Misato; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro

    2017-12-04

    The energy metabolism and embryogenesis of fertilized Japanese medaka eggs were investigated in vivo at the molecular level using near-infrared (NIR) spectroscopy and imaging. Changes in chemical components, such as proteins and lipids, in yolk sphere and embryonic body were studied over the course of embryonic development. Metabolic changes that represent variations in the concentrations and molecular compositions of proteins and lipids in the yolk part, particularly on the 1 st day after fertilization and the day just before hatching, were successfully identified in the 4900-4000 cm -1 wavenumber region. The yolk components were shown to have specific functions at the very early and final stages of the embryonic development. Proteins with α-helix- or β-sheet-rich structures clearly showed the different variation patterns within the developing egg. Furthermore, the distribution of lipids could be selectively visualized using data from the higher wavenumber region. Detailed embryonic structures were clearly depicted in the NIR images using the data from the 6400-5500 cm -1 region in which the embryo parts had some characteristic peaks due to unsaturated fatty acids. It was made clear that yolk and embryo parts had different components especially lipid components. The present study provides new insights into material variations in the fertilized egg during its growth. NIR imaging proved to be valuable in investigating the embryogenesis in vivo at the molecular level in terms of changes in biomolecular concentrations and compositions, metabolic differentiation, and detailed information about embryonic structures without the need for staining.

  8. Changes in cell-cycle kinetics responsible for limiting somatic growth in mice

    PubMed Central

    Chang, Maria; Parker, Elizabeth A.; Muller, Tessa J. M.; Haenen, Caroline; Mistry, Maanasi; Finkielstain, Gabriela P.; Murphy-Ryan, Maureen; Barnes, Kevin M.; Sundaram, Rajeshwari; Baron, Jeffrey

    2009-01-01

    In mammals, the rate of somatic growth is rapid in early postnatal life but then slows with age, approaching zero as the animal approaches adult body size. To investigate the underlying changes in cell-cycle kinetics, [methyl-3H]thymidine and 5’-bromo-2’deoxyuridine were used to double-label proliferating cells in 1-, 2-, and 3-week-old mice for four weeks. Proliferation of renal tubular epithelial cells and hepatocytes decreased with age. The average cell-cycle time did not increase in liver and increased only 1.7 fold in kidney. The fraction of cells in S-phase that will divide again declined approximately 10 fold with age. Concurrently, average cell area increased approximately 2 fold. The findings suggest that somatic growth deceleration primarily results not from an increase in cell-cycle time but from a decrease in growth fraction (fraction of cells that continue to proliferate). During the deceleration phase, cells appear to reach a proliferative limit and undergo their final cell divisions, staggered over time. Concomitantly, cells enlarge to a greater volume, perhaps because they are relieved of the size constraint imposed by cell division. In conclusion, a decline in growth fraction with age causes somatic growth deceleration and thus sets a fundamental limit on adult body size. PMID:18535488

  9. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  10. Inflorescence proliferation for somatic embryogenesis induction and suspension-derived plant regeneration from banana (Musa AAA, cv. 'Dwarf Cavendish') male flowers.

    PubMed

    Pérez-Hernández, Juan Bernardo; Rosell-García, Purificación

    2008-06-01

    Availability of explants with adequate embryogenic competence is one of the most important limitations for the development of regenerable cell suspensions in banana. To increase the number and ease of accessibility to potentially embryogenic explants, a novel methodology is described by which young male flower clusters isolated from adult plants are induced to form new flower buds and proliferate in vitro. Different concentrations of the plant growth regulator thidiazuron (TDZ) induced inflorescence proliferation, which could be maintained over time as a continuous source of young flower buds. Intensity of proliferation was evaluated during successive subcultures. At the third cycle of proliferation, the highest multiplication rate (2.89) was obtained on the medium containing 5 microM TDZ. Newly generated floral tissues were assessed for embryogenic competence, resulting in an average embryogenic frequency of 12.5%. The observed embryogenic capacity, together with the recurrent availability of immature flowers, allowed for the direct initiation of cell suspensions from bulked explant cultures. Regular observation and regeneration tests during the development of suspended cell cultures confirmed their embryogenic condition. Produced embryos successfully matured and germinated to regenerate hundreds of somatic in vitro plants.

  11. Sex-specific impact of early-life adversity on chronic pain: a large population-based study in Japan.

    PubMed

    Yamada, Keiko; Matsudaira, Ko; Tanaka, Eizaburo; Oka, Hiroyuki; Katsuhira, Junji; Iso, Hiroyasu

    2017-01-01

    Responses to early-life adversity may differ by sex. We investigated the sex-specific impact of early-life adversity on chronic pain, chronic multisite pain, and somatizing tendency with chronic pain. We examined 4229 respondents aged 20-79 years who participated in the Pain Associated Cross-Sectional Epidemiological Survey in Japan. Outcomes were: 1) chronic pain prevalence, 2) multisite pain (≥3 sites) prevalence, and 3) multiple somatic symptoms (≥3 symptoms) among respondents with chronic pain related to the presence or absence of early-life adversity. Multivariable-adjusted odds ratios (ORs) were calculated with 95% confidence intervals using a logistic regression model including age, smoking status, exercise routine, sleep time, body mass index, household expenditure, and the full distribution of scores on the Mental Health Inventory-5. We further adjusted for pain intensity when we analyzed the data for respondents with chronic pain. The prevalence of chronic pain was higher among respondents reporting the presence of early-life adversity compared with those reporting its absence, with multivariable ORs of 1.62 (1.22-2.15, p <0.01) in men and 1.47 (1.13-1.90, p <0.01) in women. Among women with chronic pain, early-life adversity was associated with multisite pain and multiple somatic symptoms; multivariable ORs were 1.78 (1.22-2.60, p <0.01) for multisite pain and 1.89 (1.27-2.83, p <0.01) for ≥3 somatic symptoms. No associations were observed between early-life adversity and chronic multisite pain or multiple somatic symptoms among men with chronic pain. Early-life adversity may be linked to a higher prevalence of chronic pain among both sexes and to multisite pain and somatizing tendency among women with chronic pain.

  12. Efficacy of Zingiber officinale ethanol extract on the viability, embryogenesis and infectivity of Toxocara canis eggs.

    PubMed

    El-Sayed, Nagwa Mostafa

    2017-12-01

    This study evaluated the effect of Zingiber officinal e ( Z. officinal e) ethanol extract on the viability, embryogenesis and infectivity Toxocara canis ( T. canis ) eggs. It was carried out both in vitro and in vivo. In the in vitro experiment, unembryonated T. canis eggs were incubated with 25, 50 and 100 mg/mL Z. officinal e extract at 25 °C for 6, 12, and 24 h to assess the effect of Z. officinal e on their viability and for two weeks to assess the effect of Z. officinal e on their embryogenesis. In vivo experiment was performed to assess the effect of Z. officinal e on infectivity of T. canis eggs. Treated embryonated eggs by Z. officinale extract at concentrations of 25, 50 and 100 mg/mL for 24 h were inoculated into mice and their livers were examined for the presence of T. canis larvae on the 7th day after infection and for histopathological evaluation at 14th day post-infection. Z. officinal e showed a significant ovicidal activity on T. canis eggs. The best effect was observed with 100 mg/mL concentration after 24 h with an efficacy of 98.2%. However, the treated eggs by 25, 50 mg/mL of Z. officinale extract after 24 h showed ovicidal activity by 59.22 and 82.5% respectively. Moreover, this extract effectively inhibited T. canis eggs embryogenesis by 99.64% and caused their degeneration at the concentration of 100 mg/mL after 2 weeks of treatment. However, the lower concentrations, 25 and 50 mg/mL inhibited embryogenesis by 51.19 and 78.57% respectively. The effect of Z. officinal e on the infectivity T. canis eggs was proven by the reduction of larvae recovery in the livers by 35.9, 62.8 and 89.5% in mice groups inoculated by Z. officinale treated eggs at concentrations of 25, 50 and 100 mg/mL respectively. Histopathologically, the liver tissues of mice infected with Z. officinale treated eggs at the concentration of 100 mg/mL appeared healthy with slight degenerative changes of hepatocytes, opposite to that recorded in the infected mice

  13. A modified culture method significantly improves the development of mouse somatic cell nuclear transfer embryos.

    PubMed

    Dai, Xiangpeng; Hao, Jie; Zhou, Qi

    2009-08-01

    Many strategies have been established to improve the efficiency of somatic cell nuclear transfer (SCNT), but relatively few focused on improving culture conditions. The effect of different culture media on preimplantation development of mouse nuclear transfer embryos was investigated. A modified sequential media method, named D media (M16/KSOM and CZB-EG/KSOM), was successfully established that significantly improves SCNT embryo development. Our result demonstrated that while lacking any adverse effect on in vivo fertilized embryos, the D media dramatically improves the blastocyst development of SCNT embryos compared with other commonly used media, including KSOM, M16, CZB, and alphaMEM. Specifically, the rate of blastocyst formation was 62.3% for D1 (M16/KSOM) versus 10-30% for the other media. An analysis of media components indicated that removing EDTA and glutamine from the media can be beneficial for early SCNT embryo development. Our results suggest that in vitro culture environment plays an important role in somatic cell reprogramming, and D media represent the most efficient culture method reported to date to support mouse SCNT early embryo development in vitro.

  14. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus × H. tuberosus

    PubMed Central

    Chiappetta, A.; Fambrini, M.; Petrarulo, M.; Rapparini, F.; Michelotti, V.; Bruno, L.; Greco, M.; Baraldi, R.; Salvini, M.; Pugliesi, C.; Bitonti, M. B.

    2009-01-01

    Background and Aims The clone EMB-2 of the interspecific hybrid Helianthus annuus × H. tuberosus provides an interesting system to study molecular and physiological aspects of somatic embryogenesis. Namely, in addition to non-epiphyllous (NEP) leaves that expand normally, EMB-2 produces epiphyllous (EP) leaves bearing embryos on the adaxial surface. This clone was used to investigate if the ectopic expression of H. annuus LEAFY COTYLEDON1-LIKE (Ha-L1L) gene and auxin activity are correlated with the establishment of embryogenic competence. Methods Ha-L1L expression was evaluated by semi-quantitative RT-PCR and in situ hybridization. The endogenous level and spatial distribution of free indole-3-acetic acid (IAA) were estimated by a capillary gas chromatography–mass spectrometry–selected ion monitoring method and an immuno-cytochemical approach. Key Results Ectopic expression of Ha-L1L was detected in specific cell domains of the adaxial epidermis of EP leaves prior to the development of ectopic embryos. Ha-L1L was expressed rapidly when NEP leaves were induced to regenerate somatic embryos by in vitro culture. Differences in auxin distribution pattern rather than in absolute level were observed between EP and A-2 leaves. More precisely, a strong IAA immuno-signal was detected in single cells or in small groups of cells along the epidermis of EP leaves and accompanied the early stages of embryo development. Changes in auxin level and distribution were observed in NEP leaves induced to regenerate by in vitro culture. Exogenous auxin treatments lightly influenced Ha-L1L transcript levels in spite of an enhancement of the regeneration frequency. Conclusions In EP leaves, Ha-L1L activity marks the putative founder cells of ectopic embryos. Although the ectopic expression of Ha-L1L seems to be not directly mediated by auxin levels per se, it was demonstrated that localized Ha-L1L expression and IAA accumulation in leaf epidermis domains represent early events of

  15. Characteristics of somatic tinnitus patients with and without hyperacusis.

    PubMed

    Ralli, Massimo; Salvi, Richard J; Greco, Antonio; Turchetta, Rosaria; De Virgilio, Armando; Altissimi, Giancarlo; Attanasio, Giuseppe; Cianfrone, Giancarlo; de Vincentiis, Marco

    2017-01-01

    Determine if somatic tinnitus patients with hyperacusis have different characteristics from those without hyperacusis. 172 somatic tinnitus patients with (n = 82) and without (n = 90) hyperacusis referred to the Tinnitus Unit of Sapienza University of Rome between June 2012 and June 2016 were compared for demographic characteristics, tinnitus features, self-administered questionnaire scores, nature of somatic modulation and history. Compared to those without hyperacusis, patients with somatic tinnitus and hyperacusis: (a) were older (43.38 vs 39.12 years, p = 0.05), (b) were more likely to have bilateral tinnitus (67.08% vs 55.56%, p = 0.04), (c) had a higher prevalence of somatic modulation of tinnitus (53.65% vs 36.66%, p = 0.02) and (d) scored significantly worse on tinnitus annoyance (39.34 vs 22.81, p<0.001) and subjective hearing level (8.04 vs 1.83, p<0.001). Our study shows significantly higher tinnitus modulation and worse self-rating of tinnitus and hearing ability in somatic tinnitus patients with hyperacusis versus somatic tinnitus patients without hyperacusis. These differences could prove useful in developing a better understanding of the pathophysiology and establishing a course of treatment for these two groups of patients.

  16. Assessment of Somatization and Medically Unexplained Symptoms in Later Life

    PubMed Central

    van Driel, T. J. W.; Hilderink, P. H.; Hanssen, D. J. C.; de Boer, P.; Rosmalen, J. G. M.; Oude Voshaar, R. C.

    2017-01-01

    The assessment of medically unexplained symptoms and “somatic symptom disorders” in older adults is challenging due to somatic multimorbidity, which threatens the validity of somatization questionnaires. In a systematic review study, the Patient Health Questionnaire–15 (PHQ-15) and the somatization subscale of the Symptom Checklist 90-item version (SCL-90 SOM) are recommended out of 40 questionnaires for usage in large-scale studies. While both scales measure physical symptoms which in younger persons often refer to unexplained symptoms, in older persons, these symptoms may originate from somatic diseases. Using empirical data, we show that PHQ-15 and SCL-90 SOM among older patients correlate with proxies of somatization as with somatic disease burden. Updating the previous systematic review, revealed six additional questionnaires. Cross-validation studies are needed as none of 46 identified scales met the criteria of suitability for an older population. Nonetheless, specific recommendations can be made for studying older persons, namely the SCL-90 SOM and PHQ-15 for population-based studies, the Freiburg Complaint List and somatization subscale of the Brief Symptom Inventory 53-item version for studies in primary care, and finally the Schedule for Evaluating Persistent Symptoms and Somatic Symptom Experiences Questionnaire for monitoring treatment studies. PMID:28745072

  17. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  18. Somatic Symptom Disorder in Semantic Dementia: The Role of Alexisomia.

    PubMed

    Gan, Joanna J; Lin, Andrew; Samimi, Mersal S; Mendez, Mario F

    Semantic dementia (SD) is a neurodegenerative disorder characterized by loss of semantic knowledge. SD may be associated with somatic symptom disorder due to excessive preoccupation with unidentified somatic sensations. To evaluate the frequency of somatic symptom disorder among patients with SD in comparison to comparably demented patients with Alzheimer׳s disease. A retrospective cohort study was conducted using clinical data from a referral-based behavioral neurology program. Fifty-three patients with SD meeting criteria for imaging-supported semantic variant primary progressive aphasia (another term for SD) were compared with 125 patients with clinically probable Alzheimer disease. Logistic regression controlled for sex, age, disease duration, education, overall cognitive impairment, and depression. The prevalence of somatic symptom disorder was significantly higher among patients with SD (41.5%) compared to patients with Alzheimer disease (11.2%) (odds ratio = 6:1; p < 0.001). Somatic symptom disorder was associated with misidentification and preoccupation with normal bodily sensations such as hunger, bladder filling, borborygmi, rhinorrhea, and reflux; excessive concern over the incompletely understood meaning or source of pain or other symptoms; and Cotard syndrome or the delusion that unidentified somatic symptoms signify death or deterioration. SD, a disorder of semantic knowledge, is associated with somatic symptom disorder from impaired identification of somatic sensations. Their inability to read and name somatic sensations, or "alexisomia," results in disproportionate and persistent concern about somatic sensations with consequent significant disability. Copyright © 2016 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  19. Annual Reproductive Cycle and Unusual Embryogenesis of a Temperate Coral in the Mediterranean Sea

    PubMed Central

    Marchini, Chiara; Airi, Valentina; Fontana, Roberto; Tortorelli, Giada; Rocchi, Marta; Falini, Giuseppe; Levy, Oren; Dubinsky, Zvy; Goffredo, Stefano

    2015-01-01

    The variety of reproductive processes and modes among coral species reflects their extraordinary regeneration ability. Scleractinians are an established example of clonal animals that can exhibit a mixed strategy of sexual and asexual reproduction to maintain their populations. This study provides the first description of the annual reproductive cycle and embryogenesis of the temperate species Caryophyllia inornata. Cytometric analyses were used to define the annual development of germ cells and embryogenesis. The species was gonochoric with three times more male polyps than female. Polyps were sexually mature from 6 to 8 mm length. Not only females, but also sexually inactive individuals (without germ cells) and males were found to brood their embryos. Spermaries required 12 months to reach maturity, while oogenesis seemed to occur more rapidly (5–6 months). Female polyps were found only during spring and summer. Furthermore, the rate of gamete development in both females and males increased significantly from March to May and fertilization was estimated to occur from April to July, when mature germ cells disappeared. Gametogenesis showed a strong seasonal influence, while embryos were found throughout the year in males and in sexually inactive individuals without a defined trend. This unusual embryogenesis suggests the possibility of agamic reproduction, which combined with sexual reproduction results in high fertility. This mechanism is uncommon and only four other scleractinians (Pocillopora damicornis, Tubastraea diaphana, T. coccinea and Oulastrea crispata) have been shown to generate their broods asexually. The precise nature of this process is still unknown. PMID:26513159

  20. Somatization in the conceptualization of sickle cell disease.

    PubMed

    Wellington, Chanté; Edwards, Christopher L; McNeil, Janice; Wood, Mary; Crisp, Benjamin; Feliu, Miriam; Byrd, Goldie; McDougald, Camela; Edwards, Lekisha; Whitfield, Keith E

    2010-11-01

    The unpredictable nature of sickle cell disease (SCD) and its social and environmental consequences can produce an unhealthy and almost exclusive focus on physical functioning. At the upper range of this focus on health concerns is somatization. In the current study, using 156 adult patients (55.13% female, 86) with SCD, mean age 35.59 +/- 12.73, we explored the relationship of somatization to pain. We found somatization to be predictive of pain severity and current pain intensity as well as a range of averaged indices of pain over time (p < .0001). We further found somatization to be predictive of a range of negative psychological experiences to include depression, anxiety, and hostility (p < .0001). We interpret these data to suggest that patients with SCD who have a propensity to focus exclusively on their health or are more sensitive to minor changes in their health status (somatization) may also be more likely to report greater concerns about their health and higher ratings of pain.

