Sample records for early stage oocytes

  1. Ion currents involved in oocyte maturation, fertilization and early developmental stages of the ascidian Ciona intestinalis.

    PubMed

    Tosti, Elisabetta; Gallo, Alessandra; Silvestre, Francesco

    2011-01-01

    Electrophysiological techniques were used to study the role of ion currents in the ascidian Ciona intestinalis oocyte plasma membrane during different stages of growth, meiosis, fertilization and early development. Three stages of immature oocytes were discriminated in the ovary, with the germinal vesicle showing specific different features of growth and maturation. Stage-A (pre-vitellogenic) oocytes exhibited the highest L-type calcium current activity and were incompetent for meiosis resumption. Stage-B (vitellogenic) oocytes showed a progressive disappearance of calcium currents and the first appearance of sodium currents that remained high during the maturation process, up to the post-vitellogenic stage-C oocytes. The latter had acquired meiotic competence, undergoing spontaneous in vitro maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation may affect embryo development. In mature oocytes at the metaphase I stage, sodium currents were present and remained high up to the zygote stage. Oocytes fertilized in the absence of sodium showed significant reduction of the fertilization current amplitude and high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, whereas resumption of all the current activities occurred at the 8-cell embryo. Taken together, these results suggest: (i) an involvement of L-type calcium currents in initial oocyte meiotic progression and growth; (ii) a role of sodium currents at fertilization; (iii) a role of the fertilization current in ensuring normal embryo development. Copyright © 2011 Wiley Periodicals, Inc.

  2. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    PubMed Central

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  3. Effect of recombinant-LH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)-stage oocytes.

    PubMed

    Dinopoulou, Vasiliki; Drakakis, Peter; Kefala, Stella; Kiapekou, Erasmia; Bletsa, Ritsa; Anagnostou, Elli; Kallianidis, Konstantinos; Loutradis, Dimitrios

    2016-06-01

    During in vitro maturation (IVM), intrinsic and extrinsic factors must co-operate properly in order to ensure cytoplasmic and nuclear maturation. We examined the possible effect of LH/hCG in the process of oocyte maturation in mice with the addition of recombinant LH (r-LH) and hCG in our IVM cultures of mouse germinal vesicle (GV)-stage oocytes. Moreover, the effects of these hormones on fertilization, early embryonic development and the expression of LH/hCG receptor were examined. Nuclear maturation of GV-stage oocytes was evaluated after culture in the presence of r-LH or hCG. Fertilization rates and embryonic development were assessed after 24h. Total RNA was isolated from oocytes of different stages of maturation and from zygotes and embryos of different stages of development in order to examine the expression of LH/hCG receptor, using RT-PCR. The in vitro nuclear maturation rate of GV-stage oocytes that received hCG was significantly higher compared to the control group. Early embryonic development was increased in the hCG and LH cultures of GV oocytes when LH was further added. The LH/hCG receptor was expressed in all stages of in vitro matured mouse oocytes and in every stage of early embryonic development. Addition of hCG in IVM cultures of mouse GV oocytes increased maturation rates significantly. LH, however, was more beneficial to early embryonic development than hCG. This suggests a promising new technique in basic science research or in clinical reproductive medicine. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Bovine oocytes and early embryos express Staufen and ELAVL RNA-binding proteins.

    PubMed

    Calder, M D; Madan, P; Watson, A J

    2008-05-01

    RNA-binding proteins (RBP) influence RNA editing, localization, stability and translation and may contribute to oocyte developmental competence by regulating the stability and turnover of oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA-binding proteins during cow early development was characterized. Cumulus-oocyte complexes were collected from slaughterhouse ovaries, matured, inseminated and subjected to embryo culture in vitro. Oocyte or preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence analysis of mRNA expression and protein distribution. STAU1 and STAU2 and ELAVL1 mRNAs and proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage, whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation and early embryogenesis.

  5. Development of the follicle complex and oocyte staging in red drum, Sciaenops ocellatus Linnaeus, 1776 (Perciformes, Sciaenidae).

    PubMed

    Grier, Harry J

    2012-08-01

    Pelagic egg development in red drum, Sciaenops ocellatus, is described using tiered staging. Based on mitosis and meiosis, there are five periods: Mitosis of Oogonia, Active Meiosis I, Arrested Meiosis I, Active Meiosis II, and Arrested Meiosis II. The Periods are divided into six stages: Mitotic Division of Oogonia, Chromatin Nucleolus, Primary Growth, Secondary Growth, Oocyte Maturation and Ovulation. The Chromatin Nucleolus Stage is divided into four steps: Leptotene, Zygotene, Pachytene, and Early Diplotene. Oocytes in the last step possess one nucleolus, dispersed chromatin with forming lampbrush chromosomes and lack basophilic ooplasm. The Primary Growth Stage, characterized by basophilic ooplasm and absence of yolk in oocytes, is divided into five steps: One-Nucleolus, Multiple Nucleoli, Perinucleolar, Oil Droplets, and Cortical Alveolar. During primary growth, the Balbiani body develops from nuage, enlarges and disperses throughout the ooplasm as both endoplasmic reticulum and Golgi develop within it. Secondary growth or vitellogenesis has three steps: Early Secondary Growth, Late Secondary Growth and Full-Grown. The Oocyte Maturation Stage, including ooplasmic and germinal vesicle maturation, has four steps: Eccentric Germinal Vesicle, Germinal Vesicle Migration, Germinal Vesicle Breakdown and Resumption of Meiosis when complete yolk hydration occurs. The period is Arrested Meiosis II. When folliculogenesis is completed, the ovarian follicle, an oocyte and encompassing follicle cells, is surrounded by a basement membrane and developing theca, all forming a follicle complex. After ovulation, a newly defined postovulatory follicle complex remains attached to the germinal epithelium. It is composed of a basement membrane that separates the postovulatory follicle from the postovulatory theca. Arrested Meiosis I encompasses primary and secondary growth (vitellogenesis) and includes most of oocyte maturation until the resumption of meiosis (Active Meiosis II

  6. Journey of oocyte from metaphase-I to metaphase-II stage in mammals.

    PubMed

    Sharma, Alka; Tiwari, Meenakshi; Gupta, Anumegha; Pandey, Ashutosh N; Yadav, Pramod K; Chaube, Shail K

    2018-08-01

    In mammals, journey from metaphase-I (M-I) to metaphase-II (M-II) is important since oocyte extrude first polar body (PB-I) and gets converted into haploid gamete. The molecular and cellular changes associated with meiotic cell cycle progression from M-I to M-II stage and extrusion of PB-I remain ill understood. Several factors drive oocyte meiosis from M-I to M-II stage. The mitogen-activated protein kinase3/1 (MAPK3/1), signal molecules and Rho family GTPases act through various pathways to drive cell cycle progression from M-I to M-II stage. The down regulation of MOS/MEK/MAPK3/1 pathway results in the activation of anaphase-promoting complex/cyclosome (APC/C). The active APC/C destabilizes maturation promoting factor (MPF) and induces meiotic resumption. Several signal molecules such as, c-Jun N-terminal kinase (JNK2), SENP3, mitotic kinesin-like protein 2 (MKlp2), regulator of G-protein signaling (RGS2), Epsin2, polo-like kinase 1 (Plk1) are directly or indirectly involved in chromosomal segregation. Rho family GTPase is another enzyme that along with cell division cycle (Cdc42) to form actomyosin contractile ring required for chromosomal segregation. In the presence of origin recognition complex (ORC4), eccentrically localized haploid set of chromosomes trigger cortex differentiation and determine the division site for polar body formation. The actomyosin contractile activity at the site of division plane helps to form cytokinetic furrow that results in the formation and extrusion of PB-I. Indeed, oocyte journey from M-I to M-II stage is coordinated by several factors and pathways that enable oocyte to extrude PB-I. Quality of oocyte directly impact fertilization rate, early embryonic development, and reproductive outcome in mammals. © 2018 Wiley Periodicals, Inc.

  7. Influence of Meiotic Stages on Developmental Competence of Goat’ Oocyte After Vitrification

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ihsan, M. N.

    2018-02-01

    This objective of this research was to investigate effect of goat oocyte meiotic stages on developmental competence after cryopreservation. Ovaries were collected from slaugterhouse and oocytes was aspirated from2-6 mm of follicles. Oocyte with compacted cumulus cells and evenly granulated ooplasm were selected for this experiment. The lenght of in vitro maturation before vitrification was 8 or 22 h in IVM media TCM 199 + FCS 10 % + PMSG 10 IU + hCG 10 IU at 38.5 °C in a humidified atmosphere of 5 % CO2 in air and were vitrified. After vitrification process, GVBD and MII oocyte were matured for 18 or 4 h to fullfill 26 h maturation requirement and then oocytes were subjected to IVF and culture. Cleavage and blastocyst formation rate were to asses their developmental competence. Cleavage rates were obtained for both GVBD ( 56.78 %) and MII (69.64 % ) oocytes (P<0.05). Proportion of cleaved embryos from vitrified MII oocytes develop into blastocysts higher (P<0.05) than those from vitrified GVBD oocytes (10.25% vs 3.54%) repectively. Goat oocytes in different maturation stages response to vitrification differently and MII stages have better developmental competence than GVBD.

  8. Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow

    PubMed Central

    Lodde, V.; Modina, S.C.; Franciosi, F.; Zuccari, E.; Tessaro, I.; Luciano, A.M.

    2009-01-01

    DNA methyltransferase-1 (Dnmt1) is involved in the maintenance of DNA methylation patterns and is crucial for normal mammalian development. The aim of the present study was to assess the localization of Dnmt1 in cow, during the latest phases of oocyte differentiation and during the early stages of segmentation. Dnmt1 expression and localization were assessed in oocytes according to the chromatin configuration, which in turn provides an important epigenetic mechanism for the control of global gene expression and represents a morphological marker of oocyte differentiation. We found that the initial chromatin condensation was accompanied by a slight increase in the level of global DNA methylation, as assessed by 5-methyl-cytosine immunostaining followed by laser scanning confocal microscopy analysis (LSCM). RT-PCR confirmed the presence of Dnmt1 transcripts throughout this phase of oocyte differentiation. Analogously, Dnmt1 immunodetection and LSCM indicated that the protein was always present and localized in the cytoplasm, regardless the chromatin configuration and the level of global DNA methylation. Moreover, our data indicate that while Dnmt1 is retained in the cytoplasm in metaphase II stage oocytes and zygotes, it enters the nuclei of 8–16 cell stage embryos. As suggested in mouse, the functional meaning of the presence of Dnmt1 in the bovine embryo nuclei could be the maintainement of the methylation pattern of imprinted genes. In conclusion, the present work provides useful elements for the study of Dnmt1 function during the late stage of oocyte differentiation, maturation and early embryonic development in mammals. PMID:22073356

  9. Cytoskeletal changes in oocytes and early embryos during in vitro fertilization process in mice.

    PubMed

    Gumus, E; Bulut, H E; Kaloglu, C

    2010-02-01

    The cytoskeleton plays crucial roles in the development and fertilization of germ cells and in the early embryo development. The growth, maturation and fertilization of oocytes require an active movement and a correct localization of cellular organelles. This is performed by the re-organization of microtubules and actin filaments. Therefore, the aim of the present study was to determine the changes in cytoskeleton during in vitro fertilization process using appropriate immunofluorescence techniques. While the chromatin content was found to be scattered throughout the nucleus during the oocyte maturation period, it was seen only around nucleolus following the completion of the maturation. Microtubules, during oocyte maturation, were regularly distributed throughout the ooplasm which was then localized in the subcortical region of oocytes. Similarly microfilaments were scattered throughout the ooplasm during the oocyte maturation period whereas they were seen in the subcortical region around the polar body and above the meiotic spindle throughout the late developmental stages. In conclusion, those changes occurred in microtubules and microfilaments might be closely related to the re-organization of the genetic material during the oocyte maturation and early embryo development.

  10. The nucleolus in the mouse oocyte is required for the early step of both female and male pronucleus organization.

    PubMed

    OGUSHI, Sugako; SAITOU, Mitinori

    2010-10-01

    During oocyte growth in the ovary, the nucleolus is mainly responsible for ribosome biogenesis. However, in the fully-grown oocyte, all transcription ceases, including ribosomal RNA synthesis, and the nucleolus adopts a specific monotonous fibrillar morphology without chromatin. The function of this inactive nucleolus in oocytes and embryos is still unknown. We previously reported that the embryo lacking an inactive nucleolus failed to develop past the first few cleavages, indicating the requirement of a nucleolus for preimplantation development. Here, we reinjected the nucleolus into oocytes and zygotes without nucleoli at various time points to examine the timing of the nucleolus requirement during meiosis and early embryonic development. When we put the nucleolus back into oocytes lacking a nucleolus at the germinal vesicle (GV) stage and at second metaphase (MII), these oocytes were fertilized, formed pronuclei with nucleoli and developed to full term. When the nucleolus was reinjected at the pronucleus (PN) stage, most of the reconstructed zygotes cleaved and formed nuclei with nucleoli at the 2-cell stage, but the rate of blastocyst formation and the numbers of surviving pups were profoundly reduced. Moreover, the zygotes without nucleoli showed a disorder of higher chromatin organization not only in the female pronucleus but also, interestingly, in the male pronucleus. Thus, the critical time point when the nucleolus is required for progression of early embryonic development appears to be at the point of the early step of pronucleus organization.

  11. Oocyte transport: Developmental competence of bovine oocytes arrested at germinal vesicle stage by cycloheximide under air.

    PubMed

    Hashimoto, Shu; Kimura, Kouji; Iwata, Hisataka; Takakura, Ryo

    2003-02-01

    The effects of the medium (TCM 199 or SOFaa) and temperature (20 or 39 C) during meiotic arrest by cycloheximide (CHX) under air on the developmental competence of bovine oocytes after in vitro maturation (IVM) and fertilization (IVF) were investigated. Oocytes were maintained in meiotic arrest by 10 microg/ml CHX in a 50-microl droplet of 25-mM HEPES-buffered TCM 199 (H199) at 39 C or synthetic oviduct fluid (HSOFaa) at 20 or 39 C in air for 24 h. After release from the arrest, the oocytes was matured and fertilized in vitro and their developmental competence was examined. The developmental rate of oocytes arrested in HSOFaa at 20 C to the blastocyst stage was similar to that of non-arrested oocytes but was significantly higher (P<0.05) than that of oocytes arrested at 39 C in H199 or in HSOFaa. In consideration of oocyte transport conditions, we also investigated the meiotic arrest of oocytes maintained in a 0.25-ml straw by CHX individually with 10 microl HSOFaa or as a group (40-50 oocytes) with 170-200 microl HSOFaa at 20 C in air for 24 h. After release from meiotic arrest, the developmental competence of these oocytes was assessed similarly. The developmental rate of oocytes treated with CHX individually was similar to that of those treated with CHX in 50-microl droplet of HSOFaa at 20 C. However, the developmental rate of oocytes treated with CHX as a group was lower than that of oocytes treated with CHX in a 50-microl droplet. Five blastocysts developed from oocytes maintained in meiotic arrest in a plastic straw were transferred to five recipient heifers. Consequently, three recipients became pregnant and 2 calves were delivered. The results of the present study indicate that bovine oocytes treated with CHX in HSOFaa at 20 C under air retain the same developmental competence as non-arrested oocytes.

  12. Partial Recovery of Mitochondrial Function of Vitrified Porcine MII Stage Oocytes During Post-Thaw Incubation.

    PubMed

    Dai, J J; Yang, J H; Zhang, S S; Niu, Y F; Chen, Y N; Wu, C F; Zhang, D F

      The survival of porcine oocytes is still very low after cryopreservation. To investigate whether and when the mitochondrial function of vitrified porcine oocytes could be recovered post-thaw. Mitochondrial potential, ROS level, ATP content, apoptotic rate, caspase activity, and parthenogenetics developmental ability of thawed porcine oocytes were measured after culture in vitro for 0, 1, 2 or 4 h. Mitochondrial potential after 2 h and 4 h post-thaw culture were 1.19 and 1.26, significantly lower than that of fresh oocytes but much higher than the groups cultured for 0 h and 1 h (P<0.05). Cryopreservation increased the ROS level in oocytes considerably, which decreased only after 2 to 4 h incubation following thaw. ATP content increased gradually over time and recovered to the level comparable to that of fresh oocytes after 4 h. Pan caspase levels increased after cryopreservation and reached the highest level at 1 h incubation. Thereafter it decreased to a low value, but still higher than fresh oocytes. Oocytes showing an early apoptotic event decreased upon 2 to 4 h incubation. The parthenogenetic cleavage and blastocyst rates were the highest (19.8% and 5.6%) after 2 h incubation. The recovery of mitochondrial function could complete after 2 to 4 h post-thaw incubation. Post-thaw incubation for 2 to 4 h reduced apoptotic events and improved parthenogenetic developmental ability of vitrified porcine MII stage oocytes.

  13. Patterns of protein synthesis in oocytes and early embryos of Rana esculenta complex.

    PubMed

    Chen, P S; Stumm-Zollinger, E

    1986-01-01

    We have used isotopic labelling and both one-and two-dimensional electrophoretic procedures to analyse the protien synthesis patterns in oocytes and early embryos of three phenotypes of the European green frogs. The results demonstrated that protein patterns of Rana ridibunda and R. esculenta are identical, but that they differ from those of R. lessonae. Progeny of the lethal cross R. esculenta × R. esculenta showed a distinct delay in the appearance of stage-specific proteins during early embryogenesis. The heat-shock response of R. ridibunda and R. esculenta oocytes was found to be identical, but different from that of Xenopus laevis. The implications of these findings, with respect to hybridogenesis in R. esculenta complex and variations in the regulations of heat shock genes in different amphibian species, are discussed.

  14. Nucleoli from two-cell embryos support the development of enucleolated germinal vesicle oocytes in the pig.

    PubMed

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi

    2012-11-01

    Recent research has shown that nucleoli of oocytes at the germinal vesicle (GV) stage (GV nucleoli) are not necessary for oocyte maturation but are essential for early embryonic development. Nucleoli of 2-cell embryos (2-cell nucleoli) have morphology similar to that of nucleoli in oocytes at the GV stage. In this study, we examined the ability of 2-cell nucleoli to substitute for GV nucleoli in terms of supporting early embryonic development by nucleolus aspiration (enucleolation) and transfer into metaphase II (MII) oocytes or 2-cell embryos that were derived from enucleolated oocytes at the GV stage in the pig. When 2-cell embryos were centrifuged to move the lipid droplets to one side of the blastomere, multiple nucleoli in the nucleus fused into a single nucleolus. The nucleoli were then aspirated from the 2-cell embryos by micromanipulation. The injection of 2-cell nucleoli to GV enucleolated oocytes at the MII stage rescued the embryos from the early embryonic arrest, and the resulting oocytes developed to blastocysts. However, the injection of 2-cell and GV nucleoli to 2-cell embryos derived from GV enucleolated oocytes rarely restored the development to blastocysts. These results indicate that 2-cell nucleoli support early embryonic development as GV nucleoli and that the presence of nucleoli is essential for pig embryos before the 2-cell stage.

  15. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients

    PubMed Central

    Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women. PMID:28004769

  16. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients.

    PubMed

    Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang

    2016-12-22

    Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women.

  17. Assessment of Mouse Germinal Vesicle Stage Oocyte Quality by Evaluating the Cumulus Layer, Zona Pellucida, and Perivitelline Space

    PubMed Central

    Liu, Ying-Lei; Chen, Ying; Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Liang, Cheng-Guang

    2014-01-01

    To improve the outcome of assisted reproductive technology (ART) for patients with ovulation problems, it is necessary to retrieve and select germinal vesicle (GV) stage oocytes with high developmental potential. Oocytes with high developmental potential are characterized by their ability to undergo proper maturation, fertilization, and embryo development. In this study, we analyzed morphological traits of GV stage mouse oocytes, including cumulus cell layer thickness, zona pellucida thickness, and perivitelline space width. Then, we assessed the corresponding developmental potential of each of these oocytes and found that it varies across the range measured for each morphological trait. Furthermore, by manipulating these morphological traits in vitro, we were able to determine the influence of morphological variation on oocyte developmental potential. Manually altering the thickness of the cumulus layer showed strong effects on the fertilization and embryo development potentials of oocytes, whereas manipulation of zona pellucida thickness effected the oocyte maturation potential. Our results provide a systematic detailed method for selecting GV stage oocytes based on a morphological assessment approach that would benefit for several downstream ART applications. PMID:25144310

  18. Oocyte-specific gene Oog1 suppresses the expression of spermatogenesis-specific genes in oocytes.

    PubMed

    Honda, Shinnosuke; Miki, Yuka; Miyamoto, Yuya; Kawahara, Yu; Tsukamoto, Satoshi; Imai, Hiroshi; Minami, Naojiro

    2018-05-03

    Oog1, an oocyte-specific gene that encodes a protein of 425 amino acids, is present in five copies on mouse chromosomes 4 and 12. In mouse oocytes, Oog1 mRNA expression begins at embryonic day 15.5 and almost disappears by the late two-cell stage. Meanwhile, OOG1 protein is detectable in oocytes in ovarian cysts and disappears by the four-cell stage; the protein is transported to the nucleus in late one-cell to early two-cell stage embryos. In this study, we examined the role of Oog1 during oogenesis in mice. Oog1 RNAi-transgenic mice were generated by expressing double-stranded hairpin Oog1 RNA, which is processed into siRNAs targeting Oog1 mRNA. Quantitative RT-PCR revealed that the amount of Oog1 mRNA was dramatically reduced in oocytes obtained from Oog1-knockdown mice, whereas the abundance of spermatogenesis-associated transcripts (Klhl10, Tekt2, Tdrd6, and Tnp2) was increased in Oog1 knockdown ovaries. Tdrd6 is involved in the formation of the chromatoid body, Tnp2 contributes to the formation of sperm heads, Tekt2 is required for the formation of ciliary and flagellar microtubules, and Klhl10 plays a key role in the elongated sperm differentiation. These results indicate that Oog1 down-regulates the expression of spermatogenesis-associated genes in female germ cells, allowing them to develop normally into oocytes.

  19. Relocalization of STIM1 in mouse oocytes at fertilization: early involvement of store-operated calcium entry.

    PubMed

    Gómez-Fernández, Carolina; Pozo-Guisado, Eulalia; Gañán-Parra, Miguel; Perianes, Mario J; Alvarez, Ignacio S; Martín-Romero, Francisco Javier

    2009-08-01

    Calcium waves represent one of the most important intracellular signaling events in oocytes at fertilization required for the exit from metaphase arrest and the resumption of the cell cycle. The molecular mechanism ruling this signaling has been described in terms of the contribution of intracellular calcium stores to calcium spikes. In this work, we considered the possible contribution of store-operated calcium entry (SOCE) to this signaling, by studying the localization of the protein STIM1 in oocytes. STIM1 has been suggested to play a key role in the recruitment and activation of plasma membrane calcium channels, and we show here that mature mouse oocytes express this protein distributed in discrete clusters throughout their periphery in resting cells, colocalizing with the endoplasmic reticulum marker calreticulin. However, immunolocalization of the endogenous STIM1 showed considerable redistribution over larger areas or patches covering the entire periphery of the oocyte during Ca(2+) store depletion induced with thapsigargin or ionomycin. Furthermore, pharmacological activation of endogenous phospholipase C induced a similar pattern of redistribution of STIM1 in the oocyte. Finally, fertilization of mouse oocytes revealed a significant and rapid relocalization of STIM1, similar to that found after pharmacological Ca(2+) store depletion. This particular relocalization supports a role for STIM1 and SOCE in the calcium signaling during early stages of fertilization.

  20. Identification of candidate miRNAs and expression profile of yak oocytes before and after in vitro maturation by high-throughput sequencing.

    PubMed

    Xiong, X R; Lan, D L; Li, J; Zi, X D; Li, M Y

    2016-12-01

    Small RNA represents several unique non-coding RNA classes that have important function in a wide range of biological processes including development of germ cells and early embryonic, cell differentiation, cell proliferation and apoptosis in diverse organisms. However, little is known about their expression profiles and effects in yak oocytes maturation and early development. To investigate the function of small RNAs in the maturation process of yak oocyte and early development, two small RNA libraries of oocytes were constructed from germinal vesicle stage (GV) and maturation in vitro to metaphase II-arrested stage (M II) and then sequenced using small RNA high-throughput sequencing technology. A total of 9,742,592 and 12,168,523 clean reads were obtained from GV and M II oocytes, respectively. In total, 801 and 1,018 known miRNAs were acquired from GV and M II oocytes, and 75 miRNAs were found to be significantly differentially expressed: 47 miRNAs were upregulated and 28 miRNAs were downregulated in the M II oocytes compared to the GV stage. Among the upregulated miRNAs, miR-342 has the largest fold change (9.25-fold). Six highly expressed miRNAs (let-7i, miR-10b, miR-10c, miR-143, miR-146b and miR-148) were validated by real-time quantitative PCR (RT-qPCR) and consistent with the sequencing results. Furthermore, the expression patterns of two miRNAs and their potential targets were analysed in different developmental stages of oocytes and early embryos. This study provides the first miRNA profile in the mature process of yak oocyte. Seventy-five miRNAs are expressed differentially in GV and M II oocytes as well as among different development stages of early embryos, suggesting miRNAs involved in regulating oocyte maturation and early development of yak. These results showed specific miRNAs in yak oocytes had dynamic changes during meiosis. Further functional and mechanistic studies on the miRNAs during meiosis may beneficial to understanding the role of mi

  1. Polypeptide profiles of human oocytes and preimplantation embryos.

    PubMed

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  2. Discovery of a novel oocyte-specific Krüppel-associated box domain-containing zinc finger protein required for early embryogenesis in cattle.

    PubMed

    Hand, Jacqelyn M; Zhang, Kun; Wang, Lei; Koganti, Prasanthi P; Mastrantoni, Kristen; Rajput, Sandeep K; Ashry, Mohamed; Smith, George W; Yao, Jianbo

    2017-04-01

    Zinc finger (ZNF) transcription factors interact with DNA through zinc finger motifs and play important roles in a variety of cellular functions including cell growth, proliferation, development, apoptosis, and intracellular signal transduction. One-third of ZNF proteins in metazoans contain a highly conserved N-terminal motif known as the Krüppel-associated box (KRAB) domain, which acts as a potent, DNA-binding dependent transcriptional repression module. Analysis of RNA-Seq data generated from a bovine oocyte cDNA library identified a novel transcript, which encodes a KRAB-containing ZNF transcription factor (named ZNFO). Characterization of ZNFO mRNA expression revealed that it is exclusively expressed in bovine oocytes and early embryos. A GFP reporter assay demonstrated that ZNFO protein localizes specifically to the nucleus, supporting its role in transcriptional regulation. To test the role of ZNFO in early embryonic development, zygotes were generated by in vitro maturation and fertilization of oocytes, and injected with small interfering RNA (siRNA) designed to knockdown ZNFO. Cleavage rates were not affected by ZNFO siRNA injection. However, embryonic development to 8- to 16-cell stage and blastocyst stage was significantly reduced relative to the uninjected and negative control siRNA-injected embryos. Further, interaction of ZNFO with the highly conserved co-factor, KRAB-associated protein-1 (KAP1), was demonstrated, and evidence supporting transcriptional repression by ZNFO was demonstrated using a GAL4-luciferase reporter system. Results of described studies demonstrate that ZNFO is a maternally-derived oocyte-specific nuclear factor required for early embryonic development in cattle, presumably functioning by repressing transcription. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The effects of EGF and IGF-1 on FSH-mediated in vitro maturation of domestic cat oocytes derived from follicular and luteal stages.

    PubMed

    Yıldırım, Koray; Vural, M Rıfat; Küplülü, Sükrü; Ozcan, Ziya; Polat, I Mert

    2014-04-01

    The objective of this study was to evaluate the influence of epidermal growth factor (EGF) and insulin like growth factor-I (IGF-1) on the in vitro maturation of cat oocytes recovered from follicular and luteal stage ovaries. Oocytes from follicular (n=580) and luteal (n=209) stages were harvested and divided into four groups, which were cultured in FSH-mediated maturation medium supplemented with: (1) EGF alone (25ng/mL); (2) IGF-1 alone (100ng/mL); (3) EGF+IGF-1 (25ng/mL EGF+100ng/mL IGF-I); or (4) no growth factor (control). The proportion of follicular stage oocytes reaching the metaphase II stage was significantly higher than that of oocytes obtained at the luteal stage in both control and study groups (p<0.001). The percentages of oocytes reaching the metaphase II stage during the follicular period were 62.6% in control; 70.9% in EGF; 72.8% in IGF-1, and 78.1% in EGF+IGF-1 groups, whereas the respective values for gametes collected from luteal stage ovaries were 12.5%, 17.5%, 12.5%, and 16.9%. Additionally, the differences between the study and control groups were significant in the case of follicular stage oocytes. Finally, supplementing the maturation medium with EGF and/or IGF-1 significantly enhanced the meiotic maturation of oocytes recovered from follicular stage ovaries. The present study also demonstrated that the combination of EGF and IGF-I provides an additional or synergic effect on meiotic maturation of oocytes recovered from the follicular stage. Copyright © 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Oocyte-granulosa-theca cell interactions during preantral follicular development

    PubMed Central

    Orisaka, Makoto; Tajima, Kimihisa; Tsang, Benjamin K; Kotsuji, Fumikazu

    2009-01-01

    The preantral-early antral follicle transition is the penultimate stage of follicular development in terms of gonadotropin dependence and follicle destiny (growth versus atresia). Follicular growth during this period is tightly regulated by oocyte-granulosa-theca cell interactions. Formation of the theca cell layer is a key event that occurs during this transitional stage. Granulosal factor(s) stimulates the recruitment of theca cells from cortical stromal cells, while oocyte-derived growth differentiation factor-9 (GDF-9) is involved in the differentiation of theca cells during this early stage of follicular development. The preantral to early antral transition is most susceptible to follicular atresia. GDF-9 promotes follicular survival and growth during transition from preantral stage to early antral stage by suppressing granulosa cell apoptosis and follicular atresia. GDF-9 also enhances preantral follicle growth by up-regulating theca cell androgen production. Thecal factor(s) promotes granulosa cell proliferation and suppress granulosa cell apoptosis. Understanding the intraovarian mechanisms in the regulation of follicular growth and atresia during this stage may be of clinical significance in the selection of the best quality germ cells for assisted reproduction. In addition, since certain ovarian dysfunctions, such as polycystic ovarian syndrome and gonadotropin poor-responsiveness, are consequences of dysregulated follicle growth at this transitional stage, understanding the molecular and cellular mechanisms in the control of follicular development during the preantral-early antral transition may provide important insight into the pathophysiology and rational treatment of these conditions. PMID:19589134

  5. In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression.

    PubMed

    Gendelman, M; Roth, Z

    2012-10-01

    The ovarian pool of follicle-enclosed oocytes is highly susceptible to elevated ambient temperature. It is not clear, however, whether the model of using heat shock in vitro simulates the effects of heat stress that animals experience in vivo. The current study examined the reliability of in vitro models, relative to in vivo models, for studying the effects of elevated temperature on the germinal vesicle (GV)-stage oocyte with emphasis on the expression of genes involve in maturation and early embryonic development. Cumulus oocyte complexes (COCs) were aspirated from ovaries arbitrarily collected at the slaughterhouse from multiparous Holstein cows. In the in vivo model, COCs were collected during the hot (May-September) and cold (December-April) seasons and then subjected to in vitro embryo production (IVP) at 38.5°C. In the in vitro model, COCs were collected during the cold season, pre-cultured with 75μM 3-isobutyl-1-methylxanthine (IBMX) for 16h at 38.5 or 41.2°C, and then subjected to IVP. For both models, the relative abundance of C-MOS, GDF9, GAPDH, and POU5F1 transcripts was examined in MII-stage oocytes by real-time PCR. Cleavage and blastocyst developmental rates were higher during the cold vs. hot season. IBMX pre-culture at 38.5°C successfully blocked resumption of meiosis without compromising further embryonic development, and the proportion of cleaved and developed embryos did not differ from the cold season. Exposure of GV-stage oocytes to 41.2°C reduced the proportion of cleaved oocytes developing to blastocysts relative to controls. The most prominent finding was that the relative abundance of the examined genes' transcripts was similarly reduced in heat-stressed oocytes from both models. The in vitro model was reliable and might be relevant for other environmental stressors as well. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes

    PubMed Central

    Wang, Dong-Hui; Han, Zhe; Kong, Xiang-Wei; Ma, Yu-Zhen; Yun, Zhi-Zhong; Liang, Cheng-Guang

    2017-01-01

    Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation. PMID:28177917

  7. Expression of XNOA 36 in the mitochondrial cloud of Xenopus laevis oocytes.

    PubMed

    Vaccaro, M C; Wilding, M; Dale, B; Campanella, C; Carotenuto, R

    2012-08-01

    In Xenopus laevis oocytes a mitochondrial cloud (MC) is found between the nucleus and the plasma membrane at stages I-II of oogenesis. The MC contains RNAs that are transported to the future vegetal pole at stage II of oogenesis. In particular, germinal plasm mRNAs are found in the Message Transport Organiser (METRO) region, the MC region opposite to the nucleus. At stages II-III, a second pathway transports Vg1 and VegT mRNAs to the area where the MC content merges with the vegetal cortex. Microtubules become polarized at the sites of migration of Vg1 and VegT mRNAs through an unknown signalling mechanism. In early meiotic stages, the centrioles are almost completely lost with their remnants being dispersed into the cytoplasm and the MC, which may contain a MTOC to be used in the later localization pathway of the mRNAs. In mammals, XNOA 36 encodes a member of a highly conserved protein family and localises to the nucleolus or in the centromeres. In the Xenopus late stage I oocyte, XNOA 36 mRNA is transiently segregated in one half of the oocyte, anchored by a cytoskeletal network that contains spectrin. Here we found that XNOA 36 transcript also localises to the nucleoli and in the METRO region. XNOA 36 protein immunolocalization, using an antibody employed for the library immunoscreening that depicted XNOA 36 expression colonies, labels the migrating MC, the cytoplasm of stage I oocytes and in particular the vegetal cortex facing the MC. The possible role of XNOA 36 in mRNA anchoring to the vegetal cortex or in participating in early microtubule reorganization is discussed.

