Science.gov

Sample records for early spectrophotometric evolution

  1. Late Stages of Stellar Evolution and their Impact on Spectrophotometric Properties of Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.

    2007-12-01

    The connection between AGB evolution of stellar populations and infrared vs. ultraviolet properties of the parent galaxies is reviewed relying on the updated lookout provided by population-synthesis theory. In particular, planetary-nebula events and hot horizontal-branch evolution are assessed in a unitary view to outline a plain general picture of galaxy spectrophotometric evolution. This will include a brief discussion of relevant phenomena such as the ``UV upturn'' in ellipticals and the stellar mass loss properties along the galaxy morphological sequence.

  2. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  3. Early stellar evolution

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1994-01-01

    Research into the formation and early evolution of stars is currently an area of great interest and activity. The theoretical and observational foundations for this development are reviewed in this paper. By now, the basic physics governing cloud collapse is well understood, as is the structure of the resulting protostars. However, the theory predicts protostellar luminosities that are greater than those of most infrared sources. Observationally, it is thought that protostars emit powerful winds that push away remnant cloud gas, but both the origin of these winds and the nature of their interaction with ambient gas are controversial. Finally, the theory of pre-main-sequence stars has been modified to incorporate more realistic initial conditions. This improvement helps to explain the distribution of such stars in the H-R diagram. Many important issues, such as the origin of binary stars and stellar clusters, remain as challenges for future research.

  4. Early cellular evolution.

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  5. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  6. Early Evolution of Prestellar Cores

    NASA Astrophysics Data System (ADS)

    Horedt, G. P.

    2013-08-01

    Prestellar cores are approximated by singular polytropic spheres. Their early evolution is studied analytically with a Bondi-like scheme. The considered approximation is meaningful for polytropic exponents γ between 0 and 6/5, implying radial power-law density profiles between r -1 and r -2.5. Gravitationally unstable Jeans and Bonnor-Ebert masses differ at most by a factor of 3.25. Tidally stable prestellar cores must have a mean density contrast >~ 8 with respect to the external parent cloud medium. The mass-accretion rate relates to the cube of equivalent sound speed, as in Shu's seminal paper. The prestellar masses accreted over 105 years cover the whole stellar mass spectrum; they are derived in simple closed form, depending only on the polytropic equation of state. The stellar masses that can be formed via strict conservation of angular momentum are at most of the order of a brown dwarf.

  7. Early evolution of the bilateria.

    PubMed

    Hausdorf, B

    2000-03-01

    The phylogeny of the Bilateria and especially the early steps in the evolution of the bilaterian bauplan are still a controversial topic. In this context the relationships of the platyhelminths and the nematodes play a crucial role. Previous molecular studies of the relationships of these groups, which were based on 18S ribosomal DNA sequences, yielded conflicting results. In the present study a new framework is developed for the phylogenetic analysis of bilaterian relationships, using concatenated amino acid sequences of several nuclear genes. In this analysis, the rhabditophoran platyhelminths are probably the sister group of all other analyzed Bilateria, the Eubilateria, which are characterized by a one-way intestine with an anus. The Eubilateria are split into the nematode lineage and the coelomates. The phylogenetic results of the present study indicate that genetic features found in the model organisms Caenorhabditis and Drosophila might be found in all Eubilateria. Estimations of the divergence times show that the major bilaterian phyla did not originate in an explosive radiation during the Cambrian but rather that the Bilateria have a several hundred million years long Precambrian history.

  8. Eukaryotic evolution: early origin of canonical introns.

    PubMed

    Simpson, Alastair G B; MacQuarrie, Erin K; Roger, Andrew J

    2002-09-19

    Spliceosomal introns, one of the hallmarks of eukaryotic genomes, were thought to have originated late in evolution and were assumed not to exist in eukaryotes that diverged early -- until the discovery of a single intron with an aberrant splice boundary in the primitive 'protozoan' Giardia. Here we describe introns from a close relative of Giardia, Carpediemonas membranifera, that have boundary sequences of the normal eukaryotic type, indicating that canonical introns are likely to have arisen very early in eukaryotic evolution.

  9. Early evolution without a tree of life.

    PubMed

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  10. Birth and early evolution of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.

    2000-06-01

    Birth and early evolution of planetary nebulae is described. The study of the young planetary nebula Hen 1357 (Stingray Nebula) with HST is discussed. The observed characteristics of few interesting PPNe and PNe are described. The presence of multiple arcs or rings, knots, jets, collimated and bipolar out flows and disks shows the complex nature of mass loss process during the AGB and post-AGB phases of evolution.

  11. Early evolution without a tree of life

    PubMed Central

    2011-01-01

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre. PMID:21714942

  12. Chemical evolution of the early Martian hydrosphere

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1990-01-01

    The chemical evolution of the early Martian hydrosphere is discussed. The early Martian ocean can be modeled as a body of relatively pure water in equilibrium with a dense carbon dioxide atmosphere. The chemical weathering of lavas, pyroclastic deposits, and impact melt sheets would have the effect of neutralizing the acidity of the juvenile water. As calcium and other cations are added to the water by chemical weathering, they are quickly removed by the precipitation of calcium carbonate and other minerals, forming a deposit of limestone beneath the surface of the ocean. As the atmospheric carbon dioxide pressure and the temperature decrease, the Martian ocean would be completely frozen. Given the scenario for the chemical evolution of the northern lowland plains of Mars, it should be possible to draw a few conclusions about the expected mineralogy and geomorphology of this regions.

  13. Population Synthesis at Short Wavelengths and Spectrophotometric Diagnostic Tools for Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Bertone, E.; Chávez, M.; Rodríguez-Merino, L. H.

    2009-03-01

    Taking advantage of recent important advances in the calculation of high-resolution spectral grids of stellar atmospheres at short wavelengths, and their implementation for population synthesis models, we briefly review here some special properties of ultraviolet emission in SSPs, and discuss their potential applications for identifying and tuning up effective diagnostic tools to probe distinctive evolutionary properties of early-type galaxies and other evolved stellar systems.

  14. Early Precambrian crustal evolution of south India

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The Early Precambrian sequence in Karnataka, South India provides evidences for a distinct trend of evolution which differs from trends exhibited in many other Early Precambrian regions of the world. The supracrustal rock associations preserved in greenstone belts and as inclusions in gneisses and granulites suggest the evolution of the terrain from a stable to a mobile regime. The stable regime is represented by (1) layered ultramafic-mafic complexes, (2) orthoquartzite-basalt-rhyodacite-iron formation, and (30 ortho-quartzite-carbonate-Mn-Fe formation. The mobile regime, which can be shown on sedimentological grounds to have succeeded the stable regime, witnessed the accumulation of a greywacke-pillow basalt-dacite-rhyolite-iron formation association. Detrital sediments of the stable zone accumulated dominantly in fluvial environment and the associated volcanics are ubaerial. The volcanics of the stable regime are tholeiites derived from a zirconium and LREE-enriched sources. The greywackes of the mobile regime are turbidities, and the volcanic rocks possess continental margin (island-arc or back-arc) affinity; they show a LREE depleted to slightly LREE-enriched pattern. The evolution from a stable to a mobile regime is in contrast to the trend seen in most other regions of the world, where an early dominantly volcanic association of a mobile regime gives way upward in the sequence to sediments characteristic of a stable regime.

  15. A GALACTIC WEIGH-IN: MASS MODELS OF SINGS GALAXIES USING CHEMO-SPECTROPHOTOMETRIC GALACTIC EVOLUTION MODELS

    SciTech Connect

    De Denus-Baillargeon, M.-M.; Hernandez, O.; Carignan, C.; Boissier, S.; Amram, P.

    2013-08-20

    The baryonic mass-to-light ratio (Y{sub *}) used to perform the photometry-to-mass conversion has a tremendous influence on the measurement of the baryonic content and distribution as well as on the determination of the dark halo parameters. Since numerous clues hint at an inside-out formation process for galaxies, a radius-dependant Y{sub *} is needed to physically represent the radially varying stellar population. In this article, we use chemo-spectrophotometric galactic evolution (CSPE) models to determine Y{sub *} for a wide range of masses and sizes in the scenario of an inside-out formation process by gas accretion. We apply our method to a SINGS subsample of 10 spiral and dwarf galaxies with photometric coverage ranging from the UV to the mid-IR. The CSPE models prove to be a good tool for weighting the different photometric bands in order to obtain consistent stellar disk masses regardless of the spectral band used. On the other hand, we show that the color index versus Y{sub *} relation is an imperfect tool for assigning masses to young stellar populations because of the degeneracy affecting Y{sub *} in all bands at low color index. The disks resulting from our analysis are compatible with the maximum disk hypothesis provided that an adequate bulge/disk decomposition is performed and that the correction for the presence of a bar is not neglected since bars disturb the internal disk kinematics. Disk-mass models including Y{sub *} as a free parameter as well as models using our physically motivated, radially varying Y{sub *} are presented and discussed for each galaxy.

  16. Human evolution. Evolution of early Homo: an integrated biological perspective.

    PubMed

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments.

  17. Early Microbial Evolution: The Age of Anaerobes.

    PubMed

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology.

  18. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  19. The evolution of early vertebrate photoreceptors

    PubMed Central

    Collin, Shaun P.; Davies, Wayne L.; Hart, Nathan S.; Hunt, David M.

    2009-01-01

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these ‘living fossils’, we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land. PMID:19720654

  20. The early thermal evolution of Mars

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  1. Developmental genetics and early hominid craniodental evolution.

    PubMed

    McCollum, M A; Sharpe, P T

    2001-06-01

    Although features of the dentition figure prominently in discussions of early hominid phylogeny, remarkably little is known of the developmental basis of the variations in occlusal morphology and dental proportions that are observed among taxa. Recent experiments on tooth development in mice have identified some of the genes involved in dental patterning and the control of tooth specification. These findings provide valuable new insight into dental evolution and underscore the strong developmental links that exist among the teeth and the jaws and cranium. The latter has important implications for cladistic studies that traditionally consider features of the skull independently from the dentition.

  2. Fossil evidence for the early ant evolution

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André

    2008-02-01

    Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.

  3. Early dynamical evolution of young substructured clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  4. Early dynamical evolution of substructured stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2015-08-01

    It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.

  5. Spectrophotometric color measurement for early detection and monitoring of greening on granite buildings.

    PubMed

    Sanmartín, P; Vázquez-Nion, D; Silva, B; Prieto, B

    2012-01-01

    This paper addresses the detection and monitoring of the development of epilithic phototrophic biofilms on the granite façade of an institutional building in Santiago de Compostela (NW Spain), and reports a case study of preventive conservation. The results provide a basis for establishing criteria for the early detection of phototrophic colonization (greening) and for monitoring its development on granite buildings by the use of color changes recorded with a portable spectrophotometer and represented in the CIELAB color space. The results show that parameter b* (associated with changes of yellowness-blueness) provides the earliest indication of colonization and varies most over time, so that it is most important in determining the total color change. The limit of perception of the greening on a granite surface was also established in a psycho-physical experiment, as Δb*: +0.59 CIELAB units that correspond, in the present study, to 6.3 μg of biomass dry weight cm(-2) and (8.43 ± 0.24) × 10(-3) μg of extracted chlorophyll a cm(-2).

  6. LIGHT ECHOES FROM η CARINAE'S GREAT ERUPTION: SPECTROPHOTOMETRIC EVOLUTION AND THE RAPID FORMATION OF NITROGEN-RICH MOLECULES

    SciTech Connect

    Prieto, J. L.; Knapp, G. R.; Rest, A.; Walborn, N. R.; Bianco, F. B.; Matheson, T.; Smith, N.; Hsiao, E. Y.; Campillay, A.; Contreras, C.; González, C.; Morrell, N.; Phillips, M. M.; Chornock, R.; Paredes Álvarez, L.; James, D.; Smith, R. C.; Kunder, A.; Margheim, S.; Welch, D. L.; and others

    2014-05-20

    We present follow-up optical imaging and spectroscopy of one of the light echoes of η Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ∼0.9 mag in ∼1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ∼300 days after peak brightness, the spectra show strong molecular transitions of CN at ≳ 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula.

  7. The metal abundance of circumnuclear star-forming regions in early-type spirals. Spectrophotometric observations

    NASA Astrophysics Data System (ADS)

    Díaz, Ángeles I.; Terlevich, Elena; Castellanos, Marcelo; Hägele, Guillermo F.

    2007-11-01

    We have obtained long-slit observations in the optical and near-infrared of 12 circumnuclear HII regions [circumnuclear star-forming regions (CNSFR)] in the early-type spiral galaxies NGC2903, 3351 and 3504 with the aim of deriving their chemical abundances. Only for one of the regions, the [SIII] λ6312Å was detected providing, together with the nebular [SIII] lines at λλ9069, 9532Å, a value of the electron temperature of . A semi-empirical method for the derivation of abundances in the high metallicity regime is presented. We obtain abundances which are comparable to those found in high metallicity disc HII regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC3504, 12 + log(O/H) = 8.85, about 1.5 solar if the solar oxygen abundance is set at the value derived by Asplund, Grevesse & Sauval, 12 + log(O/H)solar = 8.66 +/- 0.05. Region R7 in NGC3351 has the lowest oxygen abundance of the sample, about 0.6 times solar. In all the observed CNSFR the O/H abundance is dominated by the O+/H+ contribution, as is also the case for high metallicity disc HII regions. For our observed regions, however, also the S+/S2+ ratio is larger than one, contrary to what is found in high metallicity disc HII regions for which, in general, the sulphur abundances are dominated by S2+/H+. The derived N/O ratios are in average larger than those found in high metallicity disc HII regions and they do not seem to follow the trend of N/O versus O/H which marks the secondary behaviour of nitrogen. On the other hand, the S/O ratios span a very narrow range between 0.6 and 0.8 of the solar value. As compared to high metallicity disc HII regions, CNSFR show values of the O23 and the N2 parameters whose distributions are shifted to lower and higher values, respectively, hence, even though their derived oxygen and sulphur abundances are similar, higher values would in principle be

  8. Environment and Climate of Early Human Evolution

    NASA Astrophysics Data System (ADS)

    Levin, Naomi E.

    2015-05-01

    Evaluating the relationships between climate, the environment, and human traits is a key part of human origins research because changes in Earth's atmosphere, oceans, landscapes, and ecosystems over the past 10 Myr shaped the selection pressures experienced by early humans. In Africa, these relationships have been influenced by a combination of high-latitude ice distributions, sea surface temperatures, and low-latitude orbital forcing that resulted in large oscillations in vegetation and moisture availability that were modulated by local basin dynamics. The importance of both climate and tectonics in shaping African landscapes means that integrated views of the ecological, environmental, and tectonic histories of a region are necessary in order to understand the relationships between climate and human evolution.

  9. Spinal cord evolution in early Homo.

    PubMed

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus.

  10. Origin and early evolution of angiosperms.

    PubMed

    Soltis, Douglas E; Bell, Charles D; Kim, Sangtae; Soltis, Pamela S

    2008-01-01

    Contributions from paleobotany, phylogenetics, genomics, developmental biology, and developmental genetics have yielded tremendous insight into Darwin's "abominable mystery"--the origin and rapid diversification of the angiosperms. Analyses of morphological and molecular data reveal a revised "anthophyte clade" consisting of the fossils glossopterids, Pentoxylon, Bennettitales, and Caytonia as sister to angiosperms. Molecular estimates of the age of crown group angiosperms have converged on 140-180 million years ago (Ma), older than the oldest fossils (132 Ma), suggesting that older fossils remain to be discovered. Whether the first angiosperms were forest shrubs (dark-and-disturbed hypothesis) or aquatic herbs (wet-and-wild hypothesis) remains unclear. The near-basal phylogenetic position of Nymphaeales (water lilies), which may include the well-known fossil Archaefructus, certainly indicates that the aquatic habit arose early. After initial, early "experiments," angiosperms radiated rapidly (evolution. Although the flower is the central feature of the angiosperms, its origin and subsequent diversification remain major questions. Variation in spatial expression of floral regulators may control major differences in floral morphology between basal angiosperms and eudicot models.

  11. The Early Evolution of Mars' Crust

    NASA Astrophysics Data System (ADS)

    Samuel, H.; Baratoux, D.; Kurita, K.

    2014-12-01

    The Mars crustal density and thickness have been recently re-evaluated using petrological constraints from remote sensing, in-situ data, and SNC meteorites. This work indicates that the present-day Martian crust is denser and thicker than previously proposed if essentially basaltic in composition. As a consequence, the average crustal thickness would be commensurable with the depth of the basalt/eclogite transition, re-opening the question of crustal recycling on Early Mars and more generally throughout all its history. We have therefore investigated the conditions under which a thick ancient crust with an eclogitic root could survive through the history of Mars using numerical modelling. Delamination may occur if the combination of poorly constrained physical parameters induces the presence of gravitationally unstable layers and favors a rheological decoupling. To study the conditions and the time scales for the occurrence of crustal delamination on Mars, we investigated the influence of critical parameters for a plausible range of values corresponding to the Martian mantle. For each case we follow the dynamic evolution over geological times of a three-layer system (i.e., crust-mantle with a distinction between low pressure, buoyant basaltic crust and higher pressure, denser eclogitic material). We systematically varied four governing parameters within plausible ranges: (1) the basalt-eclogite transition depth, (2) the density difference between the mantle and the basaltic crust, (3) the density difference between the eclogitic crust and the lithosphere & mantle, (4) the viscous rheology. These experiments allow determining the average Martian crustal thickness at early and late evolutionary stages.

  12. Early hydrodynamic evolution of a stellar collision

    SciTech Connect

    Kushnir, Doron; Katz, Boaz

    2014-04-20

    The early phase of the hydrodynamic evolution following the collision of two stars is analyzed. Two strong shocks propagate from the contact surface and move toward the center of each star at a velocity that is a small fraction of the velocity of the approaching stars. The shocked region near the contact surface has a planar symmetry and a uniform pressure. The density vanishes at the (Lagrangian) surface of contact, and the speed of sound diverges there. The temperature, however, reaches a finite value, since as the density vanishes, the finite pressure is radiation dominated. For carbon-oxygen white dwarf (CO WD) collisions, this temperature is too low for any appreciable nuclear burning shortly after the collision, which allows for a significant fraction of the mass to be highly compressed to the density required for efficient {sup 56}Ni production in the detonation wave that follows. This property is crucial for the viability of collisions of typical CO WD as progenitors of type Ia supernovae, since otherwise only massive (>0.9 M {sub ☉}) CO WDs would have led to such explosions (as required by all other progenitor models). The divergence of the speed of sound limits numerical studies of stellar collisions, as it makes convergence tests exceedingly expensive unless dedicated schemes are used. We provide a new one-dimensional Lagrangian numerical scheme to achieve this. A self-similar planar solution is derived for zero-impact parameter collisions between two identical stars, under some simplifying assumptions (including a power-law density profile), which is the planar version of previous piston problems that were studied in cylindrical and spherical symmetries.

  13. The early evolution of protostellar disks

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad

    1994-01-01

    We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).

  14. Natural evidence for chemical and early biological evolution

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Oparin (1924) and Haldane (1929) have independently hypothesized that life arose under reducing conditions through an evolutionary sequence of events involving increasingly complex organic substances. The natural evidence for this hypothesis of chemical evolution is considered, giving particular attention to tangible samples which have been chemically analyzed in earth-bound laboratories. It is found that meteorites provide naturally occurring evidence in support of chemical evolution, but not of biological evolution. Studies on the early Precambrian Swaziland Sequence and the Bulawayan System of southern Africa provide evidence for very early biological evolution.

  15. The early history of chance in evolution.

    PubMed

    Pence, Charles H

    2015-04-01

    Work throughout the history and philosophy of biology frequently employs 'chance', 'unpredictability', 'probability', and many similar terms. One common way of understanding how these concepts were introduced in evolution focuses on two central issues: the first use of statistical methods in evolution (Galton), and the first use of the concept of "objective chance" in evolution (Wright). I argue that while this approach has merit, it fails to fully capture interesting philosophical reflections on the role of chance expounded by two of Galton's students, Karl Pearson and W.F.R. Weldon. Considering a question more familiar from contemporary philosophy of biology--the relationship between our statistical theories of evolution and the processes in the world those theories describe--is, I claim, a more fruitful way to approach both these two historical actors and the broader development of chance in evolution.

  16. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  17. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  18. Disintegrating Multiple Systems in Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo

    2000-12-01

    near-infrared object. For typical parameters, this geometry persists for only 5000 yr or so. If the ejected star does not escape, cyclic motion of a hierarchical triple begins. This explains the so-called IRC binaries that are infrequently found in star-forming regions. The standard model of early stellar evolution states that young stars gradually and smoothly make the transitions from Class 0 through Class I and II objects to eventually become Class III objects. In contrast, stars born in multiple systems can abruptly transit from a Class 0 or I object to a visible T Tauri star. The main accretion phase may be terminated by the stochastic process of triple decay. Depending on the moment of triple disintegration, the ejected objects can range from stellar embryos, which will emerge as very low mass stars or even brown dwarfs, to essentially fully built-up stars. In this picture, the initial mass function toward its low-mass end has an important stochastic component that can only be described by the half-life of the decay processes. Because the ejected stars can take only limited circumstellar material with them, they will soon lose their classical T Tauri characteristics and join the halo of weak-line T Tauri stars that surround star-forming clouds. Differences in ejection may explain why two apparently similar T Tauri stars of about the same age can have major differences in the size of their circumstellar disks.

  19. The Composition and Early Evolution of Earth

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Lewis, J. S.

    1993-09-01

    A weighted average composition is suggestd as the "Best Bulk Silicate Earth" (BBSE). BBSE, thought to represent Earth's primitive mantle (modern mantle + crust), is a concept based on analyses of oceanic theoleiites and continental flood basalts, oceanic and continental alkali basalts, ultramafic ophiolites, Archean komatiites, and spinel- and garnet-bearing xenoliths from basalts and kimberlites. BBSE shows the combined effects of core formation and volatility, presumably including condensation and sublimation in the solar nebula and volatile loss during the accretion and early evolution of Earth. The abundances of volatile lithophile elements show a volatility trend (VT) when plotted against condensation temperature. The slope of VT suggests that Earth accreted matter that had condensed over a wide range of temperatures, consistent with planet-formation scenarios of G. W. Wetherill (1988, Mercury, pp. 670-691, Univ. of Arizona Press, Tucson; 1990, Annu. Rev. Earth Planet. Sci. 18, 205-256). Using VT, BBSE, and long-standing seismic constraints, we infer the composition of the entire Earth and its core. The bulk Earth's VT closely resembles the average composition of H-chondrites (H3-H6). The 10 most abundant elements in the core nominally include ∼85.55 mass% Fe, 5.18% O, 4.88% Ni, 2.69% S, 0.45% Cr, 0.41% Mn, 0.35% P, 0.22% Co, 0.07% Cl, and possibly 0.02% K. The core may contain most of Earth's heavy alkali and halogen elements, in addition to chalcophiles and siderophiles; alternatively, depletions of alkali halide components in BBSE may have resulted from impact blow-off of an early saline ocean. It is unclear whether the core contains a significant fraction of Earth's K and Pb. Possible partitioning of substantial quantities of O, Rb, and Cs into the core and the partitioning behavior of fourth-period transition metals suggests that metal-silicate equilibration occurred at characteristic pressures of several hundred kilobars or more; if correct, this

  20. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  1. Early Cretaceous angiosperms and beetle evolution.

    PubMed

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A

    2013-09-12

    The Coleoptera (beetles) constitute almost one-fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle-angiosperm mutualisms will greatly increase during the near future.

  2. Physiology, phylogeny, early evolution, and GAPDH.

    PubMed

    Martin, William F; Cerff, Rüdiger

    2017-03-06

    The chloroplast and cytosol of plant cells harbor a number of parallel biochemical reactions germane to the Calvin cycle and glycolysis, respectively. These reactions are catalyzed by nuclear encoded, compartment-specific isoenzymes that differ in their physiochemical properties. The chloroplast cytosol isoenzymes of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) harbor evidence of major events in the history of life: the origin of the first genes, the bacterial-archaeal split, the origin of eukaryotes, the evolution of protein compartmentation during eukaryote evolution, the origin of plastids, and the secondary endosymbiosis among the algae with complex plastids. The reaction mechanism of GAPDH entails phosphorolysis of a thioester to yield an energy-rich acyl phosphate bond, a chemistry that points to primitive pathways of energy conservation that existed even before the origin of the first free-living cells. Here, we recount the main insights that chloroplast and cytosolic GAPDH provided into endosymbiosis and physiological evolution.

  3. Continuing Evolution: The Rhode Island Early Childhood Summer Institute

    ERIC Educational Resources Information Center

    Horm, Diane M.; O'Keefe, Beverly; Diffendale, Charlotte; Cohen, Amy; Schennum, Ruth; Pucciarelli, Larry; Collins, Cheryl; Merrifield, Margaret; Nardone, Virginia; Martin, Marilyn; Bryan, Linda; DeRobbio, Gail

    2004-01-01

    This narrative chronicles the continued evolution and development of the Rhode Island Early Childhood Summer Institute, an intensive 5-day inservice professional development program designed for educational leaders from various sectors of the early care and education field. The goal is to review the continued use of successful practices…

  4. Early School-Leaving in Spain: Evolution, Intensity and Determinants

    ERIC Educational Resources Information Center

    Fernandez-Macias, Enrique; Anton, Jose-Ignacio; Brana, Francisco-Javier; De Bustillo, Rafael Munoz

    2013-01-01

    Spain has one of the highest levels of early school leaving and educational failure of the European Union. The purpose of this paper is to analyse the anatomy of early school leaving in Spain and its characteristics. In order to do so, in the first part we discuss the measurement problems related with this concept and the evolution of drop-out…

  5. Solar Radiation as Driving Force In Early Evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  6. Obliquity Evolution of an Early Venus

    NASA Astrophysics Data System (ADS)

    Quarles, Billy L.; Barnes, Jason; Lissauer, Jack J.; Chambers, John

    2014-11-01

    Stark differences in both atmospheric mass and rotation are apparent between the present-day Earth and neighboring Venus. These planets may have been more similar 4 Gyr ago when most of the carbon within Venus may have been in solid form, implying a low-mass atmosphere. As a result, Venus's rotation rate could have been much faster than at present due to the smaller cumulative effects of solid-body and atmospheric tides. We investigate how the obliquity of a hypothetical rapidly-rotating Early Venus would have evolved as compared to a Moonless Earth. As with our previous investigation [Lissauer, Barnes, & Chambers 2012], slow prograde rotation of our hypothesized Early Venus generally leads to larger variations in obliquity than does retrograde rotation. However, the variability of obliquity for retrograde rotations differs from the Moonless Earth and can change with the initial spin period. The implications for early habitability of extrasolar Venus analogs will also be discussed.

  7. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  8. The evolution of the early lunar crust

    NASA Astrophysics Data System (ADS)

    Hess, P. C.; Parmentier, E. M.

    1997-03-01

    In the framework of the plutonic and tectonic processes that acted to create the current configuration of the lunar crust, attention is given to the problems as to why (1) the crust is vertically zoned; (2) there are no plutonic equivalents to mare basalt; and (3) the evolution of lunar crust would shape subsequent and younger volcanic events. The existence of mascons by 3.9 By shows that the entire crust had strengthened, and could support far greater stresses than those generated by mafic plutons.

  9. Concerted gene recruitment in early plant evolution

    PubMed Central

    Huang, Jinling; Gogarten, J Peter

    2008-01-01

    Background Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. Results Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants. These genes most likely provided new functions, often essential for plant growth and development, to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the biogenesis and functionality of plastids, the defining character of plants. Conclusion Our data suggest that, although ancient horizontal gene transfer events did occur in eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene transfer in the adaptation of the recipient organism. Our data also show that multiple independently acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene transfer in the macroevolution of eukaryotes. PMID:18611267

  10. Evolution of the early Antarctic ice ages.

    PubMed

    Liebrand, Diederik; de Bakker, Anouk T M; Beddow, Helen M; Wilson, Paul A; Bohaty, Steven M; Ruessink, Gerben; Pälike, Heiko; Batenburg, Sietske J; Hilgen, Frederik J; Hodell, David A; Huck, Claire E; Kroon, Dick; Raffi, Isabella; Saes, Mischa J M; van Dijk, Arnold E; Lourens, Lucas J

    2017-03-27

    Understanding the stability of the early Antarctic ice cap in the geological past is of societal interest because present-day atmospheric CO2 concentrations have reached values comparable to those estimated for the Oligocene and the Early Miocene epochs. Here we analyze a new high-resolution deep-sea oxygen isotope (δ(18)O) record from the South Atlantic Ocean spanning an interval between 30.1 My and 17.1 My ago. The record displays major oscillations in deep-sea temperature and Antarctic ice volume in response to the ∼110-ky eccentricity modulation of precession. Conservative minimum ice volume estimates show that waxing and waning of at least ∼85 to 110% of the volume of the present East Antarctic Ice Sheet is required to explain many of the ∼110-ky cycles. Antarctic ice sheets were typically largest during repeated glacial cycles of the mid-Oligocene (∼28.0 My to ∼26.3 My ago) and across the Oligocene-Miocene Transition (∼23.0 My ago). However, the high-amplitude glacial-interglacial cycles of the mid-Oligocene are highly symmetrical, indicating a more direct response to eccentricity modulation of precession than their Early Miocene counterparts, which are distinctly asymmetrical-indicative of prolonged ice buildup and delayed, but rapid, glacial terminations. We hypothesize that the long-term transition to a warmer climate state with sawtooth-shaped glacial cycles in the Early Miocene was brought about by subsidence and glacial erosion in West Antarctica during the Late Oligocene and/or a change in the variability of atmospheric CO2 levels on astronomical time scales that is not yet captured in existing proxy reconstructions.

  11. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  12. An option space for early neural evolution

    PubMed Central

    Jékely, Gáspár; Keijzer, Fred; Godfrey-Smith, Peter

    2015-01-01

    The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input–output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems. PMID:26554049

  13. Simulating Stellar Cluster Formation and Early Evolution

    NASA Astrophysics Data System (ADS)

    Wall, Joshua; McMillan, Stephen L. W.; Mac Low, Mordecai-Mark; Ibañez-Mejia, Juan; Portegies Zwart, Simon; Pellegrino, Andrew

    2017-01-01

    We present our current development of a model of stellar cluster formation and evolution in the presence of stellar feedback. We have integrated the MHD code Flash into the Astrophysical Multi-Use Software Environment (AMUSE) and coupled the gas dynamics to an N-body code using a Fujii gravity bridge. Further we have integrated feedback from radiation using the FERVENT module for Flash, supernovae by thermal and kinetic energy injection, and winds by kinetic energy injection. Finally we have developed a method of implementing star formation using the Jeans criterion of the gas. We present initial results from our cluster formation model in a cloud using self-consistent boundary conditions drawn from a model of supernova-driven interstellar turbulence.

  14. Geometry Shapes Evolution of Early Multicellularity

    PubMed Central

    Libby, Eric; Ratcliff, William; Travisano, Michael; Kerr, Ben

    2014-01-01

    Organisms have increased in complexity through a series of major evolutionary transitions, in which formerly autonomous entities become parts of a novel higher-level entity. One intriguing feature of the higher-level entity after some major transitions is a division of reproductive labor among its lower-level units in which reproduction is the sole responsibility of a subset of units. Although it can have clear benefits once established, it is unknown how such reproductive division of labor originates. We consider a recent evolution experiment on the yeast Saccharomyces cerevisiae as a unique platform to address the issue of reproductive differentiation during an evolutionary transition in individuality. In the experiment, independent yeast lineages evolved a multicellular “snowflake-like” cluster formed in response to gravity selection. Shortly after the evolution of clusters, the yeast evolved higher rates of cell death. While cell death enables clusters to split apart and form new groups, it also reduces their performance in the face of gravity selection. To understand the selective value of increased cell death, we create a mathematical model of the cellular arrangement within snowflake yeast clusters. The model reveals that the mechanism of cell death and the geometry of the snowflake interact in complex, evolutionarily important ways. We find that the organization of snowflake yeast imposes powerful limitations on the available space for new cell growth. By dying more frequently, cells in clusters avoid encountering space limitations, and, paradoxically, reach higher numbers. In addition, selection for particular group sizes can explain the increased rate of apoptosis both in terms of total cell number and total numbers of collectives. Thus, by considering the geometry of a primitive multicellular organism we can gain insight into the initial emergence of reproductive division of labor during an evolutionary transition in individuality. PMID:25233196

  15. Membrane heredity and early chloroplast evolution.

    PubMed

    Cavalier-Smith, T

    2000-04-01

    Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.

  16. The early evolution of life: solution to Darwin's dilemma

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1994-01-01

    Recent studies of Precambrian fossils indicate that life on Earth originated earlier than assumed, microscopic life was prevalent in the Precambrian Eon, the tempo and mode of evolution during the Precambrian period were different from other periods, and that only the Precambrian fossil record can be used as evidence of early life. Implications for future research include directing the search for the origin of life away from the geological record, modification of hypotheses about molecular change, use of Precambrian microfossils in dating younger geological units, and progress in defining the nature of major events in early evolution.

  17. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. (Editor)

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.

  18. Prelinguistic evolution in early hominins: whence motherese?

    PubMed

    Falk, Dean

    2004-08-01

    In order to formulate hypotheses about the evolutionary underpinnings that preceded the first glimmerings of language, mother-infant gestural and vocal interactions are compared in chimpanzees and humans and used to model those of early hominins. These data, along with paleoanthropological evidence, suggest that prelinguistic vocal substrates for protolanguage that had prosodic features similar to contemporary motherese evolved as the trend for enlarging brains in late australopithecines/early Homo progressively increased the difficulty of parturition, thus causing a selective shift toward females that gave birth to relatively undeveloped neonates. It is hypothesized that hominin mothers adopted new foraging strategies that entailed maternal silencing, reassuring, and controlling of the behaviors of physically removed infants (i.e., that shared human babies' inability to cling to their mothers' bodies). As mothers increasingly used prosodic and gestural markings to encourage juveniles to behave and to follow, the meanings of certain utterances (words) became conventionalized. This hypothesis is based on the premises that hominin mothers that attended vigilantly to infants were strongly selected for, and that such mothers had genetically based potentials for consciously modifying vocalizations and gestures to control infants, both of which receive support from the literature.

  19. Calibrating rates of early Cambrian evolution.

    PubMed

    Bowring, S A; Grotzinger, J P; Isachsen, C E; Knoll, A H; Pelechaty, S M; Kolosov, P

    1993-09-03

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began at approximately 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.

  20. Calibrating rates of early Cambrian evolution

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Grotzinger, John P.; Isachsen, Clark E.; Knoll, Andrew H.; Pelechaty, Shane M.; Kolosov, Peter

    1993-01-01

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began about 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.

  1. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  2. Open Listening: Creative Evolution in Early Childhood Settings

    ERIC Educational Resources Information Center

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  3. Early Stages of the Evolution of Life: a Cybernetic Approach

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  4. Early evolution of Tubulogenerina during the Paleogene of Europe

    USGS Publications Warehouse

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  5. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    PubMed Central

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  6. Rates of morphological evolution are heterogeneous in Early Cretaceous birds.

    PubMed

    Wang, Min; Lloyd, Graeme T

    2016-04-13

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds.

  7. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  8. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  9. Lower Cambrian vendobionts from China and early diploblast evolution.

    PubMed

    Shu, D-G; Morris, S Conway; Han, J; Li, Y; Zhang, X-L; Hua, H; Zhang, Z-F; Liu, J-N; Guo, J-F; Yao, Y; Yasui, K

    2006-05-05

    Ediacaran assemblages immediately predate the Cambrian explosion of metazoans and should have played a crucial role in this radiation. Their wider relationships, however, have remained refractory and difficult to integrate with early metazoan phylogeny. Here, we describe a frondlike fossil, Stromatoveris (S. psygmoglena sp. nov.), from the Lower Cambrian Chengjiang Lagerstätte (Yunnan, China) that is strikingly similar to Ediacaran vendobionts. The exquisite preservation reveals closely spaced branches, probably ciliated, that appear to represent precursors of the diagnostic comb rows of ctenophores. Therefore, this finding has important implications for the early evolution of this phylum and related diploblasts, some of which independently evolved a frondose habit.

  10. Evolution of entanglement entropy in the early universe

    SciTech Connect

    Chen, Pisin; Hsin, Po-Shen; Niu, Yuezhen E-mail: r01222031@ntu.edu.tw

    2014-02-01

    We investigate the entropy evolution in the early universe by computing the change of the entanglement entropy in Freedmann-Robertson-Walker quantum cosmology in the presence of particle horizon. The matter is modeled by a Chaplygin gas so as to provide a smooth interpolation between inflationary and radiation epochs, rendering the evolution of entropy from early time to late time trackable. We found that soon after the onset of the inflation, the total entanglement entropy rapidly decreases to a minimum. It then rises monotonically in the remainder of the inflation epoch as well as the radiation epoch. Our result is in qualitative agreement with the area law of Ryu and Takayanagi including the logarithmic correction. We comment on the possible implication of our finding to the cosmological entropy problem.

  11. Molecular clocks and the early evolution of metazoan nervous systems

    PubMed Central

    Wray, Gregory A.

    2015-01-01

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  12. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.

  13. Bryophyte diversity and evolution: windows into the early evolution of land plants.

    PubMed

    Shaw, A Jonathan; Szövényi, Péter; Shaw, Blanka

    2011-03-01

    The "bryophytes" comprise three phyla of plants united by a similar haploid-dominant life cycle and unbranched sporophytes bearing one sporangium: the liverworts (Marchantiophyta), mosses (Bryophyta), and hornworts (Anthocerophyta). Combined, these groups include some 20000 species. As descendents of embryophytes that diverged before tracheophytes appeared, bryophytes offer unique windows into the early evolution of land plants. We review insights into the evolution of plant life cycles, in particular the elaboration of the sporophyte generation, the major lineages within bryophyte phyla, and reproductive processes that shape patterns of bryophyte evolution. Recent transcriptomic work suggests extensive overlap in gene expression in bryophyte sporophytes vs. gametophytes, but also novel patterns in the sporophyte, supporting Bower's antithetic hypothesis for origin of alternation of generations. Major lineages of liverworts, mosses, and hornworts have been resolved and general patterns of morphological evolution can now be inferred. The life cycles of bryophytes, arguably more similar to those of early embryophytes than are those in any other living plant group, provide unique insights into gametophyte mating patterns, sexual conflicts, and the efficacy and effects of spore dispersal during early land plant evolution.

  14. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  15. Early organic evolution: Implications for mineral and energy resources

    SciTech Connect

    Schidlowski, M.

    1992-01-01

    Early Organic Evolution is the proceedings of the ninth Alfred Wegener Conference, the final meeting of IGCP Project 157 held in Germany in 1988. Over the past 15 years, Project 157 has promoted the blending of organic geochemistry, economic geology, and evolutionary biology. This IGCP publication covers a diverse set of topics and truly reflects the interdisciplinary nature of the field of early organic evolution. In the second and largest section, seventeen papers on organic matter in ancient sediments discuss the chemical analysis of early sediments, gas, and oil. The reader is treated to a review of carbon isotope chemistry and a [delta][sup 13]C walk through the past 3.8 billion years, and even deeper yet into the mantle. Following this is a series of papers carefully describing elemental, isotopic, and organic geochemical (particularly biomarker) data from ancient sediments found throughout the earth. This section ends very strongly with the paper by Fowler on the influence of a single alga on Ordovician oils and rocks from Canada. He first gives a detailed account of the considerable chemical and microscopic evidence showing that minimally reworked Gloeocapsomorpha prisca is the main contributor of organic matter to the oil and rock and then goes on to discuss the nature of the organism. In general, this book reviews information presented in other places, but still serves as a good resource for those interested in the evolution of the Earth.

  16. Early animal evolution and the origins of nervous systems.

    PubMed

    Budd, Graham E

    2015-12-19

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour.

  17. Early animal evolution and the origins of nervous systems

    PubMed Central

    Budd, Graham E.

    2015-01-01

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. PMID:26554037

  18. The evolution of field early-type galaxies in the FDF and WHDF

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Böhm, Asmus; Ziegler, Bodo L.

    2009-03-01

    We explore the properties of 24 field early-type galaxies in the redshift range 0.20 < z < 0.75 down to MB <= -19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. Target galaxies were selected on the basis of a combination of luminosity, spectrophotometric type, morphology and photometric redshift or broad-band colours. High signal-to-noise ratio intermediate-resolution spectroscopy has been acquired at the Very Large Telescope, complemented by deep high-resolution imaging with the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) and additional ground-based multiband photometry. All galaxy spectra were observed under subarcsecond conditions and allow us to derive accurate kinematics and stellar population properties of the galaxies. To clarify the low level of star formation detected in some galaxies, we identify the amount of active galactic nuclei (AGN) activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. None of the galaxies in our sample was identified as secure AGN source based on their X-ray emission. The rest-frame B- and K-band scaling relations of the Faber-Jackson relation and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical (effective) mass-to-light ratio of our galaxies as <Δlog(M/LB)/z> = -0.74 +/- 0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, which gets supported by recent studies of field galaxies up to z ~ 1. Independent evidence for recent star formation activity is provided by spectroscopic ([OII] emission, Hδ) and photometric (rest-frame broad

  19. Investigation of early plasma evolution induced by ultrashort laser pulses.

    PubMed

    Hu, Wenqian; Shin, Yung C; King, Galen B

    2012-07-02

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7). However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 10(14) W/cm(2). Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions(12). The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. (12) to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.

  20. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  1. Hydrogenation of iron in the early stage of Earth's evolution

    PubMed Central

    Iizuka-Oku, Riko; Yagi, Takehiko; Gotou, Hirotada; Okuchi, Takuo; Hattori, Takanori; Sano-Furukawa, Asami

    2017-01-01

    Density of the Earth's core is lower than that of pure iron and the light element(s) in the core is a long-standing problem. Hydrogen is the most abundant element in the solar system and thus one of the important candidates. However, the dissolution process of hydrogen into iron remained unclear. Here we carry out high-pressure and high-temperature in situ neutron diffraction experiments and clarify that when the mixture of iron and hydrous minerals are heated, iron is hydrogenized soon after the hydrous mineral is dehydrated. This implies that early in the Earth's evolution, as the accumulated primordial material became hotter, the dissolution of hydrogen into iron occurred before any other materials melted. This suggests that hydrogen is likely the first light element dissolved into iron during the Earth's evolution and it may affect the behaviour of the other light elements in the later processes. PMID:28082735

  2. Early animal evolution: emerging views from comparative biology and geology

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Carroll, S. B.

    1999-01-01

    The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.

  3. Hydrogenation of iron in the early stage of Earth's evolution

    NASA Astrophysics Data System (ADS)

    Iizuka-Oku, Riko; Yagi, Takehiko; Gotou, Hirotada; Okuchi, Takuo; Hattori, Takanori; Sano-Furukawa, Asami

    2017-01-01

    Density of the Earth's core is lower than that of pure iron and the light element(s) in the core is a long-standing problem. Hydrogen is the most abundant element in the solar system and thus one of the important candidates. However, the dissolution process of hydrogen into iron remained unclear. Here we carry out high-pressure and high-temperature in situ neutron diffraction experiments and clarify that when the mixture of iron and hydrous minerals are heated, iron is hydrogenized soon after the hydrous mineral is dehydrated. This implies that early in the Earth's evolution, as the accumulated primordial material became hotter, the dissolution of hydrogen into iron occurred before any other materials melted. This suggests that hydrogen is likely the first light element dissolved into iron during the Earth's evolution and it may affect the behaviour of the other light elements in the later processes.

  4. Evolution and ecology of retinal photoreception in early vertebrates.

    PubMed

    Collin, Shaun P

    2010-01-01

    Visual ecology or the relationship between the visual system of an animal and its environment has proven to be a crucial research field for establishing general concepts of adaptation, specialization and evolution. The visual neuroscientist is indeed confronted with a plethora of different visual characteristics, each seemingly optimised for each species' ecological niche, but often without a clear understanding of the evolutionary constraints at play. However, before we are able to fully understand the influence(s) of ecology and phylogeny on visual system design in vertebrates, it is first necessary to understand the basic bauplan of key representatives of each taxa. This review examines photoreception in hagfishes, lampreys, cartilaginous fishes and lungfishes with an eye to their ecology using a range of neurobiological methods including anatomy, microspectrophotometry and molecular genetics. These early vertebrates represent critical stages in evolution and surprisingly possess a level of visual complexity that is almost unrivalled in other vertebrates.

  5. Magnetic Field and Early Evolution of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke

    2016-03-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetised cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper, we review the mechanism of magnetic braking, its effect on disk formation and early evolution, and the mechanisms that resolve the magnetic braking problem. In particular, we emphasise the importance of non-ideal effects. The combination of magnetic diffusion and thermal evolution during gravitational collapse provides a robust formation process for the circumstellar disk at the very early phase of protostar formation. The rotation induced by the Hall effect can supply a sufficient amount of angular momentum for typical circumstellar disks around T Tauri stars. By examining the combination of the suggested mechanisms, we conclude that the circumstellar disks commonly form in the very early phase of protostar formation.

  6. The formation and early evolution of the Milky Way galaxy.

    PubMed

    Buser, R

    2000-01-07

    Recent observations indicate that the Milky Way may have formed by aggregation of gas and stars from a reservoir of preexisting small galaxies in the local universe. The process probably began more than 12 billion years ago with material of different original angular momentum following two separate evolutionary lines, one into the slowly rotating halo and central bulge and the other into the rapidly rotating disk. The existence of distinct thick and thin disks shows that continuing mergers of satellite galaxies likely also determined the early evolution of the main structural component of the luminous Galaxy.

  7. The early evolution of eukaryotes - A geological perspective

    NASA Technical Reports Server (NTRS)

    Knoll, Andrew H.

    1992-01-01

    This paper examines the goodness of fit between patterns of biological and environmental history implied by molecular phylogenies of eukaryotic organisms and the geological records of early eukaryote evolution. It was found that Precambrian geological records show evidence that episodic increases in biological diversity roughly coincided with episodic environmental changes and by sharp increases in atmospheric oxygen concentrations which significantly changed the earth surface environments. Although the goodness of fit among physical and biological changes is gratifyingly high, the records of these changes do not always coincide in time. The additional information in these fields that is needed for complete integration of geological and phylogenic records is suggested.