  1. The Importance of Somatic Symptoms in Depression in Primary Care

    PubMed Central

    Tylee, André; Gandhi, Paul

    2005-01-01

    Objective: Patients with depression present with psychological and somatic symptoms, including general aches and pains. In primary care, somatic symptoms often dominate. A review of the literature was conducted to ascertain the importance of somatic symptoms in depression in primary care. Data sources and extraction: MEDLINE, EMBASE, and PsychLIT/PsychINFO databases (1985–January 2004) were searched for the terms depression, depressive, depressed AND physical, somatic, unexplained symptoms, complaints, problems; somatised, somatized symptoms; somatisation, somatization, somatoform, psychosomatic; pain; recognition, underrecognition; diagnosis, underdiagnosis; acknowledgment, underacknowledgment; treatment, undertreatment AND primary care, ambulatory care; primary physician; office; general practice; attribution, reattribution; and normalising, normalizing. Only English-language publications and abstracts were considered. Study selection: More than 80 papers related to somatic symptoms in depression were identified using the content of their titles and abstracts. Data synthesis: Approximately two thirds of patients with depression in primary care present with somatic symptoms. These patients are difficult to diagnose, feel an increased burden of disease, rely heavily on health care services, and are harder to treat. Patient and physician factors that prevent discussion of psychological symptoms during consultations must be overcome. Conclusions: Educational initiatives that raise awareness of somatic symptoms in depression and help patients to reattribute these symptoms should help to improve the recognition of depression in primary care. PMID:16163400

  2. Emotional distress in the Hebrew Bible. Somatic or psychological?

    PubMed

    Mumford, D B

    1992-01-01

    A systematic search was made in the Hebrew Bible for expressions of emotional distress. A wide range of somatic and psychological vocabulary was found, especially in the Psalms and other poetic literature. Somatic expressions most frequently involved the heart, bowels, belly, bones, and eyes. Head symptoms were rare. Metaphors referring to the heart were common; other somatic expressions appeared to be descriptions of actual physical sensations. Usually somatic and psychological expressions were paired together, utilising the 'parallelism' of Hebrew verse form. Biblical Hebrew thus incorporated a powerful and sophisticated language of emotional expression.

  3. Characteristics of somatic tinnitus patients with and without hyperacusis

    PubMed Central

    Salvi, Richard J.; Greco, Antonio; Turchetta, Rosaria; De Virgilio, Armando; Altissimi, Giancarlo; Attanasio, Giuseppe; Cianfrone, Giancarlo; de Vincentiis, Marco

    2017-01-01

    Objective Determine if somatic tinnitus patients with hyperacusis have different characteristics from those without hyperacusis. Patients and methods 172 somatic tinnitus patients with (n = 82) and without (n = 90) hyperacusis referred to the Tinnitus Unit of Sapienza University of Rome between June 2012 and June 2016 were compared for demographic characteristics, tinnitus features, self-administered questionnaire scores, nature of somatic modulation and history. Results Compared to those without hyperacusis, patients with somatic tinnitus and hyperacusis: (a) were older (43.38 vs 39.12 years, p = 0.05), (b) were more likely to have bilateral tinnitus (67.08% vs 55.56%, p = 0.04), (c) had a higher prevalence of somatic modulation of tinnitus (53.65% vs 36.66%, p = 0.02) and (d) scored significantly worse on tinnitus annoyance (39.34 vs 22.81, p<0.001) and subjective hearing level (8.04 vs 1.83, p<0.001). Conclusion Our study shows significantly higher tinnitus modulation and worse self-rating of tinnitus and hearing ability in somatic tinnitus patients with hyperacusis versus somatic tinnitus patients without hyperacusis. These differences could prove useful in developing a better understanding of the pathophysiology and establishing a course of treatment for these two groups of patients. PMID:29161302

  4. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos.

    PubMed

    Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L

    2013-01-01

    In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles.

  5. Hypochondriacal concerns and somatization in panic disorder.

    PubMed

    Furer, P; Walker, J R; Chartier, M J; Stein, M B

    1997-01-01

    To clarify the relationship between panic disorder and the symptoms of hypochondriasis and somatization, we evaluated these symptoms and diagnoses in patients attending an Anxiety Disorders Clinic. Structured clinical interviews, self-report measures, and symptom diaries were used to assess 21 patients with panic disorder, 23 patients with social phobia, and 22 control subjects with no psychiatric disorders. Ten of the patients with panic disorder (48%) also met DSM-IV criteria for hypochondriasis, whereas only one of the patients with social phobia and none of the healthy control subjects met the criteria for this diagnosis. None of the participants met DSM-IV criteria for somatization disorder, even though both anxiety groups reported high levels of somatic symptoms. The panic disorder group reported higher levels of fear about illness and disease conviction and endorsed more somatic symptoms than did the other groups. A higher proportion of panic disorder patients reported previously diagnosed medical conditions (48%) as compared with patients with social phobia (17%) or healthy control subjects (14%). The panic disorder patients with DSM-IV hypochondriasis obtained higher scores on measures of hypochondriacal concerns, somatization, blood-injury phobia, and general anxiety and distress than did the panic disorder patients without hypochondriasis. The results suggest a strong association between panic disorder and hypochondriasis.

  6. Traces of embryogenesis are the same in monozygotic and dizygotic twins: not compatible with double ovulation.

    PubMed

    Boklage, Charles E

    2009-06-01

    Common knowledge of over a century has it that monozygotic and dizygotic twinning events occur by unrelated mechanisms: monozygotic twinning 'splits' embryos, producing anomalously re-arranged embryogenic asymmetries; dizygotic twinning begins with independent ovulations yielding undisturbed parallel embryogeneses with no expectation of departures from singleton outcomes. The anomalies statistically associated with twin births are due to the re-arranged embryos of the monozygotics. Common knowledge further requires that dizygotic pairs are dichorionic; monochorionicity is exclusive to monozygotic pairs. These are fundamental certainties in the literature of twin biology. Multiple observations contradict those common knowledge understandings. The double ovulation hypothesis of dizygotic twinning is untenable. Girl-boy twins differ subtly from all other humans of either sex, absolutely not representative of all dizygotics. Embryogenesis of dizygotic twins differs from singleton development at least as much as monozygotic embryogenesis does, and in the same ways, and the differences between singletons and twins of both zygosities represent a coherent system of re-arranged embryogenic asymmetries. Dizygotic twinning and monozygotic twinning have the same list of consequences of anomalous embryogenesis. Those include an unignorable fraction of dizygotic pairs that are in fact monochorionic, plus many more sharing co-twins' cells in tissues other than a common chorion. The idea that monozygotic and dizygotic twinning events arise from the same embryogenic mechanism is the only plausible hypothesis that might explain all of the observations.

  7. Recent advancements in cloning by somatic cell nuclear transfer.

    PubMed

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  8. Recent advancements in cloning by somatic cell nuclear transfer

    PubMed Central

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  9. Masked depression: its interrelations with somatization, hypochondriasis and conversion.

    PubMed

    Fisch, R Z

    1987-01-01

    Masked depression appears to be a common clinical phenomenon. Most depressions present with some somatic complaints in addition to affective and cognitive ones. About one half of all depressions seen by primary care physicians initially present predominantly or exclusively with somatic symptoms. Many of these depressions are not recognized or are misdiagnosed and mistreated. The possible reasons for this are discussed here. The phenomenon of somatization in depressions and other conditions is reviewed and the interface with other related clinical problems like hypochondriasis and conversion is delineated. It is hypothesized that the proportion of depressions that are masked is positively correlated to the patients' tendency to somatize and negatively correlated to the doctors' ability to recognize depressions that hide behind somatic complaints. Suggestions for the diagnosis and treatment of masked depressions are given.

  10. Psychometric Analysis of the Heart Failure Somatic Perception Scale as a Measure of Patient Symptom Perception.

    PubMed

    Jurgens, Corrine Y; Lee, Christopher S; Riegel, Barbara

    Symptoms are known to predict survival among patients with heart failure (HF), but discrepancies exist between patients' and health providers' perceptions of HF symptom burden. The purpose of this study is to quantify the internal consistency, validity, and prognostic value of patient perception of a broad range of HF symptoms using an HF-specific physical symptom measure, the 18-item HF Somatic Perception Scale v. 3. Factor analysis of the HF Somatic Perception Scale was conducted in a convenience sample of 378 patients with chronic HF. Convergent validity was examined using the Physical Limitation subscale of the Kansas City Cardiomyopathy Questionnaire. Divergent validity was examined using the Self-care of HF Index self-care management score. One-year survival based on HF Somatic Perception Scale scores was quantified using Cox regression controlling for Seattle HF Model scores to account for clinical status, therapeutics, and lab values. The sample was 63% male, 85% white, 67% functionally compromised (New York Heart Association class III-IV) with a mean (SD) age of 63 (12.8) years. Internal consistency of the HF Somatic Perception Scale was α = .90. Convergent (r = -0.54, P < .0001) and divergent (r = 0.18, P > .05) validities were supported. Controlling for Seattle HF scores, HF Somatic Perception Scale was a significant predictor of 1-year survival, with those most symptomatic having worse survival (hazard ratio, 1.012; 95% confidence interval, 1.001-1.024; P = .038). Perception of HF symptom burden as measured by the HF Somatic Perception Scale is a significant predictor of survival, contributing additional prognostic value over and above objective Seattle HF Risk Model scores. This analysis suggests that assessment of a broad range of HF symptoms, or those related to dyspnea or early and subtle symptoms, may be useful in evaluating therapeutic outcomes and predicting event-free survival.

  11. Differential Accumulation of Sunflower Tetraubiquitin mRNAs during Zygotic Embryogenesis and Developmental Regulation of Their Heat-Shock Response.

    PubMed Central

    Almoguera, C.; Coca, M. A.; Jordano, J.

    1995-01-01

    We have isolated and sequenced Ha UbiS, a cDNA for a dry-seed-stored mRNA that encodes tetraubiquitin. We have observed differential accumulation of tetraubiquitin mRNAs during sunflower (Helianthus annuus L.) zygotic embryogenesis. These mRNAs were up-regulated during late embryogenesis and reached higher prevalence in the dry seed, where they were found to be associated mainly with provascular tissue. UbiS mRNA, as confirmed by Rnase A protection experiments, accumulated also in response to heat shock, but only in leaves and later during postgerminative development. These novel observations demonstrate expression during seed maturation of specific plant polyubiquitin transcripts and developmental regulation of their heat-shock response. Using ubiquitin antibodies we also detected discrete, seed-specific proteins with distinct temporal expression patterns during zygotic embryogenesis. Some of these patterns were concurrent with UbiS mRNA accumulation in seeds. The most abundant ubiquitin-reacting proteins found in mature seeds were small (16-22 kD) and acidic (isoelectric points of 6.1-7.4). Possible functional implications for UbiS expression elicited from these observations are discussed. PMID:12228401

  12. Somatization: the under-recognized factor in nonspecific eczema. The Hordaland Health Study (HUSK).

    PubMed

    Klokk, M; Stansfeld, S; Overland, S; Wilhelmsen, I; Gotestam, K G; Steinshamn, S; Mykletun, A

    2011-03-01

    Psychodermatology has focused primarily on depression and anxiety in eczema. Skin symptoms are listed among many others for the ICD-10 diagnosis of somatization disorder. Somatization (unexplained somatic symptoms) is highly prevalent in the general population, but its association with eczema is yet to be empirically investigated. We therefore explored the association between somatization and eczema by examining the extent of somatization in eczema compared with allergic rhinitis, and by examining if eczema was more strongly associated with somatization than with anxiety and depression. Finally, we aimed to examine the relationship between the site of eczema and somatization for individual somatic symptoms and for somatic symptoms as a whole. For this population-based cross-sectional study we employed data from the Hordaland Health Study (HUSK) with 15,225 participants aged 41-48 years. Information on nonspecific eczema, allergic rhinitis, somatization, anxiety, depression and other covariates was obtained by self-report. The association between nonspecific eczema and somatization was strong and followed a dose-response pattern, as did all somatic symptoms in our index of somatization when analysed separately. The association between nonspecific eczema and somatization was stronger than that between rhinitis and somatization, and also the association between nonspecific eczema and anxiety and depression. In multivariate models, somatization accounted for most of the association between nonspecific eczema and anxiety/depression. In contrast, the association between nonspecific eczema and somatization was robust for adjustment for anxiety/depression. Somatization was strongly associated with nonspecific eczema. This applies to a whole range of somatic symptoms constituting the construct of somatization. There is hardly any mention of somatization in leading dermatological journals, in contrast to anxiety and depression which are frequently reported in eczema. We

  13. Bovine somatic cell nuclear transfer.

    PubMed

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  14. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    PubMed

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Do somatic complaints predict subsequent symptoms of depression?

    PubMed

    Terre, Lisa; Poston, Walker S Carlos; Foreyt, John; St Jeor, Sachiko T

    2003-01-01

    Evidence suggests substantial comorbidity between symptoms of somatization and depression in clinical as well as nonclinical populations. However, as most existing research has been retrospective or cross-sectional in design, very little is known about the specific nature of this relationship. In particular, it is unclear whether somatic complaints may heighten the risk for the subsequent development of depressive symptoms. We report findings on the link between symptoms of somatization (assessed using the SCL-90-R) and depression 5 years later (assessed using the CES-D) in an initially healthy cohort of community adults, based on prospective data from the RENO Diet-Heart Study. Gender-stratified multiple regression analyses revealed that baseline CES-D scores were the best predictors of subsequent depressive symptoms for men and women. Baseline scores on the SCL-90-R somatization subscale significantly predicted subsequent self-reported symptoms of depressed mood 5 years later, but only in women. However, somatic complaints were a somewhat less powerful predictor than income and age. Our findings suggest that somatic complaints may represent one, but not necessarily the most important, risk factor for the subsequent development of depressive symptoms in women in nonclinical populations. The results also highlight the importance of including social variables in studies on women's depression as well as conducting additional research to further examine predictors of depressive symptoms in men. Copyright 2003 S. Karger AG, Basel

  16. The visceromotor and somatic afferent nerves of the penis.

    PubMed

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  17. Induction and cryopreservation of embryogenic cultures from nucelli and immature cotyledon cuts of mango (Mangifera indica L. var Zihua).

    PubMed

    Wu, Yong-Jie; Huang, Xue-Lin; Chen, Qi-Zhu; Li, Xiao-Ju; Engelmann, Florent

    2007-02-01

    In this paper, we described the direct somatic embryogenesis from both immature cotyledon cuts and nucelli in the same mango cultivar (Mangifera indica L. var Zihua), studied the effect of growth conditions of embryogenic cultures (EMs) on cryopreservation and compared the cryopreservation response of EMs induced from these two different explants. Histological studies demonstrated that EMs derived from nucelli could be induced directly from epidermal cells of both sides of nucelli, whereas EMs derived from cotyledon cuts were induced only from epidermal cells of the adaxial side of the cotyledons. EMs from either nucelli or cotyledon cuts could be maintained in liquid medium or on solid medium and cryopreserved using a vitrification procedure. Success of cryopreservation of EMs depended on the dehydration treatment and the defined growth conditions during culture but not on their origins. When EMs were sampled during their exponential growth phase in liquid medium and dehydrated with PVS(3) solution for 5 min, survival of the EMs induced from cotyledon cuts and nucelli reached 77.7 and 80%, respectively, after cryopreservation in liquid nitrogen for 24 h. Furthermore, when dehydrated with PVS(3) solution for 30 min, all EMs induced from cotyledon cuts and 96.7% of EMs induced from nucelli could survive after cryopreservation. Cryopreservation did not affect the plant regeneration potential of EMs through somatic embryogenesis. The protocols of somatic embryogenesis and cryopreservation of mango EMs established in this study may offer potential ways to improve mango germplasm conservation and genetic improvement.

  18. Anxiety, depression, and somatization in DSM-III hypochondriasis.

    PubMed

    Kellner, R; Abbott, P; Winslow, W W; Pathak, D

    1989-01-01

    To assess the severity of distress and of somatization in hypochondriasis, the authors administered several validated self-rating scales of depression, anxiety, somatic symptoms, and anger/hostility to 21 psychiatric outpatients with the DSM-III diagnosis of hypochondriasis and to matched groups of other nonpsychotic psychiatric patients, family practice patients, and employees. Anxiety and somatic symptoms were highest in hypochondriacal patients; depression and anger/hostility did not differ from those of other psychiatric patients but were higher than in the other groups. The findings do not support the theory that hypochondriasis is a defense against anxiety or that it is a masked depression or depressive equivalent. The findings are consistent with the view that the interaction of severe anxiety and severe somatic symptoms is a common feature of the psychopathology of hypochondriasis.