  8. Supplementation with CTGF, SDF1, NGF, and HGF promotes ovine in vitro oocyte maturation and early embryo development.

    PubMed

    Wang, D H; Ren, J; Zhou, C J; Han, Z; Wang, L; Liang, C G

    2018-05-17

    The strategies for improving the in vitro maturation (IVM) of domestic animal oocytes focus on promoting nuclear and cytoplasmic maturation. The identification of paracrine factors and their supplementation in the culture medium represent effective approaches for oocyte maturation and embryo development. This study investigated the effects of paracrine factor supplementation including connective tissue growth factor (CTGF), nerve growth factor (NGF), hepatocyte growth factor (HGF), and stromal derived factor 1 (SDF1) on ovine oocytes and early parthenogenetic embryos using an in vitro culture system. First, we identified the optimal concentrations of CTGF (30 ng/mL), SDF1 (10 ng/mL), NGF (3 ng/mL), and HGF (100 ng/mL) for promoting oocyte maturation, which combined, induced nuclear maturation in 94.19% of oocytes. This combination also promoted cumulus cell expansion and inhibited oocyte/cumulus apoptosis, while enabling a larger proportion (33.04%) of embryos to develop into blastocysts than in the controls and prevented embryo apoptosis. These novel findings demonstrate that the paracrine factors CTGF, SDF1, NGF, and HGF facilitate ovine oocyte and early parthenogenetic embryo development in vitro. Thus, supplementation with these factors may help optimize the IVM of ovine oocytes and early parthenogenetic embryo development strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Zona-free oocyte fertilized with intracytoplasmic sperm injection and underwent further division: case report and literature review.

    PubMed

    Hsieh, Y Y; Chang, C C; Tsai, H D

    2001-09-01

    The zona pellucida (ZP) plays a protective role during fertilization and early embryonic development. It is related to sperm binding, the acrosome reaction, prevention of polyspermic fertilization, and holding blastomeres together before the morular stage. Zona-free oocytes are accidentally encountered. If these oocytes are healthy, they can be fertilized normally by intracytoplasmic sperm injection (ICSI). We reported on a couple with male infertility undergoing oocyte retrieval after ovarian hyperstimulation. Before the ICSI procedure, cumulus cells surrounding the oocytes were removed, which resulted in one oocyte escaping from its ZP. The zona-free oocyte was fertilized normally with ICSI and developed to the 8-cell stage. We observed that the zona-free zygote had the ability to further divide, despite its loose contact. The zona-free embryo was transferred with other zona-intact embryos, but the implantation failed. We conclude that zona-free oocytes can be rescued, fertilized with ICSI, and cultured for further transfer or cryopreservation.

  10. Parthenogenetic Activation of Oocytes.

    PubMed

    Kaufman, Matthew H

    2018-01-02

    Numerous studies have been initiated to investigate the influence of maternal and paternal genomes on early mammalian development. For this type of study, parthenogenetic embryos provide a unique source of preimplantation and early postimplantation embryos that (by definition) develop in the absence of any contribution from a male gamete. Parthenogenetic activation is used for biochemical and morphological studies of oocytes during fertilization and early development and is a critical component of the cloning procedure. This protocol describes the activation of oocytes using ethanol. Parthenogenesis can also be induced by exposure of unfertilized oocytes to strontium-containing medium. © 2018 Cold Spring Harbor Laboratory Press.

  11. Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization

    PubMed Central

    Yanez, Livia Z.; Han, Jinnuo; Behr, Barry B.; Pera, Renee A. Reijo; Camarillo, David B.

    2016-01-01

    The causes of embryonic arrest during pre-implantation development are poorly understood. Attempts to correlate patterns of oocyte gene expression with successful embryo development have been hampered by the lack of reliable and nondestructive predictors of viability at such an early stage. Here we report that zygote viscoelastic properties can predict blastocyst formation in humans and mice within hours after fertilization, with >90% precision, 95% specificity and 75% sensitivity. We demonstrate that there are significant differences between the transcriptomes of viable and non-viable zygotes, especially in expression of genes important for oocyte maturation. In addition, we show that low-quality oocytes may undergo insufficient cortical granule release and zona-hardening, causing altered mechanics after fertilization. Our results suggest that embryo potential is largely determined by the quality and maturation of the oocyte before fertilization, and can be predicted through a minimally invasive mechanical measurement at the zygote stage. PMID:26904963

  12. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    PubMed Central

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  13. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy.

    PubMed

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Swann, Karl; Borri, Paola

    2016-06-15

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. © 2016. Published by The Company of Biologists Ltd.

  14. Telomere lengthening early in development.

    PubMed

    Liu, Lin; Bailey, Susan M; Okuka, Maja; Muñoz, Purificación; Li, Chao; Zhou, Lingjun; Wu, Chao; Czerwiec, Eva; Sandler, Laurel; Seyfang, Andreas; Blasco, Maria A; Keefe, David L

    2007-12-01

    Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.

  15. Tetraspanins and Mouse Oocyte Microvilli Related to Fertilizing Ability.

    PubMed

    Benammar, Achraf; Ziyyat, Ahmed; Lefèvre, Brigitte; Wolf, Jean-Philippe

    2017-07-01

    Our electron microscopy observations demonstrate for the first time that the number of microvilli on the mice oocyte membrane decreases when meiosis progresses from prophase I to metaphase II (MII) stage, and the morphology of the microvilli also changes. Microvilli are significantly shorter and larger on the ovulated oocyte membrane than at the previous stages. Although clathrin vesicles clearly disappear during oocyte maturation, exosome-like vesicles begin to be secreted at the metaphase I stage, more strongly at the MII stage. Multivesicular bodies are visible only at the MII stage. Since several oocyte tetraspanins are involved in the gamete interaction, Cd9 being congregated on the MII oocyte microvilli, we analyzed the effect of tetraspanin deletion on oocyte membrane morphology. The Cd9 -/- and Cd9 -/- Cd81 -/- deletions are associated with a decreased microvilli density on the MII oocyte surface. Microvilli thickness is significantly increased whatever the deleted tetraspanin gene be. Only Cd9 deletion clearly disturbs the vesicular traffic, increasing the number of clathrin and exosome vesicles. Additional investigations are necessary to elucidate how tetraspanins modulate the microvilli morphology, likely in relation with cytoskeleton. The role of oocyte exosomes in gamete adhesion/fusion remains to be further studied.

  16. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.

    PubMed

    Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef

    2017-12-01

    It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.

  17. Cytoarchitecture of Caudiverbera caudiverbera stage VI oocytes: a light and electron microscope study.

    PubMed

    Dabiké, M; Preller, A

    1999-06-01

    The general characteristics and salient features of the full-grown stage VI Caudiverbera caudiverbera oocyte at the light and electron microscopy level are described. The oocyte is a huge cell with radial symmetry and distinct polarity. A black animal hemisphere, rich in pigment granules and containing the nucleus, is clearly distinguished from the unpigmented white-yellowish vegetal hemisphere. The cell is surrounded by a highly invaginated plasma membrane, with numerous microvilli. The cortex underlying the plasma membrane contains cortical and pigment granules, mitochondria, rough endoplasmic reticulum and coated vesicles. Cytoskeletal components, such as actin filaments and microtubules, are also found in this region. The predominant structures, distributed throughout the cell, are the yolk platelets, which show a gradient in size with small platelets in the animal half and very large ones in the vegetal zone. Mitochondria are also very abundant in both hemispheres and clouds of these organelles are found in the perinuclear region, frequently associated with microtubules. Developed Golgi complexes are present in the cytoplasm and occasionally, annulate lamellae appear towards the inner zones. The nucleus is a large structure containing numerous nucleoli. The nuclear envelope is highly invaginated, especially at the side facing the vegetal pole. It is regularly perforated by large nuclear pores. Our results show that the structural organization of Caudiverbera oocytes, although similar to that of other amphibian oocytes, differs from them especially concerning the spatial distribution of several structural components.

  18. Oocyte maturation in the sloth's giant tick Amblyomma varium (Acari: Ixodidae) in an ecological context.

    PubMed

    Sanches, Gustavo S; André, Marcos R; do Prado, Angelo P; Allegretti, Silmara M; Remedio, Rafael N; Nunes, Pablo H; Machado, Rosangela Z; Bechara, Gervásio H; Camargo-Mathias, Maria I

    2014-12-01

    The sloth's giant tick Amblyomma varium Koch, which is a neotropical species that inhabits tropical rainforests, is the largest tick reported to date. The adult stage of this tick parasitizes mammals from the families Bradypodidae and Magalonychidae (Xenarthra) nearly exclusively. This study aimed to describe morphological and histological features of the reproductive system and the oocyte maturation process of this tick species. The ovary of A. varium is a long single tubular organ that is horseshoe-shaped, winding and arranged in the posterior part of the body. Two oviducts are connected to the ovary on each side; these thicken at certain region forming the uterus (common oviduct), followed by a muscular connecting tube, vagina and genital aperture. A large number of oocytes at different stages of development are attached to the ovary wall by the pedicel, as they reach maturity they are released into the ovary lumen and from there to the genital aperture. These oocytes develop simultaneously and asynchronically along the ovary. Amblyomma varium oocytes were classified into five development stages (i.e., I-V), and specific characteristics were observed; the processes of yolk and chorion deposition begin early in oocytes stage II, and oocytes V exhibit a very thick chorion and eggs of a large size. These characteristics are likely adaptations that enhance the survival and the reproductive success of this extremely host-specific tick, which is limited to a particular environment.

  19. Oocyte aging-induced Neuronatin (NNAT) hypermethylation affects oocyte quality by impairing glucose transport in porcine.

    PubMed

    Gao, Ying-Ying; Chen, Li; Wang, Tao; Nie, Zheng-Wen; Zhang, Xia; Miao, Yi-Liang

    2016-10-26

    DNA methylation plays important roles in regulating many physiological behaviors; however, few studies were focused on the changes of DNA methylation during oocyte aging. Early studies showed that some imprinted genes' DNA methylation had been changed in aged mouse oocytes. In this study, we used porcine oocytes to test the hypothesis that oocyte aging would alter DNA methylation pattern of genes and disturb their expression in age oocytes, which affected the developmental potential of oocytes. We compared several different types of genes and found that the expression and DNA methylation of Neuronatin (NNAT) were disturbed in aged oocytes significantly. Additional experiments demonstrated that glucose transport was impaired in aged oocytes and injection of NNAT antibody into fresh oocytes led to the same effects on glucose transport. These results suggest that the expression of NNAT was declined by elevating DNA methylation, which affected oocyte quality by decreasing the ability of glucose transport in aged oocytes.

  20. Production of blastocysts following in vitro maturation and fertilization of dromedary camel oocytes vitrified at the germinal vesicle stage.

    PubMed

    Fathi, Mohamed; Moawad, Adel R; Badr, Magdy R

    2018-01-01

    Cryopreservation of oocytes would serve as an alternative to overcome the limited availability of dromedary camel oocytes and facilitate improvements in IVP techniques in this species. Our goal was to develop a protocol for the vitrification of camel oocytes at the germinal vesicle (GV) stage using different cryoprotectant combinations: 20% EG and 20% DMSO (VS1), 25% EG plus 25% DMSO (VS2) or 25% EG and 25% glycerol (VS3) and various cryo-carriers; straws or open pulled-straw (OPS) or solid surface vitrification (SSV); and Cryotop. Viable oocytes were cultured in vitro for 30 h. Matured oocytes were fertilized with epididymal spermatozoa and then cultured in vitro in modified KSOMaa medium for 7 days. Survival and nuclear maturation rates were significantly lower (P ≤ 0.05) in oocytes exposed to VS3 (44.8% and 34.0%, respectively) than those exposed to VS1 (68.2% and 48.0%, respectively) and VS2 (79.3% and 56.9%, respectively). Although recovery rates were significantly lower (P ≤ 0.05) in SSV and Cryotop vitrified oocytes (66.9% to 71.1%) than those vitrified by straws with VS1 or VS2 solutions (86.3% to 91.0%), survival rates were higher in the SSV and Cryotop groups (90.7% to 94.8%) than in the straw and OPS groups (68.2% to 86.5%). Among vitrified groups, maturation and fertilization rates were the highest in the Cryotop-VS2 group (51.8% and 39.2%, respectively). These values were comparable to those seen in the controls (59.2% and 44.6%, respectively). Cleavage (22.5% to 27.9%), morula (13.2% to 14.5%), and blastocyst (6.4% to 8.5%) rates were significantly higher (P ≤ 0.05) in SSV and Cryotop groups than in straws. No significant differences were observed in these parameters between the Cryotop and control groups. We report for the first time that dromedary oocytes vitrified at the GV-stage have the ability to be matured, fertilized and subsequently develop in vitro to produce blastocysts at frequencies comparable to those obtained using fresh oocytes.

  1. Maternal hCG concentrations in early IVF pregnancies: associations with number of cells in the Day 2 embryo and oocytes retrieved.

    PubMed

    Tanbo, T G; Eskild, A

    2015-12-01

    Do number of cells in the transferred cleavage stage embryo and number of oocytes retrieved for IVF influence maternal hCG concentrations in early pregnancies? Compared with transfer of a 2-cell embryo, transfer of a 4-cell embryo results in higher hCG concentrations on Day 12 after transfer, and more than 20 oocytes retrieved were associated with low hCG concentrations. Maternal hCG concentration in very early pregnancy varies considerably among women, but is likely to be an indicator of time since implantation of the embryo into the endometrium, in addition to number and function of trophoblast cells. We followed 1047 pregnancies after IVF/ICSI from oocyte retrieval until Day 12 after embryo transfer. Women were recruited in Norway during the years 2005-2013. Successful pregnancies after transfer of one single embryo that had been cultured for 2 days were included. Maternal hCG was quantified on Day 12 after embryo transfer by chemiluminescence immunoassay, which measures intact hCG and the free β-hCG chain. Information on a successful pregnancy, defined as birth after >16 weeks, was obtained by linkage to the Medical Birth Registry of Norway. Transfer of a 4-cell embryo resulted in higher maternal hCG concentrations compared with transfer of a 2-cell embryo (134.8 versus 87.8 IU/l, P < 0.05). A high number of oocytes retrieved (>20) was associated with low hCG concentrations (P < 0.05). The factors studied explain a limited part of the total variation of hCG concentrations in early pregnancy. Although embryo transfer was performed at the same time after fertilization, we do not know the exact time of implantation. A further limitation to our study is that the number of pregnancies after transfer of a 2-cell embryo was small (27 cases). Number of cells in the transferred embryo and number of oocytes retrieved may influence the conditions and timing for embryo implantation in different ways and thereby influence maternal hCG concentrations. Such knowledge may be

  2. The effects of platelet lysate on maturation, fertilization and embryo development of NMRI mouse oocytes at germinal vesicle stage.

    PubMed

    Pazoki, Hassan; Eimani, Hussein; Farokhi, Farah; Shahverdi, Abdol-Hossein; Tahaei, Leila Sadat

    2016-04-01

    Improving in vitro maturation could increase the rate of pregnancy from oocytes matured in vitro. Consequently, patients will be prevented from using gonadotropin with its related side effects. In this study, the maturation medium was enriched by platelet lysate (PL), then maturation and subsequent developments were monitored. Oocytes at germinal vesicle stage with cumulus cells (cumulus-oocyte complex) and without cumulus cells (denuded oocytes) were obtained from mature female mice. The maturation medium was enriched by 5 and 10 % PL and 5 % PL + 5 % fetal bovine serum (FBS) as experimental groups; the control groups' media consisted of 5 and 10 % FBS. After 18 h, the matured oocytes were collected and, after fertilization, subsequent development was monitored. The rates of maturation, fertilization and 2-cell embryo development for the denuded oocyte groups in experimental media 5 % PL and 5 % PL + 5 % FBS were significantly higher than those of the control groups ( P < 0.05), while the results for the cumulus-oocyte complex groups were similar between the experimental groups and control groups. The results of this study indicated that platelet lysate could improve the maturation rate in the absence of granulosa cells compared to media with FBS. This extract also had positive effects on fertilization and embryo development.

  3. The development of oocytes in the ovary of a parthenogenetic tick, Haemaphysalis longicornis.

    PubMed

    Mihara, Ryo; Umemiya-Shirafuji, Rika; Abe, Yasuyuki; Matsuo, Tomohide; Horiuchi, Noriyuki; Kawano, Suguru; Fujisaki, Kozo; Suzuki, Hiroshi

    2018-04-17

    Haemaphysalis longicornis is an important vector of various pathogens in domestic animals and humans. The tick is a unique species with bisexual and parthenogenetic races. Although mating induces oocyte development, it is possible in the parthenogenetic race to complete oogenesis without copulation. Here we examined the developmental process of oocytes from unfed to the oviposition period in parthenogenetic H. longicornis. We classified the developmental stages of oocytes into five stages: stage I, germinal vesicle occupies more than half of the cytoplasm; stage II, germinal vesicle occupies less than half of the cytoplasm; stage III, germinal vesicle migrates from the center in the oocyte to the vicinity of the pedicel cells; stage IV, the cytoplasm is filled with yolk granules of various sizes; stage V, the cytoplasm is occupied by large yolk granules. Oocytes at the unfed period were undeveloped and classified as stage I. Stage I and II oocytes were observed at the rapid feeding period, indicating that oocyte development began after the initiation of blood feeding. All developmental stages of oocytes were observed at the pre-oviposition period. At 10 days after the beginning of the oviposition period, the ratios of stage I and II oocytes were higher than those of the previous period, suggesting that the ovarian development and activity may be continuing. Based on these findings, we propose classification criteria for the oocyte development in the parthenogenetic H. longicornis. The criteria will be useful for understanding the mechanisms of tick reproduction and transovarial transmission of pathogens. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Applying NGS Data to Find Evolutionary Network Biomarkers from the Early and Late Stages of Hepatocellular Carcinoma

    PubMed Central

    Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou

    2015-01-01

    Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411

  5. Developmental competence of Dromedary camel (Camelus dromedarius) oocytes selected using brilliant cresyl blue staining.

    PubMed

    Fathi, Mohamed; Ashry, Mohamed; Salama, Ali; Badr, Magdy R

    2017-08-01

    The objectives of the present studies were to investigate the developmental capacity of dromedary camel oocytes selected by brilliant cresyl blue (BCB) staining and to investigate the expression of select transcripts in germinal vesicle (GV) stage oocytes. These transcripts included BMP15 and GDF9 as important transcripts for folliculogenesis and oocyte development, Zar1 and Mater as maternal transcripts required for embryonic development, Cyclin B1 and CDK1 as cell cycle regulators and Oct4 and STAT3 as transcription factors. Dromedary camel oocytes were retrieved from ovaries collected at a local slaughterhouse. After exposure to BCB staining, cumulus-oocyte complexes (COCs) from BCB+, BCB- and control (selected based on morphological criteria) groups were subjected to in vitro maturation, in vitro fertilization and in vitro culture. For gene expression studies, after BCB staining cumulus cells were stripped off and the completely denuded GV stage oocytes were used for RT-PCR analysis of selected transcripts. BCB+ oocytes showed higher maturation, and fertilization rates compared with BCB- and control groups. Indices of early embryonic development, namely, cleavage at 48 hours post insemination (hpi), and development to morula at day 5 and day 7 blastocyst rates were also significantly higher in the BCB+ group. RT-PCR revealed a higher expression of BMP15, GDF9, Zar1, Mater, Cyclin B1, CDK1, OCT4 and STAT3 in good quality oocytes that stained positively for BCB (BCB+). Collectively, results provide novel information about the use of BCB screening for selecting good quality oocytes to improve in vitro embryo production in the dromedary camel.

  6. Toxic effects and possible mechanisms of hydrogen sulfide and/or ammonia on porcine oocyte maturation in vitro.

    PubMed

    Yang, Lei-Lei; Zhao, Yong; Luo, Shi-Ming; Ma, Jun-Yu; Ge, Zhao-Jia; Shen, Wei; Yin, Shen

    2018-03-15

    Previous studies suggest that hydrogen sulfide (H 2 S) and ammonia (NH 3 ) are two major air pollutants which can cause damage to porcine health. However, the mechanisms underlying toxic effects of these compounds on porcine oocyte maturation are not clear. To clarify the mechanism, we evaluated the oocyte quality by detecting some events during oocytes maturation. In our study, porcine oocytes were cultured with different concentrations of Na 2 S and/or NH 4 Cl in vitro and the rate of the first polar body extrusion decreased significantly. Also, actin filament was seriously disrupted to damage the cytoskeleton which resulted in reduced rate of oocyte maturation. We explored the reactive oxygen species (ROS) generation and found that the ROS level was increased significantly after Na 2 S treatment but not after NH 4 Cl treatment. Moreover, early stage apoptosis rate was significantly increased and autophagy protein LC3 B expression level was higher in oocytes treated with Na 2 S and/or NH 4 Cl, which might be caused by ROS elevation. Additionally, exposure to Na 2 S and/or NH 4 Cl also caused ROS generation and early apoptosis in cumulus cells, which might further affect oocyte maturation in vitro. In summary, our data suggested that exposure to H 2 S and/or NH 3 decreased porcine oocyte maturation in vitro, which might be caused by actin disruption, ROS generation, early apoptosis and autophagy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development.

    PubMed

    Ebner, T; Moser, M; Shebl, O; Sommergruber, M; Yaman, C; Tews, G

    2008-06-01

    Assessment of oocyte maturity and quality (morphological appearance) at the time of retrieval is difficult as the egg is obscured by a large cumulus mass that hinders adequate scoring. Since no data are available on the possible relationship between the cumulus-oocyte complex (COC) and oocyte morphology, this prospective intracytoplasmic sperm injection study was set up in 87 consecutive patients. COC were grouped according to expansion of both corona radiata and cumulus matrix. Special emphasis was placed on recording morphological anomalies of COC (inclusion of blood clots and amorphous clumps). For all mature ovae, quality was assessed and preimplantation development followed up to blastocyst stage if fertilized. The risk of not harvesting an oocyte was higher in COC with blood clots compared with normal cumulus matrices (P = 0.004). COC expansion did not allow for prediction of either nuclear status or quality of the egg. The presence of blood clots within the cumulus matrix was associated with reduced oocyte quality (dense central granulation), fertilization rate and blastocyst formation, compared with unaffected COC (P < 0.05). It may be postulated that COC showing blood inclusions derive from poor quality follicles, which has a detrimental effect on oocyte quality and further cleavage to blastocyst stage. Consequently, mechanical removal of blood clots cannot rescue the corresponding embryo.

  8. Live Imaging of Meiosis I in Late-Stage Drosophila melanogaster Oocytes.

    PubMed

    Hughes, Stacie E; Hawley, R Scott

    2017-01-01

    Drosophila melanogaster has been studied for a century as a genetic model to understand recombination, chromosome segregation, and the basic rules of inheritance. However, it has only been about 25 years since the events that occur during nuclear envelope breakdown, spindle assembly, and chromosome orientation during D. melanogaster female meiosis I were first visualized by fixed cytological methods (Theurkauf and Hawley, J Cell Biol 116:1167-1180, 1992). Although these fixed cytological studies revealed many important details about the events that occur during meiosis I, they failed to elucidate the timing or order of these events. The development of protocols for live imaging of meiotic events within the oocyte has enabled collection of real-time information on the kinetics and dynamics of spindle assembly, as well as the behavior of chromosomes during prometaphase I. Here, we describe a method to visualize spindle assembly and chromosome movement during meiosis I by injecting fluorescent dyes to label microtubules and DNA into stage 12-14 oocytes. This method enables the events during Drosophila female meiosis I, such as spindle assembly and chromosome movement, to be observed in vivo, regardless of genetic background, with exceptional spatial and temporal resolution.

  9. Growing Mouse Oocytes Transiently Activate Folate Transport via Folate Receptors As They Approach Full Size.

    PubMed

    Meredith, Megan; MacNeil, Allison H; Trasler, Jacquetta M; Baltz, Jay M

    2016-06-01

    The folate cycle is central to cellular one-carbon metabolism, where folates are carriers of one-carbon units that are critical for synthesis of purines, thymidylate, and S-adenosylmethionine, the universal methyl donor that forms the cellular methyl pool. Although folates are well-known to be important for early embryo and fetal development, their role in oogenesis has not been clearly established. Here, folate transport proteins were detected in developing neonatal ovaries and growing oocytes by immunohistochemistry, Western blot, and immunofluorescence. The folate receptors FOLR1 and FOLR2 as well as reduced folate carrier 1 (RFC1, SLC19A1 protein) each appeared to be present in follicular cells including granulosa cells. In growing oocytes, however, only FOLR2 immunoreactivity appeared abundant. Localization of apparent FOLR2 immunofluorescence near the plasma membrane increased with oocyte growth and peaked in oocytes as they neared full size. We assessed folate transport using the model folate leucovorin (folinic acid). Unexpectedly, there was a transient burst of folate transport activity for a brief period during oocyte growth as they neared full size, while folate transport was otherwise undetectable for the rest of oogenesis and in fully grown germinal vesicle stage oocytes. This folate transport was inhibited by dynasore, an inhibitor of endocytosis, but insensitive to the anion transport inhibitor stilbene 4-acetamido-40-isothiocyanato-stilbene-2,20-disulfonic acid, consistent with folate receptor-mediated transport but not with RFC1-mediated transport. Thus, near the end of their growth, growing oocytes may take up folates that could support the final stage of oogenesis or be stored to provide the endogenous folates needed in early embryogenesis. © 2016 by the Society for the Study of Reproduction, Inc.

  10. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes

    PubMed Central

    Bor, Batbileg; Bois, Justin S.; Quinlan, Margot E.

    2014-01-01

    The Drosophila formin Cappuccino (Capu) creates an actin mesh-like structure that traverses the oocyte during mid-oogenesis. This mesh is thought to prevent premature onset of fast cytoplasmic streaming which normally happens during late-oogenesis. Proper cytoskeletal organization and cytoplasmic streaming are crucial for localization of polarity determinants such as osk, grk, bcd and nanos mRNAs. Capu mutants disrupt these events, leading to female sterility. Capu is regulated by another nucleator, Spire, as well as by autoinhibition in vitro. Studies in vivo confirm that Spire modulates Capu’s function in oocytes; however, how autoinhibition contributes is still unclear. To study the role of autoinhibition in flies, we expressed a Capu construct that is missing the Capu Inhibitory Domain, CapuΔN. Consistent with a gain of activity due to loss of autoinhibition, the actin mesh was denser in CapuΔN oocytes. Further, cytoplasmic streaming was delayed and fertility levels decreased. Localization of osk mRNA in early stages, and bcd and nanos in late stages, were disrupted in CapuΔN-expressing oocytes. Finally, evidence that these phenotypes were due to a loss of autoinhibition comes from co-expression of the N-terminal half of Capu with CapuΔN, which suppressed the defects in actin, cytoplasmic streaming and fertility. From these results, we conclude that Capu can be autoinhibited during Drosophila oocyte development. PMID:25557988

  11. Nucleoli from growing oocytes support the development of enucleolated full-grown oocytes in the pig.

    PubMed

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi

    2010-02-01

    Recent research has shown that the maternal nucleolus is essential for embryonic development. The morphology of the nucleolus in growing oocytes differs from that in full-grown oocytes. We determined the ability of nucleoli from growing oocytes to substitute for nucleoli of full-grown oocytes in terms of supporting embryonic development in this study. Growing (around 100 microm in diameter) and full-grown porcine oocytes (120 microm) were collected from small (0.6-1.0 mm) and large antral follicles (4-5 mm), respectively. The nucleolus was aspirated from full-grown oocytes by micromanipulation, and the resulting enucleolated oocytes were matured to metaphase II; the nucleoli originating from full-grown and growing oocytes were then injected into the oocytes. The Chromatin of growing oocytes was aspirated with the nucleolus during the enucleolation process. Growing oocytes were thus treated with actinomycin D to release the chromatin from their nucleoli, and the nucleoli were collected and transferred to the enucleolated and matured full-grown oocytes. After activation by electro-stimulation, nucleoli were formed in pronuclei of sham-operated oocytes. Enucleolated oocytes that had been injected with nucleoli from either full-grown or growing, however, did not form any nucleoli in the pronuclei. No enucleolated oocytes developed to blastocysts, whereas enucleolated oocytes injected with nucleoli from full-grown oocytes (15%) or growing oocytes (18%) developed to blastocysts. These results indicate that the nucleoli from growing oocytes can substitute for nucleoli from full-grown oocytes during early embryonic development. (c) 2009 Wiley-Liss, Inc.

  12. On-chip enucleation of an oocyte by untethered microrobots

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Sakuma, Shinya; Sugita, Masakuni; Shoda, Tatsuro; Tamakoshi, Takahiro; Akagi, Satoshi; Arai, Fumihito

    2014-09-01

    We propose a novel on-chip enucleation of an oocyte with zona pellucida by using a combination of untethered microrobots. To achieve enucleation within the closed space of a microfluidic chip, two microrobots, a microknife and a microgripper were integrated into the microfluidic chip. These microrobots were actuated by an external magnetic force produced by permanent magnets placed on the robotic stage. The tip of the microknife was designed by considering the biological geometric feature of an oocyte, i.e. the oocyte has a polar body in maturation stage II. Moreover, the microknife was fabricated by using grayscale lithography, which allows fabrication of three-dimensional microstructures. The microgripper has a gripping function that is independent of the driving mechanism. On-chip enucleation was demonstrated, and the enucleated oocytes are spherical, indicating that the cell membrane of the oocytes remained intact. To confirm successful enucleation using this method, we investigated the viability of oocytes after enucleation. The results show that the production rate, i.e. the ratio between the number of oocytes that reach the blastocyst stage and the number of bovine oocytes after nucleus transfer, is 100%. The technique will contribute to complex cell manipulation such as cell surgery in lab-on-a-chip devices.