  8. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  9. Late stages of accumulation and early evolution of the planets

    NASA Technical Reports Server (NTRS)

    Vityazev, Andrey V.; Perchernikova, G. V.

    1991-01-01

    Recently developed solutions of problems are discussed that were traditionally considered fundamental in classical solar system cosmogony: determination of planetary orbit distribution patterns, values for mean eccentricity and orbital inclinations of the planets, and rotation periods and rotation axis inclinations of the planets. Two important cosmochemical aspects of accumulation are examined: the time scale for gas loss from the terrestrial planet zone, and the composition of the planets in terms of isotope data. It was concluded that the early beginning of planet differentiation is a function of the heating of protoplanets during collisions with large (thousands of kilometers) bodies. Energetics, heat mass transfer processes, and characteristic time scales of these processes at the early stages of planet evolution are considered.

  10. The oldest known primate skeleton and early haplorhine evolution.

    PubMed

    Ni, Xijun; Gebo, Daniel L; Dagosto, Marian; Meng, Jin; Tafforeau, Paul; Flynn, John J; Beard, K Christopher

    2013-06-06

    Reconstructing the earliest phases of primate evolution has been impeded by gaps in the fossil record, so that disagreements persist regarding the palaeobiology and phylogenetic relationships of the earliest primates. Here we report the discovery of a nearly complete and partly articulated skeleton of a primitive haplorhine primate from the early Eocene of China, about 55 million years ago, the oldest fossil primate of this quality ever recovered. Coupled with detailed morphological examination using propagation phase contrast X-ray synchrotron microtomography, our phylogenetic analysis based on total available evidence indicates that this fossil is the most basal known member of the tarsiiform clade. In addition to providing further support for an early dichotomy between the strepsirrhine and haplorhine clades, this new primate further constrains the age of divergence between tarsiiforms and anthropoids. It also strengthens the hypothesis that the earliest primates were probably diurnal, arboreal and primarily insectivorous mammals the size of modern pygmy mouse lemurs.

  11. Early Palaeogene temperature evolution of the southwest Pacific Ocean.

    PubMed

    Bijl, Peter K; Schouten, Stefan; Sluijs, Appy; Reichart, Gert-Jan; Zachos, James C; Brinkhuis, Henk

    2009-10-08

    Relative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX(86) record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude approximately 65 degrees S). We show that southwest Pacific SSTs rose above present-day tropical values (to approximately 34 degrees C) during the Early Eocene age ( approximately 53 Myr ago) and had gradually decreased to about 21 degrees C by the early Late Eocene age ( approximately 36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration, additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.

  12. Links between hydrothermal environments, pyrophosphate, na(+), and early evolution.

    PubMed

    Holm, Nils G; Baltscheffsky, Herrick

    2011-10-01

    The discovery that photosynthetic bacterial membrane-bound inorganic pyrophosphatase (PPase) catalyzed light-induced phosphorylation of orthophosphate (Pi) to pyrophosphate (PPi) and the capability of PPi to drive energy requiring dark reactions supported PPi as a possible early alternative to ATP. Like the proton-pumping ATPase, the corresponding membrane-bound PPase also is a H(+)-pump, and like the Na(+)-pumping ATPase, it can be a Na(+)-pump, both in archaeal and bacterial membranes. We suggest that PPi and Na(+) transport preceded ATP and H(+) transport in association with geochemistry of the Earth at the time of the origin and early evolution of life. Life may have started in connection with early plate tectonic processes coupled to alkaline hydrothermal activity. A hydrothermal environment in which Na(+) is abundant exists in sediment-starved subduction zones, like the Mariana forearc in the W Pacific Ocean. It is considered to mimic the Archean Earth. The forearc pore fluids have a pH up to 12.6, a Na(+)-concentration of 0.7 mol/kg seawater. PPi could have been formed during early subduction of oceanic lithosphere by dehydration of protonated orthophosphates. A key to PPi formation in these geological environments is a low local activity of water.

  13. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  14. Coupled core-mantle thermal evolution of early Mars

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Solomatov, V. S.

    2009-07-01

    Several arguments point out that at the end of planetary accretion, the core of Mars was likely to be much hotter than its mantle, resulting in the formation of a completely or partially molten thermal boundary layer at the base of the mantle. Here we address the following questions: How did the superheated core cool and what role did it play in the early mantle dynamics of Mars? We divide the coupled core-mantle evolution of early Mars into two stages. During the first stage, vigorous convection within the molten boundary layer removes the heat from the core so that the boundary layer expands up. As the boundary layer gets thicker, the temperature of the layer decreases. Eventually, the temperature of the molten boundary layer drops down to the temperature for the rheological transition (melt fraction ˜40%) within 100 years. This stage is described by a parameterized convection approach. The second stage is modeled in spherical shell geometry using the fully three-dimensional finite element code CitcomS. A single plume (“superplume”) forms by the instability of the thermal boundary layer. The superplume stage lasts much longer, on the scale of millions to hundreds of millions of years, depending on the mantle viscosity. During both stages of evolution the heat flux can easily satisfy the requirements for the dynamo.

  15. Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion

    SciTech Connect

    Semikoz, V.B.; Smirnov, A.Yu.; Sokoloff, D.D. E-mail: smirnoff.alexandr@gmail.com

    2013-10-01

    We study hypermagnetic helicity and lepton asymmetry evolution in plasma of the early Universe before the electroweak phase transition (EWPT) accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law B/3−L{sub eR} = const at temperatures T > T{sub RL} ≅ 10 TeV the following universe cooling leads to the production of a non-zero left lepton (electrons and neutrinos) asymmetry. This is due to the Higgs decays becoming more faster when entering the equilibrium at T = T{sub RL} with the universe expansion, Γ{sub RL} ∼ T > H ∼ T{sup 2}, resulting in the parallel evolution of both the right and the left electron asymmetries at T < T{sub RL} through the corresponding Abelian anomalies in SM in the presence of a seed hypermagnetic field. The hypermagnetic helicity evolution proceeds in a self-consistent way with the lepton asymmetry growth. The role of sphaleron transitions decreasing the left lepton number turns out to be negligible in given scenario. The hypermagnetic helicity can be a supply for the magnetic one in Higgs phase assuming a strong seed hypermagnetic field in symmetric phase.

  16. MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized.

  17. Clades reach highest morphological disparity early in their evolution

    PubMed Central

    Hughes, Martin; Gerber, Sylvain; Wills, Matthew Albion

    2013-01-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the “big five” mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing. PMID:23884651

  18. Clades reach highest morphological disparity early in their evolution

    NASA Astrophysics Data System (ADS)

    Hughes, Martin; Gerber, Sylvain; Albion Wills, Matthew

    2013-08-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the "big five" mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing.

  19. Cabomba as a model for studies of early angiosperm evolution

    PubMed Central

    Vialette-Guiraud, Aurelie C. M.; Alaux, Michael; Legeai, Fabrice; Finet, Cedric; Chambrier, Pierre; Brown, Spencer C.; Chauvet, Aurelie; Magdalena, Carlos; Rudall, Paula J.; Scutt, Charles P.

    2011-01-01

    Background The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. Scope The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants. PMID:21486926

  20. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  1. Early Vertebrate Evolution of the Host Restriction Factor Tetherin

    PubMed Central

    Heusinger, Elena; Kluge, Silvia F.; Kirchhoff, Frank

    2015-01-01

    ABSTRACT Tetherin is an interferon-inducible restriction factor targeting a broad range of enveloped viruses. Its antiviral activity depends on an unusual topology comprising an N-terminal transmembrane domain (TMD) followed by an extracellular coiled-coil region and a C-terminal glycosylphosphatidylinositol (GPI) anchor. One of the two membrane anchors is inserted into assembling virions, while the other remains in the plasma membrane of the infected cell. Thus, tetherin entraps budding viruses by physically bridging viral and cellular membranes. Although tetherin restricts the release of a large variety of diverse human and animal viruses, only mammalian orthologs have been described to date. Here, we examined the evolutionary origin of this protein and demonstrate that tetherin orthologs are also found in fish, reptiles, and birds. Notably, alligator tetherin efficiently blocks the release of retroviral particles. Thus, tetherin emerged early during vertebrate evolution and acquired its antiviral activity before the mammal/reptile divergence. Although there is only limited sequence homology, all orthologs share the typical topology. Two unrelated proteins of the slime mold Dictyostelium discoideum also adopt a tetherin-like configuration with an N-terminal TMD and a C-terminal GPI anchor. However, these proteins showed no evidence for convergent evolution and failed to inhibit virion release. In summary, our findings demonstrate that tetherin emerged at least 450 million years ago and is more widespread than previously anticipated. The early evolution of antiviral activity together with the high topology conservation but low sequence homology suggests that restriction of virus release is the primary function of tetherin. IMPORTANCE The continuous arms race with viruses has driven the evolution of a variety of cell-intrinsic immunity factors that inhibit different steps of the viral replication cycle. One of these restriction factors, tetherin, inhibits the

  2. On the evolution of early development in the Nematoda.

    PubMed Central

    Goldstein, B

    2001-01-01

    The phylum Nematoda serves as an excellent model system for exploring how development evolves, using a comparative approach to developmental genetics. More than 100 laboratories are studying developmental mechanisms in the nematode Caenorhabditis elegans, and many of the methods that have been developed for C. elegans can be applied to other nematodes. This review summarizes what is known so far about steps in early development that have evolved in the nematodes, and proposes potential experiments that could make use of these data to further our understanding of how development evolves. The promise of such a comparative approach to developmental genetics is to fill a wide gap in our understanding of evolution--a gap spanning from mutations in developmental genes through to their phenotypic results, on which natural selection may act. PMID:11604120

  3. Contributions of Planetary Science to Studies of Early Biosphere Evolution

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    The history of impact cratering on the Moon, and extrapolations of crater chronologies to the inner planets, suggests that the late accretionary history of the Earth overlapped with other crucial events in the its history, including the origin of terrestrial life. This evidence, acquired from studies of other planetary bodies in the inner solar system, has profoundly affected how we view the early history of the Earth and evolution of the biosphere. Pre-biotic chemical evolution and the origin of life would have been delayed by the probable existence of a global magma ocean until -4.2 Ga. The early crust was largely destroyed by recycling, thus accounting for the sparse Archean record on Earth. Once life had developed, large impacts may have extinguished it several times before it finally gained a foothold. Potentially sterilizing impacts could have occurred as late as 3.7 Ga. At the very least, large impacts would have forced the biosphere through major environmental "bottlenecks" thereby canalizing its subsequent evolution. One legacy of these early events may be the structure of the present RNA-tree which indicates that extreme thermophiles are primitive within the Archaea, and may be the last common ancestors of life. By 3.5 Ga, marine sedimentary sequences contain unequivocal microbial fossils that attest to the presence of a terrestrial biosphere. The diversity of microbial forms present in these earliest fossil assemblages implies a preceding interval of evolution during which major evolutionary advances (e.g. photosynthesis) could have taken place. Evidence cited above places the origin of life within the interval 3.5 and 4.2 Ga, a period of 700 Ma. Thus, it appears that terrestrial life not only evolved rapidly, but perhaps more than once. This expands the possibilities that life may have also developed elsewhere. Of the other planets in our solar system, Mars holds the greatest chance of having developed life. But, the present surface of Mars is hostile

  4. The early evolution of Jean Piaget's clinical method.

    PubMed

    Mayer, Susan Jean

    2005-11-01

    This article analyzes the early evolution of Jean Piaget's renowned "clinical method" in order to investigate the method's strikingly original and generative character. Throughout his 1st decade in the field, Piaget frequently discussed and justified the many different approaches to data collection he used. Analysis of his methodological progression during this period reveals that Piaget's determination to access the genuine convictions of children eventually led him to combine 3 distinct traditions in which he had been trained-naturalistic observation, psychometrics, and the psychiatric clinical examination. It was in this amalgam, first evident in his 4th text, that Piaget discovered the clinical dynamic that would drive the classic experiments for which he is most well known.

  5. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.

    PubMed

    Slack, Kerryn E; Jones, Craig M; Ando, Tatsuro; Harrison, G L Abby; Fordyce, R Ewan; Arnason, Ulfur; Penny, David

    2006-06-01

    Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain

  6. The emergence and early evolution of biological carbon-fixation.

    PubMed

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  7. Early evolution of the venom system in lizards and snakes.

    PubMed

    Fry, Bryan G; Vidal, Nicolas; Norman, Janette A; Vonk, Freek J; Scheib, Holger; Ramjan, S F Ryan; Kuruppu, Sanjaya; Fung, Kim; Hedges, S Blair; Richardson, Michael K; Hodgson, Wayne C; Ignjatovic, Vera; Summerhayes, Robyn; Kochva, Elazar

    2006-02-02

    Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.

  8. [The model of early evolution of aposematic coloration].

    PubMed

    Grabovskiĭ, V I

    2012-01-01

    First stages of evolution of aposematic coloration include a region of negative selection. During these stages, individuals with aberrant coloration remain to be rare, while predators are still not able to associate coloration with unpalatability. The simulation model is proposed, in which this "problematic zone" is overcome by individual selection for the increasing of unpalatable prey conspicuity in a small unisexual population. It is shown that under this assumption aposematic coloration develops within a wide range of parameters such as the cost of unpalatability, the cost of coloring, the survival rate of unpalatable prey after being attacked by naïve predator, the probability of discovering of differently colored preys by predator as well as the predator's learning rate and memory depth. Thus, the early evolution ofaposematic coloration does not require any unusual or unique set of circumstances; aposematic coloration along with concomitant Bates mimicry inevitably evolve within a wide range of initial conditions. The loss of cryptic coloration by the original form (e.g., due to a change of food preferences, and thereby the structure of a background coloring, changes in habitat structure, color mutations etc.) is one such condition.

  9. Transposable elements and early evolution of sex chromosomes in fish.

    PubMed

    Chalopin, Domitille; Volff, Jean-Nicolas; Galiana, Delphine; Anderson, Jennifer L; Schartl, Manfred

    2015-09-01

    In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.

  10. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  11. Spectrophotometric Analysis of Caffeine.

    PubMed

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine.

  12. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  13. The Formation and Early Evolution of Embedded Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  14. East African climate pulses and early human evolution

    NASA Astrophysics Data System (ADS)

    Maslin, Mark A.; Brierley, Chris M.; Milner, Alice M.; Shultz, Susanne; Trauth, Martin H.; Wilson, Katy E.

    2014-10-01

    Current evidence suggests that all of the major events in hominin evolution have occurred in East Africa. Over the last two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of East Africa has varied in the past. The landscape of East Africa has altered dramatically over the last 10 million years. It has changed from a relatively flat, homogenous region covered with mixed tropical forest, to a varied and heterogeneous environment, with mountains over 4 km high and vegetation ranging from desert to cloud forest. The progressive rifting of East Africa has also generated numerous lake basins, which are highly sensitive to changes in the local precipitation-evaporation regime. There is now evidence that the presence of precession-driven, ephemeral deep-water lakes in East Africa were concurrent with major events in hominin evolution. It seems the unusual geology and climate of East Africa created periods of highly variable local climate, which, it has been suggested could have driven hominin speciation, encephalisation and dispersal out of Africa. One example is the significant hominin speciation and brain expansion event at ˜1.8 Ma that seems to have been coeval with the occurrence of highly variable, extensive, deep-water lakes. This complex, climatically very variable setting inspired first the variability selection hypothesis, which was then the basis for the pulsed climate variability hypothesis. The newer of the two suggests that the long-term drying trend in East Africa was punctuated by episodes of short, alternating periods of extreme humidity and aridity. Both hypotheses, together with other key theories of climate-evolution linkages, are discussed in this paper. Though useful the actual evolution mechanisms, which led to early hominins are still unclear and continue to be debated. However, it is clear that an understanding of East African

  15. Unexpected multiplicity of QRFP receptors in early vertebrate evolution

    PubMed Central

    Larhammar, Dan; Xu, Bo; Bergqvist, Christina A.

    2014-01-01

    The neuropeptide QRFP, also called 26RFa, and its G protein-coupled receptor GPR103 have been identified in all vertebrates investigated. In mammals, this peptide-receptor pair has been found to have several effects including stimulation of appetite. Recently, we reported that a QRFP peptide is present in amphioxus, Branchiostoma floridae, and we also identified a QRFP receptor (QRFPR) that mediates a functional response to sub-nanomolar concentrations of the amphioxus peptide as well as short and long human QRFP (Xu et al., submitted). Because the ancestral vertebrate underwent two tetraploidizations, it might be expected that duplicates of the QRFP gene and its receptor gene may exist. Indeed, we report here the identification of multiple vertebrate QRFPR genes. Three QRFPR genes are present in the coelacanth Latimeria chalumnae, representing an early diverging sarcopterygian lineage. Three QRFPR genes are present in the basal actinopterygian fish, the spotted gar. Phylogenetic and chromosomal analyses show that only two of these receptor genes are orthologous between the two species, thus demonstrating a total of four distinct vertebrate genes. Three of the QRFPR genes resulted from the early vertebrate tetraploidizations and were copied along with syntenic neuropeptide Y receptor genes. The fourth QRFPR gene may be an even older and distinct lineage. Because mammals and birds have only a single QRFPR gene, this means that three genes have been lost in these lineages, and at least one of these was lost independently in mammals and birds because it is still present in a turtle. In conclusion, these results show that the QRFP system gained considerable complexity in the early stages of vertebrate evolution and still maintains much of this in some lineages, and that it has been secondarily reduced in mammals. PMID:25386115

  16. Unexpected multiplicity of QRFP receptors in early vertebrate evolution.

    PubMed

    Larhammar, Dan; Xu, Bo; Bergqvist, Christina A

    2014-01-01

    The neuropeptide QRFP, also called 26RFa, and its G protein-coupled receptor GPR103 have been identified in all vertebrates investigated. In mammals, this peptide-receptor pair has been found to have several effects including stimulation of appetite. Recently, we reported that a QRFP peptide is present in amphioxus, Branchiostoma floridae, and we also identified a QRFP receptor (QRFPR) that mediates a functional response to sub-nanomolar concentrations of the amphioxus peptide as well as short and long human QRFP (Xu et al., submitted). Because the ancestral vertebrate underwent two tetraploidizations, it might be expected that duplicates of the QRFP gene and its receptor gene may exist. Indeed, we report here the identification of multiple vertebrate QRFPR genes. Three QRFPR genes are present in the coelacanth Latimeria chalumnae, representing an early diverging sarcopterygian lineage. Three QRFPR genes are present in the basal actinopterygian fish, the spotted gar. Phylogenetic and chromosomal analyses show that only two of these receptor genes are orthologous between the two species, thus demonstrating a total of four distinct vertebrate genes. Three of the QRFPR genes resulted from the early vertebrate tetraploidizations and were copied along with syntenic neuropeptide Y receptor genes. The fourth QRFPR gene may be an even older and distinct lineage. Because mammals and birds have only a single QRFPR gene, this means that three genes have been lost in these lineages, and at least one of these was lost independently in mammals and birds because it is still present in a turtle. In conclusion, these results show that the QRFP system gained considerable complexity in the early stages of vertebrate evolution and still maintains much of this in some lineages, and that it has been secondarily reduced in mammals.

  17. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    PubMed

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  18. Large-Scale Impact Cratering and Early Earth Evolution

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.; Cintala, M. J.

    1997-01-01

    The surface of the Moon attests to the importance of large-scale impact in its early crustal evolution. Previous models of the effects of a massive bombardment on terrestrial crustal evolution have relied on analogies with the Moon, with allowances for the presence of water and a thinner lithosphere. It is now apparent that strict lunar-terrestrial analogies are incorrect because of the "differential scaling" of crater dimensions and melt volumes with event size and planetary gravity. Impact melt volumes and "ancient cavity dimensions for specific impacts were modeled according to previous procedures. In the terrestrial case, the melt volume (V(sub m)) exceeds that of the transient cavity (V(sub tc)) at diameters > or = 400 km. This condition is reached on the Moon only with transient cavity diameters > or = 3000 km, equivalent to whole Moon melting. The melt volumes in these large impact events are minimum estimates, since, at these sizes, the higher temperature of the target rocks at depth will increase melt production. Using the modification-scaling relation of Croft, a transient cavity diameter of about 400 km in the terrestrial environment corresponds to an expected final impact "basin" diameter of about 900 km. Such a "basin" would be comparable in dimensions to the lunar basin Orientale. This 900-km "basin" on the early Earth, however, would not have had the appearance of Orientale. It would have been essentially a melt pool, and, morphologically, would have had more in common with the palimpsests structures on Callisto and Ganymede. With the terrestrial equivalents to the large multiring basins of the Moon being manifested as muted palimpsest-like structures filled with impact melt, it is unlikely they played a role in establishing the freeboard on the early Earth. The composition of the massive impact melt sheets (> 10 (exp 7) cu km) produced in "basin-forming" events on the early Earth would have most likely ranged from basaltic to more mafic for the

  19. Correlating early evolution of parasitic platyhelminths to Gondwana breakup.

    PubMed

    Badets, Mathieu; Whittington, Ian; Lalubin, Fabrice; Allienne, Jean-Francois; Maspimby, Jean-Luc; Bentz, Sophie; Du Preez, Louis H; Barton, Diane; Hasegawa, Hideo; Tandon, Veena; Imkongwapang, Rangpenyuba; Imkongwapang, Rangpenyubai; Ohler, Annemarie; Combes, Claude; Verneau, Olivier

    2011-12-01

    Investigating patterns and processes of parasite diversification over ancient geological periods should involve comparisons of host and parasite phylogenies in a biogeographic context. It has been shown previously that the geographical distribution of host-specific parasites of sarcopterygians was guided, from Palaeozoic to Cainozoic times, mostly by evolution and diversification of their freshwater hosts. Here, we propose phylogenies of neobatrachian frogs and their specific parasites (Platyhelminthes, Monogenea) to investigate coevolutionary processes and historical biogeography of polystomes and further discuss all the possible assumptions that may account for the early evolution of these parasites. Phylogenetic analyses of concatenated rRNA nuclear genes (18S and partial 28S) supplemented by cophylogenetic and biogeographic vicariance analyses reveal four main parasite lineages that can be ascribed to centers of diversity, namely Australia, India, Africa, and South America. In addition, the relationships among these biogeographical monophyletic groups, substantiated by molecular dating, reflect sequential origins during the breakup of Gondwana. The Australian polystome lineage may have been isolated during the first stages of the breakup, whereas the Indian lineage would have arisen after the complete separation of western and eastern Gondwanan components. Next, polystomes would have codiverged with hyloid sensu stricto and ranoid frog lineages before the completion of South American and African plate separation. Ultimately, they would have undergone an extensive diversification in South America when their ancestral host families diversified. Therefore, the presence of polystome parasites in specific anuran host clades and in discrete geographic areas reveals the importance of biogeographic vicariance in diversification processes and supports the occurrence and radiation of amphibians over ancient and recent geological periods.

  20. Replicated evolution of integrated plastic responses during early adaptive divergence.

    PubMed

    Parsons, Kevin J; Robinson, Beren W

    2006-04-01

    . Variation between ecomorphs and among lake populations in the covariance of plastic responses suggests the presence of genetic variation in plastic character responses. In three populations, open water ecomorphs also exhibited larger plastic responses to the environmental gradient than the local shallow water ecomorph. This could account for the greater integration of plastic responses in open water ecomorphs in two of the populations. This suggests that the plastic responses of local sunfish ecomorphs can diverge through changes in the magnitude and coordination of plastic responses. Although these results require further investigation, they suggest that early adaptive evolution in a novel environment can include changes to plastic character states. The genetic assimilation of coordinated plastic responses could result in the further, and possibly rapid, divergence of such populations and could also account for the evolution of genes of major effect that contribute to suites of phenotypic differences between divergent populations.

  1. Neoproterozoic Glaciations and the Early Evolution of Animals

    NASA Astrophysics Data System (ADS)

    Narbonne, G. M.

    2004-05-01

    The intense climatic changes that characterized the Neoproterozoic world were marked by equally profound evolutionary changes that ultimately led to the Cambrian Explosion. Early and Middle Neoproterozoic oceans contained prokaryotes and diverse eukaryotic lineages, including crown-group red, green, and heterokont algae. The survival of diverse eukaryotic lineages through the Sturtian, Marinoan, and Gaskiers glaciations implies that, although these were among the most extreme glaciations Earth has ever experienced, sea ice was not as thick or pervasive as required by earlier "hard Snowball" models. Most molecular clocks predict the existence of animals well before 600 Ma and a few tantalizing hints have been found, but the oldest definite evidence of animal life are phosphatized eggs and embryos overlying Marinoan glacial deposits in China. The subsequent Late Neoproterozoic is characterized by the global occurrence of the Ediacara biota, an assemblage of cm- to m-scale fossils of soft-bodied organisms that probably represent a mixture of stem groups of modern phyla and "failed experiments" in evolution. The oldest Ediacaran fossils occur in eastern Newfoundland, and postdate the glacial diamictites and cap carbonate of the Gaskiers Formation (580 Ma) by only 5 million years, implying a causal relationship between the end of the Neoproterozoic glaciations and the proliferation of animal life. These fossils include architecturally complex fronds up to two metres long, implying either extremely rapid rates of evolution or a pre-glacial origin of the Ediacara biota. Fossils of the Mistaken Point biota (575-560 Ma) were completely sessile and show a similar fractal architecture that is difficult to relate to any existing life forms. Some of these taxa persisted into the White Sea biota (560-550 Ma), which also contains trace fossils and metameric fossils that confirm the evolution of mobile bilaterians. The youngest Ediacaran fossils (550-543 Ma) exhibit the first

  2. Evolution of the mandibular third premolar crown in early Australopithecus.

    PubMed

    Delezene, Lucas K; Kimbel, William H

    2011-06-01

    The Pliocene hominins Australopithecus anamensis and Australopithecus afarensis likely represent ancestor-descendent taxa--possibly an anagenetic lineage--and capture significant change in the morphology of the canine and mandibular third premolar (P(3)) crowns, dental elements that form the canine honing complex in nonhuman catarrhines. This study focuses on the P(3) crown, highlighting plesiomorphic features in A. anamensis. The A. afarensis P(3) crown, in contrast, is variable in its expression of apomorphic features that are characteristic of geologically younger hominins. Temporal variation characterizes each taxon as well. The A. anamensis P(3) from Allia Bay, Kenya expresses apomorphic character states, shared with A. afarensis, which are not seen in the older sample of A. anamensis P(3)s from Kanapoi, Kenya, while spatiotemporal differences in shape exist within the A. afarensis hypodigm. The accumulation of derived features in A. afarensis results in an increased level of P(3) molarisation. P(3) molarisation did not evolve concurrent with postcanine megadontia and neither did the appearance of derived aspects of P(3) occlusal form coincide with the loss of canine honing in hominins, which is apparent prior to the origin of the genus Australopithecus. A. afarensis P(3) variation reveals the independence of shape, size, and occlusal form. The evolution of the P(3) crown in early Australopithecus bridges the wide morphological gap that exists between geologically younger hominins on the one hand and extant apes and Ardipithecus on the other.

  3. Stepwise evolution of Elk-1 in early deuterostomes.

    PubMed

    Saxton, Janice; Ferjentsik, Zoltan; Ducker, Charles; Johnson, Andrew D; Shaw, Peter E

    2016-03-01

    Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk-1, one of three mammalian ternary complex factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with serum response factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm.

  4. Early evolution of sexual dimorphism and polygyny in Pinnipedia.

    PubMed

    Cullen, Thomas M; Fraser, Danielle; Rybczynski, Natalia; Schröder-Adams, Claudia

    2014-05-01

    Sexual selection is one of the earliest areas of interest in evolutionary biology. And yet, the evolutionary history of sexually dimorphic traits remains poorly characterized for most vertebrate lineages. Here, we report on evidence for the early evolution of dimorphism within a model mammal group, the pinnipeds. Pinnipeds show a range of sexual dimorphism and mating systems that span the extremes of modern mammals, from monomorphic taxa with isolated and dispersed mating to extreme size dimorphism with highly ordered polygynous harem systems. In addition, the degree of dimorphism in pinnipeds is closely tied to mating system, with strongly dimorphic taxa always exhibiting a polygynous system, and more monomorphic taxa possessing weakly polygynous systems. We perform a comparative morphological description, and provide evidence of extreme sexual dimorphism (similar to sea lions), in the Miocene-aged basal pinniped taxon Enaliarctos emlongi. Using a geometric morphometric approach and combining both modern and fossil taxa we show a close correlation between mating system and sex-related cranial dimorphism, and also reconstruct the ancestral mating system of extant pinnipeds as highly polygynous. The results suggest that sexual dimorphism and extreme polygyny in pinnipeds arose by 27 Ma, in association with changing climatic conditions.

  5. Milgram's Obedience to Authority experiments: origins and early evolution.

    PubMed

    Russell, Nestar John Charles

    2011-03-01

    Stanley Milgram's Obedience to Authority experiments remain one of the most inspired contributions in the field of social psychology. Although Milgram undertook more than 20 experimental variations, his most (in)famous result was the first official trial run - the remote condition and its 65% completion rate. Drawing on many unpublished documents from Milgram's personal archive at Yale University, this article traces the historical origins and early evolution of the obedience experiments. Part 1 presents the previous experiences that led to Milgram's conception of his rudimentary research idea and then details the role of his intuition in its refinement. Part 2 traces the conversion of Milgram's evolving idea into a reality, paying particular attention to his application of the exploratory method of discovery during several pilot studies. Both parts illuminate Milgram's ad hoc introduction of various manipulative techniques and subtle tension-resolving refinements. The procedural adjustments continued until Milgram was confident that the first official experiment would produce a high completion rate, a result contrary to expectations of people's behaviour. Showing how Milgram conceived of, then arrived at, this first official result is important because the insights gained may help others to determine theoretically why so many participants completed this experiment.

  6. Formation and evolution of early-type galaxies.

    NASA Astrophysics Data System (ADS)

    Chiosi, C.; Merlin, E.

    In this review, we present some recent results for NB-TSPH models of early type galaxies (ETGs) made of Dark and Baryonic matter according to the Lambda -CDM model of the Universe. The models are framed in the quasi-monolithic or early hierarchical scenario. By means of fully hydrodynamical NB-TSPH simulations performed with the Padova code EVOL, we produce a number of self-similar models of ETGs for different initial total masses and over-densities with respect to the surrounding medium, and follow their evolution from the detachment from the linear regime and Hubble flow at z > 20 down to the stage of nearly complete assembly of the stellar content (at about z<1 for all of them) and often to the present epoch (z=0). We find a strong correlation between the total mass and/or over-density of the proto-haloes and the subsequent star formation histories (SFH). Massive (Mtot≃ 1013 M⊙) haloes experience a single, intense burst of star formation (with rates > 103 M⊙/yr) at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass (Mtot≃ 1011 M⊙) haloes have histories that strongly depend on their initial over-density; finally, low mass haloes (Mtot≃ 109 M⊙) always have erratic, burst-like star forming histories. The model galaxies have morphological, structural, and chemical properties resembling those of real galaxies. In addition to this, we try to cast light on the physical causes of the tight correlation between the mass in stars and the size of ETGs (the Mass-Radius Relation, MRR). We suggest that the MRR is the result of two complementary mechanisms: on one hand, the result of local physical processes, which fix the star mass and the radius of individual objects; on the other hand, the action of cosmological global, statistical principles, which shape the distribution of objects in the MR-plane. In the picture emerging from this study, nature seems to play the dominant role, whereas nurture

  7. The Evolution of Brains from Early Mammals to Humans

    PubMed Central

    Kaas, Jon H.

    2012-01-01

    The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20–25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded, and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a

  8. Probability of collision during the early evolution of debris clouds

    NASA Astrophysics Data System (ADS)

    Jenkin, Alan B.

    1996-02-01

    It has been a common practice in the literature to use the kinetic theory of gases, in order to obtain an estimate of the probability of collision posed to an orbital asset by the background debris population. This has been advantageous, because it features the use of the Poisson distribution to model encounters between an asset and background objects. This model yields a very simple method for computing probability of collision. It is fairly accurate in earth orbital studies over periods of several years in certain orbital regimes. It also has been the practice to use the Poisson model for debris clouds while they still are in their early evolutionary phase. However, newly formed debris clouds resulting from orbital fragmentations are characterized by fragments with relative motion that is highly correlated by the central gravitational field, thereby eliminating any resemblance to a gas. While the use of the Poisson model in this context has been criticized, it generally has been used anyway due to the lack of a well-known and accepted alternative model. A precise probabilistic assessment generally involves Monte Carlo analysis. This method is effective but often is computationally burdensome. By making some simple assumptions that hold in the vast majority of scenarios, it is shown that collision hazard for short-term debris cloud evolution can in fact be described by a Poisson model. These assumptions concern the way in which a fragmentation process is modeled and the orbital geometry between assets and a debris cloud. The derivation of this result is quite different from that used in kinetic gas theory but is nonetheless a direct application of standard probability theory. The ramification for short term debris cloud modeling is a theoretical substantiation of formulations in software like program DEBRIS. The purpose of this paper is to present the derivation and substantiation of this result.

  9. Early Evolution of An Energetic Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, R.; Wang, Y.; Shen, C.

    2014-12-01

    We study a coronal mass ejection (CME) associated with an X-class flare, whose initiation is clearly observed in low corona with high-cadence, high-resolution EUV images, providing us a rare opportunity to witness the early evolution of an energetic CME in detail. The eruption starts with a slow expansion of cool overlying loops (~1 MK), below which a reverse S-shaped dimming is seen immediately above the brightening active region in hot EUV passbands. The dimming is associated with a rising hot arch (~6 MK), which we interpret as a preexistent, high-lying flux rope. This is followed by the arising of a double hot channel (DHC; ~10 MK) from the core of the active region. The higher structures rise earlier and faster than lower ones, with the leading front undergoing extremely rapid acceleration up to 35 km/s^2. This suggests that the torus instability is the major triggering mechanism and that it is the high-lying flux rope rather than the DHC that drives the eruption. A global EUV wave, which is closely associated with a metric type II radio burst, initiates as the laterally under-expanding loop system pushes down neighboring coronal loops that subsequently oscillate vertically. Polar plumes oscillate horizontally with the wave passing through at ~400 km/s. A local EUV wave bounded by the expanding loop system propagates first sunward and then outward at 200 km/s. The observation suggests that over-expansion is not necessary for EUV wave excitation.

  10. Ca isotope fingerprints of early crust-mantle evolution

    NASA Astrophysics Data System (ADS)

    Kreissig, K.; Elliott, T.

    2005-01-01

    The utility of 40Ca/ 44Ca as a tracer of pre-existing crustal contributions in early Archaean cratons has been explored to identify traces of Hadean crust and to assess the style of continental growth. The relatively short half-life of 40K (˜1.3 Gy) means that its decay to 40Ca occurs dominantly during early Earth History. If Archaean crust had a significant component derived from a more ancient protolith, as anticipated by "steady state" crustal evolution models, this should be clearly reflected in radiogenic 40Ca/ 44Ca ratios (or positive initial ɛ Ca) in different Archaean cratons. A high precision thermal ionisation technique has been used to analyse the 40Ca/ 44Ca ratios of plagioclase separates and associated whole rocks in ˜3.6 Ga (early Archaean) samples from Zimbabwe and West Greenland. Three out of four tonalite, trondhjemite, granodiorite (TTG) suite samples from Zimbabwe display initial 40Ca/ 44Ca ratios indistinguishable from our measured modern MORB value (i.e., ɛ Ca(3.6) ˜ 0). Greenland samples, however, are very diverse ranging from ɛ Ca(3.7) = 0.1 in mafic pillow lavas and felsic sheets from the Isua supracrustal belt, up to very radiogenic signatures (ɛ Ca(3.7) = 2.9) in both mafic rocks of the Akilia association and felsic TTG from the coastal Amîtsoq gneisses. At face value, these results imply the Zimbabwe crust is juvenile whereas most Greenland samples include an earlier crustal component. Yet the west Greenland craton, as with many Archaean localities, has experienced a complex geological history and the interpretation of age-corrected initial isotope values requires great care. Both felsic and mafic samples from Greenland display ɛ Ca(3.7) so radiogenic that they are not readily explained by crustal growth scenarios. The presence of such radiogenic 40Ca/ 44Ca found in low K/Ca plagioclases requires Ca isotope exchange between plagioclase and whole rock during later metamorphic event(s). In addition the unexpectedly radiogenic Ca

  11. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  12. Early evolution of the LIM homeobox gene family

    SciTech Connect

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  13. Early human communication helps in understanding language evolution.

    PubMed

    Lenti Boero, Daniela

    2014-12-01

    Building a theory on extant species, as Ackermann et al. do, is a useful contribution to the field of language evolution. Here, I add another living model that might be of interest: human language ontogeny in the first year of life. A better knowledge of this phase might help in understanding two more topics among the "several building blocks of a comprehensive theory of the evolution of spoken language" indicated in their conclusion by Ackermann et al., that is, the foundation of the co-evolution of linguistic motor skills with the auditory skills underlying speech perception, and the possible phylogenetic interactions of protospeech production with referential capabilities.

  14. Inferring the Early Evolution of Translation: Ancestral Reconstruction, Compositional Analysis, and Functional Specificity

    NASA Astrophysics Data System (ADS)

    Fournier, G. P.; Gogarten, J. P.

    2010-04-01

    Using ancestral sequence reconstruction and compositional analysis, it is possible to reconstruct the ancestral functions of many enzymes involved in protein synthesis, elucidating the early functional evolution of the translation machinery and genetic code.

  15. A vacuum ultraviolet spectrophotometric system

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Keffer, Charles E.; Zukic, Muamer

    1993-01-01

    The development of a vacuum ultraviolet spectrophotometric system for measuring transmittance and reflectance at variable angles is presented. Using various detectors and sources, the spectrophotometric system has been used for wavelengths from 80 nm to 300 nm with optical components up to 80 mm in diameter. The capability exists to make measurements through the visible range.

  16. Spectrophotometric study of asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1974-01-01

    Observations of particular faint asteroids of interest, in particular the Trojans, were carried out during an observation run at Kitt Peak National Observatory (1.3 meter telescope) in September 1973, and an attempt was made to study the compositional variation within Hirayama families. A particularly important study was initiated to observe spectrophotometrically certain asteroids which are considered as potential source bodies for meteorites. A program was also undertaken to coordinate the spectrophotometry program with polarimetric and thermal-infrared observation programs being conducted elsewhere.

  17. The Evolution of the National Early Childhood Technical Assistance Center

    ERIC Educational Resources Information Center

    Gallagher, James J.; Danaher, Joan C.; Clifford, Richard M.

    2009-01-01

    This review traces the evolution from 1971 to the present of a national technical assistance (TA) program to support the creation, expansion, and improvement of services for infants, toddlers, and preschoolers with special needs. From its beginning as a TA resource for demonstration projects, to linking outreach projects' expertise with state…

  18. Three-dimensional evolution of early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1991-01-01

    The progress is reported toward the goal of a complete theory of solar nebula formation, with an emphasis on three spatial dimension models of solar nebular formation and evolution. The following subject areas are covered: (1) initial conditions for protostellar collapse; (2) single versus binary star formation; (3) angular momentum transport mechanisms; (4) three dimensional solar nebula models; and (5) implications for planetary formation.

  19. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification.

    PubMed

    Brodribb, Tim J; Feild, Taylor S

    2010-02-01

    Angiosperm evolution transformed global ecology, and much of this impact derives from the unrivalled vegetative productivity of dominant angiosperm clades. However, the origins of high photosynthetic capacity in angiosperms remain unknown. In this study, we describe the steep trajectory of leaf vein density (D(v)) evolution in angiosperms, and predict that this leaf plumbing innovation enabled a major shift in the capacity of leaves to assimilate CO(2). Reconstructing leaf vein evolution from an examination of 504 angiosperm species we found a rapid three- to fourfold increase in D(v) occurred during the early evolution of angiosperms. We demonstrate how this major shift in leaf vein architecture potentially allowed the maximum photosynthetic capacity in angiosperms to rise above competing groups 140-100 Ma. Our data suggest that early terrestrial angiosperms produced leaves with low photosynthetic rates, but that subsequent angiosperm success is linked to a surge in photosynthetic capacity during their early diversification.

  20. The Origin and Early Evolution of Roots1

    PubMed Central

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-01-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist. PMID:25187527

  1. Collaborative Network Evolution: The Los Angeles Terrorism Early Warning Group

    DTIC Science & Technology

    2006-03-01

    accessed 3 Nov 05. 14 Frederickson, 707. 15 Bardach, 12. 16 Jorg Raab and H. Brinton Milward, “Dark Networks as Problems,” Journal of Public...maintenance, and further evolution of cooperation.27 24 Richard Burton and Borge Obel, Strategic...are the prerequisite for describing any complex system.”29 Jorg Raab echoes Barabasi’s point on the overarching applicability of networks and views

  2. Early evolution and ecology of camouflage in insects

    PubMed Central

    Pérez-de la Fuente, Ricardo; Delclòs, Xavier; Peñalver, Enrique; Speranza, Mariela; Wierzchos, Jacek; Ascaso, Carmen; Engel, Michael S.

    2012-01-01

    Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant–insect interaction. PMID:23236135

  3. Evolution of Planetesimals Accreted in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Johnson, T. V.; Castillo-Rogez, J. C.; Thomas, P. C.

    2011-01-01

    The purpose of this presentation is to point out that the origins and abundances of short-lived nu-clides in the early solar system had important conse-quences for "icy planetesimals". It is believed that these planetesimals, composed of ice and rock, were once very abundant in the early, outer solar system. Today, spacecraft can visit remnants of that popula-tion and measure their properties. Cassini's flyby of Saturn's satellite Phoebe may have been the first visit to an object related to this population.

  4. The evolution and orientation of early cycle 22 active regions

    NASA Technical Reports Server (NTRS)

    Cannon, Anne T.; Marquette, William H.

    1991-01-01

    The evolution of six major active regions which appeared during the first phase of the present solar cycle (cycle 22) has been studied. It was found that the northern hemisphere regions exhibited a broad range of evolutionary behavior in which the commonly accepted 'normal pattern' (whereby the follower flux moves preferentially polewards ahead of the leader flux) is represented at one end of the range. At the other end of the range, the leader flux is displaced polewards of the follower flux. In the latter cases equatorward extensions of the polar coronal hole are noted.

  5. Formation, early evolution, and gravitational stability of protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Nakamoto, Taishi; Nakagawa, Yoshitsugo

    1994-01-01

    The formation, viscous evolution, and gravitational stability of protoplanetary disks are investigated. The formation process is parameterized by the angular velocity of the molecular cloud core omega, while the viscous evolution is parameterized by the viscosity parameter alpha in the disk; in this study we consider a range of (0.4-6) x 10(exp -14)/s for omega and from 10(exp -5) to 10(exp -1) for alpha. The axisymmetric gravitational stabilities of the disks are checked using Toomre's criterion. The resulting disk surface temperature distribution, (d log T(sub s)/d log R) approximately = -0.6 (R is the cylindrical radius), can be attributed to two heating sources: the viscous heating dominant in the inner disk region, and the accretion shock heating dominant in the outer disk region. This surface temperature distribution matches that observed in many disks around young stellar objects. During the infall stage, disks with alpha less than 10(exp -1.5) become gravitationally unstable independent of omega. The gravitational instabilities occur at radii ranging from 5 to 40 AU. The ratio of the disk mass to the central star mass ranges from 0.2 to 0.5 at the times of instability, about 4 x 10(exp -5) x (omega/10(exp -14)/s)(exp -0.67) yr. Most disks with low alpha and high omega become gravitationally unstable during their formation phase.

  6. Early evolution of salt structures in north Louisiana salt basin

    SciTech Connect

    Lobao, J.J.; Pilger, R.H. Jr.

    1986-05-01

    Several salt diapirs and pillows in southern and central north Louisiana have been studied using approximately 355 mi (570 km) of seismic reflection data and information from 57 deep well holes. Using seismic profiles with deep well-hole data is the most advantageous method to document regional salt tectonism through time. The following conclusions were reached on diapirism in the North Louisiana Salt basin. (1) The diapiric event began early (early Coahuilan) in the southern and central part of the basin, and later (late Coahuilan to Comanchean) in the northern part. (2) The initial diapiric event is much more abrupt and intense in the southern and central diapirs when compared with the later diapiric event in the northern diapirs. (3) Regional depocenter shifting, relative sea level, local erosion with salt extrusion, and rapid depositional loading of sediments are the major controls on diapirism in the basin.

  7. Halwaxiids and the early evolution of the lophotrochozoans.

    PubMed

    Morris, Simon Conway; Caron, Jean-Bernard

    2007-03-02

    Halkieriids and wiwaxiids are cosmopolitan sclerite-bearing metazoans from the Lower and Middle Cambrian. Although they have similar scleritomes, their phylogenetic position is contested. A new scleritomous fossil from the Burgess Shale has the prominent anterior shell of the halkieriids but also bears wiwaxiid-like sclerites. This new fossil defines the monophyletic halwaxiids and indicates that they have a key place in early lophotrochozoan history.

  8. Geodynamic evolution of early Mesozoic sedimentary basins in eastern Australia

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Babaahmadi, A.; Esterle, J.

    2014-12-01

    Eastern Australia is covered by a series of continental sedimentary basins deposited during the Triassic and Jurassic, but the geodynamic context of these basins is not fully understood. Using gridded aeromagnetic data, seismic reflection data, geological maps, digital elevation models, and field observations, we conducted a structural synthesis aimed at characterizing major structures and deformation style in the Triassic-Jurassic sedimentary basins of eastern Australia. Our results show evidence for four alternating episodes of rifting and contractional events during the Triassic. Two major episodes of rifting, characterized by syn-sedimentary steep normal faults and bimodal volcanism, resulted in the development of the Early-Middle Triassic Esk-Nymboida Rift System and the early Late Triassic Ipswich Basin. Faults in the Esk-Nymboida Rift System have been controlled by a pre-existing oroclinal structure. Each phase of rifting was followed by a contractional event, which produced folds, reverse faults and unconformities in the basins. Since the latest Late Triassic, thermal subsidence led to the deposition of continental sediments in the Clarence-Moreton Basin, which continued until the Early Cretaceous. We suggest that the geodynamic control on the alternating episodes of rifting and contraction during the Triassic in eastern Australia was ultimately related to plate boundary migration and switches between trench retreat and advance.