  19. Depression, disability and somatic diseases among elderly.

    PubMed

    Verhaak, P F M; Dekker, J H; de Waal, M W M; van Marwijk, H W J; Comijs, H C

    2014-01-01

    Depression among older adults is associated with both disability and somatic disease. We aimed to further understand this complicated relationship and to study the possible modifying effect of increasing age. Cross sectional survey. Outpatient and inpatient clinics of regional facilities for mental health care and primary care. Elderly people, 60 years and older, 378 persons meeting DSM-IV criteria for a depressive disorder and 132 non-depressed comparisons. Depression diagnoses were assessed with the CIDI version 2.1. Disability was assessed with the WHO Disability Assessment Schedule (WHODAS). Social-demographic information and somatic diseases were assessed by self-report measurements. Disability, in general and on all its subscales, was strongly related to depression. Presence of somatic disease did not contribute independently to variance in depression. The relationship was stronger for people of 60-69 years old than for those older than 70 years. Important aspects of disability that contributed to depression were disability in participation, self-care and social activities. Results are based on cross sectional data. No inferences about causal relationships can be drawn. Disability, especially disability regarding participation, self-care, or social activities is strongly related to late-life depression. Somatic diseases in itself are less of a risk for depression, except that somatic diseases are related to disability. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis.

    PubMed

    Hartin, Samantha N; Hudson, Martin L; Yingling, Curtis; Ackley, Brian D

    2015-01-01

    The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens.

  1. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis

    PubMed Central

    Hartin, Samantha N.; Hudson, Martin L.; Yingling, Curtis; Ackley, Brian D.

    2015-01-01

    Background The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. Results We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. Conclusions PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens. PMID:25938228

  2. Oral health-related quality of life and somatization in the elderly.

    PubMed

    Hassel, Alexander J; Rolko, Claudia; Leisen, Joachim; Schmitter, Marc; Rexroth, Walter; Leckel, Michael

    2007-03-01

    Somatization disorders are frequent in the elderly, and previous studies have revealed that psychological factors affect the outcome of measurement of oral health-related quality of life (OHRQoL). The objective of this study was, therefore, to investigate the correlation between OHRQoL and somatization. One-hundred and twenty-five participants aged 60 years or older (mean age 76.6 years; 40 males) from a primary geriatric medical hospital participated in this cross-sectional study. OHRQoL was assessed by using the Oral Health Impact Profile (OHIP), somatization by using the somatization subscale of the Symptom Check List (SCL-90-R). To obtain dental data we performed a clinical dental examination. In bivariate analyses the most consistent correlation with somatization was found for overall OHIP sum score and the subscales physical pain and functional limitation (r > 0.4). Participants with high somatization scores had high OHIP sum scores. In multivariate analysis somatization led to additional explanation of the variance of the OHIP sum score and of all OHIP subscales. There is consistent correlation between OHRQoL and somatization. When evaluating OHRQoL in the elderly (using the OHIP) further evaluation of somatization should be considered for thorough interpretation of the results.

  3. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.

    PubMed

    Junker, Astrid; Mönke, Gudrun; Rutten, Twan; Keilwagen, Jens; Seifert, Michael; Thi, Tuyet Minh Nguyen; Renou, Jean-Pierre; Balzergue, Sandrine; Viehöver, Prisca; Hähnel, Urs; Ludwig-Müller, Jutta; Altschmied, Lothar; Conrad, Udo; Weisshaar, Bernd; Bäumlein, Helmut

    2012-08-01

    The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  4. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce.

    PubMed

    Yakovlev, Igor A; Fossdal, Carl G

    2017-01-01

    Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic

  5. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  6. Cognitive aspects of hypochondriasis and the somatization syndrome.

    PubMed

    Rief, W; Hiller, W; Margraf, J

    1998-11-01

    The aim of this study was to evaluate whether specific cognitive aspects are present in patients suffering from somatoform disorders. With a sample of 493 patients from a center for behavioral medicine, the authors evaluated a questionnaire assessing typical cognitions concerning body perception, illness behavior, and health. The authors further examined 225 participants, including patients with a somatization syndrome, patients with somatization syndrome and additional hypochondriasis, patients with hypochondriasis, patients with other mental disorders (clinical control group), and nonclinical controls. The results showed that not only patients with hypochondriasis but also patients with somatization syndrome had cognitive concerns and assumptions that were specific for the disorder. These patients had a self-concept of being weak and unable to tolerate stress. A catastrophizing interpretation of minor bodily complaints found in hypochondriacal patients in earlier studies was also found for patients with multiple somatization symptoms.

  7. Gene Expression in Pre-MBT Embryos and Activation of Maternally-Inherited Program of Apoptosis to be Executed at around MBT as a Fail-Safe Mechanism in Xenopus Early Embryogenesis

    PubMed Central

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Uchiyama, Hiroaki; Kuroyanagi, Shinsaku; Takai, Jun-Ichi; Takahashi, Senji; Kajitani, Masayuki; Kaito, Chikara; Sekimizu, Kazuhisa; Takayama, Eiji; Igarashi, Kazuei; Hara, Hiroshi

    2008-01-01

    S-adenosylmethionine decarboxylase (SAMDC) is an enzyme which converts S-adenosylmethione (SAM), a methyl donor, to decarboxylated SAM (dcSAM), an aminopropyl donor for polyamine biosynthesis. In our studies on gene expression control in Xenopus early embryogenesis, we cloned the mRNA for Xenopus SAMDC, and overexpressed the enzyme by microinjecting its mRNA into Xenopus fertilized eggs. In the mRNA-injected embryos, the level of SAMDC was enormously increased, the SAM was exhausted, and protein synthesis was greatly inhibited, but cellular polyamine content did not change appreciably. SAMDC-overexpressed embryos cleaved and developed normally up to the early blastula stage, but at the midblastula stage, or the stage of midblastula transition (MBT), all the embryos were dissociated into cells, and destroyed due to execution of apoptosis. During cleavage SAMDC-overexpressed embryos transcribed caspase-8 gene, and this was followed by activation of caspase-9. When we overexpressed p53 mRNA in fertilized eggs, similar apoptosis took place at MBT, but in this case, transcription of caspase-8 did not occur, however activation of caspase-9 took place. Apoptosis induced by SAMDC-overexpression was completely suppressed by Bcl-2, whereas apoptosis induced by p53 overexpression or treatments with other toxic agents was only partially rescued. When we injected SAMDC mRNA into only one blastomere of 8- to 32-celled embryos, descendant cells of the mRNA-injected blastomere were segregated into the blastocoel and underwent apoptosis within the blastocoel, although such embryos continued to develop and became tadpoles with various extents of anomaly, reflecting the developmental fate of the eliminated cells. Thus, embryonic cells appear to check themselves at MBT and if physiologically severely-damaged cells occur, they are eliminated from the embryo by activation and execution of the maternally-inherited program of apoptosis. We assume that the apoptosis executed at MBT is a

  8. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    PubMed

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  9. Is chronic pain associated with somatization/hypochondriasis? An evidence-based structured review.

    PubMed

    Fishbain, David A; Lewis, John E; Gao, Jinrun; Cole, Brandly; Steele Rosomoff, R

    2009-01-01

    This is an evidence-based structured review. The objectives of this review were to answer the following questions: (1) Are somatization/hypochondriasis associated with chronic pain? (2) Is the degree of somatization/hypochondriasis related to pain levels? (3) Does pain treatment improve somatization/hypochondriasis? (4) Are some pain diagnoses differentially associated with somatization/hypochondriasis? Fifty-seven studies which fulfilled inclusion criteria and had high quality scores were sorted by the above-mentioned objectives. Agency for health care policy and research guidelines were utilized to type and characterize the strength/consistency of the study evidence within each objective. Somatization and hypochondriasis were both consistently associated with chronic pain (consistency ratings B and A, respectively). Study evidence indicated a correlation between pain intensity and presence of somatization and hypochondriasis (consistency rating A and B, respectively). Pain treatment improved somatization and hypochondriasis (consistency rating B and A, respectively). Some chronic pain diagnostic groups somatized more (consistency rating B). Somatization is commonly associated with chronic pain and may relate to pain levels.

  10. Biolistic transformation of cotton embryogenic cell suspension cultures

    USDA-ARS?s Scientific Manuscript database

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  11. Personality traits influencing somatization symptoms and social inhibition in the elderly

    PubMed Central

    Wongpakaran, Tinakon; Wongpakaran, Nahathai

    2014-01-01

    Purpose Somatization is a common symptom among the elderly, and even though personality disorders have been found to be associated with somatization, personality traits have not yet been explored with regard to this symptom. The aim of this study is to investigate the relationship between personality traits and somatization, and social inhibition. Patients and methods As part of a cross-sectional study of a community sample, 126 elderly Thais aged 60 years or over completed self-reporting questionnaires related to somatization and personality traits. Somatization was elicited from the somatization subscale when using the Symptom Checklist SCL-90 instrument. Personality traits were drawn from the 16 Personality Factor Questionnaire and social inhibition was identified when using the inventory of interpersonal problems. In addition, path analysis was used to establish the influence of personality traits on somatization and social inhibition. Results Of the 126 participants, 51% were male, 55% were married, and 25% were retired. The average number of years in education was 7.6 (standard deviation =5.2). “Emotional stability” and “dominance” were found to have a direct effect on somatization, as were age and number of years in education, but not sex. Also, 35% of the total variance could be explained by the model, with excellent fit statistics. Dominance was found to have an indirect effect, via vigilance, on social inhibition, which was also influenced by number of years in education and emotional stability. Social inhibition was not found to have any effect on somatization, although hypothetically it should. Conclusion “Emotional stability”, “dominance”, and “vigilance”, as well as age and the number of years in education, were found to have an effect on somatization. Attention should be paid to these factors in the elderly with somatization. PMID:24477217

  12. Personality traits influencing somatization symptoms and social inhibition in the elderly.

    PubMed

    Wongpakaran, Tinakon; Wongpakaran, Nahathai

    2014-01-01

    Somatization is a common symptom among the elderly, and even though personality disorders have been found to be associated with somatization, personality traits have not yet been explored with regard to this symptom. The aim of this study is to investigate the relationship between personality traits and somatization, and social inhibition. As part of a cross-sectional study of a community sample, 126 elderly Thais aged 60 years or over completed self-reporting questionnaires related to somatization and personality traits. Somatization was elicited from the somatization subscale when using the Symptom Checklist SCL-90 instrument. Personality traits were drawn from the 16 Personality Factor Questionnaire and social inhibition was identified when using the inventory of interpersonal problems. In addition, path analysis was used to establish the influence of personality traits on somatization and social inhibition. Of the 126 participants, 51% were male, 55% were married, and 25% were retired. The average number of years in education was 7.6 (standard deviation =5.2). "Emotional stability" and "dominance" were found to have a direct effect on somatization, as were age and number of years in education, but not sex. Also, 35% of the total variance could be explained by the model, with excellent fit statistics. Dominance was found to have an indirect effect, via vigilance, on social inhibition, which was also influenced by number of years in education and emotional stability. Social inhibition was not found to have any effect on somatization, although hypothetically it should. "Emotional stability", "dominance", and "vigilance", as well as age and the number of years in education, were found to have an effect on somatization. Attention should be paid to these factors in the elderly with somatization.

  13. Encapsulation of Date Palm Somatic Embryos: Synthetic Seeds.

    PubMed

    Bekheet, Shawky A

    2017-01-01

    Synthetic seed or encapsulated somatic embryos may be used for propagation, storage, and exchange of plant germplasm and have many diverse applications in date palm cultivation. They have advantages over conventional use of offshoot material for germplasm propagation, maintenance, exchange, and transportation. This chapter describes a protocol for date palm synthetic seed production by encapsulation of somatic embryos with sodium alginate. Among three concentrations used, 3% sodium alginate followed by dropping into 2.5% calcium chloride (CaCl 2 ) solution shows the best concentration of gel matrix for both maintenance and recovery. In addition, storage of the encapsulated date palm somatic embryos at 5 °C improves the survival and conversion into plantlets; otherwise, 20 g/L sucrose in the culture medium enhances conversion of the recovered somatic embryos to plantlets. This protocol is promising for in vitro conservation and international exchange of date palm germplasm.

  14. Characterization of the altered gene expression profile in early porcine embryos generated from parthenogenesis and somatic cell chromatin transfer.

    PubMed

    Zhou, Chi; Dobrinsky, John; Tsoi, Stephen; Foxcroft, George R; Dixon, Walter T; Stothard, Paul; Verstegen, John; Dyck, Michael K

    2014-01-01

    The in vitro production of early porcine embryos is of particular scientific and economic interest. In general, embryos produced from in vitro Assisted Reproductive Technologies (ART) manipulations, such as somatic cell chromatin transfer (CT) and parthenogenetic activation (PA), are less developmentally competent than in vivo-derived embryos. The mechanisms underlying the deficiencies of embryos generated from PA and CT have not been completely understood. To characterize the altered genes and gene networks in embryos generated from CT and PA, comparative transcriptomic analyses of in vivo (IVV) expanded blastocysts (XB), IVV hatched blastocyst (HB), PA XB, PA HB, and CT HB were performed using a custom microarray platform enriched for genes expressed during early embryonic development. Differential expressions of 1492 and 103 genes were identified in PA and CT HB, respectively, in comparison with IVV HB. The "eIF2 signalling", "mitochondrial dysfunction", "regulation of eIF4 and p70S6K signalling", "protein ubiquitination", and "mTOR signalling" pathways were down-regulated in PA HB. Dysregulation of notch signalling-associated genes were observed in both PA and CT HB. TP53 was predicted to be activated in both PA and CT HB, as 136 and 23 regulation targets of TP53 showed significant differential expression in PA and CT HB, respectively, in comparison with IVV HB. In addition, dysregulations of several critical pluripotency, trophoblast development, and implantation-associated genes (NANOG, GATA2, KRT8, LGMN, and DPP4) were observed in PA HB during the blastocyst hatching process. The critical genes that were observed to be dysregulated in CT and PA embryos could be indicative of underlying developmental deficiencies of embryos produced from these technologies.

  15. Five classic articles in somatic cell reprogramming.

    PubMed

    Park, In-Hyun

    2010-09-01

    Research on somatic cell reprogramming has progressed significantly over the past few decades, from nuclear transfer into frogs' eggs in 1952 to the derivation of human-induced pluripotent stem (iPS) cells in the present day. In this article, I review five landmark papers that have laid the foundation for current efforts to apply somatic cell reprogramming in the clinic.

  16. The impact of somatic symptoms on the course of major depressive disorder.

    PubMed

    Bekhuis, Ella; Boschloo, Lynn; Rosmalen, Judith G M; de Boer, Marrit K; Schoevers, Robert A

    2016-11-15

    Somatic symptoms have been suggested to negatively affect the course of major depressive disorder (MDD). Mechanisms behind this association, however, remain elusive. This study examines the impact of somatic symptoms on MDD prognosis and aims to determine whether this effect can be explained by psychiatric characteristics, somatic diseases, lifestyle factors, and disability. In 463 MDD patients (mean age=44.9 years, 69.8% female) from the Netherlands Study of Depression and Anxiety (NESDA), we examined whether the type and number of somatic symptom clusters predicted the two-year persistence of MDD. Diagnoses of MDD were established with the Composite International Diagnostic Interview (CIDI) and somatic symptom clusters were assessed with the Four-Dimensional Symptom Questionnaire (4DSQ) somatization scale. Psychiatric characteristics, somatic diseases, lifestyle factors, and disability were taken into account as factors potentially underlying the association. The cardiopulmonary, gastrointestinal, and general cluster significantly predicted the two-year persistence of MDD, but only when two or more of these clusters were present (OR=2.32, 95% CI=1.51-3.57, p=<0.001). Although the association was partly explained by MDD severity, the presence of multiple somatic symptom clusters remained a significant predictor after considering all potentially underlying factors (OR=1.69, 95%CI=1.07-2.68, p=0.03). Somatic symptoms are predictors of a worse prognosis of MDD independent of psychiatric characteristics, somatic diseases, lifestyle factors, and disability. These results stress the importance of considering somatic symptoms in the diagnostic and treatment trajectory of patients with MDD. Future research should focus on identifying treatment modalities targeting depressive as well as somatic symptoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Parental Criticism is an Environmental Influence on Adolescent Somatic Symptoms

    PubMed Central

    Horwitz, BN; Marceau, K; Narusyte, J; Ganiban, J; Spotts, EL; Reiss, D; Lichtenstein, P; Neiderhiser, JM

    2015-01-01

    Previous studies have suggested that parental criticism leads to more somatic symptoms in adolescent children. Yet this research has not assessed the direction of causation or whether genetic and/or environmental influences explain the association between parental criticism and adolescent somatic symptoms. As such, it is impossible to understand the mechanisms that underlie this association. The current study uses the Extended Children of Twins design to examine whether parents’ genes, adolescents’ genes, and/or environmental factors explain the relationship between parental criticism and adolescent somatic symptoms. Participants came from two twin samples, including the Twin and Offspring Study in Sweden (N = 868 pairs of adult twins and each twin’s adolescent child) and from the Twin Study of Child and Adolescent Development (N = 690 pairs of twin children and their parents). Findings showed that environmental influences account for the association between parental criticism and adolescent somatic symptoms. This suggests that parents’ critical behaviors exert a direct environmental effect on somatic symptoms in adolescent children. Results support the use of intervention programs focused on parental criticism to help reduce adolescents’ somatic symptoms. PMID:25844495

  18. The Pesticide Malathion Disrupts "Xenopus" and Zebrafish Embryogenesis: An Investigative Laboratory Exercise in Developmental Toxicology

    ERIC Educational Resources Information Center

    Chemotti, Diana C.; Davis, Sarah N.; Cook, Leslie W.; Willoughby, Ian R.; Paradise, Christopher J.; Lom, Barbara

    2006-01-01

    Malathion is an organophosphorus insecticide, which is often sprayed to control mosquitoes. When applied to aquatic habitats, malathion can also influence the embryogenesis of non-target organisms such as frogs and fish. We modified the frog embryo teratogen assay in "Xenopus" (FETAX), a standard toxicological assay, into an investigative…

  19. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrup, Olga, E-mail: osvarcova@gmail.com; Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo; Norwegian Center for Stem Cell Research, Oslo

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression.more » This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.« less

  20. Three forms of somatization in primary care: prevalence, co-occurrence, and sociodemographic characteristics.

    PubMed

    Kirmayer, L J; Robbins, J M

    1991-11-01

    Three definitions of somatization were operationalized: (a) high levels of functional somatic distress, measured by the Somatic Symptom Index (SSI) of the Diagnostic Interview Schedule; (b) hypochondriasis measured by high scores on a measure of illness worry in the absence of evidence for serious illness; and (c) exclusively somatic clinical presentations among patients with current major depression or anxiety. Of 685 patients attending two family medicine clinics, 26.3% met criteria for one or more forms of somatization. While DSM-III somatization disorder had a prevalence of only 1% in this population, 16.6% of the patients met abridged criteria for subsyndromal somatization disorder (SSI 4,6). Hypochondriacal worry had a prevalence of 7.7% in the clinic sample. Somatized presentations of current major depression or anxiety disorder had a prevalence of 8%. The three forms of somatization were associated with different sociodemographic and illness behavior characteristics. A majority of patients met criteria for only one type of somatization, suggesting that distinct pathogenic processes may be involved in each of the three types.