  13. Apoptosis in human unfertilized oocytes after intracytoplasmic sperm injection.

    PubMed

    Bosco, Liana; Ruvolo, Giovanni; Morici, Giovanni; Manno, Maurizio; Cittadini, Ettore; Roccheri, Maria C

    2005-11-01

    To investigate the presence of programmed cell death in unfertilized oocytes after intracytoplasmic sperm injection (ICSI), assuming that previous apoptotic events could be correlated with the fertilization failure. Comparison of the rate of DNA fragmentation in human oocytes at different stages of maturation soon after pick-up (control) and in unfertilized oocytes after ICSI treatment. In vitro fertilization (IVF) laboratory with extensive ICSI experience. Sixty-three patients undergoing assisted fertilization by ICSI. Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay and anticaspase-3 cleaved immunoassay to detect apoptosis in control and ICSI-treated oocytes. Differences in the percentage of oocytes demonstrating DNA fragmentation between control oocytes and unfertilized ICSI treated oocytes at different stages of maturation. The DNA fragmentation, by TUNEL assay, appeared in all the immature control oocytes, but only 37% of mature oocytes showed DNA fragmentation. This DNA fragmentation was observed in 88.8% of the oocytes unfertilized after ICSI; furthermore, DNA fragmentation appeared as well in the sperm injected into the cytoplasm. The study has shown DNA fragmentation in human oocytes unfertilized after ICSI. The evidence is confirmed as well in control oocytes, free from in vitro culture or manipulation stress. Caspase-3 immunoassay suggests the presence of apoptosis. The high percentage of oocytes demonstrating DNA fragmentation in the unfertilized oocytes could be correlated with fertilization failure.

  14. Bisphenol A alters oocyte maturation by prematurely closing gap junctions in the cumulus cell-oocyte complex.

    PubMed

    Acuña-Hernández, Deyanira Guadalupe; Arreola-Mendoza, Laura; Santacruz-Márquez, Ramsés; García-Zepeda, Sihomara Patricia; Parra-Forero, Lyda Yuliana; Olivares-Reyes, Jesús Alberto; Hernández-Ochoa, Isabel

    2018-04-01

    In ovarian follicles, cumulus cells communicate with the oocyte through gap junction intercellular communication (GJIC), to nurture the oocyte and control its meiosis arrest and division. Bisphenol A (BPA) is a monomer found in polycarbonate-made containers that can induce functional alterations, including impaired oocyte meiotic division and reduced molecule transfer in GJIC. However, how BPA alters oocyte meiotic division is unclear. We investigated whether BPA effects on oocyte meiotic division were correlated with reduced transfer in GJIC. Cumulus cell-oocyte complexes (COCs) isolated from mouse preovulatory follicles were cultured with 0, 0.22, 2.2, 22, 220, and 2200 nM BPA for 2 h. An additional 16-h incubation with epidermal growth factor (EGF) was performed to promote the occurrence of meiotic resumption and progression to metaphase II. Without EGF stimulus, BPA treatment increased the percentage of oocytes undergoing meiotic resumption, decreased GJIC in the COCs, and did not modify GJIC gene (Cx43 and Cx37) and protein (CX43) expression. Following EGF stimulus, BPA increased the percentage of oocytes that remained at the anaphase and telophase stages, and decreased the percentage of oocytes reaching the metaphase II stage. Concomitantly, BPA reduced the expansion of cumulus cells. Carbenoxolone (a GJIC inhibitor) and 6-diazo-5-oxo-l-norleucine (a cumulus cell-expansion inhibitor) exerted effects on meiotic division similar to those exerted by BPA. These data suggest that BPA accelerates meiotic progression, leading to impaired prophase I-to-metaphase II transition, and that this adverse effect is correlated with reduced bidirectional communication in the COC. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Expression of G protein estrogen receptor (GPER) on membrane of mouse oocytes during maturation.

    PubMed

    Li, Yi-Ran; Ren, Chun-E; Zhang, Quan; Li, Ji-Chun; Chian, Ri-Cheng

    2013-02-01

    To determine expression of G-protein estrogen receptor (GPER) in mouse oocyte membrane during maturation. The expression of GPER from different maturation stages of oocytes, in vivo and in vitro matured oocytes as well as aging oocytes was examined by immune-fluorescence GPR30 antibody and the images were analyzed by laser scanning confocal microscope. Further confirmation was performed by Western blots for cell fractionation. Significant fluorescent signal was observed on the surface of mouse oocytes. The image expression was lower in germinal vesicle (GV) stage than mature metaphase-II (M-II) stage oocytes. There was high expression in in-vivo matured oocytes compared to in vitro matured oocytes. The highest expression was observed in aging oocytes compared with other oocytes. The changes of expression of GPER on mouse oocytes plasma membrane confirm oocyte membrane maturation, suggesting that those changes of GPER may be related to the functional role of oocyte maturation.

  16. Developmental Arrest and Mouse Antral Not-Surrounded Nucleolus Oocytes1

    PubMed Central

    Monti, Manuela; Zanoni, Mario; Calligaro, Alberto; Ko, Minoru S.H.; Mauri, Pierluigi; Redi, Carlo Alberto

    2013-01-01

    ABSTRACT The antral compartment in the ovary consists of two populations of oocytes that differ by their ability to resume meiosis and to develop to the blastocyst stage. For reasons still not entirely clear, antral oocytes termed surrounded nucleolus (SN; 70% of the population of antral oocytes) develop to the blastocyst stage, whereas those called not-surrounded nucleolus (NSN) arrest at two cells. We profiled transcriptomic, proteomic, and morphological characteristics of antral oocytes and observed that NSN oocyte arrest is associated with lack of cytoplasmic lattices coincident with reduced expression of MATER and ribosomal proteins. Cytoplasmic lattices have been shown to store maternally derived mRNA and ribosomes in mammalian oocytes and embryos, and MATER has been shown to be required for cytoplasmic lattice formation. Thus, we isolated antral oocytes from a Matertm/tm mouse and we observed that 84% of oocytes are of the NSN type. Our results provide the first molecular evidence to account for inability of NSN-derived embryos to progress beyond the two-cell stage; these results may be relevant to naturally occurring preimplantation embryo demise in mammals. PMID:23136301

  17. Time-lapse evaluation of human embryo development in single versus sequential culture media--a sibling oocyte study.

    PubMed

    Ciray, Haydar Nadir; Aksoy, Turan; Goktas, Cihan; Ozturk, Bilgen; Bahceci, Mustafa

    2012-09-01

    To compare the dynamics of early development between embryos cultured in single and sequential media. Randomized, comparative study. Private IVF centre. A total of 446 metaphase II oocytes from 51 couples who underwent oocyte retrieval procedure for intracytoplasmic sperm injection. Forty-nine resulted in embryo transfer. Oocytes were split between single and sequential media produced by the same manufacturer and cultured in a time-lapse incubator. Morphokinetic parameters until the embryos reached the 5-cell stage (t5), utilization, clinical pregnancy and implantation rates. Embryos cultured in single media were advanced from the first mitosis cycle and reached 2- to 5-cell stages earlier. There was not any difference between the durations for cell cycle two (cc2 = t3-t2) and s2 (t4-t3). The utilization, clinical pregnancy and implantation rates did not differ between groups. The proportion of cryopreserved day 6 embryos to two pronuclei oocytes was significantly higher in sequential than in single media. Morphokinetics of embryo development vary between single and sequential culture media at least until the 5-cell stage. The overall clinical and embryological parameters remain similar regardless of the culture system.

  18. RNA SYNTHESIS IN THE MOUSE OOCYTE

    PubMed Central

    Moore, G. P. M.; Lintern-Moore, Sue; Peters, Hannah; Faber, M.

    1974-01-01

    RNA synthesis in the oocyte and granulosa cell nuclei of growing follicles has been studied in the mouse ovary. The RNA precursor [3H]uridine was administered intraperitoneally to adult mice and the amount of label incorporated into ovarian RNA was quantitated autoradiographically using grain-counting procedures. Uridine incorporation into the nucleus is low in oocytes of small, resting follicles but increases during follicle growth and reaches a peak prior to the beginning of antrum formation. Thereafter uptake rapidly declines and is very low in the oocytes of maturing follicles. Uridine incorporation into granulosa cell nuclei, in contrast to that found in the oocyte, increases gradually during most of the period of follicle growth. Qualitative studies of the activity of endogenous, DNA-dependent RNA polymerases have also been made in fixed oocytes isolated from follicles at different stages of growth. Polymerase activity is demonstrable in the nucleolus and nucleoplasm of oocytes from growing follicles, but is absent from maturing oocytes of large follicles. PMID:4813213

  19. In vitro embryos production after oocytes treatment with forskolin.

    PubMed

    Paschoal, Daniela Martins; Maziero, Rosiára Rosária Dias; Sudano, Mateus José; Guastali, Midyan Daroz; Vergara, Luis Eduardo; Crocomo, Letícia Ferrari; Lima-Neto, João Ferreira de; Magalhães, Luis Carlos Oña; Monteiro, Bianca Andriolo; Rascado, Tatiana da Silva; Martins, Alício; Leal, Claudia Lima Verde; Landim-Alvarenga, Fernanda da Cruz

    2016-04-01

    The inhibition of nuclear maturation allows time for the oocyte to accumulate molecules that are important for embryonic development. Thus, the objective of this work was to evaluate the effect of blocking oocyte meiosis with the addition of forskolin, an efficient inhibitor of nuclear maturation, in in vitro maturation (IVM) medium. Forskolin was added to the IVM medium for 6 h at concentrations of 0.1 mM, 0.05 mM or 0.025 mM, then the oocytes were allowed to mature in drug-free medium for 18 h. The oocytes were assessed for the stage of nuclear maturation, the activity and distribution of mitochondria, oocyte ultrastructure, the number of viable cells and the apoptosis rate. After forskolin treatment, the oocytes were fertilized in vitro and cultured for 7 days. On day 7, the blastocyst rate, the ultrastructure, the number of intact cells and the apoptosis rate of the blastocysts were measured. No differences were observed for the stage of nuclear maturation of the oocyte, the mitochondrial activity and distribution, the blastocyst rate or total number of intact cells. However, a higher rate of apoptosis was observed in the blastocysts produced from oocytes blocked for 6 h with the higher concentration of forskolin (P < 0.05). We conclude that all the experimental groups reached the MII stage after the addition of forskolin and that the highest concentration of forskolin caused cellular degeneration without harming embryo production on the 7th day.

  20. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes

    PubMed Central

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-01-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)1 not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. PMID:27215607

  1. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.

    PubMed

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-08-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. © 2016 by The American Society for Biochemistry and Molecular Biology

  2. DNase I and II present in avian oocytes: a possible involvement in sperm degradation at polyspermic fertilisation.

    PubMed

    Stepińska, Urszula; Olszańska, Bozenna

    2003-02-01

    During polyspermic fertilisation in birds numerous spermatozoa enter the eggs, in contrast to the situation in mammals where fertilisation is monospermic. However, in birds only one of the spermatozoa which have entered an egg participates in zygote nucleus formation, while the supernumerary spermatozoa degenerate at early embryogenesis. Our previous work has demonstrated the presence in preovulatory quail oocytes of DNase I and II activities able to digest naked lambdaDNA/HindIII substrate in vitro. In the present studies, the activities of both DNases in quail oocytes at different stages of oogenesis and in ovulated mouse oocytes were assayed in vitro using the same substrate. Degradation of quail spermatozoa by quail oocyte extracts was also checked. Digestion of the DNA substrate was evaluated by electrophoresis on agarose gels. The activities of DNase I and II in quail oocytes increased during oogenesis and were the highest in mature oocytes. The activities were present not only in germinal discs but also in a thin layer of cytoplasm adhering to the perivitelline layer surrounding the yolk. At all stages of oogenesis the activity of DNase II was much higher than that of DNase I. DNA contained in spermatozoa was also degraded by the quail oocyte extracts under conditions optimal for both DNases. In contrast to what is observed in quail oocytes, no DNase activities were detected in ovulated mouse eggs; this is logical as they would be useless or even harmful in monospermic fertilisation. The possible role of DNase activities in avian oocytes, in degradation of accessory spermatozoa during polyspermic fertilisation, is discussed.

  3. The Chromosomal Constitution of Embryos Arising from Monopronuclear Oocytes in Programmes of Assisted Reproduction

    PubMed Central

    2014-01-01

    The assessment of oocytes showing only one pronucleus during assisted reproduction is associated with uncertainty. A compilation of data on the genetic constitution of different developmental stages shows that affected oocytes are able to develop into haploid, diploid, and mosaic embryos with more or less complex chromosomal compositions. In the majority of cases (~80%), haploidy appears to be caused by gynogenesis, whereas parthenogenesis or androgenesis is less common. Most of the diploid embryos result from a fertilization event involving asynchronous formation of the two pronuclei or pronuclear fusion at a very early stage. Uniparental diploidy may sometimes occur if one pronucleus fails to develop and the other pronucleus already contains a diploid genome or alternatively a haploid genome undergoes endoreduplication. In general, the chance of obtaining a biparental diploid embryo appears higher after conventional in vitro fertilization than after intracytoplasmic sperm injection. If a transfer of embryos obtained from monopronuclear oocytes is envisaged, it should be tried to culture them up to the blastocyst since most haploid embryos are not able to reach this stage. Comprehensive counselling of patients on potential risks is advisable before transfer and a preimplantation genetic diagnosis could be offered if available. PMID:25763399

  4. Bovine non-competent oocytes (BCB-) negatively impact the capacity of competent (BCB+) oocytes to undergo in vitro maturation, fertilisation and embryonic development.

    PubMed

    Salviano, M B; Collares, F J F; Becker, B S; Rodrigues, B A; Rodrigues, J L

    2016-04-01

    Competent oocyte selection remains a bottleneck in the in vitro production (IVP) of mammalian embryos. Among the vital assays described for selecting competent oocytes for IVP, the brilliant cresyl blue (BCB) test has shown consistent results. The aim of the first experiment was to observe if oocytes directly submitted to IVM show similar cleavage and blastocyst rates as those obtained with oocytes maintained under the same in vitro conditions as the oocytes that undergo the BCB test. Bovine cumulus-oocyte complexes (COCs) were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised grouped into three groups: (1) directly submitted to IVM; (2) oocytes submitted to the BCB test without the addition of BCB stain (BCB control group); and (3) submitted to the BCB test. The results showed that oocytes directly submitted to IVM reached similar cleavage (48/80 - 60%) and embryonic development rates to the blastocyst stage (10/48 - 21%) as the results obtained with the BCB control group oocytes (45/77 - 58% and 08/45 - 18%, respectively). The aim of the second experiment was to determine the cleavage and blastocyst rates obtained from BCB+ oocytes undergoing IVM in the presence of BCB- oocytes at a ratio of 10:1. COCs were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised into two groups that were submitted to IVM either directly (1: control group) or submitted to the BCB test prior to IVM. After the BCB test, the COCs were classified as either BCB+ (blue cytoplasm) or BCB- (colourless cytoplasm) and then divided into four experimental groups: (2) BCB+; (3) BCB-; and (4) BCB+ matured in same IVM medium drop as (5) BCB- at a ratio of 10:1. After IVM (24 h), oocytes from the different experimental groups were submitted to in vitro fertilisation (IVF) and in vitro culture (IVC) under the same culture conditions until they reached the blastocyst stage (D7). With regards to the cleavage

  5. Onset and progress of meiotic prophase in the oocytes in the B6.YTIR sex-reversed mouse ovary.

    PubMed

    Park, E-H; Taketo, T

    2003-12-01

    When the Y chromosome of a Mus musculus domesticus male mouse (caught in Tirano, Italy) is placed on a C57BL/6J genetic background, approximately half of the XY (B6.YTIR) progeny develop into normal-appearing but infertile females. We have previously reported that the primary cause of infertility can be attributed to their oocytes. To identify the primary defect in the XY oocyte, we examined the onset and progress of meiotic prophase in the B6.YTIR fetal ovary. Using bromo-deoxyuridine incorporation and culture, we determined that the germ cells began to enter meiosis at the developmental ages and in numbers comparable to those in the control XX ovary. Furthermore, the meiotic prophase appeared to progress normally until the late zygotene stage. However, the oocytes that entered meiosis early in the XY ovary failed to complete the meiotic prophase. On the other hand, a considerable number of oocytes entered meiosis at late developmental stages and completed the meiotic prophase in the XY ovary. We propose that the timing of entry into meiosis and the XY chromosomal composition influence the survival of oocytes during meiotic prophase in the fetal ovary.

  6. Phospholipid transfer activities in toad oocytes and developing embryos. [Bufo arenarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusinol, A.; Salomon, R.A.; Bloj, B.

    1987-01-01

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing /sup 14/C-labeled phospholipids and /sup 3/H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily aftermore » fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth.« less

  7. Cryo-survival, fertilization and early embryonic development of vitrified oocytes derived from mice of different reproductive age

    PubMed Central

    Yan, Jie; Suzuki, Joao; Yu, Xiaomin; Kan, Frederick W. K.

    2010-01-01

    Purpose To evaluate the effect of female reproductive age on oocyte cryo-survival, fertilization and the subsequent embryonic development following vitrification using the mouse model in order to address the question of how maternal reproductive age is related to fertility preservation. Methods Oocytes were collected from mice of different reproductive age: (1) 8–10 weeks, (2) 16–20 weeks, (3) 32–36 weeks, and (4) 44–48 weeks. Following vitrification and warming, the oocytes in each group were assessed for cryo-survival, fertilization and embryonic development as well as for the quality of blastocysts. Fresh oocytes without undergoing vitrification were used in each age group as controls. Results The mean number of oocytes retrieved following superovulation was found to reduce significantly (P < 0.05) in mice from 32–36 weeks of age (18.1 ± 8.5) compared with 8–10 weeks of age (26.8 ± 9.8) and 16–20 weeks of age (23.9 ± 4.2) respectively. The cryo-survival rate of oocytes was reduced significantly (P < 0.05) in mice of 44–48 weeks of age (90.4% ± 7.9) compared with the other 3 groups (98.8% ± 2.1, 98.0% ± 3.3 and 98.5% ± 2.2, respectively). The cleavage rate of vitrified oocytes declined significantly following the increase in maternal age in mice of 32–36 weeks of age (69.7% ± 20.8) forward (63.6% ± 9.2). However, no significant difference in the cleavage rate was found among the control groups of different maternal ages. The rate of embryo development to the blastocyst stage in the vitrified oocytes also significantly declined following the increase in maternal age (71.8% ± 8.8, 66.4% ± 10.7, 64.2% ± 17.4 and 4.1% ± 8.3 respectively). There were no such differences in the rates of embryo development to the blastocyst stage among the control groups following the increase in maternal age (75.9% ± 12.2, 79.5% ± 28.9, 70.2% ± 17.4 and 69.3% ± 19

  8. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos.

    PubMed

    Eymery, Angeline; Liu, Zichuan; Ozonov, Evgeniy A; Stadler, Michael B; Peters, Antoine H F M

    2016-08-01

    Oocytes develop the competence for meiosis and early embryogenesis during their growth. Setdb1 is a histone H3 lysine 9 (H3K9) methyltransferase required for post-implantation development and has been implicated in the transcriptional silencing of genes and endogenous retroviral elements (ERVs). To address its role in oogenesis and pre-implantation development, we conditionally deleted Setdb1 in growing oocytes. Loss of Setdb1 expression greatly impaired meiosis. It delayed meiotic resumption, altered the dynamics of chromatin condensation, and impaired kinetochore-spindle interactions, bipolar spindle organization and chromosome segregation in more mature oocytes. The observed phenotypes related to changes in abundance of specific transcripts in mutant oocytes. Setdb1 maternally deficient embryos arrested during pre-implantation development and showed comparable defects during cell cycle progression and in chromosome segregation. Finally, transcriptional profiling data indicate that Setdb1 downregulates rather than silences expression of ERVK and ERVL-MaLR retrotransposons and associated chimearic transcripts during oogenesis. Our results identify Setdb1 as a newly discovered meiotic and embryonic competence factor safeguarding genome integrity at the onset of life. © 2016. Published by The Company of Biologists Ltd.

  9. Quality of common marmoset (Callithrix jacchus) oocytes collected after ovarian stimulation.

    PubMed

    Kanda, Akifumi; Nobukiyo, Asako; Yoshioka, Miyuki; Hatakeyama, Teruhiko; Sotomaru, Yusuke

    2018-01-15

    The common marmoset (Callithrix jacchus) is an experimental animal that is considered suitable for the creation of next-generation human disease models. It has recently been used in the reproductive technology field. Oocytes can be effectively collected from female marmosets via ovarian stimulation with injections of follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). The oocytes, collected about 28 h after the hCG injection, include both premature oocytes and postmature (in vivo matured; IVO) oocytes, and the premature oocytes can be matured by in vitro culture (in vitro matured; IVM). Although IVM and IVO oocytes are equivalent in appearance at the MII stage, it remains unclear whether there are differences in their properties. Therefore, we investigated their in vitro fertilization and developmental capacities and cytoskeletal statuses. Our findings revealed that the IVM and IVO oocytes had similar fertilization rates but that no IVO oocytes could develop to the blastocyst stage. Additionally, IVO oocytes showed abnormal cytoskeletal formation. It is concluded that IVM oocytes maintain normal function, whereas IVO oocytes would be affected by aging and other factors when they remain for a long time in the ovary. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment

    PubMed Central

    Hemmings, K.E.; Maruthini, D.; Vyjayanthi, S.; Hogg, J.E.; Balen, A.H.; Campbell, B.K.; Leese, H.J.; Picton, H.M.

    2013-01-01

    STUDY QUESTION Can amino acid profiling differentiate between human oocytes with differing competence to mature to metaphase II (MII) in vitro? SUMMARY ANSWER Oocytes which remained arrested at the germinal vesicle (GV) stage after 24 h of in vitro maturation (IVM) displayed differences in the depletion/appearance of amino acids compared with oocytes which progressed to MII and patient age, infertile diagnosis and ovarian stimulation regime significantly affected oocyte amino acid turnover during IVM. WHAT IS KNOWN ALREADY Amino acid profiling has been proposed as a technique which can distinguish between human pronucleate zygotes and cleavage stage embryos with the potential to develop to the blastocyst stage and implant to produce a pregnancy and those that arrest. Most recently, the amino acid turnover by individual bovine oocytes has been shown to be predictive of oocyte developmental competence as indicated by the gamete's capacity to undergo fertilization and early cleavage divisions in vitro. STUDY DESIGN, SIZE, DURATION The study was conducted between March 2005 and March 2010. A total of 216 oocytes which were at the GV or metaphase I (MI) stages at the time of ICSI were donated by 67 patients. PARTICIPANTS/MATERIALS, SETTINGS, METHODS The research was conducted in university research laboratories affiliated to a hospital-based infertility clinic. Oocytes were cultured for 24 h and the depletion/appearance of amino acids was measured during the final 6 h of IVM. Amino acid turnover was analysed in relation to oocyte meiotic progression, patient age, disease aetiology and controlled ovarian stimulation regime. MAIN RESULTS AND THE ROLE OF CHANCE The depletion/appearance of key amino acids was linked to the maturation potential of human oocytes in vitro. Oocytes which arrested at the GV stage (n = 9) depleted significantly more valine and isoleucine than those which progressed to MI (n = 32) or MII (n = 107) (P < 0.05). Glutamate, glutamine, arginine and

  11. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    PubMed

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  12. A new classification of a preovulatory oocyte maturation stage suitable for the synchronization of ovulation in controlled reproduction of Eurasian perch Perca fluviatilis L.

    PubMed

    Zarski, Daniel; Bokor, Zoltán; Kotrik, László; Urbanyi, Béla; Horváth, Akos; Targońska, Katarzyna; Krejszeff, Sławomir; Palińska, Katarzyna; Kucharczyk, Dariusz

    2011-11-01

    To improve controlled reproduction of Eurasian perch Perca fluviatilis, the criteria for the evaluation of final oocyte maturation stages were revised. The new classification covers six preovulatory maturational stages (I -VI) from the end of vitellogenesis to germinal vesicle breakdown (GVBD) and was based on macroscopic changes of preovulatory oocytes (position of the germinal vesicle, GVBD, oil droplets coalescence). The observation was performed during out-of-season artificial reproduction with the use of a single hCG injection (500 IU/kg). The classification was subsequently verified with the controlled reproduction of wild female perch with the use of hormonal stimulation (500 IU hCG/kg of body weight at 12°C). The females were at different maturational stages and constituted respective experimental groups (I-VI). During the experiment, ovulation appeared to be considerably synchronized within particular groups. Statistical differences in latency time (time between hormonal treatment and ovulation) were found between experimental groups (mean latency time: 110, 92, 68, 49, 29 and 18 h in groups representing VI, V, IV, III, II and I stage of the proposed classification, respectively). The proposed classification and the results presented in the study allowed for effective synchronisation of ovulation. The use of our new oocyte maturation classification may positively influence the effectiveness of Eurasian perch production.

  13. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system.

    PubMed

    McLaughlin, M; Albertini, D F; Wallace, W H B; Anderson, R A; Telfer, E E

    2018-03-01

    fixed for analysis. Pieces of human ovarian cortex cultured in serum free medium for 8 days (Step 1) supported early follicle growth and 87 secondary follicles of diameter 120 ± 6 μm (mean ± SEM) could be dissected for further culture. After a further 8 days, 54 of the 87 follicles had reached the antral stage of development. COCs were retrieved by gentle pressure from the cultured follicles and those with adherent mural granulosa cells (n = 48) were selected and cultured for a further 4 days (Step 3). At the end of Step 3, 32 complexes contained oocytes >100 μm diameter were selected for IVM (Step 4). Nine of these complexes contained polar bodies within 24 h and all polar bodies were abnormally large. Confocal immuno-histochemical analysis showed the presence of a Metaphase II spindle confirming that these IVG oocytes had resumed meiosis but their developmental potential is unknown. This is a small number of samples but provides proof of concept that complete development of human oocytes can occur in vitro. Further optimization with morphological evaluation and fertilization potential of IVG oocytes is required to determine whether they are normal. The ability to develop human oocytes from the earliest follicular stages in vitro through to maturation and fertilization would benefit fertility preservation practice. Funded by MRC Grants (G0901839 and MR/L00299X/1). No competing interests.

  14. Oocyte-activating capacity of fresh and frozen-thawed spermatids in the common marmoset (Callithrix jacchus).

    PubMed

    Ogonuki, Narumi; Inoue, Hiroki; Matoba, Shogo; Kurotaki, Yoko K; Kassai, Hidetoshi; Abe, Yukiko; Sasaki, Erika; Aiba, Atsu; Ogura, Atsuo

    2018-02-19

    The common marmoset (Callithrix jacchus) represents a promising nonhuman primate model for the study of human diseases because of its small size, ease of handling, and availability of gene-modified animals. Here, we aimed to devise reproductive technology for marmoset spermatid injection using immature males for a possible rapid generational turnover. Spermatids at each step could be identified easily by their morphology under differential interference microscopy: thus, early round spermatids had a round nucleus with a few nucleolus-like structures and abundant cytoplasm, as in other mammals. The spermatids acquired oocyte-activating capacity at the late round spermatid stage, as confirmed by the resumption of meiosis and Ca 2+ oscillations upon injection into mouse oocytes. The spermatids could be cryopreserved efficiently with a simple medium containing glycerol and CELL BANKER®. Late round or elongated spermatids first appeared at 10-12 months of age, 6-8 months before sexual maturation. Marmoset oocytes microinjected with frozen-thawed late round or elongated spermatids retrieved from a 12-month-old male marmoset developed to the 8-cell stage without the need for artificial oocyte activation stimulation. Thus, it might be possible to shorten the intergeneration time by spermatid injection, from 2 years (by natural mating) to 13-15 months including gestation. © 2018 Wiley Periodicals, Inc.

  15. Progress with oocyte cryopreservation.

    PubMed

    Porcu, Eleonora; Venturoli, Stefano

    2006-06-01

    This article reviews human oocyte cryopreservation, one of the most stimulating challenges of assisted reproduction technology. Since the first steps in assisted reproduction technology, researchers have pursued this goal, to greatly improve the management of infertility treatments. This present review depicts the present state of research and clinical applications of this methodology. Recent literature focuses on the possible mechanisms of oocyte damage caused by temperature and cryoprotectant injury and forecasts possible technological solutions. Several papers illustrate encouraging results in the increasing clinical application of this procedure. Findings give support to several indications of human female gamete cryostorage. Oocyte cryopreservation might replace embryo freezing. Egg freezing offers an alternative to women at risk of losing their reproductive function, caused by antineoplastic treatments, endometriosis, ovarian surgery or genetic premature ovarian failure. In addition, oocyte storage may contribute to an increase in in-vitro fertilization flexibility. Despite the early disappointing results, recent technical modifications have improved the clinical efficiency greatly, with the birth of several healthy children.

  16. Mammalian oocyte growth and development in vitro.

    PubMed

    Eppig, J J; O'Brien, M; Wigglesworth, K

    1996-06-01

    This paper is a review of the current status of technology for mammalian oocyte growth and development in vitro. It compares and contrasts the characteristics of the various culture systems that have been devised for the culture of either isolated preantral follicles or the oocyte-granulosa cell complexes form preantral follicles. The advantages and disadvantages of these various systems are discussed. Endpoints for the evaluation of oocyte development in vitro, including oocyte maturation and embryogenesis, are described. Considerations for the improvement of the culture systems are also presented. These include discussions of the possible effects of apoptosis and inappropriate differentiation of oocyte-associated granulosa cells on oocyte development. Finally, the potential applications of the technology for oocyte growth and development in vitro are discussed. For example, studies of oocyte development in vitro could help to identify specific molecules produced during oocyte development that are essential for normal early embryogenesis and perhaps recognize defects leading to infertility or abnormalities in embryonic development. Moreover, the culture systems may provide the methods necessary to enlarge the populations of valuable agricultural, pharmaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that place oocytes at risk.

  17. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos

    PubMed Central

    Toh, Hidehiro; Ohishi, Hiroaki; Sharif, Jafar; Koseki, Haruhiko; Sasaki, Hiroyuki

    2017-01-01

    The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprinting control regions in preimplantation embryos. In mammalian somatic cells, hemimethylated-CG-binding protein UHRF1 plays a critical role in maintaining CG methylation by recruiting DNMT1 to hemimethylated CG sites. However, the role of UHRF1 in oogenesis and preimplantation development is unknown. In the present study, we show that UHRF1 is mainly, but not exclusively, localized in the cytoplasm of oocytes and preimplantation embryos. However, smaller amounts of UHRF1 existed in the nucleus, consistent with the expected role in DNA methylation. We then generated oocyte-specific Uhrf1 knockout (KO) mice and found that, although oogenesis was itself unaffected, a large proportion of the embryos derived from the KO oocytes died before reaching the blastocyst stage (a maternal effect). Whole genome bisulfite sequencing revealed that blastocysts derived from KO oocytes have a greatly reduced level of CG methylation, suggesting that maternal UHRF1 is essential for maintaining CG methylation, particularly at the imprinting control regions, in preimplantation embryos. Surprisingly, UHRF1 was also found to contribute to de novo CG and non-CG methylation during oocyte growth: in Uhrf1 KO oocytes, transcriptionally-inactive regions gained less methylation, while actively transcribed regions, including the imprinting control regions, were unaffected or only slightly affected. We also found that de novo methylation was defective during the late stage of oocyte growth. To the best of our knowledge, this is the first study to demonstrate the role of UHRF1 in de novo DNA methylation in vivo. Our study reveals multiple functions of UHRF1 during the global epigenetic reprogramming of

  18. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis

    PubMed Central

    Shikina, Shinya; Chiu, Yi-Ling; Chung, Yi-Jou; Chen, Chieh-Jhen; Lee, Yan-Horn; Chang, Ching-Fong

    2016-01-01

    To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction. PMID:27167722

  19. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis.

    PubMed

    Shikina, Shinya; Chiu, Yi-Ling; Chung, Yi-Jou; Chen, Chieh-Jhen; Lee, Yan-Horn; Chang, Ching-Fong

    2016-05-11

    To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction.

  20. Mammalian nuclear transplantation to Germinal Vesicle stage Xenopus oocytes – A method for quantitative transcriptional reprogramming

    PubMed Central

    Halley-Stott, R.P.; Pasque, V.; Astrand, C.; Miyamoto, K.; Simeoni, I.; Jullien, J.; Gurdon, J.B.