  9. The Early Evolution of the Solar Nebula with Implications for the Formation of Primitive Material

    NASA Technical Reports Server (NTRS)

    Bell, K. Robbins

    2002-01-01

    I will present a review of our understanding of the early evolution of the solar nebula especially as it bears on the formation of primitive meteorites. Although my emphasis will be on the results of theoretical studies, I will also summarize some of the observational evidence supporting these conclusions. In particular, I will summarize our current best deductions about midplane temperatures and densities of the solar nebula and about both long-term and episodic evolution.

  10. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  11. The early development and evolution of the human brain.

    PubMed

    Crawford, M A

    1990-01-01

    THE CHEMISTRY OF THE BRAIN: The brain and nervous system is characterised by a heavy investment in lipid chemistry which accounts for up to 60% of its structural material. In the different mammalian species so far studied, only the 20 and 22 carbon chain length polyenoic fatty acids were present and the balance of the n-3 to n-6 fatty acids was consistently 1:1. The difference observed between species, was not in the chemistry but in the extent to which the brain is developed. This paper discusses the possibility that essential fatty acids may have played a part in it evolution. THE ORIGIN OF AIR BREATHING ANIMALS: The first phase of the planet's existence indulged in high temperature reactions in which oxygen combined with everything feasible: from silicon to make rocks to hydrogen to make water. Once the planet's temperature dropped to a point at which water could condense on the surface allowing chemical reactions to take place in it. The atmosphere was at that time devoid of oxygen so life evolved in a reducing atmosphere. Oxygen was liberated by photolysis of water and as a by-product of the blue-green algae through photosynthesis. When the point was reached at which oxidative metabolism became thermodynamically possible, animal life evolved with all the principle phyla establishing themselves within a relatively short space of geological time. (Bernal 1973). DHA and nerve cell membranes DHA AND NERVE CELL MEMBRANES: From the chemistry of contemporary algae it is likely that animal life evolved in an n-3 rich environment although not exclusively so as smaller amounts of n-6 fatty acids would have been present. A key feature of the first animals was the evolution of the photoreceptor: in examples of marine, amphibian and modern mammalian species, it has been found to use docosahexaenoic acid (DHA) as the principle membrane fatty acid in the phosphoglycerides. It is likely that the first animals did so as well. Coincidentally, the synaptic membranes involved in

  12. Birth and early evolution of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Bobrowsky, Matthew; Sahu, Kailash C.; Parthasarathy, M.; García-Lario, Pedro

    1998-04-01

    The final expulsion of gas by a star as it forms a planetary nebula - the ionized shell of gas often observed surrounding a young white dwarf - is one of the most poorly understood stages of stellar evolution,. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray nebula,, which has become an ionized planetary nebula within the past few decades. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows.

  13. A Geological Model for the Evolution of Early Continents (Invited)

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (early Earth showing that, until the late Archean, most continents were flooded and Earth was largely a water world. From this, a model consistent with many of the peculiar attributes of Archean geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  14. A Cretaceous eutriconodont and integument evolution in early mammals

    NASA Astrophysics Data System (ADS)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D.

    2015-10-01

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  15. A Cretaceous eutriconodont and integument evolution in early mammals.

    PubMed

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  16. The evolution of early-type galaxies: a strong lensing perspective

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Gavazzi, Raphael; Suyu, Sherry; Nipoti, Carlo; Auger, Matthew; Team 1

    2015-01-01

    Early-type galaxies are believed to grow as a result of mergers, but the details of this process are still largely unknown. Do the mergers involve galaxies of comparable mass (major) or are they dominated by small systems (minor)? Is there dissipation (wet) or not (dry)? Different processes leave different signatures on the mass structure of early-type galaxies. Gravitational lensing provides a unique way to detect these signatures. The SL2S project measured the evolution of the mass profile of massive early-type galaxies during the last 7 billion years, including constraints on the mean density slope, dark matter fraction, inner dark matter slope and stellar IMF. Based on collected data, we find that theoretical models for the evolution of early-type galaxies through dry mergers alone are unable to reproduce the observed trends. Additional physical processes, likely related to baryonic physics, are necessary to match the entire set of observables.

  17. Jupiter's decisive role in the inner Solar System's early evolution.

    PubMed

    Batygin, Konstantin; Laughlin, Greg

    2015-04-07

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter's inward migration entrained s ≳ 10-100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.

  18. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    SciTech Connect

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C. E-mail: ndario@ufl.edu

    2015-01-10

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ{sub ADP,} {sub N}. We find statistically significant correlation between δ{sub ADP,} {sub N} and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  19. Evolution of attention mechanisms for early visual processing

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  20. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava

    NASA Technical Reports Server (NTRS)

    Henry, J. Q.; Tagawa, K.; Martindale, M. Q.

    2001-01-01

    Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister-phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect-developing representative of the enteropneust hemichordates, Ptychodera flava. Single blastomeres were iontophoretically labeled with Dil at the 2- through 16-cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct-developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect-developing echinoids. The 16-celled embryo contains eight animal "mesomeres," four slightly larger "macromeres," and four somewhat smaller vegetal "micromeres." The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct-developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two- or the four-cell stage are capable of forming normal-appearing, miniature tornaria larvae. These findings indicate that the fates of these

  1. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava.

    PubMed

    Henry, J Q; Tagawa, K; Martindale, M Q

    2001-01-01

    Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister-phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect-developing representative of the enteropneust hemichordates, Ptychodera flava. Single blastomeres were iontophoretically labeled with Dil at the 2- through 16-cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct-developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect-developing echinoids. The 16-celled embryo contains eight animal "mesomeres," four slightly larger "macromeres," and four somewhat smaller vegetal "micromeres." The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct-developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two- or the four-cell stage are capable of forming normal-appearing, miniature tornaria larvae. These findings indicate that the fates of these

  2. Early Structural Evolution of Native Cytochrome c after Solvent Removal

    PubMed Central

    Steinberg, Michal Z.; Elber, Ron; McLafferty, Fred W.; Gerber, R. Benny; Breuker, Kathrin

    2009-01-01

    Electrospray ionization transfers thermally labile biomolecules, such as proteins, from solution into the gas phase, where they can be studied by mass spectrometry. Covalent bonds are generally preserved during and after the phase transition, but it is less clear to what extent noncovalent interactions are affected by the new gaseous environment. Here, we present atomic-level computational data on the structural rearrangement of native cytochrome c immediately after solvent removal. The first structural changes after desolvation occur surprisingly early, on a timescale of picoseconds. For the time segment of up to 4.2 ns investigated here, we observed no significant breaking of native noncovalent bonds; instead, we found formation of new noncovalent bonds. This generally involves charged residues on the protein surface, resulting in transiently stabilized intermediate structures with a global fold that is essentially the same as that in solution. Comparison with data from native electron capture dissociation experiments corroborates both its mechanistic postulations and our computational predictions, and suggests that global structural changes take place on a millisecond timescale not covered by our simulations. PMID:18785672

  3. Newly discovered sister lineage sheds light on early ant evolution

    PubMed Central

    Rabeling, Christian; Brown, Jeremy M.; Verhaagh, Manfred

    2008-01-01

    Ants are the world's most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have troubled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morphological and phylogenetic evidence we suggest that these specialized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environments like tropical soils over great spans of time. PMID:18794530

  4. Evolution and logistics of an early lunar base

    NASA Astrophysics Data System (ADS)

    Johenning, B.; Koelle, H. H.

    The planned construction of a permanently manned space station in low earth orbit has reopened the discussion about the establishment of a manned lunar base within the next 25 years for exploration of the Moon and space. Several studies demonstrate that a lunar base very modest in size may cost 50 to 90 billion spread over 25 years which would fit into the expected NASA budget for this period. Having these cost in mind the authors present a concept having a greater effectiveness based on the following operational characteristics: (1) The development of a low cost heavy-lift launch vehicle for cargo transportation and propellant supply reduces the specific transportation cost by one order of magnitude compared to the existing Space Shuttle system. (2) Orbital transfer vehicles with LOX/LH2 technology should be preferred over advanced propulsion systems because of proved technology and cost reduction by utilization of lunar produced LOX. (3) The evolution of the lunar base towards a lunar colony and manufacturing facility could only be initiated by a powerful transportation system allowing for cost-effective space construction projects and manned spaceflight to other planets. The lunar base program of this paper is based on a schedule considering a 8 years development, 5 years lunar base assembly and 20 years operational phase during which the lunar crew will increase from 60 to 180 people. Launch rates will be 10 shuttle launches and 10 HLLV launches p.a. at the average. Development costs of the transportation and lunar base system will amount to 29 billion. Adding hardware and operational costs for lunar base assembly results in the acquisition cost of 49 billion. Total life cycle costs are estimated to be in the order of 101 billion considering a 20 years operational phase which will cost 2.6 billion p.a. at the average. For the 2508 man-years spent in lunosphere the relative cost will be 40.2 million per man-year of which space transportation will cost $25

  5. Modelling of the thermal evolution and differentiation of early Ceres

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2015-04-01

    The asteroid 1 Ceres is one of the remaining examples of the intermediate stages of planetary accretion. Studies of such protoplanetary objects provide insight into the history of the formation of Earth and other planets. One of Ceres' remarkable properties is the relatively low average bulk density of 2077±36 kg m-3[1]. Assuming a nearly chondritic composition, this low value can be explained either by the presence of a low density phase[2,3] (possibly water ice or hydrated silicates) that could have differentiated forming an icy mantle over a rocky core[2,3], or by a relatively high average porosity[4]. The shape and the moment of inertia of Ceres are consistent with both a homogeneous and a differentiated structure. In the first case Ceres would be just a large version of a common asteroid. In the second case this body could exhibit properties characteristic for a planet rather than an asteroid: presence of a core, mantle and crust, as well as a liquid ocean in the past and maybe still a thin basal ocean today. We study the evolution of a Ceres-like body via numerical modelling in order to draw conclusions about the thermal metamorphism of the interior and its present-day structure. A numerical model of an ice-silicate planetesimal, considering both water-rock and metal-silicate differentiation of Ceres is being developed. In particular, accretion from a km-sized porous seed to a Ceres-sized asteroid is considered. Further relevant processes, such as transition from amorphous to crystalline ice, melting of ice, hydrothermal convection, as well as melting and percolation of metal and silicates are included in the model. The model is suited to prioritise between the two possible structures mentioned above and to constrain the present-day state of Ceres' interior. The necessary conditions for the differentiation as well as the influence of the vital parameters, such as the accretion duration, will be discussed. [1] Thomas, C. et al. (2005) Nature, 437, 224-226. [2

  6. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution.

    PubMed

    Slater, Graham J; Pennell, Matthew W

    2014-05-01

    A central prediction of much theory on adaptive radiations is that traits should evolve rapidly during the early stages of a clade's history and subsequently slowdown in rate as niches become saturated--a so-called "Early Burst." Although a common pattern in the fossil record, evidence for early bursts of trait evolution in phylogenetic comparative data has been equivocal at best. We show here that this may not necessarily be due to the absence of this pattern in nature. Rather, commonly used methods to infer its presence perform poorly when when the strength of the burst--the rate at which phenotypic evolution declines--is small, and when some morphological convergence is present within the clade. We present two modifications to existing comparative methods that allow greater power to detect early bursts in simulated datasets. First, we develop posterior predictive simulation approaches and show that they outperform maximum likelihood approaches at identifying early bursts at moderate strength. Second, we use a robust regression procedure that allows for the identification and down-weighting of convergent taxa, leading to moderate increases in method performance. We demonstrate the utility and power of these approach by investigating the evolution of body size in cetaceans. Model fitting using maximum likelihood is equivocal with regards the mode of cetacean body size evolution. However, posterior predictive simulation combined with a robust node height test return low support for Brownian motion or rate shift models, but not the early burst model. While the jury is still out on whether early bursts are actually common in nature, our approach will hopefully facilitate more robust testing of this hypothesis. We advocate the adoption of similar posterior predictive approaches to improve the fit and to assess the adequacy of macroevolutionary models in general.

  7. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group

    PubMed Central

    Clarke, John T.; Lloyd, Graeme T.; Friedman, Matt

    2016-01-01

    Since Darwin, biologists have been struck by the extraordinary diversity of teleost fishes, particularly in contrast to their closest “living fossil” holostean relatives. Hypothesized drivers of teleost success include innovations in jaw mechanics, reproductive biology and, particularly at present, genomic architecture, yet all scenarios presuppose enhanced phenotypic diversification in teleosts. We test this key assumption by quantifying evolutionary rate and capacity for innovation in size and shape for the first 160 million y (Permian–Early Cretaceous) of evolution in neopterygian fishes (the more extensive clade containing teleosts and holosteans). We find that early teleosts do not show enhanced phenotypic evolution relative to holosteans. Instead, holostean rates and innovation often match or can even exceed those of stem-, crown-, and total-group teleosts, belying the living fossil reputation of their extant representatives. In addition, we find some evidence for heterogeneity within the teleost lineage. Although stem teleosts excel at discovering new body shapes, early crown-group taxa commonly display higher rates of shape evolution. However, the latter reflects low rates of shape evolution in stem teleosts relative to all other neopterygian taxa, rather than an exceptional feature of early crown teleosts. These results complement those emerging from studies of both extant teleosts as a whole and their sublineages, which generally fail to detect an association between genome duplication and significant shifts in rates of lineage diversification. PMID:27671652

  8. Latest Proterozoic to early Cambrian sedimentary-tectonic evolution of a passive margin sequence, northeastern Washington

    SciTech Connect

    Lindsey, K.A.; Gaylord, D.R.

    1987-08-01

    The late Proterozoic to Early Cambrian Three Sisters formation, Addy Quartzite, and Gypsy Quartzite lie near the base of the Cordilleran miogeocline in northeastern Washington. Detailed stratigraphic and sedimentary examination of these units extends understanding of the evolution of western North America. These units were deposited on a newly rifted passive margin and record the final stages of late Proterozoic rifting and the early stages of subsequent early Paleozoic subsidence and transgression. The three Sisters formation, Addy Quartzite, and Gypsy Quartzite are correlative with the Brigham Group in southeastern Idaho and Utah, the Gold Creek Quartzite in northern Idaho, and the Flathead Quartzite in Montana and Wyoming.

  9. Anthropoid primates from the Oligocene of Pakistan (Bugti Hills): Data on early anthropoid evolution and biogeography

    PubMed Central

    Marivaux, Laurent; Antoine, Pierre-Olivier; Baqri, Syed Rafiqul Hassan; Benammi, Mouloud; Chaimanee, Yaowalak; Crochet, Jean-Yves; de Franceschi, Dario; Iqbal, Nayyer; Jaeger, Jean-Jacques; Métais, Grégoire; Roohi, Ghazala; Welcomme, Jean-Loup

    2005-01-01

    Asian tarsiid and sivaladapid primates maintained relictual distributions in southern Asia long after the extirpation of their close Holarctic relatives near the Eocene–Oligocene boundary. We report here the discovery of amphipithecid and eosimiid primates from Oligocene coastal deposits in Pakistan that demonstrate that stem anthropoids also survived in southern Asia beyond the climatic deterioration that characterized the Eocene–Oligocene transition. These fossils provide data on temporal and paleobiogeographic aspects of early anthropoid evolution and significantly expand the record of stem anthropoid evolution in the Paleogene of South Asia. PMID:15937103

  10. A new Early Permian reptile and its significance in early diapsid evolution.

    PubMed

    Reisz, Robert R; Modesto, Sean P; Scott, Diane M

    2011-12-22

    The initial stages of evolution of Diapsida (the large clade that includes not only snakes, lizards, crocodiles and birds, but also dinosaurs and numerous other extinct taxa) is clouded by an exceedingly poor Palaeozoic fossil record. Previous studies had indicated a 38 Myr gap between the first appearance of the oldest diapsid clade (Araeoscelidia), ca 304 million years ago (Ma), and that of its sister group in the Middle Permian (ca 266 Ma). Two new reptile skulls from the Richards Spur locality, Lower Permian of Oklahoma, represent a new diapsid reptile: Orovenator mayorum n. gen. et sp. A phylogenetic analysis identifies O. mayorum as the oldest and most basal member of the araeoscelidian sister group. As Richards Spur has recently been dated to 289 Ma, the new diapsid neatly spans the above gap by appearing 15 Myr after the origin of Diapsida. The presence of O. mayorum at Richards Spur, which records a diverse upland fauna, suggests that initial stages in the evolution of non-araeoscelidian diapsids may have been tied to upland environments. This hypothesis is consonant with the overall scant record for non-araeoscelidian diapsids during the Permian Period, when the well-known terrestrial vertebrate communities are preserved almost exclusively in lowland deltaic, flood plain and lacustrine sedimentary rocks.

  11. Evolution of CO2 and H2O on Mars: A cold Early History?

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.

    2011-01-01

    The martian climate has long been thought to have evolved substantially through history from a warm and wet period to the current cold and dry conditions on the martian surface. This view has been challenged based primarily on evidence that the early Sun had a substantially reduced luminosity and that a greenhouse atmosphere would be difficult to sustain on Mars for long periods of time. In addition, the evidence for a warm, wet period of martian history is far from conclusive with many of the salient features capable of being explained by an early cold climate. An important test of the warm, wet early Mars hypothesis is the abundance of carbonates in the crust [1]. Recent high precision isotopic measurements of the martian atmosphere and discoveries of carbonates on the martian surface provide new constraints on the evolution of the martian atmosphere. This work seeks to apply these constraints to test the feasibility of the cold early scenario

  12. Early-late life trade-offs and the evolution of ageing in the wild.

    PubMed

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-05-07

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing-the disposable soma and the antagonistic pleiotropy theories-and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns.

  13. Early-late life trade-offs and the evolution of ageing in the wild

    PubMed Central

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-01-01

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing—the disposable soma and the antagonistic pleiotropy theories—and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns. PMID:25833848

  14. Co-evolution of Central Direct Collapse Black Holes and Stellar Populations in the Early Universe

    NASA Astrophysics Data System (ADS)

    Aykutalp, Aycin; Wise, John

    2017-01-01

    The formation and growth of supermassive black holes (SMBHs) in the centers of galaxies and their role in shaping the evolution of galaxies and their stellar populations is a central topic for cosmology. In order to understand the co-evolution between the SMBHs and the host galaxy dynamics in the early universe we perform cosmological radiation hydrodynamics simulations. These simulations include the unique implementation of the interactions between X-rays and the non-zero metallicity gas. This is particularly important since, as shown by observations, the ambient gas around active galactic nuclei is already enriched by metals at high redshifts. I will present the results from our latest simulations on how X-ray irradiation from an accreting direct collapse seed black hole affects the distribution and evolution of stellar populations in the host galaxy and their possible observational implications.

  15. Geochemical evolution of the northern plains of Mars - Early hydrosphere, carbonate development, and present morphology

    NASA Technical Reports Server (NTRS)

    Schaefer, Martha W.

    1990-01-01

    An equilibrium geochemical model of the primitive Martian atmosphere-regolith-ocean system that could have existed early in the history of Mars is developed. The results of this model are used to examine the evolution of the volatile budget of Mars and the processes occurring in the Martian ocean that may have contributed to the deposition of large carbonate beds on the northern plains. Results of this model are compared to those of the Pollack et al. (1987) model.

  16. Crustal evolution of the early earth: The role of major impacts

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The role of major impact basins (such as those which formed on the moon before 4 billion years ago) is examined to determine the effects of such impacts on the early crustal evolution of the earth. Specifically addressed is the fundamental problem of what is the origin of the earth's fundamental crustal dichotomy of low density continental and high density oceanic crust and its relationship to the superficially similar highlands/maria crustal dichotomies of the moon, Mercury and Mars.

  17. Environmental Dependence of the Evolution of Early-Type Galaxies in Clusters at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Ziegler, Bodo L.

    2003-07-01

    Understanding the formation and evolution of early-type galaxies and their stellar populations is one of the central problems in astrophysics. Although numerous studies on early-type galaxies in the local universe have been performed to address this question, the key question, when and within what timescales the stellar populations have been formed, has not yet answered sufficiently. Monolithic collapse models predict an intense burst of star formation at high redshift (zf>=2) and a following passive evolution of the stellar populations. The picture of hierachical galaxy formation (so-called 'bottom-up universe') presumes longer assembly timescales for the more massive galaxies with merging of galaxies and the infall of new cold gas from a galaxy's halo being the main drivers. Thus, galaxies formed through accumulation of small structures result in somewhat younger mean ages. In order to explore the evolution of galaxies, it it necessary to explore both the morphological evolution as well as the evolution of the luminosities and the mass-to-light (M/L) ratios of the galaxies. One of the most powerful tools is the Fundamental Plane (FP) of early-type galaxies. In a three dimensional parameter space, defined by three observables, the effective radius Re, effective surface brightness mue and velocity dispersion sigma, the FP establishes a tight correlation (Djorgovski & Davis 1987; Dressler et al. 1987). We have conducted a study on early-type galaxies in Abell 2390 at intermediate redshift. Observations based on Multi-Object-Spectroscopy with MOSCA at the 3.5-m Calar Alto telescope, deep UBi ground-based imaging with the 5.1-m Hale telescope and HST photometry in the F555W and F814W filter bands yield a sample of N=51 early-type galaxies in the rich cluster Abell 2390 at a redhift z=0.23. Our investigation spans both a broad range in luminosity (-19.3>=MB>=-22.3) and a wide field of view (10'x10'). One of our main goals is to investigate possible differences between

  18. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology

    PubMed Central

    Ward, Carol V.; Tocheri, Matthew W.; Plavcan, J. Michael; Brown, Francis H.; Manthi, Fredrick Kyalo

    2014-01-01

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276

  19. Feeding in extinct jawless heterostracan fishes and testing scenarios of early vertebrate evolution.

    PubMed

    Purnell, Mark A

    2002-01-07

    How long-extinct jawless fishes fed is poorly understood, yet interpretations of feeding are an important component of many hypotheses concerning the origin and early evolution of vertebrates. Heterostracans were the most diverse clade of armoured jawless vertebrates (stem gnathostomes), and the structure of the mouth and its use in feeding are the subjects of long-standing and heated controversy. I present here evidence that heterostracan feeding structures exhibit recurrent patterns of in vivo wear, are covered internally by microscopic oral denticles, and that the mouth may have been less flexible than has been thought. These data, particularly the absence of wear at the tips of oral plates, and the evidence that the mouth was lined with delicate outwardly directed denticles, effectively falsify all but one hypothesis of feeding in heterostracans: heterostracans were microphagous suspension feeders. This has a direct bearing on hypotheses that address ecological aspects of early vertebrate diversity and evolution, contradicting the widespread view that the pattern of early vertebrate evolution reflects a long-term trend towards increasingly active and predatory habits.

  20. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology.

    PubMed

    Ward, Carol V; Tocheri, Matthew W; Plavcan, J Michael; Brown, Francis H; Manthi, Fredrick Kyalo

    2014-01-07

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato.

  1. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird.

    PubMed

    Zhou, Zhonghe; Clarke, Julia; Zhang, Fucheng

    2008-05-01

    Most of Mesozoic bird diversity comprises species that are part of one of two major lineages, namely Ornithurae, including living birds, and Enantiornithes, a major radiation traditionally referred to as 'opposite birds'. Here we report the largest Early Cretaceous enantiornithine bird from north-east China, which provides evidence that basal members of Enantiornithes share more morphologies with ornithurine birds than previously recognized. Morphological evolution in these two groups has been thought to be largely parallel, with derived members of Enantiornithes convergent on the 'advanced' flight capabilities of ornithurine birds. The presence of an array of morphologies previously thought to be derived within ornithurine and enantiornithine birds in a basal enantiornithine species provides evidence of the complex character evolution in these two major lineages. The cranial morphology of the new specimen is among the best preserved for Mesozoic avians. The new species extends the size range known for Early Cretaceous Enantiornithes significantly and provides evidence of forelimb to hind limb proportions distinct from all other known members of the clade. As such, it sheds new light on avian body size evolution and diversity, and allows a re-evaluation of a previously proposed hypothesis of competitive exclusion among Early Cretaceous avian clades.

  2. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird

    PubMed Central

    Zhou, Zhonghe; Clarke, Julia; Zhang, Fucheng

    2008-01-01

    Most of Mesozoic bird diversity comprises species that are part of one of two major lineages, namely Ornithurae, including living birds, and Enantiornithes, a major radiation traditionally referred to as ‘opposite birds’. Here we report the largest Early Cretaceous enantiornithine bird from north-east China, which provides evidence that basal members of Enantiornithes share more morphologies with ornithurine birds than previously recognized. Morphological evolution in these two groups has been thought to be largely parallel, with derived members of Enantiornithes convergent on the ‘advanced’ flight capabilities of ornithurine birds. The presence of an array of morphologies previously thought to be derived within ornithurine and enantiornithine birds in a basal enantiornithine species provides evidence of the complex character evolution in these two major lineages. The cranial morphology of the new specimen is among the best preserved for Mesozoic avians. The new species extends the size range known for Early Cretaceous Enantiornithes significantly and provides evidence of forelimb to hind limb proportions distinct from all other known members of the clade. As such, it sheds new light on avian body size evolution and diversity, and allows a re-evaluation of a previously proposed hypothesis of competitive exclusion among Early Cretaceous avian clades. PMID:18397240

  3. SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1

    SciTech Connect

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Ramkumar, Balasubramanian; Wuyts, Stijn; Zibetti, Stefano; Holden, Bradford

    2013-01-10

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg{sup 2} to study the structural evolution of massive early-type galaxies since z {approx} 2. Mass-selected samples, complete down to log(M/M {sub Sun }) {approx} 10.7 such that 'typical' (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the {approx}400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z {approx}< 2, the most massive early-type galaxies (log(M/M {sub Sun }) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M {sub Sun }) {approx} 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  4. Shape Evolution of Massive Early-type Galaxies: Confirmation of Increased Disk Prevalence at z > 1

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; Rix, Hans-Walter; Wuyts, Stijn; Zibetti, Stefano; Ramkumar, Balasubramanian; Holden, Bradford

    2013-01-01

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg2 to study the structural evolution of massive early-type galaxies since z ~ 2. Mass-selected samples, complete down to log(M/M ⊙) ~ 10.7 such that "typical" (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the ~400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z <~ 2, the most massive early-type galaxies (log(M/M ⊙) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M ⊙) ~ 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  5. Modelling magma ocean solidification and volatile outgassing during early planetary evolution.

    NASA Astrophysics Data System (ADS)

    Nikolaou, Athanasia; Tosi, Nicola; Plesa, Ana-Catalina

    2016-04-01

    The early phases of the evolution of the Earth and terrestrial planets likely included a state characterized by one or multiple vigorously convecting magma oceans. Even super earths at a close distance to their host star can presently be in a similar hot state. Understanding magma ocean's evolution can serve to better characterise terrestrial planets that have passed through such a state in their history and possibly constrain that state in our planet. However, the temporal evolution of a vigorously convecting magma ocean is poorly known due to missing constraints on the mechanical and thermal properties of the molten material and on the blanketing effect of the overlying atmosphere, which can strongly influence the heat flowing out of the planet and retard its cooling and solidification. The outgassing of volatiles with greenhouse potential is a key process that affects both aforementioned factors. Using a simple 1D model we simulate the evolution of a primitive magma ocean coupled with a grey atmosphere. The evolution of the potential temperature dictates the rate of mantle crystallization, which proceeds from the bottom upwards because of the steeper slope of the mantle adiabat compared to the melting curve. This model allows us to represent the complex physical state of simultaneous regimes of liquid and solid convection in the mantle. In future steps we are going to replace the grey atmosphere model with a more sophisticated 1D model of radiative-convective equilibrium to better represent the emissivity of the atmosphere generated by magma ocean outgassing.

  6. Ceruloplasmin gene-deficient mice with experimental autoimmune encephalomyelitis show attenuated early disease evolution.

    PubMed

    Gresle, Melissa M; Schulz, Katrin; Jonas, Anna; Perreau, Victoria M; Cipriani, Tania; Baxter, Alan G; Miranda-Hernandez, Socorro; Field, Judith; Jokubaitis, Vilija G; Cherny, Robert; Volitakis, Irene; David, Samuel; Kilpatrick, Trevor J; Butzkueven, Helmut

    2014-06-01

    We conducted a microarray study to identify genes that are differentially regulated in the spinal cords of mice with the inflammatory disease experimental autoimmune encephalomyelitis (EAE) relative to healthy mice. In total 181 genes with at least a two-fold increase in expression were identified, and most of these genes were associated with immune function. Unexpectedly, ceruloplasmin (Cp), a ferroxidase that converts toxic ferrous iron to its nontoxic ferric form and also promotes the efflux of iron from astrocytes in the CNS, was shown to be highly upregulated (13.2-fold increase) in EAE spinal cord. Expression of Cp protein is known to be increased in several neurological conditions, but the role of Cp regulation in CNS autoimmune disease is not known. To investigate this, we induced EAE in Cp gene knockout, heterozygous, and wild-type mice. Cp knockout mice were found to have slower disease evolution than wild-type mice (EAE days 13-17; P = 0.05). Interestingly, Cp knockout mice also exhibited a significant increase in the number of astrocytes with reactive morphology in early EAE compared with wild-type mice at the same stage of disease. CNS iron levels were not increased with EAE in these mice. Based on these observations, we propose that an increase in Cp expression could contribute to tissue damage in early EAE. In addition, endogenous CP either directly or indirectly inhibits astrocyte reactivity during early disease, which could also worsen early disease evolution.

  7. Polarization Evolution of Early Optical Afterglows of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao

    2016-01-01

    The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford-Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.

  8. POLARIZATION EVOLUTION OF EARLY OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Lan, Mi-Xiang; Dai, Zi-Gao; Wu, Xue-Feng

    2016-01-10

    The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford–Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.

  9. Size and power required for motion with implication for the evolution of early hominids.

    PubMed

    Wang, W J; Crompton, R H

    2003-09-01

    The fossil record of early hominids (early human ancestors) suggests that their stature and weight had a tendency to increase, but their robusticity (the proportion of radius to length) to decrease. Using a simple musculo-skeletal model, this paper explores possible relationships between size, power required for motion (PRM) and cycle-time, deriving relationships which indicate that PRM per unit of mass and velocity is proportional to robusticity, but inversely proportional to stature. The results derived appear to be in general agreement with published data from physiological experiments. If the material properties of early hominids were similar to those of modern humans and the achievement of minimum PRM was the selective criterion, human stature might tend to increase slightly in human evolution (and, if selective pressures are not removed, might do so in the future but at lower rate). If mobility and stability under loading are the selective criteria, however, human size should not substantially increase in the future.

  10. Water in the lunar interior: Implications for early evolution of the moon.

    NASA Astrophysics Data System (ADS)

    Goswami, Jitendranath

    2016-07-01

    Water in the lunar interior: Implications for early evolution of the moon. J. N. Goswami*, A. Basu Sarbadhikari and K. K. Marhas Physical Research Laboratory, Ahmedabad-38009 Water and other volatiles present in lunar interior can significantly affect the early evolution of the moon. Lunar volcanic glasses and in olivine hosted melt inclusions, suggest water content ranging from ~700 to 1400 ppm in the deep lunar interior (≥500 km). Apatite in lunar basalts, that sampled magma at a shallower depth (<200 km) show significant volatile zoning making it difficult to retrieve their source volatile content. We have identified and analysed apatite in Apollo 15 sample that formed at 150-200 km below the lunar surface, in a closed system and devoid of volatile zoning. The analyses of volatiles were done using a Nano-SIMs in the imaging mode and terrestrial apatite was used as standard. Water content in two apatite grains are in the range of 2200-2850 and 3400-3750 ppm, respectively; F and Cl also show nearly uniform distribution. Considering reasonable partition coefficient of water between apatite and basaltic melt, we infer values of ~ 100-160 ppm (water), 80-90 ppm (F) and 10-20 ppm (Cl) in the parent magma of 15555 that sampled a lunar depth of 150-200 km. These values are much lower than those for lunar volcanic glasses and melt inclusions trapped in them and strongly suggest a non-uniform distribution of water and other volatiles in the lunar interior. Presence of water in lunar mantle could have significantly affected the early evolution of Moon and, in particular helped in sustaining a lunar core dynamo for an extended duration and can also influence thermo-chemical processes, e.g. differential degree of melting, in different mantle source regions during the early evolutionary stages of the Moon.

  11. The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data.

    PubMed Central

    Friedman, W E; Cook, M E

    2000-01-01

    Although there is clear evidence for the establishment of terrestrial plant life by the end of the Ordovician, the fossil record indicates that land plants remained extremely small and structurally simple until the Late Silurian. Among the events associated with this first major radiation of land plants is the evolution of tracheids, complex water-conducting cells defined by the presence of lignified secondary cell wall thickenings. Recent palaeobotanical analyses indicate that Early Devonian tracheids appear to possess secondary cell wall thickenings composed of two distinct layers: a degradation-prone layer adjacent to the primary cell wall and a degradation-resistant (possibly lignified) layer next to the cell lumen. In order to understand better the early evolution of tracheids, developmental and comparative studies of key basal (and potentially plesiomorphic) extant vascular plants have been initiated. Ultrastructural analysis and enzyme degradation studies of wall structure (to approximate diagenetic alterations of fossil tracheid structure) have been conducted on basal members of each of the two major clades of extant vascular plants: Huperzia (Lycophytina) and Equisetum (Euphyllophytina. This research demonstrates that secondary cell walls of extant basal vascular plants include a degradation-prone layer ('template layer') and a degradation-resistant layer ('resistant layer'). This pattern of secondary cell wall formation in the water-conducting cells of extant vascular plants matches the pattern of wall thickenings in the tracheids of early fossil vascular plants and provides a key evolutionary link between tracheids of living vascular plants and those of their earliest fossil ancestors. Further studies of tracheid development and structure among basal extant vascular plants will lead to a more precise reconstruction of the early evolution of water-conducting tissues in land plants, and will add to the current limited knowledge of spatial, temporal and

  12. The Gaia Spectrophotometric Standard Stars

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Carrasco, J. M.; Pancino, E.; Altavilla, G.; Marinoni, S.; Cocozza, G.; Figueras, F.; Voss, H.; Galleti, S.; Ragaini, S.; Schuster, W.; Fabricius, C.; Monguió, M.; Masana, E.; Bellazzini, M.; Cacciari, C.; Bragaglia, A.; Weiler, M.; Bragaglia, A.

    2013-05-01

    The paper describes the spectrophotometric instrument of Gaia ESA's mission and the principles of the internal and absolute calibrations of the measurements. Special emphasis is made on the ongoing observational survey aimed at building a grid of about 200 spectrophotometric standard stars, with an internal precision of 1% and tied to Vega within a few percent, for the absolute flux calibration of Gaia photometry. Until now, more than 400 observing nights were devoted to the project, distributed in several observatories (CAHA in Almería, TNG in La Palma, NTT in La Silla, San Pedro Mártir in México, Loiano in Italy, and many partial nights with robotic REM in La Silla) and for both spectroscopic and photometric campaigns (Pancino et al. 2012, MNRAS, 426, 1767). Additional observations are still needed for finalising the absolute photometric calibrations and for continuing the monitoring of variability (short and long term) in order to discard non optimal candidates.

  13. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.

    PubMed

    Wilson, J P; Fischer, W W

    2011-03-01

    The core of plant physiology is a set of functional solutions to a tradeoff between CO(2) acquisition and water loss. To provide an important evolutionary perspective on how the earliest land plants met this tradeoff, we constructed a mathematical model (constrained geometrically with measurements of fossils) of the hydraulic resistance of Asteroxylon, an Early Devonian plant. The model results illuminate the water transport physiology of one of the earliest vascular plants. Results show that Asteroxylon's vascular system contains cells with low hydraulic resistances; these resistances are low because cells were covered by scalariform pits, elliptical structures that permit individual cells to have large areas for water to pass from one cell to another. Asteroxylon could move a large amount of water quickly given its large pit areas; however, this would have left these plants particularly vulnerable to damage from excessive evapotranspiration. These results highlight a repeated pattern in plant evolution, wherein the evolution of highly conductive vascular tissue precedes the appearance of adaptations to increase water transport safety. Quantitative insight into the vascular transport of Asteroxylon also allows us to reflect on the quality of CO(2) proxy estimates based on early land plant fossils. Because Asteroxylon's vascular tissue lacked any safety features to prevent permanent damage, it probably used stomatal abundance and behavior to prevent desiccation. If correct, low stomatal frequencies in Asteroxylon reflect the need to limit evapotranspiration, rather than adaptation to high CO(2) concentrations in the atmosphere. More broadly, methods to reveal and understand water transport in extinct plants have a clear use in testing and bolstering fossil plant-based paleoclimate proxies.

  14. [Visible spectrophotometric assay of ranitidine].

    PubMed

    Apostu, M; Dorneanu, V; Bibire, Nela

    2003-01-01

    Ranitidine, belonging to H2-antagonist group, is a compound containing a furanic moiety and is used in peptic ulcer therapy. This paper debates the possibility of developing a new visible spectrophotometric assessment by using the reaction between ranitidine and eosine. We carried out our determinations at 505 nm, where the absorbency of ranitidine-eosine complex is maximal, and we have established the optimal reaction conditions. This method was successfully applied for ranitidine assay from pharmaceutical dosage forms.

  15. A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths.

    PubMed

    Quah, Shan; Hui, Jerome H L; Holland, Peter W H

    2015-05-01

    MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia.

  16. A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths

    PubMed Central

    Quah, Shan; Hui, Jerome H.L.; Holland, Peter W.H.

    2015-01-01

    MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. PMID:25576364

  17. Multiple Lineages of Ancient CR1 Retroposons Shaped the Early Genome Evolution of Amniotes

    PubMed Central

    Suh, Alexander; Churakov, Gennady; Ramakodi, Meganathan P.; Platt, Roy N.; Jurka, Jerzy; Kojima, Kenji K.; Caballero, Juan; Smit, Arian F.; Vliet, Kent A.; Hoffmann, Federico G.; Brosius, Jürgen; Green, Richard E.; Braun, Edward L.; Ray, David A.; Schmitz, Jürgen

    2015-01-01

    Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and constitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mammalian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We reconstruct the temporal and quantitative activity of CR1 subfamilies via presence/absence analyses across crocodilian phylogeny and comparative analyses of 12 crocodilian genomes, revealing relative genomic stasis of retroposition during genome evolution of extant Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1 lineages in the amniote ancestor; and amniote-wide analyses of CR1 successions and quantities reveal differential retention (presence of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1 evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians. PMID:25503085

  18. Symbiosis in cell evolution: Life and its environment on the early earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  19. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales

    PubMed Central

    Fitzgerald, Erich M.G

    2006-01-01

    Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eyes and lacked derived adaptations for bulk filter-feeding. Several morphological features suggest that this mysticete was a macrophagous predator, being convergent on some Mesozoic marine reptiles and the extant leopard seal (Hydrurga leptonyx). It thus refutes the notions that all stem mysticetes were filter-feeders, and that the origins and initial radiation of mysticetes was linked to the evolution of filter-feeding. Mysticetes evidently radiated into a variety of disparate forms and feeding ecologies before the evolution of baleen or filter-feeding. The phylogenetic context of the new whale indicates that basal mysticetes were macrophagous predators that did not employ filter-feeding or echolocation, and that the evolution of characters associated with bulk filter-feeding was gradual. PMID:17015308

  20. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales.

    PubMed

    Fitzgerald, Erich M G

    2006-12-07

    Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eyes and lacked derived adaptations for bulk filter-feeding. Several morphological features suggest that this mysticete was a macrophagous predator, being convergent on some Mesozoic marine reptiles and the extant leopard seal (Hydrurga leptonyx). It thus refutes the notions that all stem mysticetes were filter-feeders, and that the origins and initial radiation of mysticetes was linked to the evolution of filter-feeding. Mysticetes evidently radiated into a variety of disparate forms and feeding ecologies before the evolution of baleen or filter-feeding. The phylogenetic context of the new whale indicates that basal mysticetes were macrophagous predators that did not employ filter-feeding or echolocation, and that the evolution of characters associated with bulk filter-feeding was gradual.

  1. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    PubMed Central

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  2. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.

    PubMed

    Goldman, Aaron David; Beatty, Joshua T; Landweber, Laura F

    2016-01-01

    The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.

  3. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    PubMed

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation.

  4. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    PubMed Central

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic. PMID:25754468

  5. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    PubMed

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  6. The Antennapedia-type homeobox genes have evolved from three precursors separated early in metazoan evolution.

    PubMed Central

    Schubert, F R; Nieselt-Struwe, K; Gruss, P

    1993-01-01

    The developmental control genes containing an Antennapedia-type homeobox are clustered in insects and vertebrates. The evolution of these genes was studied by the construction of evolutionary trees and by statistical geometry in sequence space. The comparative analysis of the homeobox sequences reveals the subdivision of the Antennapedia-type homeobox genes into three classes early in metazoan evolution. This observation suggests an important function of these genes even in the most primitive metazoans. Subsequent duplication events generated a cluster of at least five homeobox genes in the last common ancestor of insects and vertebrates. These genes later independently gave rise to the 13 groups of paralogous genes in vertebrates and to the 11 Antennapedia-type genes in the Drosophila complexes. Images PMID:8093557

  7. Evolution of domain walls in the early universe. Ph.D. Thesis - Chicago Univ.

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence

    1989-01-01

    The evolution of domain walls in the early universe is studied via 2-D computer simulation. The walls are initially configured on a triangular lattice and then released from the lattice, their evolution driven by wall curvature and by the universal expansion. The walls attain an average velocity of about 0.3c and their surface area per volume (as measured in comoving coordinates) goes down with a slope of -1 with respect to conformal time, regardless of whether the universe is matter or radiation dominated. The additional influence of vacuum pressure causes the energy density to fall away from this slope and steepen, thus allowing a situation in which domain walls can constitute a significant portion of the energy density of the universe without provoking an unacceptably large perturbation upon the microwave background.

  8. Detection of early landscape evolution through controlled experimentation, data analysis, and numerical modeling at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.

  9. A Model of Isotope Separation in Cells at the Early Stages of Evolution.

    PubMed

    Melkikh, A V; Bokunyaeva, A O

    2016-03-01

    The separation of the isotopes of certain ions can serve as an important criterion for the presence of life in the early stages of its evolution. A model of the separation of isotopes during their transport through the cell membrane is constructed. The dependence of the selection coefficient on various parameters is found. In particular, it is shown that the maximum efficiency of the transport of ions corresponds to the minimum enrichment coefficient. At the maximum enrichment, the efficiency of the transport system approaches ½. Calculated enrichment coefficients are compared with experimentally obtained values for different types of cells, and the comparison shows a qualitative agreement between these quantities.

  10. Origin of the Directed Movement of Protocells in the Early Stages of the Evolution of Life

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Chesnokova, Oksana I.

    2012-08-01

    The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell.

  11. Early evolution of avian flight and perching: new evidence from the lower cretaceous of china.

    PubMed

    Sereno, P C; Chenggang, R

    1992-02-14

    Fossil bird skeletons discovered in Lower Cretaceous lake deposits in China shed new light on the early evolution of avian flight and perching. The 135 million-year-old sparrow-sized skeletons represent a new avian, Sinornis santensis, n. gen. n. sp., that preserves striking primitive features such as a flexible manus with unguals, a footed pubis, and stomach ribs (gastralia). In contrast to Archaeoperyx, however, Sinornis exhibits advanced features such as a broad sternum, wing-folding mechanism, pygostyle, and large fully reversed hallux. Modern avian flight function and perching capability, therefore, must have evolved in small-bodied birds in inland habitats not long after Archaeopteryx.

  12. A Near-infrared Survey of the Rosette Complex: Clues of Early Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Román-Zúñiga, Carlos G.; Lada, Elizabeth A.; Ferreira, Bruno

    2008-05-01

    The majority of stars in our galaxy are born in embedded clusters, which can be considered the fundamental units of star formation. We have recently surveyed the star forming content of the Rosette Complex using FLAMINGOS in order to investigate the properties of its embedded clusters. We discuss the results of our near-infrared imaging survey. In particular, we on the first evidence for the early evolution and expansion of the embedded clusters. In addition we present data suggesting a temporal sequence of cluster formation across the cloud and discuss the influence of the HII region on the star forming history of the Rosette.

  13. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.

    PubMed

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E

    2015-03-01

    The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation.

  14. Question 7: Comparative Genomics and Early Cell Evolution: A Cautionary Methodological Note

    NASA Astrophysics Data System (ADS)

    Islas, Sara; Hernández-Morales, Ricardo; Lazcano, Antonio

    2007-10-01

    Inventories of the gene content of the last common ancestor (LCA), i.e., the cenancestor, include sequences that may have undergone horizontal transfer events, as well as sequences that have originated in different pre-cenancestral epochs. However, the universal distribution of highly conserved genes involved in RNA metabolism provide insights into early stages of cell evolution during which RNA played a much more conspicuous biological role, and is consistent with the hypothesis that extant living systems were preceded by an RNA/protein world. Insights into the traits of primitive entities from which the LCA evolved may be derived from the analysis of paralogous gene families, including those formed by sequences that resulted from internal elongation events. Three major types of paralogous gene families can be recognized. The importance of this grouping for understanding the traits of early cells is discussed.

  15. Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view

    PubMed Central

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E.