  1. Desiccation and Cold Hardening of Date Palm Somatic Embryos Improve Germination.

    PubMed

    Shareef, Hussein J

    2017-01-01

    Embryogenic suspension cultures of date palm are ideal for mass propagation of somatic embryos; however, the low percentage of germination of somatic embryos (SE) remains an impediment. This chapter focuses on two important physical factors to improve germination of date palm somatic embryos: the use of partial desiccation (3 h) of somatic embryos and the exposure to low temperature (4 °C for 24 h). High germination percentage (41%) is achieved by desiccation for 3 h. Moreover, adding 0.3 g/L activated charcoal (AC) to the liquid medium further improves somatic embryo number and weight as well as the percentage of germination. Moreover, partial desiccation and low temperature exposure tend to increase proline content. This improved protocol for somatic embryo germination is potentially applicable for commercial micropropagation of date palm.

  2. Children of people with somatization disorder.

    PubMed

    Livingston, R

    1993-05-01

    The author investigated psychopathology, suicidal behavior, child abuse, somatization, and health care utilization in 34 children with a parent who has somatization disorder (SD-P) and two comparison groups: 41 children with a somatizing parent (SOM) (fewer symptoms than required for diagnosis of SD-P), and 30 pediatrically ill controls (CON). Child and parent versions of the Diagnostic Interview for Children and Adolescents were scored for diagnosis and symptom counts in specified categories. Medical records were obtained and abstracted. Children of SD-P had significantly more psychiatric disorders and suicide attempts than did children of SOM or the CON. SD-P and CON had significantly more unexplained physical symptoms than SOM. SD-P showed a trend toward more hospitalizations and experienced significantly more maltreatment. Children of SD-P are at significant risk in several respects. Clinical implications of these findings include a need for awareness and cooperation among general psychiatrists, primary care physicians, and child and adolescent psychiatrists to facilitate detection and treatment of these children's problems.

  3. Daily Life Experience and Somatic Symptoms: A Preliminary Report.

    DTIC Science & Technology

    1981-03-01

    AAO7 9 859 STATE UNIV OF NEW YORK AT STONY BROOK FG 5/10 DAILY LIFE EXPERIENCE AND SOMATIC SYMPTOMS: A PRELIMINARY REPOR--ETC(U) MAR 8I A A STONE. J...Experience and Somatic Symptoms: A Preliminary Report Arthur A. Stone Long Island Research Institute and Department of Psychiatry arnd Behavioral...TITLE (and S..,til.) s. ALF - , rlA9OQ COVERED Daily Life Experience and Somatic Symptoms: A Technical p " Preliminary Report, EL..... S. PERFORMING

  4. [Criteria for somatization studied in an outpatient clinic for general internal medicine].

    PubMed

    van Hemert, A M; Speckens, A E; Rooijmans, H G; Bolk, J H

    1996-06-08

    To compare the evolution of bodily symptoms and the frequency of medical consultation using three different operational definitions of 'somatization'. Descriptive follow-up study. General Internal Medicine Outpatient Clinic of Leiden University Hospital, the Netherlands. Information about physical and psychic symptoms and about the somatic-medical diagnosis was collected in a group of 158 newly referred patients. The concept of 'somatization' was operationalized in three ways: a) seeking medical consultation for somatically unexplained symptoms; b) seeking medical consultation for somatically unexplained symptoms combined with an anxiety disorder or a depressive disorder according to the 'present state examination'; c) seeking medical consultation for somatically unexplained symptoms combined with a somatization disorder or hypochondria according to the Diagnostic and statistical manual of mental disorders (DSM) III R criteria. After a follow-up period of 1.2 years, information was collected from the entire study group about the evolution of the physical symptoms and the frequency of medical consultation. Patients with somatically unexplained symptoms combined with a somatization disorder or hypochondria were characterized in the follow-up by numerous physical symptoms and a high frequency of medical consultation. Compared with the other patients with unexplained symptoms, they visited the general practitioner during the follow-up period 2.5 times as often, saw specialists twice as often and were admitted to a 'somatic' hospital, 6 times as often. Using criteria of low restrictiveness for somatization, a large group of patients were identified with a relatively normal (average) illness behaviour. Using more restrictive criteria led to identification of a smaller group with more extreme illness behaviour.

  5. Empirical Testing of an Algorithm for Defining Somatization in Children

    PubMed Central

    Eisman, Howard D.; Fogel, Joshua; Lazarovich, Regina; Pustilnik, Inna

    2007-01-01

    Introduction A previous article proposed an algorithm for defining somatization in children by classifying them into three categories: well, medically ill, and somatizer; the authors suggested further empirical validation of the algorithm (Postilnik et al., 2006). We use the Child Behavior Checklist (CBCL) to provide this empirical validation. Method Parents of children seen in pediatric clinics completed the CBCL (n=126). The physicians of these children completed specially-designed questionnaires. The sample comprised of 62 boys and 64 girls (age range 2 to 15 years). Classification categories included: well (n=53), medically ill (n=55), and somatizer (n=18). Analysis of variance (ANOVA) was used for statistical comparisons. Discriminant function analysis was conducted with the CBCL subscales. Results There were significant differences between the classification categories for the somatic complaints (p=<0.001), social problems (p=0.004), thought problems (p=0.01), attention problems (0.006), and internalizing (p=0.003) subscales and also total (p=0.001), and total-t (p=0.001) scales of the CBCL. Discriminant function analysis showed that 78% of somatizers and 66% of well were accurately classified, while only 35% of medically ill were accurately classified. Conclusion The somatization classification algorithm proposed by Postilnik et al. (2006) shows promise for classification of children and adolescents with somatic symptoms. PMID:18421368

  6. Embryogenesis and Larval Biology of the Cold-Water Coral Lophelia pertusa

    PubMed Central

    Strömberg, Susanna M.; Dahl, Mikael P.; Lundälv, Tomas; Brooke, Sandra

    2014-01-01

    Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼160 µm large neutral or negatively buoyant eggs, to 120–270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6–8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s−1) initially residing in the upper part of the water column, with bottom probing behavior starting 3–5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations. PMID:25028936

  7. Micropropagation of Dalbergia sissoo Roxb. through tissue culture technique.

    PubMed

    Sahu, Jyoti; Khan, Shagufta; Sahu, Ram Kumar; Roy, Amit

    2014-04-01

    Multiple shoots of Dalbergia sissoo Roxb. (Sissoo) were incited from seeds through indirect somatic embryogenesis method. Seeds were inoculated in Murashige and Skoog's medium without any growth hormone. Than cotyledonary leaves were struck and used for callus induction on MS medium amplified with 2, 4-dichlorophenoxyacetic acid (0.5 to 4 mg mL(-1)). After 3 to 4 weeks the embryogenic callus clumps was transferred to medium supplemented with cytokinin (BAP 1 to 5 mg L(-1), kinetin 1-5.0 mg L(-1)) for embryo maturation and germination. The high-frequency shoot proliferation (82%) and maximum number of shoots per explants were recorded in MS medium containing NAA (0.5)+BAP (0.5). The findings of recent investigations have shown that, it is possible to induce indirect somatic embryogenesis in Dalbergia sissoo and plant regeneration from callus cultures derived from cotyledonary leaves as explants.

  8. Somatization disorders in dermatology.

    PubMed

    Gupta, Madhulika A

    2006-02-01

    This paper reviews a wide range of somatization-related symptoms that are encountered in dermatology. These include the unexplained cutaneous sensory syndromes especially the cutaneous dysesthesias associated with pain, numbness and pruritus; traumatic memories in post-traumatic stress disorder (PTSD) which are experienced on a sensory level as 'body memories' and may present as local or generalized pruritic states, urticaria and angioedema; and unexplained flushing reactions and profuse perspiration, in addition to unexplained exacerbations of stress-reactive dermatoses such as psoriasis and atopic eczema secondary to the autonomic hyperarousal in PTSD; classic 'pseudoneurologic' symptoms associated with dissociation including unexplained loss of touch or pain, in addition to the self-induced dermatoses such as dermatitis artefacta and trichotillomania that are encountered with dissociative states; and body dysmorphic disorder where the patient often presents with a somatic preoccupation involving the skin or hair.

  9. Cloning animals by somatic cell nuclear transfer--biological factors.

    PubMed

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-11-13

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other species, this review will be focused on somatic cell cloning of cattle.

  10. EXPERIMENTAL STUDIES ON EMBRYOGENESIS IN HYDROZOANS (TRACHYLINA AND SIPHONOPHORA) WITH DIRECT DEVELOPMENT.

    PubMed

    Freeman, Gary

    1983-12-01

    The normal embryology of the trachymedusa Aglantha digitale and the siphonophores Nanomia cara and Muggiaea atlantica is described. Marking experiments on these embryos indicate that the site of first cleavage initiation corresponds to the oral pole of the oral-aboral axis. In Muggiaea the plane of the first cleavage corresponds to the plane of bilateral symmetry. Experiments in which presumptive aboral and oral regions are isolated from these embryos at different stages of development indicate that there is an early determination of different regions along this axis. Only the oral region of the Muggiaea embryo has the ability to regulate. These eggs have a pronounced centrolecithal organization. As a consequence of cleavage, the outer ectoplasmic layer of the egg ends up in the cells that form the ectoderm, while the inner or endoplasmic region of the egg ends up in the cells that form the endoderm. Experimentally created fragments of fertilized eggs that contain only ectoplasm differentiate to form an unorganized ectodermal cell mass, indicating that endoplasm is necessary in order to differentiate endoderm. The process of embryogenesis in these animals and the developmental mechanisms they use are very different from those used by hydrozoans with indirect development. These embryos use a suite of developmental mechanisms which are very similar to those used by ctenophores. The significance of this similarity is discussed.

  11. Protein Equilibration through Somatic Ring Canals in Drosophila

    PubMed Central

    McLean, Peter F.; Cooley, Lynn

    2013-01-01

    Although intercellular bridges resulting from incomplete cytokinesis were discovered in somatic Drosophila tissues decades ago, the impact of these structures on intercellular communication and tissue biology is largely unknown. In this work, we demonstrate that the ~250 nm diameter somatic ring canals permit diffusion of cytoplasmic contents between connected cells and across mitotic clone boundaries, and enable the equilibration of protein between transcriptionally mosaic follicle cells in the Drosophila ovary. We obtained similar, though more restricted, results in the larval imaginal discs. Our work illustrates the lack of cytoplasmic autonomy in these tissues and suggests a role for somatic ring canals in promoting homogeneous protein expression within the tissue. PMID:23704373

  12. Nanos3 not nanos1 and nanos2 is a germ cell marker gene in large yellow croaker during embryogenesis.

    PubMed

    Han, Kunhuang; Chen, Shihai; Cai, Mingyi; Jiang, Yonghua; Zhang, Ziping; Wang, Yilei

    2018-04-01

    In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Somatic Symptoms in Children from Three Ethnic Groups.

    ERIC Educational Resources Information Center

    Canino, Glorisa; Gonzalez, Gloria; Ramirez, Rafael

    A study compared the rates of somatic symptoms associated with anxiety disorder in African Americans, Hispanics residing in Puerto Rico, and European American children. A total of 1,285 children were interviewed, along with their primary caretakers. Headaches were the most frequently endorsed somatic symptom, with half of the total sample…

  14. Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora.

    PubMed

    Power, J B; Berry, S F; Chapman, J V; Cocking, E C

    1980-01-01

    Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.

  15. Effect of actionable somatic mutations on racial/ethnic disparities in head and neck cancer prognosis.

    PubMed

    Wu, Evan S; Park, Jong Y; Zeitouni, Joseph A; Gomez, Carmen R; Reis, Isildinha M; Zhao, Wei; Kwon, Deukwoo; Lee, Eunkyung; Nelson, Omar L; Lin, Hui-Yi; Franzmann, Elizabeth J; Savell, Jason; McCaffrey, Thomas V; Goodwin, W Jarrard; Hu, Jennifer J

    2016-08-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and minorities have the worst survival. However, the molecular mechanisms underlying survival disparities have not been elucidated. In a retrospective study, we assessed association between HNSCC early death (<2 years) and 208 somatic mutations of 10 cancer-related genes in 214 patients: 98 non-Hispanic whites (46%), 72 Hispanic whites (34%), and 44 African Americans (20%). Hispanic whites and African Americans had significantly higher mutation rates for EGFR, HRAS, KRAS, and TP53. HNSCC early death was significantly associated with 3+ mutations (odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.16, 6.69), NOTCH1 mutations in non-Hispanic whites (OR = 5.51; 95% CI = 1.22-24.83) and TP53 mutations in Hispanic whites (OR = 3.84; 95% CI = 1.08-13.68) in multivariable analysis adjusted for age, sex, tumor site, and tumor stage. We have provided the proof-of-principal data to link racial/ethnic-specific somatic mutations and HNSCC prognosis and pave the way for precision medicine to overcome HNSCC survival disparities. © 2016 Wiley Periodicals, Inc. Head Neck 38:1234-1241, 2016. © 2016 Wiley Periodicals, Inc.

  16. Oil body biogenesis during Brassica napus embryogenesis.

    PubMed

    He, Yu-Qing; Wu, Yan

    2009-08-01

    Although the oil body is known to be an important membrane enclosed compartment for oil storage in seeds, we have little understanding about its biogenesis during embryogenesis. In the present study we investigated the oil body emergence and variations in Brassica napus cv. Topas. The results demonstrate that the oil bodies could be detected already at the heart stage, at the same time as the embryos began to turn green, and the starch grains accumulated in the chloroplast stroma. In comparison, we have studied the development of oil bodies between Arabidopsis thaliana wild type (Col) and the low-seed-oil mutant wrinkled1-3. We observed that the oil body development in the embryos of Col is similar to that of B. napus cv. Topas, and that the size of the oil bodies was obviously smaller in the embryos of wrinkled1-3. Our results suggest that the oil body biogenesis might be coupled with the embryo chloroplast.

  17. The Effectiveness of Somatization in Communicating Distress in Korean and American Cultural Contexts

    PubMed Central

    Choi, Eunsoo; Chentsova-Dutton, Yulia; Parrott, W. Gerrod

    2016-01-01

    Previous research has documented that Asians tend to somatize negative experiences to a greater degree than Westerners. It is posited that somatization may be a more functional communication strategy in Korean than American context. We examined the effects of somatization in communications of distress among participants from the US and Korea. We predicted that the communicative benefits of somatic words used in distress narratives would depend on the cultural contexts. In Study 1, we found that Korean participants used more somatic words to communicate distress than US participants. Among Korean participants, but not US participants, use of somatic words predicted perceived effectiveness of the communication and expectations of positive reactions (e.g., empathy) from others. In Study 2, we found that when presented with distress narratives of others, Koreans (but not Americans) showed more sympathy in response to narratives using somatic words than narratives using emotional words. These findings suggest that cultural differences in use of somatization may reflect differential effectiveness of somatization in communicating distress across cultural contexts. PMID:27047414

  18. Development of the Ghent Multidimensional Somatic Complaints Scale

    ERIC Educational Resources Information Center

    Beirens, Koen; Fontaine, Johnny R. J.

    2010-01-01

    The present study aimed at developing a new scale that operationalizes a hierarchical model of somatic complaints. First, 63 items representing a wide range of symptoms and sensations were compiled from somatic complaints scales and emotion literature. These complaints were rated by Belgian students (n = 307) and Belgian adults (n = 603).…

  19. Collective Cell Migration in Embryogenesis Follows the Laws of Wetting.

    PubMed

    Wallmeyer, Bernhard; Trinschek, Sarah; Yigit, Sargon; Thiele, Uwe; Betz, Timo

    2018-01-09

    Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. [Formation of antioxidant defence system of geese in embryogenesis and early postnatal ontogenesis].

    PubMed

    Danchenko, O O; Kalytka, V V

    2002-01-01

    The features of antioxidant protection of tissues of a liver and blood of the gooses in embriogenesis and early postnatal ontogenesis are found out. Maximal contents TBA active products both in a liver, and in a blood are observed in 28 diurnal embriones. Is shown, that in a liver the activity of basic antioxidant enzymes (superoxide dismutases, catalase and glutathione peroxidase) in a liver is developed already at early stages embriogenesis and is considerably enlarged in the end embriogenesis. The becoming of enzymatic system of a blood descends much more slower.