    2010-01-01

    Full-grown Xenopus oocytes in first meiotic prophase contain an immensely enlarged nucleus, the Germinal Vesicle (GV), that can be injected with several hundred somatic cell nuclei. When the nuclei of mammalian somatic cells or cultured cell lines are injected into a GV, a wide range of genes that are not transcribed in the donor cells, including pluripotency genes, start to be transcriptionally activated, and synthesize primary transcripts continuously for several days. Because of the large size and abundance of Xenopus laevis oocytes, this experimental system offers an opportunity to understand the mechanisms by which somatic cell nuclei can be reprogrammed to transcribe genes characteristic of oocytes and early embryos. The use of mammalian nuclei ensures that there is no background of endogenous maternal transcripts of the kind that are induced. The induced gene transcription takes place in the absence of cell division or DNA synthesis and does not require protein synthesis. Here we summarize new as well as established results that characterize this experimental system. In particular, we describe optimal conditions for transplanting somatic nuclei to oocytes and for the efficient activation of transcription by transplanted nuclei. We make a quantitative determination of transcript numbers for pluripotency and housekeeping genes, comparing cultured somatic cell nuclei with those of embryonic stem cells. Surprisingly we find that the transcriptional activation of somatic nuclei differs substantially from one donor cell-type to another and in respect of different pluripotency genes. We also determine the efficiency of an injected mRNA translation into protein. PMID:20123126

  1. Ultrastructural analysis of oocytes of Rhipicephalus (Boophilus) annulatus during postengorgement period as a tool to evaluate the cytotoxic effects of amitraz and deltamethrin on the germinative cells.

    PubMed

    Sreelekha, Kanapadinchareveetil; Chandrasekhar, Leena; Kartha, Harikumar S; Ravindran, Reghu; Juliet, Sanis; Ajithkumar, Karapparambu G; Nair, Suresh N; Ghosh, Srikanta

    2017-11-30

    The present study utilizes the ultrastructural analysis of the fully engorged female Rhipicephalus (Boophilus) annulatus ticks, as a tool to evaluate the cytotoxic potential of deltamethrin and amitraz on the germinative cells. The ultrastructural analysis of the ovary of the normal (untreated) R (B.) annulatus revealed, oocytes in different stages of development, attached to the ovary wall by pedicel cells. The attachment site of oocyte to the pedicel cell was characterized by indentations of the plasma membrane. The oocyte was bound by three cell membranes viz., plasma membrane, chorion and basal lamina. The stages of oocytes were differentiated ultrastructurally based on the features of their outer membrane and the number and size of lipid and yolk droplets. Detailed day wise analysis of ultrastructural changes in the ovary during the post-engorgement period revealed the occurrence of the degenerative changes from day five onwards. These appeared first in the oocytes followed by the germinal epithelium. The ovary of ticks treated with methanol (control), revealed similar topographies as that of a normal ovary except for the presence of very few oocytes with ring shaped nucleoli. Ultrastructurally, treatment with deltamethrin produced more prominent and extensive morphological alterations when compared to amitraz. In the case of ticks treated with amitraz, the oocytes of stage IV and V showed wavy and disrupted outer boundaries along with the loss of integrity of the yolk droplets. Uneven nuclear membranes of stage II oocytes and cristolysis of mitochondria of mature oocytes were the other changes noticed. Ticks treated with deltamethrin revealed prominent modifications such as, detachment of the basal lamina, wrinkled boundary, inconsistent nuclear membrane, ring shaped nucleoli and chromatin clumping in the case of the early stage oocytes (I and II), whereas swelling and cristolysis of mitochondria were seen in mature oocytes. The study further indicated that

  2. Loss of Bmal1 decreases oocyte fertilization, early embryo development and implantation potential in female mice.

    PubMed

    Xu, Jian; Li, Yan; Wang, Yizi; Xu, Yanwen; Zhou, Canquan

    2016-10-01

    Biological clock genes expressed in reproductive tissues play important roles in maintaining the normal functions of reproductive system. However, disruption of female circadian rhythm on oocyte fertilization, preimplantation embryo development and blastocyst implantation potential is still unclear. In this study, ovulation, in vivo and in vitro oocyte fertilization, embryo development, implantation and intracellular reactive oxygen species (ROS) levels in ovary and oviduct were studied in female Bmal1+/+ and Bmal1-/- mice. The number of naturally ovulated oocyte in Bmal1-/- mice decreased (5.2 ± 0.8 vs 7.8 ± 0.8, P < 0.001), with an increasing abnormal oocyte ratio (20.4 ± 3.5 vs 11.7 ± 2.0%, P = 0.001) after superovulation. Significantly lower fertilization rate and obtained blastocyst number were observed in Bmal1-/- female mice either mated with wild-type in vivo or fertilized by sperm from wild-type male mice in vitro (all P < 0.05). Interestingly, in vitro fertilization rate of oocytes derived from Bmal1-/- increased significantly compared with in vivo study (P < 0.01). After transferring blastocysts derived from Bmal1+/+ and Bmal1-/- female mice to pseudopregnant mice, the implantation sites of the latter decreased 5 days later (8.0 ± 0.8 vs 5.3 ± 1.0, P = 0.005). The intracellular ROS levels in the ovary on proestrus day and in the oviduct on metestrus day increased significantly in Bmal1-/- mice compared with that of Bmal1+/+ mice. Deletion of the core biological clock gene Bmal1 significantly decreases oocyte fertilization rate, early embryo development and implantation potential in female mice, and these may be possibly caused by excess ROS levels generated in ovary and oviduct.

  3. In vitro culture of early secondary preantral follicles in hanging drop of ovarian cell-conditioned medium to obtain MII oocytes from outbred deer mice.

    PubMed

    Choi, Jung Kyu; Agarwal, Pranay; He, Xiaoming

    2013-12-01

    The ovarian follicle (each contains a single oocyte) is the fundamental functional tissue unit of mammalian ovaries. In humans, it has been long held true that females are born with a maximum number of follicles (or oocytes) that are not only nonrenewable, but also undergoing degeneration with time with a sharply decreased oocyte quality after the age of ∼35. Therefore, it is of importance to isolate and bank ovarian follicles for in vitro culture to obtain fertilizable oocytes later, to preserve the fertility of professional women who may want to delay childbearing, young and unmarried women who may lose gonadal function because of exposure to environmental/occupational hazards or aggressive medical treatments, such as radiation and chemotherapy, and even endangered species and breeds. Although they contributed significantly to the understanding of follicle science and biology, most studies reported to date on this topic were done using the man-made, unnatural inbred animal species. It was found in this study that the conventional two-dimensional microliter drop and three-dimensional hanging drop (HD) methods, reported to be effective for in vitro culture of preantral follicles from inbred mice, are not directly transferrable to outbred deer mice. Therefore, a modified HD method was developed in this study to achieve a much higher (>5 times compared to the best conventional methods) percentage of developing early secondary preantral follicles from the outbred mice to the antral stage, for which, the use of an ovarian cell-conditioned medium and multiple follicles per HD were identified to be crucial. It was further found that the method for in vitro maturation of oocytes in antral follicles obtained by in vitro culture of preantral follicles could be very different from that for oocytes in antral follicles obtained by hormone stimulation in vivo. Therefore, this study should provide important guidance for establishing effective protocols of in vitro follicle

  4. In Vitro Culture of Early Secondary Preantral Follicles in Hanging Drop of Ovarian Cell-Conditioned Medium to Obtain MII Oocytes from Outbred Deer Mice

    PubMed Central

    Choi, Jung Kyu; Agarwal, Pranay

    2013-01-01

    The ovarian follicle (each contains a single oocyte) is the fundamental functional tissue unit of mammalian ovaries. In humans, it has been long held true that females are born with a maximum number of follicles (or oocytes) that are not only nonrenewable, but also undergoing degeneration with time with a sharply decreased oocyte quality after the age of ∼35. Therefore, it is of importance to isolate and bank ovarian follicles for in vitro culture to obtain fertilizable oocytes later, to preserve the fertility of professional women who may want to delay childbearing, young and unmarried women who may lose gonadal function because of exposure to environmental/occupational hazards or aggressive medical treatments, such as radiation and chemotherapy, and even endangered species and breeds. Although they contributed significantly to the understanding of follicle science and biology, most studies reported to date on this topic were done using the man-made, unnatural inbred animal species. It was found in this study that the conventional two-dimensional microliter drop and three-dimensional hanging drop (HD) methods, reported to be effective for in vitro culture of preantral follicles from inbred mice, are not directly transferrable to outbred deer mice. Therefore, a modified HD method was developed in this study to achieve a much higher (>5 times compared to the best conventional methods) percentage of developing early secondary preantral follicles from the outbred mice to the antral stage, for which, the use of an ovarian cell-conditioned medium and multiple follicles per HD were identified to be crucial. It was further found that the method for in vitro maturation of oocytes in antral follicles obtained by in vitro culture of preantral follicles could be very different from that for oocytes in antral follicles obtained by hormone stimulation in vivo. Therefore, this study should provide important guidance for establishing effective protocols of in vitro follicle

  5. Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation.

    PubMed

    Russo, Roberto; Monaco, Davide; Rubessa, Marcello; El-Bahrawy, Khalid A; El-Sayed, Ashraf; Martino, Nicola A; Beneult, Benedicte; Ciannarella, Francesca; Dell'Aquila, Maria E; Lacalandra, Giovanni M; Filioli Uranio, Manuel

    2014-02-18

    Reproductive biotechnologies in dromedary camel (Camelus dromedarius) are less developed than in other livestock species. The in vitro maturation (IVM) technology is a fundamental step for in vitro embryo production (IVP), and its optimization could represent a way to increase the success rate of IVP. The aim of the present study was to investigate the bioenergy/oxidative status of dromedary camel oocytes before and after IVM by confocal microscopy 3D imaging. Oocytes were retrieved by slicing ovaries collected at local slaughterhouses. Recovered oocytes were examined before and after IVM culture for nuclear chromatin configuration and bioenergy/oxidative status, expressed as mitochondria (mt) distribution and activity, intracellular Reactive Oxygen Species (ROS) levels and distribution and mt/ROS colocalization. The mean recovery rate was 6 oocytes/ovary. After IVM, 61% of oocytes resumed meiosis and 36% reached the Metaphase II stage (MII). Oocyte bioenergy/redox confocal characterization revealed changes upon meiosis progression. Immature oocytes at the germinal vesicle (GV) stage were characterised by prevailing homogeneous mt distribution in small aggregates while MI and MII oocytes showed significantly higher rates of pericortical mt distribution organized in tubular networks (P<0.05). Increased mt activity in MI (P<0.001) and MII (P<0.01) oocytes compared to GV stage oocytes was also observed. At any meiotic stage, homogeneous distribution of intracellular ROS was observed. Intracellular ROS levels also increased in MI (P<0.01) and MII (P<0.05) oocytes compared to GV stage oocytes. The mt/ROS colocalization signal increased in MI oocytes (P<0.05). This study provides indications that qualitative and quantitative indicators of bioenergy and oxidative status in dromedary camel oocytes are modified in relation with oocyte meiotic stage. These data may increase the knowledge of camel oocyte physiology, in order to enhance the efficiency of IVP procedures.

  6. A morphologic study of unfertilized oocytes and abnormal embryos in human in vitro fertilization.

    PubMed

    Bałakier, H; Casper, R F

    1991-04-01

    The morphology of human, unfertilized oocytes and abnormal embryos cultured in vitro for 48-72 hr was examined in an attempt to learn more about oocyte maturation and reproductive failure in in vitro fertilization (IVF). About 21% of the unfertilized oocytes were totally degenerated. The majority (56%) of the remaining oocytes was arrested at the metaphase II stage. They contained coherent chromosomal plates and had extruded the first polar body with nuclear material. About 13% of oocytes underwent spontaneous activation. In most of these cases the second polar body was retained and many subnuclei or one big nucleus was formed. Five percent of metaphase II oocytes penetrated by sperm were not activated, likely as a result of oocyte immaturity. The developmental ability of abnormal embryos was poor. Several one-cell-stage zygotes were arrested at the pronuclear stage or at mitosis of the first mitotic division. Polyspermic embryos, especially those which contained four or more pronuclei, did not divide or formed uneven, multinucleated blastomeres. However, some triploid and tetraploid embryos often appeared normal morphologically despite their lethal chromosomal abnormalities.

  7. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci

    PubMed Central

    Pratchett, Morgan S.; Kerr, Alexander M.; Rivera-Posada, Jairo A.

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  8. Total number of oocytes and zygotes are predictive of live birth pregnancy in fresh donor oocyte in vitro fertilization cycles.

    PubMed

    Hariton, Eduardo; Kim, Keewan; Mumford, Sunni L; Palmor, Marissa; Bortoletto, Pietro; Cardozo, Eden R; Karmon, Anatte E; Sabatini, Mary E; Styer, Aaron K

    2017-08-01

    To evaluate the association of oocyte donor-recipient characteristics, oocyte donor response, and live birth pregnancy rate following fresh donor oocyte IVF-ET. Retrospective cohort study. Academic reproductive medicine practice. Two hundred thirty-seven consecutive fresh donor oocyte IVF-ET cycles from January 1, 2007 to December 31, 2013 at the Massachusetts General Hospital Fertility Center. None. Live birth rate per cycle initiated. The mean (±SD) age of oocyte donors and recipients was 27.0 ± 3.7 and 41.4 ± 4.6 years, respectively. Oocyte donor demographic/reproductive characteristics, ovarian reserve testing, and peak serum E 2 during ovarian stimulation were similar among cycles which did and did not result in live birth, respectively. Overall implantation, clinical pregnancy, and live birth pregnancy rates per cycle initiated were 40.5%, 60.8%, and 54.9%, respectively. The greatest probability of live birth was observed in cycles with >10 oocytes retrieved, mature oocytes, oocytes with normal fertilization (zygote-two pronuclear stage), and cleaved embryos. The number of oocytes (total and mature), zygotes, and cleaved embryos are associated with live birth following donor oocyte IVF cycles. These findings suggest that specific peri-fertilization factors may be predictive of pregnancy outcomes following donor oocyte IVF cycles. Copyright © 2017 American Society for Reproductive Medicine. All rights reserved.

  9. Comparison of normal and abnormal fertilization of in vitro-matured human oocyte according to insemination method.

    PubMed

    Park, Ju Hee; Jee, Byung Chul; Kim, Seok Hyun

    2016-04-01

    Our purpose was to compare the normal fertilization rate, multi-pronuclei (PN) formation rate, and embryonic development of in vitro-matured oocytes between conventional insemination and intracytoplasmic sperm injection (ICSI). A total of 213 stimulated in vitro fertilization (IVF) cycles were selected, in which at least one immature oocyte was obtained (from 2010 to 2014). Immature oocytes were assigned to germinal vesicle (GV)-stage or metaphase I (MI)-stage oocyte groups. Cycles with obligatory ICSI due to male-factor infertility were excluded. Cycles were divided into two groups according to fertilization method: there were 97 cycles with conventional insemination and 116 cycles with ICSI. After in vitro maturation of 324 GV-stage oocytes and 341 MI-stage oocytes, the fertilization rate, multi-PN formation rate, and embryonic development were compared according to the fertilization method. The normal fertilization rate was similar in the conventional insemination and the ICSI both in GV-derived and MI-derived oocytes. Both fertilization methods resulted in a similar multi-PN formation rate in GV-derived oocytes; however, in MI-derived oocytes, the multi-PN formation rate was zero with ICSI and this was significantly lower than that with conventional insemination (9.6%, P = 0.001). In non-male-factor infertility, ICSI should be considered when MI oocytes are matured. © 2016 Japan Society of Obstetrics and Gynecology.

  10. Naturally occurring mastitis disrupts developmental competence of bovine oocytes.

    PubMed

    Roth, Z; Dvir, A; Kalo, D; Lavon, Y; Krifucks, O; Wolfenson, D; Leitner, G

    2013-10-01

    We examined the effects of naturally occurring mastitis on bovine oocyte developmental competence in vitro. Specifically, we investigated the effects of intramammary infection on the ovarian pool of oocytes (i.e., follicle-enclosed oocytes) and their ability to undergo in vitro maturation, fertilization, and further development to the blastocyst stage. Culled Holstein cows (n=50) from 9 commercial dairy farms in Israel were allotted to 3 groups according to somatic cell count (SCC) records of the last 3 monthly milk tests as well as of quarter samples collected before slaughter: (1) low SCC (n=7), (2) medium SCC (n=16), or (3) high SCC (n=27). Means of SCC values differed among low-, medium-, and high-SCC groups: 148,000, 311,000 and 1,813,000 cell/mL milk, respectively. Milk yield and days in milk did not differ among the 3 groups. Bacterial isolates included coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, or no bacteria found. Ovaries were collected at the abattoir and brought to the laboratory. Cumulus oocyte complexes were recovered separately from each cow and subjected individually to in vitro maturation and fertilization, followed by 8d in culture. The number of aspirated oocytes did not differ among groups, with a range of 17 to 21 oocytes per cow. The proportion of oocytes that cleaved into 2- to 4-cell-stage embryos (86.1 ± 3.4%) did not differ among groups. In contrast, mean percentages of embryos developed to the blastocyst stage on d 7 and 8 after fertilization were less in both medium- and-high SCC groups than in the low-SCC group (5.6 ± 2.3 and 4.1 ± 1.8 vs. 18.1 ± 4.6%, respectively). Additional analysis indicated that cleavage and blastocyst-formation rates did not differ among the bacterial types in the low-, medium-, and high-SCC groups. These are the first results to demonstrate that naturally occurring mastitis disrupts the developmental competence of the ovarian pool of oocytes, (i.e., oocytes at the

  11. No difference in mitochondrial distribution is observed in human oocytes after cryopreservation.

    PubMed

    Stimpfel, Martin; Vrtacnik-Bokal, Eda; Virant-Klun, Irma

    2017-08-01

    The primary aim of this study was to determine if any difference in mitochondrial distribution can be observed between fresh and cryopreserved (slow-frozen/thawed and vitrified/warmed) oocytes when oocytes are stained with Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Additionally, the influence of cryopreservation procedure on the viable rates of oocytes at different maturation stages was evaluated. The germinal vesicle (GV) and MII oocytes were cryopreserved with slow-freezing and vitrification. After thawing/warming, oocytes were stained using Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Mitotracker staining revealed that in GV oocytes the pattern of mitochondrial distribution appeared as aggregated clusters around the whole oocyte. In mature MII oocytes, three different patterns of mitochondrial distribution were observed; a smooth pattern around the polar body with aggregated clusters at the opposite side of the polar body, a smooth pattern throughout the whole cell, and aggregated clusters as can be seen in GV oocytes. There were no significant differences in the observed patterns between fresh, vitrified/warmed and frozen/thawed oocytes. When comparing the viable rates of oocytes after two different cryopreservation procedures, the results showed no significant differences, although the trend of viable MII oocytes tends to be higher after vitrification/warming and for viable GV oocytes it tends to be higher after slow-freezing/thawing. Mitotracker Red CMXRos staining of mitochondria in oocytes did not reveal differences in mitochondrial distribution between fresh and cryopreserved oocytes at different maturity stages. Additionally, no difference was observed in the viable rates of GV and MII oocytes after slow-freezing/thawing and vitrification/warming.

  12. High Fat Diet Induced Developmental Defects in the Mouse: Oocyte Meiotic Aneuploidy and Fetal Growth Retardation/Brain Defects

    PubMed Central

    Purcell, Scott H.; Chi, Maggie; Jimenez, Patricia T.; Grindler, Natalia; Schedl, Tim; Moley, Kelle H.

    2012-01-01

    Background Maternal obesity is associated with poor outcomes across the reproductive spectrum including infertility, increased time to pregnancy, early pregnancy loss, fetal loss, congenital abnormalities and neonatal conditions. Furthermore, the proportion of reproductive-aged woman that are obese in the population is increasing sharply. From current studies it is not clear if the origin of the reproductive complications is attributable to problems that arise in the oocyte or the uterine environment. Methodology/Principal Findings We examined the developmental basis of the reproductive phenotypes in obese animals by employing a high fat diet mouse model of obesity. We analyzed very early embryonic and fetal phenotypes, which can be parsed into three abnormal developmental processes that occur in obese mothers. The first is oocyte meiotic aneuploidy that then leads to early embryonic loss. The second is an abnormal process distinct from meiotic aneuploidy that also leads to early embryonic loss. The third is fetal growth retardation and brain developmental abnormalities, which based on embryo transfer experiments are not due to the obese uterine environment but instead must be from a defect that arises prior to the blastocyst stage. Conclusions/Significance Our results suggest that reproductive complications in obese females are, at least in part, from oocyte maternal effects. This conclusion is consistent with IVF studies where the increased pregnancy failure rate in obese women returns to the normal rate if donor oocytes are used instead of autologous oocytes. We postulate that preconceptional weight gain adversely affects pregnancy outcomes and fetal development. In light of our findings, preconceptional counseling may be indicated as the preferable, earlier target for intervention in obese women desiring pregnancy and healthy outcomes. PMID:23152876

  13. Apoptosis in mammalian oocytes: a review.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  14. Develop to Term Rat Oocytes Injected with Heat-Dried Sperm Heads

    PubMed Central

    Lee, Kyung-Bon; Park, Ki-Eun; Kwon, In-Kiu; Tripurani, Swamy K.; Kim, Keun Jung; Lee, Ji Hye; Niwa, Koji; Kim, Min Kyu

    2013-01-01

    This study investigated the development of rat oocytes in vitro and in vivo following intracytoplasmic injection of heads from spermatozoa heat-dried at 50°C for 8 h and stored at 4°C in different gas phases. Sperm membrane and chromosome are damaged by the process of heat-drying. Oocyte activation and cleavage of oocytes were worse in oocytes injected with spermatozoa heat-dried and stored for 1 week than unheated, fresh spermatozoa, but in heat-dried spermatozoa, there were no differences in these abilities of oocytes between the samples stored in nitrogen gas and in air. The oocytes injected with heat-dried spermatozoa stored for 1 week could develop to the morula and blastocyst stages without difference between the samples stored in nitrogen gas and in air after artificial stimulation. Cleavage of oocytes and development of cleaved embryos were higher when heat-dried spermatozoa were stored for 3 and 6 months in nitrogen gas than in air. However, the ability of injected oocytes to develop to the morula and blastocyst stages was not inhibited even when heat-dried spermatozoa stored in both atmosphere conditions for as long as 6 months were used. When 2-cell embryos derived from oocytes injected with heads from spermatozoa heat-dried and stored for 1 week and 1 month were transferred, each 1 of 4 recipients was conceived, and the conceived recipients delivered 1 live young each. These results demonstrate that rat oocytes can be fertilized with heat-dried spermatozoa and that the fertilized oocytes can develop to term. PMID:24223784

  15. Kid depletion in mouse oocytes associated with multinucleated blastomere formation and inferior embryo development.

    PubMed

    Egashira, Akiyoshi; Yamauchi, Nobuhiko; Islam, Md Rashedul; Yamagami, Kazuki; Tanaka, Asami; Suyama, Hikaru; El-Sayed, El-Sharawy Mohamed; Tabata, Shoji; Kuramoto, Takashi

    2016-08-01

    This study investigated the knockdown (KD) of Kid on maturation developmental competence and multinucleation of mouse germinal vesicle (GV) oocytes after parthenogenetic activation. Data revealed that Kid messenger RNA (mRNA) was expressed in GV and MII stage oocyte and 1- and 2-cell embryos. Additionally, Kid mRNA expression in the Kid KD group decreased by nearly 46% compared to the control small interfering RNA (siRNA) groups. The rate of multinucleated embryos in the Kid KD group (52.4%) was significantly higher (P < 0.05) than the control siRNA group (4.7%). Finally, the developmental rates were significantly lower in the Kid siRNA group at > 4-cell stage (28.6% vs. 53.5%) and the blastocyst stage (2.4% vs. 23.3%) compared to the control siRNA groups. Suppression of Kid using siRNA caused multinucleation in early embryos with high frequency and it may increase 2- to 4-cell arrested embryos and reduce the developmental competence to blastocyst. © 2016 Japanese Society of Animal Science.

  16. Parthenogenic Blastocysts Derived from Cumulus-Free In Vitro Matured Human Oocytes

    PubMed Central

    McElroy, Sohyun L.; Byrne, James A.; Chavez, Shawn L.; Behr, Barry; Hsueh, Aaron J.; Westphal, Lynn M.; Reijo Pera, Renee A.

    2010-01-01

    Background Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis. Methodology/Principal Finding Immature human oocytes were matured in vitro via supplementation with ovarian paracrine/autocrine factors that were selected based on expression of ligands in the cumulus cells and their corresponding receptors in oocytes. Matured oocytes were artificially activated to assess developmental competence. Gene expression profiles of parthenotes were compared to IVF/ICSI embryos at morula and blastocyst stages. Following incubation in medium supplemented with ovarian factors (BDNF, IGF-I, estradiol, GDNF, FGF2 and leptin), a greater percentage of oocytes demonstrated nuclear maturation and subsequently, underwent parthenogenesis relative to control. Similarly, cytoplasmic maturation was also improved as indicated by development to blastocyst stage. Parthenogenic blastocysts exhibited mRNA expression profiles similar to those of blastocysts obtained after IVF/ICSI with the exception for MKLP2 and PEG1. Conclusions/Significance Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer. PMID

  17. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice.

    PubMed

    Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Wang, Dong-Hui; Kong, Xiang-Wei; Lu, Angeleem; Li, Yan-Jiao; Zhou, Hong-Xia; Zhao, Yue-Fang; Liang, Cheng-Guang

    2016-01-01

    Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes), in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes), and in vitro-matured, denuded oocytes without cumulus cells (DOs). Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.

  18. Chromatin remodeling in somatic cells injected into mature pig oocytes.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Wakayama, Teruhiko; Miyano, Takashi

    2006-06-01

    We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3-S10) and serine 28 (H3-S28), and methylated at lysine 9 (H3-K9), but was not acetylated at lysine 9, 14 and 18 (H3-K9, H3-K14 and H3-K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3-S10 and H3-S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3-K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm.

  19. Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation

    PubMed Central

    2014-01-01

    Background Reproductive biotechnologies in dromedary camel (Camelus dromedarius) are less developed than in other livestock species. The in vitro maturation (IVM) technology is a fundamental step for in vitro embryo production (IVP), and its optimization could represent a way to increase the success rate of IVP. The aim of the present study was to investigate the bioenergy/oxidative status of dromedary camel oocytes before and after IVM by confocal microscopy 3D imaging. Methods Oocytes were retrieved by slicing ovaries collected at local slaughterhouses. Recovered oocytes were examined before and after IVM culture for nuclear chromatin configuration and bioenergy/oxidative status, expressed as mitochondria (mt) distribution and activity, intracellular Reactive Oxygen Species (ROS) levels and distribution and mt/ROS colocalization. Results The mean recovery rate was 6 oocytes/ovary. After IVM, 61% of oocytes resumed meiosis and 36% reached the Metaphase II stage (MII). Oocyte bioenergy/redox confocal characterization revealed changes upon meiosis progression. Immature oocytes at the germinal vesicle (GV) stage were characterised by prevailing homogeneous mt distribution in small aggregates while MI and MII oocytes showed significantly higher rates of pericortical mt distribution organized in tubular networks (P < 0.05). Increased mt activity in MI (P < 0.001) and MII (P < 0.01) oocytes compared to GV stage oocytes was also observed. At any meiotic stage, homogeneous distribution of intracellular ROS was observed. Intracellular ROS levels also increased in MI (P < 0.01) and MII (P < 0.05) oocytes compared to GV stage oocytes. The mt/ROS colocalization signal increased in MI oocytes (P < 0.05). Conclusions This study provides indications that qualitative and quantitative indicators of bioenergy and oxidative status in dromedary camel oocytes are modified in relation with oocyte meiotic stage. These data may increase the knowledge of camel

  20. Fish egg injection as an alternative exposure route for early life stage toxicity studies: Description of two unique methods: Chapter 4

    USGS Publications Warehouse

    Walker, Mary K.; Zabel, Erik W.; Akerman, Gun; Balk, Lennart; Wright, Peggy J.; Tillitt, Donald E.

    1996-01-01

    In the environment, lipophilic contaminants such as halogenated aromatic hydrocarbons (HAHs, e.g., polychlorinated biphenyls, PCBs) and polycyclic aromatic hydrocarbons (PAHs, e.g., benzo[a]pyrene) readily bioaccumulate in fish, and the bioaccumulation of these lipophilic chemicals by adult fish may have significant consequences on the development and survival of their offspring. Halogenated and polycyclic aromatic hydrocarbons translocate from adult female body stores into eggs during oocyte maturation, and early life stages of fish are often more sensitive than adults to the toxicity of these chemicals. Thus, the presence of persistent, bioaccumulative contaminants in the environment may pose a risk to fish early life stage survival and ultimately reduce recruitment into the adult population.Typically, standard early life stage toxicity studies exposed embryos, larvae, and juveniles to graded concentrations of waterborne toxicants, and dose-response relationships are based on the concentrations of chemicals in the water. However, use of waterborne exposure to assess the toxicity of persistent, bioaccumulative contaminants, such as HAHs and PAHs, has two significant drawbacks. First, uptake of hydrophobic chemicals, such as HAHs and PAHs, into the developing embryo from water is not a significant route of exposure in the environment since concentrations of these chemicals freely dissolved in water are extremely low. Rather, maternal deposition into developing oocytes is the most significant source of these chemicals to the embryo. Second, the dose received by the target tissue, in this case the developing embryo, is the most accurate predictor of the toxic response, and since extrapolation from water concentrations of the chemical to egg concentrations is required, the exact dose received by the embryo can only be estimated, often with large uncertainty. Due to these drawbacks, it is important to develop an alternative exposure method that will directly expose the

  1. Morphological records of oocyte maturation in the parthenogenetic tick Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae).

    PubMed

    Sanches, Gustavo S; Araujo, Andrea M; Martins, Thiago F; Bechara, Gervásio H; Labruna, Marcelo B; Camargo-Mathias, Maria I

    2012-02-01

    Oocyte maturation in the thelytokous parthenogenetic tick Amblyomma rotundatum was examined for the first time using light and scanning electron microscopy. The panoistic ovary lacks nurse and follicular cells and is a single continuous tubular structure forming a lumen delimited by the ovarian wall. Oocytes of tick species are usually classified according to cytoplasm appearance, the presence of germinal vesicle, the presence of yolk granules, and the chorion. However, for this species, we also use oocyte size as an auxiliary tool since most oocytes were in stages I-III and were histologically very similar. Oocytes were classified into five development stages, and specific characteristics were observed: mature oocytes with thin chorion, pedicel cells arranged forming an epithelium with two or more oocytes attached by the same structure, and a large number of oocytes in the process of reabsorption. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways.

    PubMed

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-06-27

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.

  3. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways

    PubMed Central

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-01-01

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use. PMID:28487501

  4. Short-term preservation of porcine oocytes in ambient temperature: novel approaches.

    PubMed

    Yang, Cai-Rong; Miao, De-Qiang; Zhang, Qing-Hua; Guo, Lei; Tong, Jing-Shan; Wei, Yanchang; Huang, Xin; Hou, Yi; Schatten, Heide; Liu, ZhongHua; Sun, Qing-Yuan

    2010-12-07

    The objective of this study was to evaluate the feasibility of preserving porcine oocytes without freezing. To optimize preservation conditions, porcine cumulus-oocyte complexes (COCs) were preserved in TCM-199, porcine follicular fluid (pFF) and FCS at different temperatures (4°C, 20°C, 25°C, 27.5°C, 30°C and 38.5°C) for 1 day, 2 days or 3 days. After preservation, oocyte morphology, germinal vesicle (GV) rate, actin cytoskeleton organization, cortical granule distribution, mitochondrial translocation and intracellular glutathione level were evaluated. Oocyte maturation was indicated by first polar body emission and spindle morphology after in vitro culture. Strikingly, when COCs were stored at 27.5°C for 3 days in pFF or FCS, more than 60% oocytes were still arrested at the GV stage and more than 50% oocytes matured into MII stages after culture. Almost 80% oocytes showed normal actin organization and cortical granule relocation to the cortex, and approximately 50% oocytes showed diffused mitochondria distribution patterns and normal spindle configurations. While stored in TCM-199, all these criteria decreased significantly. Glutathione (GSH) level in the pFF or FCS group was higher than in the TCM-199 group, but lower than in the non-preserved control group. The preserved oocytes could be fertilized and developed to blastocysts (about 10%) with normal cell number, which is clear evidence for their retaining the developmental potentiality after 3d preservation. Thus, we have developed a simple method for preserving immature pig oocytes at an ambient temperature for several days without evident damage of cytoplasm and keeping oocyte developmental competence.