    2014-01-01

    The basic principles of Ca2+ regulation emerged early in prokaryotes. Ca2+ signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca2+ concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca2+ signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca2+ exchangers and four-domain voltage-gated Ca2+ channels. Newly identified evolutionary evidence suggests that the distinct Ca2+ signaling machineries in animals, plants and fungi likely originated from an ancient Ca2+ signaling machinery prior to early eukaryotic radiation. PMID:25498309

  16. The Environmental Factor: Driving the Onset and Early Evolution of High-Mass Stars and Clusters

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, Alana; Marston, Anthony; Martin, Peter; Ristorcelli, Isabelle; Juvela, Mika

    2015-08-01

    While the process leading to the formation of low-mass stars is reasonably well established, the origin of their high-mass counterparts, and in particular, the link with the properties and evolution of the parental structures, remains poorly understood. The key role that high-mass stars and massive clusters play in driving the evolution of the ISM, from planetary to galactic scales, makes this study, however, particularly critical.Here we present the latest results from an ongoing Herschel-based project of high-mass star formation in the Outer Galaxy, and which aims to quantify the complex dependence between the final characteristics of young high-mass stars and the early evolution of their local environment.Datasets from the Herschel imaging survey of OB Young Stellar objects (HOBYS; PI. F. Motte) and the Herschel infrared Galactic Plane Survey (Hi-Gal; PI. S. Molinari) Key Programmes are used as a base to carry out an in-depth examination of the cloud physical characteristics, compact source population, and star formation history of those regions with the potential for (and on-going) high-mass star and cluster formation. Results from this study are compelling evidence for the requirement of local external processes, such as stellar feedback (e.g., Convergent Constructive Feedback model; Rivera-Ingraham et al. 2013), in order to counteract the limitations of gravity in the formation and evolution of dense and exotic environments. We will describe how such processes could drive the formation and evolution of the parental host, and therefore influence the final characteristics of the young high-mass stars and clusters (Rivera-Ingraham, et al. 2015a; 2015b, in prep). Our conclusions are further supported by an extensive independent analysis of filamentary properties as a function of Galactic environment (Rivera-Ingraham et al. 2015c; subm), and which we will present as part of the Galactic Cold Cores Key Programme (PI. M. Juvela).

  17. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  18. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica

    PubMed Central

    Barreda, Viviana D.; Palazzesi, Luis; Tellería, Maria C.; Olivero, Eduardo B.; Raine, J. Ian; Forest, Félix

    2015-01-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76–66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60–50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general. PMID:26261324

  19. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy

    PubMed Central

    2011-01-01

    Background The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. Results We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica), we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. Conclusions Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy. PMID:21838889

  20. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates.

    PubMed

    Sallan, Lauren Cole; Coates, Michael I

    2010-06-01

    The Devonian marks a critical stage in the early evolution of vertebrates: It opens with an unprecedented diversity of fishes and closes with the earliest evidence of limbed tetrapods. However, the latter part of the Devonian has also been characterized as a period of global biotic crisis marked by two large extinction pulses: a "Big Five" mass extinction event at the Frasnian-Famennian stage boundary (374 Ma) and the less well-documented Hangenberg event some 15 million years later at the Devonian-Carboniferous boundary (359 Ma). Here, we report the results of a wide-ranging analysis of the impact of these events on early vertebrate evolution, which was obtained from a database of vertebrate occurrences sampling over 1,250 taxa from 66 localities spanning Givetian to Serpukhovian stages (391 to 318 Ma). We show that major vertebrate clades suffered acute and systematic effects centered on the Hangenberg extinction involving long-term losses of over 50% of diversity and the restructuring of vertebrate ecosystems worldwide. Marine and nonmarine faunas were equally affected, precluding the existence of environmental refugia. The subsequent recovery of previously diverse groups (including placoderms, sarcopterygian fish, and acanthodians) was minimal. Tetrapods, actinopterygians, and chondrichthyans, all scarce within the Devonian, undergo large diversification events in the aftermath of the extinction, dominating all subsequent faunas. The Hangenberg event represents a previously unrecognized bottleneck in the evolutionary history of vertebrates as a whole and a historical contingency that shaped the roots of modern biodiversity.

  1. The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome.

    PubMed Central

    Katju, Vaishali; Lynch, Michael

    2003-01-01

    The significance of gene duplication in provisioning raw materials for the evolution of genomic diversity is widely recognized, but the early evolutionary dynamics of duplicate genes remain obscure. To elucidate the structural characteristics of newly arisen gene duplicates at infancy and their subsequent evolutionary properties, we analyzed gene pairs with < or =10% divergence at synonymous sites within the genome of Caenorhabditis elegans. Structural heterogeneity between duplicate copies is present very early in their evolutionary history and is maintained over longer evolutionary timescales, suggesting that duplications across gene boundaries in conjunction with shuffling events have at least as much potential to contribute to long-term evolution as do fully redundant (complete) duplicates. The median duplication span of 1.4 kb falls short of the average gene length in C. elegans (2.5 kb), suggesting that partial gene duplications are frequent. Most gene duplicates reside close to the parent copy at inception, often as tandem inverted loci, and appear to disperse in the genome as they age, as a result of reduced survivorship of duplicates located in proximity to the ancestral copy. We propose that illegitimate recombination events leading to inverted duplications play a disproportionately large role in gene duplication within this genome in comparison with other mechanisms. PMID:14704166

  2. Molecular evolution of aminoacyl tRNA synthetase proteins in the early history of life.

    PubMed

    Fournier, Gregory P; Andam, Cheryl P; Alm, Eric J; Gogarten, J Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  3. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  4. The evolution of early cellular systems viewed through the lens of biological interactions

    PubMed Central

    Poole, Anthony M.; Lundin, Daniel; Rytkönen, Kalle T.

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are “free-living.” As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution. PMID:26539175

  5. The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome.

    PubMed

    Katju, Vaishali; Lynch, Michael

    2003-12-01

    The significance of gene duplication in provisioning raw materials for the evolution of genomic diversity is widely recognized, but the early evolutionary dynamics of duplicate genes remain obscure. To elucidate the structural characteristics of newly arisen gene duplicates at infancy and their subsequent evolutionary properties, we analyzed gene pairs with < or =10% divergence at synonymous sites within the genome of Caenorhabditis elegans. Structural heterogeneity between duplicate copies is present very early in their evolutionary history and is maintained over longer evolutionary timescales, suggesting that duplications across gene boundaries in conjunction with shuffling events have at least as much potential to contribute to long-term evolution as do fully redundant (complete) duplicates. The median duplication span of 1.4 kb falls short of the average gene length in C. elegans (2.5 kb), suggesting that partial gene duplications are frequent. Most gene duplicates reside close to the parent copy at inception, often as tandem inverted loci, and appear to disperse in the genome as they age, as a result of reduced survivorship of duplicates located in proximity to the ancestral copy. We propose that illegitimate recombination events leading to inverted duplications play a disproportionately large role in gene duplication within this genome in comparison with other mechanisms.

  6. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  7. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling

    PubMed Central

    2013-01-01

    Background The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan. Results Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire, including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors, many with predicted orthologous functions in the innate immune systems of higher organisms. Conclusions Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall, the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host. PMID:23375108

  8. [Spectrophotometric determination of phenol and sodium tosylchloramide].

    PubMed

    Kovacević, G; Bodiroga, M; Jasminka, O

    1991-01-01

    A possible quantitative analysis of oil injections of phenol and tosylchloramide sodium solution using the spectrophotometric method in the UV field has been examined. The results have been compared with results of official methods, bromometry and iodometry. The proposed spectrophotometric method is suitable due to its speed and simplicity in work giving precise and reproducible results.

  9. Dynamic-chemical evolution of the early protoplanetary disk and chemical diversity of asteroids

    NASA Astrophysics Data System (ADS)

    Nagahara, Hiroko

    2015-08-01

    Evolution of a protoplanetary disk is dynamic, where angular momentum is transported outward whereas masses are inward. Although the overall material transport is inward, a significant amount of outward transporation occurs due to diffusion, which resulted in mixing of materials with different degree of thermal processing.In the present study, we investigate the mixing of materials in a protoplanetary disk by combining fluid dynamics and themodynamics, and discuss the chemical evolution of the disk as a function of time and space and the conditions to generate chemical heterogeneity in the 2-4 AU within 106 years.The essence of the model is of a standard disk evolution model, which is combined with particle tracking model by Ciesla (2010). It enables us to track all the movement of individual particles. The chemical composition of dust particles is assumed with chemical equilibrium calculation. Summing up the number of grains with different chemical compositions, we trace the temporal and spatial change of chemical composition of the disk.The results show that some fraction of dust grains were transported to ~13AU after 105 years, ~50 AU after 5x105 years, and ~100 AU after a million years, though the most of them were fallen into the proto-sun. The flux of inward and outward dust transportation is significant within 105 years. The chemical composition of the disk is relatively enriched in refractory elements due to the outward transport of significant amounts of grains heated to high temperatures, and more heterogeneous at the early stage due to various degree of mixing of high temperature and low temperature components. It becomes homogeneous with unfractionated composition with time.Carbonaceous chondrites are thought to be fragments of asteroids, which are remnants of planetesimals. The chemical composition of carbonaceous chondrites are successfully reproduced with the present model, but only at the early stage of disk evolution (<105 years) unless the disk

  10. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  11. The Early Phases of Genetic Code Origin: Conjectures on the Evolution of Coded Catalysis

    NASA Astrophysics Data System (ADS)

    Di Giulio, Massimo

    2003-10-01

    A review of the most significant contributions on the early phases of genetic code origin is presented. After stressing the importance of the key intermediary role played in protein synthesis, by peptidyl-tRNA, which is attributed with a primary function in ancestral catalysis, the general lines leading to the codification of the first amino acids in the genetic code are discussed. This is achieved by means of a model of protoribosome evolution which sees protoribosome as the central organiser of ancestral biosynthesis and the mediator of the encounter between compounds (metabolite-pre-tRNAs) and catalysts (peptidyl-pre-tRNAs). The encounter between peptidyl-pre-tRNA catalysts in protoribosome is favoured by metabolic pre-mRNAs and later resulted (given the high temperature at which this evolution is supposed to have taken place) in the evolution of mRNAs with codons of the type GNS. These mRNAs codified only for those amino acids that the coevolution theory of genetic code origin sees as the precursors of all other amino acids. Some aspects of the model here discussed might be rendered real by the transfer-messenger RNA molecule (tmRNA) which is here considered a molecular fossil of ancestral protein synthesis.

  12. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, Jeffrey C.; Lewis, Kevin W.

    2011-02-01

    Mars was warmer and wetter during the early to middle Noachian, before a hydrologic and climatic transition in the late Noachian led to a decrease in erosion rates, a change in valley network morphology, and a geochemical shift from phyllosilicate to sulfate formation that culminated in the formation of widespread sulfate-rich sedimentary deposits in Meridiani Planum and the surrounding Arabia Terra region. This secular evolution was overprinted by episodic and periodic variability, as recorded in the fluvial record, sedimentary layering, and erosional discontinuities. We investigate the temporal evolution of Martian groundwater hydrology during the Noachian and early Hesperian epochs using global-scale hydrological models. The results suggest that the more active hydrological cycle in the Noachian was a result of a greater total water inventory, causing a saturated near-surface and high precipitation rates. The late Noachian hydrologic, climatic, and geochemical transition can be explained by a fundamental shift in the hydrological regime driven by a net loss of water due to impact and solar wind erosion of the atmosphere. Following this transition, the water table retreated deep beneath the surface, except in isolated regions of focused groundwater upwelling and evaporation, producing the playa evaporites in Meridiani Planum and Arabia Terra. This long-term evolution was modulated by shorter-term climate forcing in the form of periodic and chaotic variations in the orbital parameters of Mars, resulting in changes in the volume of water sequestered in the polar caps and cryosphere. This shorter-term forcing can explain the observed periodic and bundled sedimentary layering, erosional unconformities, and evidence for a fluctuating water table at Meridiani Planum.

  13. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2016-12-05

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. [Bayesian; BEAST; morphological clock; morphology

  14. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  15. Major transitions in the evolution of early land plants: a bryological perspective.

    PubMed

    Ligrone, Roberto; Duckett, Jeffrey G; Renzaglia, Karen S

    2012-04-01

    Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells

  16. Early chemo-dynamical evolution of dwarf galaxies deduced from enrichment of r-process elements

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka

    2017-04-01

    The abundance of elements synthesized by the rapid neutron-capture process (r-process elements) of extremely metal-poor (EMP) stars in the Local Group galaxies gives us clues to clarify the early evolutionary history of the Milky Way halo. The Local Group dwarf galaxies would have similarly evolved with building blocks of the Milky Way halo. However, how the chemo-dynamical evolution of the building blocks affects the abundance of r-process elements is not yet clear. In this paper, we perform a series of simulations using dwarf galaxy models with various dynamical times and total mass, which determine star formation histories. We find that galaxies with dynamical times longer than 100 Myr have star formation rates less than 10-3 M⊙ yr-1 and slowly enrich metals in their early phase. These galaxies can explain the observed large scatters of r-process abundance in EMP stars in the Milky Way halo regardless of their total mass. On the other hand, the first neutron star merger appears at a higher metallicity in galaxies with a dynamical time shorter than typical neutron star merger times. The scatters of r-process elements mainly come from the inhomogeneity of the metals in the interstellar medium whereas the scatters of α-elements are mostly due to the difference in the yield of each supernova. Our results demonstrate that the future observations of r-process elements in EMP stars will be able to constrain the early chemo-dynamical evolution of the Local Group galaxies.

  17. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence

    NASA Astrophysics Data System (ADS)

    Zhou, Zhonghe

    2004-10-01

    The study of the origin and early evolution of birds has never produced as much excitement and public attention as in the past decade. Well preserved and abundant new fossils of birds and dinosaurs have provided unprecedented new evidence on the dinosaurian origin of birds, the arboreal origin of avian flight, and the origin of feathers prior to flapping flight. The Mesozoic avian assemblage mainly comprises two major lineages: the prevalent extinct group Enantiornithes, and the Ornithurae, which gave rise to all modern birds, as well as several more basal taxa. Cretaceous birds radiated into various paleoecological niches that included fish- and seed-eating. Significant size and morphological differences and variation in flight capabilities, ranging from gliding to powerful flight among early birds, highlight the diversification of birds in the Early Cretaceous. There is little evidence, however, to support a Mesozoic origin of modern avian groups. Controversy and debate, nevertheless, surround many of these findings, and more details are needed to give a better appreciation of the significance of these new discoveries.

  18. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence.

    PubMed

    Zhou, Zhonghe

    2004-10-01

    The study of the origin and early evolution of birds has never produced as much excitement and public attention as in the past decade. Well preserved and abundant new fossils of birds and dinosaurs have provided unprecedented new evidence on the dinosaurian origin of birds, the arboreal origin of avian flight, and the origin of feathers prior to flapping flight. The Mesozoic avian assemblage mainly comprises two major lineages: the prevalent extinct group Enantiornithes, and the Ornithurae, which gave rise to all modern birds, as well as several more basal taxa. Cretaceous birds radiated into various paleoecological niches that included fish- and seed-eating. Significant size and morphological differences and variation in flight capabilities, ranging from gliding to powerful flight among early birds, highlight the diversification of birds in the Early Cretaceous. There is little evidence, however, to support a Mesozoic origin of modern avian groups. Controversy and debate, nevertheless, surround many of these findings, and more details are needed to give a better appreciation of the significance of these new discoveries.

  19. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  20. The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.

    PubMed

    Budd, Graham E; Jensen, Sören

    2017-02-01

    The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the 'Cambrian explosion', is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so-called 'Ediacaran' taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total-group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran-Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat-dominated substrates that the enigmatic Ediacaran taxa were associated with, the so-called 'Cambrian substrate revolution', leading to the loss of almost all Ediacara-aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late-Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world

  1. Early evolution of the extraordinary Nova Delphini 2013 (V339 Del)

    NASA Astrophysics Data System (ADS)

    Skopal, A.; Drechsel, H.; Tarasova, T.; Kato, T.; Fujii, M.; Teyssier, F.; Garde, O.; Guarro, J.; Edlin, J.; Buil, C.; Antao, D.; Terry, J.-N.; Lemoult, T.; Charbonnel, S.; Bohlsen, T.; Favaro, A.; Graham, K.

    2014-09-01

    Aims: We determine the temporal evolution of the luminosity (LWD), radius (RWD) and effective temperature (Teff) of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. Methods: These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500-9200 Å), UBVRCIC and JHKLM photometry. Important insights in the physical conditions of the ejecta were gained from an analysis of the evolution of the Hα and Raman-scattered 6825 Å O vi line using medium-resolution spectroscopy (R ~ 10 000). Results: During the fireball stage (Aug. 14.8-19.9, 2013), Teff was in the range of 6000-12 000 K, RWD was expanding non-uniformly in time from ~66 to ~300 (d/ 3 kpc) R⊙, and LWD was super-Eddington, but not constant. Its maximum of ~9 × 1038 (d/ 3 kpc)2 erg s-1 occurred around Aug. 16.0, at the maximum of Teff, half a day before the visual maximum. After the fireball stage, a large emission measure of 1.0-2.0 × 1062 (d/ 3 kpc)2 cm-3 constrained the lower limit of LWD to be well above the super-Eddington value. The mass of the ionized region was a few × 10-4 M⊙, and the mass-loss rate was decreasing from ~5.7 (Aug. 22) to ~0.71 × 10-4 M⊙ yr-1 (Sept. 20). The evolution of the Hα line and mainly the transient emergence of the Raman-scattered O vi 1032 Å line suggested a biconical ionization structure of the ejecta with a disk-like H i region persisting around the WD until its total ionization, around day 40. On Sept. 20 (day 35), the model SED indicated a dust emission component in the spectrum. The dust was located beyond the H i zone, where it was shielded from the hard, ≳105 K, radiation of the burning WD at that time. Conclusions: Our extensive spectroscopic observations of the classical nova V339 Del allowed us to map its evolution from the very early phase after its explosion. It is evident

  2. Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth

    NASA Technical Reports Server (NTRS)

    Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.

    1993-01-01

    A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.

  3. Unique caudal plumage of Jeholornis and complex tail evolution in early birds

    PubMed Central

    O’Connor, Jingmai; Wang, Xiaoli; Sullivan, Corwin; Zheng, Xiaoting; Tubaro, Pablo; Zhang, Xiaomei; Zhou, Zhonghe

    2013-01-01

    The Early Cretaceous bird Jeholornis was previously only known to have a distally restricted ornamental frond of tail feathers. We describe a previously unrecognized fan-shaped tract of feathers situated dorsal to the proximal caudal vertebrae. The position and morphology of these feathers is reminiscent of the specialized upper tail coverts observed in males of some sexually dimorphic neornithines. As in the neornithine tail, the unique “two-tail” plumage in Jeholornis probably evolved as the result of complex interactions between natural and sexual selective pressures and served both aerodynamic and ornamental functions. We suggest that the proximal fan would have helped to streamline the body and reduce drag whereas the distal frond was primarily ornamental. Jeholornis reveals that tail evolution was complex and not a simple progression from frond to fan. PMID:24101506

  4. The role of hard turbulent thermal convection in the Earth's early thermal evolution

    NASA Technical Reports Server (NTRS)

    Hansen, Ulli; Yuen, David A.; Zhao, Wuling; Malevsky, Andrei V.

    1992-01-01

    In the last several years great progress was made in the study of a new transition in thermal convection, called hard turbulence. Initial experiments were conducted with helium gas, then with water. It was shown that for base-heated Newtonian convection a transition occurred at Rayleigh numbers between 10(exp 7) and 10(exp 8). This transition is characterized by the appearance of disconnected plume structures in contrast to continuous plumes with mushroom-shaped tops found for lower Rayleigh numbers. This new hydrodynamic transition is expected to play an important role in reshaping our concepts of mantle convection in the early stages of planetary evolution. We have conducted two-dimensional calculations for large and small aspect-ratio configuration to see whether such a transition would take place for infinite Prandtl number fluids.

  5. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians

    PubMed Central

    Lu, Jing; Zhu, Min; Ahlberg, Per Erik; Qiao, Tuo; Zhu, You’an; Zhao, Wenjin; Jia, Liantao

    2016-01-01

    Crown or modern sarcopterygians (coelacanths, lungfishes, and tetrapods) differ substantially from stem sarcopterygians, such as Guiyu and Psarolepis, and a lack of transitional fossil taxa limits our understanding of the origin of the crown group. The Onychodontiformes, an enigmatic Devonian predatory fish group, seems to have characteristics of both stem and crown sarcopterygians but is difficult to place because of insufficient anatomical information. We describe the new skull material of Qingmenodus, a Pragian (~409-million-year-old) onychodont from China, using high-resolution computed tomography to image internal structures of the braincase. In addition to its remarkable similarities with stem sarcopterygians in the ethmosphenoid portion, Qingmenodus exhibits coelacanth-like neurocranial features in the otic region. A phylogenetic analysis based on a revised data set unambiguously assigns onychodonts to crown sarcopterygians as stem coelacanths. Qingmenodus thus bridges the morphological gap between stem sarcopterygians and coelacanths and helps to illuminate the early evolution and diversification of crown sarcopterygians. PMID:27386576

  6. Geochemical evolution of the northern plains of Mars: Early hydrosphere, carbonate development, and present morphology

    SciTech Connect

    Schaefer, M.W. )

    1990-08-30

    It is likely that early in Mars' history, abundant liquid water was available. Under a thick (several bars) carbon dioxide atmosphere, this water could have formed an ocean, located primarily in the lowlands of the northern hemisphere. An equilibrium geochemical model of this ocean and its interactions with the atmosphere and regolith of Mars was developed, and the results of this model were used to discuss the evolution of the volatile budget of Mars, including the deposition of large carbonate beds on the northern plains. Differential solutional weathering of these carbonate beds may have caused the formation of some of the enigmatic features seen on the northern plains of Mars, such as the thumbprint terrain and enclosed depressions.

  7. Some aspects of the early evolution of the Appointed Factory Doctor Service*

    PubMed Central

    Smiley, James A.

    1971-01-01

    Smiley, J. A. (1971).Brit. J. industr. Med.,28, 315-322. Some aspects of the early evolution of the Appointed Factory Doctor Service. The appointment of certifying surgeons marks the beginning of the recognition by the State of its responsibility for the supervision of the health and welfare of young people in industry. The importance of the rôle played by Leonard Horner, one of the first four inspectors of factories, is discussed. Some of the problems and vicissitudes of the service in the 19th century are outlined and it is suggested that the system is inappropriate to the needs of the present. Legislation which would integrate all the agencies which are concerned with the well-being of young people, including the Appointed Factory Doctor Service, should be actively considered. PMID:5124831

  8. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana; Cassisi, Santi E-mail: cmt@iac.es

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  9. Early descriptions of acromegaly and gigantism and their historical evolution as clinical entities.

    PubMed

    Mammis, Antonios; Eloy, Jean Anderson; Liu, James K

    2010-10-01

    Giants have been a subject of fascination throughout history. Whereas descriptions of giants have existed in the lay literature for millennia, the first attempt at a medical description was published by Johannes Wier in 1567. However, it was Pierre Marie, in 1886, who established the term "acromegaly" for the first time and established a distinct clinical diagnosis with clear clinical descriptions in 2 patients with the characteristic presentation. Multiple autopsy findings revealed a consistent correlation between acromegaly and pituitary enlargement. In 1909, Harvey Cushing postulated a “hormone of growth" as the underlying pathophysiological trigger involved in pituitary hypersecretion in patients with acromegaly. This theory was supported by his observations of clinical remission in patients with acromegaly in whom he had performed hypophysectomy. In this paper, the authors present some of the early accounts of acromegaly and gigantism, and describe its historical evolution as a medical and surgical entity.

  10. The Evolution of REM Sleep Behavior Disorder in Early Parkinson Disease

    PubMed Central

    Sixel-Döring, Friederike; Zimmermann, Johannes; Wegener, Andrea; Mollenhauer, Brit; Trenkwalder, Claudia

    2016-01-01

    Study Objectives: To investigate the development of REM sleep behavior disorder (RBD) and REM sleep behavioral events (RBE) not yet fulfilling diagnostic criteria for RBD as markers for neurodegeneration in a cohort of Parkinson disease (PD) patients between their de novo baseline assessment and two-year follow-up in comparison to healthy controls (HC). Methods: Clinically confirmed PD patients and HC with video-supported polysomnography (vPSG) data at baseline were re-investigated after two years. Diagnostic scoring for RBE and RBD was performed in both groups and related to baseline findings. Results: One hundred thirteen PD patients and 102 healthy controls (HC) were included in the study. Within two years, the overall occurrence of behaviors during REM sleep in PD patients increased from 50% to 63% (P = 0.02). RBD increased from 25% to 43% (P < 0.001). Eleven of 29 (38%) RBE positive PD patients and 10/56 (18%) patients with normal REM sleep at baseline converted to RBD. In HC, the occurrence of any REM behavior increased from 17% to 20% (n.s.). RBD increased from 2% to 4% (n.s.). One of 15 (7%) RBE positive HC and 1/85 (1%) HC with normal REM at baseline converted to RBD. Conclusions: RBD increased significantly in PD patients from the de novo state to two-year follow-up. We propose RBE being named “prodromal RBD” as it may follow a continuous evolution in PD possibly similar to the spreading of Lewy bodies in PD patients. RBD itself was shown as a robust and stable marker of early PD. Citation: Sixel-Döring F, Zimmermann J, Wegener A, Mollenhauer B, Trenkwalder C. The evolution of REM sleep behavior disorder in early Parkinson disease. SLEEP 2016;39(9):1737–1742. PMID:27306265

  11. Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.

    PubMed

    Campanini, Emeline B; Vandewege, Michael W; Pillai, Nisha E; Tay, Boon-Hui; Jones, Justin L; Venkatesh, Byrappa; Hoffmann, Federico G

    2015-10-15

    The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins.

  12. The Early Spectral Evolution of the Classical Nova ASASSN-15th in M33

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Neric, Marko; Darnley, Matt J.; Williams, Steven; Starrfield, Sumner; Woodward, Charles E.; Prieto, Jose Luis

    2016-06-01

    During the course of the All Sky Automated Survey for SuperNovae (ASAS-SN) a new transient source designated ASASSN-15th was identified on images of the nearby galaxy M33 obtained with the 14 cm Brutus telescope in Haleakala, Hawaii on 2015 Dec 1.4 UT at V ~ 16.5 mag. Given the location of the transient in M33 and its apparent V magnitude at discovery, the implied absolute visual magnitude was about -8.5 mag suggesting that the transient was a new classical nova outburst in M33. Optical spectroscopy obtained by us on 2015 Dec 2.3 showed broad emission lines of Balmer, Fe II, and Na I D with P Cygni-type line profiles superposed on a blue continuum. The spectrum was consistent with a Fe II-type classical nova in M33 discovered early in the outburst. Subsequent spectra obtained by us on 2015 Dec 10.9 UT showed significant evolution since our first spectrum in that the deep P Cygni-type line profiles seen earlier were now extremely shallow or had almost completely disappeared with the emission component growing in strength. Additional emission lines from O I, Si II, and possibly He I were also present. We obtained optical spectroscopy of ASASSN-15th on 17 epochs between 2015 Dec 1 and 2016 Feb 11 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory, the 2 m fully robotic Liverpool Telescope (+SPRAT), and the 2 x 8.4 m Large Binocular Telescope (+MODS). We will present our spectroscopy and discuss the early evolution of ASASSN-15th in the context of Galactic Fe II-class novae.

  13. Early evolution of clumps formed via gravitational instability in protoplanetary discs: precursors of Hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Galvagni, M.; Mayer, L.

    2014-01-01

    Although it is fairly established that Gravitational Instability (GI) should occur in the early phases of the evolution of a protoplanetary disc, the fate of the clumps resulting from disc fragmentation and their role in planet formation is still unclear. In the present study we investigate semi-analytically their evolution following the contraction of a synthetic population of clumps with varied initial structure and orbits coupled with the surrounding disc and the central star. Our model is based on recently published state-of-the-art 3D collapse simulations of clumps with varied thermodynamics. Various evolutionary mechanisms are taken into account, and their effect is explored both individually and in combination with others: migration and tidal disruption, mass accretion, gap opening and disc viscosity. It is found that, in general, at least 50 per cent of the initial clumps survive tides, leaving behind potential gas giant progenitors after ˜105 yr of evolution in the disc. The rest might either be disrupted or produce super-Earths and other low-mass planets provided that a solid core can be assembled on a sufficiently short time-scale, a possibility that we do not address in this paper. Extrapolating to million year time-scales, all our surviving protoplanets would lead to close-in gas giants. This outcome might in part reflect the limitations of the migration model adopted, and is reminiscent of the analogous result found in core-accretion models in absence of fine-tuning of the migration rate. Yet it suggests that a significant fraction of the clumps formed by GI could be the precursors of Hot Jupiters.

  14. Modification of flower architecture during early stages in the evolution of self-fertilization

    PubMed Central

    Vallejo-Marín, Mario; Barrett, Spencer C. H.

    2009-01-01

    Background and Aims The evolution of selfing from outcrossing is characterized by a series of morphological changes to flowers culminating in the selfing syndrome. However, which morphological traits initiate increased self-pollination and which are accumulated after self-fertilization establishes is poorly understood. Because the expression of floral traits may depend on the conditions experienced by an individual during flower development, investigation of changes in mating system should also account for environmental and developmental factors. Here, early stages in the evolution of self-pollination are investigated by comparing floral traits among Brazilian populations of Eichhornia paniculata (Pontederiaceae), an annual aquatic that displays variation in selfing rates associated with the breakdown of tristyly to semi-homostyly. Methods Thirty-one Brazilian populations under uniform glasshouse conditions were compared to investigate genetic and environmental influences on flower size and stigma–anther separation (herkogamy), two traits that commonly vary in association with transitions to selfing. Within-plant variation in herkogamy was also examined and plants grown under contrasting environmental conditions were compared to examine to what extent this trait exhibits phenotypic plasticity. Key Results In E. paniculata a reduction in herkogamy is the principal modification initiating the evolution of selfing. Significantly, reduced herkogamy was restricted to the mid-styled morph and occurred independently of flower size. Significant genetic variation for herkogamy was detected among populations and families, including genotypes exhibiting developmental instability of stamen position with bimodal distributions of herkogamy values. Cloned genets exposed to contrasting growth conditions demonstrated environmental control of herkogamy and genotypic differences in plasticity of this trait. Conclusions The ability to modify herkogamy independently of other floral

  15. Gradual Solar Coronal Dimming and Evolution of Coronal Mass Ejection in the Early Phase

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Cheng, Jianxia

    2017-03-01

    We report observations of a two-stage coronal dimming in an eruptive event of a two-ribbon flare and a fast coronal mass ejection (CME). Weak gradual dimming persists for more than half an hour before the onset of the two-ribbon flare and the fast rise of the CME. It is followed by abrupt rapid dimming. The two-stage dimming occurs in a pair of conjugate dimming regions adjacent to the two flare ribbons, and the flare onset marks the transition between the two stages of dimming. At the onset of the two-ribbon flare, transient brightenings are also observed inside the dimming regions, before rapid dimming occurs at the same places. These observations suggest that the CME structure, most probably anchored at the twin dimming regions, undergoes a slow rise before the flare onset, and its kinematic evolution has significantly changed at the onset of flare reconnection. We explore diagnostics of the CME evolution in the early phase with analysis of the gradual dimming signatures prior to the CME eruption.

  16. The nucleosynthetic origins and chemical evolution of phosphorus in the early universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2013-10-01

    Relatively little is known about the chemical evolution of the element phosphorus, despite its relatively large abundance in the Sun and its importance for biological life. The goal of this archive proposal is to establish the chemical evolution trend of phosphorus, extending our knowledge from solar metallicity to stars with less than 1/1000th the solar metallicity.Previous studies have used weak near-infrared P I lines to establish phosphorus abundance trends from -1.0 < [Fe/H] < 0. We have identified a strong P I doublet in the UV at 2136 Angstroms, which is present in the spectra of 22 stars available in the HST archives. Our study will {1} improve on the limited observations of the abundance trend at high metallicity and extend it to metallicities lower by 2 dex and {2} determine whether [P/Fe] flattens out towards lower metallicities {like the alpha-elements Mg, Si, Ca, and Ti} or whether it continues to increase {like Co and Zn}. Our results will provide the first tight constraints on the nucleosynthesis of phosphorus and its production sites in the early Universe.We request one semester of funding to support a graduate student to lead the spectral analysis work, one month of summer salary, and miscellaneous travel and publication costs.

  17. The Progenitor and Early Evolution of the Type IIb SN 2016gkg

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.; Fraser, M.; Sand, D. J.; Valenti, S.; Smartt, S. J.; McCully, C.; Anderson, J. P.; Arcavi, I.; Elias-Rosa, N.; Galbany, L.; Gal-Yam, A.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Jha, S. W.; Kankare, E.; Lundqvist, P.; Maguire, K.; Mattila, S.; Reichart, D.; Smith, K. W.; Smith, M.; Stritzinger, M.; Sullivan, M.; Taddia, F.; Tomasella, L.

    2017-02-01

    We report initial observations and analysis on the Type IIb SN 2016gkg in the nearby galaxy NGC 613. SN 2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN 2016gkg shows strong similarities with other Type IIb SNe, in particular, with respect to the He i emission features observed in both the optical and near-infrared. SN 2016gkg evolved faster than the prototypical Type IIb SN 1993J, with a decline similar to that of SN 2011dh after the first peak. The analysis of archival Hubble Space Telescope images indicate a pre-explosion source at SN 2016gkg’s position, suggesting a progenitor star with a ∼mid-F spectral type and initial mass 15{--}20 M {}ȯ , depending on the distance modulus adopted for NGC 613. Modeling the temperature evolution within 5 {days} of explosion, we obtain a progenitor radius of ∼ 48{--}124 R {}ȯ , smaller than that obtained from the analysis of the pre-explosion images (240{--}320 R {}ȯ ).

  18. The primary feather lengths of early birds with respect to avian wing shape evolution.

    PubMed

    Wang, X; Nudds, R L; Dyke, G J

    2011-06-01

    We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds.

  19. Insights into the early evolution of SOX genes from expression analyses in a ctenophore.

    PubMed

    Jager, Muriel; Quéinnec, Eric; Chiori, Roxane; Le Guyader, Hervé; Manuel, Michaël

    2008-12-15

    SOX genes encode transcription factors acting in various developmental processes in bilaterian animals, such as stem cell maintenance and the control of specification and differentiation of cell types in a variety of contexts, notably in the developing nervous system. To gain insights into the early evolution of this important family of developmental regulators, we investigated the expression of one subgroup B, two subgroup E, one subgroup F and two divergent SOX genes in the cydippid larva and in the adult of the ctenophore Pleurobrachia pileus. Transcripts of the two unclassified SOX (PpiSOX2/12) were detected in the female germ line and in various populations of putative somatic stem cells/undifferentiated progenitors. The remaining genes had spatially restricted expression patterns in ciliated epithelial cells, notably within neuro-sensory territories. These data are compatible with an ancient involvement of SOX proteins in controlling aspects of stem cell maintenance, cellular differentiation and specification, notably within neuro-sensory epithelia. In addition, the results highlight the complexity of the ctenophore anatomy and suggest that the SOX played an important role in the elaboration of the unique ctenophore body plan during evolution, through multiple gene co-option.

  20. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution.

    PubMed

    Stout, Dietrich; Toth, Nicholas; Schick, Kathy; Chaminade, Thierry

    2008-06-12

    Archaeological and palaeontological evidence from the Early Stone Age (ESA) documents parallel trends of brain expansion and technological elaboration in human evolution over a period of more than 2Myr. However, the relationship between these defining trends remains controversial and poorly understood. Here, we present results from a positron emission tomography study of functional brain activation during experimental ESA (Oldowan and Acheulean) toolmaking by expert subjects. Together with a previous study of Oldowan toolmaking by novices, these results document increased demands for effective visuomotor coordination and hierarchical action organization in more advanced toolmaking. This includes an increased activation of ventral premotor and inferior parietal elements of the parietofrontal praxis circuits in both the hemispheres and of the right hemisphere homologue of Broca's area. The observed patterns of activation and of overlap with language circuits suggest that toolmaking and language share a basis in more general human capacities for complex, goal-directed action. The results are consistent with coevolutionary hypotheses linking the emergence of language, toolmaking, population-level functional lateralization and association cortex expansion in human evolution.

  1. [Symbiogenesis as a Model for Reconstructing the Early Stages of Genome Evolution].

    PubMed

    Provorov, N A; Tikhonovich, I A; Vorobyov, N I

    2016-02-01

    Symbiogenic evolution, which involves transformations of bacteria into the cellular organelles, is represented as a model for reconstructing the early stages of genome evolution, including the origin of DNA genomes from RNA genomes and the emergence of template processes on the basis of self-replicating molecular complexes in the ancestral metabolic systems. The antiquity of RNA genomes is supported by an increased evolutionary stability of ribosomal protein synthesis (translation) with respect to the DNA-dependent template processes (replication, transcription, recombination, and reparation). This stability is demonstrated by analysis of the deeply reduced genomes of symbiotic bacteria and cellular organelles as well as the "minimal" genomes which are common to phylogenetically diverse organisms. Higher evolutionary conservation of template biosynthetic processes with respect to step processes determining the metabolism and development in cells does not support the hypothesis about emergence ofgenomes within the ancestral cellular metabolic systems which are thought to be of abiogenic origin, instead suggesting dualistic origin of life on Earth. We suppose that the genome-free organelles of some eukaryotes (mitosomes, many hydrogenosomes, and some plastids) represent the products of reversion of symbiotic bacteria into ancestral forms which implemented their basic cellular functions using the informational macromolecules of exogenic origin. In the framework of this hypothesis the eukaryotic cells functioning based on the massive transfer of gene products (RNAs, proteins) from cytosol to organelles may represent the analogs of ancestral biocenoses that possessed integral hereditary systems (metagenomes).

  2. Ancestral Ca2+ Signaling Machinery in Early Animal and Fungal Evolution

    PubMed Central

    Cai, Xinjiang; Clapham, David E.

    2012-01-01

    Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology. PMID:21680871

  3. A New Basal Sauropod Dinosaur from the Middle Jurassic of Niger and the Early Evolution of Sauropoda

    PubMed Central

    Remes, Kristian; Ortega, Francisco; Fierro, Ignacio; Joger, Ulrich; Kosma, Ralf; Marín Ferrer, José Manuel; Ide, Oumarou Amadou; Maga, Abdoulaye

    2009-01-01

    Background The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification. Principal Findings A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography. Conclusions Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification. PMID:19756139

  4. In-situ spectrophotometric probe

    SciTech Connect

    Prather, William S.

    1992-01-01

    A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

  5. In-situ spectrophotometric probe

    DOEpatents

    Prather, W.S.

    1992-12-15

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  6. Evolution of Cupido and Coahuila carbonate platforms, early Cretaceous, northeastern Mexico

    USGS Publications Warehouse

    Lehmann, C.; Osleger, D.A.; Montanez, I.P.; Sliter, W.; Arnaud-Vanneau, A.; Banner, J.

    1999-01-01

    The Cupido and Coahuila platforms of northeastern Mexico are part of the extensive carbonate platform system that rimmed the ancestral Gulf of Mexico during Barremian to Albian time. Exposures of Cupido and Coahuila lithofacies in several mountain ranges spanning an ???80 000 km2 area reveal information about platform morphology and composition, paleoenvironmental relations, and the chronology of platform evolution. New biostratigraphic data, integrated with carbon and strontium isotope stratigraphy, significantly improve chronostratigraphic relations across the region. These data substantially change previous age assignments of several formations and force a revision of the longstanding stratigraphy in the region. The revised stratigraphy and enhanced time control, combined with regional facies associations, allow the construction of cross sections, isopach maps, and timeslice paleogeographic maps that collectively document platform morphology and evolution. The orientation of the Cupido (Barremian-Aptian) shelf margin was controlled by the emergent Coahuila basement block to the northwest. The south-facing margin is a high-energy grainstone shoal, whereas the margin facing the ancestral Gulf of Mexico to the east is a discontinuous rudist-coral reef. A broad shelf lagoon developed in the lee of the Cupido margin, where as much as 660 m of cyclic peritidal deposits accumulated. During middle to late Aptian time, a major phase of flooding forced a retrograde backstep of the Cupido platform, shifting the locus of shallow-marine sedimentation northwestward toward the Coahuila block. This diachronous flooding event records both the demise of the Cupido shelf and the consequent initiation of the Coahuila ramp. The backstepped Coahuila ramp (Aptian-Albian) consisted of a shallow shoal margin separating an interior evaporitic lagoon from a low-energy, muddy deep ramp. More than 500 m of cyclic carbonates and evaporites accumulated in the evaporitic lagoon during early to

  7. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.

    PubMed

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang

    2016-03-15

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.

  8. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda

    PubMed Central

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J.; Liu, Yu; Boyan, George S.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang

    2016-01-01

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda. PMID:26933218

  9. Distinct spatiotemporal patterns of spreading depolarizations during early infarct evolution: evidence from real-time imaging

    PubMed Central

    Kumagai, Tetsuya; Walberer, Maureen; Nakamura, Hajime; Endepols, Heike; Sué, Michael; Vollmar, Stefan; Adib, Sasan; Mies, Günter; Yoshimine, Toshiki; Schroeter, Michael; Graf, Rudolf

    2011-01-01

    Experimental and clinical studies indicate that waves of cortical spreading depolarization (CSD) appearing in the ischemic penumbra contribute to secondary lesion growth. We used an embolic stroke model that enabled us to investigate inverse coupling of blood flow by laser speckle imaging (CBFLSF) to CSD as a contributing factor to lesion growth already in the early phase after arterial occlusion. Embolization by macrospheres injected into the left carotid artery of anesthetized rats reduced CBFLSF in the territories of the middle cerebral artery (MCA) (8/14 animals), the posterior cerebral artery (PCA) (2/14) or in less clearly defined regions (4/14). Analysis of MCA occlusions (MCAOs) revealed a first CSD wave starting off during ischemic decline at the emerging core region, propagating concentrically over large portions of left cortex. Subsequent recurrent waves of CSD did not propagate concentrically but preferentially circled around the ischemic core. In the vicinity of the core region, CSDs were coupled to waves of predominantly vasoconstrictive CBFLSF responses, resulting in further decline of CBF in the entire inner penumbra and in expansion of the ischemic core. We conclude that CSDs and corresponding CBF responses follow a defined spatiotemporal order, and contribute to early evolution of ischemic territories. PMID:20700132

  10. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments

    PubMed Central

    Pizzarello, Sandra; Davidowski, Stephen K.; Holland, Gregory P.; Williams, Lynda B.

    2013-01-01

    The composition of the Sutter’s Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography–mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter’s Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials. PMID:24019471

  11. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution.

    PubMed

    Zhou, Zhonghe; Li, Fucheng Zhang Zhiheng

    2010-01-22

    A new avian genus and species, Zhongjianornis yangi gen. et sp. nov., is reported from the Lower Cretaceous lacustrine deposits of the Jiufotang Formation in Liaoning, northeast China. The new taxon is characterized by possessing the following combination of features: upper and lower jaws toothless, snout pointed, humerus with large and robust deltopectoral crest, second phalanx of the major manual digit longer than the first phalanx, unguals of the alular and major digits of similar length and significantly shorter than the corresponding penultimate phalanges, tibiotarsus slender and more than twice the length of the tarsometatarsus, and metatarsal IV longer than the other metatarsals. Phylogenetic analysis indicates that Zhongjianornis is phylogenetically basal to Confuciusornis and the dominant Mesozoic avian groups, Enantiornithes and Ornithurae, and therefore provides significant new information regarding the diversification of birds in the Early Cretaceous. It also represents the most basal bird that completely lacks teeth, suggesting that tooth loss was more common than expected in early avian evolution and that the avian beak appeared independently in several avian lineages, most probably as a response to selective pressure for weight reduction. Finally, the presence of a significantly enlarged humeral deltopectoral crest suggests that Zhongjianornis shares with other basal birds such as Jeholornis, Sapeornis and Confuciusornis a distinctive mode of adaptation for flight contrasting with that seen in more advanced birds, which instead possess an elongated sternum and a prominent keel.

  12. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.

    PubMed

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang

    2016-03-01

    Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant

  13. Computer Simulation on the Cooperation of Functional Molecules during the Early Stages of Evolution

    PubMed Central

    Ma, Wentao; Hu, Jiming

    2012-01-01

    It is very likely that life began with some RNA (or RNA-like) molecules, self-replicating by base-pairing and exhibiting enzyme-like functions that favored the self-replication. Different functional molecules may have emerged by favoring their own self-replication at different aspects. Then, a direct route towards complexity/efficiency may have been through the coexistence/cooperation of these molecules. However, the likelihood of this route remains quite unclear, especially because the molecules would be competing for limited common resources. By computer simulation using a Monte-Carlo model (with “micro-resolution” at the level of nucleotides and membrane components), we show that the coexistence/cooperation of these molecules can occur naturally, both in a naked form and in a protocell form. The results of the computer simulation also lead to quite a few deductions concerning the environment and history in the scenario. First, a naked stage (with functional molecules catalyzing template-replication and metabolism) may have occurred early in evolution but required high concentration and limited dispersal of the system (e.g., on some mineral surface); the emergence of protocells enabled a “habitat-shift” into bulk water. Second, the protocell stage started with a substage of “pseudo-protocells”, with functional molecules catalyzing template-replication and metabolism, but still missing the function involved in the synthesis of membrane components, the emergence of which would lead to a subsequent “true-protocell” substage. Third, the initial unstable membrane, composed of prebiotically available fatty acids, should have been superseded quite early by a more stable membrane (e.g., composed of phospholipids, like modern cells). Additionally, the membrane-takeover probably occurred at the transition of the two substages of the protocells. The scenario described in the present study should correspond to an episode in early evolution, after the

  14. Optical Multicolor Photometry of Spectrophotometric Standard Stars

    NASA Astrophysics Data System (ADS)

    Landolt, Arlo U.; Uomoto, Alan K.

    2007-03-01

    Photoelectric data on the Johnson-Kron-Cousins UBVRI broadband photometric system are provided for a set of stars that have been used as spectrophotometric standard stars for the Hubble Space Telescope.