  1. Differential associations of specific depressive and anxiety disorders with somatic symptoms.

    PubMed

    Bekhuis, Ella; Boschloo, Lynn; Rosmalen, Judith G M; Schoevers, Robert A

    2015-02-01

    Previous studies have shown that depressive and anxiety disorders are strongly related to somatic symptoms, but much is unclear about the specificity of this association. This study examines the associations of specific depressive and anxiety disorders with somatic symptoms, and whether these associations are independent of comorbid depressive and anxiety disorders. Cross-sectional data were derived from The Netherlands Study of Depression and Anxiety (NESDA). A total of 2008 persons (mean age: 41.6 years, 64.9% women) were included, consisting of 1367 patients with a past-month DSM-diagnosis (established with the Composite International Diagnostic Interview [CIDI]) of depressive disorder (major depressive disorder, dysthymic disorder) and/or anxiety disorder (generalized anxiety disorder, social phobia, panic disorder, agoraphobia), and 641 controls. Somatic symptoms were assessed with the somatization scale of the Four-Dimensional Symptom Questionnaire (4DSQ), and included cardiopulmonary, musculoskeletal, gastrointestinal, and general symptoms. Analyses were adjusted for covariates such as chronic somatic diseases, sociodemographics, and lifestyle factors. All clusters of somatic symptoms were more prevalent in patients with depressive and/or anxiety disorders than in controls (all p<.001). Multivariable logistic regression analyses showed that all types of depressive and anxiety disorders were independently related to somatic symptoms, except for dysthymic disorder. Major depressive disorder showed the strongest associations. Associations remained similar after adjustment for covariates. This study demonstrated that depressive and anxiety disorders show strong and partly differential associations with somatic symptoms. Future research should investigate whether an adequate consideration and treatment of somatic symptoms in depressed and/or anxious patients improve treatment outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [Somatic symptoms in those hospitalized for dizziness or vertigo].

    PubMed

    Goto, Fumiyuki; Tsutumi, Tomoko; Arai, Motohiro; Ogawa, Kaoru

    2010-09-01

    Anxiety and depression greatly affect the prognosis of and burden on subjects seen for dizziness or vertigo, who usually report multiple somatic symptoms. We studied the prevalence of these symptoms in 145 subjects hospitalized for dizziness or vertigo and taking part in 4-day group vestibular rehabilitation. Questionnaires given to determine the prevalence of somatic symptoms assessed headache, insomnia, diarrhea, constipation, stomachache, chest pain, palpitations, dyspnea, general fatigue, and stress. Quantitation used aerical rating scale (NRS). Anxiety and depression were assessed using the hospital anxiety and depression scale (HADS). Disability due to dizziness was assessed using the dizziness handicap inventory (DHI). We conducted correlational analysis between dizziness and somatic symptoms. The top four average NRS scores for somatic symptoms were dizziness at 3.5 +/- 2.8, general fatigue at 2.8 +/- 2.6, insomnia at 2.4 +/- 2.6, and headache at 1.8 +/- 2.3. These symptoms resembled those reported for subjects with anxiety and depression. The correlation between headache and dizziness NRS scores was R = 0.48 (P < 0.0001). The total HADS score was 13.9 +/- 8.1 points (anxiety 7.2 +/- 4.3, depression 6.7 +/- 4.3). The average DHI score was 36.3 +/- 24.1 points. These results indicate that those with dizziness reported several somatic symptoms related to anxiety and depression attributable to dizziness. This underscores the need to treat these somatic symptoms when treating subjects seen chiefly dizziness or vertigo.

  3. Substance-related disorders and somatic symptoms: how should clinicians understand the associations?

    PubMed

    Yoshimasu, Kouichi

    2012-12-01

    There are five major patterns which explain the associations between somatic symptoms and substance-related disorders (SRD) in patients without organic disorders. They are withdrawal somatic symptoms, somatic symptoms related to co-morbid mental disorders, those related to co-morbid infectious diseases, functional intractable somatic symptoms (including somatoform disorders), and symptoms associated with intoxication. Those somatic symptoms that occur according to those five patterns might overlap each other, making it difficult for physicians to precisely grasp the associations between somatic symptoms and SRD. This results in a very complicated formation of various kinds of symptoms (syndrome). Furthermore, the clinical and social features of those patterns of associations differ between legal and illicit substances users. It should also be noted that such somatic symptoms associated with SRD may be affected by social factors such as cultural backgrounds or legal restrictions on such substances. Those factors differ according to each country, area, or community whose cultural backgrounds are somewhat specific. In those areas, psychosocial factors such as stigmas, prejudices, or feeling ashamed of one's mental disorder (including SRD) also differ. Thus, it is important to take into account the effects of social or psychosocial backgrounds when evaluating and studying the associations between somatic symptoms and SRD. When clinicians confront patients with somatic symptoms and suspected SRD, they should presume which association pattern is the most significant problem for the patients, based on those psychosocial and biological information obtained from the patients themselves and their surroundings. This procedure might give an opportunity to clinicians for elucidating complicated associations between somatic complaints and SRD.

  4. Micropropagation, genetic engineering, and molecular biology of Populus

    Treesearch

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  5. An Efficient In Vitro Regeneration System for Ornamental Ginger (Hedychium spp.)

    USDA-ARS?s Scientific Manuscript database

    An improved and efficient regeneration protocol was established for Hedychium via somatic embryogenesis. The plant material used consisted of 11 species and 9 cultivars of Hedychium. The explants consisted of young leaves taken from lateral or terminal shoots of mature greenhouse grown plants. These...

  6. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes.

    PubMed

    Carneros, Elena; Yakovlev, Igor; Viejo, Marcos; Olsen, Jorunn E; Fossdal, Carl Gunnar

    2017-09-01

    Epigenetic memory affects the timing of bud burst phenology and the expression of bud burst-related genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes. In Norway spruce, a temperature-dependent epigenetic memory established during embryogenesis affects the timing of bud burst and bud set in a reproducible and predictable manner. We hypothesize that the clinal variation in these phenological traits, which is associated with adaptation to growth under frost-free conditions, has an epigenetic component. In Norway spruce, dehydrins (DHNs) have been associated with extreme frost tolerance. DHN transcript levels decrease gradually prior to flushing, a time when trees are highly sensitive to frost. Furthermore, EARLY BUD BREAK 1 genes (EBB1) and the FT-TFL1-LIKE 2-gene (PaFTL2) were previously suggested to be implied in control of bud phenology. Here we report an analysis of transcript levels of 12 DHNs, 3 EBB1 genes and FTL2 in epitypes of the same genotype generated at different epitype-inducing temperatures, before and during spring bud burst. Earlier flushing of epitypes originating from embryos developed at 18 °C as compared to 28 °C, was associated with differential expression of these genes between epitypes and between buds and last year's needles. The majority of these genes showed significantly different expressions between epitypes in at least one time point. The general trend in DHN expression pattern in buds showed the expected reduction in transcript levels when approaching flushing, whereas, surprisingly, transcript levels peaked later in needles, mainly at the moment of bud burst. Collectively, our results demonstrate that the epigenetic memory of temperature during embryogenesis affects bud burst phenology and expression of the bud burst-related DHN, EBB1 and FTL2 genes in genetically identical Norway spruce epitypes.

  7. Cloning of pigs from somatic cells and its prospects.

    PubMed

    Onishi, Akira

    2002-01-01

    The technology of somatic cell cloning in pigs is valuable for agricultural and therapeutic purposes. This paper will focus on the current methods of cloning pigs, including our successful microinjection#10; of somatic cell nuclei and its application. #10;

  8. Chromatin remodeling in somatic cells injected into mature pig oocytes.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Wakayama, Teruhiko; Miyano, Takashi

    2006-06-01

    We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3-S10) and serine 28 (H3-S28), and methylated at lysine 9 (H3-K9), but was not acetylated at lysine 9, 14 and 18 (H3-K9, H3-K14 and H3-K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3-S10 and H3-S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3-K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm.

  9. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth.

    PubMed

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-06-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity.

  10. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth

    PubMed Central

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-01-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. PMID

  11. Somatic cell count-based selection reduces susceptibility to energy shortage during early lactation in a sheep model.

    PubMed

    Bouvier-Muller, J; Allain, C; Enjalbert, F; Farizon, Y; Portes, D; Foucras, G; Rupp, R

    2018-03-01

    During the transition from late gestation to early lactation ruminants experience a negative energy balance (NEB), which is considered to increase susceptibility to mammary infections. Our previous study in 2 divergent lines of sheep selected for high and low somatic cell score (SCS) suggested an association between the response to NEB and genetic susceptibility to mastitis. Forty-eight early-lactation primiparous dairy ewes from the 2 SCS genetic lines were allocated to 2 homogeneous subgroups-an NEB group, which was energy restricted and received 60% of the energy requirements for 15 d, and a control-fed group-to obtain 4 balanced groups of 12 ewes: high-SCS positive energy balance, low-SCS positive energy balance, high-SCS NEB, and low-SCS NEB. High-SCS ewes showed greater weight loss and increased plasmatic concentrations of β-hydroxybutyrate and nonesterified fatty acids than low-SCS ewes when confronted with an induced NEB. The aim of this study was to further characterize this interaction by combining transcriptomic and phenotypic data with a generalized partial least squares discriminant analysis using mixOmics package framework. A preliminary analysis using 3 blocks of phenotypes (fatty acids, weight and production, blood metabolites) revealed a high correlation between fat-to-protein ratio, β-hydroxybutyrate, and nonesterified fatty acids concentrations with milk long-chain fatty acid yields. These phenotypes allowed good discrimination of the energy-restricted high-SCS ewes and confirmed a high level of adipose tissue mobilization in this group. A second analysis, which included RNA-seq data, revealed high correlations between the long-chain fatty acid yields in milk and PDK4, CPT1A, SLC25A20, KLF10, and KLF11 expression, highlighting the relationship between mobilization of body reserves and enhanced fatty acids utilization for energy production in blood cells. Finally, analysis of milk composition measured in 1,025 ewes from the 2 genetic lines over

  12. Establishment of a Somatic Cell Bank for Indian Buffalo Breeds and Assessing the Suitability of the Cryopreserved Cells for Somatic Cell Nuclear Transfer.

    PubMed

    Selokar, Naresh L; Sharma, Papori; Krishna, Ananth; Kumar, Deepak; Kumar, Dharmendra; Saini, Monika; Sharma, Arpna; Vijayalakshmy, Kennady; Yadav, Prem Singh

    2018-06-01

    Biobanks of cryopreserved gametes and embryos of domestic animals have been utilized to spread desired genotypes and to conserve the animal germplasm of endangered breeds. In principle, somatic cells can be used for the same purposes, and for reviving of animals, the somatic cells must be suitable for animal cloning techniques, such as somatic cell nuclear transfer. In the present study, we derived and cryopreserved somatic cells from three breeds of riverine and swamp-like type buffaloes and established a somatic cell bank. In total, 350 cryovials of 14 different individual animals (25 cryovials per animal) were cryopreserved and informative data such as breed value, origin, and others were documented. Immunostaining of the established cells against vimentin and cytokeratin suggested a commitment to the fibroblast lineage. In addition, microsatellite analysis was performed and documented for unambiguous parentage verification of clones in the future. Subsequently, the cryopreserved cells were tested for their suitability as nuclear donors (n = 7) using handmade cloning, and the reconstructed embryos were cultured in vitro. The cleavage rates (95.99% ± 2.17% vs. 82.18% ± 2.50%) and blastocyst rates (37.73% ± 1.54% vs. 24.31% ± 1.78%) were higher (p < 0.05) for riverine buffalo cells than that of swamp-like buffalo cells, whereas the total cell numbers of blastocysts (258.16 ± 36.25 vs. 198.16 ± 36.25, respectively) were similar. In conclusion, we demonstrated the feasibility of biobanking of buffalo somatic cells, and that the cryopreserved cells can be used to produce cloned embryos. This study encourages the development of somatic cell biobanks of domestic livestock, including endangered breeds of buffalo, to preserve valuable genotypes for future revitalization by animal cloning techniques.

  13. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation.

    PubMed

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-08-22

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.

  14. Endangered wolves cloned from adult somatic cells.

    PubMed

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  15. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation.

    PubMed

    Biedler, James K; Hu, Wanqi; Tae, Hongseok; Tu, Zhijian

    2012-01-01

    During early embryogenesis the zygotic genome is transcriptionally silent and all mRNAs present are of maternal origin. The maternal-zygotic transition marks the time over which embryogenesis changes its dependence from maternal RNAs to zygotically transcribed RNAs. Here we present the first systematic investigation of early zygotic genes (EZGs) in a mosquito species and focus on genes involved in the onset of transcription during 2-4 hr. We used transcriptome sequencing to identify the "pure" (without maternal expression) EZGs by analyzing transcripts from four embryonic time ranges of 0-2, 2-4, 4-8, and 8-12 hr, which includes the time of cellular blastoderm formation and up to the start of gastrulation. Blast of 16,789 annotated transcripts vs. the transcriptome reads revealed evidence for 63 (P<0.001) and 143 (P<0.05) nonmaternally derived transcripts having a significant increase in expression at 2-4 hr. One third of the 63 EZG transcripts do not have predicted introns compared to 10% of all Ae. aegypti genes. We have confirmed by RT-PCR that zygotic transcription starts as early as 2-3 hours. A degenerate motif VBRGGTA was found to be overrepresented in the upstream sequences of the identified EZGs using a motif identification software called SCOPE. We find evidence for homology between this motif and the TAGteam motif found in Drosophila that has been implicated in EZG activation. A 38 bp sequence in the proximal upstream sequence of a kinesin light chain EZG (KLC2.1) contains two copies of the mosquito motif. This sequence was shown to support EZG transcription by luciferase reporter assays performed on injected early embryos, and confers early zygotic activity to a heterologous promoter from a divergent mosquito species. The results of these studies are consistent with the model of early zygotic genome activation via transcriptional activators, similar to what has been found recently in Drosophila.

  16. Control of root meristem establishment in conifers.

    PubMed

    Brunoni, Federica; Ljung, Karin; Bellini, Catherine

    2018-06-19

    The evolution of terrestrial plant life was made possible by the establishment of a root system, which enabled plants to migrate from aquatic to terrestrial habitats. During evolution, root organization has gradually progressed from a very simple to a highly hierarchical architecture. Roots are initiated during embryogenesis and branch afterwards through lateral root formation. Additionally, adventitious roots can be formed post-embryonically from aerial organs. Induction of adventitious roots forms the basis of the vegetative propagation via cuttings in horticulture, agriculture and forestry. This method, together with somatic embryogenesis, is routinely used to clonally multiply conifers. In addition to being utilized as propagation techniques, adventitious rooting and somatic embryogenesis have emerged as versatile models to study cellular and molecular mechanisms of embryo formation and organogenesis of coniferous species. Both formation of the embryonic root and the adventitious root primordia require the establishment of auxin gradients within cells that coordinate the developmental response. These processes also share key elements of the genetic regulatory networks that, for example, are triggering cell fate. This minireview gives an overview of the molecular control mechanisms associated with root development in conifers, from initiation in the embryo to post-embryonic formation in cuttings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis.

    PubMed

    Singh, Akanksha; Khurana, Paramjit

    2017-09-28

    Somatic embryogenesis receptor kinases (SERKs) belong to a small gene family of receptor-like kinases involved in signal transduction. A total of 54 genes were shortlisted from the wheat genome survey sequence of which 5 were classified as SERKs and 49 were identified as SERK-like (SERLs). Tissue- specific expression of TaSERKs at major developmental stages of wheat corroborates their indispensable role during somatic and zygotic embryogenesis. TaSERK transcripts show inherent differences in their hormonal sensitivities, i.e. TaSERK2 and TaSERK3 elicits auxin- specific responses while TaSERK1, 4 and 5 were more specific towards BR-mediated regulation. The ectopic expression of TaSERK1, 2, 3, 4 and 5 in Arabidopsis led to enhanced plant height, larger silique size and increased seed yield. Zygotic embryogenesis specific genes showed a differential pattern in TaSERK Arabidopsis transgenics specifically in the silique tissues. Elongated hypocotyls and enhanced root growth were observed in the overexpression transgenic lines of all five TaSERKs. The inhibitory action of auxin and brassinosteroid in all the TaSERK transgenic lines indicates their role in regulating root development. The results obtained imply redundant functions of TaSERKs in maintaining plant growth and development.

  18. Attribution of somatic symptoms in hypochondriasis.

    PubMed

    Neng, Julia M B; Weck, Florian

    2015-01-01

    The misinterpretation of bodily symptoms as an indicator of a serious illness is a key feature of the criteria and the cognitive-behavioural models of hypochondriasis. Previous research suggests that individuals suffering from health anxiety endorse attributions of physical disease, whereas persons with elevated general anxiety have the tendency to attribute psychological causes to their symptoms. However, whether a somatic attribution style is specific to patients with hypochondriasis, as opposed to those with anxiety disorders, has not yet been investigated and is therefore part of the present study. Fifty patients with hypochondriasis, 50 patients with a primary anxiety disorder and 50 healthy participants were presented with nine common bodily sensations and had to spontaneously attribute possible causes to the symptoms. Patients with hypochondriasis differed from patients with anxiety disorders and healthy controls in giving significantly fewer normalizing explanations, but attributing more often in terms of moderate or serious diseases. Patients with anxiety disorders also made significantly fewer normalizing attributions and more somatic attributions to a severe illness than healthy controls. There were no differences between the groups in the frequency of psychological attributions and somatic attributions concerning mild diseases. The present study demonstrates that hypochondriasis is associated with a disorder-specific attribution style connecting somatic symptoms primarily with moderate and serious diseases. By contrast, normalizing attributions are largely omitted from consideration by patients with hypochondriasis. The findings conform with the cognitive conception of hypochondriasis and support the strategy of modifying symptom attributions, as practiced in cognitive-behavioural therapy. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Teachers' Recognition of Anxiety and Somatic Symptoms in Their Pupils

    ERIC Educational Resources Information Center

    Neil, Louise; Smith, Marjorie

    2017-01-01

    Anxiety and somatic symptoms in children are common and debilitating, yet frequently go unidentified and untreated. This study investigated whether teachers can recognize children's anxiety and somatic symptoms, and how they identify children they perceive to be anxious or somatizing. A sample of 1,346 7- to 11-year-old children, their 51 class…

  20. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L

    2015-07-03

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Rosmarinic acid plays a protective role in the embryogenesis of zebrafish exposed to food colours through its influence on aurora kinase A level.