  5. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes.

    PubMed

    Zhou, Dongjie; Shen, Xinghui; Gu, Yanli; Zhang, Na; Li, Tong; Wu, Xi; Lei, Lei

    2014-06-21

    Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell-like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each "blastomere" of the 2-cell-like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each "blastomere" and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI.

  6. The Role of Microfilaments in Early Meiotic Maturation of Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Calarco, Patricia G.

    2005-04-01

    Mouse oocyte microfilaments (MF) were perturbed by depolymerization (cytochalasin B) or stabilization (jasplakinolide) and correlated meiotic defects examined by confocal microscopy. MF, microtubules, and mitochondria were vitally stained; centrosomes ([gamma]-tubulin), after fixation. MF depolymerization by cytochalasin in culture medium did not affect central migration of centrosomes, mitochondria, or nuclear breakdown (GVBD); some MF signal was localized around the germinal vesicle (GV). In maturation-blocking medium (containing IBMX), central movement was curtailed and cortical MF aggregations made the plasma membrane wavy. Occasional long MF suggested that not all MF were depolymerized. MF stabilization by jasplakinolide led to MF aggregations throughout the cytoplasm. GVBD occurred (unless IBMX was present) but no spindle formed. Over time, most oocytes constricted creating a dumbbell shape with MF concentrated under one-half of the oocyte cortex and on either side of the constriction. In IBMX medium, the MF-containing half of the dumbbell over time sequestered the GV, MF, mitochondria, and one to two large cortical centrosomes; the non-MF half appeared empty. Cumulus processes contacted the oocyte surface (detected by microtubule content) and mirrored MF distribution. Results demonstrated that MF play an essential role in meiosis, primarily through cortically mediated events, including centrosome localization, spindle (or GV) movement to the periphery, activation of (polar body) constriction, and establishment of oocyte polarity. The presence of a cortical “organizing pole” is hypothesized.

  7. Application of auxin-inducible degron technology to mouse oocyte activation with PLCζ.

    PubMed

    Miura, Kento; Matoba, Shogo; Ogonuki, Narumi; Namiki, Takafumi; Ito, Junya; Kashiwazaki, Naomi; Ogura, Atsuo

    2018-05-05

    In mammals, spermatozoa activate oocytes by triggering a series of intracellular Ca 2+ oscillations with phospholipase C zeta (PLCζ), a sperm-borne oocyte-activating factor. Because the introduction of PLCζ alone can induce oocyte activation, it might be a promising reagent for assisted reproductive technologies. To test this possibility, we injected human PLCζ (hPLCζ) mRNA into mouse oocytes at different concentrations. We observed the oocyte activation and subsequent embryonic development. Efficient oocyte activation and embryonic development to the blastocyst stage was achieved only with a limited range of mRNA concentrations (0.1 ng/μl). Higher concentrations of mRNA caused developmental arrest of most embryos, suggesting that excessive PLCζ protein might be harmful at this stage. In a second series of experiments, we aimed to regulate the PLCζ protein concentration in oocytes by applying auxin-inducible degron (AID) technology that allows rapid degradation of the target protein tagged with AID induced by auxin. Injection of the hPLCζ protein tagged with AID and enhanced green fluorescent protein (hPLCζ-AID-EGFP) demonstrated that high EGFP expression levels at the late 1-cell stage were efficiently reduced by auxin treatment, suggesting efficient hPLCζ degradation by this system. Furthermore, the defective development observed with higher concentrations of hPLCζ-AID-EGFP mRNA was rescued following auxin treatment. Full-term offspring were obtained by round spermatid injection with optimized hPLCζ-AID activation. Our results indicate that this AID technology can be applied to regulate the protein levels in mouse oocytes and that our optimized PLCζ system could be used for assisted fertilization in mammals.

  8. From fresh heterologous oocyte donation to autologous oocyte banking.

    PubMed

    Stoop, D

    2012-01-01

    Today, oocyte donation has become well established, giving rise to thousands of children born worldwide annually. The introduction of oocyte cryopreservation through vitrification allows the introduction of egg banking, improving the efficiency and comfort of oocyte donation. Moreover, the vitrification technique can now enable autologous donation of oocytes to prevent future infertility. We evaluated fresh heterologous oocyte donation in terms of obstetrical and perinatal outcome as well as of the reproductive outcome of past donors. We then evaluated the efficiency of a closed vitrification device and its clinical applications within ART. Thirdly, we evaluated the opinion of women with regard to preventive egg freezing and the efficiency of a human oocyte in relation to age. Oocyte donation is associated with an increased risk of first trimester bleeding and pregnancy induced hypertension. Donating oocytes does not seem to increase the likelihood for a later need of fertility treatment. The chance of an oocyte to result in live birth (utilization rate) in women <37 years old remains constant with a mean of 4.47%. A significant proportion of young women would consider safeguarding their reproductive potential through egg freezing or are at least open to the idea. The introduction of efficient oocyte cryopreservation has revolutionized oocyte donation through the establishment of eggbank donation. The technique also enables women to perform autologous donation after preventive oocyte storage in order to circumvent their biological clock.

  9. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes

    PubMed Central

    2014-01-01

    Background Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. Results In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell–like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each “blastomere” of the 2-cell–like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each “blastomere” and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Conclusion Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI. PMID:24953160

  10. From fresh heterologous oocyte donation to autologous oocyte banking

    PubMed Central

    Stoop, D.

    2012-01-01

    Introduction: Today, oocyte donation has become well established, giving rise to thousands of children born worldwide annually. The introduction of oocyte cryopreservation through vitrification allows the introduction of egg banking, improving the efficiency and comfort of oocyte donation. Moreover, the vitrification technique can now enable autologous donation of oocytes to prevent future infertility. Methods: We evaluated fresh heterologous oocyte donation in terms of obstetrical and perinatal outcome as well as of the reproductive outcome of past donors. We then evaluated the efficiency of a closed vitrification device and its clinical applications within ART. Thirdly, we evaluated the opinion of women with regard to preventive egg freezing and the efficiency of a human oocyte in relation to age. Results: Oocyte donation is associated with an increased risk of first trimester bleeding and pregnancy induced hypertension. Donating oocytes does not seem to increase the likelihood for a later need of fertility treatment. The chance of an oocyte to result in live birth (utilization rate) in women <37 years old remains constant with a mean of 4.47%. A significant proportion of young women would consider safeguarding their reproductive potential through egg freezing or are at least open to the idea. Discussion and Conclusion: The introduction of efficient oocyte cryopreservation has revolutionized oocyte donation through the establishment of eggbank donation. The technique also enables women to perform autologous donation after preventive oocyte storage in order to circumvent their biological clock. PMID:24753920

  11. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro.

    PubMed

    Zhang, Kun; Hansen, Peter J; Ealy, Alan D

    2010-12-01

    The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus-oocyte complexes to FGF10 during in vitro maturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8-16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo development implicates it as a noteworthy oocyte competent factor.

  12. The effect of immature oocytes quantity on the rates of oocytes maturity and morphology, fertilization, and embryo development in ICSI cycles.

    PubMed

    Halvaei, Iman; Ali Khalili, Mohammad; Razi, Mohammad Hossein; Nottola, Stefania A

    2012-08-01

    The goal was to evaluate the role of the number of retrieved immature oocytes on mature oocyte counts and morphology, and also the rates of fertilization and embryo development in ICSI cycles. 101 ICSI cycles were included in this prospective evaluation. Patients were divided into 2 groups of A (≤ 2 immature oocytes) and B (> 2 immature oocytes). In sub-analysis, the impacts of the number of GV and MI oocytes were assessed on the rates of fertilization and embryo development. Also, correlations between the numbers of immature and mature oocytes, as well as maternal age between two groups were analyzed. Assessments of oocyte morphology, fertilization, embryo quality and development were done accordingly. There was no correlation between the immature oocytes quantity with the number of mature ones. There were insignificant differences for embryo development between two groups, but fertilization rate was higher in group A (P = 0.03). In sub-analysis, insignificant differences were observed between two groups of ≤ and >2 GV and MI oocytes for rates of fertilization and embryo development. Also, the rates of clinical pregnancy and delivery were insignificant between groups. The rate of morphologically abnormal oocytes had no significant difference between two groups, except for wide perivitelline space (PVS) which was higher in group A (P = 0.03). There was no significant difference for maternal age between two groups. In cases with few retrieved immature oocytes, rates of fertilization and incidence of wide PVS may increase, although immature oocytes may not have any negative impacts on early embryo development, or the rates on number of mature oocytes.

  13. Dynamics of intracellular phospholipid membrane organization during oocyte maturation and successful vitrification of immature oocytes retrieved by ovum pick-up in cattle.

    PubMed

    Aono, Akira; Nagatomo, Hiroaki; Takuma, Tetsuya; Nonaka, Rika; Ono, Yoshitaka; Wada, Yasuhiko; Abe, Yasuyuki; Takahashi, Masashi; Watanabe, Tomomasa; Kawahara, Manabu

    2013-05-01

    The objective was to determine if immature bovine oocytes with cumulus cells at the germinal vesicle (GV) stage could be vitrified by aluminum sheets (AS; pieces of sheet-like aluminum foil). Cleavage rates in fertilized oocytes previously vitrified by the AS procedure were higher than those vitrified by a nylon-mesh holder (NM) procedure (89.3 ± 2.1% vs. 65.0 ± 3.7%). Cleaved embryos derived from the AS but not from the NM procedures developed to blastocysts. Furthermore, to investigate the effects of vitrifying GV oocytes on cytoplasmic structure and on the ability to undergo cytoplasmic changes, the intracellular phospholipid membrane (IM) was stained with the lipophilic fluorescent dye, 3,3'-dioctadecyloxa-carbocyanine perchlorate. After vitrification by AS, the IM remained intact relative to that of oocytes vitrified by NM. During in vitro maturation, reorganization of the IM was also undamaged in oocytes vitrified by AS before oocyte maturation, and the IM within oocytes vitrified by the NM procedure was evidently impaired. Finally, vitrification (AS) was used for GV oocytes collected using the ovum pick-up method. A bull calf was born after in vitro production and subsequent embryo transfer. The vitrification techniques described herein should facilitate generation of viable in vitro production bovine blastocysts using oocytes recovered using the ovum pick-up method. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Patterns of oocyte development in natural habitat and captive Salminus hilarii Valenciennes, 1850 (Teleostei: Characidae).

    PubMed

    Honji, R M; Narcizo, A M; Borella, M I; Romagosa, E; Moreira, R G

    2009-03-01

    Fecundity and oocyte development in Salminus hilarii female brood stock were analyzed with the aim of investigating the impact of migration impediment on oogenesis. Histological analyses of the ovaries were performed in adult females caught in two different environments--the Tietê River (natural) and captivity--and the gonadossomatic index, oocyte diameter and fecundity determined. Five germ cell development stages (oogonium, perinucleolar, cortical alveoli, vitellogenic, ripe) and two other structures (postovulatory follicles and atretic oocytes) were observed in females caught in the river. Captive animals lacked the ripe oocytes and postovulatory follicles and had a relatively higher number of atretic oocytes. Females in captivity are known to produce larger oocytes, and they release fewer eggs in each spawn (absolute fecundity) when compared with animals that are able to migrate. Our results suggest that the Tietê River is undergoing alterations which are being reflected in the reproductive performance of S. hilarii, mainly due to the presence of atretic oocytes in females caught in the river. The lack of postovulatory follicles and ripe oocytes in captive animals reveals that migratory impediment negatively impacts final oocyte maturation. However, the stage of maturation reached is adequate for ovulation induction with hormone manipulation.

  15. Distribution of alpha3, alpha5 and alpha(v) integrin subunits in mature and immature human oocytes.

    PubMed

    Capmany, G; Mart, M; Santaló, J; Bolton, V N

    1998-10-01

    The distribution of three integrin subunits, alpha3, alpha5 and alpha(v), in immature and mature human oocytes has been examined using immunofluorescence and confocal microscopy. The results demonstrate that both alpha5 and alpha(v) are present at the germinal vesicle stage, while alpha3 was only detected in oocytes after germinal vesicle breakdown, in metaphase I and II stage oocytes. The cortical concentration of integrin subunits alpha3 and alpha5 is consistent with their localization in the oolemma. In contrast, the homogeneous distribution of alpha(v) throughout the oocyte suggests the existence of cytoplasmic reservoirs of this protein in the oocyte.

  16. Novel mutations in PATL2 cause female infertility with oocyte germinal vesicle arrest.

    PubMed

    Huang, Lingli; Tong, Xianhong; Wang, Fengsong; Luo, Lihua; Jin, Rentao; Fu, Yingyun; Zhou, Guixiang; Li, Daojing; Song, Gaojie; Liu, Yusheng; Zhu, Fuxi

    2018-06-01

    Do PATL2 mutations account for female infertility with oocyte germinal vesicle (GV) arrest? Four of nine independent families with oocyte GV arrest were identified with biallelic PATL2 mutations, suggesting that these mutations may be responsible for oocyte maturation arrest in primary infertile women. Recently, two independent studies have demonstrated that infertility in some women with oocyte maturation arrest at the GV stage was caused by biallelic mutations in PATL2. PATL2 encodes protein PAT1 homolog 2, an RNA-binding protein that may act as a translational repressor. In this study, nine unrelated primary infertile females presenting with oocyte GV arrest were recruited during the treatment of early rescue ICSI or ICSI from January 2013 to December 2016. Genomic DNA was isolated from blood samples obtained from all nine affected individuals and all of their available family members. All the coding regions of PATL2 were sequenced by Sanger sequencing. The pathogenicity of the identified variants and their possible effects on the protein were evaluated in silico. Five novel point mutations and one recurrent splicing mutation in PATL2 were identified in four of nine (44.4%) unrelated patients. We found a consanguineous family with a homozygous missense mutation in two affected sisters, and their fertile brother. There were no clear phenotypic differences in oocytes between the patient with the homozygous missense mutation, patients with nonsense mutations and undiagnosed patients. n/a. The function of PATL2 remains largely unknown. Both the exact pathogenic mechanism(s) of mutated PATL2 causing human oocyte maturation arrest and the strategies to overcome this condition should be further investigated in the future. According to our data, mutations in PATL2 account for 44.4% of the individuals with oocyte GV arrest. Our study further confirms that PATL2 is required for human oocyte maturation and female fertility, which indicates a potential prognostic value of

  17. Effect of Nanoparticles on the Survival and Development of Vitrified Porcine GV Oocytes.

    PubMed

    Li, W J; Zhou, X L; Liu, B L; Dai, J J; Song, P; Teng, Y

    BACKGROUND: Some mammalian oocytes have been successfully cryopreserved by vitrification. However, the survival and developmental rate of vitrified oocytes is still low. The incorporation of nanoparticles into cryoprotectant (CPA) may improve the efficiency of vitrification by changing the properties of solutions. The toxicity of different concentrations of hydroxy apatite (HA), silica dioxide (SO 2 ), aluminum oxide (Al 2 O 3 ) and titanium dioxide (TiO 2 ) nanoparticles (20 nm in diameter) to oocytes was tested and the toxicity threshold value of each nanoparticle was determined. Porcine GV oocytes were vitrified in optimized nano-CPA, and effects of diameter and concentration of nanoparticles on the survival rate and developmental rate of porcine GV oocytes were compared. HA nanoparticles have demonstrated the least toxicity among four nanoparticles and the developmental rate of GV-stage porcine oocytes was 100% when its concentration was lower than 0.5%. By adding 0.1% HA into VS, the developmental rate of GV-stage porcine oocytes (22%) was significantly higher than other groups. The effect of vitrification in nano-CPA on oocytes was related to the concentration of HA nanoparticles rather than their size. By adding 0.05% HA nanoparticles (60nm in diameter), the developmental rate increased dramatically from 14.7% to 30.4%. Nano-cryopreservation offers a new way to improve the effect of survival and development of oocytes, but the limitation of this technology shall not be ignored.

  18. Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos

    PubMed Central

    Miyamoto, Kei; Nagai, Kouhei; Kitamura, Naoya; Nishikawa, Tomoaki; Ikegami, Haruka; Binh, Nguyen T.; Tsukamoto, Satoshi; Matsumoto, Mai; Tsukiyama, Tomoyuki; Minami, Naojiro; Yamada, Masayasu; Ariga, Hiroyoshi; Miyake, Masashi; Kawarasaki, Tatsuo; Matsumoto, Kazuya; Imai, Hiroshi

    2011-01-01

    Nuclear reprogramming of differentiated cells can be induced by oocyte factors. Despite numerous attempts, these factors and mechanisms responsible for successful reprogramming remain elusive. Here, we identify one such factor, necessary for the development of nuclear transfer embryos, using porcine oocyte extracts in which some reprogramming events are recapitulated. After incubating somatic nuclei in oocyte extracts from the metaphase II stage, the oocyte proteins that were specifically and abundantly incorporated into the nuclei were identified by mass spectrometry. Among 25 identified proteins, we especially focused on a multifunctional protein, DJ-1. DJ-1 is present at a high concentration in oocytes from the germinal vesicle stage until embryos at the four-cell stage. Inhibition of DJ-1 function compromises the development of nuclear transfer embryos but not that of fertilized embryos. Microarray analysis of nuclear transfer embryos in which DJ-1 function is inhibited shows perturbed expression of P53 pathway components. In addition, embryonic arrest of nuclear transfer embryos injected with anti–DJ-1 antibody is rescued by P53 inhibition. We conclude that DJ-1 is an oocyte factor that is required for development of nuclear transfer embryos. This study presents a means for identifying natural reprogramming factors in mammalian oocytes and a unique insight into the mechanisms underlying reprogramming by nuclear transfer. PMID:21482765

  19. Plk1 is essential for proper chromosome segregation during meiosis I/meiosis II transition in pig oocytes.

    PubMed

    Zhang, Zixiao; Chen, Changchao; Ma, Liying; Yu, Qiuchen; Li, Shuai; Abbasi, Benazir; Yang, Jiayi; Rui, Rong; Ju, Shiqiang

    2017-08-29

    Polo-like kinase 1 (Plk1), as a characteristic regulator in meiosis, organizes multiple biological events of cell division. Although Plk1 has been implicated in various functions in somatic cell mitotic processes, considerably less is known regarding its function during the transition from metaphase I (MI) to metaphase II (MII) stage in oocyte meiotic progression. In this study, the possible role of Plk1 during the MI-to-MII stage transition in pig oocytes was addressed. Initially, the spatiotemporal expression and subcellular localization pattern of Plk1 were revealed in pig oocytes from MI to MII stage using indirect immunofluorescence and confocal microscopy imaging techniques combined with western blot analyses. Moreover, a highly selective Plk1 inhibitor, GSK461364, was used to determine the potential role of Plk1 during this MI-to-MII transition progression. Upon expression, Plk1 exhibited a specific dynamic intracellular localization, and co-localization of Plk1 with α-tubulin was revealed in the meiotic spindle of pig oocyte during the transition from MI to MII stage. GSK461364 treatment significantly blocked the first polar body (pbI) emission in a dose-dependent manner and resulted in a failure of meiotic maturation, with a larger percentage of the GSK461364-treated oocytes arresting in the anaphase-telophase I (ATI) stage. Further subcellular structure examination results showed that inhibition of Plk1 with GSK461364 had no visible effect on spindle assembly but caused a significantly higher proportion of the treated oocytes to have obvious defects in homologous chromosome segregation at ATI stage. Thus, these results indicate that Plk1 plays an essential role during the meiosis I/meiosis II transition in porcine oocytes, and the regulation is associated with Plk1's effects on homologous chromosome segregation in the ATI stage.

  20. Ovary and oocyte maturation of the tick Amblyomma brasiliense Aragão, 1908 (Acari: Ixodidae).

    PubMed

    Seron Sanches, Gustavo; Bechara, Gervásio Henrique; Camargo-Mathias, Maria Izabel

    2010-01-01

    This study describes the ovary anatomy and dynamics of oocytes maturation process of Amblyomma brasiliense ticks. The ovary is of panoistic type lacking nurse and follicular cells. This organ consists of a single continuous tubular structure comprising a lumen delimited by the ovarian wall. Oocytes of this tick species are classified into five stages (I-V) and described based on cytoplasm appearance, presence of germ vesicle, yolk granules aspects, and chorium deposition. Oocytes of various sizes and at different developmental stages remain attached to the ovary by a cellular pedicel until completing stage V. Then they are released into the ovary lumen and from there into the exterior.

  1. Oocyte holding in the Iberian red deer (Cervus elaphus hispanicus): Effect of initial oocyte quality and epidermal growth factor addition on in vitro maturation.

    PubMed

    Macías-García, B; González-Fernández, L; Matilla, E; Hernández, N; Mijares, J; Sánchez-Margallo, F M

    2018-02-01

    Current in vitro embryo production protocols in the Iberian red deer (Cervus elaphus hispanicus) need to be optimized; oocyte harvesting in situ followed by overnight holding could reduce the human effort and shipping costs. In our work, post-mortem ovaries were retrieved, and the oocytes were harvested and allocated to G1 group (good quality) or G2 + G3 group (low quality). The oocytes were separately subjected to immediate in vitro maturation (IVM) or held overnight in a holding medium composed of 40% of TCM 199 with Earle's salts, 40% TCM 199 with Hanks' salts and 20% fetal bovine serum (FBS), at room temperature (16 hr). In vitro maturation was carried out in a basal medium supplemented or not with 50 ng/ml of epidermal growth factor (EGF). Our data showed that addition of EGF to the maturation medium increases the percentage of G1 oocytes reaching metaphase II (3.9% vs. 50%, basal vs. EGF; p < .001) and decreased their degeneration rate (69.9% vs. 22.2%, basal vs. EGF; p < .01) when oocytes were immediately matured. Overnight holding increased the meiotic competence of G1 oocytes (37.5% matured in basal medium) and EGF increased prophase arrest in G2 + G3 oocytes (16.1% vs. 38.8% in germinal vesicle [GV] stage in basal medium vs. EGF added medium; p < .05). Our data demonstrate that oocyte holding can be used in Iberian red deer oocytes. Interestingly, EGF addition increases the oocytes' meiotic competence in immediately matured oocytes but not after oocyte holding depending upon initial oocyte quality. © 2017 Blackwell Verlag GmbH.

  2. Oocyte Activation and Fertilisation: Crucial Contributors from the Sperm and Oocyte.

    PubMed

    Yeste, Marc; Jones, Celine; Amdani, Siti Nornadhirah; Coward, Kevin

    2017-01-01

    This chapter intends to summarise the importance of sperm- and oocyte-derived factors in the processes of sperm-oocyte binding and oocyte activation. First, we describe the initial interaction between sperm and the zona pellucida, with particular regard to acrosome exocytosis. We then describe how sperm and oocyte membranes fuse, with special reference to the discovery of the sperm protein IZUMO1 and its interaction with the oocyte membrane receptor JUNO. We then focus specifically upon oocyte activation, the fundamental process by which the oocyte is alleviated from metaphase II arrest by a sperm-soluble factor. The identity of this sperm factor has been the source of much debate recently, although mounting evidence, from several different laboratories, provides strong support for phospholipase C ζ (PLCζ), a sperm-specific phospholipase. Herein, we discuss the evidence in support of PLCζ and evaluate the potential role of other candidate proteins, such as post-acrosomal WW-binding domain protein (PAWP/WBP2NL). Since the cascade of downstream events triggered by the sperm-borne oocyte activation factor heavily relies upon specialised cellular machinery within the oocyte, we also discuss the critical role of oocyte-borne factors, such as the inositol trisphosphate receptor (IP 3 R), protein kinase C (PKC), store-operated calcium entry (SOCE) and calcium/calmodulin-dependent protein kinase II (CaMKII), during the process of oocyte activation. In order to place the implications of these various factors and processes into a clinical context, we proceed to describe their potential association with oocyte activation failure and discuss how clinical techniques such as the in vitro maturation of oocytes may affect oocyte activation ability. Finally, we contemplate the role of artificial oocyte activating agents in the clinical rescue of oocyte activation deficiency and discuss options for more endogenous alternatives.

  3. Mechanisms of oocyte development in European sea bass (Dicentrarchus labrax L.): investigations via application of unilateral ovariectomy.

    PubMed

    García-López, Ángel; Sánchez-Amaya, María I; Tyler, Charles R; Prat, Francisco

    2011-08-01

    Unilateral ovariectomy (ULO) was performed in European sea bass (Dicentrarchus labrax L.) during late pre-vitellogenesis/early vitellogenesis. Plasma steroid levels and the expression of a suite of potential oogenesis-relevant genes in the ovary, brain, and pituitary were evaluated with the aim of understanding their involvement in the compensatory oocyte development occurring within the remaining ovarian lobe. After 69 days of surgery the remaining ovarian lobe in ULO fish was gravimetrically equivalent to an intact-paired ovary of sham operated, control fish. This compensatory ovarian growth was based on an increased number of early perinucleolar oocytes and mid-late stage vitellogenic follicles without an apparent recruitment of primary oocytes into the secondary growth phase. Plasma steroid levels were similar in ULO and control females at all time points analyzed, suggesting an increased steroid production of the remaining ovarian lobe in hemi-castrated females. Results of the gene expression survey conducted indicate that the signaling pathways mediated by Fsh and Gnrh1 constitute the central axes orchestrating the observed ovarian compensatory growth. In addition, steroid receptors, Star protein, Igfs, and members of the transforming growth factor beta superfamily including anti-Mullerian hormone and bone morphogenetic protein 4 were identified as potentially relevant players within this process, although their specific actions and interactions remain to be established. Our results demonstrate that ULO provides an excellent in vivo model for elucidating the interconnected endocrine and molecular mechanisms controlling oocyte development in European sea bass.

  4. Developmental consequences of cryopreservation of mammalian oocytes and embryos.

    PubMed

    Smith, Gary D; Silva E Silva, Cristine Ane

    2004-08-01

    During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.

  5. Effect of Fetal Mouse Lung Tissue Co-Culture on In Vitro Maturation of Mouse Immature Oocytes.

    PubMed

    Belbasi, Masomeh; Jorsaraei, Seyed Gholam Ali; Gholamitabar Tabari, Maryam; Khanbabaei, Ramzan

    2017-10-01

    The aim of this study was to evaluate the fetal mouse lung tissue co-culture on in vitro maturation (IVM) of mouse immature oocytes. In this experimental study, germinal vesicle (GV) oocytes from ovaries of a group of 25 female mice, 6-8 weeks of age, were dissected after being stimulated by 7.5 IU pregnant mare serum gonadotropin (PMSG) through an intraperitoneal (IP) injection. The fetal lung tissues were then prepared and cultured individually. A total number of 300 oocytes were cultured in the following three groups for 24 hours: control group (n=100) containing only base medium, group I (n=100) containing base medium co-cultured with 11.5- to 12.5-day old fetal mouse lung tissues, and group II (n=100) containing base medium co-cultured with 12.5- to 13.5-day old fetal mouse lung tissues. The proportion of GV and metaphase І (MI) oocytes matured into MІІ oocytes were compared among the three groups using analysis of variance (ANOVA). Correlation test were also used to evaluate the successful rate of IVM oocytes. The proportions of GV oocytes reaching MІІ stage were 46, 65, and 56%, in control, I and II groups, respectively (P<0.05). The percentage of the oocytes remaining at the GV stage were higher in control group as compared with two treatment groups (P<0.05). This study indicated that fetal mouse lung tissue co-culture method increased the percentage of GV oocytes reaching MII stage. Copyright© by Royan Institute. All rights reserved.

  6. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary.

    PubMed

    Jiang, Chen; Diao, Fan; Sang, Yong-Juan; Xu, Na; Zhu, Rui-Lou; Wang, Xiu-Xing; Chen, Zhong; Tao, Wei-Wei; Yao, Bing; Sun, Hai-Xiang; Huang, Xing-Xu; Xue, Bin; Li, Chao-Jun

    2017-01-01

    Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function.

  7. Evaluation of zona pellucida birefringence intensity during in vitro maturation of oocytes from stimulated cycles.

    PubMed

    Petersen, Claudia G; Vagnini, Laura D; Mauri, Ana L; Massaro, Fabiana C; Silva, Liliane F I; Cavagna, Mario; Baruffi, Ricardo L R; Oliveira, Joao B A; Franco, José G

    2011-04-23

    This study evaluated whether there is a relationship between the zona pellucida birefringence (ZP-BF) intensity and the nuclear (NM) and cytoplasmic (CM) in vitro maturation of human oocytes from stimulated cycles. The ZP-BF was evaluated under an inverted microscope with a polarizing optical system and was scored as high/positive (when the ZP image presented a uniform and intense birefringence) or low/negative (when the image presented moderate and heterogeneous birefringence). CM was analyzed by evaluating the distribution of cortical granules (CGs) throughout the ooplasm by immunofluorescence staining. CM was classified as: complete, when CG was localized in the periphery; incomplete, when oocytes presented a cluster of CGs in the center; or in transition, when oocytes had both in clusters throughout cytoplasm and distributed in a layer in the cytoplasm periphery Nuclear maturation: From a total of 83 germinal vesicle (GV) stage oocytes, 58 of oocytes (69.9%) reached NM at the metaphase II stage. From these 58 oocytes matured in vitro, the high/positively scoring ZP-BF was presented in 82.7% of oocytes at the GV stage, in 75.8% of oocytes when at the metaphase I, and in 82.7% when oocytes reached MII. No relationship was observed between NM and ZP-BF positive/negative scores (P = 0.55). These variables had a low Pearson's correlation coefficient (r = 0.081). Cytoplasmic maturation: A total of 85 in vitro-matured MII oocytes were fixed for CM evaluation. Forty-nine oocytes of them (57.6%) showed the complete CM, 30 (61.2%) presented a high/positively scoring ZP-BF and 19 (38.8%) had a low/negatively scoring ZP-BF. From 36 oocytes (42.3%) with incomplete CM, 18 (50%) presented a high/positively scoring ZPBF and 18 (50%) had a low/negatively scoring ZP-BF. No relationship was observed between CM and ZP-BF positive/negative scores (P = 0.42). These variables had a low Pearson's correlation coefficient (r = 0.11). The current study demonstrated an absence of

  8. Kinetics of nuclear maturation and effect of holding ovaries at room temperature on in vitro maturation of camel (Camelus dromedarius) oocytes.

    PubMed

    Wani, N A; Nowshari, M A

    2005-07-01

    Experiments were conducted to investigate kinetics of in vitro nuclear maturation and the effect of storing ovaries at room temperature on initial chromatin configuration and in vitro maturation of dromedary camel oocytes. Cumulus oocyte complexes (COCs) were collected from slaughterhouse ovaries and matured in vitro for 4-48h. At every 4h interval (starting from 0 to 48 h), groups of oocytes were fixed, stained and evaluated for the status of nuclear chromatin. Oocytes were categorized as germinal vesicle (GV), diakinesis (DK), metaphase-I (M-I), anaphase-I (A-I), metaphase-II (M-II) stage and those with degenerated, fragmented, activated or without a visible chromatin as others. At the start of culture, 74% (66/89) oocytes were at GV stage, 13% (12/89) at DK and 12% (11/89) were classified as others. Germinal vesicle breakdown started spontaneously in culture and at 20 h of culture 97% oocytes had already completed this process. After 8 and 16 h of maturation the highest proportion of oocytes (42%, 48/114 and 41%, 51/123) were at DK and M-I stage, respectively. The proportions of oocytes reaching M-II stage at 32 (42%, 50/118), 36 (45%, 47/104), 40 (49%, 57/117), 44 (52%, 103/198) and 48 h (46%, 55/120) of culture were not different from each other (P>0.05). The proportion of oocytes categorized as others, however, increased after 40 h of culture and was higher (P<0.05) at 48 h compared with other maturation periods. There was no difference (P>0.05) in the proportion of oocytes reaching M-II stage from the ovaries collected and stored in normal saline solution (NSS) at room temperature for 12h (43%, 64/148) and those collected in warm NSS (37 degrees C) and processed immediately after arrival in laboratory (49%, 57/117). However, low number of oocytes reached M-II stage from ovaries collected in warm NSS but stored at room temperature (29%, 37/128) compared with other two groups (P<0.05). It may be concluded that dromedary oocytes require 32-44h of in vitro

  9. Dynamic distribution of spindlin in nucleoli, nucleoplasm and spindle from primary oocytes to mature eggs and its critical function for oocyte-to-embryo transition in gibel carp.