  15. The Federal Role in Early Childhood Education: Evolution in the Goals, Governance, and Policy Instruments of Project Head Start

    ERIC Educational Resources Information Center

    Kalifeh, Phyllis; Cohen-Vogel, Lora; Grass, Saralyn

    2011-01-01

    The authors analyze bills, congressional records, agency reports, and newspaper articles to trace the evolution of Project Head Start, by far the nation's largest federal early childhood program, beginning with the Economic Opportunity Act of 1964. Their analysis is organized around the policy goals embedded in the program and the governance…

  16. Thermal Evolution of Charon and the Major Satellites of Uranus: Constraints on Early Differentiation

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Multhaup, K.

    2007-12-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and the satellites of Uranus Ariel, Umbriel, Titania, Oberon and Miranda. The model assumes homogeneously accreted satellites. To calculate the initial temperature profile we assume that infalling planetesimals deposit a fraction h of their kinetic energy as heat at the instantaneous surface of the growing satellites. The parameter h is varied between models. The model continuously checks for convectively unstable shells in the interior by updating the temperature profile and calculating the Rayleigh number and the temperature-dependent viscosity. The viscosity parameter values are taken as those of ice I although the satellites under consideration likely contain admixtures of lighter constituents. Their effects and those of rock on the viscosity are discussed. Convective heat transport is calculated assuming the stagnant lid model for strongly temperature dependent viscosity. In convectively stable regions heat transfer is by conduction with a temperature dependent thermal conductivity. Thermal evolution calculations considering radiogenic heating by the long-lived radiogenic isotopes of U, Th, and K suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. With short-lived isotopes -- if present in sizeable concentrations -- this time will move earlier. Results for Miranda -- the smallest satellite of Uranus -- indicate that it never convected or differentiated if heated by the said long-lived isotopes only. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as the decay of short-lived isotopes or early tidal heating.

  17. Coupling protoplanetary disk formation with early protostellar evolution: influence on planet traps

    NASA Astrophysics Data System (ADS)

    Baillie, Kevin; Piau, Laurent

    2016-10-01

    Protoplanetary disk structures are known to be shaped by various thermal and compositional effects such as (though not limited to) shadowed regions, sublimation lines, density bumps... The resulting irregularities in the surface mass density and temperature profiles are key elements to determine the location where planetary embryos can be trapped. These traps provide hints of which planets are most likely to survive, at what distance from the star, and potentially with what composition (Baillié, Charnoz, Pantin, 2015, A&A 577, A65; Baillié, Charnoz, Pantin, 2016, A&A 590, A60). These structures are determined by the viscous spreading of the disk, that is initially formed by the collapse of the molecular cloud.Starting from the numerical hydrodynamical model detailed in Baillié & Charnoz., 2014, ApJ 786, 35 which couples the disk thermodynamics, its photosphere geometry, its dynamics and its dust composition in order to follow its long-term evolution, we now consider the early stages of the central star. We model the joint formation of the disk and the star: their mass are directly derived from the collapse of the molecular cloud while the star temperature, radius and brightness are interpolated over pre-calculated stellar evolutions. Therefore, our simulations no longer depend on the initial profile of the "Minimum Mass Solar Nebula", and allow us to model the influence of the forming star on the protoplanetary disk. In particular, we will present the resulting distribution of the sublimation lines of the main dust species, as well as the locations of the planet traps at various disk ages. In the longer term, we intend to investigate the influence of the star properties on the selection of the surviving planets.

  18. Early Stage Evolution of Nourished Beach under High-energy, Macro-tidal Environment

    NASA Astrophysics Data System (ADS)

    Liu, J. H.; Cai, F.; Zhang, Z. W.; Li, B.

    2017-02-01

    Beach planform evolution, profile equilibration and sediment grain size change have been studied during the first 4 months from 4th September to 24th December 2011 after the construction of beach nourishment project at Longfengtou Beach, Haitan Bay. Monthly beach profiles, shoreline surveys, sediment sampling and nearshore wave measurements were carried out after implementation of the 1.3km long nourishment project which was completed on 20th August 2011. This study indicates that: (1) rapid beach profile equilibration occurred in the early stage after the construction of the project. A null point was observed, which is equal to the height of mean high tide, basically kept dynamic stable during the process of profile evolution. Shoreface sediment accumulated beneath the height of this point while erosion happened above it, the slope between the beach berm and the landward edge of low tidal zone became more gradual accompanied with seaward transportation of beach sediment. The velocity of beach slope adjustment in earlier period is faster than later. (2) Beach planform adjustment initiated simultaneously with the combination of the process of profile equilibration and longshore sediment transport. Shoreline retreated with an average distance of 11.1m and maximum of 31.02m from 4th September to 24th December, erosion in the south part was more serious than in the north, and 3 erosion hot spots were found along the coast. (3) Sediment redistributed with cross-shore profile equilibration, it showed a pattern across beach profile as medium sand (0.4-0.5mm) in beach berm, smaller (0.3-0.4mm) in high and middle tidal zone, coarse sand(0.6-1mm) in beach slope transitional zone, fine sand(0.1-0.25mm) in low tidal zone. The sediment grain size change of foreshore was rapidly response to the passage of storm surge.

  19. Lake evolution during the Early Danian Dan-C2 hyperthermal, Boltysh impact crater, Ukraine

    NASA Astrophysics Data System (ADS)

    Ebinghaus, Alena; Jolley, David W.

    2016-04-01

    Lacustrine facies record complex relationships between lake evolution and environmental conditions and provide proxies for climate changes. However, lacustrine successions formed during past hyperthermals as recorded from negative carbon isotope excursions (CIEs) are of limited availability and thus less well understood. Here, we present a complete lacustrine record of the Early Danian Dan-C2 hyperthermal at c. 65.2 Ma from a core drilled in the K-Pg Boltysh impact crater, Ukraine. This borehole allows a detailed facies analysis and reconstruction of lake evolution and associated plant ecosystem in correspondence with rapid climate change. The Boltysh borehole reveals a c. 400 m thick siliciclastic and organic-rich succession overlying impact melt-breccia dated at 65.17 ± 0.64 Ma. Based on detailed core logging, 8 distinctive facies associations are identified, including 1) littoral mudstones, 2) siliciclastic shoreline deposits, 3) siliciclastic littoral to sublittoral deposits, 4) mudstone laminites, 5) organic-rich mudstones, and deposits of 6) coarse-grained, 7) fine-grained density currents, and 8) debris flows. Based on the occurrence of these facies associations 3 major phases of lake evolution are distinguished: 1) an initial pre-CIE rising clastic-dominated lake phase characterised by the presence of coarse-grained density and debris flow deposits, 2) an organic-rich fluctuating shallow lake phase during the main phase of the CIE, characterised by alternating packages of the mudstone laminites and organic-rich mudstones; and 3) a rising clastic-dominated lake during and post-CIE recovery phase, which shows a high presence of siliciclastic shoreline and littoral to sublittoral deposits. This study provides a full record of lacustrine response to climate change during the Dan-C2 hyperthermal, and subsequently allows us to infer lake formation and environmental conditions at different stages during climate warming. The high resolution sedimentary record

  20. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms.

    PubMed

    Rahman, Imran A; Waters, Johnny A; Sumrall, Colin D; Astolfo, Alberto

    2015-10-01

    Inferring the development of the earliest echinoderms is critical to uncovering the evolutionary assembly of the phylum-level body plan but has long proven problematic because early ontogenetic stages are rarely preserved as fossils. Here, we use synchrotron tomography to describe a new early post-metamorphic blastoid echinoderm from the Carboniferous (approx. 323 Ma) of China. The resulting three-dimensional reconstruction reveals a U-shaped tubular structure in the fossil interior, which is interpreted as the digestive tract. Comparisons with the developing gut of modern crinoids demonstrate that crinoids are an imperfect analogue for many extinct groups. Furthermore, consideration of our findings in a phylogenetic context allows us to reconstruct the evolution and development of the digestive system in echinoderms more broadly; there was a transition from a straight to a simple curved gut early in the phylum's evolution, but additional loops and coils of the digestive tract (as seen in crinoids) were not acquired until much later.

  1. Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes

    PubMed Central

    Vialette-Guiraud, Aurélie C. M.; Adam, Hélène; Finet, Cédric; Jasinski, Sophie; Jouannic, Stefan; Scutt, Charles P.

    2011-01-01

    Background and Aims The closely related NAC family genes NO APICAL MERISTEM (NAM) and CUP-SHAPED COTYLEDON3 (CUC3) regulate the formation of boundaries within and between plant organs. NAM is post-transcriptionally regulated by miR164, whereas CUC3 is not. To gain insight into the evolution of NAM and CUC3 in the angiosperms, we analysed orthologous genes in early-diverging ANA-grade angiosperms and gymnosperms. Methods We obtained NAM- and CUC3-like sequences from diverse angiosperms and gymnosperms by a combination of reverse transcriptase PCR, cDNA library screening and database searching, and then investigated their phylogenetic relationships by performing maximum-likelihood reconstructions. We also studied the spatial expression patterns of NAM, CUC3 and MIR164 orthologues in female reproductive tissues of Amborella trichopoda, the probable sister to all other flowering plants. Key Results Separate NAM and CUC3 orthologues were found in early-diverging angiosperms, but not in gymnosperms, which contained putative orthologues of the entire NAM + CUC3 clade that possessed sites of regulation by miR164. Multiple paralogues of NAM or CUC3 genes were noted in certain taxa, including Brassicaceae. Expression of NAM, CUC3 and MIR164 orthologues from Am. trichopoda was found to co-localize in ovules at the developmental boundary between the chalaza and nucellus. Conclusions The NAM and CUC3 lineages were generated by duplication, and CUC3 was subsequently lost regulation by miR164, prior to the last common ancestor of the extant angiosperms. However, the paralogous NAM clade genes CUC1 and CUC2 were generated by a more recent duplication, near the base of Brassicaceae. The function of NAM and CUC3 in defining a developmental boundary in the ovule appears to have been conserved since the last common ancestor of the flowering plants, as does the post-transcriptional regulation in ovule tissues of NAM by miR164. PMID:21320879

  2. Timing and evolution of ocean anoxic event during Early Cambrian in south China

    NASA Astrophysics Data System (ADS)

    Yang, J.; Jiang, S.; Pi, D.; Ling, H.

    2008-12-01

    The Precambrian/Cambrian (PC-C) interval is one of the most interesting intervals in the evolution of life because of the sudden diversification of animals with mineralized skeletons, known as "Cambrian Explosion". The Yangtze Platform in south China is one of the best occurrences that can provide excellent insights into the palaeo-environmental and biological changes across the PC-C boundary. Our study show that the ocean anoxia were widespread during the Early Cambrian period, however, the start of this anoxic event was not from the PC-C boundary (i.e., 542 Ma), but some 7 Ma later (~535 Ma) when the Niutitang Formation black rock series (black phosphorite, chert, and black shale) deposited along a thousand kilometer long NEE zone in the transitional facies in the Yangtze Platform, while the major Cambrian radiation (Changjiang fauna) took place during 521-511 Ma. During the Niutitang period, the depositional environment of the Early Cambrian sedimentary sequence in south China have evolved from an initial oxic/dysoxic to a major anoxic/euxinic environment, and then back to dysoxic/oxic environment. A Ni-Mo sulfide layer occurred in the lower part of the Niutitang black shales which contains extremely enrichments of many metals, and can serve as a marker layer in south China when the depositional environment turned into euxinic condition. Re-Os isotope study of the sulfide ores and host black shales show an age of 535 Ma. Initial Os isotopic compositions, Mo isotopic compositions, and rare earth elements and Pt group element geochemistry suggest involvement of submarine hydrothermal fluids during the metal enrichments in black shale.

  3. Spectrophotometric determination of protein concentration.

    PubMed

    Simonian, Michael H

    2004-09-01

    This unit describes spectrophotometric and colorimetric methods for measuring the concentration of a sample protein in solution. Absorbance measured at 280 nm (A(280)) is used to calculate protein concentration by comparison with a standard curve or published absorptivity values for that protein (a(280)). Alternatively, absorbance measured at 205 nm (A(205)) is used to calculate the protein concentration. The A(280) and A(205) methods can be used to quantify total protein in crude lysates and purified or partially purified protein. A spectrofluorometer or a filter fluorometer can be used to measure the intrinsic fluorescence emission of a sample solution; this value is compared with the emissions from standard solutions to determine the sample concentration. The fluorescence emission method is used to quantify purified protein. This simple method is useful for dilute protein samples and can be completed in a short amount of time. There are two colorimetric methods: the Bradford colorimetric method, based upon binding of the dye Coomassie brilliant blue to the protein of interest, and the Lowry method, which measures colorimetric reaction of tyrosyl residues in the protein sample.

  4. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  5. Spectrophotometric determination of phosphorus acid

    SciTech Connect

    Domin, A.V.; Domina, N.G.; Zakharov, Yu.A.; Shechkov, G.T.

    1987-03-01

    A number of procedures have been proposed to determine phosphorus acid and its salts, the phosphites, in the presence of hypophosphorus acid and its salts, the hypophosphites. Among these procedures, iodometric back-titration has produced the most reliable results. In this paper, the authors propose an improved iodometric determination of phosphorus acid that enables the sensitivity to be increased by at least two orders of magnitude. The essence of this improvement is that excess iodine that did not react with phosphite ion is determined not volumetrically but spectrophotometrically. To eliminate the effect of iodine ion that is liberated when iodine reacts with phosphite ion on the optical density of the solution, a 200-fold excess of potassium iodide is added before the photometric measurement. The working iodine solution is prepared by diluting 10 m of 0.025 N iodine titrant and 50 ml of phosphate buffer, pH 6.7-7.2, to 1 liter with distilled water in a coulometric flask. To construct the calibration curve, 5, 10, 15, 20, and 25 ml, respectively of working iodine solution, and 10 ml of 2% aqueous potassium iodide are placed into five 100-ml volumetric flasks, and the solutions are made up to volume with water. After 10 min the photometric measurements are carried out at 380 nm using curvets and the reference solution is obtained by diluting 10 ml of 2% aqueous potassium iodide to 100 ml with distilled water.

  6. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  7. Early evolution of the genetic basis for soma in the volvocaceae.

    PubMed

    Hanschen, Erik R; Ferris, Patrick J; Michod, Richard E

    2014-07-01

    To understand the hierarchy of life in evolutionary terms, we must explain why groups of one kind of individual, say cells, evolve into a new higher level individual, a multicellular organism. A fundamental step in this process is the division of labor into nonreproductive altruistic soma. The regA gene is critical for somatic differentiation in Volvox carteri, a multicellular species of volvocine algae. We report the sequence of regA-like genes and several syntenic markers from divergent species of Volvox. We show that regA evolved early in the volvocines and predict that lineages with and without soma descended from a regA-containing ancestor. We hypothesize an alternate evolutionary history of regA than the prevailing "proto-regA" hypothesis. The variation in presence of soma may be explained by multiple lineages independently evolving soma utilizing regA or alternate genetic pathways. Our prediction that the genetic basis for soma exists in species without somatic cells raises a number of questions, most fundamentally, under what conditions would species with the genetic potential for soma, and hence greater individuality, not evolve these traits. We conclude that the evolution of individuality in the volvocine algae is more complicated and labile than previously appreciated on theoretical grounds.

  8. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    PubMed

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  9. A New Taxon of Basal Ceratopsian from China and the Early Evolution of Ceratopsia

    PubMed Central

    Han, Fenglu; Forster, Catherine A.; Clark, James M.; Xu, Xing

    2015-01-01

    Ceratopsia is one of the best studied herbivorous ornithischian clades, but the early evolution of Ceratopsia, including the placement of Psittacosaurus, is still controversial and unclear. Here, we report a second basal ceratopsian, Hualianceratops wucaiwanensis gen. et sp. nov., from the Upper Jurassic (Oxfordian) Shishugou Formation of the Junggar Basin, northwestern China. This new taxon is characterized by a prominent caudodorsal process on the subtemporal ramus of the jugal, a robust quadrate with an expansive quadratojugal facet, a prominent notch near the ventral region of the quadrate, a deep and short dentary, and strongly rugose texturing on the lateral surface of the dentary. Hualianceratops shares several derived characters with both Psittacosaurus and the basal ceratopsians Yinlong, Chaoyangsaurus, and Xuanhuaceratops. A new comprehensive phylogeny of ceratopsians weakly supports both Yinlong and Hualianceratops as chaoyangsaurids (along with Chaoyangsaurus and Xuanhuaceratops), as well as the monophyly of Chaoyangosauridae + Psittacosaurus. This analysis also weakly supports the novel hypothesis that Chaoyangsauridae + Psittacosaurus is the sister group to the rest of Neoceratopsia, suggesting a basal split between these clades before the Late Jurassic. This phylogeny and the earliest Late Jurassic age of Yinlong and Hualianceratops imply that at least five ceratopsian lineages (Yinlong, Hualianceratops, Chaoyangsaurus + Xuanhuaceratops, Psittacosaurus, Neoceratopsia) were present at the beginning of the Late Jurassic. PMID:26649770

  10. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih

    PubMed Central

    Baker, Emma C.; Layden, Michael J.; van Rossum, Damian B.; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    2015-01-01

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps. PMID:26555239

  11. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  12. Early evolution of an energetic coronal mass ejection and its relation to EUV waves

    SciTech Connect

    Liu, Rui; Wang, Yuming; Shen, Chenglong

    2014-12-10

    We study a coronal mass ejection (CME) associated with an X-class flare whose initiation is clearly observed in the low corona with high-cadence, high-resolution EUV images, providing us a rare opportunity to witness the early evolution of an energetic CME in detail. The eruption starts with a slow expansion of cool overlying loops (∼1 MK) following a jet-like event in the periphery of the active region. Underneath the expanding loop system, a reverse S-shaped dimming is seen immediately above the brightening active region in hot EUV passbands. The dimming is associated with a rising diffuse arch (∼6 MK), which we interpret as a preexistent, high-lying flux rope. This is followed by the arising of a double hot channel (∼10 MK) from the core of the active region. The higher structures rise earlier and faster than lower ones, with the leading front undergoing extremely rapid acceleration up to 35 km s{sup –2}. This suggests that the torus instability is the major eruption mechanism and that it is the high-lying flux rope rather than the hot channels that drives the eruption. The compression of coronal plasmas skirting and overlying the expanding loop system, whose aspect ratio h/r increases with time as a result of the rapid upward acceleration, plays a significant role in driving an outward-propagating global EUV wave and a sunward-propagating local EUV wave, respectively.

  13. Early Evolution of an Energetic Coronal Mass Ejection and its Relation to EUV Waves

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Wang, Yuming; Shen, Chenglong

    2014-12-01

    We study a coronal mass ejection (CME) associated with an X-class flare whose initiation is clearly observed in the low corona with high-cadence, high-resolution EUV images, providing us a rare opportunity to witness the early evolution of an energetic CME in detail. The eruption starts with a slow expansion of cool overlying loops (~1 MK) following a jet-like event in the periphery of the active region. Underneath the expanding loop system, a reverse S-shaped dimming is seen immediately above the brightening active region in hot EUV passbands. The dimming is associated with a rising diffuse arch (~6 MK), which we interpret as a preexistent, high-lying flux rope. This is followed by the arising of a double hot channel (~10 MK) from the core of the active region. The higher structures rise earlier and faster than lower ones, with the leading front undergoing extremely rapid acceleration up to 35 km s-2. This suggests that the torus instability is the major eruption mechanism and that it is the high-lying flux rope rather than the hot channels that drives the eruption. The compression of coronal plasmas skirting and overlying the expanding loop system, whose aspect ratio h/r increases with time as a result of the rapid upward acceleration, plays a significant role in driving an outward-propagating global EUV wave and a sunward-propagating local EUV wave, respectively.

  14. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  15. The clever strategy of a tiny crustacean eye early in the evolution of vision.

    PubMed

    Schoenemann, Brigitte

    2012-03-01

    Henningsmoenicaris scutula (Walossek and Müller, 1990) (Fig. 1) is a tiny representative of Crustacea, systematically standing close to the stemline. It is found in stinkstone ('Orsten') nodules from the Alum Shale, where a rich fauna of small organisms is excellently preserved. Three dimensional morphology is retained by phosphatisation, which exhibits the finest details, such as cuticular structures, fine appendages and especially the morphology of the compound eyes. The stalked eyes of H. scutula investigated here were equipped with a differentiated visual surface with four different areas of vision. The most intriguing is a field of view oriented laterally to the contralateral side of each eye, so that the fields of view of both compound eyes intersect, and give information about any object moving within the vicinity. Due to this, although, for various reasons this compound eye probably was not able to form a proper image, it was able to perceive tiny prey within a wide visual field, in the same way that the movement of figures can be traced in a chess game. This can be considered as a highly sophisticated visual system that developed early in the history of reported eye evolution, as this compound eye is almost exactly half a billion years old.

  16. Following the Water: the Evolution of Ice-forming Regions in the Early Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    The abundances of water-vapor and water-ice during the first ten million years of the protoplanetary solar nebula are simulated using a new condensation/sublimation model. This study builds on a "snow line" model reported in ApJ 627 L153 (2005); it uses a simple phenomenological model where water vapor molecules evolve from solar atomic abundance and eventually condenses to ice at colder points in the nebula once the water-vapor partial pressure exceeds a value determined by the phase diagram for water. The synthesis of water vapor from elementary species is modeled with a chemical network consisting of about 400 species and 4000 reactions. The evolution of the icy zone (and its relative abundance of solid ice) is traced from a limited region in the early hotter disk to its final state at the time when the gas is expelled and a planetary system begins to form. Possible effects of this dynamic motion on disk chemistry and organic molecule formation are also described.

  17. Hyperthermophilic Archaea as model systems to study origin and evolution of early organisms

    NASA Astrophysics Data System (ADS)

    Cobucci-Ponzano, Beatrice; Carpentieri, Floriana; Ciaramella, Maria; de Falco, M. Rosaria; de Felice, Mariarita; di Giulio, Massimo; di Lauro, Barbara; Mazzone, Marialuisa; Napoli, Alessandra; Perugino, Giuseppe; Pisani, Francesca M.; Salerno, Vincenzo; Rossi, Mose'; Moracci, Marco

    2002-11-01

    The current preponderance of geological and geochemical evidence favours a warm to hot Earth during the first few hundred million years after accretion. Nowadays, volcanic areas, essentially unchanged for at least 4.3 Ga, are populated by hyperthermophilic microorganisms, the majority belonging to the domain Archaea. Most Archaea live in almost any environmental niches previously thought of as insurmountable physical and chemical barriers to life. These findings expanded what we considered the limits of life stimulating the exobiological research area and increasing the likelihood that life could have evolved in planets considered totally inhospitable. The study of the biology of Archaea can provide useful answers to questions concerning the chemical-physical conditions that are compatible with the mechanisms of abiogenesis and the evolution of early life. In this framework, our group is involved since a long time in the study of hyperthermophilic Archaea. We faced some crucial questions dealing with the biology of these organisms like: was the last universal common ancestor (LUCA) a (hyper)thermophile? How are Archaea phylogenetically related to the other domains of living organisms regarding DNA replication, transcription and gene organization? How can withstand DNA and proteins of hyperthermophiles to high temperatures? We here report on recent advances we obtained on these aspects.

  18. Craniofacial modularity, character analysis, and the evolution of the premaxilla in early African hominins.

    PubMed

    Villmoare, Brian A; Dunmore, Christopher; Kilpatrick, Shaun; Oertelt, Nadja; Depew, Michael J; Fish, Jennifer L

    2014-12-01

    Phylogenetic analyses require evolutionarily independent characters, but there is no consensus, nor has there been a clear methodology presented on how to define character independence in a phylogenetic context, particularly within a complex morphological structure such as the skull. Following from studies of craniofacial development, we hypothesize that the premaxilla is an independent evolutionary module with two integrated characters that have traditionally been treated as independent. We test this hypothesis on a large sample of primate skulls and find evidence supporting the premaxilla as an independent module within the larger module of the palate. Additionally, our data indicate that the convexity of the nasoalveolar clivus and the contour of the alveolus are integrated within the premaxilla. We show that the palate itself is composed of two distinct modules: the FNP-derived premaxillae and the mxBA1-derived maxillae and palatines. Application of our data to early African hominin facial morphology suggests that at least three separate transitions contributed to robust facial morphology: 1) an increase in the size of the post-canine dentition housed within the maxillae and palatines, 2) modification of the premaxilla generating a concave clivus and reduced incisor alveolus, and 3) modification of the zygomatic, shifting the zygomatic root and lateral face anteriorly. These data lend support to the monophyly of Paranthropus boisei and Paranthropus robustus, and provide mounting evidence in favor of a Paranthropus clade. This study also highlights the utility of applying developmental evidence to studies of morphological evolution.

  19. Dry minor mergers and the size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2013-07-01

    Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ~ 0 (e.g. Trujillo et al. 2007; Buitrago et al. 2008). Such a size evolution is most likely explained by the `dry merger scenario'. However, previous studies based on this scenario are not able to consistently explain both the properties of the high-z compact massive ETGs and the local ETGs (Nipoti et al. 2009). We investigate the effect of multiple sequential minor mergers on the size evolution of the compact massive ETGs.

  20. The First Molecular Phylogeny of Strepsiptera (Insecta) Reveals an Early Burst of Molecular Evolution Correlated with the Transition to Endoparasitism

    PubMed Central

    McMahon, Dino P.; Hayward, Alexander; Kathirithamby, Jeyaraney

    2011-01-01

    A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621

  1. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    SciTech Connect

    Shkolnik, Evgenya L.; Barman, Travis S. E-mail: barman@lpl.arizona.edu

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  2. A short-armed dromaeosaurid from the Jehol Group of China with implications for early dromaeosaurid evolution

    PubMed Central

    Zheng, Xiaoting; Xu, Xing; You, Hailu; Zhao, Qi; Dong, Zhiming

    2010-01-01

    Recent discoveries of basal dromaeosaurids from the Early Cretaceous Jiufotang and Yixian formations of Liaoning, China, add significant new information about the transition from non-avian dinosaurs to avians. Here we report on a new dromaeosaurid, Tianyuraptor ostromi gen. et sp. nov., from the Early Cretaceous Yixian Formation of western Liaoning, China, based on a nearly complete skeleton. Tianyuraptor possesses several features only seen in other Liaoning dromaeosaurids, although to a less developed degree, and it also exhibits features unknown in Laurasian dromaeosaurids but present in the Gondwanan dromaeosaurids and basal avialans, thus reducing the morphological gap between these groups. Tianyuraptor possesses a comparatively small furcula and proportionally short forelimbs. This lies in stark contrast to the possible capacity for flight in the microraptorines, which have proportionally long and robust forelimbs and large furculae. The presence of such striking differences between the Early Cretaceous Jehol dromaeosaurids reveals a great diversity in morphology, locomotion and ecology early in dromaeosaurid evolution. PMID:19692406

  3. CHAIRMAN'S PREFACE: Nobel Symposium 79: The Birth and Early Evolution of Our Universe

    NASA Astrophysics Data System (ADS)

    Gustafsson, Bengt; Nilsson, Jan S.; Skagerstam, Bo-Sture

    1991-01-01

    It was in 1986 that we submitted a proposal to organize a Nobel Symposium on the topic "The Birth and Early Evolution of Our Universe", a subject not previously discussed at such a meeting. Our feeling at the time was that it would be appropriate to gather together international expertise on the deep and exciting connections between elementary physics and astrophysics/cosmology. In both these scientific disciplines there are wellknown "standard models"—the Glashow-Weinberg-Salam model of electroweak interactions and the Big-Bang cosmological model. The former model has now been tested to a very high accuracy. Progress in observational cosmology and astrophysics has on the other hand given strong support to the standard Big-Bang model as a realistic framework of cosmological evolution. The interesting fact, of course, is that the two standard models are not independent, and their predictions become interlinked when one considers the early, hot universe. It is now a wonderfully accepted piece of history that the constraint on the number of light neutrinos as obtained from the Big-Bang primordial nucleosynthesis agree very well with recent high-energy laboratory experiments. When our proposal was approved in 1989 we were very happy and honoured to invite a large number of internationally outstanding contributors to take part in the Symposium, almost all of whom were able to participate. It was, however, with deep regret and shock that their sudden deaths prevented us from inviting A Sakharov and Y Zeldovich. Their presence and wisdom was sadly missed. By choosing the beautiful village of Gräftåvallen, outside the town of Östesund, as the location of the Symposium, we hoped to provide a relaxing and stimulating atmosphere and also, possibly, almost twenty hours of sunlight a day for a week. The hosts of Gräftåvallen, Annika and Tommy Hagström, have to be thanked for making our stay both extremely successful and to a memorable experience. Our thanks also go to

  4. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.

    PubMed

    Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske

    2013-07-04

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.

  5. Evolution of Early to Middle Cambrian carbonate platform, southwest Virginia Appalachians

    SciTech Connect

    Barnaby, R.J.; Read, J.F.

    1987-05-01

    Three core transects through the Early to Middle Cambrian continental shelf margin (Shady-Rome sequence) allow its evolution to be established. The sequence was initiated on a drowned clastic shelf to form a ramp with downslope mud mounds. Overall subsidence rates are estimated to be 5-10 cm/1000 years. Mud mounds consist of rare Archaeocyathid reefs that cap stromatactis MS/WS core facies and form upper parts of shallowing-upward sequences whose basal portion is shale and nodular bedded limestone. Individual mounds (1-30 m thick) are laterally extensive; some are over 3.5 km wide. Depositional slopes on the flanks range from < 0.5/sup 0/ to > 5.0/sup 0/. Three periods of backstepping of the mud mound sequences resulted from sea level fluctuations (average period approx. = 2 m.y.). Following the second backstep, regressive shelf sands and basinal turbidites formed. Later transgression led to development of mud mounds and patch reefs above the sands. Sea level fall during Rome regression caused widespread deposition of cyclic red beds and carbonates on the slowly subsiding shelf interior. On the more rapidly subsiding outer platform where subsidence rates exceeded sea level fall, an algal reef-rimmed shelf formed landward of earlier ramp buildups. Seaward of the shelf were thick deposits of periplatform talus and foreslope sands. Small-scale shallowing-upward sequences record 10/sup 4/ to 10/sup 5/-year sea level fluctuations superimposed on longer term cycles. The platform was exposed during major regressions, resulting in meteoric diagenesis of the platform as well as the off-platform talus, which provided conduits for deeply circulating meteoric fluids.

  6. Early tectonic evolution of the Thomson Orogen in Queensland inferred from constrained magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Spampinato, Giovanni P. T.; Betts, Peter G.; Ailleres, Laurent; Armit, Robin J.

    2015-05-01

    The crustal architecture as well as the kinematic evolution of the Thomson Orogen in Queensland is poorly resolved because the region is concealed under thick Phanerozoic sedimentary basins and the basement geology is known from limited drill holes. Combined potential field and seismic interpretation indicates that the Thomson Orogen is characterized by prominent regional NE- and NW-trending structural grain defined by long wavelength and low amplitude geophysical anomalies. The 'smooth' magnetic signature is interpreted to reflect deeply buried source bodies in the mid- to lower crust. Short wavelength positive magnetic features that correlate with negative gravity anomalies are interpreted to represent shallower granitic intrusions. They appear to be focused along major fault zones that might have controlled the locus for magmatism. The eastern Thomson Orogen is characterized by a prominent NE structural grain and orthogonal faults and fold interference patterns resulting in a series of troughs and highs. The western Thomson Orogen consists of a series of NW-trending structures interpreted to reflect reverse faults. Sedimentation and basin development are interpreted to have initiated in the Neoproterozoic to Early Cambrian during E-W- to ENE-WSW extension, possibly related to the Rodinia break-up. This extensional event was followed by Late Cambrian shortening recorded in the Maneroo Platform and the Diamantina River Domain which possibly correlates with the Delamerian Orogeny. Renewed deposition and volcanism occurred during the Ordovician and may have continued until Late Silurian, resulting in thinned Proterozoic basement crust and extensive basin systems that formed in a distal continental back-arc environment. Our interpretation places the Thomson Orogen to the west of the Neoproterozoic passive margin preserved in the Anakie Inlier. The region is likely to represent the internal extensional architecture during the Rodinia break-up that has been

  7. Crustal types, distribution of salt and the early evolution of the Gulf of Mexico basin

    SciTech Connect

    Buffler, R.T. )

    1990-05-01

    A new contour map on the top of basement shows the overall configuration of the entire Gulf of Mexico basin. Basement, as used here, is all rocks lying below (older than) the extensive Middle Jurassic (Callovian ) premarine evaporites (Louann Salt, etc.) plus the Late Jurassic oceanic crust in the deep part of the basin. The contour map combined with all other available geophysical data has been used to subdivide the gulf basin into four crustal types: continental, thick transitional, thin transitional, and oceanic crust. The broad region of transitional crust and the basic architecture of the basin shown by the map is believed to have formed mainly during a separate Middle Jurassic period of widespread attenuation of the entire gulf region. The area of thick transitional crust around the periphery of the northern gulf is characterized by broad basement highs and lows with wave lengths of 200-300 km. These features controlled the general distribution and thickness of salt and the overlying Jurassic through Lower Cretaceous rocks. In the area of thin transitional crust Mesozoic basins tend to be assymetrical and generally trend more parallel to the overall basin. The boundary between thin transitional crust and oceanic crust is characterized by various salt-related features. For example, the northwest and north-central boundaries are defined by two northeast trending salt-cored foldbelts, the Perdido and Mississippi fan foldbelts, respectively. The offset between the two foldbelts may represent a major transform boundary related to the northwest opening of the gulf basin. All these data put important constraints on models for early gulf evolution.

  8. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    SciTech Connect

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto; Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert; Chandler, Claire J.; Pérez, Laura; Anglada, Guillem; Macias, Enrique; Osorio, Mayra; Flock, Mario; Menten, Karl; Testi, Leonardo; Torrelles, José M.; Zhu, Zhaohuan E-mail: l.rodriguez@crya.unam.mx E-mail: henning@mpia.de

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  9. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    PubMed Central

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  10. The VLA View of the HL Tau Disk: Disk Mass, Grain Evolution, and Early Planet Formation

    NASA Astrophysics Data System (ADS)

    Carrasco-González, Carlos; Henning, Thomas; Chandler, Claire J.; Linz, Hendrik; Pérez, Laura; Rodríguez, Luis F.; Galván-Madrid, Roberto; Anglada, Guillem; Birnstiel, Til; van Boekel, Roy; Flock, Mario; Klahr, Hubert; Macias, Enrique; Menten, Karl; Osorio, Mayra; Testi, Leonardo; Torrelles, José M.; Zhu, Zhaohuan

    2016-04-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1-3) × 10-3 M ⊙, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  11. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    PubMed

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  12. Biologist Edwin Grant Conklin and the idea of the religious direction of human evolution in the early 1920s.

    PubMed

    Pavuk, Alexander

    2017-01-01

    Edwin Grant Conklin, renowned US embryologist and evolutionary popularizer, publicly advocated a social vision of evolution that intertwined science and modernist Protestant theology in the early 1920s. The moral prestige of professional science in American culture - along with Conklin's own elite scientific status - diverted attention from the frequency with which his work crossed boundaries between natural science, religion and philosophy. Writing for broad audiences, Conklin was one of the most significant of the religious and modernist biological scientists whose rhetoric went well beyond simply claiming that certain kinds of religion were amenable to evolutionary science; he instead incorporated religion itself into evolution's broadest workings. A sampling of Conklin's widely-resonant discourse suggests that there was substantially more to the religion-evolution story in the 1920s US than many creationist-centred narratives of the era imply.

  13. A revision of Sanpasaurus yaoi Young, 1944 from the Early Jurassic of China, and its relevance to the early evolution of Sauropoda (Dinosauria)

    PubMed Central

    Upchurch, Paul; Mannion, Philip D.; Sullivan, Corwin; Butler, Richard J.

    2016-01-01

    The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically ‘vulcanodontid’ character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod–eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution. PMID:27781168

  14. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2010-12-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  15. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2011-08-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  16. Carbonate Geochemistry and Organic Biomarkers Evolutions During the Early Toarcian in the Paris Basin

    NASA Astrophysics Data System (ADS)

    Hermoso, M.; Le Callonnec, L.; Hautevelle, Y.; Minoletti, F.; Renard, M.

    2006-12-01

    Within the Early Toarcian Oceanic Anoxic event, isotopic perturbations (C, O, Sr, Os, Mo and S) are now well described. Their worldwide occurrences and synchronicity are still under debate and oppose locally controlled mechanisms to global events such as methane hydrates release. We present an integrated study for understanding palaeoceanographical records in the Paris Basin. In order to test the influence of the redox status of the environment, the sedimentological, mineralogical and geochemical (carbonate and organic biomarkers) evolutions of two Early Toarcian sites are studied: Bascharage (Luxemburg) and Sancerre (center of France. A sedimentary particles isolation technique was performed to quantify the contribution of primary calcite (calcareous nannoflora) and diagenetic calcareous particles. The respective isotopic signatures of these particles enable to validate the bulk record and discuss the link between photic-zone and interstitial fluids (water-mass stratification, intensity of DIC remineralization, interstitial fluid migrations). It is demonstrated that both biogenic calcareous particles and early diagenetic macrocrystals record the C-isotope negative shift with similar magnitudes. Molecular biomarkers of the organic matter studied by GC-MS enable to characterize the paleoredox conditions in the photic-zone and the bottom water. The Bascharage section is characterized by permanant anoxic conditions in the photic zone (as shown by the presence of gammacerane, 2,3,6- trimethylalkylbenzenes and isorenieratane typical of Chlorobiaceae and reducing conditions in the sediment: Pr/Ph<1, large amount of perylene, C 35hopanes>C 34hopanes. The Earliest Toarcian Sancerre deposits are dysoxic and transient euxinic conditions are observed from the second step of the C-isotope decrease in carbonates. This level is also highlighted by generalized reducing conditions (Mn- rich carbonate) due to oxides phase destabilization, beginning of Black Shales deposits and

  17. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  18. Tidal dissipation in the early lunar magma ocean and its role in the evolution of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Chen, E. M.; Nimmo, F.

    2013-12-01

    The early orbital evolution of the Earth-Moon system may have controlled the Moon's shape [1] and dynamo activity [2]. However, few constraints on the rate of evolution are available because this rate was controlled by tidal dissipation within the Hadean Earth, which is poorly understood. We will present results from a coupled thermal-orbital model that describes the evolution of the early Earth-Moon system, similar to the model utilized in [3]. Our model includes a recently developed, self-consistent description of dissipation due to tides arising in a global lunar magma ocean [4]. Tidal dissipation reduces the inclination of the lunar orbit. For consistency with the present day Earth-Moon system configuration, our models require that a global lunar magma ocean solidify prior to the Cassini state transition, which causes high obliquities [5], and would result in significant magma ocean dissipation. The Cassini state transition is relatively fixed with regards to orbital semi-major axis (~30-35 Earth radii); however, the actual timing of this transition is controlled by dissipation in the Earth and its effect on outwards evolution of the lunar orbit. Because the timescale for magma ocean solidification is about 10-200 My [3,6], the initial outwards evolution of the Moon must have been slow and the Earth must have been significantly less dissipative than present. We find that the early Earth had a tidal time lag of Δt~1 s, which is significantly less than the current value of Δt~600 s [7]. This small amount of dissipation may be due to the feedback effect of an early steam atmosphere [8]. It also indicates that, while the early Earth likely had liquid water [9], it did not possess global-scale oceans. [1] Garrick-Bethell, I., et al. Science, 313, 2006. [2] Dwyer, C.A., et al. Nature, 479, 2011. [3] Meyer, J., et al., Icarus, 208, 2010. [4] Chen, E.M.A., et al., Icarus, in revision, 2013. [5] Ward, W.R. Science, 189, 1975. [6] Elkins-Tanton, L.T., et al., Earth

  19. Reciprocal Vegetation-Flow Feedbacks Driving Early-Stage Landscape Evolution in a Restored Wet Meadow

    NASA Astrophysics Data System (ADS)

    Larsen, L.; Merritts, D. J.; Walter, R. C.; Watts, D.

    2013-12-01

    Just as taxonomic classification has improved understanding in biology, ecogeomorphologists would benefit from a functional classification of biota based on the biophysical feedbacks that they engage in. Early stages of landscape development following disturbance provide a unique opportunity to delineate and understand these feedback processes, as the diversity in functional morphotypes (a.k.a. 'ecomorphs,' to expand on a concept from terrestrial ecology) is high and the potential for self-organization of landscape pattern strong. We used the opportunity of a stream restoration that reset its floodplain to 'initial conditions' to perform a suite of biophysical measurements designed to delineate the classes of feedback that influence landscape evolution in distinct ways. The Big Spring Run restoration (Lancaster, PA), completed in November 2011, involved removal of 15,000 t of legacy sediment from the valley bottom to expose a Holocene hydric layer and reestablish wet meadow hydrology and biota. By performing repeat biogeomorphic surveys within a study grid, we tested the hypothesis that distinct ecomorphs determine the persistence and location of channel and microtopographic features. The qualitatively distinct patch types surveyed included carpet-forming mat vegetation, tussock-forming vegetation, sparsely vegetated mudflats, benthic algal mats, mixed herbaceous communities, grasses, and clonal emergent vegetation. Within each sampling location, changes in vegetation community architecture, grain size distribution, critical shear stress for sediment entrainment, and topography were monitored over time, and flow resistance was measured. An overbank flow event that completely filled the floodplain provided an additional opportunity to measure vegetation-flow-sediment interactions. Once emergent vegetation was bent over by flow, vegetation had a negligible influence on flow velocity--in contrast to most other wetlands--but continued to shelter the bed from sediment

  20. The Role of Interactions in the Evolution of Highly Star-forming Early-Type (Sa-Sab) Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Hameed, Salman; Young, Lisa M.

    2003-06-01

    We present a search for the signatures of galaxy-galaxy interactions in the neutral gas of early-type spirals. New neutral hydrogen observations for four highly star-forming early-type spirals are presented here, along with H I data for three additional galaxies from other sources. H I maps of six of seven galaxies reveal unambiguous signs of a recent encounter, via tidal tails and H I bridges. Most of these galaxies appear undisturbed in the optical, and these interactions probably would have gone unnoticed without H I mapping. Such high rates of interaction suggest that galactic encounters may play an important role in the evolution of early-type spiral galaxies.

  1. Formation and early evolution of narrow planetary rings following the tidal disruption of satellites

    NASA Astrophysics Data System (ADS)

    Ogilvie, G. I.; Leinhardt, Z. M.; Latter, H. N.; Kokubo, E.

    2012-09-01

    Satellites that are formed inside the corotation radius of a planet migrate slowly inwards as a result of tidal dissipation in the central body. Eventually they are tidally disrupted and form planetary rings. We use N-body simulations of gravitational aggregates (rubble piles) to study the tidal disruption of both homogeneous satellites and differentiated bodies containing a denser core. These bodies are initially placed in synchronous rotation on circular orbits at different distances from the planet. In cases where tidal disruption occurs, we analyse the disruption process and the properties of the rings that are formed. We find that the Roche limit for a rubble pile is closer to the planet than for a fluid body of the same mean density, and this effect is enhanced if the satellite is differentiated. Significant zones exist around Uranus and Neptune in which inward migration and tidal disruption may occur; similar zones may have existed around the early Jupiter and Saturn. Within its Roche limit, a homogeneous satellite is totally disrupted and forms a narrow ring. The initial stages of the disruption are similar to the evolution of a viscous fluid ellipsoid, which can be computed semianalytically. Later, however, gravitational instability produces irregular structure and dynamics within the ring. On the other hand, a differentiated satellite tends to undergo a disruption of its mantle only. This process is similar to Roche-lobe overflow in interacting binary stars, although proceeding simultaneously through both Lagrange points L1 and L2, and produces streams of ejected particles whose trajectories are initially well described by solutions of the restricted three-body problem. Again, however, gravitational instability affects the streams near nodes where the particles comes almost to rest in the corotating frame and the density is enhanced. This type of disruption process produces two narrow rings on either side of a remnant satellite. If a differentiated

  2. Spectrophotometric observations of Molonglo radio source identifications

    NASA Technical Reports Server (NTRS)

    Smith, H. E.; Burbidge, E. M.; Baldwin, J. A.; Tohline, J. E.; Wampler, E. J.; Hazard, C.; Murdoch, H. S.

    1977-01-01

    The paper presents spectrophotometric observations of 76 optical objects identified with radio sources from the MC2 and MC3 catalogs. Line intensities, equivalent widths, line widths, and optical spectral indices are presented for 44 objects confirmed as quasi-stellar objects. The statistical and physical properties of the Molonglo sample are briefly discussed.

  3. Spatially Resolved Stellar Kinematics of Field Early-Type Galaxies at z = 1: Evolution of the Rotation Rate

    NASA Astrophysics Data System (ADS)

    van der Wel, Arjen; van der Marel, Roeland P.

    2008-09-01

    We use the spatial information of our previously published VLT/FORS2 absorption-line spectroscopy to measure mean stellar velocity and velocity dispersion profiles of 25 field early-type galaxies at a median redshift z = 0.97 (full range 0.6 < z < 1.2). This provides the first detailed study of early-type galaxy rotation at these redshifts. From surface brightness profiles from HST imaging we calculate two-integral oblate axisymmetric Jeans equation models for the observed kinematics. Fits to the data yield for each galaxy the degree of rotational support and the mass-to-light ratio M/LJeans. S0 and Sa galaxies are generally rotationally supported, whereas elliptical galaxies rotate less rapidly or not at all. Down to MB = - 19.5 (corrected for luminosity evolution), we find no evidence for evolution in the fraction of rotating early-type (E+S0) galaxies between z ~ 1 (63% +/- 11% ) and the present (61% +/- 5% ). We interpret this as evidence for little or no change in the field S0 fraction with redshift. We compare M/LJeans with M/Lvir inferred from the virial theorem and globally averaged quantities and assuming homologous evolution. There is good agreement for nonrotating (mostly E) galaxies. However, for rotationally supported galaxies (mostly S0) M/LJeans is on average ~40% higher than M/Lvir. We discuss possible explanations and the implications for the evolution of M/L between z = 1 and the present and its dependence on mass. Based on observations collected at the European Southern Observatory, Chile (169.A-0458), and on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  4. The LOSSy laboratory for spectro-photometric characterization of cometary and planetary analogues at University of Bern

    NASA Astrophysics Data System (ADS)

    Jost, B.; Pommerol, A.; Poch, O.; El-Maarry, M. R.; Thomas, N.