    PubMed

    Swarnalatha, Y; Jerrine Joseph, I S; Jayakrishna, Tippabathani

    2017-05-01

    To evaluate the protective nature of the rosmarinic acid from Sphaeranthus amaranthoides during zebra fish embryogenesis. Rosmarinic acid was isolated from the S. amaranthoides. An accurate, sensitive and simple LC-MS analysis was performed to determine the rosmarinic acid from S. amaranthoides. In the present study, zebrafish embryos were exposed to crimson red and sunset yellow at a concentration of 0.1 and 0.5mg/l and the effect of these food colours on the levels of aurora kinase A was studied individually. Aurora kinase A levels are crucial for embryogenesis in zebrafish which is used as model in this study. The decrease of aurora kinase A levels in food colour treated embryos influences the embryogenesis, resulting in short and bent trunk leading to cell death and growth retardation. Elevated levels of aurora kinase A in rosmarinic acid treated groups can be attributed to the restoration of normal growth in zebra fish embryos with well developed brain and eyes. Further insilico docking studies were carried out and target was identified as rosmarinic acid. From the docking studies the docking poses and binding energy confirms that aurora kinase A is the target for rosmarinic acid. Rosmarinic acid was found to play a protective role in the embryogenesis of zebra fish exposed to food colours (crimson red and sunset yellow) through its influence on aurora kinase A levels. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Flight feather development: its early specialization during embryogenesis.

    PubMed

    Kondo, Mao; Sekine, Tomoe; Miyakoshi, Taku; Kitajima, Keiichi; Egawa, Shiro; Seki, Ryohei; Abe, Gembu; Tamura, Koji

    2018-01-01

    Flight feathers, a type of feather that is unique to extant/extinct birds and some non-avian dinosaurs, are the most evolutionally advanced type of feather. In general, feather types are formed in the second or later generation of feathers at the first and following molting, and the first molting begins at around two weeks post hatching in chicken. However, it has been stated in some previous reports that the first molting from the natal down feathers to the flight feathers is much earlier than that for other feather types, suggesting that flight feather formation starts as an embryonic event. The aim of this study was to determine the inception of flight feather morphogenesis and to identify embryological processes specific to flight feathers in contrast to those of down feathers. We found that the second generation of feather that shows a flight feather-type arrangement has already started developing by chick embryonic day 18, deep in the skin of the flight feather-forming region. This was confirmed by shh gene expression that shows barb pattern, and the expression pattern revealed that the second generation of feather development in the flight feather-forming region seems to start by embryonic day 14. The first stage at which we detected a specific morphology of the feather bud in the flight feather-forming region was embryonic day 11, when internal invagination of the feather bud starts, while the external morphology of the feather bud is radial down-type. The morphogenesis for the flight feather, the most advanced type of feather, has been drastically modified from the beginning of feather morphogenesis, suggesting that early modification of the embryonic morphogenetic process may have played a crucial role in the morphological evolution of this key innovation. Co-optation of molecular cues for axial morphogenesis in limb skeletal development may be able to modify morphogenesis of the feather bud, giving rise to flight feather-specific morphogenesis of traits.

  3. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    PubMed

    Werner, Benjamin; Sottoriva, Andrea

    2018-06-01

    The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  4. The network structure of major depressive disorder, generalized anxiety disorder and somatic symptomatology.

    PubMed

    Bekhuis, E; Schoevers, R A; van Borkulo, C D; Rosmalen, J G M; Boschloo, L

    2016-10-01

    Major depressive disorder (MDD) and generalized anxiety disorder (GAD) often co-occur with somatic symptomatology. Little is known about the contributions of individual symptoms to this association and more insight into their relationships could help to identify symptoms that are central in the processes behind the co-occurrence. This study explores associations between individual MDD/GAD symptoms and somatic symptoms by using the network approach. MDD/GAD symptoms were assessed in 2704 participants (mean age 41.7 years, 66.1% female) from the Netherlands Study of Depression and Anxiety using the Inventory of Depressive Symptomatology. Somatic symptoms were assessed with the somatization scale of the Four-Dimensional Symptom Questionnaire. The technique eLasso was used to estimate the network of MDD/GAD and somatic symptoms. The network structure showed numerous associations between MDD/GAD and somatic symptoms. In general, neurovegetative and cognitive/affective MDD/GAD symptoms showed a similar strength of connections to the somatic domain. However, associations varied substantially across individual symptoms. MDD/GAD symptoms with many and strong associations to the somatic domain included anxiety and fatigue, whereas hypersomnia and insomnia showed no connections to somatic symptoms. Among somatic symptoms, excessive perspiration and pressure/tight feeling in chest were associated with the MDD/GAD domain, while muscle pain and tingling in fingers showed only a few weak associations. Individual symptoms show differential associations in the co-occurrence of MDD/GAD with somatic symptomatology. Strongly interconnected symptoms are important in furthering our understanding of the interaction between the symptom domains, and may be valuable targets for future research and treatment.

  5. Gametic embryogenesis and haploid technology as valuable support to plant breeding.

    PubMed

    Germanà, Maria Antonietta

    2011-05-01

    Plant breeding is focused on continuously increasing crop production to meet the needs of an ever-growing world population, improving food quality to ensure a long and healthy life and address the problems of global warming and environment pollution, together with the challenges of developing novel sources of biofuels. The breeders' search for novel genetic combinations, with which to select plants with improved traits to satisfy both farmers and consumers, is endless. About half of the dramatic increase in crop yield obtained in the second half of the last century has been achieved thanks to the results of genetic improvement, while the residual advance has been due to the enhanced management techniques (pest and disease control, fertilization, and irrigation). Biotechnologies provide powerful tools for plant breeding, and among these ones, tissue culture, particularly haploid and doubled haploid technology, can effectively help to select superior plants. In fact, haploids (Hs), which are plants with gametophytic chromosome number, and doubled haploids (DHs), which are haploids that have undergone chromosome duplication, represent a particularly attractive biotechnological method to accelerate plant breeding. Currently, haploid technology, making possible through gametic embryogenesis the single-step development of complete homozygous lines from heterozygous parents, has already had a huge impact on agricultural systems of many agronomically important crops, representing an integral part in their improvement programmes. The aim of this review was to provide some background, recent advances, and future prospective on the employment of haploid technology through gametic embryogenesis as a powerful tool to support plant breeding.

  6. Biotechnology of trees: Chestnut

    Treesearch

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  7. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    PubMed

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  8. Pituitary Volumes Are Reduced in Patients with Somatization Disorder

    PubMed Central

    Yildirim, Hanefi; Sirlier, Burcu; Kayali, Alperen

    2012-01-01

    Objective Despite of the suggested physiological relationship between somatoform disorder and disturbances in HPA axis function no volumetric study of pituitary volumes in somatization disorder has been carried out. Therefore, we aimed to use structural MRI to evaluate the pituitary volumes of the patients with somatization disorder. Methods Eighteen female patients with somatization disorder according to DSM-IV and same number of healthy controls were included into the study. All subjects were scanned using a 1.5-T General Electric (GE; Milwaukee, USA) scanner. Pituitary volume measurements were determined by using manuallly tracings according to standard antomical atlases. Results It was found significantly smaller pituitary volumes of the whole group of somatization patients compared to healthy (t=-3.604, p=0.001). ANCOVA predicting pituitary volumes demonstrated a significant main effect of diagnostic group (F=13.530, p<0.001) but TBV (F=1.924, p>0.05) or age (F=1.159, p>0.05). It was determined that there was no significant correlation between smaller pituitary volumes and the duration of illness (r=0.16, p>0.05) in the patient group. Conclusion In conclusion, we suggest that the patients with somatization disorder might have significantly smaller pituitary volumes compared to healthy control subjects. PMID:22993528

  9. POLE somatic mutations in advanced colorectal cancer.

    PubMed

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    PubMed

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  11. Elevated levels of psychophysiological arousal and cortisol in patients with somatization syndrome.

    PubMed

    Rief, W; Shaw, R; Fichter, M M

    1998-01-01

    This study investigates psychological and psychobiological processes in patients with somatization syndrome. We compared physiological measures (heart rate, finger pulse volume, electrodermal activity, electromyography), cortisol levels, and subjective well-being during rest and during a mental stress task as well as selective attention and memory for illness-related words in 58 patients with somatization syndrome and 21 healthy controls. The somatization group had higher morning salivary cortisol concentrations, higher heart rates, and lower levels of finger pulse volume. During the mental stress task, patients with somatization syndrome felt more distressed and had higher heart rates, whereas controls showed habituation to the experimental situation. We were unable to demonstrate an attention or memory bias specific for somatization. The results point to several psychological, psychophysiological, and psychobiological mechanisms that might be involved in the maintenance of somatization syndrome. These results are discussed from a cognitive-psychobiological perspective.

  12. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  13. In Vitro Mass Propagation of Cymbopogon citratus Stapf., a Medicinal Gramineae.

    PubMed

    Quiala, Elisa; Barbón, Raúl; Capote, Alina; Pérez, Naivy; Jiménez, Elio

    2016-01-01

    Cymbopogon citratus (D.C.) Stapf. is a medicinal plant source of lemon grass oils with multiple uses in the pharmaceutical and food industry. Conventional propagation in semisolid culture medium has become a fast tool for mass propagation of lemon grass, but the production cost must be lower. A solution could be the application of in vitro propagation methods based on liquid culture advantages and automation. This chapter provides two efficient protocols for in vitro propagation via organogenesis and somatic embryogenesis of this medicinal plant. Firstly, we report the production of shoots using a temporary immersion system (TIS). Secondly, a protocol for somatic embryogenesis using semisolid culture for callus formation and multiplication, and liquid culture in a rotatory shaker and conventional bioreactors for the maintenance of embryogenic culture, is described. Well-developed plants can be achieved from both protocols. Here we provide a fast and efficient technology for mass propagation of this medicinal plant taking the advantage of liquid culture and automation.

  14. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    PubMed

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  15. Hypochondriasis and somatization: two distinct aspects of somatoform disorders?

    PubMed

    Leibbrand, R; Hiller, W; Fichter, M M

    2000-01-01

    We investigated boundaries and overlap between somatization and hypochondriasis on different levels of psychopathology: (1) comorbidity between hypochondriasis and somatization on the level of diagnoses in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994): (2) comorbidity with other mental disorders; (3) differences in clinical characteristics: and (4) overlap on the level of psychometric measures. The sample consisted of 120 psycho somatic inpatients. Somatoform, hypochondriacal, and depressive symptomatology, cognitions about body and health, and further aspects of general symptomatology were investigated. Diagnoses of Axis I and II were based on DSM-IV Our results suggest a large overlap on the level of DSM-IV-diagnoses: only 3 of 31 hypochondriacal patients had no multiple somatoform symptoms, while 58 of 86 patients with multiple somatoform symptoms had no hypochondriasis. However, the overlap between hypochondriacal and somatization symptomatology on the level of psychometric measurement is only moderate, indicating that hypochondriasis is a markedly distinct aspect of somatoform disorders.

  16. Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study.

    PubMed

    Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida

    2007-05-01

    We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.

  17. Sea Urchin Embryogenesis as Bioindicators of Marine Pollution in Impact Areas of the Sea of Japan/East Sea and the Sea of Okhotsk.

    PubMed

    Lukyanova, Olga N; Zhuravel, Elena V; Chulchekov, Denis N; Mazur, Andrey A

    2017-08-01

    The embryogenesis of the sea urchin sand dollar Scaphechinus mirabilis was used as bioindicators of seawater quality from the impact areas of the Sea of Japan/East Sea (Peter the Great Bay) and the Sea of Okhotsk (northwestern shelf of Sakhalin Island and western shelf of Kamchatka Peninsula). Fertilization membrane formation, first cleavage, blastula formation, gastrulation, and 2-armed and 4-armed pluteus formation have been analyzed and a number of abnormalities were calculated. Number of embryogenesis anomalies in sand dollar larvae exposed to sea water from different stations in Peter the Great Bay corresponds to pollution level at each area. The Sea of Okhotsk is the main fishing area for Russia. Anthropogenic impact on the marine ecosystem is caused by fishing and transport vessels mainly. But two shelf areas are considered as "hot spots" due to oil and gas drilling. Offshore oil exploitation on the northeastern Sakhalin Island has been started and at present time oil is being drill on oil-extracting platforms continuously. Significant reserves of hydrocarbons are prospected on western Kamchatka shelf, and exploitation drilling in this area was intensified in 2014. A higher number of abnormalities at gastrula and pluteus stages (19-36%) were detected for the stations around oil platforms near Sakhalin Island. On the western Kamchatka shelf number of abnormalities was 7-21%. Such anomalies as exogastrula, incomplete development of pairs of arms were not observed at all; only the delay of development was registered. Eggs, embryos, and larvae of sea urchins are the suitable bioindicators of early disturbances caused by marine pollution in impact ecosystems.

  18. A Comparison of Somatic Compliants among Depressed and Non-Depressed Older Persons.

    ERIC Educational Resources Information Center

    Waxman, Howard; And Others

    1985-01-01

    Examined the relationship among somatic complaints, chronic medical illness, and depression in 127 community elderly. Depression and chronic medical illness were significant contributors to somatic complaining both alone and in interaction. Demographic variables and social supports were largely unrelated to depression, somatic complaints, or…

  19. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    PubMed

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  20. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  1. Somatic syndromes, insomnia, anxiety, and stress among sleep disordered breathing patients.

    PubMed

    Amdo, Tshering; Hasaneen, Nadia; Gold, Morris S; Gold, Avram R

    2016-05-01

    We tested the hypothesis that the prevalence of somatic syndromes, anxiety, and insomnia among sleep disordered breathing (SDB) patients is correlated with their levels of somatic arousal, the symptoms of increased sympathetic nervous system tone under conditions of stress. We administered the Body Sensation Questionnaire (BSQ; a 17-item questionnaire with increasing levels of somatic arousal scored 17-85) to 152 consecutive upper airway resistance syndrome (UARS) patients and 150 consecutive obstructive sleep apnea/hypopnea (OSA/H) patients. From medical records, we characterized each patient in terms of the presence of syndromes and symptoms into three categories: somatic syndromes (six syndromes), anxiety (anxiety disorders, nightmares, use of benzodiazepines), and insomnia (sleep onset, sleep maintenance, and use of hypnotics). For the pooled sample of SDB patients, we modeled the correlation of the BSQ score with the presence of each syndrome/symptom parameter within each of the three categories, with adjustment for male vs. female. Mean BSQ scores in females were significantly higher than those in males (32.5 ± 11.1 vs. 26.9 ± 8.2; mean ± SD). Increasing BSQ scores significantly correlated with increasing prevalence rates of somatic syndromes (p < 0.0001), of anxiety (p < 0.0001), and of insomnia (p ≤ 0.0001). In general, females had higher prevalence rates of somatic syndromes and symptoms of anxiety than males at any BSQ score while rates of insomnia were similar. In patients with SDB, there is a strong association between the level of somatic arousal and the presence of stress-related disorders like somatic syndromes, anxiety, and insomnia.

  2. From culture to symptom: Testing a structural model of "Chinese somatization".

    PubMed

    Zhou, Xiaolu; Peng, Yunshi; Zhu, Xiongzhao; Yao, Shuqiao; Dere, Jessica; Chentsova-Dutton, Yulia E; Ryder, Andrew G

    2016-02-01

    "Chinese somatization" has been frequently discussed over the past three decades of cultural psychiatry, and has more recently been demonstrated in cross-national comparisons. Empirical studies of potential explanations are lacking, however. Ryder and Chentsova-Dutton (2012) proposed that Chinese somatization can be understood as a cultural script for depression, noting that the literature is divided on whether this script primarily involves felt bodily experience or a stigma-avoiding communication strategy. Two samples from Hunan province, China-one of undergraduate students (n = 213) and one of depressed psychiatric outpatients (n = 281)-completed the same set of self-report questionnaires, including a somatization questionnaire developed in Chinese. Confirmatory factor analysis demonstrated that Chinese somatization could be understood as two correlated factors: one focusing on the experience and expression of distress, the other on its conceptualization and communication. Structural equation modeling demonstrated that traditional Chinese cultural values are associated with both of these factors, but only bodily experience is associated with somatic depressive symptoms. This study takes a first step towards directly evaluating explanations for Chinese somatization, pointing the way to future multimethod investigations of this cultural script. © The Author(s) 2015.

  3. Perceived social support and life satisfaction in persons with somatization disorder

    PubMed Central

    Ali, Arif; Deuri, S. P.; Deuri, S. K.; Jahan, Masroor; Singh, Amool R.; Verma, A. N.