    PubMed

    Sun, Min; Li, Zhi; Gui, Jian-Fang

    2010-10-01

    Spindlin (Spin) was thought as a maternal-effect factor associated with meiotic spindle. Its role for the oocyte-to-embryo transition was suggested in mouse, but its direct evidence for the function had been not obtained in other vertebrates. In this study, we used the CagSpin-specific antibody to investigate CagSpin expression pattern and distribution during oogenesis of gibel carp (Carassius auratus gibelio). First, the oocyte-specific expression pattern and dynamic distribution was revealed in nucleoli, nucleoplasm, and spindle from primary oocytes to mature eggs by immunofluorescence localization. In primary oocytes and growth stage oocytes, CagSpin accumulates in nucleoli in increasing numbers along with the oocyte growth, and its disassembly occurs in vitellogenic oocytes, which implicates that CagSpin may be a major component of a large number of nucleoli in fish growth oocytes. Then, co-localization of CagSpin and β-tubulin was revealed in meiotic spindle of mature egg, indicating that CagSpin is one spindle-associated factor. Moreover, microinjection of CagSpin-specific antibody into the fertilized eggs blocked the first cleavage, and found that the CagSpin depletion resulted in spindle assembly disturbance. Thereby, our study provided the first direct evidence for the critical oocyte-to-embryo transition function of Spin in vertebrates, and confirmed that Spin is one important maternal-effect factor that participates in oocyte growth, oocyte maturation, and oocyte-to-embryo transition.

  10. Femtosecond laser based enucleation of porcine oocytes for somatic cell nuclear transfer

    NASA Astrophysics Data System (ADS)

    Kütemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2009-07-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer (SCNT) in recent years. However, this method still results in very low efficiencies around 1% which originate from suboptimal culture conditions and highly invasive techniques for oocyte enucleation and injection of the donor cell using micromanipulators. In this paper, we present a new minimal invasive method for oocyte imaging and enucleation based on the application of femtosecond (fs) laser pulses. After imaging of the oocyte with multiphoton microscopy, ultrashort pulses are focused onto the metaphase plate of MII-oocytes in order to ablate the DNA molecules. We show that fs laser based enucleation of porcine oocytes completely inhibits the first mitotic cleavage after parthenogenetic activation while maintaining intact oocyte morphology in most cases. In contrast, control groups without previous irradiation of the metaphase plate are able to develop to the blastocyst stage. Further experiments have to clarify the suitability of fs laser based enucleated oocytes for SCNT.

  11. Expression and localization of aquaporin 1b during oocyte development in the Japanese eel (Anguilla japonica)

    PubMed Central

    2011-01-01

    To elucidate the molecular mechanisms underling hydration during oocyte maturation, we characterized the structure of Japanese eel (Anguilla japonica) novel-water selective aquaporin 1 (AQP1b) that thought to be involved in oocyte hydration. The aqp1b cDNA encodes a 263 amino acid protein that includes the six potential transmembrane domains and two Asn-Pro-Ala motifs. Reverse transcription-polymerase chain reaction showed transcription of Japanese eel aqp1b in ovary and testis but not in the other tissues. In situ hybridization studies with the eel aqp1b cRNA probe revealed intense eel aqp1b signal in the oocytes at the perinucleolus stage and the signals became faint during the process of oocyte development. Light microscopic immunocytochemical analysis of ovary revealed that the Japanese eel AQP1b was expressed in the cytoplasm around the yolk globules which were located in the peripheral region of oocytes during the primary yolk globule stage; thereafter, the immunoreactivity was observed throughout the cytoplasm of oocyte as vitellogenesis progressed. The immunoreactivity became localized around the large membrane-limited yolk masses which were formed by the fusion of yolk globules during the oocyte maturation phase. These results together indicate that AQP1b, which is synthesized in the oocyte during the process of oocyte growth, is essential for mediating water uptake into eel oocytes. PMID:21615964

  12. Reconstruction of mammalian oocytes by germinal vesicle transfer: A systematic review

    PubMed Central

    Darbandi, Sara; Darbandi, Mahsa; Khorram Khorshid, Hamid Reza; Shirazi, Abolfazl; Sadeghi, Mohammad Reza; Agarwal, Ashok; Al-Hasani, Safaa; Naderi, Mohammad Mehdi; Ayaz, Ahmet; Akhondi, Mohammad Mehdi

    2017-01-01

    Nuclear transfer procedures have been recently applied for clinical and research targets as a novel assisted reproductive technique and were used for increasing the oocyte activity during its growth and maturation. In this review, we summarized the nuclear transfer technique for germinal vesicle stage oocytes to reconstruct the maturation of them. Our study covered publications between 1966 and August 2017. In result utilized germinal vesicle transfer techniques, fusion, and fertilization survival rate on five different mammalian species are discussed, regarding their potential clinical application. It seems that with a study on this method, there is real hope for effective treatments of old oocytes or oocytes containing mitochondrial problems in the near future. PMID:29387825

  13. Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization.

    PubMed

    Nikiforaki, D; Vanden Meerschaut, F; Qian, C; De Croo, I; Lu, Y; Deroo, T; Van den Abbeel, E; Heindryckx, B; De Sutter, P

    2014-01-01

    What are the precise patterns of calcium oscillations during the fertilization of human oocytes matured either in vivo or in vitro or aged in vitro and what is the effect of cryopreservation? Human oocytes matured in vivo exhibit a specific pattern of calcium oscillations, which is affected by in vitro maturation, in vitro ageing and cryopreservation. Oscillations in cytoplasmic calcium concentration are crucial for oocyte activation and further embryonic development. While several studies have described in detail the calcium oscillation pattern during fertilization in animal models, studies with human oocytes are scarce. This was a laboratory-based study using human MII oocytes matured in vivo or in vitro either fresh or after cryopreservation with slow freezing or vitrification. Altogether, 205 human oocytes were included in the analysis. In vivo and in vitro matured human oocytes were used for this research either fresh or following vitrification/warming (V/W) and slow freezing/thawing (F/T). Human oocytes were obtained following written informed consent from patients undergoing ovarian hyperstimulation. For the calcium pattern analysis, oocytes were loaded with the ratiometric calcium indicator fluorescent dye Fura-2. Following ICSI using sperm from a single donor, intracellular calcium was measured for 16 h at 37°C under 6% CO(2). The calcium oscillation parameters were calculated for all intact oocytes that showed calcium oscillations and were analyzed using the Mann-Whitney U-test. Human in vivo MII oocytes display a specific pattern of calcium oscillations following ICSI. This pattern is significantly affected by in vitro ageing, with the calcium oscillations occurring over a longer period of time and with a lower frequency, shorter duration and higher amplitude (P < 0.05). In vitro matured oocytes from the GV and MI stage exhibit a different pattern of calcium oscillations with calcium transients being of lower frequency and shorter duration compared with

  14. Smc1β is required for activation of SAC during mouse oocyte meiosis.

    PubMed

    Miao, Yilong; Zhou, Changyin; Cui, Zhaokang; Dai, Xiaoxin; Zhang, Mianqun; Lu, Yajuan; Xiong, Bo

    2017-03-19

    Smc1β is a meiosis-specific cohesin subunit that is essential for sister chromatid cohesion and DNA recombination. Previous studies have shown that Smc1β-deficient mice in both sexes are sterile. Ablation of Smc1β during male meiosis leads to the blockage of spermatogenesis in pachytene stage, and ablation of Smc1β during female meiosis generates a highly error-prone oocyte although it could develop to metaphase II stage. However, the underlying mechanisms regarding how Smc1β maintains the correct meiotic progression in mouse oocytes have not been clearly defined. Here, we find that GFP-fused Smc1β is expressed and localized to the chromosomes from GV to MII stages during mouse oocyte meiotic maturation. Knockdown of Smc1β by microinjection of gene-specific morpholino causes the impaired spindle apparatus and chromosome alignment which are highly correlated with the defective kinetochore-microtubule attachments, consequently resulting in a prominently higher incidence of aneuploid eggs. In addition, the premature extrusion of polar bodies and escape of metaphase I arrest induced by low dose of nocodazole treatment in Smc1β-depleted oocytes indicates that Smc1β is essential for activation of spindle assembly checkpoint (SAC) activity. Collectively, we identify a novel function of Smc1β as a SAC participant beyond its role in chromosome cohesion during mouse oocyte meiosis.

  15. Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes.

    PubMed

    Moulavi, F; Hosseini, S M; Tanhaie-Vash, N; Ostadhosseini, S; Hosseini, S H; Hajinasrollah, M; Asghari, M H; Gourabi, H; Shahverdi, A; Vosough, A D; Nasr-Esfahani, M H

    2017-03-01

    Recent accomplishments in the field of somatic cell nuclear transfer (SCNT) hold tremendous promise to prevent rapid loss of animal genetic resources using ex situ conservation technology. Most of SCNT studies use viable cells for nuclear transfer into recipient oocytes. However, preparation of live cells in extreme circumstances, in which post-mortem material of endangered/rare animals is improperly retained frozen, is difficult, if not impossible. This study investigated the possibility of interspecies-SCNT (iSCNT) in Asiatic cheetah (Acinonyx jubatus venaticus), a critically endangered subspecies, using nuclei derived from frozen tissue in absence of cryo-protectant at -20 °C and in vitro matured domestic cat oocytes. No cells growth was detected in primary culture of skin and tendon pieces or following culture of singled cells prepared by enzymatic digestion. Furthermore, no live cells were detected following differential viable staining and almost all cells had ruptured membrane. Therefore, direct injection of donor nuclei into enucleated cat oocytes matured in vitro was carried out for SCNT experiments. Early signs of nuclear remodeling were observed as early as 2 h post-iSCNT and significantly increased at 4 h post-iSCNT. The percentages of iSCNT reconstructs that cleaved and developed to 4-16 cell and morula stages were 32.3 ± 7.3, 18.2 ± 9.8 and 5.9 ± 4.3%, respectively. However, none of the iSCNT reconstructs developed to the blastocyst stage. When domestic cat somatic and oocytes were used for control SCNT and parthenogenetic activation, the respective percentages of oocytes that cleaved (51.3 ± 13.9 and 77.3 ± 4.0%) and further developed to the blastocyst stage (11.3 ± 3.3 and 16.8 ± 3.8%) were comparable. In summary, this study demonstrated that enucleated cat oocytes can partially remodel and reactivate non-viable nuclei of Asiatic cheetah and support its reprogramming back to the embryonic stage. To our knowledge, this is

  16. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.

    PubMed

    Choi, Jung Kyu; Huang, Haishui; He, Xiaoming

    2015-06-01

    Cryopreservation by low-cryoprotectant (CPA) vitrification has the potential to combine all the advantages of the conventional high-CPA vitrification and slow-freezing approaches while avoiding their drawbacks. However, current low-CPA vitrification protocol for cryopreservation of oocytes requires a lengthy and multi-step procedure for unloading CPAs. In this study, we report a much-simplified procedure of using quartz microcapillary (QMC) for low-CPA vitrification of mouse oocytes with only one step for unloading CPAs. The immediate viability of oocytes after the improved low-CPA vitrification was determined to be more than 90%. Moreover, no significant difference was observed in terms of embryonic development from the two-cell to blastocyst stages between the fresh and vitrified oocytes after in vitro fertilization (IVF). This improved low-CPA vitrification technology has the potential for efficient cryopreservation of oocytes to preserve the fertility of mammals including humans for assisted reproductive medicine, maintenance of animal resource and endangered species, and livestock management. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption.

    PubMed

    Bui, Thi Thu Hien; Belli, Martina; Fassina, Lorenzo; Vigone, Giulia; Merico, Valeria; Garagna, Silvia; Zuccotti, Maurizio

    2017-05-01

    Full-grown mouse antral oocytes are classified as surrounding nucleolus (SN) or not-surrounding nucleolus (NSN), depending on the respective presence or absence of a ring of Hoechst-positive chromatin surrounding the nucleolus. In culture, both types of oocytes resume meiosis and reach the metaphase II (MII) stage, but following insemination, NSN oocytes arrest at the two-cell stage whereas SN oocytes may develop to term. By coupling time-lapse bright-field microscopy with image analysis based on particle image velocimetry, we provide the first systematic measure of the changes to the cytoplasmic movement velocity (CMV) occurring during the germinal vesicle-to-MII (GV-to-MII) transition of these two types of oocytes. Compared to SN oocytes, NSN oocytes display a delayed GV-to-MII transition, which can be mostly explained by retarded germinal vesicle break down and first polar body extrusion. SN and NSN oocytes also exhibit significantly different CMV profiles at four main time-lapse intervals, although this difference was not predictive of SN or NSN oocyte origin because of the high variability in CMV. When CMV profile was analyzed through a trained artificial neural network, however, each single SN or NSN oocyte was blindly identified with a probability of 92.2% and 88.7%, respectively. Thus, the CMV profile recorded during meiotic resumption may be exploited as a cytological signature for the non-invasive assessment of the oocyte developmental potential, and could be informative for the analysis of the GV-to-MII transition of oocytes of other species. © 2017 Wiley Periodicals, Inc.

  18. IGF-I slightly improves nuclear maturation and cleavage rate of bovine oocytes exposed to acute heat shock in vitro.

    PubMed

    Meiyu, Qi; Liu, Di; Roth, Zvi

    2015-08-01

    An in vitro model of embryo production was used to examine the effects of insulin-like growth factor (IGF)-I on maturation and developmental competence of oocytes exposed to heat shock. Cumulus-oocyte complexes were matured at 38.5°C or exposed to acute heat shock (HS; 41.5°C), with or without 100 ng/ml IGF-I, for 22 h through in vitro maturation. The experimental groups were control (C), C + IGF-I, HS, and HS + IGF-I. Oocytes were fertilized at the end of maturation, and the proportion of cleaved embryos was recorded 44 h later. HS during maturation increased the proportion of TUNEL-positive oocytes (P < 0.05). HS did not have any effect on cortical granule translocation but impaired resumption of meiosis, expressed as a decreased proportion of oocytes with nuclei in metaphase I (P < 0.05) and metaphase II (MII; P < 0.05). HS decreased the proportion of oocytes that cleaved (P < 0.05), in particular those oocytes that further developed to 4-cell-stage embryos (P < 0.05). IGF-I alleviated, to some extent, the deleterious effects of HS on the oocytes as reflected by a reduced proportion of TUNEL-positive oocytes (P < 0.03). While not significant, IGF-I tended to increase the proportion of MII-stage oocytes (P < 0.08) and 4-cell-stage cleaved embryos (P < 0.06). Further examination is required to explore whether IGF-I also affects the developmental competence of oocytes exposed to HS.

  19. Gonad morphology, oocyte development and spawning cycle of the calanoid copepod Acartia clausi

    NASA Astrophysics Data System (ADS)

    Eisfeld, Sonja M.; Niehoff, Barbara

    2007-09-01

    Information on gonad morphology and its relation to basic reproductive parameters such as clutch size and spawning frequency is lacking for Acartia clausi, a dominant calanoid copepod of the North Sea. To fill this gap, females of this species were sampled at Helgoland Roads from mid March to late May 2001. Gonad structure and oogenesis were studied using a combination of histology and whole-body-analysis. In addition, clutch size and spawning frequency were determined in incubation experiments, during which individual females were monitored at short intervals for 8 and 12 h, respectively. The histological analysis revealed that the ovary of A. clausi is w-shaped with two distinct tips pointing posteriorly. It is slightly different from that of other Acartia species and of other copepod taxa. From the ovary, two anterior diverticula extend into the head region, and two posterior diverticula extend to the genital opening in the abdomen. Developing oocytes change in shape and size, and in the appearance of the nucleus and the ooplasm. Based on these morphological characteristics, different oocyte development stages (OS) were identified. Mitotically dividing oogonia and young oocytes (OS 0) were restricted to the ovary, whereas vitellogenic oocytes (OS 1 4) were present in the diverticula. The development stage of the oocytes increased with distance to the ovary in both, anterior and posterior diverticula. Most advanced oocytes were situated ventrally, and their number varied between 1 and 18, at a median of 4. All oocyte development stages co-occur indicating that oogenesis in A. clausi is a continuous process. These morphological features reflect the reproductive traits of this species. In accordance with the low numbers of mature oocytes in the gonads, females usually produced small clutches of one to five eggs. Clutches were released throughout the entire observation period at intervals of 90 min (median) resulting in mean egg production rates of 18 28 eggs female

  20. Morphological characterization of the ovary and oocytes vitellogenesis of the tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae).

    PubMed

    de Oliveira, Patrícia Rosa; Bechara, Gervásio Henrique; Denardi, Sandra Eloisi; Nunes, Erika Takagi; Camargo Mathias, Maria Izabel

    2005-06-01

    This study presents the morphology of the ovary, as well as the process of the vitellogenesis in oocytes of the tick Rhipicephalus sanguineus. The ovary of these individuals is of the panoistic type; therefore, it lacks nurse cells. This organ consists of a single tubular structure, continuous, and composed of a wall formed by small epithelial cells with rounded nuclei which delimit the lumen. The oocytes in the different developmental stages in this tick species were classified into five stages (I-V). They remain attached to the ovary during vitellogenesis by a cellular pedicel and afterwards the mature oocytes (stage V) are released into the ovary lumen.

  1. [Analysis of the Localization of Fibrillarin and Sites of Pre-rRNA Synthesis in the Nucleolus-Like Bodies of Mouse GV Oocytes after Mild Treatment with Proteinase K].

    PubMed

    Shishova, K V; Khodarovich, Yu M; Lavrentyeva, E A; Zatsepina, O V

    2015-01-01

    Postnatal development of mammalian oocytes is accompanied by functional and structural remodeling of the nucleolar apparatus: the final stage of this process is the formation of large objects (up to 10 μm in diameter) termed nucleolus-like bodies (NLBs) in preovulatory GV oocytes. N LB material was shown to be essential for early embryonic development, but its composition is still uncharacterized. In the present study, the protein-binding dye fluorescein-5-isothiocyanate (FITC) was used to show that proteins characterized by a high local concentration are essential NLB components in mouse GV oocytes. One of these proteins was able to be identified for the first time using a mild treatment of oocytes with proteinase K; the protein identified was fibrillarin, a factor of early pre-rRNA processing. Fibrillarin is present in the inner NLB mass of all oocytes capable of synthesizing rRNA; however, it is not colocalized with BrUTP microinjected into oocytes in order to identify transcribed ribosomal genes, in contrast to the "surface" fibrillarin. These observations imply the accumulation of nucleolar proteins not involved in ribosome biogenesis inside the NLB. All NLBs present in an individual nucleus of an NSN-type GV oocyte contain fibrillarin and are associated with active ribosomal genes. The results obtained in the present work demonstrate that proteinase K treatment of GV mouse oocytes allows for: (1) identification of "cryptic" proteins inside the densely packed NLB material and (2) the enhancement of oocyte image quality during BrUTP-based identification of rRNA synthesis sites but (3) not for the detection of active ribosomal genes in the inner mass of the NLB. The fluorescent dye FITC can be recommended for assessment of intracellular protein localization in the oocytes of all mammalian species.

  2. Effect of sericin supplementation in maturation medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season.

    PubMed

    Aghaz, F; Hajarian, H; Shabankareh, H Karami; Abdolmohammadi, A

    2015-12-01

    The purpose of this study was to evaluate the effect of sericin with different concentrations (0% [control], 0.1%, 0.5%, 1.0%, and 2.5%) added to the IVM medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season. The resumption of meiosis was assessed by the frequency of germinal vesicle breakdown and the first polar body extrusion. After IVF with fresh ram semen, presumptive zygotes were cultured 8 days in potassium simplex optimization medium supplemented by amino acids, and the percentages developing to the two-cell and blastocyst stages were measured as the indicators of early embryonic developmental competence. More cumulus-oocyte complexes matured with 0.5% sericin underwent germinal vesicle breakdown and reached metaphase II stage compared with the control cumulus-oocyte complexes matured without sericin (P ≤ 0.05). The present findings indicated that supplementation with 0.5% sericin during the maturation culture may improve the nuclear maturation and the cumulus cell expansion. Furthermore, the percentage of blastocysts obtained from 0.5% and 0.1% sericin (37.8 ± 1.76% and 34.8 ± 1.09%, respectively) was higher (P ≤ 0.05) than that of the control medium (29.60 ± 1.67%). However, addition of 1% and 2.5% of sericin to the IVM medium oocytes had a negative effect on nuclear maturation and cumulus cell expansion. Furthermore, the percentage of cleavage and blastocyst rate was significantly lower in the 1% and 2.5% sericin groups than in the control group. These findings showed that supplementation of IVM medium with 0.5% sericin may improve the meiotic competence of oocytes and early embryonic development in Sanjabi ewes during the breeding season. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig.

    PubMed

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi; Fulka, Josef

    2011-06-01

    In mammals, the nucleolus of full-grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full-grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non-treated or actinomycin D-treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re-injection of nucleoli from growing oocytes (23%), but not when nucleoli from full-grown oocytes were re-injected into enucleolated, growing oocytes (49%). When enucleolated, full-grown oocytes were injected with nucleoli from growing or full-grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full-grown oocytes injected with nucleoli from full-grown oocytes matured to metaphase II (56%), whereas injection with growing-oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing-oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full-grown oocyte nucleolus has lost the ability. Copyright © 2011 Wiley-Liss, Inc.

  4. Impact of vitrification on human oocytes before and after in vitro maturation: A systematic review and meta-analysis.

    PubMed

    Mohsenzadeh, Mehdi; Salehi-Abargouei, Amin; Tabibnejad, Nasim; Karimi-Zarchi, Mojgan; Khalili, Mohammad Ali

    2018-05-21

    There are controversies regarding in vitro maturation (IVM) procedure, the time of storing frozen oocytes and maturation stage of vitrified oocytes and its impact on oocytes fertilization capability. The aim of this systematic review and meta-analysis was to evaluate the impact of vitrification on human oocytes during IVM procedure. A systematic review with meta-analysis was undertaken. Main search terms were those related key words. We searched Medline, Embase, Scopus and ISI web of science to detect English-language studies. The final search was performed on 27 January 2018. The original articles which studied laboratory outcomes after vitrification of MII or GV oocytes before or after IVM were included. Exclusion criteria were animal trials and the studies that performed cryopreservation using slow-freeze method. Oocyte maturation, survival, fertilization and cleavage rates were assessed. Bias and quality assessments were applied. 2476 articles were screened and after duplicates removing together with application of inclusion and exclusion criteria, 14 studies assessed for eligibility. Finally 5 studies included for analysis. All studies compared laboratory outcomes between oocytes that vitrified at the GV stage and those which firstly matured in vitro, and then vitrified. Meta-analysis showed that vitrification of oocytes at GV stage had a negative impact on maturation rate (RR = 1.28, 95% CI: 0.96-1.70); but not on cleavage rate (RR = 1.07, 95% CI: 0.70-1.64); fertilization rate (RR = 0.99, 95% CI: 0.85-1.14) and survival rate(RR = 1.01, 95% CI: 0.96-1.06). In general, Based on our results, oocyte vitrification decreases the maturation rate. In addition, survival, fertilization as well as cleavage rates did not significantly differ between the oocytes vitrified before IVM versus oocytes vitrified after IVM. Copyright © 2018. Published by Elsevier B.V.

  5. Effect of dehydroleucodine on meiosis reinitiation in Bufo arenarum denuded oocytes.

    PubMed

    Sánchez Toranzo, G; Giordano, O S; López, L A; Bühler, M I

    2007-05-01

    In amphibian oocytes meiosis, the transition from G2 to M phase is regulated by the maturation promoting factor (MPF), a complex of the cyclin-dependent kinase p34/cdc2 and cyclin B. In immature oocytes there is an inactive complex (pre-MPF), in which cdc2 is phosphorylated on both Thr-161 and Thr-14/Tyr-15 residues. The dephosphorylation of Thr-14/Tyr-15 is necessary for the start of MPF activation and it is induced by the activation of cdc25 phosphatase. Late, to complete the activation, a small amount of active MPF induces an auto-amplification loop of MPF stimulation (MPF amplification). Dehydroleucodine (DhL) is a sesquiterpenic lactone that inhibits mammalian cell proliferation in G2. We asked whether DhL interferes with MPF activation. For this question, the effect of DhL (up to 30 microM) on the resumption of meiosis was evaluated, and visualized by germinal vesicle break down (GVBD), of Bufo arenarum oocytes induced in vitro by either: (i) removing follicle cells; (ii) progesterone stimulation; (iii) VG-content injection; or (iv) injection of mature cytoplasm. The results show that DhL induced GVBD inhibition, in a dose-dependent manner, in spontaneous and progesterone-induced oocyte maturation. Nevertheless, DhL at the doses assayed had no effect on GVBD induced by mature cytoplasm injection, but exerted an inhibitory effect on GVBD induced by GV content. On the basis of these results, we interpreted that DhL does not inhibit MPF amplification and that the target of DhL is any event in the early stages of the cdc25 activation cascade.

  6. A minimally invasive method for extraction of sturgeon oocytes

    USGS Publications Warehouse

    Candrl, James S.; Papoulias, Diana M.; Tillitt, Donald E.

    2010-01-01

    Fishery biologists, hatchery personnel, and caviar fishers routinely extract oocytes from sturgeon (Acipenseridae) to determine the stage of maturation by checking egg quality. Typically, oocytes are removed either by inserting a catheter into the oviduct or by making an incision in the body cavity. Both methods can be time-consuming and stressful to the fish. We describe a device to collect mature oocytes from sturgeons quickly and effectively with minimal stress on the fish. The device is made by creating a needle from stainless steel tubing and connecting it to a syringe with polyvinyl chloride tubing. The device is filled with saline solution or water, the needle is inserted into the abdominal wall, and eggs are extracted from the fish. Using this device, an oocyte sample can be collected in less than 30 s. Such sampling leaves a minute wound that heals quickly and does not require suturing. The extractor device can easily be used in the field or hatchery, reduces fish handling time, and minimizes stress.

  7. The fertilization ability and developmental competence of bovine oocytes grown in vitro

    PubMed Central

    MAKITA, Miho; UEDA, Mayuko; MIYANO, Takashi

    2016-01-01

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4−0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts. PMID:27151093

  8. The fertilization ability and developmental competence of bovine oocytes grown in vitro.

    PubMed

    Makita, Miho; Ueda, Mayuko; Miyano, Takashi

    2016-08-25

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4-0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts.

  9. Stereological comparison of oocyte recruitment and batch fecundity estimates from paraffin and resin sections using spawning albacore (Thunnus alalunga) ovaries as a case study

    NASA Astrophysics Data System (ADS)

    Saber, Sámar; Macías, David; Ortiz de Urbina, Josetxu; Kjesbu, Olav Sigurd

    2015-01-01

    Traditional histological protocols in marine fish reproductive laboratories using paraffin as the embedding medium are now increasingly being replaced with protocols using resin instead. These procedures entail different degrees of tissue shrinkage complicating direct comparisons of measurement results across laboratories or articles. In this work we selected ovaries of spawning Mediterranean albacore (Thunnus alalunga) as the subject of our study to address the issue of structural changes, by contrasting values on oocyte recruitment and final batch fecundity given from the same tissue samples in both paraffin and resin. A modern stereological method, the oocyte packing density (OPD) theory, was used supported by initial studies on ovarian tissue sampling and measurement design. Examples of differences in the volume fraction of oocyte stages, free space and connective tissue were found between the embedding media. Mean oocyte diameters were smaller in paraffin than in resin with differences ranging between 0.5% in primary growth and 24.3% in hydration (HYD) stage oocytes. Fresh oocyte measurements showed that oocytes shrank as a consequence of the embedding process, reaching the maximal degree of shrinkage for oocytes in the HYD stage (45.8% in paraffin and 26.5% in resin). In order to assess the effect of oocyte shrinkage on the OPD result, and thereby on relative batch fecundity (Fr), oocyte diameters corrected and uncorrected for shrinkage, were used for estimations. Statistical significant differences were found (P < 0.05) between these two approaches in both embedding media. The average Fr was numerically smaller in paraffin compared to resin (86 ± 61 vs. 106 ± 54 oocytes per gram of body mass (mean ± SD)). For both embedding media statistical significant differences (P < 0.05) were seen between Fr results based on either oocytes in the germinal vesicle migration stage or HYD stage. As a valuable adjunct, the present use of the OPD theory made it possible

  10. Generation of a transgenic medaka (Oryzias latipes) strain for visualization of nuclear dynamics in early developmental stages.

    PubMed

    Inoue, Takanobu; Iida, Atsuo; Maegawa, Shingo; Sehara-Fujisawa, Atsuko; Kinoshita, Masato

    2016-12-01

    In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta-actin promoter. The aNLS-EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time-lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka. © 2016 Japanese Society of Developmental Biologists.

  11. PTK2b function during fertilization of the mouse oocyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinping; McGinnis, Lynda K.; Carlton, Carol

    Highlights: • PTK2b is expressed in oocytes and is activated following fertilization. • PTK2b suppression in oocytes prevents fertilization, but not parthenogenetic activation. • PTK2b suppression prevents the oocyte from fusing with or incorporating bound sperm. • PTK2b suppressed oocytes that fail to fertilize do not exhibit calcium oscillations. - Abstract: Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilizationmore » of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.« less

  12. Changes of endocrine and ultrasound markers as ovarian aging in modifying the Stages of Reproductive Aging Workshop (STRAW) staging system with subclassification of mid reproductive age stage.

    PubMed

    Ding, Ting; Luo, Aiyue; Jiang, Jingjing; Du, Xiaofang; Yang, Shuhong; Lai, Zhiwen; Shen, Wei; Lu, Yunping; Ma, Ding; Wang, Shixuan

    2013-01-01

    To demonstrate the changes of ovarian aging markers across the Stages of Reproductive Aging Workshop (STRAW) stages and modify it with subclassification of mid reproductive age stage (MR). Healthy females were classified according to the STRAW system. Serum basal FSH, LH, E2, and anti-Müllerian hormone (AMH) were detected, FSH/LH ratio calculated, and antral follicle counts (AFCs) determined in follicular phase. Progression through the whole STRAW stages under MR stage subdivided is associated with elevations in FSH, LH, FSH/LH ratio and decreases in E2, AMH and AFCs (p < 0.001). Both serum AMH and AFCs decreased early (after 25 years) and significantly (p < 0.01) with chronological age in MR stage. 0.982 ng/ml AMH and 3 antral follicles (low level of MR 25-30 years) were set as cutoffs to distinguish MR stage into early mid reproductive age (EMR) and late mid reproductive age (LMR) stages. The women in EMR stage compared with LMR could retrieve more oocytes in IVF treatment (p < 0.05) and has a higher pregnancy chance (57.9%) though not significant. The early and marked fall in serum AMH levels and AFCs suggest fine markers to further categorize and define the MR stage, demonstrating disparate reproductive aging period with reduced ovarian reserve in young age across the STRAW stages.

  13. Oocyte spindle proteomics analysis leading to rescue of chromosome congression defects in cloned embryos

    PubMed Central

    Duan, Xunbao; Zhong, Zhisheng; Potireddy, Santhi; Moncada, Camilo; Merali, Salim; Latham, Keith E.

    2015-01-01

    Embryos produced by somatic cell nuclear transfer (SCNT) display low term developmental potential. This is associated with deficiencies in spindle composition prior to activation and at early mitotic divisions, including failure to assemble certain proteins on the spindle. The protein-deficient spindles are accompanied by chromosome congression defects prior to activation and during the first mitotic divisions of the embryo. The molecular basis for these deficiencies and how they might be avoided are unknown. Proteomic analyses of spindles isolated from normal metaphase II (MII) stage oocytes and SCNT constructs, along with a systematic immunofluorescent survey of known spindle-associated proteins were undertaken. This was the first proteomics study of mammalian oocyte spindles. The study revealed four proteins as being deficient in spindles of SCNT embryos in addition to those previously identified; these were clathrin heavy chain (CLTC), aurora B kinase, dynactin 4, and casein kinase 1 alpha. Due to substantial reduction in CLTC abundance after spindle removal, we undertook functional studies to explore the importance of CLTC in oocyte spindle function and in chromosome congression defects of cloned embryos. Using siRNA knockdown we demonstrated an essential role for CLTC in chromosome congression during oocyte maturation. We also demonstrated rescue of chromosome congression defects in SCNT embryos at the first mitosis using CLTC mRNA injection. These studies are the first to employ proteomics analyses coupled to functional interventions to rescue a specific molecular defect in cloned embryos. PMID:20883044

  14. Investigations of oocyte in vitro maturation within a mouse model.

    PubMed

    Chin, Alexis Heng Boon; Chye, Ng Soon

    2004-02-01

    This study attempted to develop a 'less meiotically competent' murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze-thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage.