    2014-04-01

    We have built the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern to simulate and characterize the spectrophotometric properties of ice-bearing cometary and planetary analogues under various temperature and pressure conditions. This includes a radio-goniometer to measure the bidirectional reflectance in the visible spectral range at sub-zero temperatures and atmospheric pressure and a thermal-vacuum chamber to perform hyperspectral imaging in the VIS-NIR range. It focuses on the characterization of the temporal evolution of morphological and spectrophotometric properties of analogues.

  5. The Moon as a Recorder of Organic Evolution in the Early Solar System: A Lunar Regolith Analog Study

    PubMed Central

    Court, Richard W.; Crawford, Ian A.; Jones, Adrian P.; Joy, Katherine H.; Sephton, Mark A.

    2015-01-01

    Abstract The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter–containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable. Key Words: Moon—Regolith—Organic preservation—Biomarkers. Astrobiology 15, 154–168. PMID:25615648

  6. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    PubMed

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  7. Enceladus-Mimas paradox: a result of different early evolutions of satellites?

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek; Witek, Piotr

    2015-04-01

    the coefficient of the heat conduction in the considered layer, i.e.: kconv =Nu k. This approach is used successfully in parameterized theory of convection for SSC in the Earth and other planets (e.g. [3], [4]). Parameterization of liquid state convection (LSC) is even simpler. Ra in molten region is very high (usually higher than 1016). The LSC could be very intensive resulting in almost adiabatic temperature gradient given by: dT-= gαmT-, dr cpm where αm and cpm are thermal expansion coefficient and specific heat in molten region, g is the local gravity. In Enceladus and Mimas the adiabatic gradient is low and therefore LSC region is almost isothermal. 2. Results: Comparison of thermal models of Mimas and Enceladus indicates that conditions favorable for starting tidal heating (interior hot enough) lasted for short time (~107yr) in Mimas and for ~108 yr in Enceladus. This could explain Mimas-Enceladus paradox. 3. Conclusions: The Mimas-Enceladus paradox is probably the result of short time when Mimas was hot enough to allow for substantial tidal heating. The Mimas-Tethys resonance formed later when Mimas was already cool. (see also [1, 4]) The full text of the paper will be published in Acta Geophysica [5]. Acknowledgements: The research is partly supported by National Science Centre (grant 2011/ 01/ B/ ST10/06653). References : [1] Czechowski, L. (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199. [2] Merk, R., Breuer, D., Spohn, T. (2002). Numerical modeling of 26Al induced radioactive melting of asteroids concerning accretion. Icarus 199, 183-191. [3] Sharpe, H.N., Peltier, W.R., (1978) Parameterized mantle convection and the Earth's thermal history. Geophys. Res. Lett. 5, 737-740. [4] Czechowski, L. (2006) Parameterized model of convection driven by tidal and radiogenic heating. Adv. Space Res. 38, 788-793. [5] Czechowski, L., Witek, P. (2015) Comparisons of early evolutions of Mimas and Enceladus. Submitted to Acta

  8. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  9. Morphology and histology of chimpanzee primary visual striate cortex indicate that brain reorganization predated brain expansion in early hominid evolution.

    PubMed

    Holloway, Ralph L; Broadfield, Douglas C; Yuan, Michael S

    2003-07-01

    Human brain evolution is characterized by an overall increase in brain size, cerebral reorganization, and cerebral lateralization. It is generally understood when brain enlargement occurred during human evolution. However, issues concerning cerebral reorganization and hemispheric lateralization are more difficult to determine from brain endocasts, and they are topics of considerable debate. One region of the cerebral cortex that may represent the earliest evidence for brain reorganization is the primary visual cortex (PVC), or area 17 of Brodmann. In nonhuman primates, this region is larger in volume (demarcated anteriorly by the lunate sulcus), and extends further rostrally than it does in modern humans. In early hominid fossil (Australopithecus) endocasts, this region appears to occupy a smaller area compared to that in nonhuman primates. Some have argued that the brain first underwent size expansion prior to reorganization, while others maintain that reorganization predated brain expansion. To help resolve this question, we provide a description of two male, common chimpanzee (Pan troglodytes) brains, YN77-111 and YN92-115, which clearly display a more posterior lunate sulcal morphology than seen in other chimpanzees. These data show that neurogenetic variability exists in chimpanzees, and that significant differences in organization (e.g., a reduced PVC) can predate brain enlargement. While the human brain has experienced numerous expansion and reorganization events throughout evolution, the data from these two chimpanzees offer significant support for the hypothesis that the neurogenetic basis for brain reorganization was present in our early fossil ancestors (i.e., the australopithecines) prior to brain enlargement.

  10. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  11. The Late Oligocene to Early Miocene early evolution of rifting in the southwestern part of the Roer Valley Graben

    NASA Astrophysics Data System (ADS)

    Deckers, Jef

    2016-06-01

    The Roer Valley Graben is a Mesozoic continental rift basin that was reactivated during the Late Oligocene. The study area is located in the graben area of the southwestern part of the Roer Valley Graben. Rifting initiated in the study area with the development of a large number of faults in the prerift strata. Some of these faults were rooted in preexisting zones of weakness in the Mesozoic strata. Early in the Late Oligocene, several faults died out in the study area as strain became focused upon others, some of which were able to link into several-kilometer-long systems. Within the Late Oligocene to Early Miocene northwestward prograding shallow marine syn-rift deposits, the number of active faults further decreased with time. A relatively strong decrease was observed around the Oligocene/Miocene boundary and represents a further focus of strain onto the long fault systems. Miocene extensional strain was not accommodated by further growth, but predominantly by displacements along the long fault systems. Since the Oligocene/Miocene boundary coincides with a radical change in the European intraplate stress field, the latter might have contributed significantly to the simultaneous change of fault kinematics in the study area.

  12. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate.

    PubMed

    Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L

    2016-03-01

    We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization.

  13. The N/O Ratio in Early B-Type Main Sequence Stars as an Indicator of Their Evolution

    NASA Astrophysics Data System (ADS)

    Lyubimkov, L. S.

    2016-12-01

    It is shown that, in the case of early B-type main-sequence stars, of the three ratios N/C, C/O, and N/O which are regarded as indicators of stellar evolution, the ratio N/O is more reliable since it seems to be insensitive to overionization of the NII and OII ions. On the other hand, the N/C and C/O ratios, which include carbon, may contain systematic errors for stars with Teff > 18500 K because of neglected overionization of CII ions. The ratio N/O is studied in the atmospheres of 46 early main-sequence B stars. These values of N/O are examined as functions of the effective temperature, age, rotation speed, and mass of the stars. Most early B-stars in the main sequence are found to have [N/O] ≈ 0, which indicates that N/O varies little during the main sequence stage, and this result is independent of the basic parameters listed above. There are two explanations for the large number of stars with [N/O] ≈ 0 : it is predicted theoretically that for an initial rotation velocity V0 < 100 km/s, N/O varies little toward the end of the main sequence stage ([N/O] < 0.2) and observations show that most early main-sequence B-stars do actually have low initial rotation velocities V0. The few early main-sequence B-stars with higher [N/O] = 0.4-0.8 correspond to models with rotation velocities V0 = 200-300 km/s. This conclusion is consistent with earlier data for stars with the same masses in a later stage of evolution: the AFGsupergiant and bright giant stage.

  14. TP53 mutations are early events in chronic lymphocytic leukemia disease progression and precede evolution to complex karyotypes.

    PubMed

    Lazarian, Gregory; Tausch, Eugen; Eclache, Virginie; Sebaa, Amel; Bianchi, Vincent; Letestu, Remi; Collon, Jean-Francois; Lefebvre, Valerie; Gardano, Laura; Varin-Blank, Nadine; Soussi, Thierry; Stilgenbauer, Stephen; Cymbalista, Florence; Baran-Marszak, Fanny

    2016-10-15

    TP53 abnormalities lead to resistance to purine analogues and are found in over 40% of patients with refractory chronic lymphocytic leukemia (CLL). At diagnosis, no more than 5% of patients carry the 17p deletion, most cases harbour mutations within the other TP53 allele. The incidence of a TP53 mutation as the only alteration is approximately 5%, but this depends on the sensitivity of the technique. Recently, having a complex karyotype has been considered a strong adverse prognostic factor. However, there are no longitudinal studies simultaneously examining the presence of the 17p deletion, TP53 mutations and karyotype abnormalities. We conducted a retrospective longitudinal study of 31 relapsed/refractory CLL patients. Two to six blood samples per patient were analyzed, with a median follow-up of 8 years. In this report, we assessed the sequence of events of TP53 clonal evolution and correlated the presence of TP53 abnormalities to genetic instability during progression and treatment. Next-generation sequencing allowed the early detection of TP53 mutated clones and was able to be performed on a routine basis, demonstrating an excellent correlation between the Illumina and Ion Torrent technologies. We concluded that TP53 mutations are early events and precede clonal evolution to complex karyotypes. We strongly recommend the early and iterated detection of TP53 mutations in progressive cases.

  15. Determining the Early Childhood Curriculum: The Evolution of Goals and Strategies through Consonance and Controversy.

    ERIC Educational Resources Information Center

    Williams, Leslie R.

    Based on the premise that determining the early childhood curriculum hinges to a certain extent on discovering the nature of children, this chapter explores the origins and practices of early childhood curriculum in the United States. The chapter reveals perceptions shifting over time regarding characterizations of young children's most essential…

  16. A Historical Review of the Evolution of Early Childhood Care and Education in the Caribbean.

    ERIC Educational Resources Information Center

    Davies, Rose

    This paper reviews the development of early childhood care and education in the Caribbean region since World War II. Despite the growth of private early childhood facilities throughout the region in the immediate post-war period, supply was inadequate to satisfy demand. Governments, pressured by rising social and economic problems, were to varying…

  17. Early 20th-century research at the interfaces of genetics, development, and evolution: reflections on progress and dead ends.

    PubMed

    Deichmann, Ute

    2011-09-01

    Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to

  18. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    PubMed Central

    2016-01-01

    Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of the more derived

  19. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  20. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    USGS Publications Warehouse

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  1. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; Balick, B.; Bond, H. E.; Bushouse, H.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D., N., B.; Holtzman, J. A.; Kaviraj, S.; Kimble, R. A.; MacKenty, J.; Trauger, J.; Young, E.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  2. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous-Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Huang, Dezhi; Wei, Shi; Li, Zhenhong; Miao, Laicheng; Zhu, Mingshuai

    2015-12-01

    The Cretaceous Huahui basin lies along the Dunhua-Mishan fault (Dun-Mi fault), which is one of the northern branches of Tan-Lu fault in northeastern China. The study of the formation and the tectonic movements that took place in the basin can provide very important information for deciphering the tectonic evolution of northeastern China during Cretaceous-Early Cenozoic. The field analysis of fault-slip data collected from different units in the basin, demonstrates changes in the paleo-stress state that reveals a three-stage tectonic movement during the Cretaceous-Early Cenozoic. The earliest tectonic movement was NW-SE extension, which was responsible for the formation of the basin and sedimentary infilling during the Early Cretaceous. Dating of the andesite in the fill indicates it began during about 119.17 ± 0.80 Ma. The extensional structures formed in the Latest Early Cretaceous imply that this tectonic movement lasted until the beginning of the Late Cretaceous. The second stage began during the Late Cretaceous when the tectonic stress state changed and was dominated by NW-SE compression and NE-SW extension, which caused the inversion of the extensional basin. This compression folded the Early Cretaceous deposits and reactivated pre-existing faults and uplifted pre-existing granite in the basin. The strata and the unconformity in the basin shows that this compressive phase probably took place during the Late Cretaceous and ended in the Early Paleogene by a compressional regime with NE-SW compression and NW-SE extension that constitutes the third stage. The tectonic stress fields documented in the Huahui basin provide insight into the influences of plate tectonics on the crustal evolution of northeastern China during the Cretaceous to Early Cenozoic. These results show that the development of Huahui basin was controlled by the northwestward subduction of the paleo-Pacific plate during the Cretaceous, and later by the far-field effects of India-Asia collision in

  3. Early Precambrian Carbonate and Evapolite Sediments: Constraints on Environmental and Biological Evolution

    NASA Technical Reports Server (NTRS)

    Grotzinger, John P.

    2002-01-01

    The work accomplished under NASA Grant NAG5-6722 was very successful. Our lab was able to document the occurrence and distribution of evaporite-to-carbonate transitions in several basins during Precambrian time, to help constrain the long-term chemical evolution of seawater.

  4. Tungsten Partitioning in Silicates. A Key to Understanding the Early Evolution of the Moon

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Righter, K.

    2000-01-01

    We investigate the partitioning behavior of W in a variety of silicates that may have been stable during LMO crystallization, evaluate their role in generating W isotopic signatures, and speculate about the early differentiation of the Moon.

  5. Spectrophotometric determination of fluorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.; Smith, V.C.

    1964-01-01

    The rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate, the sinter-cake leached with water and the resulting solution filtered. Fluorine is separated from the acidified filtrate by steam distillation and determined spectrophotometrically by means of a zirconium-SPADNS reagent. If a multiple-unit distillation apparatus is used, 12 determinations can be completed per man-day. ?? 1964.

  6. Galactic chemical evolution: The star formation rate in the early galaxy.

    NASA Astrophysics Data System (ADS)

    Sahijpal, Sandeep

    2012-07-01

    The metallicity of the sun has been recently revised from an earlier value of ~0.02 (Anders & Grevesse 1989) to a value ~0.014 (Asplund et al. 2009). We have developed a galactic chemical evolution model to make an assessment of the implications of the revision in the metallicity on the stellar evolutionary history of the galaxy (Sahijpal & Gupta 2012). We performed numerical simulations of the galaxy by evolving numerous generations of stars. The approch is distinct from the conventional approach of solving the non-linear integro-differential equations (e.g., Pagel 1997). In the present work, we have performed numerical simulations of the galactic chemical evolution by taking into account the star formation rate in the earliest epoch of the galaxy. The era corresponds to the formation of the metal-poor stars during the accretion of the halo-thick disk of the galaxy. We have performed several simulations to study the role of the star formation history in this earliest era on the evolution of age-metallicity relation, the elemental abundance evolution of the galaxy in the solar neighborhood. The preliminary results of this work will be presented in the presentation. References: [1] Anders E. & Grevesse N. 1989, Geo. Cosmochimic. Acta 53, 197-214. [2] Asplund M., Grevesse N., Sauval A. J. & Scott P. 2009, A. Rev. A & A 47, 481-522. [3] Sahijpal S. and Gupta G. 2012, Met. Planet. Sci., submitted. [4] Pagel B. E. J. 1997, Nucleosynthesis and the chemical evolution of galaxies. Cambridge University Press.

  7. GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z {approx} 2

    SciTech Connect

    Strazzullo, V.; Gobat, R.; Daddi, E.; Onodera, M.; Carollo, M.; Dickinson, M.; Renzini, A.; Arimoto, N.; Cimatti, A.; Finoguenov, A.; Chary, R.-R.

    2013-08-01

    We present a study of galaxy populations in the central region of the IRAC-selected, X-ray-detected galaxy cluster Cl J1449+0856 at z = 2. Based on a sample of spectroscopic and photometric cluster members, we investigate stellar populations and the morphological structure of cluster galaxies over an area of {approx}0.7 Mpc{sup 2} around the cluster core. The cluster stands out as a clear overdensity both in redshift space and in the spatial distribution of galaxies close to the center of the extended X-ray emission. The cluster core region (r < 200 kpc) shows a clearly enhanced passive fraction with respect to field levels. However, together with a population of massive, passive galaxies mostly with early-type morphologies, the cluster core also hosts massive, actively star-forming, often highly dust reddened sources. Close to the cluster center, a multi-component system of passive and star-forming galaxies could represent the future brightest cluster galaxy still forming. We observe a clear correlation between passive stellar populations and an early-type morphology, in agreement with field studies at similar redshift. Passive early-type galaxies in this cluster are typically a factor of 2-3 smaller than similarly massive early types at z {approx} 0. On the other hand, these same objects are on average larger by a factor of {approx}2 than field early-types at similar redshift, lending support to recent claims of an accelerated structural evolution in high-redshift dense environments. These results point toward the early formation of a population of massive galaxies, already evolved both in their structure and stellar populations, coexisting with still actively forming massive galaxies in the central regions of young clusters 10 billion years ago.

  8. DECal: A Spectrophotometric Calibration System for DECam

    NASA Astrophysics Data System (ADS)

    Marshall, J. L.; Rheault, J.-P.; DePoy, D. L.; Prochaska, T.; Allen, R.; Behm, T. W.; Martin, E. C.; Veal, B.; Villanueva, S., Jr.; Williams, P.; Wise, J.

    2016-05-01

    DECal is a new calibration system for the CTIO 4 m Blanco telescope. It is currently being installed as part of the Dark Energy Survey and will provide both broadband flat fields and narrowband (˜1 nm bandwidth) spectrophotometric calibration for the new Dark Energy Camera (DECam). Both of these systems share a new Lambertian flat field screen. The broadband flat field system uses LEDs to illuminate each photometric filter. The spectrophotometric calibration system consists of a monochromator-based tunable light source that is projected onto the flat field screen using a custom line-to-spot fiber bundle and an engineered diffuser. Several calibrated photodiodes positioned along the beam monitor the telescope throughput as a function of wavelength. This system will measure the wavelength-dependent instrumental response function of the total telescope+instrument system in the range 300 <λ< 1100nm. The spectrophotometric calibration will be performed regularly (roughly once per month) to determine the spectral response of the DECam system and to monitor changes in instrumental throughput during the five year Dark Energy Survey project.

  9. The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    SciTech Connect

    Somerville, R; Stanford, S A; Budavari, T; Conselice, C J

    2004-03-03

    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z {approx} 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H{sub 160AB} < 24.0. A primary subsample is defined as the 34 galaxies with early-type galaxy morphologies and early-type galaxy spectral energy distributions. The secondary subsample is defined as those 42 objects which have early-type galaxy morphologies with non-early type galaxy spectral energy distributions. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A (V/V{sub max}) test confirms this result. When the effects of passive luminosity evolution are included in the calculation, the mean value of Vmax for the primary sample is 0.22 {+-} 0.05, and 0.31 {+-} 0.04 for all the early-types. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z {approx} 2. Though the observed redshift distribution of the early-type galaxies in our HDF-NICMOS sample is better matched by a hierarchical galaxy formation model, the reliability of this conclusion is tempered by the restricted sampling area and relatively small number of early-type galaxies selected by

  10. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds

    PubMed Central

    Huang, Jiandong; Hu, Yuanchao; Liu, Jia; Peteya, Jennifer A.

    2016-01-01

    Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds) and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet. PMID:27019777

  11. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires

    PubMed Central

    Amador-Mughal, Farrah

    2016-01-01

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. PMID:26817776

  12. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    PubMed

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires.

  13. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.

  14. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    PubMed

    Zeldovich, Konstantin B; Chen, Peiqiu; Shakhnovich, Boris E; Shakhnovich, Eugene I

    2007-07-01

    In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins) are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  15. Evolution of animal and plant dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants.

    PubMed

    Mukherjee, Krishanu; Campos, Henry; Kolaczkowski, Bryan

    2013-03-01

    RNA interference (RNAi) is a eukaryotic molecular system that serves two primary functions: 1) gene regulation and 2) protection against selfish elements such as viruses and transposable DNA. Although the biochemistry of RNAi has been detailed in model organisms, very little is known about the broad-scale patterns and forces that have shaped RNAi evolution. Here, we provide a comprehensive evolutionary analysis of the Dicer protein family, which carries out the initial RNA recognition and processing steps in the RNAi pathway. We show that Dicer genes duplicated and diversified independently in early animal and plant evolution, coincident with the origins of multicellularity. We identify a strong signature of long-term protein-coding adaptation that has continually reshaped the RNA-binding pocket of the plant Dicer responsible for antiviral immunity, suggesting an evolutionary arms race with viral factors. We also identify key changes in Dicer domain architecture and sequence leading to specialization in either gene-regulatory or protective functions in animal and plant paralogs. As a whole, these results reveal a dynamic picture in which the evolution of Dicer function has driven elaboration of parallel RNAi functional pathways in animals and plants.

  16. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    PubMed Central

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  17. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora.

    PubMed

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca(2+) signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca(2+)-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.

  18. A bizarre theropod from the Early Cretaceous of Japan highlighting mosaic evolution among coelurosaurians

    PubMed Central

    Azuma, Yoichi; Xu, Xing; Shibata, Masateru; Kawabe, Soichiro; Miyata, Kazunori; Imai, Takuya

    2016-01-01

    Our understanding of coelurosaurian evolution, particularly of bird origins, has been greatly improved, mainly due to numerous recently discovered fossils worldwide. Nearly all these discoveries are referable to the previously known coelurosaurian subgroups. Here, we report a new theropod, Fukuivenator paradoxus, gen. et sp. nov., based on a nearly complete specimen from the Lower Cretaceous Kitadani Formation of the Tetori Group, Fukui, Japan. While Fukuivenator possesses a large number of morphological features unknown in any other theropod, it has a combination of primitive and derived features seen in different theropod subgroups, notably dromaeosaurid dinosaurs. Computed-tomography data indicate that Fukuivenator possesses inner ears whose morphology is intermediate between those of birds and non-avian dinosaurs. Our phylogenetic analysis recovers Fukuivenator as a basally branching maniraptoran theropod, yet is unable to refer it to any known coelurosaurian subgroups. The discovery of Fukuivenator considerably increases the morphological disparity of coelurosaurian dinosaurs and highlights the high levels of homoplasy in coelurosaurian evolution. PMID:26908367

  19. From records to self-description: the role played by RNA in early evolutive systems.

    PubMed

    Moreno Bergareche, A; Fernández Ostolaza, J

    1992-03-01

    We study the appearance of genetic information starting from a system where self-reproductive and enzymatic functions are supported by the same sort of molecules. In a first phase, the information must have arisen in the form of rate independent sequences as records of enzymatic functions. Although this stage must have played an important role in evolution, it will be shown how its evolutive capacities were blocked by the impossibility of appearance of geno/phenotype duality. Finally, a logical scheme is proposed for a transition process toward a system with a code offering a simplification of the conditions required from the assumption of a maximum use of the double RNA capacity, both reproductive and enzymatic.

  20. The origin and early evolution of whales: macroevolution documented on the Indian subcontinent.

    PubMed

    Bajpai, S; Thewissen, J G M; Sahni, A

    2009-11-01

    The origin of whales (order Cetacea) from a four-footed land animal is one of the best understood examples of macroevolutionary change. This evolutionary transition has been substantially elucidated by fossil finds from the Indian subcontinent in the past decade and a half. Here, we review the first steps of whale evolution, i.e. the transition from a land mammal to obligate marine predators, documented by the Eocene cetacean families of the Indian subcontinent: Pakicetidae, Ambulocetidae, Remingtonocetidae, Protocetidae, and Basilosauridae, as well as their artiodactyl sister group, the Raoellidae. We also discuss the influence that the excellent fossil record has on the study of the evolution of organ systems, in particular the locomotor and hearing systems.

  1. HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC

    PubMed Central

    Wood, Natasha; Bhattacharya, Tanmoy; Keele, Brandon F.; Giorgi, Elena; Liu, Michael; Gaschen, Brian; Daniels, Marcus; Ferrari, Guido; Haynes, Barton F.; McMichael, Andrew; Shaw, George M.; Hahn, Beatrice H.; Korber, Bette; Seoighe, Cathal

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide

  2. Magnetic Fields In Early Stellar Evolution: Improving Mass And Age Estimates For Young Stars

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.

    2016-11-01

    Inhibition of convection by strong magnetic fields has been implicated as a potential culprit for the observed systematic errors with stellar models predictions. I test this hypothesis using stellar evolution models that include effects of strong magnetic fields on stellar structure and the efficiency of convection. I show that models including inhibition of convection due to magnetic fields producebetter age consistency across effective temperature domains and alterthe slope of the mass-radius relation to predict an age consistentwith the HR diagram.

  3. Influence of early high-dose steroid treatment on Bell's palsy evolution.

    PubMed

    Lagalla, G; Logullo, F; Di Bella, P; Provinciali, L; Ceravolo, M G

    2002-09-01

    The objective of this double-blind, randomized, placebo-controlled study was to test the efficacy of high-dose prednisone, administered as early as possible, in modifying the natural progression of Bell's palsy. Sixty-two consecutive patients, enrolled within 72 hours of facial palsy onset, were assigned to high dose intravenous prednisone in combination with intramuscular polyvitaminic therapy (group A) or polyvitaminic therapy alone (group B). Clinical grading of facial muscle strength and length of absence from work were evaluated. An early worsening of facial muscle strength was observed in controls, leading to the divergence in the trends of the grading scores in the two groups; this result was not confirmed in the long-term follow-up. Treated patients returned to work earlier than controls. In conclusion, early treatment based on high-dose corticosteroids slightly accelerates spontaneous improvement in Bell's palsy.

  4. Evidence in hand: recent discoveries and the early evolution of human manual manipulation

    PubMed Central

    Kivell, Tracy L.

    2015-01-01

    For several decades, it was largely assumed that stone tool use and production were abilities limited to the genus Homo. However, growing palaeontological and archaeological evidence, comparative extant primate studies, as well as results from methodological advancements in biomechanics and morphological analyses, have been gradually accumulating and now provide strong support for more advanced manual manipulative abilities and tool-related behaviours in pre-Homo hominins than has been traditionally recognized. Here, I review the fossil evidence related to early hominin dexterity, including the recent discoveries of relatively complete early hominin hand skeletons, and new methodologies that are providing a more holistic interpretation of hand function, and insight into how our early ancestors may have balanced the functional requirements of both arboreal locomotion and tool-related behaviours. PMID:26483538

  5. Evidence in hand: recent discoveries and the early evolution of human manual manipulation.

    PubMed

    Kivell, Tracy L

    2015-11-19

    For several decades, it was largely assumed that stone tool use and production were abilities limited to the genus Homo. However, growing palaeontological and archaeological evidence, comparative extant primate studies, as well as results from methodological advancements in biomechanics and morphological analyses, have been gradually accumulating and now provide strong support for more advanced manual manipulative abilities and tool-related behaviours in pre-Homo hominins than has been traditionally recognized. Here, I review the fossil evidence related to early hominin dexterity, including the recent discoveries of relatively complete early hominin hand skeletons, and new methodologies that are providing a more holistic interpretation of hand function, and insight into how our early ancestors may have balanced the functional requirements of both arboreal locomotion and tool-related behaviours.

  6. Late Paleocene early Eocene Tethyan carbonate platform evolution — A response to long- and short-term paleoclimatic change

    NASA Astrophysics Data System (ADS)

    Scheibner, C.; Speijer, R. P.

    2008-11-01

    The early Paleogene experienced the most pronounced long-term warming trend of the Cenozoic, superimposed by transient warming events such as the Paleocene-Eocene Thermal Maximum (PETM). The consequences of climatic perturbations and associated changes on the evolution of carbonate platforms are relatively unexplored. Today, modern carbonate platforms, especially coral reefs are highly sensitive to environmental and climatic change, which raises the question how (sub)tropical reef systems of the early Paleogene reacted to gradual and sudden global warming, eutrophication of shelf areas, enhanced CO 2 levels in an ocean with low Mg/Ca ratios. The answer to this question may help to investigate the fate of modern coral reef systems in times of global warming and rising CO 2 levels. Here we present a synthesis of Tethyan carbonate platform evolution in the early Paleogene (~ 59-55 Ma) concentrating on coral reefs and larger foraminifera, two important organism groups during this time interval. We discuss and evaluate the importance of the intrinsic and extrinsic factors leading to the dissimilar evolution of both groups during the early Paleogene. Detailed analyses of two carbonate platform areas at low (Egypt) and middle (Spain) paleolatitudes and comparison with faunal patterns of coeval platforms retrieved from the literature led to the distinction of three evolutionary stages in the late Paleocene to early Eocene Tethys: Stage I, late Paleocene coralgal-dominated platforms at low to middle paleolatitudes; stage II, a transitional latest Paleocene platform stage with coralgal reefs dominating at middle paleolatitudes and larger foraminifera-dominated ( Miscellanea, Ranikothalia, Assilina) platforms at low paleolatitudes; and stage III, early Eocene larger foraminifera-dominated ( Alveolina, Orbitolites, Nummulites) platforms at low to middle paleolatitudes. The onset of the latter prominent larger foraminifera-dominated platform correlates with the Paleocene

  7. The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates.

    PubMed

    Little, Alexander G; Seebacher, Frank

    2014-05-15

    The evolution of endothermy is one of the most intriguing and consistently debated topics in vertebrate biology, but the proximate mechanisms that mediated its evolution are unknown. Here, we suggest that the function of thyroid hormone in regulating physiological processes in response to cold is key to understanding the evolution of endothermy. We argue that the capacity of early chordates to produce thyroid hormone internally was the first step in this evolutionary process. Selection could then act on the capacity of thyroid hormone to regulate metabolism, muscle force production and cardiac performance to maintain their function against the negative thermodynamic effects of decreasing temperature. Thyroid-mediated cold acclimation would have been the principal selective advantage. The actions of thyroid hormone during cold acclimation in zebrafish are very similar to its role during endothermic thermogenesis. The thyroid-mediated increases in metabolism and locomotor performance in ectotherms eventually resulted in sufficient heat production to affect body temperature. From this point onwards, increased body temperature per se could be of selective advantage and reinforce thyroid-induced increases in physiological rates. Selection for increased body temperature would promote those mechanisms that maximise heat production, such as increased Na(+)/K(+)-ATPase activity, futile cycling by SERCA, and mitochondrial uncoupling, all of which are regulated by thyroid hormone. The specific end point of this broader evolutionary process would be endothermic thermoregulation. However, considering the evolution of endothermy in isolation is misleading because the selective advantages that drove the evolutionary process were independent from endothermy. In other words, without the selective advantages of thyroid-mediated cold acclimation in fish, there would be no endotherms.

  8. Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution

    PubMed Central

    Steiper, Michael E.; Seiffert, Erik R.

    2012-01-01

    A long-standing problem in primate evolution is the discord between paleontological and molecular clock estimates for the time of crown primate origins: the earliest crown primate fossils are ∼56 million y (Ma) old, whereas molecular estimates for the haplorhine-strepsirrhine split are often deep in the Late Cretaceous. One explanation for this phenomenon is that crown primates existed in the Cretaceous but that their fossil remains have not yet been found. Here we provide strong evidence that this discordance is better-explained by a convergent molecular rate slowdown in early primate evolution. We show that molecular rates in primates are strongly and inversely related to three life-history correlates: body size (BS), absolute endocranial volume (EV), and relative endocranial volume (REV). Critically, these traits can be reconstructed from fossils, allowing molecular rates to be predicted for extinct primates. To this end, we modeled the evolutionary history of BS, EV, and REV using data from both extinct and extant primates. We show that the primate last common ancestor had a very small BS, EV, and REV. There has been a subsequent convergent increase in BS, EV, and REV, indicating that there has also been a convergent molecular rate slowdown over primate evolution. We generated a unique timescale for primates by predicting molecular rates from the reconstructed phenotypic values for a large phylogeny of living and extinct primates. This analysis suggests that crown primates originated close to the K–Pg boundary and possibly in the Paleocene, largely reconciling the molecular and fossil timescales of primate evolution. PMID:22474376

  9. Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2014-05-01

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  10. Purely dry mergers do not explain the observed evolution of massive early-type galaxies since z ∼ 1

    SciTech Connect

    Sonnenfeld, Alessandro; Treu, Tommaso; Nipoti, Carlo

    2014-05-10

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ∼ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ∼4% of the total final stellar mass arises from the gas accreted since z ∼ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  11. THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET-OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES

    SciTech Connect

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian; Li, Maocai

    2013-10-10

    Most galaxies possibly contain some binaries, and more than half of Galactic hot subdwarf stars, which are thought to be a possible origin of the UV-upturn of old stellar populations, are found in binaries. However, the effect of binary evolution has not been taken into account in most works on the spectral fitting of galaxies. This paper studies the role of binary evolution in the spectral fitting of early-type galaxies, via a stellar population synthesis model including both single and binary star populations. Spectra from ultraviolet to optical bands are fitted to determine a few galaxy parameters. The results show that the inclusion of binaries in stellar population models may lead to obvious change in the determination of some parameters of early-type galaxies and therefore it is potentially important for spectral studies. In particular, the ages of young components of composite stellar populations become much older when using binary star population models instead of single star population models. This implies that binary star population models will measure significantly different star formation histories for early-type galaxies compared to single star population models. In addition, stellar population models with binary interactions on average measure larger dust extinctions than single star population models. This suggests that when binary star population models are used, negative extinctions are possibly no longer necessary in the spectral fitting of galaxies (see previous works, e.g., Cid Fernandes et al. for comparison). Furthermore, it is shown that optical spectra have strong constraints on stellar age while UV spectra have strong constraints on binary fraction. Finally, our results suggest that binary star population models can provide new insight into the stellar properties of globular clusters.

  12. THE ROLE OF MERGERS IN EARLY-TYPE GALAXY EVOLUTION AND BLACK HOLE GROWTH

    SciTech Connect

    Schawinski, Kevin; Dowlin, Nathan; Urry, C. Megan; Thomas, Daniel; Edmondson, Edward

    2010-05-01

    Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from Sloan Digital Sky Survey Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.

  13. A Convenient Model for the Evolution of Early Psychology as a Scientific Discipline.

    ERIC Educational Resources Information Center

    Epstein, Robert

    1981-01-01

    To help college students understand psychology, the article suggests that instructors develop curriculum based on the relationship between scientific and technological advances and the development of early psychology. Views of many nineteenth century psychologists are summarized, including Johann Friedrich Herbart, Hermann Lotze, and Georg…

  14. Education for Sustainable Development in Early Childhood Education in Spain. Evolution, Trends and Proposals

    ERIC Educational Resources Information Center

    Agut, M. Pilar Martínez; Ull, M. Angeles; Minguet, Pilar Aznar

    2014-01-01

    This article analyses how the sustainability culture has evolved in the early childhood education setting within the Spanish education system with official documents and the sustainability training received by teachers who intervene in this stage of education since these teachers' degrees have been adapted to the European Higher Education Area.…

  15. Evolution of the fundamental plane of 0.2 < z < 1.2 early-type galaxies in the EGS

    NASA Astrophysics Data System (ADS)

    Fernández Lorenzo, M.; Cepa, J.; Bongiovanni, A.; Pérez García, A. M.; Ederoclite, A.; Lara-López, M. A.; Pović, M.; Sánchez-Portal, M.

    2011-02-01

    Context. The fundamental plane links the structural properties of early-type galaxies such as its surface brightness and effective radius with its dynamics. The study of the fundamental plane evolution therefore has important implications for models of galaxy formation and evolution. Aims: This work aims to identify signs of evolution of early-type galaxies through the study of parameter correlations such as the fundamental plane, the Kormendy, and the Faber-Jackson relations, using a sample of 135 field galaxies extracted from the Extended Groth Strip in the redshift range 0.2 < z < 1.2. Methods: We calculate the internal velocity dispersions with DEEP2 data by extracting the stellar kinematics from absorption line spectra, using a maximum penalized-likelihood approach. Morphology was determined through visual classification of the V + I images of ACS. The structural parameters of these galaxies were obtained by fitting de Vaucouleurs stellar profiles to the ACS I-band images with the GALFIT code. To check the effect on the fundamental plane of the structural parameters, Sérsic and bulge-to-disc decomposition models were fitted to our sample of galaxies. A good agreement was found in the fundamental plane derived from the three models. Results: Assuming that effective radii and velocity dispersions do not evolve with redshift, we found a brightening of 0.68 mag in the B-band and 0.52 mag in the g-band at = 0.7. However, the scatter in the fundamental plane for our high-redshift sample is reduced by half when we allow the fundamental plane slope to evolve, suggesting a different evolution of early-type galaxies according to their intrinsic properties such as total mass, size, or luminosity. The study of the Kormendy relation shows a population of very compact (Re < 2 Kpc) and bright galaxies (-21.5 > Mg > -22.5), of which there are only a small fraction (0.4%) at z = 0. Studying the luminosity-size and stellar mass-size relations, we show that the evolution of

  16. Early Mars serpentinization-derived CH4 reservoirs, H2-induced warming and paleopressure evolution

    NASA Astrophysics Data System (ADS)

    Chassefière, E.; Lasue, J.; Langlais, B.; Quesnel, Y.

    2016-11-01

    CH4 has been observed on Mars both by remote sensing and in situ during the past 15 yr. It could have been produced by early Mars serpentinization processes that could also explain the observed Martian remanent magnetic field. Assuming a cold early Mars, a cryosphere could trap such CH4 as clathrates in stable form at depth. The maximum storage capacity of such a clathrate cryosphere has been recently estimated to be 2 × 1019 to 2 × 1020 moles of methane. We estimate how large amounts of serpentinization-derived CH4 stored in the cryosphere have been released into the atmosphere during the Noachian and the early Hesperian. Due to rapid clathrate dissociation and photochemical conversion of CH4 to H2, these episodes of massive CH4 release may have resulted in transient H2-rich atmospheres, at typical levels of 10-20% in a background 1-2 bar CO2 atmosphere. The collision-induced heating effect of H2 present in such an atmosphere has been shown to raise the surface temperature above the water freezing point. We show how local and rapid destabilization of the cryosphere can be induced by large events (such as the Hellas Basin or Tharsis bulge formation) and lead to such releases. Our results show that the early Mars cryosphere had a sufficient CH4 storage capacity to have maintained H2-rich transient atmospheres during a total time period up to several million years or tens of million years, having potentially contributed to the formation of valley networks during the Noachian/early Hesperian.

  17. On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution.

    PubMed

    Rios, Andro C; Tor, Yitzhak

    2013-06-01

    The native bases of RNA and DNA are prominent examples of the narrow selection of organic molecules upon which life is based. How did nature "decide" upon these specific heterocycles? Evidence suggests that many types of heterocycles could have been present on the early Earth. It is therefore likely that the contemporary composition of nucleobases is a result of multiple selection pressures that operated during early chemical and biological evolution. The persistence of the fittest heterocycles in the prebiotic environment towards, for example, hydrolytic and photochemical assaults, may have given some nucleobases a selective advantage for incorporation into the first informational polymers. The prebiotic formation of polymeric nucleic acids employing the native bases remains, however, a challenging problem to reconcile. Hypotheses have proposed that the emerging RNA world may have included many types of nucleobases. This is supported by the extensive utilization of non-canonical nucleobases in extant RNA and the resemblance of many of the modified bases to heterocycles generated in simulated prebiotic chemistry experiments. Selection pressures in the RNA world could have therefore narrowed the composition of the nucleic acid bases. Two such selection pressures may have been related to genetic fidelity and duplex stability. Considering these possible selection criteria, the native bases along with other related heterocycles seem to exhibit a certain level of fitness. We end by discussing the strength of the N-glycosidic bond as a potential fitness parameter in the early DNA world, which may have played a part in the refinement of the alphabetic bases.

  18. On the levels of enzymatic substrate specificity: Implications for the early evolution of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Diaz-Villagomez, E.; Mills, T.; Oro, J.

    1995-01-01

    The most frequently invoked explanation for the origin of metabolic pathways is the retrograde evolution hypothesis. In contrast, according to the so-called 'patchwork' theory, metabolism evolved by the recruitment of relatively inefficient small enzymes of broad specificity that could react with a wide range of chemically related substrates. In this paper it is argued that both sequence comparisons and experimental results on enzyme substrate specificity support the patchwork assembly theory. The available evidence supports previous suggestions that gene duplication events followed by a gradual neoDarwinian accumulation of mutations and other minute genetic changes lead to the narrowing and modification of enzyme function in at least some primordial metabolic pathways.

  19. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  20. Selection by differential molecular survival: a possible mechanism of early chemical evolution.

    PubMed Central

    de Duve, C

    1987-01-01

    A model is proposed to account for selective chemical evolution, progressing from a relatively simple initial set of abiotic synthetic phenomena up to the elaborately sophisticated processes that are almost certainly required to produce the complex molecules, such as replicatable RNA-like oligonucleotides, needed for a Darwinian form of selection to start operating. The model makes the following assumptions: (i) that a small number of micromolecular substances were present at high concentration; (ii) that a random assembly mechanism combined these molecules into a variety of multimeric compounds comprising a wide repertoire of rudimentary catalytic activities; and (iii) that a lytic system capable of breaking down the assembled products existed. The model assumes further that catalysts supplied with substrates were significantly protected against breakdown. It is shown that, by granting these assumptions, an increasingly complex network of metabolic pathways would progressively be established. At the same time, the catalysts concerned would accumulate selectively to become choice substrates for elongation and other modifications that could enhance their efficiency, as well as their survival. Chemical evolution would thus proceed by a dual process of metabolic extension and catalytic innovation. Such a process should be largely deterministic and predictable from initial conditions. PMID:3479788

  1. EARLY DYNAMICAL EVOLUTION OF THE SOLAR SYSTEM: PINNING DOWN THE INITIAL CONDITIONS OF THE NICE MODEL

    SciTech Connect

    Batygin, Konstantin; Brown, Michael E.

    2010-06-20

    In the recent years, the 'Nice' model of solar system formation has attained an unprecedented level of success in reproducing much of the observed orbital architecture of the solar system by evolving the planets to their current locations from a more compact configuration. Within the context of this model, the formation of the classical Kuiper Belt requires a phase during which the ice giants have a high eccentricity. An outstanding question of this model is the initial configuration from which the solar system started out. Recent work has shown that multi-resonant initial conditions can serve as good candidates, as they naturally prevent vigorous type-II migration. In this paper, we use analytical arguments, as well as self-consistent numerical N-body simulations to identify fully resonant initial conditions, whose dynamical evolution is characterized by an eccentric phase of the ice giants, as well as planetary scattering. We find a total of eight such initial conditions. Four of these primordial states are compatible with the canonical 'Nice' model, while the others imply slightly different evolutions. The results presented here should prove useful in further development of a comprehensive model for solar system formation.

  2. A new symmetrodont mammal (Trechnotheria: Zhangheotheriidae) from the Early Cretaceous of China and trechnotherian character evolution

    PubMed Central

    Bi, Shundong; Zheng, Xiaoting; Meng, Jin; Wang, Xiaoli; Robinson, Nicole; Davis, Brian

    2016-01-01

    We report the discovery of Anebodon luoi, a new genus and species of zhangheotheriid symmetrodont mammal from the Lujiatun site of the Lower Cretaceous Yixian Formation, China. The fossil is represented by an associated partial skull and dentaries with a nearly complete dentition, and with a dental formula of I4/3 C1/1 P5/4 M3/4. This new taxon lacks the high molar count typical of derived symmetrodonts, differing from the well-represented zhangheotheriids Zhangheotherium and Maotherium in having a postcanine dental formula that resembles more primitive tinodontid symmetrodonts on the one hand, and sister taxa to therians such as Peramus on the other. Upper and lower distal premolars are strongly molariform and are captured undergoing replacement, clarifying positional homology among related taxa. We also describe the rostrum and, for the first time in a symmetrodont, much of the orbital mosaic. Importantly, our new taxon occupies a basal position within the Zhangheotheriidae and permits discussion of trechnotherian character evolution, ultimately shedding additional light on the evolution of therians. PMID:27215593

  3. Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian.

    PubMed

    Fröbisch, Nadia B; Bickelmann, Constanze; Witzmann, Florian

    2014-11-07

    Salamanders are the only tetrapods capable of fully regenerating their limbs throughout their entire lives. Much data on the underlying molecular mechanisms of limb regeneration have been gathered in recent years allowing for new comparative studies between salamanders and other tetrapods that lack this unique regenerative potential. By contrast, the evolution of animal regeneration just recently shifted back into focus, despite being highly relevant for research designs aiming to unravel the factors allowing for limb regeneration. We show that the 300-million-year-old temnospondyl amphibian Micromelerpeton, a distant relative of modern amphibians, was already capable of regenerating its limbs. A number of exceptionally well-preserved specimens from fossil deposits show a unique pattern and combination of abnormalities in their limbs that is distinctive of irregular regenerative activity in modern salamanders and does not occur as variants of normal limb development. This demonstrates that the capacity to regenerate limbs is not a derived feature of modern salamanders, but may be an ancient feature of non-amniote tetrapods and possibly even shared by all bony fish. The finding provides a new framework for understanding the evolution of regenerative capacity of paired appendages in vertebrates in the search for conserved versus derived molecular mechanisms of limb regeneration.

  4. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora

    PubMed Central

    Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang

    2015-01-01

    We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion. PMID:26124122

  5. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora.

    PubMed

    Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-guang

    2015-07-14

    We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion.

  6. Early Tertiary marine fossils from northern Alaska: implications for Arctic Ocean paleogeography and faunal evolution.

    USGS Publications Warehouse

    Marincovich, L.; Brouwers, E.M.; Carter, L.D.