    2010-01-01

    Background: Life satisfaction and perceived social support been shown to improve the well-being of a person and also affect the outcome of treatment in somatization disorder. The phenomenon of somatization was explored in relation to the perceived social support and life satisfaction. Aim: This study aimed at investigating perceived social support and life satisfaction in people with somatization disorder. Materials and Methods: The study was conducted on persons having somatization disorder attending the outpatient unit of LGB Regional Institute of Mental Health, Tezpur, Assam. Satisfaction with life scale and multidimensional scale of perceived social support were used to assess life satisfaction and perceived social support respectively. Results: Women reported more somatic symptoms than men. Family perceived social support was high in the patient in comparison to significant others’ perceived social support and friends’ perceived social support. Perceived social support showed that a significant positive correlation was found with life satisfaction. Conclusion: Poor social support and low life satisfaction might be a stress response with regard to increased distress severity and psychosocial stressors rather than a cultural response to express psychological problems in somatic terms. PMID:22174534

  4. Enhancer of zeste acts as a major developmental regulator of Ciona intestinalis embryogenesis

    PubMed Central

    Le Goff, Emilie; Martinand-Mari, Camille; Martin, Marianne; Feuillard, Jérôme; Boublik, Yvan; Godefroy, Nelly; Mangeat, Paul; Baghdiguian, Stephen; Cavalli, Giacomo

    2015-01-01

    ABSTRACT The paradigm of developmental regulation by Polycomb group (PcG) proteins posits that they maintain silencing outside the spatial expression domains of their target genes, particularly of Hox genes, starting from mid embryogenesis. The Enhancer of zeste [E(z)] PcG protein is the catalytic subunit of the PRC2 complex, which silences its targets via deposition of the H3K27me3 mark. Here, we studied the ascidian Ciona intestinalis counterpart of E(z). Ci-E(z) is detected by immunohistochemistry as soon as the 2- and 4-cell stages as a cytoplasmic form and becomes exclusively nuclear thereafter, whereas the H3K27me3 mark is detected starting from the gastrula stage and later. Morpholino invalidation of Ci-E(z) leads to the total disappearance of both Ci-E(z) protein and its H3K27me3 mark. Ci-E(z) morphants display a severe phenotype. Strikingly, the earliest defects occur at the 4-cell stage with the dysregulation of cell positioning and mitotic impairment. At later stages, Ci-E(z)-deficient embryos are affected by terminal differentiation defects of neural, epidermal and muscle tissues, by the failure to form a notochord and by the absence of caudal nerve. These major phenotypic defects are specifically rescued by injection of a morpholino-resistant Ci-E(z) mRNA, which restores expression of Ci-E(z) protein and re-deposition of the H3K27me3 mark. As observed by qPCR analyses, Ci-E(z) invalidation leads to the early derepression of tissue-specific developmental genes, whereas late-acting developmental genes are generally down-regulated. Altogether, our results suggest that Ci-E(z) plays a major role during embryonic development in Ciona intestinalis by silencing early-acting developmental genes in a Hox-independent manner. PMID:26276097

  5. Cloning animals by somatic cell nuclear transfer – biological factors

    PubMed Central

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-01-01

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other specie, this review will be focused on somatic cell cloning of cattle. PMID:14614770

  6. No increase in prevalence of somatization in functional vs organic dyspepsia: a cross-sectional survey.

    PubMed

    Gracie, D J; Bercik, P; Morgan, D G; Bolino, C; Pintos-Sanchez, M I; Moayyedi, P; Ford, A C

    2015-07-01

    Psychological factors are associated with functional gastrointestinal (GI) disorders. Literature suggests that somatization is associated with functional dyspepsia (FD). However, the relationship between organic dyspepsia (OD), FD, and FD subtypes and somatization is poorly described. We aimed to examine this issue in a cross-sectional study of secondary care patients. Demographic and GI symptom data were collected from 4224 adult patients via the Rome III questionnaire. Somatization data were collected using the patient health questionnaire-12. Mean somatization score and number of somatic symptoms were compared between patients with organic and FD, and between FD subtypes using analysis of variance. The same comparison was undertaken for the proportion of patients reporting individual somatic symptoms. Exactly, 783 patients met criteria for dyspepsia, of whom 231 (29.5%) had organic disease following upper GI endoscopy. Mean somatization scores and number of somatic symptoms were no higher in functional vs OD (p = 0.23; p = 0.19). In addition, while the prevalence of somatization in FD was relatively high, there was no difference in severity of somatization in FD subgroups. Somatization is associated with functional and OD to the same degree. Overall severity of somatization did not appear to vary according to FD subtype. © 2015 John Wiley & Sons Ltd.

  7. Human somatic cell nuclear transfer and cloning.

    PubMed

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Trauma-informed schools: Child disaster exposure, community violence and somatic symptoms.

    PubMed

    Lai, Betty S; Osborne, Melissa C; Lee, NaeHyung; Self-Brown, Shannon; Esnard, Ann-Margaret; Kelley, Mary Lou

    2018-06-15

    Given the increasing prevalence of natural disasters, trauma-informed school settings should include efficient methods for assessing child health and mental health in post-disaster environments. To develop such methods, factors that contribute to children's vulnerability and key signs of distress reactions after disasters need to be understood. To address these issues, we evaluated pre-disaster community violence exposure as a vulnerability factor for children's post-disaster reactions and somatic symptoms as a key post-disaster outcome. We evaluated 426 children exposed to Hurricane Katrina at two timepoints (3-7 months and 13-17 months post-disaster). Structural equation models evaluated community violence exposure, hurricane exposure, and posttraumatic stress and somatic symptoms. Community violence exposure was associated with increased levels of posttraumatic stress symptoms among disaster-impacted youth, and did not moderate the relationship between disaster exposure and posttraumatic stress symptoms. Posttraumatic stress symptoms were associated with somatic symptoms in the short-term recovery period (3-7 months), but not associated with somatic symptoms during the longer-term recovery period (13-17 months). This study did not include school-level factors, and somatic symptoms were based on parent reports. The study did not include parent functioning information or distinguish between whether somatic symptoms were medical or functional in nature. Post-disaster school-based screeners may need to incorporate questions related to children's past exposure to community violence and their somatic symptoms to provide trauma-informed care for children. Copyright © 2018. Published by Elsevier B.V.

  9. Traditional Chinese medicinal herbal tea consumption, self-reported somatization, and alexithymia.

    PubMed

    Chio, Pit Hoi; Zaroff, Charles M

    2015-06-01

    Somatic presentations of distress are common cross-culturally, although perhaps more so in Asian cultures. Somatic presentations of distress may be associated with alexithymia, a difficulty in experiencing and expressing emotions. Although the constructs of somatization and alexithymia have been examined in depth both within and across cultures, there is minimal information on culture-specific behaviors utilized to cope with stress in individuals who tend to somaticize distress or are alexithymic. The current report investigates the association between somatization and alexithymia, and a culture-specific behavior of traditional Chinese medicinal herbal tea consumption, in a nonclinical, young adult sample. A sample of 222 undergraduate university students of Chinese ethnicity completed self-report measures of somatization and the related construct of somatosensory amplification, alexithymia, and attitude toward the consumption of herbal tea possessing traditional Chinese medicinal value. After controlling for gender, alexithymia was significantly correlated with somatization (r[220] = 0.29, P < 0.05) and somatosensory amplification (r[220] = 0.19, P < 0.05). Attitudes toward herbal tea consumption were significantly correlated with somatosensory amplification (r[220] = 0.16, P < 0.05). The connection between alexithymia and somatization was confirmed in the current report in a nonclinical sample. A culture-specific behavior (consumption of traditional Chinese medicinal herbal tea) was significantly associated with somatosensory amplification. Potential etiologies and implications of the current findings are discussed. © 2014 Wiley Publishing Asia Pty Ltd.

  10. The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Liu, Yu-Chi; Nakamura, Yuki

    2016-11-01

    In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Blonanserin Augmentation for Treatment-Resistant Somatic Symptom Disorder: A Case Series.

    PubMed

    Nagoshi, Yasuhide; Tominaga, Toshiyuki; Fukui, Kenji

    2016-01-01

    The augmentation of selective serotonin reuptake inhibitors with antipsychotics that have a high dopamine-receptor-D2 affinity may be effective in treatment-resistant obsessive-compulsive disorder and somatic symptom disorder, which is similar to illness anxiety disorder. Blonanserin, a novel antipsychotic developed in Japan, has a high affinity for the D2 receptor and weak or very little affinity for other receptors. This article presents two case studies that demonstrate the efficacy of blonanserin augmentation for treatment-resistant somatic symptom disorder. Two patients with treatment-resistant somatic symptom disorder were prescribed concomitant use of blonanserin. Augmentation with blonanserin resulted in the remarkable amelioration of all symptoms. Sedative adverse drug reactions produced by aripiprazole were improved after replacing it with blonanserin. Blonanserin is effective in treatment-resistant somatic symptom disorder. Furthermore, compared with aripiprazole, blonanserin is more likely to result in medication adherence in patients with somatic symptom disorder because it reduced adverse drug reactions.

  12. Somatics in the Dance Studio: Embodying Feminist/Democratic Pedagogy

    ERIC Educational Resources Information Center

    Burnidge, Anne

    2012-01-01

    Since the 1970s, somatics have increasingly become a part of the dance training landscape. Although the psychophysical benefits seem sufficient in themselves to warrant inclusion in dance, this article explores another possible outcome of embracing somatic pedagogical principles, a change that affects not "what" is taught in a dance class, but…

  13. Shusterman on Somatic Experience

    ERIC Educational Resources Information Center

    Maattanen, Pentti

    2010-01-01

    Richard Shusterman's "Body Consciousness" aims at formulating a theory of somaesthetics and somatic experience. There has indeed been a growing interest in the role of the body in experience. Shusterman examines the arguments of six important writers who have been influential in this discussion. The emphasis on the body is natural for a…

  14. Somatic Complaints in Pediatric Patients: A Prospective Study of the Role of Negative Life Events, Child Social and Academic Competence, and Parental Somatic Symptoms.

    ERIC Educational Resources Information Center

    Walker, Linda S.; And Others

    1994-01-01

    Results indicated among children in low social competence at initial clinic visit, higher levels of subsequent negative life events predicted higher levels of somatic complaints at follow-up. Life events and somatic complaints were also related to characteristics exhibited by patient's parents. (53 references) (BF)

  15. Monitoring somatic symptoms in patients with mental disorders: Sensitivity to change and minimal clinically important difference of the Somatic Symptom Scale - 8 (SSS-8).

    PubMed

    Gierk, Benjamin; Kohlmann, Sebastian; Hagemann-Goebel, Marion; Löwe, Bernd; Nestoriuc, Yvonne

    2017-09-01

    The SSS-8 is a brief questionnaire for the assessment of somatic symptom burden. This study examines its sensitivity to change and the minimal clinically important difference (MCID) in patients with mental disorders. 55 outpatients with mental disorders completed the SSS-8 and measures of anxiety, depression, and disability before and after receiving treatment. Effect sizes and correlations between the change scores were calculated. The MCID was estimated using a one standard error of measurement threshold and the change in disability as an external criterion. There was a medium decline in somatic symptom burden for the complete sample (n=55, d z =0.53) and a large decline in a subgroup with very high somatic symptom burden at baseline (n=11, d z =0.94). Decreases in somatic symptom burden were associated with decreases in anxiety (r=0.68, p<0.001), depression (r=0.62, p<0.001) and disability (r=0.51, p<0.001). The MCID was estimated as a 3-point decrease. The SSS-8 is sensitive to change. A 3-point decrease reflects a clinically important improvement. Due to its brevity and sound psychometric properties, the SSS-8 is useful for monitoring somatic symptom burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Water relations in culture media influence maturation of avocado somatic embryos.

    PubMed

    Márquez-Martín, Belén; Sesmero, Rafael; Quesada, Miguel A; Pliego-Alfaro, Fernando; Sánchez-Romero, Carolina

    2011-11-15

    Application of transformation and other biotechnological tools in avocado (Persea americana Mill.) is hampered by difficulties in obtaining mature somatic embryos capable of germination at an acceptable rate. In this work, we evaluated the effect of different compounds affecting medium water relations on maturation of avocado somatic embryos. Culture media were characterized with respect to gel strength, water potential and osmotic potential. Improved production of mature somatic embryos was achieved with gelling agent concentrations higher than those considered standard. The osmotic agents such as sorbitol and PEG did not have positive effects on embryo maturation. The number of w-o mature somatic embryos per culture was positively correlated with medium gel strength. Gel strength was significantly affected by gelling agent type as well as by gelling agent and PEG concentration. Medium water potential was influenced by sorbitol concentration; incorporation of PEG to a culture medium did not affect medium water potential. The highest maturation results were achieved on a medium gelled with 10 gl(-1) agar. Moreover, these somatic embryos had improved germination rates. These results corroborate the role of water restriction as a key factor controlling maturation of somatic embryos. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Somatic Symptoms and Diseases are more Common in Women Exposed to Violence

    PubMed Central

    Schei, Berit; Eskild, Anne

    2007-01-01

    BACKGROUND Exposure to violence has been shown to have an impact on somatic health. However, our knowledge about the possible dose–response relationship between frequency of violence exposure and health is still limited. OBJECTIVE To study the associations between recent and repetitive exposure to violence and presence of somatic symptoms and diseases in women. DESIGN Cross-sectional, community-based, self-reporting survey. PARTICIPANTS Two thousand seven hundred thirty women aged 18–40 years (mean age 30.5 years). MEASUREMENTS The somatic symptom scale derived from the Primary Care Evaluation of Mental Disorders was used to obtain information on the presence of somatization. In addition, we asked about the presence of 11 diseases or organ-specific diseases. Exposure to violence was measured by the Abuse Assessment Screen. RESULTS Eighteen percent (486/2,730) of women surveyed reported exposure to physical violence. Three percent (94/2,730) had been forced into sexual intercourse as an adult. All somatic symptoms, and several diseases, were significantly more common in women exposed to physical and/or sexual violence as compared to nonexposed women. Women exposed to 3 or more violent episodes in the past 12 months reported a presence of 4.8 somatic symptoms and 1.2 diseases (mean) as compared to 1.8 symptoms and 0.5 diseases in nonexposed women. Women with exposure to both physical and sexual violence reported 6.0 symptoms and 1.5 diseases. The impact of violence on somatic symptoms and diseases remained after controlling for depression and sociodemographic factors. CONCLUSIONS Violence was associated with the presence of somatic symptoms and diseases. The more a woman is exposed to violence, the higher the number of somatic symptoms and diseases reported is. PMID:17922169

  18. Tissue distribution and early developmental expression patterns of aldolase A, B, and C in grass carp Ctenopharyngodon idellus.

    PubMed

    Fan, J J; Bai, J J; Ma, D M; Yu, L Y; Jiang, P

    2017-09-27

    Aldolase is a key enzyme involved in glycolysis, gluconeogenesis, and the pentose phosphate pathway. To establish the expression patterns of all three aldolase isozyme genes in different tissues and during early embryogenesis in lower vertebrates, as well as to explore the functional differences between these three isozymes, the grass carp was selected as a model owing to its relatively high glucose-metabolizing capability. Based on the cDNA sequences of the aldolase A, B, and C genes, the expression patterns of these three isozymes were analyzed in different tissues and during early embryogenesis using quantitative real-time polymerase chain reaction (qRT-PCR). Sequence analysis of cDNAs indicated that aldolase A, B, and C (GenBank accession numbers: KM192250, KM192251, and KM192252) consist of 364, 364, and 363 amino acids, respectively. The qRT-PCR results showed that the expression levels of aldolase A, B, and C were highest in the muscle, liver, and brain, respectively. Aldolase A and C exhibited similar expression patterns during embryogenesis, with high levels observed in unfertilized and fertilized eggs and at the blastocyst stage, followed by a decline and then increase after organogenesis. In contrast, aldolase B transcript was not detected during the unfertilized egg stage, and appeared only from gastrulation; the expression increased markedly during the feeding period (72 h after hatching), at which point the level was higher than those of aldolase A and C. These data suggest that the glucose content of grass carp starter feed should be adjusted according to the metabolic activity of aldolase B.

  19. Aquinas's account of human embryogenesis and recent interpretations.

    PubMed

    Eberl, Jason T

    2005-08-01

    In addressing bioethical issues at the beginning of human life, such as abortion, in vitro fertilization, and embryonic stem cell research, one primary concern regards establishing when a developing human embryo or fetus can be considered a person. Thomas Aquinas argues that an embryo or fetus is not a human person until its body is informed by a rational soul. Aquinas's explicit account of human embryogenesis has been generally rejected by contemporary scholars due to its dependence upon medieval biological data, which has been far surpassed by current scientific research. A number of scholars, however, have attempted to combine Aquinas's basic metaphysical account of human nature with current embryological data to develop a contemporary Thomistic account of a human person's beginning. In this article, I discuss two recent interpretations in which it is argued that a human person does not begin to exist until a fetus has developed a functioning cerebral cortex.

  20. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation

    PubMed Central

    Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V

    2015-01-01

    Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture. DOI: http://dx.doi.org/10.7554/eLife.09178.001 PMID:26297805

  1. Carry-over effects modulated by salinity during the early ontogeny of the euryhaline crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Development time and carbon and energy content of offspring.

    PubMed

    Urzúa, Ángel; Bascur, Miguel; Guzmán, Fabián; Urbina, Mauricio

    2018-03-01

    Hemigrapsus crenulatus is a key species of coastal and estuarine ecosystems in the Southeastern Pacific and New Zealand. Since the gravid females-and their embryos-develop under conditions of variable salinity, we propose that low external salinity will be met with an increase in energy expenditures in order to maintain osmoregulation; subsequently, the use of energy reserves for reproduction will be affected. In this study, we investigate in H. crenulatus whether 1) the biomass and energy content of embryos is influenced by salinity experienced during oogenesis and embryogenesis and 2) how variation in the biomass and energy content of embryos affects larval energetic condition at hatching. Here at low salinity (5PSU), egg-bearing females experienced massive and frequent egg losses, and therefore the development of their eggs during embryogenesis was not completed. In turn, at intermediate and high salinity (15 and 30PSU) embryogenesis was completed, egg development was successful, and larvae were obtained. Consistently, larvae hatched from eggs produced and incubated at high salinity (30PSU) were larger, had higher dry weight, and had increased carbon content and energy than larvae hatched from eggs produced at intermediate salinity (15PSU). From these results, it is seen that the size and biomass of early life stages of H. crenulatus can be affected by environmental salinity experienced during oogenesis and embryogenesis, and this variation can then directly affect the energetic condition of offspring at birth. Therefore, this study reveals a "cascade effect" modulated by salinity during the early ontogeny. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement: a review.