  15. Distribution and viability of spermatozoa in the canine female genital tract during post-ovulatory oocyte maturation

    PubMed Central

    2012-01-01

    Background Unlike other domestic mammals, in which metaphase-II oocytes are ovulated, canine ovulation is characterized by the release of primary oocytes, which may take 12 to up to 36 hours. Further 60 hours are needed for maturation to secondary oocytes which then remain fertile for about 48 hours. Oestrus takes 7 to 10 days on average and may start as early as a week before ovulation. This together with the prolonged process of post-ovulatory oocyte maturation requires an according longevity of spermatozoa in the female genital tract in order to provide a population of fertile sperm when oocytes have matured to fertilizability. Therefore the distribution and viability of spermatozoa in the bitch genital tract was examined during post-ovulatory oocyte maturation. Methods Thirteen beagle bitches were inseminated on the day of sonographically verified ovulation with pooled semen of two beagle dogs containing one billion progressively motile spermatozoa. Ovariohysterectomy was performed two days later (group 1, n = 6) and four days later (group 2, n = 7). The oviduct and uterine horn of one side were flushed separately and the flushing’s were checked for the presence of gametes. The oviducts including the utero-tubal junction and the uterine horns, both the flushed and unflushed, were histologically examined for sperm distribution. Results The total number of spermatozoa recovered by flushing was low and evaluation of viability was limited. Prophase-I oocytes were collected from oviduct flushing in group 1, whereas unfertilized metaphase-II oocytes were detected in group 2. From day 2 to day 4 after ovulation a significant decrease in the percentage of glands containing sperm (P<0.05) and a marked reduction of the mean sperm number in uterine horn glands were observed. A concomitant diminution of spermatozoa was indicated in the utero-tubal junction accompanied by a slight increase in sperm numbers in the mid oviduct. Conclusions Oocyte maturation to

  16. The role of the PI3K-Akt signaling pathway in the developmental competence of bovine oocytes.

    PubMed

    Andrade, Gabriella Mamede; da Silveira, Juliano Coelho; Perrini, Claudia; Del Collado, Maite; Gebremedhn, Samuel; Tesfaye, Dawit; Meirelles, Flávio Vieira; Perecin, Felipe

    2017-01-01

    The ovarian follicle encloses oocytes in a microenvironment throughout their growth and acquisition of competence. Evidence suggests a dynamic interplay among follicular cells and oocytes, since they are constantly exchanging "messages". We dissected bovine ovarian follicles and recovered follicular cells (FCs-granulosa and cumulus cells) and cumulus-oocyte complexes (COCs) to investigate whether the PI3K-Akt signaling pathway impacted oocyte quality. Following follicle rupture, COCs were individually selected for in vitro cultures to track the follicular cells based on oocyte competence to reach the blastocyst stage after parthenogenetic activation. Levels of PI3K-Akt signaling pathway components in FCs correlated with oocyte competence. This pathway is upregulated in FCs from follicles with high-quality oocytes that are able to reach the blastocyst stage, as indicated by decreased levels of PTEN and increased levels of the PTEN regulators bta-miR-494 and bta-miR-20a. Using PI3K-Akt responsive genes, we showed decreased FOXO3a levels and BAX levels in lower quality groups, indicating changes in cell cycle progression, oxidative response and apoptosis. Based on these results, the measurement of levels of PI3K-Akt pathway components in FCs from ovarian follicles carrying oocytes with distinct developmental competences is a useful tool to identify putative molecular pathways involved in the acquisition of oocyte competence.

  17. Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis

    PubMed Central

    Elkouby, Yaniv M.; Jamieson-Lucy, Allison; Mullins, Mary C.

    2016-01-01

    The source of symmetry breaking in vertebrate oocytes is unknown. Animal—vegetal oocyte polarity is established by the Balbiani body (Bb), a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal—vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic—vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic—vegetal organizing center. These

  18. Criteria to assess human oocyte quality after cryopreservation.

    PubMed

    Coticchio, G; Bonu, M A; Bianchi, V; Flamigni, C; Borini, A

    2005-10-01

    Oocyte cryopreservation certainly represents one of the most attractive developments in the field of assisted reproduction, with the aim of preserving female fertility and circumventing the ethical and legal drawbacks associated with embryo freezing. Despite the achievement of the first pregnancy from frozen oocytes dating back as early as 1987, since then fewer than 150 pregnancies have been reported. Over a long period of time, application of oocyte storage on a large scale has been prevented by various factors, namely poor post-thaw survival. Fertilization rates remained low even after the introduction of intracytoplasmic sperm injection. Modifications of slow-freezing protocols, mainly based on the increase of the concentration of sucrose used as non-penetrating cryoprotectant (CPA) and the replacement of sodium with choline, appear to have decisively improved survival rates to over 80%. Investigations at the cellular level on thawed oocytes are largely lacking. Fertilization rates have also benefited from protocol modifications, reaching values indistinguishable from those normally obtained with fresh material. Vitrification protocols have also been tested, giving rise to improvements whose reproducibility is still uncertain. Data on the dynamics of fertilization and preimplantation development of embryos derived from frozen oocytes are extremely scarce. At the moment, clinical efficiency of oocyte cryopreservation cannot be precisely assessed because of the lack of controlled studies, although it appears to be considerably lower than that achieved with embryo freezing. In summary, encouraging advances have been made in the field of oocyte cryopreservation, but presently no protocol can ensure standards of success and safety comparable to those guaranteed by embryo storage.

  19. Caffeine delays oocyte aging and maintains the quality of aged oocytes safely in mouse.

    PubMed

    Zhang, Xia; Liu, Xiaoyan; Chen, Li; Wu, Dan-Ya; Nie, Zheng-Wen; Gao, Ying-Ying; Miao, Yi-Liang

    2017-03-28

    Caffeine, as an oocyte aging inhibitor, was used in many different species to control or delay oocyte aging. However, the safety of caffeine and developmental competence of aged oocytes inhibited by caffeine has not been studied systematically. So we detected the spindle morphology, distribution of cortical granules, zona pellucida hardening and pronucleus formation to assess oocyte quality of caffeine treated oocytes. We found that aged oocytes treated by caffeine maintained weak susceptibility to activating stimuli and regained normal competent after aged further 6 hr. Caffeine maintained the spindle morphology, changed cortical granules distribution of aged oocytes and could not prevent zona pellucida hardening. Furthermore, caffeine increased pronucleus formation of aged oocytes and decreased fragmentation after fertilization. These results suggested that caffeine could maintain the quality of aged oocytes safely in mouse.

  20. Production of giant mouse oocyte nucleoli and assessment of their protein content.

    PubMed

    Fulka, Helena; Martinkova, Stanislava; Kyogoku, Hirohisa; Langerova, Alena; Fulka, Josef

    2012-01-01

    Compared with advanced developmental stage embryos and somatic cells, fully grown mammalian oocytes contain specific nucleolus-like structures (NPB - nucleolus precursor bodies). It is commonly accepted that they serve as a store of material(s) from which typical nucleoli are gradually formed. Whilst nucleoli from somatic cells can be collected relatively easily for further biochemical analyses, a sufficient number of oocyte nucleoli is very difficult to obtain. We have found that isolated oocytes nucleoli fuse very efficiently when contact is established between them. Thus, well visible giant nucleoli can be obtained, relatively easily handled and then used for further biochemical analyses. With the use of colloidal gold staining, we estimated that a single fully grown mouse oocyte nucleolus contains approximately 1.6 ng of protein. We do believe that this approach will accelerate further research aiming at analyzing the composition of oocyte nucleoli in more detail.

  1. In vitro oocyte maturation, fertilization and culture after ovum pick-up in an endangered gazelle (Gazella dama mhorr).

    PubMed

    Berlinguer, F; González, R; Succu, S; del Olmo, A; Garde, J J; Espeso, G; Gomendio, M; Ledda, S; Roldan, E R S

    2008-02-01

    The recovery of immature oocytes followed by in vitro maturation, fertilization and culture (IVMFC) allows the rescue of biological material of great genetic value for the establishment of genetic resource banks of endangered species. Studies exist on sperm cryopreservation of endangered Mohor gazelle (Gazella dama mhorr), but no work has been carried out yet on oocyte collection, fertilization and culture in this or related species. The purpose of this study was to develop a protocol for ovarian stimulation for the recovery of oocytes and subsequent IVMFC in the Mohor gazelle using frozen-thawed spermatozoa. Ovum pick-up was performed after ovarian stimulation with a total dose of 5.28 mg of ovine FSH. A total of 35 oocytes were recovered from 56 punctured follicles (62%) (N=6 females). Out of 29 cumulus-oocyte complexes matured in vitro, 3% were found at germinal vesicle stage, 7% at metaphase I, 21% were degenerated, and 69% advanced to metaphase II. Fertilization and cleavage rates of matured oocytes were 40 and 30%, respectively. Embryos cleaved in vitro up to the 6-8 cell stage but none progressed to the blastocyst stage, suggesting the existence of a developmental block and the need to improve culture conditions. Although more studies are needed to improve hormonal stimulation and oocyte harvesting, as well as IVMFC conditions, this study demonstrates for the first time the feasibility of in vitro fertilization with frozen-thawed semen of in vitro matured oocytes collected by ovum pick-up from FSH-stimulated endangered gazelles.

  2. Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes

    PubMed Central

    2010-01-01

    Background Cryopreservation of oocytes, which is an interesting procedure to conserve female gametes, is an essential part of reproductive biotechnology. The objective of the present study was to investigate the effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Methods Immature oocytes (germinal vesicles) isolated from ovaries of normal bitches (> 6 months of age) were either vitrified in open pulled straw (OPS) using 20% ethylene glycol (EG) and 20% dimethyl sulfoxide (DMSO) as vitrification solution or exposed to vitrification solution without subjected to liquid nitrogen. After warming, oocytes were investigated for nuclear maturation following in vitro maturation (IVM), ultrastructural changes using transmission electron microscopy (TEM) and gene expression using RT-PCR. Fresh immature oocytes were used as the control group. Results The rate of resumption of meiosis in vitrified-warmed oocytes (53.4%) was significantly (P < 0.05) lower than those of control (93.8%) and exposure (91.4%) groups. However, there were no statistically significant differences among groups in the rates of GV oocytes reaching the maturation stage (metaphase II, MII). The ultrastructural alterations revealed by TEM showed that cortical granules, mitochondria, lipid droplets and smooth endoplasmic reticulum (SER) were affected by vitrification procedures. RT-PCR analysis for gene expression revealed no differences in HSP70, Dnmt1, SOD1 and BAX genes among groups, whereas Bcl2 was strongly expressed in vitrified-warmed group when compared to the control. Conclusion Immature canine oocytes were successfully cryopreserved, resumed meiosis and developed to the MII stage. The information obtained in this study is crucial for the development of an effective method to cryopreserve canine oocytes for establishment of genetic banks of endangered canid species. PMID:20565987

  3. Cryopreservation of feline oocytes by vitrification using commercial kits and slush nitrogen technique.

    PubMed

    Fernandez-Gonzalez, L; Jewgenow, K

    2017-04-01

    Assisted reproductive techniques are a valuable tool for conservation breeding of endangered species. Cryopreservation methods are the basis of gamete banks, supporting genetic diversity preservation. Unfortunately, cryopreservation of feline oocytes is still considered an experimental technique. The aim of this study was to compare two commercial kits, with our protocol for vitrification of cat oocytes (IZW), which comprises a three-step method with ethylene glycol, DMSO, fetal calf serum, trehalose and Ficoll PM-70. Furthermore, we applied slush nitrogen (SN 2 ) for ultra-rapid freezing to improve survival rates. Cumulus-oocyte complexes were collected from domestic cat ovaries by slicing and vitrified at immature stage using Cryotop as storage device. Vit Kit ® Freeze/Thaw (n = 89) showed the lowest maturation percentage obtained after warming (10.1%). A significant difference in maturation percentage of oocytes was found between Kitazato ® kit (38.7%, n = 137) and IZW protocol (24.5%, n = 143). The cleavage after ICSI of warmed and matured oocytes (20.7% and 28.6%, respectively) and the morula percentage (18. 2% and 22.5%, respectively), however, did not reveal any significant difference between the two methods. Application of SN 2 did not result in any improvement of oocytes' cryopreservation. Maturation percentage of the oocytes vitrified by IZW method with SN 2 (n = 144) decreased until 6.1%, without any cleavage after fertilization. For Kitazato ® (n = 62), only 17.7% were able to undergo maturation and cleavage percentage dropped to 18.2%, not reaching morula stage. These data demonstrate that feline oocytes can be vitrified either by our IZW method or by commercial Kitazato ® kit, but the use of SN 2 is improving neither maturation nor cleavage percentages when combined with these procedures. © 2016 Blackwell Verlag GmbH.

  4. In Vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide

    PubMed Central

    Aras, Duru; Cakar, Zeynep; Ozkavukcu, Sinan; Can, Alp; Cinar, Ozgur

    2017-01-01

    High acrylamide (ACR) content in heat-processed carbohydrate-rich foods, as well as roasted products such as coffee, almonds etc., has been found to be as a risk factor for carcinogenicity and genotoxicity by The World Health Organization. Glycidamide (GLY), the epoxide metabolite of ACR, is processed by the cytochrome P-450 enzyme system and has also been found to be a genotoxic agent. The aim of this study was to determine whether ACR and/or GLY have any detrimental effect on the meiotic cell division of oocytes. For this purpose, germinal vesicle-stage mouse oocytes were treated with 0, 100, 500, or 1000 μM ACR or 0, 25, or 250 μM GLY in vitro. In vivo experiments were performed after an intraperitoneal injection of 25 mg/kg/day ACR of female BALB/c mice for 7 days. The majority of in vitro ACR-treated oocytes reached the metaphase-II stage following 18 hours of incubation, which was not significantly different from the control group. Maturation of the oocytes derived from in vivo ACR-treated mice was impaired significantly. Oocytes, reaching the M-II stage in the in vivo ACR-treated group, were characterized by a decrease in meiotic spindle mass and an increase in chromosomal disruption. In vitro GLY treatment resulted in the degeneration of all oocytes, indicating that ACR toxicity on female germ cells may occur through its metabolite, GLY. Thus, ACR exposure must be considered, together with its metabolite GLY, when female fertility is concerned. PMID:28182799

  5. In Vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide.

    PubMed

    Aras, Duru; Cakar, Zeynep; Ozkavukcu, Sinan; Can, Alp; Cinar, Ozgur

    2017-01-01

    High acrylamide (ACR) content in heat-processed carbohydrate-rich foods, as well as roasted products such as coffee, almonds etc., has been found to be as a risk factor for carcinogenicity and genotoxicity by The World Health Organization. Glycidamide (GLY), the epoxide metabolite of ACR, is processed by the cytochrome P-450 enzyme system and has also been found to be a genotoxic agent. The aim of this study was to determine whether ACR and/or GLY have any detrimental effect on the meiotic cell division of oocytes. For this purpose, germinal vesicle-stage mouse oocytes were treated with 0, 100, 500, or 1000 μM ACR or 0, 25, or 250 μM GLY in vitro. In vivo experiments were performed after an intraperitoneal injection of 25 mg/kg/day ACR of female BALB/c mice for 7 days. The majority of in vitro ACR-treated oocytes reached the metaphase-II stage following 18 hours of incubation, which was not significantly different from the control group. Maturation of the oocytes derived from in vivo ACR-treated mice was impaired significantly. Oocytes, reaching the M-II stage in the in vivo ACR-treated group, were characterized by a decrease in meiotic spindle mass and an increase in chromosomal disruption. In vitro GLY treatment resulted in the degeneration of all oocytes, indicating that ACR toxicity on female germ cells may occur through its metabolite, GLY. Thus, ACR exposure must be considered, together with its metabolite GLY, when female fertility is concerned.

  6. Factors affecting the electrofusion of mouse and ferret oocytes with ferret somatic cells.

    PubMed

    Li, Ziyi; Sun, Xingshen; Chen, Juan; Leno, Gregory H; Engelhardt, John F

    2005-09-01

    The domestic ferret, Mustela putorius furos, holds great promise as a genetic model for human lung disease, provided that key technologies for somatic cell nuclear transfer (SCNT) are developed. In this report, we extend our understanding of SCNT in this species by defining conditions for efficient cell fusion by electrical pulse. Two experimental systems were employed in this study. First, in vivo-matured mouse oocytes and ferret somatic cells were used to establish general parameters for fusion. One fibroblast, or cumulus cell, was agglutinated to nucleate, zona pellucida-free, mouse oocytes, and subjected to an electrical pulse. Similar electrical pulse conditions were also tested with 1 or 2 somatic cells inserted into the perivitelline space (PVS) of intact mouse oocytes. The fusion rate for a single fibroblast with a zona-free oocyte was 80.2%, significantly higher (P < 0.05) than that observed for 1, or 2, fibroblasts placed in the PVS (52.0% and 63.8%, respectively). The fusion rate (44.1%) following insertion of two cumulus cells was significantly higher (P < 0.05) than that following insertion of one cumulus cell (25.1%). Second, in vitro-matured ferret oocytes were enucleated, and one to three fibroblasts or cumulus cells were inserted into the PVS. Zona pellucida-free ferret oocytes were fragile and excluded from the study. The fusion rates with two or three fibroblasts were 71.4% and 76.8%, respectively; significantly higher (P < 0.05) than that for one fibroblast (48.6%). This cell number-dependent difference in fusion efficiency was also observed with cumulus cells. Fusion-derived (ferret-ferret) NT embryos cleaved, formed blastocysts in vitro, and underwent early-stage fetal development following embryo transfer. The rate of development was cell type-independent, in contrast to the cell type-dependent differences observed in fusion efficiency. In conclusion, fibroblasts fused more efficiently than cumulus cells and the efficiency of single cell

  7. Liver condition of Holstein cows affects mitochondrial function and fertilization ability of oocytes

    PubMed Central

    TANAKA, Hiroshi; TAKEO, Shun; ABE, Takahito; KIN, Airi; SHIRASUNA, Koumei; KUWAYAMA, Takehito; IWATA, Hisataka

    2016-01-01

    The aim of the present study was to examine the fertilization ability and mitochondrial function of oocytes derived from cows with or without liver damage. Oocytes were collected from the ovaries of cows with damaged livers (DL) and those of cows with healthy livers (HL), subjected to in vitro maturation, and fertilized in vitro. A significantly high abnormal fertilization rate was observed for oocytes from DL cows compared to oocytes from HL cows. The time to dissolve the zona pellucida by protease before fertilization was similar between the two liver conditions, whereas after fertilization treatment this time was shorter for DL cows than for HL cows. The percentage of oocytes with equivalent cortical granule distributions underneath the membrane was greater for in vitro matured oocytes from HL cows, whereas an immature distribution pattern was observed for oocytes from DL cows. In addition, a greater percentage of oocytes derived from HL cows released cortical granules following fertilization compared with oocytes from DL cows. Mitochondrial function determined by ATP content and membrane potential were similar at the germinal vesicle stage, but post-in vitro maturation, the oocytes derived from HL cows showed higher values than DL cows. The mitochondrial DNA copy number in oocytes was similar between the two liver conditions for both the germinal vesicle and post-in vitro maturation oocytes. In conclusion, liver damage induces low fertilization, likely because of incomplete cortical granule distribution and release, and the maturation of oocytes from DL cows contain low-functioning mitochondria compared to their HL counterparts. PMID:26832309

  8. Liver condition of Holstein cows affects mitochondrial function and fertilization ability of oocytes.

    PubMed

    Tanaka, Hiroshi; Takeo, Shun; Abe, Takahito; Kin, Airi; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-06-17

    The aim of the present study was to examine the fertilization ability and mitochondrial function of oocytes derived from cows with or without liver damage. Oocytes were collected from the ovaries of cows with damaged livers (DL) and those of cows with healthy livers (HL), subjected to in vitro maturation, and fertilized in vitro. A significantly high abnormal fertilization rate was observed for oocytes from DL cows compared to oocytes from HL cows. The time to dissolve the zona pellucida by protease before fertilization was similar between the two liver conditions, whereas after fertilization treatment this time was shorter for DL cows than for HL cows. The percentage of oocytes with equivalent cortical granule distributions underneath the membrane was greater for in vitro matured oocytes from HL cows, whereas an immature distribution pattern was observed for oocytes from DL cows. In addition, a greater percentage of oocytes derived from HL cows released cortical granules following fertilization compared with oocytes from DL cows. Mitochondrial function determined by ATP content and membrane potential were similar at the germinal vesicle stage, but post-in vitro maturation, the oocytes derived from HL cows showed higher values than DL cows. The mitochondrial DNA copy number in oocytes was similar between the two liver conditions for both the germinal vesicle and post-in vitro maturation oocytes. In conclusion, liver damage induces low fertilization, likely because of incomplete cortical granule distribution and release, and the maturation of oocytes from DL cows contain low-functioning mitochondria compared to their HL counterparts.

  9. The negative influence of sperm cryopreservation on the quality and development of the embryo depends on the morphology of the oocyte.

    PubMed

    Braga, D P A F; Setti, A S; Figueira, R C S; Iaconelli, A; Borges, E

    2015-07-01

    The present case-control study aimed to identify the effect of sperm cryopreservation on the quality of the embryo and on the probability of blastocyst formation when oocytes free of dimorphisms are injected and when at least one dymorphism is present. The study included 22 186 zygotes, obtained from 2802 patients undergoing intracytoplasmic sperm injection cycles, in a private assisted reproduction center, using either fresh or cryopreserved sperm. The effect of sperm cryopreservation on the embryo quality on cleavage stage and blastocyst formation chance were evaluated when oocytes free of dimorphisms are injected and when at least one dymorphism is present. The quality of the embryo on cleavage stage as well as the chance for blastocyst formation was not influenced by the origin of the spermatozoa when the quality of the oocyte was not considered. When at least one oocyte defect was present, a negative influence of sperm cryopreservation on cleavage stage embryo quality and the chance for blastocyst formation was noted. In oocytes with extra-cytoplasmic dimorphisms, the injection of cryopreserved sperm did not affect the quality of the embryo during the cleavage stage, but did affect the chance for blastocyst formation. Conversely, in oocytes with intracytoplasmic defects, the quality of the embryos on cleavage stage and the chance of blastocyst formation were negatively influenced by the injection of cryopreserved sperm. The results suggest an oocyte quality-dependent negative effect of sperm cryopreservation on embryo quality and on the probability of blastocyst formation. © 2015 American Society of Andrology and European Academy of Andrology.

  10. Consequences of metaphase II oocyte cryopreservation on mRNA content.

    PubMed

    Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L

    2011-04-01

    We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Optimum culture duration for growing oocytes to attain meiotic and fertilization competence.

    PubMed

    Yamochi, Takayuki; Hashimoto, Shu; Yamanaka, Masaya; Nakaoka, Yoshiharu; Morimoto, Yoshiharu

    2017-12-15

    To determine the optimum culture duration for porcine growing oocytes (GOs) to attain maturation competence, we examined the meiotic competence, chromatin configuration, and fertilization ability of porcine oocytes obtained from early antral follicles and cultured for 10-16 days. The survival rate of oocytes after 10 days of culture (62.8%) was similar to that of oocytes after 12 days of culture (55%) and significantly higher than that of oocytes cultured for 14 and 16 days (52.9 and 24.3%, respectively). No significant difference was observed in the diameter of ooplasm from oocytes cultured for different durations (117.4-118.3 μm). The maturation rates of surviving oocytes after 10 and 16 days of culture (38.3 and 22.7%, respectively) were significantly lower than those of oocytes cultured for 12 and 14 days, and their in vivo counterparts (52.8-62.4%). The number of oocytes with surrounded-nucleolus chromatin was significantly lower in the 10-day culture group (78.4%) as compared with 14-day culture and in vivo counterpart groups (93.6 and 95.1%, respectively). After in vitro maturation and intracytoplasmic sperm injection, no significant difference was observed in the rate of fertilization among oocytes cultured for 12 and 14 days, and their in vivo counterparts (40.5-47.2%). Thus, porcine GOs required at least 12 days to acquire meiotic and fertilization competence, and the culture duration to maximize the number of mature oocytes ranged from 12 to 14 days.

  12. Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping

    BACKGROUND: We present that human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS: We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, earlymore » embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTSL: We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS: Lastly, TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility.« less

  13. Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    DOE PAGES

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping; ...

    2016-01-21

    BACKGROUND: We present that human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS: We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, earlymore » embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTSL: We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS: Lastly, TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility.« less

  14. Recent advances in understanding oogenesis: interactions with the cytoskeleton, microtubule organization, and meiotic spindle assembly in oocytes

    PubMed Central

    Marlow, Florence L.

    2018-01-01

    Maternal control of development begins with production of the oocyte during oogenesis. All of the factors necessary to complete oocyte maturation, meiosis, fertilization, and early development are produced in the transcriptionally active early oocyte. Active transcription of the maternal genome is a mechanism to ensure that the oocyte and development of the early embryo begin with all of the factors needed for successful embryonic development. To achieve the maximum maternal store, only one functional cell is produced from the meiotic divisions that produce the oocyte. The oocyte receives the bulk of the maternal cytoplasm and thus is significantly larger than its sister cells, the tiny polar bodies, which receive a copy of the maternal genome but essentially none of the maternal cytoplasm. This asymmetric division is accomplished by an enormous cell that is depleted of centrosomes in early oogenesis; thus, meiotic divisions in oocytes are distinct from those of mitotic cells. Therefore, these cells must partition the chromosomes faithfully to ensure euploidy by using mechanisms that do not rely on a conventional centrosome-based mitotic spindle. Several mechanisms that contribute to assembly and maintenance of the meiotic spindle in oocytes have been identified; however, none is fully understood. In recent years, there have been many exciting and significant advances in oogenesis, contributed by studies using a myriad of systems. Regrettably, I cannot adequately cover all of the important advances here and so I apologize to those whose beautiful work has not been included. This review focuses on a few of the most recent studies, conducted by several groups, using invertebrate and vertebrate systems, that have provided mechanistic insight into how microtubule assembly and meiotic spindle morphogenesis are controlled in the absence of centrosomes.

  15. Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes.

    PubMed

    Nottola, Stefania Annarita; Albani, Elena; Coticchio, Giovanni; Palmerini, Maria Grazia; Lorenzo, Caterina; Scaravelli, Giulia; Borini, Andrea; Levi-Setti, Paolo Emanuele; Macchiarelli, Guido

    2016-12-01

    Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. Samples were studied by light and transmission electron microscopy. We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.

  16. Betaine is accumulated via transient choline dehydrogenase activation during mouse oocyte meiotic maturation.

    PubMed

    McClatchie, Taylor; Meredith, Megan; Ouédraogo, Mariame O; Slow, Sandy; Lever, Michael; Mann, Mellissa R W; Zeisel, Steven H; Trasler, Jacquetta M; Baltz, Jay M

    2017-08-18

    Betaine ( N,N,N -trimethylglycine) plays key roles in mouse eggs and preimplantation embryos first in a novel mechanism of cell volume regulation and second as a major methyl donor in blastocysts, but its origin is unknown. Here, we determined that endogenous betaine was present at low levels in germinal vesicle (GV) stage mouse oocytes before ovulation and reached high levels in the mature, ovulated egg. However, no betaine transport into oocytes was detected during meiotic maturation. Because betaine can be synthesized in mammalian cells via choline dehydrogenase (CHDH; EC 1.1.99.1), we assessed whether this enzyme was expressed and active. Chdh transcripts and CHDH protein were expressed in oocytes. No CHDH enzyme activity was detected in GV oocyte lysate, but CHDH became highly active during oocyte meiotic maturation. It was again inactive after fertilization. We then determined whether oocytes synthesized betaine and whether CHDH was required. Isolated maturing oocytes autonomously synthesized betaine in vitro in the presence of choline, whereas this failed to occur in Chdh -/- oocytes, directly demonstrating a requirement for CHDH for betaine accumulation in oocytes. Overall, betaine accumulation is a previously unsuspected physiological process during mouse oocyte meiotic maturation whose underlying mechanism is the transient activation of CHDH. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Obesity adversely impacts the number and maturity of oocytes in conventional IVF not in minimal stimulation IVF.

    PubMed

    Zhang, John J; Feret, Maciej; Chang, Lyndon; Yang, Mingxue; Merhi, Zaher

    2015-05-01

    The objective of this study was to assess the relationship between BMI and oocyte number and maturity in participants who underwent minimal stimulation (mini-) or conventional IVF. Participants who underwent their first autologous cycle of either conventional (n = 219) or mini-IVF (n = 220) were divided according to their BMI to analyze IVF outcome parameters. The main outcome measure was the number of oocytes in metaphase II (MII). Secondary outcomes included the number of total oocytes retrieved, fertilized (2PN) oocytes, cleavage and blastocyst stage embryos, clinical pregnancy (CP), and live birth (LB) rates. In conventional IVF, but not in mini-IVF, the number of total oocytes retrieved (14.5  ±  0.8 versus 8.8  ±  1.3) and MII oocytes (11.2 ± 0.7 versus 7.1 ± 1.1) were significantly lower in obese compared with normal BMI women. Multivariable linear regression adjusting for age, day 3 FSH, days of stimulation, and total gonadotropin dose demonstrated that BMI was an independent predictor of the number of MII oocytes in conventional IVF (p = 0.0004). Additionally, only in conventional IVF, BMI was negatively correlated with the total number of 2PN oocytes, as well as the number of cleavage stage embryos. Female adiposity might impair oocyte number and maturity in conventional IVF but not in mini-IVF. These data suggest that mild ovarian stimulation might yield healthier oocytes in obese women.

  18. Morphometric assessment of in vitro matured dromedary camel oocytes determines the developmental competence after parthenogenetic activation.

    PubMed

    Saadeldin, Islam M; Swelum, Ayman Abdel-Aziz; Yaqoob, Syed Hilal; Alowaimer, Abdullah Nasser

    2017-06-01

    The aim of the current study was to improve the selection method of camel oocytes after in vitro maturation by reducing exclusion criteria that were based only on the presence of the first polar body. A combined nuclear and morphometric assessment of camel oocytes after in vitro maturation was included to perform a judgment. The nuclear status of the oocytes, including the presence of the first polar body, meiosis I stage, and lack of nuclear materials, was investigated. The morphometric criteria that comprised the dimensions of each oocyte were as follows: diameter of the whole oocyte, including the zona pellucida (ZPO), zona pellucida thickness (ZPT), ooplasm diameter (OD), the perivitelline space (PVS) area, and PVS diameter. Among the oocytes with different nuclear status, there were no differences in ZPO and ZPT. However, oocytes with no nuclear material showed a significant reduction in OD (110.19 ± 1.4 μm) and a significant increase in PVS area (2139 ± 324.6 μm 2 ) and PVS diameter (13.9 ± 1.96 μm) when compared with oocytes in the meiosis I stage (117.41 ± 2.85 μm, 1287.4 ± 123.4 μm 2 , and 8.56 ± 0.65 μm, respectively). To simplify the selection, the major difference between meiosis I and degenerated oocytes was the diameter of the PVS, which was greater than the ZPT in degenerated oocytes. Therefore, three groups were morphologically differentiated into oocytes with polar bodies (PB1), meiosis I (MI) oocytes, and degenerated oocytes. MI oocytes were able to extrude the polar body after activation but were not able to develop into blastocysts. In contrast, MI oocytes were able to develop into blastocysts after a biphasic activation protocol in which the oocytes were electrically activated and treated with ionomycin after 2 h. In conclusion, the results obtained by the morphometric assessment allowed us to develop a simple and objective classification system for in vitro matured dromedary camel oocytes, which will lead to

  19. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI.