    1985-01-01

    Marine mollusks and ostracodes indicate a post-Danian Paleocene to early Eocene (Thanetian to Ypresian) age for a fauna from the Prince Creek Formation at Ocean Point, northern Alaska, that also contains genera characteristic of the Cretaceous and Neogene-Quaternary. The life-assocation of heterochronous taxa at Ocean Point resulted from an unusual paleogeographic setting, the nearly complete isolation of the Arctic Ocean from about the end of the Cretaceous until sometime in the Eocene, in which relict Cretaceous taxa survived into Tertiary time while endemic taxa evolved in situ; these later migrated to the northern mid- latitudes. Paleobiogeographic affinities of the Ocean Point assocation with mild temperate faunas of the London Basin (England), Denmark, and northern Germany indicate that a shallow, intermittent Paleocene seaway extended through the Norwegian-Greenland Sea to the North Sea Basin. Early Tertiary Arctic Ocean paleogeography deduced from faunal evidence agrees with that inferred from plate-tectonic reconstructions.-Authors

  7. STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS

    SciTech Connect

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo Yicheng; Kocevski, Dale D.; McGrath, Elizabeth J.; Wuyts, Stijn; Haeussler, Boris; Barden, Marco; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han; Galametz, Audrey; Dekel, Avishai; Hathi, Nimish P.; and others

    2013-08-20

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 < z < 2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z > 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a {approx} 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and-at a given mass-on redshift. For present-day and z < 1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z > 1, this trend is much weaker over the mass range explored here (10{sup 10} < M{sub *}/M{sub Sun} < 10{sup 11}), because the oblate fraction among massive (M{sub *} {approx} 10{sup 11} M{sub Sun }) was much higher in the past: 0.59 {+-} 0.10 at z > 1, compared to 0.20 {+-} 0.02 at z {approx} 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log (M{sub *}/M{sub Sun }) < 10

  8. The evolution of Early Cretaceous shallow-water carbonate platforms in times of frequent oceanic anoxia

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl; Morales, Chloé; Stein, Melody; Bonvallet, Lucie; Antoine, Pictet

    2014-05-01

    The Early Cretaceous greenhouse world witnessed different episodes of pronounced paleoenvironmental change, which were associated with substantial shifts in the global carbon and phosphorus cycles. They impacted the growth of carbonate platforms on the shelf, lead to the development of widespread anoxic zones in deeper water, and influenced evolutionary pattern in general. A first phase (the Weissert episode) occurred during the Valanginian, which is indicated by a positive shift in the carbon-isotope record, widespread platform drowning, and evolutionary change. The spreading of anoxic conditions was limited to marginal basins and the positive change in carbon isotopes is linked to the storage of vegetal carbon in coal deposits rather than to organic matter in marine sediments. A second phase (the Faraoni episode) of important environmental change is observed near the end of the Hauterivian, where short and repetitive episodes of anoxia occurred in the Tethyan realm. This phase goes along with a decline in platform growth, but is barely documented in the carbon-isotope record. A third and most important episode (the Selli episode) took place in the early Aptian, and resulted in the widespread deposition of organic-rich sediments, a positive carbon-isotope excursion and the disappearance of Urgonian-type carbonate platforms. Often considered to represent short and singular events, these Early Cretaceous phases are in fact preceded by periods of warming, increased continental weathering, and increased nutrient throughput. These preludes in environmental change are important in that they put these three Early Cretaceous episodes into a longer-term, historic perspective, which allow us to better understand the mechanisms leading to these periods of pronounced global change.

  9. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    PubMed

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana.

  10. Lower Cambrian polychaete from China sheds light on early annelid evolution.

    PubMed

    Liu, Jianni; Ou, Qiang; Han, Jian; Li, Jinshu; Wu, Yichen; Jiao, Guoxiang; He, Tongjiang

    2015-06-01

    We herein report a fossilized polychaete annelid, Guanshanchaeta felicia gen. et sp. nov., from the Lower Cambrian Guanshan Biota (Cambrian Series 2, stage 4). The new taxon has a generalized polychaete morphology, with biramous parapodia (most of which preserve the evidence of chaetae), an inferred prostomium bearing a pair of appendages, and a bifid pygidium. G. felicia is the first unequivocal annelid reported from the Lower Cambrian of China. It represents one of the oldest annelids among those from other early Paleozoic Lagerstätten including Sirius Passet from Greenland (Vinther et al., Nature 451: 185-188, 2011) and Emu Bay from Kangaroo island (Parry et al., Palaeontology 57: 1091-1103, 2014), and adds to our increasing roll of present-day animal phyla recognized in the early Cambrian Guanshan Biota. This finding expands the panorama of the Cambrian 'explosion' exemplified by the Guanshan Biota, suggesting the presence of many more fossil annelids in the Chengjiang Lagerstätte and the Kaili Biota. In addition, this new taxon increases our knowledge of early polychaete morphology, which suggests that polychaete annelids considerably diversified in the Cambrian.

  11. Eocene bunoselenodont Artiodactyla from southern Thailand and the early evolution of Ruminantia in South Asia.

    PubMed

    Métais, Grégoire; Chaimanee, Yaowalak; Jaeger, J-J; Ducrocq, Stéphane

    2007-06-01

    Although Asia is thought to have played a critical role in the basal radiation of Ruminantia, the fossil record of early selenodont artiodactyls remains poorly documented in this region. Dental remains of a new bunoselenodont artiodactyl are described from the late Eocene of Krabi, southern Thailand. This new form, Krabitherium waileki gen. et sp. nov, is tentatively referred to the Tragulidae (Ruminantia) on the basis of several dental features, including a weak Tragulus fold and the presence of a deep groove on the anterior face of the entoconid. Although this new form is suggestive of the enigmatic? Gelocus gajensis Pilgrim 1912 from the "base of the Gaj" (lower Chitarwata Formation) of the Bugti Hills (Central Pakistan), K. waileki most likely represents an early representative of a relatively bunodont group of tragulids that includes the genus Dorcabune, known from the Miocene of south Asia. This addition to the Eocene record of early ruminants attests to the antiquity of the group in Southeast Asia and lends support to the hypothesis that the Tragulidae represents one of the first offshoots in the evolutionary history of Ruminantia.

  12. Eocene bunoselenodont Artiodactyla from southern Thailand and the early evolution of Ruminantia in South Asia

    NASA Astrophysics Data System (ADS)

    Métais, Grégoire; Chaimanee, Yaowalak; Jaeger, J.-J.; Ducrocq, Stéphane

    2007-06-01

    Although Asia is thought to have played a critical role in the basal radiation of Ruminantia, the fossil record of early selenodont artiodactyls remains poorly documented in this region. Dental remains of a new bunoselenodont artiodactyl are described from the late Eocene of Krabi, southern Thailand. This new form, Krabitherium waileki gen. et sp. nov, is tentatively referred to the Tragulidae (Ruminantia) on the basis of several dental features, including a weak Tragulus fold and the presence of a deep groove on the anterior face of the entoconid. Although this new form is suggestive of the enigmatic ? Gelocus gajensis Pilgrim 1912 from the “base of the Gaj” (lower Chitarwata Formation) of the Bugti Hills (Central Pakistan), K. waileki most likely represents an early representative of a relatively bunodont group of tragulids that includes the genus Dorcabune, known from the Miocene of south Asia. This addition to the Eocene record of early ruminants attests to the antiquity of the group in Southeast Asia and lends support to the hypothesis that the Tragulidae represents one of the first offshoots in the evolutionary history of Ruminantia.

  13. Lower Cambrian polychaete from China sheds light on early annelid evolution

    NASA Astrophysics Data System (ADS)

    Liu, Jianni; Ou, Qiang; Han, Jian; Li, Jinshu; Wu, Yichen; Jiao, Guoxiang; He, Tongjiang

    2015-06-01

    We herein report a fossilized polychaete annelid, Guanshanchaeta felicia gen. et sp. nov., from the Lower Cambrian Guanshan Biota (Cambrian Series 2, stage 4). The new taxon has a generalized polychaete morphology, with biramous parapodia (most of which preserve the evidence of chaetae), an inferred prostomium bearing a pair of appendages, and a bifid pygidium. G. felicia is the first unequivocal annelid reported from the Lower Cambrian of China. It represents one of the oldest annelids among those from other early Paleozoic Lagerstätten including Sirius Passet from Greenland (Vinther et al., Nature 451: 185-188, 2008) and Emu Bay from Kangaroo island (Parry et al., Palaeontology 57: 1091-1103, 2014), and adds to our increasing roll of present-day animal phyla recognized in the early Cambrian Guanshan Biota. This finding expands the panorama of the Cambrian `explosion' exemplified by the Guanshan Biota, suggesting the presence of many more fossil annelids in the Chengjiang Lagerstätte and the Kaili Biota. In addition, this new taxon increases our knowledge of early polychaete morphology, which suggests that polychaete annelids considerably diversified in the Cambrian.

  14. Did trees grow up to the light, up to the wind, or down to the water? How modern high productivity colors perception of early plant evolution.

    PubMed

    Boyce, C Kevin; Fan, Ying; Zwieniecki, Maciej A

    2017-01-05

    Contents I. II. III. IV. V. Acknowledgements References SUMMARY: Flowering plants can be far more productive than other living land plants. Evidence is reviewed that productivity would have been uniformly lower and less CO2 -responsive before angiosperm evolution, particularly during the early evolution of vascular plants and forests in the Devonian and Carboniferous. This introduces important challenges because paleoecological interpretations have been rooted in understanding of modern angiosperm-dominated ecosystems. One key example is tree evolution: although often thought to reflect competition for light, light limitation is unlikely for plants with such low photosynthetic potential. Instead, during this early evolution, the capacities of trees for enhanced propagule dispersal, greater leaf area, and deep-rooting access to nutrients and the water table are all deemed more fundamental potential drivers than light.

  15. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?

    PubMed

    Kay, Richard F

    2015-01-01

    Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South

  16. Chemical evolution in the early phases of massive star formation. II. Deuteration

    NASA Astrophysics Data System (ADS)

    Gerner, T.; Shirley, Y. L.; Beuther, H.; Semenov, D.; Linz, H.; Albertsson, T.; Henning, Th.

    2015-07-01

    The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows distinguishing between subsequent stages of high-mass star formation regions based on the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact Hii regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+, and N2D+ as well as their non-deuterated counterparts. The overall detection fraction of DCN, DNC, and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. This may be related to problems in the bandpass at the transition frequency and to low abundances in the more evolved, warmer stages. We find median D/H ratios of 0.02 for DCN, 0.005 for DNC, 0.0025 for DCO+, and 0.02 for N2D+. While the D/H ratios of DNC, DCO+, and N2D+ decrease with time, DCN/HCN peaks at the hot molecular core stage. We only found weak correlations of the D/H ratios for N2D+ with the luminosity of the central source and the FWHM of the line, and no correlation with the H2 column density. In combination with a previously observed set of 14 other molecules (Paper I), we fitted the calculated column densities with an elaborate 1D physico-chemical model with time-dependent D-chemistry including ortho- and para-H2 states. Good overall fits to the observed data were obtained with the model. This is one of the first times that observations and modeling were combined to derive chemically based best-fit models for the evolution of high-mass star formation including deuteration. Appendix A is available in electronic form at http://www.aanda.org

  17. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  18. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of apobec

    SciTech Connect

    Korber, Bette; Bhattacharya, Tanmoy; Giorgi, Elena; Gaschen, B; Daniels, M

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, represent adaptation for rapid growth in a newly infected host, or reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV -I env coding sequences in 81 very early B SUbtype infections previously shown to have resulted from transmission or expansion of single viruses (n=78) or two closely related viruses (n=3). In these cases the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 envand identified a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either (i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or (ii) in a nucleotide context indicative of APOBEC mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was both embedded in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp4l. We also examined the distribution, extent, and sequence context of insertions and deletions and provide evidence that the length variation

  19. Spectrophotometric determination of tilidine using bromocresol green and bromophenol blue.

    PubMed

    Dobrila, Z S; Ljiljana, S; Ljiljana, Z

    1990-11-01

    A spectrophotometric method is described for the determination of tilidine in its dosage forms (injection, drops, suppositories). The method is based on ion-pair extraction with chloroform at pH 3.5 using bromocresol green or bromophenol blue as the ion-pairing reagents. The spectrophotometric measurements are carried out at the absorption maxima at 415 and 411 nm, respectively.

  20. The evolution of Indian psychiatric research: An examination of the early decades of the Indian Journal of Psychiatry.

    PubMed

    Radhakrishnan, Rajiv; Andrade, Chittaranjan

    2010-01-01

    Research in psychiatry has travelled far since the inception of the Indian Journal of Psychiatry (IJP) in 1949. We reviewed publications in the IJP during its initial three decades to identify path breaking articles and trends in research. We present the evolution of research design in the IJP from cases studies to randomized controlled trials. We identify the earliest studies in different fields, ranging from drug trials to social interventions, and from women's mental health to geriatric psychiatry. We consider special issues such as the measurement of psychopathology specific to the Indian context, studies of treatments specific to Indian traditions, epidemiology of psychiatric disorders in India, and innovations in service delivery. Students interested in the history of Indian psychiatric research will be rewarded by the richness and variety of thought evidenced in the publications in the early decades of the IJP.

  1. Early evolution of AGN X-ray coronae and the X-ray, BLR, disc-wind connection

    NASA Astrophysics Data System (ADS)

    Miniutti, Giovanni

    2013-10-01

    We request a quasi-simultaneous XMM-Newton and HST/STIS observation of GSN 069, a high-Eddington ratio true/unabsorbed Seyfert 2 galaxy candidate with ultra-soft X-ray spectrum. From our study of previous X-ray/optical spectra and of UV photometric data, we infer that the lack of BLR in this peculiar object may be attributed to ether (i) the lack of hard X-ray emission or (ii) an evolutionary scenario in which the BLR are just forming. Recent Swift pointings have revealed the emergence of hard X-rays in GSN 069, making the proposed observation highly timely. GSN 069 may represent a true Rosetta stone with which to follow the formation and early evolution of the X-ray corona and to study the connection between X-rays and the BLR/disc-wind system.

  2. Early evolution of AGN X-ray coronae and the X-ray, BLR, disc-wind connection

    NASA Astrophysics Data System (ADS)

    Miniutti, Giovanni

    2014-10-01

    We request a quasi-simultaneous XMM-Newton and HST/STIS observation of GSN 069, a high-Eddington ratio true/unabsorbed Seyfert 2 galaxy candidate withultra-soft X-ray spectrum. From our study of previous X-ray/optical spectra and of UV photometric data, we infer that the lack of BLR in this peculiar object may be attributed to ether (i) the lack of hard X-ray emission or (ii) an evolutionary scenario in which the BLR are just forming. Recent Swift pointings have revealed the emergence of hard X-rays in GSN 069, making the proposed observation highly timely. GSN 069 may represent a true Rosetta stone with which to follow the formation and early evolution of the X-ray corona and to study the connection between X-rays and the BLR/disc-wind system.

  3. Improved spectrophotometric cell for hydrothermal solutions

    USGS Publications Warehouse

    Susak, N.J.; Crerar, D.A.; Forseman, T.C.; Haas, J.L.

    1981-01-01

    A simple, inexpensive spectrophotometric cell was designed for use with aqueous solutions for which temperature is a maximum of 325??C and pressure, 28 MPa. The cell has an internal volume of 5 ml and a path length of 1.31 cm. Each furnace assembly is 120 mm in diameter ?? 150 mm high and will fit into most commercial spectrophotometers. Temperature is controlled by a standard set-point controller and a balancing circuit that is used to maintain the temperature of the sample and reference cell within 1??C of each other at any temperature.

  4. Geologic implications of spectrophotometric measurements of Europa

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie; Golombek, Matthew

    1988-01-01

    Photometric functions and reflectances have been obtained from spectrophotometric measurements of Voyager images of Europa for (1) six mapped geologic terrains, (2) three types of lineaments, and (3) the brown spots. The results thus obtained suggest that Europa's materials fall into two main categories: a comparatively clean ice that constitutes the plains, and a darker and redder, silicate-rich material that makes up the brown spots and the wedge-shaped bands. Reflectance profiles obtained across the wedge-shaped bands and triple bands indicate similar albedo and color changes, implying similar structures for both of these features.

  5. Spectrophotometric remote sensing of planets and satellites

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.; Cruikshank, D. P.

    1981-01-01

    The most recent comprehensive results on spectrophotometric remote sensing of planets and satellites are reviewed. The moon and terrestrial planets are considered in terms of individual surface elements, reflectance spectra being analyzed to show the composition of the soils of these bodies. For more distant, unresolved objects, including the asteroids, the Galilean satellites, the small satellites of Jupiter, the rings and satellites of Saturn and Uranus, as well as Triton and Pluto, the global or hemispheric averages of surface composition are the objects of study. The absorptions due to methane gas and frost are indicated.

  6. The early heat loss evolution of Mars and their implications for internal and environmental history.

    PubMed

    Ruiz, Javier

    2014-03-11

    The time around 3.7 Ga ago was an epoch when substantial changes in Mars occurred: a substantial decline in aqueous erosion/degradation of landscape features; a change from abundant phyllosilicate formation to abundant acidic and evaporitic mineralogy; a change from olivine-rich volcanism to olivine-pyroxene volcanism; and maybe the cessation of the martian dynamo. Here I show that Mars also experienced profound changes in its internal dynamics in the same approximate time, including a reduction of heat flow and a drastic increasing of lithosphere strength. The reduction of heat flow indicates a limited cooling (or even a heating-up) of the deep interior for post-3.7 Ga times. The drastic increasing of lithosphere strength indicates a cold lithosphere above the inefficiently cooled (or even heated) interior. All those changes experienced by Mars were most probably linked and suggest the existence of profound interrelations between interior dynamics and environmental evolution of this planet.

  7. Tectonic evolution of Kazakhstan and Tien Shan in Neoproterozoic and Early-Middle Paleozoic

    NASA Astrophysics Data System (ADS)

    Samygin, S. G.; Kheraskova, T. N.; Kurchavov, A. M.

    2015-05-01

    Geological information on Kazakhstan and the Tien Shan obtained up to the present time has been considered and integrated in order to demonstrate the main features of continental massifs, basins with oceanic crust, island arcs, marginal volcanic-plutonic belts, and transform fault zones differing in type and age. We ascertained the character and probable causes of their evolution and transformations resulting in the origination and development of mosaic structural assembly at margin of the Paleoasian ocean that existed from Neoproterozoic. The main stages of the geodynamic history of Paleozoides in Kazakhstan and Tien Shan are characterized, and a model of the probable course of regional tectonic events has been proposed. This model is illustrated by published paleomagnetic data and a series of paleotectonic reconstructions for time intervals 950-900, 850-800, 750-700, 650-630, 570-550, 530-515, 500-470, 460-440, and 390-380 Ma.

  8. A new feather type in a nonavian theropod and the early evolution of feathers.

    PubMed

    Xu, Xing; Zheng, Xiaoting; You, Hailu

    2009-01-20

    All described feathers in nonavian theropods are composite structures formed by multiple filaments. They closely resemble relatively advanced stages predicted by developmental models of the origin of feathers, but not the earliest stage. Here, we report a feather type in two specimens of the basal therizinosaur Beipiaosaurus, in which each individual feather is represented by a single broad filament. This morphotype is congruent with the stage I morphology predicted by developmental models, and all major predicted morphotypes have now been documented in the fossil record. This congruence between the full range of paleontological and developmental data strongly supports the hypothesis that feathers evolved and initially diversified in nonavian theropods before the origin of birds and the evolution of flight.

  9. A synthesis of the theories and concepts of early human evolution

    PubMed Central

    Maslin, Mark A.; Shultz, Susanne; Trauth, Martin H.

    2015-01-01

    Current evidence suggests that many of the major events in hominin evolution occurred in East Africa. Hence, over the past two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of Africa has varied over the past 10 Myr. A new consensus is emerging that suggests the unusual geology and climate of East Africa created a complex, environmentally very variable setting. This new understanding of East African climate has led to the pulsed climate variability hypothesis that suggests the long-term drying trend in East Africa was punctuated by episodes of short alternating periods of extreme humidity and aridity which may have driven hominin speciation, encephalization and dispersals out of Africa. This hypothesis is unique as it provides a conceptual framework within which other evolutionary theories can be examined: first, at macro-scale comparing phylogenetic gradualism and punctuated equilibrium; second, at a more focused level of human evolution comparing allopatric speciation, aridity hypothesis, turnover pulse hypothesis, variability selection hypothesis, Red Queen hypothesis and sympatric speciation based on sexual selection. It is proposed that each one of these mechanisms may have been acting on hominins during these short periods of climate variability, which then produce a range of different traits that led to the emergence of new species. In the case of Homo erectus (sensu lato), it is not just brain size that changes but life history (shortened inter-birth intervals, delayed development), body size and dimorphism, shoulder morphology to allow thrown projectiles, adaptation to long-distance running, ecological flexibility and social behaviour. The future of evolutionary research should be to create evidence-based meta-narratives, which encompass multiple mechanisms that select for different traits leading ultimately to speciation. PMID:25602068

  10. Evolution of Early Paleoproterozoic Ocean Chemistry as Recorded by Black Shales

    NASA Astrophysics Data System (ADS)

    Scott, C.; Bekker, A.; Lyons, T. W.; Planavsky, N. J.; Wing, B. A.

    2010-12-01

    In recent years, Precambrian biogeochemists have focused largely on the abundance, speciation and isotopic composition of major and trace elements preserved in organic carbon-rich black shales in order to track the co-evolution of ocean chemistry and life on Earth. Despite the fact that the period from 2.5 to 2.0 Ga hosted major events in Earth’s history, such as the Great Oxidation Event (GOE), an era of global glaciations, a massive and long-lived carbon isotope excursion and the end to banded iron formation (BIF) deposition, each with the potential to directly alter global biogeochemical cycles, it is perhaps best known for its unknowns. In order to help close this gap in our understanding of the evolution of Precambrian ocean chemistry we present a detailed biogeochemical study of Paleoproterozoic black shales deposited between 2.5 and 2.0 Ga. Our study integrates Fe speciation, trace metal chemistry and C, S and N isotope analyses to provide a thorough characterization of marine biogeochemical cycles as they responded to the GOE and set the stage for the demise of BIFs at ca. 1.8 Ga. Our data reveal an ocean that was both surprising similar to, and demonstrably different from, Archean and later Proterozoic oceans. Of particular interest, we find that ferruginous and euxinic conditions co-existed during this period and that sea water trace metal inventories fluctuated dramatically in conjunction with major carbon isotope excursions. By comparing our Paleoproterozoic contribution with recent biogeochemical studies of other Precambrian black shales we can begin to track first order changes in ocean chemistry without the major time gaps that have plagued previous attempts.

  11. A synthesis of the theories and concepts of early human evolution.

    PubMed

    Maslin, Mark A; Shultz, Susanne; Trauth, Martin H

    2015-03-05

    Current evidence suggests that many of the major events in hominin evolution occurred in East Africa. Hence, over the past two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of Africa has varied over the past 10 Myr. A new consensus is emerging that suggests the unusual geology and climate of East Africa created a complex, environmentally very variable setting. This new understanding of East African climate has led to the pulsed climate variability hypothesis that suggests the long-term drying trend in East Africa was punctuated by episodes of short alternating periods of extreme humidity and aridity which may have driven hominin speciation, encephalization and dispersals out of Africa. This hypothesis is unique as it provides a conceptual framework within which other evolutionary theories can be examined: first, at macro-scale comparing phylogenetic gradualism and punctuated equilibrium; second, at a more focused level of human evolution comparing allopatric speciation, aridity hypothesis, turnover pulse hypothesis, variability selection hypothesis, Red Queen hypothesis and sympatric speciation based on sexual selection. It is proposed that each one of these mechanisms may have been acting on hominins during these short periods of climate variability, which then produce a range of different traits that led to the emergence of new species. In the case of Homo erectus (sensu lato), it is not just brain size that changes but life history (shortened inter-birth intervals, delayed development), body size and dimorphism, shoulder morphology to allow thrown projectiles, adaptation to long-distance running, ecological flexibility and social behaviour. The future of evolutionary research should be to create evidence-based meta-narratives, which encompass multiple mechanisms that select for different traits leading ultimately to speciation.

  12. Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth

    NASA Astrophysics Data System (ADS)

    Sepúlveda, R.; Ortiz, R.; Holmes, D. S.

    2015-12-01

    Sepulveda, R., Ortiz R. and Holmes DS. Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.According to several models, life emerged on earth in an anoxic environment where oxygen was not available as a terminal electron acceptor for energy generating reactions. After the Great Oxidation Event (GOE) about 2.4 billion years ago, or perhaps even before the GOE, oxygen became the most widespread and efficient terminal electron acceptor and was accompanied by the evolution of a number of redox proteins that could deliver electrons to reduce oxygen to water. Where did these proteins come from? One hypothesis is that they evolved by the neofunctionalization of previously existing redox proteins that had been used in anaerobic conditions as terminal electron donors to reduce compounds such as perchlorate, nitric oxide or iron. We have used a number of bioinformatic tools to explore a large number of genomes looking for discernable signals of such redeployment of function. A Perl pipeline was designed to detect sequence similarity, conserved gene context, remote homology detection, identification of domains and functional evolution of electron carrier proteins from extreme acidophiles, including the small blue copper protein rusticyanin (involved in FeII oxidation), cytochrome oxidase subunit II and quinol-dependent nitric oxide reductase (qNOR). The protein folds and copper binding sites of rusticyanin are conserved in cytochrome oxidase aa3 subunit II, a protein complex that is responsible for the final passage of electrons to reduce oxygen. Therefore, we hypothesize that rusticyanin, cytochrome oxidase II and qNOR are evolutionarily related. Acknowledgments: Fondecyt 1130683.

  13. A shift toward birthing relatively large infants early in human evolution

    PubMed Central

    2011-01-01

    It has long been argued that modern human mothers give birth to proportionately larger babies than apes do. Data presented here from human and chimpanzee infant:mother dyads confirm this assertion: humans give birth to infants approximately 6% of their body mass, compared with approximately 3% for chimpanzees, even though the female body weights of the two species are moderately convergent. Carrying a relatively large infant both pre- and postnatally has important ramifications for birthing strategies, social systems, energetics, and locomotion. However, it is not clear when the shift to birthing large infants occurred over the course of human evolution. Here, known and often conserved relationships between adult brain mass, neonatal brain mass, and neonatal body mass in anthropoids are used to estimate birthweights of extinct hominid taxa. These estimates are resampled with direct measurements of fossil postcrania from female hominids, and also compared with estimates of female body mass to assess when human-like infant:mother mass ratios (IMMRs) evolved. The results of this study suggest that 4.4-Myr-old Ardipithecus possessed IMMRs similar to those found in African apes, indicating that a low IMMR is the primitive condition in hominids. Australopithecus females, in contrast, had significantly heavier infants compared with dimensions of the femoral head (n = 7) and ankle (n = 7) than what is found in chimpanzees, and are estimated to have birthed neonates more than 5% of their body mass. Carrying such proportionately large infants may have limited arboreality in Australopithecus females and may have selected for alloparenting behavior earlier in human evolution than previously thought. PMID:21199942

  14. Oxygen and Hydrogen Peroxide in the Early Evolution of Life on Earth: In silico Comparative Analysis of Biochemical Pathways

    PubMed Central

    Ślesak, Halina; Kruk, Jerzy

    2012-01-01

    Abstract In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O2, reactive oxygen species (ROS), among them hydrogen peroxide (H2O2), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O2 appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O2 and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O2-and H2O2-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O2-and H2O2-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H2O2 and O2 should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O2/H2O2 was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment. Key Words: Hydrogen peroxide—Oxygen—Origin of life—Photosynthesis—Superoxide dismutase—Superoxide reductase. Astrobiology 12, 775–784. PMID:22970865

  15. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans.

    PubMed

    Liu, Yunhuan; Xiao, Shuhai; Shao, Tiequan; Broce, Jesse; Zhang, Huaqiao

    2014-05-01

    Morphological phylogenetic analyses suggest that scalidophorans (priapulids, loriciferans, and kinorhynchs) and nematoids (nematodes and nematomorphs) form the ecdysozoan clade Cycloneuralia, which is a sister group to panarthropods. It has been proposed that extant priapulids and Cambrian priapulid-like scalidophorans, because of their conserved evolution, have the potential to illuminate the ancestral morphology, ecology, and developmental biology of highly derived ecdysozoans such as nematods and arthropods. As such, Cambrian fossils, particularly Markuelia and possibly olivooids, can inform the early evolution of scalidophorans, cycloneuralians, and ecdysozoans. However, the scalidophoran Markuelia is known exclusively as embryo fossils, and the olivooids have been alternatively interpreted as cnidarians or cycloneuralians. Here, we describe a post-embryonic scalidophoran fossil Eopriapulites sphinx new genus and species, which represents the oldest known scalidophoran, from the early Cambrian Period (∼535 Ma) in South China. E. sphinx is similar to modern scalidophorans in having an introvert armed with hollow scalids, a collar with coronal scalids, and a pharynx with pharyngeal teeth, but its scalids and pharyngeal teeth are arranged in a hexaradial pattern. Phylogenetically resolved as a stem-group scalidophoran, E. sphinx shares a hexaradial pattern with the hexaradial arrangement of certain anatomical structures in kinorhynchs, loriciferans, nematoids, and Cambrian fossils such as Eolympia pediculata, which could also be a scalidophoran. Thus, the bodyplan of ancestral cycloneuralians may have had a component of hexaradial symmetry (i.e., some but not necessarily all anatomical parts are hexaradially arranged). If panarthropods are nested within paraphyletic cycloneuralians, as several molecular phylogenetic analyses suggest, the ancestral ecdysozoans may have been a legless worm possibly with a component of hexaradial symmetry.

  16. Constraining early to middle Eocene climate evolution of the southwest Pacific and Southern Ocean

    NASA Astrophysics Data System (ADS)

    Dallanave, Edoardo; Bachtadse, Valerian; Crouch, Erica M.; Tauxe, Lisa; Shepherd, Claire L.; Morgans, Hugh E. G.; Hollis, Christopher J.; Hines, Benjamin R.; Sugisaki, Saiko

    2016-01-01

    Studies of early Paleogene climate suffer from the scarcity of well-dated sedimentary records from the southern Pacific Ocean, the largest ocean basin during this time. We present a new magnetostratigraphic record from marine sediments that outcrop along the mid-Waipara River, South Island, New Zealand. Fully oriented samples for paleomagnetic analyses were collected along 45 m of stratigraphic section, which encompasses magnetic polarity Chrons from C23n to C21n (∼ 51.5- 47 Ma). These results are integrated with foraminiferal, calcareous nannofossil, and dinoflagellate cyst (dinocyst) biostratigraphy from samples collected in three different expeditions along a total of ∼80 m of section. Biostratigraphic data indicates relatively continuous sedimentation from the lower Waipawan to the upper Heretaungan New Zealand stages (i.e., lower Ypresian to lower Lutetian, 55.5 to 46 Ma). We provide the first magnetostratigraphically-calibrated age of 48.88 Ma for the base of the Heretaungan New Zealand stage (latest early Eocene). To improve the correlation of the climate record in this section with other Southern Ocean records, we reviewed the magnetostratigraphy of Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau) and Integrated Ocean Drilling Program (IODP) Site U1356 (Wilkes Land Margin, Antarctica). A paleomagnetic study of discrete samples could not confirm any reliable magnetic polarity reversals in the early Eocene at Site 1172. We use the robust magneto-biochronology of a succession of dinocyst bioevents that are common to mid-Waipara, Site 1172, and Site U1356 to assist correlation between the three records. A new integrated chronology offers new insights into the nature and completeness of the southern high-latitude climate histories derived from these sites.

  17. Early Mesozoic structural evolution of the eastern West Qinling, northwest China

    NASA Astrophysics Data System (ADS)

    Wu, Guo-Li; Meng, Qing-Ren; Duan, Liang; Li, Lin

    2014-09-01

    This paper aims to reconstruct Early Mesozoic structural development of the eastern West Qinling by integrating structural and geochronologic analyses. The results show that the eastern West Qinling experienced two-phase deformations, separated by a period of tectonic quiescence. Large-scale south-directed displacement of thrust sheets in association with folding characterized the first-phase deformation in Late Triassic time, leading to the formation of the West Qinling fold-and-thrust belt that is composed primarily of Paleozoic-Triassic strata. This fold-and-thrust belt is in general south-convexing arc-shaped, with an accumulated south-directed displacement being over 100 km. The folding and thrusting ended up during the Norian of the Late Triassic Epoch and were immediately followed by widespread granite intrusions. Marked uplift and erosion occurred in the Early Jurassic, resulting in exhumation of the Late Triassic granites. Transpressional deformation took place in the eastern West Qinling in the Middle Jurassic on account of occurrences of strike-slip faulting and refolding. In the easternmost part of the West Qinling exists a Permian-Triassic turbidite wedge that is bordered by a right-slip fault on the northeast and by a left-slip fault on the south, indicating a westward movement that was accommodated by slip faulting. It is argued that collision of the North and South China blocks was responsible for formation of the West Qinling fold-and-thrust belt in the Late Triassic, whereas Middle Jurassic transgression is considered as the result of westward extrusion of Permian-Triassic turbiditic materials from the East Qinling owing to renewed intracontinental convergence between the North and South China blocks. A tectonic model is advanced for Early Mesozoic tectonic development of the West Qinling.

  18. Functional evolution of critically ill patients undergoing an early rehabilitation protocol

    PubMed Central

    Murakami, Fernanda Murata; Yamaguti, Wellington Pereira; Onoue, Mirian Akemi; Mendes, Juliana Mesti; Pedrosa, Renata Santos; Maida, Ana Lígia Vasconcellos; Kondo, Cláudia Seiko; de Salles, Isabel Chateaubriand Diniz; de Brito, Christina May Moran; Rodrigues, Miguel Koite

    2015-01-01

    Objective Evaluation of the functional outcomes of patients undergoing an early rehabilitation protocol for critically ill patients from admission to discharge from the intensive care unit. Methods A retrospective cross-sectional study was conducted that included 463 adult patients with clinical and/or surgical diagnosis undergoing an early rehabilitation protocol. The overall muscle strength was evaluated at admission to the intensive care unit using the Medical Research Council scale. Patients were allocated to one of four intervention plans according to the Medical Research Council score, the suitability of the plan’s parameters, and the increasing scale of the plan expressing improved functional status. Uncooperative patients were allocated to intervention plans based on their functional status. The overall muscle strength and/or functional status were reevaluated upon discharge from the intensive care unit by comparison between the Intervention Plans upon admission (Planinitial) and discharge (Planfinal). Patients were classified into three groups according to the improvement of their functional status or not: responsive 1 (Planfinal > Planinitial), responsive 2 (Planfinal = Planinitial) and unresponsive (Planfinal < Planinitial). Results In total, 432 (93.3%) of 463 patients undergoing the protocol responded positively to the intervention strategy, showing maintenance and/or improvement of the initial functional status. Clinical patients classified as unresponsive were older (74.3 ± 15.1 years of age; p = 0.03) and had longer lengths of intensive care unit (11.6 ± 14.2 days; p = 0.047) and hospital (34.5 ± 34.1 days; p = 0.002) stays. Conclusion The maintenance and/or improvement of the admission functional status were associated with shorter lengths of intensive care unit and hospital stays. The results suggest that the type of diagnosis, clinical or surgical, fails to define the positive response to an early rehabilitation protocol. PMID:26340157

  19. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana

    PubMed Central

    Zhou, Wenwu; Brockmöller, Thomas; Ling, Zhihao; Omdahl, Ashton; Baldwin, Ian T; Xu, Shuqing

    2016-01-01

    Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants. DOI: http://dx.doi.org/10.7554/eLife.19531.001 PMID:27813478

  20. Negative association between parental care and sibling cooperation in earwigs: a new perspective on the early evolution of family life?

    PubMed

    Kramer, J; Thesing, J; Meunier, J

    2015-07-01

    The evolution of family life requires net fitness benefits for offspring, which are commonly assumed to mainly derive from parental care. However, an additional source of benefits for offspring is often overlooked: cooperative interactions among juvenile siblings. In this study, we examined how sibling cooperation and parental care could jointly contribute to the early evolution of family life. Specifically, we tested whether the level of food transferred among siblings (sibling cooperation) in the European earwig Forficula auricularia (1) depends on the level of maternal food provisioning (parental care) and (2) is translated into offspring survival, as well as female investment into future reproduction. We show that higher levels of sibling food transfer were associated with lower levels of maternal food provisioning, possibly reflecting a compensatory relationship between sibling cooperation and maternal care. Furthermore, the level of sibling food transfer did not influence offspring survival, but was associated with negative effects on the production of the second and terminal clutch by the tending mothers. These findings indicate that sibling cooperation could mitigate the detrimental effects on offspring survival that result from being tended by low-quality mothers. More generally, they are in line with the hypothesis that sibling cooperation is an ancestral behaviour that can be retained to compensate for insufficient levels of parental investment.

  1. Early tetrapod evolution and the progressive integration of Permo-Carboniferous terrestrial ecosystems

    SciTech Connect

    Beerbower, J.R. . Dept. of Geological Science); Olson, E.C. . Dept. of Biology); Hotton, N. III . Dept. of Paleobiology)

    1992-01-01

    Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fiber tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.

  2. Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    2004-01-01

    This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.

  3. Early hominid evolution and ecological change through the African Plio-Pleistocene.

    PubMed

    Reed, K E

    1997-01-01

    The habitats in which extinct hominids existed has been a key issue in addressing the origin and extinction of early hominids, as well as in understanding various morphological and behavioral adaptations. Many researchers postulated that early hominids lived in an open savanna (Dart, 1925; Robinson, 1963; Howell, 1978). However, Vrba (1985, 1988) has noted that a major global climatic and environmental shift from mesic, closed to xeric, open habitats occurred in the late African Pliocene (approximately 2.5 m.y.a.), thus implying that the earliest hominids existed in these mesic, wooded environs. This climatic shift is also suggested to have contributed to a pulse in speciation events with turnovers of many bovid and possibly hominid species. Previous environmental reconstructions of hominid localities have concentrated on taxonomic identities and taxonomic uniformitarianism to provide habitat reconstructions (e.g., Vrba, 1975; Shipman & Harris, 1988). In addition, relative abundances of species are often used to reconstruct a particular environment, when in fact taphonomic factors could be affecting the proportions of taxa. This study uses the morphological adaptations of mammalian assemblages found with early hominids to reconstruct the habitat based on each species' ecological adaptations, thus minimizing problems introduced by taxonomy and taphonomy. Research presented here compares east and south African Plio-Pleistocene mammalian fossil assemblages with 31 extant mammalian communities from eight different habitat types. All communities are analyzed through ecological diversity methods, that is, each species trophic and locomotor adaptations are used to reconstruct an ecological community and derive its vegetative habitat. Reconstructed habitats show that Australopithecus species existed in fairly wooded, well-watered regions. Paranthropus species lived in similar environs and also in more open regions, but always in habitats that include wetlands. Homo is the

  4. Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages.

    PubMed

    Ezcurra, Martin D

    2010-08-22

    Triassic tetrapods are of key importance in understanding their evolutionary history, because several tetrapod clades, including most of their modern lineages, first appeared or experienced their initial evolutionary radiation during this Period. In order to test previous palaeobiogeographical hypotheses of Triassic tetrapod faunas, tree reconciliation analyses (TRA) were performed with the aim of recovering biogeographical patterns based on phylogenetic signals provided by a composite tree of Middle and Late Triassic tetrapods. The TRA found significant evidence for the presence of different palaeobiogeographical patterns during the analysed time spans. First, a Pangaean distribution is observed during the Middle Triassic, in which several cosmopolitan tetrapod groups are found. During the early Late Triassic a strongly palaeolatitudinally influenced pattern is recovered, with some tetrapod lineages restricted to palaeolatitudinal belts. During the latest Triassic, Gondwanan territories were more closely related to each other than to Laurasian ones, with a distinct tetrapod fauna at low palaeolatitudes. Finally, more than 75 per cent of the cladogenetic events recorded in the tetrapod phylogeny occurred as sympatric splits or within-area vicariance, indicating that evolutionary processes at the regional level were the main drivers in the radiation of Middle and Late Triassic tetrapods and the early evolution of several modern tetrapod lineages.

  5. The early heat loss evolution of Mars and their implications for internal and environmental history

    PubMed Central

    Ruiz, Javier

    2014-01-01

    The time around 3.7 Ga ago was an epoch when substantial changes in Mars occurred: a substantial decline in aqueous erosion/degradation of landscape features; a change from abundant phyllosilicate formation to abundant acidic and evaporitic mineralogy; a change from olivine-rich volcanism to olivine-pyroxene volcanism; and maybe the cessation of the martian dynamo. Here I show that Mars also experienced profound changes in its internal dynamics in the same approximate time, including a reduction of heat flow and a drastic increasing of lithosphere strength. The reduction of heat flow indicates a limited cooling (or even a heating-up) of the deep interior for post-3.7 Ga times. The drastic increasing of lithosphere strength indicates a cold lithosphere above the inefficiently cooled (or even heated) interior. All those changes experienced by Mars were most probably linked and suggest the existence of profound interrelations between interior dynamics and environmental evolution of this planet. PMID:24614056

  6. Diversity in early crustal evolution: 4100 Ma zircons in the Cathaysia Block of southern China.

    PubMed

    Xing, Guang-Fu; Wang, Xiao-Lei; Wan, Yusheng; Chen, Zhi-Hong; Jiang, Yang; Kitajima, Kouki; Ushikubo, Takayuki; Gopon, Phillip

    2014-06-03

    Zircons are crucial to understanding the first 500 Myr of crustal evolution of Earth. Very few zircons of this age (>4050 Ma) have been found other than from a ~300 km diameter domain of the Yilgarn Craton, Western Australia. Here we report SIMS U-Pb and O isotope ratios and trace element analyses for two ~4100 Ma detrital zircons from a Paleozoic quartzite at the Longquan area of the Cathaysia Block. One zircon ((207)Pb/(206)Pb age of 4127 ± 4 Ma) shows normal oscillatory zonation and constant oxygen isotope ratios (δ(18)O = 5.8 to 6.0‰). The other zircon grain has a ~4100 Ma magmatic core surrounded by a ~4070 Ma metamorphic mantle. The magmatic core has elevated δ(18)O (7.2 ± 0.2‰), high titanium concentration (53 ± 3.4 ppm) and a positive cerium anomaly, yielding anomalously high calculated oxygen fugacity (FMQ + 5) and a high crystallization temperature (910°C). These results are unique among Hadean zircons and suggest a granitoid source generated from dry remelting of partly oxidizing supracrustal sediments altered by surface waters. The ~4100 Ma dry melting and subsequent ~4070 Ma metamorphism provide new evidence for the diversity of the Earth's earliest crust.

  7. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family.

    PubMed

    Lee, Jae-Hyeok; Lin, Huawen; Joo, Sunjoo; Goodenough, Ursula

    2008-05-30

    Developmental mechanisms that yield multicellular diversity are proving to be well conserved within lineages, generating interest in their origins in unicellular ancestors. We report that molecular regulation of the haploid-diploid transition in Chlamydomonas, a unicellular green soil alga, shares common ancestry with differentiation pathways in land plants. Two homeoproteins, Gsp1 and Gsm1, contributed by gametes of plus and minus mating types respectively, physically interact and translocate from the cytosol to the nucleus upon gametic fusion, initiating zygote development. Their ectopic expression activates zygote development in vegetative cells and, in a diploid background, the resulting zygotes undergo a normal meiosis. Gsm1/Gsp1 dyads share sequence homology with and are functionally related to KNOX/BELL dyads regulating stem-cell (meristem) specification in land plants. We propose that combinatorial homeoprotein-based transcriptional control, a core feature of the fungal/animal radiation, may have originated in a sexual context and enabled the evolution of land-plant body plans.

  8. Jupiter’s decisive role in the inner Solar System’s early evolution

    PubMed Central

    Batygin, Konstantin; Laughlin, Greg

    2015-01-01

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution. PMID:25831540

  9. Diversity in early crustal evolution: 4100 Ma zircons in the Cathaysia Block of southern China

    NASA Astrophysics Data System (ADS)

    Xing, Guang-Fu; Wang, Xiao-Lei; Wan, Yusheng; Chen, Zhi-Hong; Jiang, Yang; Kitajima, Kouki; Ushikubo, Takayuki; Gopon, Phillip

    2014-06-01

    Zircons are crucial to understanding the first 500 Myr of crustal evolution of Earth. Very few zircons of this age (>4050 Ma) have been found other than from a ~300 km diameter domain of the Yilgarn Craton, Western Australia. Here we report SIMS U-Pb and O isotope ratios and trace element analyses for two ~4100 Ma detrital zircons from a Paleozoic quartzite at the Longquan area of the Cathaysia Block. One zircon (207Pb/206Pb age of 4127 +/- 4 Ma) shows normal oscillatory zonation and constant oxygen isotope ratios (δ18O = 5.8 to 6.0‰). The other zircon grain has a ~4100 Ma magmatic core surrounded by a ~4070 Ma metamorphic mantle. The magmatic core has elevated δ18O (7.2 +/- 0.2‰), high titanium concentration (53 +/- 3.4 ppm) and a positive cerium anomaly, yielding anomalously high calculated oxygen fugacity (FMQ + 5) and a high crystallization temperature (910°C). These results are unique among Hadean zircons and suggest a granitoid source generated from dry remelting of partly oxidizing supracrustal sediments altered by surface waters. The ~4100 Ma dry melting and subsequent ~4070 Ma metamorphism provide new evidence for the diversity of the Earth's earliest crust.

  10. Early Origin and Evolution of the Angelman Syndrome Ubiquitin Ligase Gene Ube3a

    PubMed Central

    Sato, Masaaki

    2017-01-01

    The human Ube3a gene encodes an E3 ubiquitin ligase and exhibits brain-specific genomic imprinting. Genetic abnormalities that affect the maternal copy of this gene cause the neurodevelopmental disorder Angelman syndrome (AS), which is characterized by severe mental retardation, speech impairment, seizure, ataxia and some unique behavioral phenotypes. In this review article, I highlight the evolution of the Ube3a gene and its imprinting to provide evolutionary insights into AS. Recent comparative genomic studies have revealed that Ube3a is most phylogenetically similar to HECTD2 among the human HECT (homologous to the E6AP carboxyl terminus) family of E3 ubiquitin ligases, and its distant evolutionary origin can be traced to common ancestors of fungi and animals. Moreover, a gene more similar to Ube3a than HECTD2 is found in a range of eukaryotes from amoebozoans to basal metazoans, but is lost in later lineages. Unlike in mice and humans, Ube3a expression is biallelic in birds, monotremes, marsupials and insects. The imprinting domain that governs maternal expression of Ube3a was formed from non-imprinted elements following multiple chromosomal rearrangements after diversification of marsupials and placental mammals. Hence, the evolutionary origins of Ube3a date from long before the emergence of the nervous system, although its imprinted expression was acquired relatively recently. These observations suggest that exogenous expression and functional analyses of ancient Ube3a orthologs in mammalian neurons will facilitate the evolutionary understanding of AS. PMID:28326016

  11. A Molecular Approach to the Study of Green Algal Evolution and Early Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kodner, R. B.; Summons, R. E.; Knoll, A. H.