    PubMed

    Krishna, Hare; Singh, S K

    2007-01-01

    Biotechnology can complement conventional breeding and expedite the mango improvement programmes. Studies involving in vitro culture and selection, micropropagation, embryo rescue, genetic transformation, marker-assisted characterization and DNA fingerprinting, etc. are underway at different centers worldwide. In vitro culture and somatic embryogenesis of several different genotypes have been achieved. The nucellus excised from immature fruitlets is the appropriate explant for induction of embryogenic cultures. High frequency somatic embryogenesis has been achieved in some genotypes; however, some abnormalities can occur during somatic embryo germination. Embryo rescue from young and dropped fruitlets can improve the hybridization success in a limited flowering season. Protocols for protoplast culture and regeneration have also been developed. In vitro selections for antibiotic tolerance and fungal toxin resistance have been very promising for germplasm screening. Genetic transformation using Agrobacterium tumefaciens has been reported. Genes that are involved with fruit ripening have been cloned and there have been attempts to deliver these genes into plants. DNA fingerprinting and studies on genetic diversity of mango cultivars and Mangifera species are also being conducted at several research stations. The purpose of this review is to focus upon contemporary information on biotechnological advances made in mango. It also describes some ways of overcoming the problems encountered during in vitro propagation of mango.

  3. Hypochondriasis and somatization related to personality and attitudes toward self.

    PubMed

    Hollifield, M; Tuttle, L; Paine, S; Kellner, R

    1999-01-01

    Better definition of the boundary between hypochondriasis and somatization was determined by measuring attitudes to self and personality dimensions associated with these syndromes. In this study, the primary care patients with hypochondriacal responses (HR) on the Illness Attitudes Scales or high somatic concern (HSC) on the Symptom Questionnaire had more negative attitudes to self and more psychological distress than the matched group of primary care control subjects. The HR subjects were different from the non-HR subjects on two of five personality domains on the NEO Personality Inventory (NEO)-Five-Factor Inventory, and the HSC subjects were different from the non-HSC subjects on four of five NEO domains. Analysis of variance demonstrated that somatization explained most of the variance in attitudes, personality, and psychological distress, but hypochondriasis uniquely contributed only to thanatophobia. The authors discuss the boundary between hypochondriasis and somatization and offer a descriptive model of this relationship.

  4. Hypochondriasis, somatization, and perceived health and utilization of health care services.

    PubMed

    Hollifield, M; Paine, S; Tuttle, L; Kellner, R

    1999-01-01

    The authors determined the different effects of hypochondriasis and somatization on health perceptions, health status, and service utilization in a primary care population. The subjects with hypochondriacal responses (HR) on the Illness Attitudes Scales or high somatic concern (HSC) on the Symptom Questionnaire had a worse perception of health and variably used more health services than the control subjects, even though the HR and HSC subjects had the same level of chronic medical disorders. Regression analyses determined that somatization contributed more to negative health perception and service utilization than did hypochondriasis, although an interaction between the two contributed to the use of psychiatric care. The authors discuss the boundary between hypochondriasis and somatization for its implications for research and clinical practice.

  5. A protein domain-based interactome network for C. elegans early embryogenesis

    PubMed Central

    Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc

    2008-01-01

    Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475

  6. Depression, anxiety and somatization in primary care: syndrome overlap and functional impairment.

    PubMed

    Löwe, Bernd; Spitzer, Robert L; Williams, Janet B W; Mussell, Monika; Schellberg, Dieter; Kroenke, Kurt

    2008-01-01

    To determine diagnostic overlap of depression, anxiety and somatization as well as their unique and overlapping contribution to functional impairment. Two thousand ninety-one consecutive primary care clinic patients participated in a multicenter cross-sectional survey in 15 primary care clinics in the United States (participation rate, 92%). Depression, anxiety, somatization and functional impairment were assessed using validated scales from the Patient Health Questionnaire (PHQ) (PHQ-8, eight-item depression module; GAD-7, seven-item Generalized Anxiety Disorder Scale; and PHQ-15, 15-item somatic symptom scale) and the Short-Form General Health Survey (SF-20). Multiple linear regression analyses were used to investigate unique and overlapping associations of depression, anxiety and somatization with functional impairment. In over 50% of cases, comorbidities existed between depression, anxiety and somatization. The contribution of the commonalities of depression, anxiety and somatization to functional impairment substantially exceeded the contribution of their independent parts. Nevertheless, depression, anxiety and somatization did have important and individual effects (i.e., separate from their overlap effect) on certain areas of functional impairment. Given the large syndrome overlap, a potential consideration for future diagnostic classification would be to describe basic diagnostic criteria for a single overarching disorder and to optionally code additional diagnostic features that allow a more detailed classification into specific depressive, anxiety and somatoform subtypes.

  7. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis.

    PubMed

    Tennessen, Jason M; Bertagnolli, Nicolas M; Evans, Janelle; Sieber, Matt H; Cox, James; Thummel, Carl S

    2014-03-12

    Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. Copyright © 2014 Tennessen et al.

  8. Heritability of regeneration in tissue cultures of sweet potato (Ipomoea batatas L.).

    PubMed

    Templeton-Somers, K M; Collins, W W

    1986-03-01

    A population of open-pollinated progeny from 12 parents, and the 12 parents, was surveyed for in vitro growth and regeneration characteristics. Four different tissue culture procedures involving different media and the use of different explants to initiate the cultures were used. Petiole explants from young leaves were used as explants for initiation of callus cultures. These were evaluated for callus growth rate, friability, and callus color and texture, before transferring to each of three different regeneration media for evaluation of morphogenetic potential. Small shoot tips also were used to initiate callus cultures, which were evaluated for the same growth characteristics and transferred to growth-regulator free regeneration media. Regeneration occurred through root or shoot regeneration or through embryogenesis. Tissue culture treatment effects, as well as genotypic effects, were highly significant in determining: the types of callus produced, callus growth rates, color and texture on the two types of media used for the second and third subcultures. The family x treatment interaction was generally not statistically significant, affecting only callus color. Estimates of narrow sense heritability for callus growth rate in both the second and third subcultures were high enough (0.35 and 0.63, respectively) for the evaluation of parental lines for selection procedures. These characteristics were also the only early culture callus traits that were consistently correlated with later morphogenesis of the cultures. They were negatively correlated with root or shoot regeneration. The occurence of somatic embryogenesis was not correlated with early callus growth characteristics. Genetic and treatment effects were highly significant in the evaluation of morphogenetic potential, through root or shoot regeneration, or through embryogenesis. Regeneration of all types was of low frequency for all procedures, expressed in ≦ 11% of the cultures of the total population.

  9. Somatization as a core symptom of melancholic type depression. Evidence from a cross-cultural study.

    PubMed

    Ebert, D; Martus, P

    1994-12-01

    The study questions whether different types of somatization may be a core symptom of melancholia, thus, being invariable across cultures and being a candidate for neurobiological research and diagnostic criteria. 51 Turkish patients and 51 education-matched German patients with melancholic depression were compared for two types of somatization. Turkish patients had higher frequencies of somatic preoccupation and hypochondriasis but they were not different in the perception and experience of somatic symptoms. It is concluded that: (1) somatization has to be differentiated psychopathologically; (2) it may be a neurobiological core symptom of melancholia in the well-defined sense of 'perceiving abnormal somatic symptoms'; and (3) it may be a culture-bound symptom in the sense of 'being abnormally concerned with somatic symptoms or hypochondrial fears'.

  10. Somatic and vicarious pain are represented by dissociable multivariate brain patterns

    PubMed Central

    Krishnan, Anjali; Woo, Choong-Wan; Chang, Luke J; Ruzic, Luka; Gu, Xiaosi; López-Solà, Marina; Jackson, Philip L; Pujol, Jesús; Fan, Jin; Wager, Tor D

    2016-01-01

    Understanding how humans represent others’ pain is critical for understanding pro-social behavior. ‘Shared experience’ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others’ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others’ pain, and present new, more specific, brain targets for studying pain empathy. DOI: http://dx.doi.org/10.7554/eLife.15166.001 PMID:27296895

  11. Mind-Body Interactions in Anxiety and Somatic Symptoms.

    PubMed

    Mallorquí-Bagué, Núria; Bulbena, Antonio; Pailhez, Guillem; Garfinkel, Sarah N; Critchley, Hugo D

    2016-01-01

    Anxiety and somatic symptoms have a high prevalence in the general population. A mechanistic understanding of how different factors contribute to the development and maintenance of these symptoms, which are highly associated with anxiety disorders, is crucial to optimize treatments. In this article, we review recent literature on this topic and present a redefined model of mind-body interaction in anxiety and somatic symptoms, with an emphasis on both bottom-up and top-down processes. Consideration is given to the role played in this interaction by predisposing physiological and psychological traits (e.g., interoception, anxiety sensitivity, and trait anxiety) and to the levels at which mindfulness approaches may exert a therapeutic benefit. The proposed model of mind-body interaction in anxiety and somatic symptoms is appraised in the context of joint hypermobility syndrome, a constitutional variant associated with autonomic abnormalities and vulnerability to anxiety disorders.

  12. Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.

    PubMed

    Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M

    1988-01-01

    Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal

  13. [Effects of death anxiety and meaning of life on somatization of grandparent raising grandchildren].

    PubMed

    Kim, Se-Young

    2015-04-01

    This study was conducted in order to examine the effects of death anxiety and meaning of life on somatization of grandparents raising grandchildren. A convenience sample of 92 elderly grandparents raising grandchildren was recruited. The study instrument for death anxiety was the 5-point 15 items scale designed by Templer and translated by Ko, Choi, & Lee and for meaning of life, the 7-point 10-items scale by Steger, Frazier, Oishi & Kaler and translated by Won, Kim & Kwon. For somatization, the 5-point 12 items scale designed by Derogatis and translated by Kim, Kim & Won was used. Collected data were analyzed with descriptive statistics, independent t-test, one-way ANOVA, Pearson Correlation and regression using the SPSS 21.0 program. Average scores were 3.55 for death anxiety, 3.43 for meaning of life, and 2.74 for somatization. Death anxiety had the highest positive correlation with somatization. Meaning of life was negatively correlated with death anxiety and somatization. Death anxiety and health status were shown to influence somatization but meaning of life was not shown to influence somatization. The research results indicate that death anxiety and health status influence somatization in grandparents raising grandchildren. These results also provide basic information on the importance of nursing interventions in which the variables influencing somatization in grandparents raising grandchildren are considered.

  14. Beyond abuse: the association among parenting style, abdominal pain, and somatization in IBS patients.

    PubMed

    Lackner, Jeffrey M; Gudleski, Gregory D; Blanchard, Edward B

    2004-01-01

    This study assessed the relative strength of the association between abuse, negative parenting style, and somatization in irritable bowel syndrome (IBS) patients. Drawing from preclinical stress physiology and abuse research identifying the family social climate as a frequently stronger and independent determinant of long-term health effects than abuse-specific variables, we predicted that negative parenting behaviors would more strongly correlate with somatization than abuse. Subjects were 81 consecutively evaluated patients, who at baseline underwent psychological testing, measuring perceived parental style, abuse history, somatization, and pain. Although abuse correlated with maternal and paternal rejection, abuse was not associated with somatization. Higher levels of rejection and/or hostility among fathers (not mothers) were more strongly correlated with somatization than was abuse. Further, paternal parenting behaviors were more predictive of somatization than abuse, age, and gender. The lack of an association between abuse and somatization is discussed in light of limitations of biopsychosocial IBS models, whose strong focus on "pathological stressors" (e.g., abuse, trauma) as risk factors may overlook the importance of "less extreme" parenting variables in influencing somatic complaints. The relationship between parenting and somatization is discussed in the context of broader behavioral science research linking disruptions in the quality of parenting to dramatic and long-term changes in patterns of stress reactivity and brain abnormalities seen in IBS patients.

  15. Feeling the Insight: Uncovering Somatic Markers of the "aha" Experience.

    PubMed

    Shen, Wangbing; Tong, Yu; Yuan, Yuan; Zhan, Huijia; Liu, Chang; Luo, Jing; Cai, Houde

    2018-03-01

    Whether internal insight can be recognized by experiencing (somatic feeling) remains an unexplored problem. This study investigated the issue by examining potential somatic markers of the "aha" experience occurring at the moment of sudden insight. Participants were required to solve a set of compound remote associates (CRA) problems and were simultaneously monitored via electrodermal and cardiovascular recordings. The "aha"-related psychological components and somatic markers were determined by contrasting insightful solutions with non-insightful solutions. Results showed that the "aha" experience was an amalgam entailing positive affects and approached cognition accompanied by a greater mean skin conductance response (mSCR) amplitude and a marginally accelerated heart rate than the "no-aha" one. These results confirm and extend findings of the multidimensionality of the "aha" feeling and offer the first direct evidence of somatic markers, particularly an electrodermal signature of an "aha" feeling, which suggests a sudden insight could likely be experienced by individuals' external soma.

  16. Psychiatric symptoms and dissociation in conversion, somatization and dissociative disorders.

    PubMed

    Espirito-Santo, Helena; Pio-Abreu, Jose Luis

    2009-03-01

    Conversion, dissociation and somatization are historically related in the long established concept of hysteria. Somewhere along the way they were separated due to the Cartesian dualistic view. The aim of the present study was to compare these pathologies and investigate whether symptoms of these pathologies overlap in their clinical appearance in a Portuguese sample. Twenty-six patients with conversion disorder, 38 with dissociative disorders, 40 with somatization disorder, and a comparison group of 46 patients having other psychiatric disorders answered questions about dissociation (Dissociative Experiences Scale), somatoform dissociation (Somatoform Dissociation Questionnaire), and psychopathological symptoms (Brief Symptom Inventory). Dissociative and somatoform symptoms were significantly more frequent in dissociative and conversion disorder than in somatization disorder and controls. There were no significant differences between dissociative and conversion patients. Conversion disorder is closely related to dissociative disorders. These results support the ICD-10 categorization of conversion disorder among dissociative disorders and the hypothesis of analogous psychopathological processes in conversion and dissociative disorders versus somatization disorder.

  17. Resource utilization of patients with hypochondriacal health anxiety and somatization.

    PubMed

    Barsky, A J; Ettner, S L; Horsky, J; Bates, D W

    2001-07-01

    To examine the resource utilization of patients with high levels of somatization and health-related anxiety. Consecutive patients on randomly chosen days completed a self-report questionnaire assessing somatization and health-related, hypochondriacal anxiety. Their medical care utilization in the year preceding and following completion of the questionnaire was obtained from an automated patient record. The utilization of patients above and below a predetermined threshold on the questionnaire was then compared. Eight hundred seventy-six patients attending a primary care clinic in a large, urban, teaching hospital. Number of ambulatory physician visits (primary care and specialist), outpatient costs (total, physician services, and laboratory procedures), proportion of patients hospitalized, and proportion of patients receiving emergency care. Patients in the uppermost 14% of the clinic population on somatization and hypochondriacal health anxiety had appreciably and significantly higher utilization in the year preceding and the year following completion of the somatization questionnaire than did the rest of the patients in the clinic. After adjusting for group differences in sociodemographic characteristics and medical comorbidity, significant differences in utilization remained. In the year preceding the assessment of somatization, their adjusted total outpatient costs were $1,312 (95% CI $1154, $1481) versus $954 (95% CI $868, $1057) for the remainder of the patients and the total number of physician visits was 9.21 (95% CI 7.94, 10.40) versus 6.33 (95% CI 5.87, 6.90). In the year following the assessment of somatization, those above the threshold had adjusted total outpatient costs of $1,395 (95% CI $1243, $1586) versus $1,145 (95% CI $1038, $1282), 9.8 total physician visits (95% CI 8.66, 11.07) versus 7.2 (95% CI 6.62, 7.77), and had a 24% (95% CI 19%, 30%) versus 17% (95% CI 14%, 20%) chance of being hospitalized. Primary care patients who somatize and have

  18. Somatic and Depressive Symptoms in Female Japanese and American Students: A Preliminary Investigation

    PubMed Central

    Arnault, Denise Saint; Sakamoto, Shinji; Moriwaki, Aiko

    2007-01-01

    The present study examined the relationship between common somatic symptoms and depression in samples of Japanese and American college students. Fifty Japanese and 44 American women completed the Beck Depression Inventory (BDI) and rated 56 somatic-distress items for 7 days. Japanese had higher levels of somatic distress than Americans. ANOVA of somatic distress by BDI-level revealed that the High BDI Japanese group reported 26 somatic symptoms (including stomach ache, dizziness, and shoulder pain) with significantly higher means when compared with the low BDI group. High BDI Americans had a significantly higher mean for joint pain compared to the Low BDI group. The importance of the body in transcultural psychiatry is explored, and implications for primary and mental health care are discussed. PMID:16893876

  19. [Disease at any price: psychological challenge and the financial costs of somatization].

    PubMed

    Matalon, A

    1996-01-01

    In clinical medicine we sometimes deal with patients with unexplained somatic complaints. In a 45-year-old woman with multiple somatic complaints, 2 years of medical examinations in search of a disease diagnosis cost almost 250,000 shekels (about +84,000). The differential diagnosis between somatization, hypochondriasis and psychosomatic pain, and the reasons why physicians are tempted to participate in the "investigation dance" are presented.

  20. Somatization symptoms and hypochondriacal features in the general population.

    PubMed

    Rief, W; Hessel, A; Braehler, E

    2001-01-01

    The principal goal of this study is to examine the base rates of somatoform symptoms and of hypochondriacal features in the general population. A representative sample of 2050 persons in Germany was examined by use of screening for somatoform symptoms and the Whiteley Index. The most frequent somatoform symptoms were back pain, joint pain, pain in extremities, and headache, as well as abdominal symptoms (bloating or intolerance of several foods) and cardiovascular symptoms (palpitation). People reported a mean of two somatization symptoms of DSM-IV somatization disorder (SD) during the prior 2 years. Strong age and medium gender effects were found for most somatoform symptoms, as well as for composite indices. However, the sex ratio suggested in DSM-IV for SD seems to be an overestimation. Hypochondriacal features showed only small sex differences but, again, pronounced age effects. In contrast to low rates for SD, the base rates for somatization and hypochondriacal features were high and represented the health care relevance of subthreshold syndromes. We present base rates of hypochondriacal and somatization features that may be important facets in the development of classification criteria and in the interpretation of health care expenditure.