    2004-12-01

    The biological nature of pre-land plant terrestrial ecosystems remains an enigmatic chapter of the history of life on earth due to lack of fossil evidence. Molecular phylogenies have shown that Charophycean green algae are the closest relatives of the bryophytes, which have been hypothesized to be the earliest divergent land plants. However, there is no fossil evidence to support this relationship nor is there a reliable fossil record of the earliest land plants. Microfossils representing the earliest land plants appear to have a bryophytes affinity based on limited morphological comparisons but this remains controversial. We are applying a biomolecular approach to study both green algal evolution and its relation to bryophytes using the resistant biopolymer algaenan and phytosterols as biological markers. Algaenan has been shown to have high preservation potential and may be the primary component of enigmatic microfossils assumed to be of algal origin. Algaenan and the green algal sterols, stigmasterol and sitosterol, may also be the precursors of n-alkanes and the hydrocarbon stigmastane that are major components of many Neoproterozoic bitumens. The biological nature and phylogenetic distribution of algaenan is still not well understood. Here we explore the presence and structure of algaenans in terrestrial green algae and bryophytes in relation to their phylogenetic distributions.

  12. Evolution and inheritance of early embryonic patterning in D. simulans and D. sechellia

    PubMed Central

    Lott, Susan E.; Ludwig, Michael Z.; Kreitman, Martin

    2010-01-01

    Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation which selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth ‘stripe allometry’) in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species D. simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the “margin of error” for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness PMID:21121913

  13. Leptogenesis in the symmetric phase of the early universe: Baryon asymmetry and hypermagnetic helicity evolution

    SciTech Connect

    Semikoz, V. B. Smirnov, A. Yu.

    2015-02-15

    We investigate the evolution of the baryon asymmetry of the Universe (BAU) in its symmetric phase before the electroweak phase transition (EWPT) induced by leptogenesis in the hypermagnetic field of an arbitrary structure and with a maximum hypermagnetic helicity density. The novelty of this work is that the BAU has been calculated for a continuous hypermagnetic helicity spectrum. The observed BAU B{sub obs} = 10{sup −10} that can be in large-scale hypermagnetic fields satisfying the wave number inequality k ≤ k{sub max} grows with increasing k{sub max}. We will also show that the initial right-handed electron asymmetry ξ{sub eR}(η{sub 0}) used in our leptogenesis model as a free parameter cannot take too large values, ξ{sub eR}(η{sub 0}) = 10{sup −4}, because this leads to a negative BAU by the EWPT time. In contrast, a sufficiently small initial right-handed electron asymmetry, ξ{sub eR}(η{sub 0}), provides its further growth and the corresponding BAU growth from zero to some positive value, including the observed B{sub obs} = 10{sup −10}.

  14. Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis.

    PubMed

    Schierwater, Bernd; Eitel, Michael; Jakob, Wolfgang; Osigus, Hans-Jürgen; Hadrys, Heike; Dellaporta, Stephen L; Kolokotronis, Sergios-Orestis; Desalle, Rob

    2009-01-27

    For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom) and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1) provide evidence that Placozoa are basal relative to all other diploblast phyla and (2) spark a modernized "urmetazoon" hypothesis.

  15. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton

    PubMed Central

    Keating, Joseph N.; Donoghue, Philip C. J.

    2016-01-01

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. PMID:26962140

  16. The evolution of the ozone collar in the Antarctic lower stratosphere during early August 1994

    SciTech Connect

    Mariotti, A.; Mechoso, C.R.; Legras, B.; Daniel, V.

    2000-02-01

    The ozone evolution in the lower stratosphere of the Southern Hemisphere during the period 5--10 August 1994 is analyzed. The analysis focuses on the ozone collar (the band of maximum values in ozone mixing ratio around the Antarctic ozone hole at these altitudes) and the development of collar filaments. Ozone mixing ratios provided by the Microwave Limb Sounder (MLS) on board the Upper Atmosphere Research Satellite and by an ER-2 aircraft participating in the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of stratospheric Aircraft campaign are compared with values at corresponding locations in high-resolution isentropic maps obtained by using the numerical scheme of contour advection with surgery (CAS). The CAS reconstructed ozone maps provide a view of the way in which air masses are exported from the outskirts of the collar to form the tongues of higher mixing ratios observed at lower latitudes on MLS synoptic maps. There is an overall consistency between the datasets insofar as the collar location is concerned. This location seems to be primarily defined by the local properties of the flow. Nevertheless the CAS reconstructed collar tends to become weaker than that depicted by MLS data. By means of radioactive calculation estimates, it is argued that diabatic descent may be responsible for maintaining the ozone concentration approximately constant in the collar while filaments isentropically disperse collarlike mixing ratios from this region toward lower latitudes.

  17. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton.

    PubMed

    Keating, Joseph N; Donoghue, Philip C J

    2016-03-16

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected.

  18. The Place of RNA in the Origin and Early Evolution of the Genetic Machinery

    PubMed Central

    Wächtershäuser, Günter

    2014-01-01

    The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness. PMID:25532530

  19. Melanoidin and aldocyanoin microspheres: implications for chemical evolution and early precambrian micropaleontology.

    PubMed

    Kenyon, D H; Nissenbaum, A

    1976-04-09

    Two new classes of organic microspheres are described. One of them (melanoidin) is synthesized from amino acids and sugars in heated aqueous solutions. The other (aldocyanoin) is formed in aqueous solutions of ammonium cyanide and formaldehyde at room temperature. The general properties of these microspheres, including conditions of synthesis, size and shape, mechanical and pH stability, and solubility, are compared with corresponding properties of other "protocell" model systems. It is concluded that melanoidin and aldocyanoin microsphreres are plausible candidates for precellular units in the primitive hydrosphere. Since the bulk of the organic carbon in early Precambrian sediments is insoluble kerogen-melanoidin, it is suggested that some Precambrian "microfossils" may be abiotic melanoidin microspheres of the type described herein.

  20. Melanoidin and aldocyanoin microspheres - Implications for chemical evolution and early Precambrian micropaleontology

    NASA Technical Reports Server (NTRS)

    Kenyon, D. H.; Nissenbaum, A.

    1976-01-01

    Two new classes of organic microspheres are described. One of them (melanoidin) is synthesized from amino acids and sugars in heated aqueous solutions. The other (aldocyanoin) is formed in aqueous solutions of ammonium cyanide and formaldehyde at room temperature. The general properties of these microspheres, including conditions of synthesis, size and shape, mechanical and pH stability, and solubility, are compared with corresponding properties of other protocell model systems. It is concluded that melanoidin and aldocyanoin microspheres are plausible candidates for precellular units in the primitive hydrosphere. Since the bulk of the organic carbon in early Precambrian sediments is insoluble kerogen-melanoidin, it is suggested that some Precambrian microfossils may be abiotic melanoidin microspheres.

  1. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity.

    PubMed

    Zuber, M T; Solomon, S C; Phillips, R J; Smith, D E; Tyler, G L; Aharonson, O; Balmino, G; Banerdt, W B; Head, J W; Johnson, C L; Lemoine, F G; McGovern, P J; Neumann, G A; Rowlands, D D; Zhong, S

    2000-03-10

    Topography and gravity measured by the Mars Global Surveyor have enabled determination of the global crust and upper mantle structure of Mars. The planet displays two distinct crustal zones that do not correlate globally with the geologic dichotomy: a region of crust that thins progressively from south to north and encompasses much of the southern highlands and Tharsis province and a region of approximately uniform crustal thickness that includes the northern lowlands and Arabia Terra. The strength of the lithosphere beneath the ancient southern highlands suggests that the northern hemisphere was a locus of high heat flow early in martian history. The thickness of the elastic lithosphere increases with time of loading in the northern plains and Tharsis. The northern lowlands contain structures interpreted as large buried channels that are consistent with northward transport of water and sediment to the lowlands before the end of northern hemisphere resurfacing.

  2. Was skin cancer a selective force for black pigmentation in early hominin evolution?

    PubMed

    Greaves, Mel

    2014-04-22

    Melanin provides a crucial filter for solar UV radiation and its genetically determined variation influences both skin pigmentation and risk of cancer. Genetic evidence suggests that the acquisition of a highly stable melanocortin 1 receptor allele promoting black pigmentation arose around the time of savannah colonization by hominins at some 1-2 Ma. The adaptive significance of dark skin is generally believed to be protection from UV damage but the pathologies that might have had a deleterious impact on survival and/or reproductive fitness, though much debated, are uncertain. Here, I suggest that data on age-associated cancer incidence and lethality in albinos living at low latitudes in both Africa and Central America support the contention that skin cancer could have provided a potent selective force for the emergence of black skin in early hominins.

  3. Was skin cancer a selective force for black pigmentation in early hominin evolution?

    PubMed Central

    Greaves, Mel

    2014-01-01

    Melanin provides a crucial filter for solar UV radiation and its genetically determined variation influences both skin pigmentation and risk of cancer. Genetic evidence suggests that the acquisition of a highly stable melanocortin 1 receptor allele promoting black pigmentation arose around the time of savannah colonization by hominins at some 1–2 Ma. The adaptive significance of dark skin is generally believed to be protection from UV damage but the pathologies that might have had a deleterious impact on survival and/or reproductive fitness, though much debated, are uncertain. Here, I suggest that data on age-associated cancer incidence and lethality in albinos living at low latitudes in both Africa and Central America support the contention that skin cancer could have provided a potent selective force for the emergence of black skin in early hominins. PMID:24573849

  4. Exceptional preservation reveals gastrointestinal anatomy and evolution in early actinopterygian fishes

    PubMed Central

    Argyriou, Thodoris; Clauss, Marcus; Maxwell, Erin E.; Furrer, Heinz; Sánchez-Villagra, Marcelo R.

    2016-01-01

    Current knowledge about the evolutionary morphology of the vertebrate gastrointestinal tract (GIT) is hindered by the low preservation potential of soft tissues in fossils. Exceptionally preserved cololites of individual †Saurichthys from the Middle Triassic of Switzerland provide unique insights into the evolutionary morphology of the GIT. The GIT of †Saurichthys differed from that of other early actinopterygians, and was convergent to that of some living sharks and rays, in exhibiting up to 30 turns of the spiral valve. Dissections and literature review demonstrate the phylogenetic diversity of GIT features and signs of biological factors that influence its morphology. A phylogenetically informed analysis of a dataset containing 134 taxa suggests that body size and phylogeny are important factors affecting the spiral valve turn counts. The high number of turns in the spiral valve of †Saurichthys and some recent sharks and rays reflect both energetically demanding lifestyles and the evolutionary histories of the groups. PMID:26732746

  5. COMFEN 3.0 - Evolution of an Early Design Tool for Commercial Facades and Fenestration Systems

    SciTech Connect

    McClintock Facade Consulting LLC, Walnut Creek, CA; McQuillen Interactive LLC, Santa Cruz, CA; Selkowitz, Stephen; Mitchell, Robin; McClintock, Maurya; McQuillen, Daniel; McNeil, Andrew; Yazdanian, Mehry

    2011-03-09

    Achieving a net-zero energy building cannot be done solely by improving the efficiency of the engineering systems. It also requires consideration of the essential nature of the building including factors such as architectural form, massing, orientation and enclosure. Making informed decisions about the fundamental character of a building requires assessment of the effects of the complex interaction of these factors on the resulting performance of the building. The complexity of these interactions necessitates the use of modeling and simulation tools to dynamically analyze the effects of the relationships, yet decisions about the building fundamentals are often made in the earliest stages of design, before a `building? exists to model. To address these issues, Lawrence Berkeley National Laboratory (LBNL) has developed an early-design energy modeling tool (COMFEN) specifically to help make informed decisions about building facade fundamentals by considering the design of the building envelope, orientation and massing on building performance. COMFEN focuses on the concept of a ?space? or ?room? and uses the EnergyPlus, and RadianceTM engines and a simple, graphic user interface to allow the user to explore the effects of changing key early-design input variables on energy consumption, peak energy demand, and thermal and visual comfort. Comparative results are rapidly presented in a variety of graphic and tabular formats to help users move toward optimal facade and fenestration design choices.While COMFEN 1.0 utilized an ExcelTM-based user interface, COMFEN 3.0 has been reworked to include a simple, more intuitive, yet powerful Graphic User Interface (GUI), a broader range of libraries for associated system and component choices and deliver a wider range of graphic outputs and options. This paper (and presentation) outlines the objectives in developing and further refining COMFEN, the mechanics of the program, and plans for future development.

  6. The origin and early evolution of metatherian mammals: the Cretaceous record

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.; Wilson, Gregory P.

    2014-01-01

    Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  7. Magnetic fields during the early stages of massive star formation - I. Accretion and disc evolution

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Klessen, R. S.; Duffin, D.; Pudritz, R. E.

    2011-10-01

    We present simulations of collapsing 100 M⊙ mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian discs can form in the very early evolutionary stage of massive protostars. For this purpose, we perform 12 simulations with different initial conditions extending over a wide range in parameter space. The equations of magnetohydrodynamics (MHD) are solved under the assumption of ideal MHD. We find that the formation of Keplerian discs in the very early stages is suppressed for a mass-to-flux ratio normalized to the critical value μ below 10, in agreement with a series of low-mass star formation simulations. This is caused by very efficient magnetic braking resulting in a nearly instantaneous removal of angular momentum from the disc. For weak magnetic fields, corresponding to μ≳ 10, large-scale, centrifugally supported discs build up with radii exceeding 100 au. A stability analysis reveals that the discs are supported against gravitationally induced perturbations by the magnetic field and tend to form single stars rather than multiple objects. We find protostellar accretion rates of the order of a few 10-4 M⊙ yr-1 which, considering the large range covered by the initial conditions, vary only by a factor of ˜ 3 between the different simulations. We attribute this fact to two competing effects of magnetic fields. On the one hand, magnetic braking enhances accretion by removing angular momentum from the disc thus lowering the centrifugal support against gravity. On the other hand, the combined effect of magnetic pressure and magnetic tension counteracts gravity by exerting an outward directed force on the gas in the disc thus reducing the accretion on to the protostars.

  8. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  9. Tracking the Distribution of 26Al and 60Fe during the Early Phases of Star and Disk Evolution

    NASA Astrophysics Data System (ADS)

    Kuffmeier, Michael; Frostholm Mogensen, Troels; Haugbølle, Troels; Bizzarro, Martin; Nordlund, Åke

    2016-07-01

    The short-lived 26Al and 60Fe radionuclides are synthesized and expelled into the interstellar medium by core-collapse supernova events. The solar system’s first solids, calcium-aluminum refractory inclusions (CAIs), contain evidence for the former presence of the 26 Al nuclide defining the canonical 26Al/27 Al ratio of ˜ 5× {10}-5. A different class of objects temporally related to canonical CAIs are CAIs with fractionation and unidentified nuclear effects (FUN CAIs), which record a low initial 26Al/27Al of 10-6. The contrasting level of 26Al between these objects is often interpreted as reflecting the admixing of the 26Al nuclides during the early formative phase of the Sun. We use giant molecular cloud scale adaptive mesh-refinement numerical simulations to trace the abundance of 26Al and 60Fe in star-forming gas during the early stages of accretion of individual low-mass protostars. We find that the 26Al/27Al and 60Fe/56Fe ratios of accreting gas within a vicinity of 1000 au of the stars follow the predicted decay curves of the initial abundances at the time of star formation without evidence of spatial or temporal heterogeneities for the first 100 kyr of star formation. Therefore, the observed differences in 26Al/27Al ratios between FUN and canonical CAIs are likely not caused by admixing of supernova material during the early evolution of the proto-Sun. Selective thermal processing of dust grains is a more viable scenario to account for the heterogeneity in 26Al/27Al ratios at the time of solar system formation.

  10. Seismic Stratigraphy Of The Sabrina Coast Shelf, East Antarctica: History Of Late Paleogene To Early Neogene Glacial Evolution

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Gulick, S. P. S.; Frederick, B. C.; Blankenship, D. D.; Leventer, A.; Shevenell, A.; Domack, E. W.

    2015-12-01

    Sedimentary architecture of the Sabrina Coast (SC) shelf, East Antarctica is studied for the first time using 754 km of high (up to 3 m) vertical resolution multichannel seismic data and four piston cores acquired on board of RVIB Palmer in 2014. We interpret the sedimentary record of early glacial SC shelf stratigraphy based on analysis of seismic facies and morphological features. We identify at least nine erosional surfaces that indicate advances of the Totten Glacier - Moscow University Ice Shelf system, part of the East Antarctic Ice Sheet (EAIS), to the SC shelf. The most prominent features include two series of undulating, channelized erosional surfaces truncating strata below and showing highly irregular morphology with elevation amplitudes of up to ~120 m and widths of individual undulations of up to ~10 km. These surfaces are located stratigraphically above a core bearing IRD and assigned biostratigraphically to the Late Eocene and below a regional erosional surface of Late Miocene age. Our major results show that: (1) Oligocene-early Miocene evolution of EAIS consists of low-frequency, high-amplitude glacial expansions followed by long periods of ice-distal to open marine conditions; (2) the presence of grounded EAIS expansions on shelf is expressed in a series of deep, hummocky undulations and first Antarctic sedimentary tunnel valley system, suggestive of presence of subglacial meltwater and hence, a polythermal glacial regime; (3) at least nine erosional unconformities representing major ice advances have been found on the inner shelf; (4) the most intensive polythermal glaciations have occurred in late Eocene-early Oligocene; (5) no evidence of focused paleo- ice stream(s) draining Aurora Basin Complex prior to the middle Miocene was found in the study area.

  11. Spectrophotometric Redshifts in the Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James E.

    2016-06-01

    We have combined HST grism spectroscopy and deep broadband imaging to measure spectro-photometric redshifts (SPZs) of faint galaxies. Using a technique pioneered by Ryan et al. 2007, one can combine spectra and photometry to yield an SPZ that is more accurate than pure photometric redshifts, and can probe more deeply than ground-based spectroscopic redshifts. By taking mid-resolution spectra from the HST Faint Infrared Grism Survey (FIGS), SPZs can be found for measurements potentially down to 27th magnitude (the typical brightness of a dwarf galaxy at redshift ˜1.5). A galaxy’s redshift is vital for understanding its place in the growth and evolution of the universe. The measurement of high-accuracy SPZs for FIGS sources will improve the faint-end and high-redshift portions of the luminosity function, and make possible a robust analysis of the FIGS fields for signs of Large Scale Structure (LSS). The improved redshift and distance measurements allowed for the identification of a structure at z=0.83 in one of the FIGS fields.

  12. Origin and early evolution of neural circuits for the control of ciliary locomotion.

    PubMed

    Jékely, Gáspár

    2011-03-22

    Behaviour evolved before nervous systems. Various single-celled eukaryotes (protists) and the ciliated larvae of sponges devoid of neurons can display sophisticated behaviours, including phototaxis, gravitaxis or chemotaxis. In single-celled eukaryotes, sensory inputs directly influence the motor behaviour of the cell. In swimming sponge larvae, sensory cells influence the activity of cilia on the same cell, thereby steering the multicellular larva. In these organisms, the efficiency of sensory-to-motor transformation (defined as the ratio of sensory cells to total cell number) is low. With the advent of neurons, signal amplification and fast, long-range communication between sensory and motor cells became possible. This may have first occurred in a ciliated swimming stage of the first eumetazoans. The first axons may have had en passant synaptic contacts to several ciliated cells to improve the efficiency of sensory-to-motor transformation, thereby allowing a reduction in the number of sensory cells tuned for the same input. This could have allowed the diversification of sensory modalities and of the behavioural repertoire. I propose that the first nervous systems consisted of combined sensory-motor neurons, directly translating sensory input into motor output on locomotor ciliated cells and steering muscle cells. Neuronal circuitry with low levels of integration has been retained in cnidarians and in the ciliated larvae of some marine invertebrates. This parallel processing stage could have been the starting point for the evolution of more integrated circuits performing the first complex computations such as persistence or coincidence detection. The sensory-motor nervous systems of cnidarians and ciliated larvae of diverse phyla show that brains, like all biological structures, are not irreducibly complex.

  13. A Gradualist Scenario for Language Evolution: Precise Linguistic Reconstruction of Early Human (and Neandertal) Grammars.

    PubMed

    Progovac, Ljiljana

    2016-01-01

    In making an argument for the antiquity of language, based on comparative evidence, Dediu and Levinson (2013) express hope that some combinations of structural features will prove so conservative that they will allow deep linguistic reconstruction. I propose that the earliest stages of syntax/grammar as reconstructed in Progovac (2015a), based on a theoretical and data-driven linguistic analysis, provide just such a conservative platform, which would have been commanded also by Neandertals and the common ancestor. I provide a fragment of this proto-grammar, which includes flat verb-noun compounds used for naming and insult (e.g., rattle-snake, cry-baby, scatter-brain), and paratactic (loose) combinations of such flat structures (e.g., Come one, come all; You seek, you find). This flat, binary, paratactic platform is found in all languages, and can be shown to serve as foundation for any further structure building. However, given the degree and nature of variation across languages in elaborating syntax beyond this proto-stage, I propose that hierarchical syntax did not emerge once and uniformly in all its complexity, but rather multiple times, either within Africa, or after dispersion from Africa. If so, then, under the uniregional hypothesis, our common ancestor with Neandertals, H. heidelbergensis, could not have commanded hierarchical syntax, but "only" the proto-grammar. Linguistic reconstructions of this kind are necessary for formulating precise and testable hypotheses regarding language evolution. In addition to the hominin timeline, this reconstruction can also engage, and negotiate between, the fields of neuroscience and genetics, as I illustrate with one specific scenario involving FOXP2 gene.

  14. Early evolution of the lungfish pectoral fin endoskeleton: evidence from the Middle Devonian (Givetian) Pentlandia macroptera

    NASA Astrophysics Data System (ADS)

    Jude, Emma; Johanson, Zerina; Kearsley, Anton; Friedman, Matt

    2014-08-01

    As the closest living relatives of tetrapods, lungfishes are frequently used as extant models for exploring the fin-to-limb transition. These studies have generally given little consideration to fossil taxa. This is because although lungfish fins are relatively common in the fossil record, the internal structure of these fins is virtually unknown. Information on pectoral-fin endoskeletons in fossil representatives of Dipnomorpha (the lungfish total group) is limited to poorly preserved remains in the lungfish Dipterus and Conchopoma and more complete material in the porolepiform Glyptolepis. Here we describe a well-preserved pectoral-fin endoskeleton in the Middle Devonian (Givetian) lungfish Pentlandia macroptera from the John O’Groats fish bed, Caithness, northeastern Scotland. The skeleton is in association with a cleithrum and clavicle, and consists of a series of at least eight mesomeres. Extensive series of preaxial and postaxial radials are present. Some of the radials are jointed, but none branch. No mesomere articulates with multiple radials on either its pre- or post-axial face. The first two mesomeres, corresponding to the humerus and ulna, bear well-developed axial processes. Uniquely among dipnomorphs, a distinct ossification centre corresponding to the radius is present in Pentlandia. A review of anatomy and development of the pectoral-fin endoskeleton in the living Neoceratodus is presented based on cleared and stained material representing different size stages. These developmental data, in conjunction with new details of primitive lungfish conditions based on Pentlandia, highlight many of the derived features of the pectoral-fin skeleton of Neoceratodus, and clarify patterns of appendage evolution within the dipnomorphs more generally.

  15. Formation and Early Evolution of Solar and Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Bodenheimer, P. H.; Hubickyj, Olenka; Boyce, Joseph (Technical Monitor)

    2001-01-01

    This project investigates the origin of giant planets, both in the Solar System and around other stars. It is assumed that the planets form by the core accretion process: small solid particles in a disk surrounding a young star gradually coagulate into objects of a few kilometers in size, known as planetesimals, which then accumulate into solid protoplanetary cores. Once the cores have become large enough, they are able to attract gas from the surrounding disk to form the deep gaseous envelope of the giant planet. Our code simulates giant planet growth in a spherical approximation, and it has been quite successful in addressing a number of basic planetary properties. Further improvements to the code have been made to achieve a more realistic understanding of planetary formation. The computations of the models were based on an earlier version of our code and were stopped at the onset of runaway gas accretion. Now, improved boundary conditions have been incorporated into the code to allow for hydrodynamic inflow of gas and to handle the late stages of evolution when the planet evolves at constant mass. These changes were made to the version of the code that uses a constant accretion rate and to the version that uses a self-consistent method for calculating both the solid and gas accretion rates. The equation of state has been updated to incorporate the detailed tables of Saumon, Chabrier, and Van Horn. The opacities were updated to include the results of Alexander and Ferguson. The outer boundary conditions were modified. During the accretion phase when the planet's radius is between the accretion radius and the tidal radius, we set the outer boundary at a 'modified' accretion radius, which is the point where thermal energy is enough to bring gas to the edge of the Hill sphere.

  16. Late Jurassic-Early Cretaceous evolution of the eastern Indian Ocean adjacent to northwest Australia

    NASA Astrophysics Data System (ADS)

    Fullerton, Lawrence G.; Sager, William W.; Handschumacher, David W.

    1989-03-01

    Over 9700 km of new aeromagnetic data were acquired off the northwest coast of Australia and combined with existing magnetic data to map magnetic isochrons in the eastern Indian Ocean. The isochrons were used to constrain a tectonic model of the evolution of the seafloor in the Argo, Cuvier, and Gascoyne abyssal plains. A complete set of anomalies, from M26 through M16, was found in the Argo Abyssal Plain, trending generally N70°E. Spreading commenced in the center of the basin at or prior to M26 and propagated outward until at least M24 time. Anomalies M10-MO, recording the separation of Australia and India, were found in the Cuvier and Gascoyne abyssal plains, with a trend of about N30°E. A significant crustal age discontinuity occurs in the vicinity of the Joey Rise where the two lineation sets converge. Because there appears to be no overlap of isochron ages in the two groups, it is not necessary to postulate that a triple junction existed off northwest Australia as has been previously suggested. At M4-M5 time a 10° clockwise change in spreading direction occurred on the Cuvier-Gascoyne spreading system. This event triggered ridge jumps that transferred two pieces of the Indian plate to the Australian plate. Overlapping spreading on the forming and dying ridges, curved fracture zones and lineations, as well as fanned lineation trends, suggest that the ridge jumps occurred by ridge propagation and that the transferred lithospheric blocks behaved as microplates for a brief interval of approximately 1-2 m.y.

  17. A Gradualist Scenario for Language Evolution: Precise Linguistic Reconstruction of Early Human (and Neandertal) Grammars

    PubMed Central

    Progovac, Ljiljana

    2016-01-01

    In making an argument for the antiquity of language, based on comparative evidence, Dediu and Levinson (2013) express hope that some combinations of structural features will prove so conservative that they will allow deep linguistic reconstruction. I propose that the earliest stages of syntax/grammar as reconstructed in Progovac (2015a), based on a theoretical and data-driven linguistic analysis, provide just such a conservative platform, which would have been commanded also by Neandertals and the common ancestor. I provide a fragment of this proto-grammar, which includes flat verb-noun compounds used for naming and insult (e.g., rattle-snake, cry-baby, scatter-brain), and paratactic (loose) combinations of such flat structures (e.g., Come one, come all; You seek, you find). This flat, binary, paratactic platform is found in all languages, and can be shown to serve as foundation for any further structure building. However, given the degree and nature of variation across languages in elaborating syntax beyond this proto-stage, I propose that hierarchical syntax did not emerge once and uniformly in all its complexity, but rather multiple times, either within Africa, or after dispersion from Africa. If so, then, under the uniregional hypothesis, our common ancestor with Neandertals, H. heidelbergensis, could not have commanded hierarchical syntax, but “only” the proto-grammar. Linguistic reconstructions of this kind are necessary for formulating precise and testable hypotheses regarding language evolution. In addition to the hominin timeline, this reconstruction can also engage, and negotiate between, the fields of neuroscience and genetics, as I illustrate with one specific scenario involving FOXP2 gene. PMID:27877146

  18. Gravitational collapse and the thermal evolution of low-metallicity gas clouds in the early Universe

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Yoshida, Naoki; Hirano, Shingo

    2016-12-01

    We study gravitational collapse of low-metallicity gas clouds and the formation of protostars by three-dimensional hydrodynamic simulations. Grain growth, non-equilibrium chemistry, molecular cooling, and chemical heating are solved in a self-consistent manner for the first time. We employ the realistic initial conditions for the abundances of metal and dust, and the dust size distribution obtained from recent Population III supernova calculations. We also introduce the state-of-the-art particle splitting method based on the Voronoi tessellation and achieve an extremely high mass resolution of ˜ 10- 5 M⊙ (10 Earth masses) in the central region. We follow the thermal evolution of several clouds with various metallicities. We show that the condition for cloud fragmentation depends not only on the gas metallicity but also on the collapse time-scale. In many cases, the cloud fragmentation is prevented by the chemical heating owing to molecular hydrogen formation even though dust cooling becomes effective. Meanwhile, in several cases, efficient OH and H2O cooling promotes the cloud elongation, and then cloud `filamentation' is driven by dust thermal emission as a precursor of eventual fragmentation. While the filament fragmentation is driven by rapid gas cooling with metallicity ≳10-5 Z⊙, fragmentation occurs in a different manner by the self-gravity of a circumstellar disc with metallicity ≲10-5 Z⊙. We use a semi-analytic model to estimate the number fraction of the clouds which undergo the filament fragmentation to be 20-40 per cent with metallicity 10-5-10-4 Z⊙. Overall, our simulations show a viable formation path of the recently discovered Galactic low-mass stars with extremely small metallicities.

  19. Early Evolution of the Main Belt Informed by the Compositional Diversity of Basaltic Asteroids

    NASA Astrophysics Data System (ADS)

    Leith, Thomas; Moskovitz, Nicholas; Mayne, Rhiannon; DeMeo, Francesca; Takir, Driss

    2015-11-01

    We present near-infrared (0.78-2.45 micron) reflectance spectra for eight outer main belt (a > 2.5 AU) asteroids that have been taxonomically classified as V-types based on visible wavelength data. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo spectral catalogue, and thus could represent either spectral end members of the V-type taxonomic class or a small population of a new spectral type. The remainder of the sample are classified as V- or R-type. All of these asteroids are dynamically distinct from the Vestoid family, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system. The 1- and 2-μm band centers of all objects, determined using Modified Gaussian Model fits, were compared to those of 47 Vestoids and fifteen HED meteorites of known composition. Formulas relating Band 1 and Band 2 centers to the pyroxene mineralogies of these asteroids were derived from the sample of HED meteorites and used to determine the Fs numbers of all asteroids. The Fs numbers of the five outer belt V- and R-type asteroids are, on average, between five and ten molar percent lower than those of the Vestoids, implying that these objects formed in a more reducing environment than Vesta. Given the complex evolution of oxygen fugacity in the solar nebula, these compositional results suggest that these outer belt basaltic asteroids formed either interior to Vesta and were later scattered to the outer belt or formed at a later epoch than Vesta.

  20. Origin and early evolution of neural circuits for the control of ciliary locomotion

    PubMed Central

    Jékely, Gáspár

    2011-01-01

    Behaviour evolved before nervous systems. Various single-celled eukaryotes (protists) and the ciliated larvae of sponges devoid of neurons can display sophisticated behaviours, including phototaxis, gravitaxis or chemotaxis. In single-celled eukaryotes, sensory inputs directly influence the motor behaviour of the cell. In swimming sponge larvae, sensory cells influence the activity of cilia on the same cell, thereby steering the multicellular larva. In these organisms, the efficiency of sensory-to-motor transformation (defined as the ratio of sensory cells to total cell number) is low. With the advent of neurons, signal amplification and fast, long-range communication between sensory and motor cells became possible. This may have first occurred in a ciliated swimming stage of the first eumetazoans. The first axons may have had en passant synaptic contacts to several ciliated cells to improve the efficiency of sensory-to-motor transformation, thereby allowing a reduction in the number of sensory cells tuned for the same input. This could have allowed the diversification of sensory modalities and of the behavioural repertoire. I propose that the first nervous systems consisted of combined sensory-motor neurons, directly translating sensory input into motor output on locomotor ciliated cells and steering muscle cells. Neuronal circuitry with low levels of integration has been retained in cnidarians and in the ciliated larvae of some marine invertebrates. This parallel processing stage could have been the starting point for the evolution of more integrated circuits performing the first complex computations such as persistence or coincidence detection. The sensory-motor nervous systems of cnidarians and ciliated larvae of diverse phyla show that brains, like all biological structures, are not irreducibly complex. PMID:21123265

  1. The early evolution of southwestern Pennsylvania's regional math/science collaborative from the leadership perspective

    NASA Astrophysics Data System (ADS)

    Bunt, Nancy R.

    Designed as a regional approach to the coordination of efforts and focusing of resources in fragmented southwestern Pennsylvania, the Collaborative's story is narrated by its founding director. Drawing from office archives, including letters of invitation, meeting notes, and participant evaluations of each event, the study describes the genesis of the Collaborative. It begins with identification of the problem and the resulting charge by a founding congress. It details the building of an organizational framework, the creation of a shared vision, the development of a blueprint for action, and the decision-making involved in determining how to strengthen mathematics and science education in the region. The study notes several influences on the Collaborative's leadership. Considering the role of other collaboratives, the study notes that knowledge of the Los Angeles Educational Partnership's LA SMART jump-started the Collaborative's initial planning process. Knowledge of San Francisco's SEABA influenced the size and naming of the Collaborative's Journal. Fred Newmann's definition of authentic instruction, learning and assessment are reflected in the shared vision and belief statements of the Collaborative. The five disciplines of Peter Senge influenced the nature of the organizational framework as well as the day-to-day operations of the Collaborative. The study also notes that the five organizational tensions identified in Ann Lieberman's work on "intentional learning communities" were present in every aspect of the evolution of the Collaborative. The study suggests that leaders of evolving collaboratives: (1) engage all relevant stakeholders in assessing the current situation and defining a desired future state, (2) take advantage of the lessons learned by others and the resources available at the state and national levels to design strategies and build action plans, (3) model the practices to be inspired in the learning community, (4) constantly gather feedback on

  2. Unresolved problems on the origin and early evolution of land plants.

    PubMed

    Bennici, Andrea

    2007-01-01

    The origin of land plants or embryophytes from the Charophyceae is generally accepted today by the botanists. In fact, numerous morphological, cytological, ultrastructural, biochemical and molecular characters are shared in these organisms. A fundamental problem is still constituted by the evolution of the sporophyte, i.e. the appearance of two different phase cycles (gametophyte/sporophyte alternance), although two theories ("antithetic" and "homologous") try to explain this evolutionary event.However, another phylogenetic dilemma is represented, in my opinion, either by the formation of bryophytes or by the transition from these first land plants to the pteridophytes, considering them at whole organism level. The bryophyte gametophyte is the most elaborate of the land plants. It presents several complex characters, principally the growth developmental form, the appearance of multicellular sex organs, antheridia and archegonia. Also the sporophyte shows a complicated structure that is not found in the other land plants or tracheophytes. The sporangium, in particular, exhibits some intricate morphological traits such as the peristome of true mosses for spore dispersion, the elaters of liverworts and the indeterminate growth in the hornworts. The pteridophytes are represented especially by their dominant sporophyte. This latter has the capacity to produce multiple sporangia and, in many cases, two kinds of spores which develop in male and female gametophyte (heterosporous pteridophytes). Another important characteristic of this sporophyte is its ability to become independent of the gametophyte. However, one of the most innovative character is the formation of true vascular elements (xylem and phloem). All these very large evolutionary jumps are discussed on the basis of the phyletic gradualistic neo-Darwinian theory and the punctuated equilibrium theory of Eldredge and Gould. In this context other genetic evolutionary mechanisms are also considered.Nevertheless, the

  3. Evolution of the Early Triassic marine depositional environment in the Croatian Dinarides

    NASA Astrophysics Data System (ADS)

    Aljinović, Dunja; Smirčić, Duje; Horacek, Micha; Richoz, Sylvain; Krystyn, Leopold; Kolar-Jurkovšek, Tea; Jurkovšek, Bogdan

    2014-05-01

    In the central part of the Dinarides in Croatia, the Early Triassic depositional sequence was investigated by means of litho-, bio- and chemostratigraphy at locality Plavno (ca. 1.000m thick). Conodont and δ13C-isotope analysis were a powerfull tool to determine stage and substage boundaries. The succession begins with the second conodont zone of the Griesbachian Isarcicella staeschei and I. isarcica with low δ13C-values and a steadily increase towards the Griesbachian-Dienerian boundary. Around that boundary a minor, short, negative excursion occurs. In the Dienerian the δ13C-values increase with a steepening of the slope towards the Dienerian-Smithian boundary. Around that boundary a maximum of +5o in shallow water carbonate occurs followed by a steep and continuous drop to low, often negative values in the Smithian. Just before the Smithian-Spathian boundary a steep rise to a second maximum is documented. It is followed by decline in the Spathian and a gentle increase to a rounded peak at the Spathian-Anisian boundary. In lithological sense Plavno succession has threefold division: 1) carbonates representing the oldest Early Triassic strata (early Griesbachian); 2) dominantly red clastics (shales, siltstones and sandstones) with intercalation of oncoid/ooid or bioclast rich grainstones (uppermost Griesbachian, Dienerian and Smithian) and 3) dominantly grey carbonaceous lime mudstones, marls and calcisiltites with ammonoids representing Spathian strata. In the oldest strata (Griesbachian) in macrocrystalline subhedral dolomites rare microspheres and foraminifers Earlandia and Cornuspira point to the stressful conditions related to the end Permian mass extinction. In the uppermost Griesbachian and Dienerian strata, within dominantly clastic deposition, rare coarse oncoliths with typical microbial cortices occur. Their presence fits to the interpretation of biotical-induced precipitation related to PTB extinction and can suggest still stressful condition. The

  4. Microstructural evolution at the bonding interface during the early-stage infrared active brazing of alumina

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; O, J. M.; Wang, J. Y.

    2000-10-01

    Infrared brazing of Al2O3 and alloy 42 using a silver-base active braze alloy was investigated at 900 °C for 0 to 300 seconds, with a heating rate of 3000 °C/min. Experimental results show that Ti3(Cu, Al)3O intermetallic with various amounts of Al is observed in the reaction layer and plays an important role in the early stage of reactive wetting. A two-layer structure is observed at the reaction interface brazed at 900 °C for 5 seconds. The reaction layer close to the alumina contains large amounts of Al, so the mass balance of the system is maintained. The growth of the reaction layer is not rate controlled by diffusion within the first 120 seconds. After 120 seconds, the rate controlling mechanism of the reaction layer becomes the diffusion control, satisfying the parabolic law. Dynamic wetting angle measurements using a traditional vacuum furnace at the heating rate of 10 °C/min demonstrate that the wetting angle rapidly decreases within the first 150 seconds, especially 0 to 80 seconds, and eventually stabilizes after 600 seconds.

  5. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    SciTech Connect

    Scott, R.W.

    1988-01-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences on the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.

  6. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  7. Two spinal cords in birds: novel insights into early avian evolution

    PubMed Central

    Woodbury, C. J.

    1998-01-01

    Birds can be subdivided into two large superordinal assemblages based on differences in the dorsal horn of the spinal grey matter. Palaeognaths (i.e. ratites and tinamous), along with a few other orders of neognathous birds, exhibit the primitive dorsal horn state characteristic of other amniotes wherein cutaneous nerves form a single map of the body surface across the dorsal horn. In contrast, the vast majority of neognaths exhibit a novel, distinctly bifid dorsal horn wherein cutaneous nerves form not one, but two separate maps of the skin, each lying side-by-side. This unusual dorsal horn organization, which has been highly conserved and represents the derived state in birds, may identify a novel, major avian clade. These findings shed new light on historically problematic taxa and the early evolutionary branching sequence among living birds. Most notably, they reveal that the traditional orders Gruiformes, Columbiformes, Cuculiformes and Piciformes are unnatural assemblages. Further, in addition to palaeognaths, these findings suggest that most gruiforms, including buttonquails and mesites, as well as pigeons, cuckoos, woodpeckers and songbirds, represent ancient lineages whose ancestry predates the majority of 'modern' birds. The phylogeny of living birds may thus be likened more to a dense bush than the traditional tree, with more than half of all living species arising from a basal side branch.

  8. Calculations of the effects of angular momentum on the early evolution of Jupiter

    NASA Technical Reports Server (NTRS)

    Bodenheimer, P.

    1977-01-01

    Early phases in the evolutionary development of a rotating cloud of gas and dust are investigated to determine whether physically reasonable initial conditions are likely to produce a planet-satellite system with the values of specific orbital angular momentum currently observed for Jupiter and its inner satellites. Spherically symmetric computations of Jupiter's evolutionary history are reviewed, and transport of angular momentum is considered along with evolutionary sequences of individual differentially rotating models with decreasing values of equatorial radius. The problem of accounting for the present specific orbital angular momenta of Jupiter and its regular satellites is examined qualitatively, and a range of possible angular-momentum distributions in an initially tidally unstable cloud is assessed. The results show that particular physically plausible angular-momentum distributions, which could either be established as initial conditions or be caused by angular-momentum transport, will lead to favorable situations for the formation of a central planet and a surrounding rotating cloud with specific angular momentum comparable to that of the regular satellites.

  9. Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Kasliwal, Mansi M.; Arcavi, Iair; Horesh, Assaf; Hancock, Paul; Valenti, Stefano; Cenko, S. Bradley; Kulkarni, S. R.; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Sand, David; Yaron, Ofer; Graham, Melissa; Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H.; Walker, Emma S.; Mazzali, Paolo; Howell, D. Andrew; Li, K. L.; Kong, A. K. H.; Bloom, Joshua S.; Nugent, Peter E.; Surace, Jason; Masci, Frank; Carpenter, John; Degenaar, Nathalie; Gelino, Christopher R.

    2013-09-01

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an MB luminosity of -5.52 ± 0.39 mag and a B - I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×1012 g cm-1. Assuming a wind velocity of 103 km s-1, we derive a progenitor mass-loss rate of 3 × 10-5 M ⊙ yr-1. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  10. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    PubMed

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.

  11. 400 million years on six legs: on the origin and early evolution of Hexapoda.

    PubMed

    Grimaldi, David A

    2010-01-01

    Identifying the unambiguous sister group to the hexapods has been elusive. Traditional concepts include the Myriapoda (the Tracheata/Atelocerata hypothesis), but recent molecular studies consistently indicate it is the Crustacea, either in part or entirety (the Pancrustacea/Tetraconata hypothesis). The morphological evidence in support of Tracheata is reviewed, and most features are found to be ambiguous (i.e., losses, poorly known and surveyed structures, and probable convergences), though some appear to be synapomorphic, such as tentorial structure and the presence of styli and eversible vesicles. Other morphological features, particularly the structure of the eyes and nervous system, support Pancrustacea, as does consistent molecular evidence (which is reviewed and critiqued). Suggestions are made regarding hexapod-crustacean limb homologies. Relationships among basal (apterygote) hexapods are reviewed, and critical Paleozoic fossils are discussed. Despite the scarceness of Devonian hexapods, major lineages like Collembola and even dicondylic Insecta appeared in the Early Devonian; stem-group and putative Archaeognatha are known from the Carboniferous through Permian and the Late Devonian, respectively. Thus, the earliest divergences of hexapods were perhaps Late Silurian, which is considerably younger than several estimates made using molecular data.

  12. The oldest ionoscopiform from China sheds new light on the early evolution of halecomorph fishes

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Coates, Michael I.

    2014-01-01

    The Halecomorphi are a major subdivision of the ray-finned fishes. Although living halecomorphs are represented solely by the freshwater bowfin, Amia calva, this clade has a rich fossil history, and the resolution of interrelationships among extinct members is central to the problem of understanding the origin of the Teleostei, the largest clade of extant vertebrates. The Ionoscopiformes are extinct marine halecomorphs that were inferred to have originated in the Late Jurassic of Europe, and subsequently dispersed to the Early Cretaceous of the New World. Here, we report the discovery of a new ionoscopiform, Robustichthys luopingensis gen. et sp. nov., based on eight well-preserved specimens from the Anisian (242–247 Ma), Middle Triassic marine deposits of Luoping, eastern Yunnan Province, China. The new species documents the oldest known ionoscopiform, extending the stratigraphic range of this group by approximately 90 Ma, and the geographical distribution of this group into the Middle Triassic of South China, a part of eastern Palaeotethys Ocean. These new data provide a minimum estimate for the split of Ionoscopiformes from its sister clade Amiiformes and shed new light on the origin of ionoscopiform fishes. PMID:24872460

  13. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    SciTech Connect

    Scott, R.W.

    1988-02-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences on the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.

  14. Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins

    SciTech Connect

    Burke, D.H.; Hearst, J.E.; Sidow, A. )

    1993-08-01

    Chlorophyll (Chl) is often viewed as having preceded bacteriochlorophyll (BChl) as the primary photoreceptor pigment in early photosynthetic systems because synthesis of Chl requires one fewer enzymatic reduction than does synthesis of BChl. The authors have conducted statistical DNA sequence analyses of the two reductases involved in Chl and BChl synthesis, protochlorophyllide reductase and chlorin reductase. Both are three-subunit enzymes in which each subunit from one reductase shares significant amino acid identity with a subunit of the other, indicating that the two enzymes are derived from a common three-subunit ancestral reductase. The [open quotes]chlorophyll iron protein[close quotes] subunits, encoded by the bchL and bchX genes in the purple bacterium Rhodobacter capsulatus, also share amino acid sequence identity with the nitrogenase iron protein, encoded by nifH. When nitrogenase iron proteins are used as outgroups, the chlorophyll iron protein tree is rooted on the chlorin reductase lineage. This rooting suggests that the last common ancestor of all extant photosynthetic eubacteria contained BChl, not Chl, in its reaction center, and implies that Chl-containing reaction centers were a late invention unique to the cyanobacteria/chloroplast lineage. 48 refs., 4 figs., 2 tabs.

  15. The oldest ionoscopiform from China sheds new light on the early evolution of halecomorph fishes.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Coates, Michael I

    2014-05-01

    The Halecomorphi are a major subdivision of the ray-finned fishes. Although living halecomorphs are represented solely by the freshwater bowfin, Amia calva, this clade has a rich fossil history, and the resolution of interrelationships among e