    PubMed

    Ferrer-Buitrago, M; Dhaenens, L; Lu, Y; Bonte, D; Vanden Meerschaut, F; De Sutter, P; Leybaert, L; Heindryckx, B

    2018-01-10

    Can human oocyte calcium analysis predict fertilization success after assisted oocyte activation (AOA) in patients experiencing fertilization failure after ICSI? ICSI-AOA restores the fertilization rate only in patients displaying abnormal Ca2+ oscillations during human oocyte activation. Patients capable of activating mouse oocytes and who showed abnormal Ca2+ profiles after mouse oocyte Ca2+ analysis (M-OCA), have variable responses to ICSI-AOA. It remains unsettled whether human oocyte Ca2+ analysis (H-OCA) would yield an improved accuracy to predict fertilization success after ICSI-AOA. Sperm activation potential was first evaluated by MOAT. Subsequently, Ca2+ oscillatory patterns were determined with sperm from patients showing moderate to normal activation potential based on the capacity of human sperm to generate Ca2+ responses upon microinjection in mouse and human oocytes. Altogether, this study includes a total of 255 mouse and 122 human oocytes. M-OCA was performed with 16 different sperm samples before undergoing ICSI-AOA treatment. H-OCA was performed for 11 patients who finally underwent ICSI-AOA treatment. The diagnostic accuracy to predict fertilization success was calculated based on the response to ICSI-AOA. Patients experiencing low or total failed fertilization after conventional ICSI were included in the study. All participants showed moderate to high rates of activation after MOAT. Metaphase II (MII) oocytes from B6D2F1 mice were used for M-OCA. Control fertile sperm samples were used to obtain a reference Ca2+ oscillation profile elicited in human oocytes. Donated human oocytes, non-suitable for IVF treatments, were collected and vitrified at MII stage for further analysis by H-OCA. M-OCA and H-OCA predicted the response to ICSI-AOA in 8 out of 11 (73%) patients. Compared to M-OCA, H-OCA detected the presence of sperm activation deficiencies with greater sensitivity (75 vs 100%, respectively). ICSI-AOA never showed benefit to overcome

  20. Nanoliter droplet vitrification for oocyte cryopreservation.

    PubMed

    Zhang, Xiaohui; Khimji, Imran; Shao, Lei; Safaee, Hooman; Desai, Khanjan; Keles, Hasan Onur; Gurkan, Umut Atakan; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2012-04-01

    Oocyte cryopreservation remains largely experimental, with live birth rates of only 2-4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification. An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets. Oocyte survival rates, morphologies and parthenogenetic development after each vitrification step were assessed in comparison with fresh oocytes. Oocytes were retrieved after cryoprotectant agent loading/unloading, and nanoliter droplet encapsulation showed comparable survival rates to fresh oocytes after 24 h in culture. Also, oocytes recovered after vitrification/thawing showed similar morphologies to those of fresh oocytes. Additionally, the rate of oocyte parthenogenetic activation after nanoliter droplet encapsulation was comparable with that observed for fresh oocytes. This nanoliter droplet technology enables the vitrification of oocytes at higher cooling and warming rates using lower cryoprotectant agent levels (i.e., 1.4 M ethylene glycol, 1.1 M dimethyl sulfoxide and 1 M sucrose), thus making it a potential technology to improve oocyte cryopreservation outcomes.

  1. Oocyte quality in mice is affected by a mycotoxin-contaminated diet.

    PubMed

    Hou, Yan-Jun; Xiong, Bo; Zheng, Wei-Jiang; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Qiang; Xu, Yin-Xue; Sun, Shao-Chen

    2014-05-01

    Mycotoxins, such as deoxynivalenol (DON), zearalenone (ZEN), and aflatoxin (AF), are commonly found in many food commodities and may impair the growth and reproductive efficiency of animals and humans. We investigated the effects of a mycotoxin-contaminated diet on mouse oocyte quality. Maize contaminated with DON (3.875 mg/kg), ZEN (1,897 μg/kg), and AF (806 μg/kg) was incorporated into a mouse diet at three different levels (0, 15, and 30% w/w). After 4 weeks, ovarian and germinal vesicle oocyte indices decreased in mycotoxin-fed mice. Oocytes from these mice exhibited low developmental competence with reduced germinal vesicle breakdown and polar body extrusion rates. Embryo developmental competence also showed a similar pattern, and the majority of embryos could not develop to the morula stage. Actin expression was also reduced in both the oocyte cortex and cytoplasm, which was accompanied by decreased expression of the actin nucleation factors profilin-1 and mDia1. Moreover, a large percentage of oocytes derived from mice that were fed a mycotoxin-contaminated diet exhibited aberrant spindle morphology, a loss of the cortical granule-free domain, and abnormal mitochondrial distributions, which further supported the decreased oocyte quality. Thus, our results demonstrate that mycotoxins are toxic to the mouse reproductive system by affecting oocyte quality. Copyright © 2013 Wiley Periodicals, Inc.

  2. Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I.

    PubMed

    Shin, Yong-Hyun; Ren, Yu; Suzuki, Hitomi; Golnoski, Kayla J; Ahn, Hyo Won; Mico, Vasil; Rajkovic, Aleksandar

    2017-06-01

    Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and oogenesis bHLH transcription factor 1 (Sohlh1) and Sohlh2 coordinates oocyte differentiation within the embryonic ovary. We found that SOHLH2 protein was expressed in the mouse germline as early as E12.5 and preceded SOHLH1 protein expression, which occurred circa E15.5. SOHLH1 protein appearance at E15.5 correlated with SOHLH2 translocation from the cytoplasm into the nucleus and was dependent on SOHLH1 expression. NOBOX oogenesis homeobox (NOBOX) and LIM homeobox protein 8 (LHX8), two important regulators of postnatal oogenesis, were coexpressed with SOHLH1. Single deficiency of Sohlh1 or Sohlh2 disrupted the expression of LHX8 and NOBOX in the embryonic gonad without affecting meiosis. Sohlh1-KO infertility was rescued by conditional expression of the Sohlh1 transgene after the onset of meiosis. However, Sohlh1 or Sohlh2 transgene expression could not rescue Sohlh2-KO infertility due to a lack of Sohlh1 or Sohlh2 expression in rescued mice. Our results indicate that Sohlh1 and Sohlh2 are essential regulators of oocyte differentiation but do not affect meiosis I.

  3. Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes.

    PubMed

    Sugawara, Atsushi; Sugimura, Satoshi; Hoshino, Yumi; Sato, Eimei

    2009-08-01

    Cloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.

  4. Nanoliter droplet vitrification for oocyte cryopreservation

    PubMed Central

    Zhang, Xiaohui; Khimji, Imran; Shao, Lei; Safaee, Hooman; Desai, Khanjan; Keles, Hasan Onur; Gurkan, Umut Atakan; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2011-01-01

    Aim Oocyte cryopreservation remains largely experimental, with live birth rates of only 2–4% per thawed oocyte. In this study, we present a nanoliter droplet technology for oocyte vitrification. Materials & methods An ejector-based droplet vitrification system was designed to continuously cryopreserve oocytes in nanoliter droplets. Oocyte survival rates, morphologies and parthenogenetic development after each vitrification step were assessed in comparison with fresh oocytes. Results Oocytes were retrieved after cryoprotectant agent loading/unloading, and nanoliter droplet encapsulation showed comparable survival rates to fresh oocytes after 24 h in culture. Also, oocytes recovered after vitrification/thawing showed similar morphologies to those of fresh oocytes. Additionally, the rate of oocyte parthenogenetic activation after nanoliter droplet encapsulation was comparable with that observed for fresh oocytes. This nanoliter droplet technology enables the vitrification of oocytes at higher cooling and warming rates using lower cryoprotectant agent levels (i.e., 1.4 M ethylene glycol, 1.1 M dimethyl sulfoxide and 1 M sucrose), thus making it a potential technology to improve oocyte cryopreservation outcomes. PMID:22188180

  5. Liposome-encapsulated diacyl glycerol and inositol triphosphate-induced delayed oocyte activation and poor development of parthenotes.

    PubMed

    Nair, Ramya; Manikkath, Jyothsna; Hegde, Aswathi R; Mutalik, Srinivas; Kalthur, Guruprasad; Adiga, Satish Kumar

    2017-09-01

    To explore the ability of diacyl glycerol (DAG) and inositol triphosphate (IP3), two major secondary messengers in the calcium signaling pathway, in activating oocytes. Oocyte cumulus complex obtained from superovulated Swiss albino mice were incubated in M16 medium with liposome-encapsulated 1,2-Dipalmitoyl-sn-glycerol (LEDAG) and/or IP3 for 3 h. Strontium chloride was used as positive control. The activation potential, ploidy status, and blastocyst rate was calculated. Both DAG and IP3, individually, induced activation in ~98% of oocytes, which was significantly higher (p<0.01) than activation induced by strontium chloride (60%). Delayed pronucleus formation and a higher percentage of diploid parthenotes was observed in oocytes activated with LEDAG and/or IP3. However, these embryos failed to progress beyond the 6-8-cell stage. Only when the medium was supplemented with LEDAG (5 μg/mL) and IP3 (10 μg/mL) could activated oocytes progress till the blastocyst stage (5.26%), which was lower than the blastocyst rate in the positive controls (13.91%). The results of the present study indicate that DAG and IP3 can induce delayed oocyte activation and poor development of parthenotes in vitro.

  6. RNA-Seq transcriptome profiling of mouse oocytes after in vitro maturation and/or vitrification.

    PubMed

    Gao, Lei; Jia, Gongxue; Li, Ai; Ma, Haojia; Huang, Zhengyuan; Zhu, Shien; Hou, Yunpeng; Fu, Xiangwei

    2017-10-16

    In vitro maturation (IVM) and vitrification have been widely used to prepare oocytes before fertilization; however, potential effects of these procedures, such as expression profile changes, are poorly understood. In this study, mouse oocytes were divided into four groups and subjected to combinations of in vitro maturation and/or vitrification treatments. RNA-seq and in silico pathway analysis were used to identify differentially expressed genes (DEGs) that may be involved in oocyte viability after in vitro maturation and/or vitrification. Our results showed that 1) 69 genes were differentially expressed after IVM, 66 of which were up-regulated. Atp5e and Atp5o were enriched in the most significant gene ontology term "mitochondrial membrane part"; thus, these genes may be promising candidate biomarkers for oocyte viability after IVM. 2) The influence of vitrification on the transcriptome of oocytes was negligible, as no DEGs were found between vitrified and fresh oocytes. 3) The MII stage is more suitable for oocyte vitrification with respect to the transcriptome. This study provides a valuable new theoretical basis to further improve the efficiency of in vitro maturation and/or oocyte vitrification.

  7. Skewed segregation of the mtDNA nt 8993 (T-->G) mutation in human oocytes.

    PubMed Central

    Blok, R B; Gook, D A; Thorburn, D R; Dahl, H H

    1997-01-01

    Rapid changes in mtDNA variants between generations have led to the bottleneck theory, which proposes a dramatic reduction in mtDNA numbers during early oogenesis. We studied oocytes from a woman with heteroplasmic expression of the mtDNA nt 8993 (T-->G) mutation. Of seven oocytes analyzed, one showed no evidence of the mutation, and the remaining six had a mutant load > 95%. This skewed expression of the mutation in oocytes is not compatible with the conventional bottleneck theory. A possible explanation is that, during amplification of mtDNA in the developing oocyte, mtDNA from one mitochondrion is preferentially amplified. Thus, subsequent mature oocytes may contain predominantly wild-type or mutant mitochondrial genomes. Images Figure 2 Figure 3 PMID:9199572

  8. Noninvasive assays of in vitro matured human oocytes showed insignificant correlation with fertilization and embryo development.

    PubMed

    Ashourzadeh, Sareh; Khalili, Mohammad Ali; Omidi, Marjan; Mahani, Seyed Nooraldin Nematollahi; Kalantar, Seyed Mehdi; Aflatoonian, Abbas; Habibzadeh, Victoria

    2015-08-01

    Recently, the upgrading of in vitro maturation (IVM) of human oocytes as a promising strategy has emerged in assisted reproductive technology (ART). The goal was to evaluate the correlation of the in vitro matured oocytes selected on the basis of the zona pellucida (ZP) birefringence and meiotic spindles (MS) detection with fertilization and subsequent embryo development in ICSI program. A total of 168 immature oocytes [germinal vesicle (n = 140) and metaphase I (n = 28)] obtained from patients undergoing oocytes retrieval for ICSI. After in vitro culture for 24-40 h, 112 (67 %) oocytes reached to MII stage. Using a polarized microscopy, the presence of MS and ZP birefringence were assessed in matured oocytes, followed by ICSI performance. The rates of fertilization in oocytes with spindles (51.3 %) were similar to that of the oocytes without spindles (50.7 %; P = 1.00). Moreover, the fertilization rates in high birefringence (HB) oocytes was not statistically different than oocytes with low birefringence (LB) (P = 0.44). The findings also showed that 64.9 % of the fertilized oocytes developed to embryos, in which 33.3 % were derived from spindle-detected oocytes. Regarding the ZP birefringence, 35.5 % of the embryos were derived from HB oocytes. There were insignificant relationships between the MS detection and ZP birefringence score with the rates of fertilization and embryo development in IVM oocytes.

  9. Kif4 Is Essential for Mouse Oocyte Meiosis.

    PubMed

    Camlin, Nicole J; McLaughlin, Eileen A; Holt, Janet E

    2017-01-01

    Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age.

  10. Clinical benefit of metaphase I oocytes

    PubMed Central

    Vanhoutte, Leen; De Sutter, Petra; Van der Elst, Josiane; Dhont, Marc

    2005-01-01

    Background We studied the benefit of using in vitro matured metaphase I (MI) oocytes for ICSI in patients with a maximum of 6 mature metaphase II (MII) oocytes at retrieval. Methods In 2004, 187 ICSI cycles were selected in which maximum 6 MII oocytes and at least one MI oocyte were retrieved. MI oocytes were put in culture to mature until the moment of ICSI, which was performed between 2 to 11 hours after oocyte retrieval (day 0). In exceptional cases, when the patient did not have any mature oocyte at the scheduled time of ICSI, MI oocytes were left to mature overnight and were injected between 19 to 26 hours after retrieval (day 1). Embryos from MI oocytes were chosen for transfer only when no other good quality embryos from MII oocytes were available. Outcome parameters were time period of in vitro maturation (IVM), IVM and fertilization rates, embryo development, clinical pregnancy rates, implantation rates and total MI oocyte utilization rate. Results The overall IVM rate was 43%. IVM oocytes had lower fertilization rates compared to in vivo matured sibling oocytes (52% versus 68%, P < 0.05). The proportion of poor quality embryos was significantly higher in IVM derived oocytes. One pregnancy and live birth was obtained out of 13 transfers of embryos exclusively derived from IVM oocytes. This baby originated from an oocyte that was injected after 22 hrs of IVM. Conclusion Fertilization of in vitro matured MI oocytes can result in normal embryos and pregnancy, making IVM worthwhile, particularly when few MII oocytes are obtained at retrieval. PMID:16356175

  11. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, we identified a novel transcript which is represented by multiple ESTs derived only from the oocyte c...

  12. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, we identified a novel transcript which is represented by ESTs only from the oocyte library. The novel...

  13. The Adverse Effects of Triptolide on the Reproductive System of Caenorhabditis elegans: Oogenesis Impairment and Decreased Oocyte Quality

    PubMed Central

    Ruan, Qinli; Xu, Yun; Xu, Rui; Wang, Jiaying; Hua, Yongqing; Wang, Meng; Duan, Jinao

    2017-01-01

    Previous studies have revealed that Triptolide damages female reproductive capacity, but the mechanism is unclear. In this study, we used Caenorhabditis elegans to investigate the effects of Triptolide on the germline and explore its possible mechanisms. Our data show that exposure for 4 h to 50 and 100 mg/L Triptolide reduced C. elegans fertility, led to depletion and inactivation of spermatids with the changes in the expression levels of related genes, and increased the number of unfertilized oocytes through damaging chromosomes and DNA damage repair mechanisms. After 24 and 48 h of the 4 h exposure to 50 and 100 mg/L Triptolide, we observed shrink in distal tip cells, an increase in the number of apoptotic cells, a decrease in the number of mitotic germ cells and oocytes in diakinesis stage, and chromatin aggregates in −1 oocytes. Moreover, expression patterns of the genes associated with mitotic germ cell proliferation, apoptosis, and oocyte quality were altered after Triptolide exposure. Therefore, Triptolide may damage fertility of nematodes by hampering the development of oocytes at different developmental stages. Alterations in the expression patterns of genes involved in oocyte development may explain the corresponding changes in oocyte development in nematodes exposed to Triptolide. PMID:28230788

  14. Predictive value of bovine follicular components as markers of oocyte developmental potential.

    PubMed

    Matoba, Satoko; Bender, Katrin; Fahey, Alan G; Mamo, Solomon; Brennan, Lorraine; Lonergan, Patrick; Fair, Trudee

    2014-01-01

    The follicle is a unique micro-environment within which the oocyte can develop and mature to a fertilisable gamete. The aim of this study was to investigate the ability of a panel of follicular parameters, including intrafollicular steroid and metabolomic profiles and theca, granulosa and cumulus cell candidate gene mRNA abundance, to predict the potential of bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles were dissected from abattoir ovaries, carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through in vitro maturation, fertilisation and culture. The mean (±s.e.m.) follicular concentrations of testosterone (62.8±4.8 ngmL(-1)), progesterone (616.8±31.9 ngmL(-1)) and oestradiol (14.4±2.4 ngmL(-1)) were not different (P>0.05) between oocytes that formed (competent) or failed to form (incompetent) blastocysts. Principal-component analysis of the quantified aqueous metabolites in follicular fluid showed differences between oocytes that formed blastocysts and oocytes that degenerated; l-alanine, glycine and l-glutamate were positively correlated and urea was negatively correlated with blastocyst formation. Follicular fluid associated with competent oocytes was significantly lower in palmitic acid (P=0.023) and total fatty acids (P=0.031) and significantly higher in linolenic acid (P=0.036) than follicular fluid from incompetent oocytes. Significantly higher (P<0.05) transcript abundance of LHCGR in granulosa cells, ESR1 and VCAN in thecal cells and TNFAIP6 in cumulus cells was associated with competent compared with incompetent oocytes.

  15. Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo.

    PubMed

    Goud, Pravin T; Goud, Anuradha P; Najafi, Tohid; Gonik, Bernard; Diamond, Michael P; Saed, Ghassan M; Zhang, Xueji; Abu-Soud, Husam M

    2014-01-01

    Nitric oxide (NO) is reported to play significant a role in oocyte activation and maturation, implantation, and early embryonic development. Previously we have shown that NO forms an important component of the oocyte microenvironment, and functions effectively to delay oocyte aging. Thus, precise information about intra-oocyte NO concentrations [NO] will result in designing more accurate treatment plans in assisted reproduction. In this work, the direct, real-time and quantitative intra-oocyte [NO] was measured utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments, but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu. This experiment suggests that the NO levels of oocytes obtained from young animals are significantly higher than those of oocytes obtained from old animals. Additionally the NO levels stay constant during the measurements; however, the intra-oocyte [NO] is reduced significantly (70-75% reduction) in response to L-NAME incubation, suggesting that NO measurements are truly NOS based rather than caused by an unknown interfering substance in our system. We believe this first demonstration of the direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. Moreover, this finding confirms and extends our previous work showing that supplementation with NO delays the oocyte aging process.

  16. Direct Real-Time Measurement of Intra-Oocyte Nitric Oxide Concentration In Vivo

    PubMed Central

    Goud, Pravin T.; Goud, Anuradha P.; Najafi, Tohid; Gonik, Bernard; Diamond, Michael P.; Saed, Ghassan M.; Zhang, Xueji; Abu-Soud, Husam M.

    2014-01-01

    Nitric oxide (NO) is reported to play significant a role in oocyte activation and maturation, implantation, and early embryonic development. Previously we have shown that NO forms an important component of the oocyte microenvironment, and functions effectively to delay oocyte aging. Thus, precise information about intra-oocyte NO concentrations [NO] will result in designing more accurate treatment plans in assisted reproduction. In this work, the direct, real-time and quantitative intra-oocyte [NO] was measured utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments, but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu. This experiment suggests that the NO levels of oocytes obtained from young animals are significantly higher than those of oocytes obtained from old animals. Additionally the NO levels stay constant during the measurements; however, the intra-oocyte [NO] is reduced significantly (70–75% reduction) in response to L-NAME incubation, suggesting that NO measurements are truly NOS based rather than caused by an unknown interfering substance in our system. We believe this first demonstration of the direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. Moreover, this finding confirms and extends our previous work showing that supplementation with NO delays the oocyte aging process. PMID:24887331

  17. Ultrastructural Studies on Oocyte Development and Vitellogenesis associated with Follicle Cells in Female Scapharca subcrenata (Pelecypoda: Arcidae) in Western Korea

    PubMed Central

    Kim, Sung Han

    2016-01-01

    Ultrastructural studies on oocyte development and vitellogenesis in oocytes, and the functions of follicle cells during oogenesis and oocyte degeneration were investigated to clarifyb the reproductive mechanism on vitellogenesis of Scapharca subcrenata using electron microscope observations. In this study, vitellogenesis during oogenesis in the oocytes occured by way of autosynthesis and heterosynthesis. Of two processes of vitellogenesis during oogenesis, the process of endogenous autosynthesis involved the combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum. However, the process of exogenous heterosynthesis involved endocytotic incorporation of extraovarian precursors at the basal region of the oolema of the early vitellogenic oocytes before the formation of the vitelline coat. In this study, follicle cells, which attached to the previtellogenic and vitellogenic oocytes, were easily found. In particular, the follicle cells were involved in the development of previtellogenic oocytes by the supply of nutrients, and vitellogenesis in the early and late vitellogenic oocytes by endocytosis of yolk precursors. Based on observations of follicle cells attached to degenerating oocytes after spawning, follicles of this species are involved in lysosomal induction of oocyte degeneration for the resorption phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. In this study, the functions of follicle cells can accumulate reserves of lipid granules and glycogen particles for vitellogenesis from degenerating oocytes after spawning. PMID:27796004

  18. Lectin from embryos and oocytes of Xenopus laevis. Purification and properties.

    PubMed

    Roberson, M M; Barondes, S H

    1982-07-10

    Soluble extracts of Xenopus laevis blastula stage embryos, oocytes, and adult liver contain lectin activities detected by agglutination of trypsinized, glutaraldehyde-fixed rabbit erythrocytes. Lectin from the embryos and oocytes was purified by affinity chromatography on a column derivatized with melibiose. Trace contaminants were removed either by preparative isoelectric focusing or by gel filtration. Based on its behavior on Sepharose 6B the purified oocyte lectin has an apparent molecular weight of approximately 480,000. On sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions there were two major bands with molecular weight ranges of about 43,000 and 45,000, with diffuse trails. Since the purified lectin contains about 20% saccharides by weight and since both bands are glycosylated, diffuseness might be due to variable glycosylation. Heterogeneity was indicated by isoelectric focusing in polyacrylamide gels, which showed four protein bands with isoelectric points ranging from 4.4 to 4.9. Lectins from both embryos and oocytes comprised about 1 to 2% of the total soluble protein and could not be distinguished by sodium dodecyl sulfate polyacrylamide gel electrophoresis. However, the specific hemagglutination activity of the purified oocyte lectin was, on the average, 7-fold higher. Levels in crude extracts of liver were 3 orders of magnitude lower than those from oocytes. The hemagglutination activities of the lectins from embryos, oocytes, and adult liver required Ca2+ and were blocked by similar concentrations of both alpha- and beta-galactosides.

  19. Efficiency of metaphase II oocytes following minimal/mild ovarian stimulation in vitro fertilization.

    PubMed

    Zhang, John J; Yang, Mingxue; Merhi, Zaher

    2016-01-01

    An inverse relationship between oocyte efficiency and ovarian response was reported in conventional IVF. The purpose of this study was to report metaphase II (MII) oocyte efficiency according to oocyte yield in minimal/mild stimulation IVF (mIVF) and to assess whether oocyte yield affects live birth rate (LBR). Infertile women ( n  = 264) aged < 39 years old with normal ovarian reserve who had mIVF were recruited. All participants received the same protocol for ovarian stimulation. All the embryos were cultured to the blastocyst stage and vitrified using a freeze-all approach. This was followed by a single blastocyst transferred to each participant in subsequent cycles over a 6-month period. Ovarian response was categorized according to the number of MII oocyte yield (low: 1-2, intermediate: 3-6 and high ≥ 7 MII oocytes). MII oocyte utilization rate was calculated as the number of live births divided by the number of MII oocytes produced after only one oocyte retrieval and subsequent transfers of vitrified/warmed blastocysts. The main outcome measure was cumulative LBR over a 6-month period. Among all the participants, 1173 total retrieved oocytes (4.4 ± 0.2 per patient) resulted in 1019 (3.9 ± 0.2 per patient) total MII oocytes, a clinical pregnancy rate of 48.1 % and a LBR of 41.2 %. Oocyte utilization rate was inversely related to ovarian response where it was 30.3 % in the "low" vs. 9.3 % in the "intermediate" vs. 4.3 % in the "high" oocyte yield groups ( p  < 0.05). Implantation rate significantly dropped as the number of MII oocytes increased and was highest in the "low" oocyte yield group ( p  < 0.0001). Cumulative LBR was similar in "low," "intermediate," and "high" oocyte yield groups ( p  > 0.05). The number of MII oocytes had poor sensitivity and specificity for predicting a live birth. These data extend the hypothesis of oocyte efficiency reported in conventional IVF protocols to mIVF protocols. Registration

  20. SKAP2 regulates Arp2/3 complex for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes

    PubMed Central

    Xu, Bai-Hui; Liu, Yu; Wang, Ya-Long; Chen, Ming-Huang; Xu, Lin; Liao, Bao-Qiong; Lui, Rui; Li, Fei-Ping; Lin, Yan-Hong; Fu, Xian-Pei; Fu, Bin-Bin; Hong, Zi-Wei; Qi, Zhong-Quan

    2017-01-01

    ABSTRACT SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes. PMID:28933599

  1. SKAP2 regulates Arp2/3 complex for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.

    PubMed

    He, Shu-Wen; Xu, Bai-Hui; Liu, Yu; Wang, Ya-Long; Chen, Ming-Huang; Xu, Lin; Liao, Bao-Qiong; Lui, Rui; Li, Fei-Ping; Lin, Yan-Hong; Fu, Xian-Pei; Fu, Bin-Bin; Hong, Zi-Wei; Liu, Yu-Xin; Qi, Zhong-Quan; Wang, Hai-Long

    2017-01-01

    SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.

  2. Accumulation of electrophilic aldehydes during postovulatory aging of mouse oocytes causes reduced fertility, oxidative stress, and apoptosis.

    PubMed

    Lord, Tessa; Martin, Jacinta H; Aitken, R John

    2015-02-01

    With increasing periods of time following ovulation, the metaphase II (MII)-stage oocyte experiences overproduction of reactive oxygen species and elevated levels of lipid peroxidation that are implicitly linked with functional deficiencies acquired during postovulatory oocyte aging. We have demonstrated that the electrophilic aldehydes 4-hydroxynonenal (4HNE), malondialdehyde, and acrolein are by-products of nonenzymatic lipid peroxidation in the murine MII-stage oocyte, adducting to multiple proteins within the cell. The covalent modification of oocyte proteins by these aldehydes increased with extended periods of time postovulation; the mitochondrial protein succinate dehydrogenase (SDHA) was identified as a primary target for 4HNE adduction. Time- and dose-dependent studies revealed that exposure to elevated levels of electrophilic aldehydes causes mitochondrial reactive oxygen species production, lipid peroxidation, loss of mitochondrial membrane potential, and eventual apoptosis within the MII oocyte, presumably as a consequence of electron transport chain collapse following SDHA adduction. Additionally, we have determined that short-term exposure to low doses of 4HNE dramatically impairs the oocyte's ability to participate in fertilization and support embryonic development; however, this loss of functionality can be prevented by supplementation with the antioxidant penicillamine. In conclusion, this study has revealed that the accumulation of electrophilic aldehydes is linked to postovulatory oocyte aging, causing reduced fertility, oxidative stress, and apoptosis of this highly specialized cell. These data highlight the importance of timely fertilization of the mammalian oocyte postovulation and emphasize the potential advantages associated with antioxidant supplementation of oocyte culture medium in circumstances where reinsemination of oocytes may be desirable (i.e., rescue intracytoplasmic sperm injection), or where in vitro fertilization may be delayed

  3. Cryopreserved oocyte versus fresh oocyte assisted reproductive technology cycles, United States, 2013.

    PubMed

    Crawford, Sara; Boulet, Sheree L; Kawwass, Jennifer F; Jamieson, Denise J; Kissin, Dmitry M

    2017-01-01

    To compare characteristics, explore predictors, and compare assisted reproductive technology (ART) cycle, transfer, and pregnancy outcomes of autologous and donor cryopreserved oocyte cycles with fresh oocyte cycles. Retrospective cohort study from the National ART Surveillance System. Fertility treatment centers. Fresh embryo cycles initiated in 2013 utilizing embryos created with fresh and cryopreserved, autologous and donor oocytes. Cryopreservation of oocytes versus fresh. Cancellation, implantation, pregnancy, miscarriage, and live birth rates per cycle, transfer, and/or pregnancy. There was no evidence of differences in cancellation, implantation, pregnancy, miscarriage, or live birth rates between autologous fresh and cryopreserved oocyte cycles. Donor cryopreserved oocyte cycles had a decreased risk of cancellation before transfer (adjusted risk ratio [aRR] 0.74, 95% confidence interval [CI] 0.57-0.96) as well as decreased likelihood of pregnancy (aRR 0.88, 95% CI 0.81-0.95) and live birth (aRR 0.87, 95% CI 0.80-0.95); however, there was no evidence of differences in implantation, pregnancy, or live birth rates when cycles were restricted to those proceeding to transfer. Donor cryopreserved oocyte cycles proceeding to pregnancy had a decreased risk of miscarriage (aRR 0.75, 95% CI 0.58-0.97) and higher live birth rate (aRR 1.05, 95% CI 1.01-1.09) with the transfer of one embryo, but higher miscarriage rate (aRR 1.28, 95% CI 1.07-1.54) and lower live birth rate (aRR 0.95, 95% CI 0.92-0.99) with the transfer of two or more. There was no evidence of differences in ART outcomes between autologous fresh and cryopreserved oocyte cycles. There was evidence of differences in per-cycle and per-pregnancy outcomes between donor cryopreserved and fresh oocyte cycles, but not in per-transfer outcomes. Published by Elsevier Inc.

  4. Ovarian ageing: the role of mitochondria in oocytes and follicles.

    PubMed

    May-Panloup, Pascale; Boucret, Lisa; Chao de la Barca, Juan-Manuel; Desquiret-Dumas, Valérie; Ferré-L'Hotellier, Véronique; Morinière, Catherine; Descamps, Philippe; Procaccio, Vincent; Reynier, Pascal

    2016-11-01

    There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in

  5. RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes

    PubMed Central

    Cao, Yan; Du, Juan; Chen, Dandan; Wang, Qian; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Weng, Jing; Liang, Yuanjing; Ma, Wei

    2016-01-01

    ABSTRACT Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes. PMID:27433972

  6. RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes.

    PubMed

    Cao, Yan; Du, Juan; Chen, Dandan; Wang, Qian; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Weng, Jing; Liang, Yuanjing; Ma, Wei

    2016-10-01

    Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.

  7. Functional enucleation of porcine oocytes for somatic cell nuclear transfer using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2010-02-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer over the last decade. However, this method still results in very low efficiencies originating from biological and technical aspects. The highly-invasive mechanical enucleation belongs to the technical aspects and requires considerable micromanipulation skill. In this paper, we present a novel non-invasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically determined the metaphase plate position and shape. Subsequent irradiation of this volume with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation. We show that functional fs laser-based enucleation of porcine oocytes completely inhibited further embryonic development while maintaining intact oocyte morphology. In contrast, non-irradiated oocytes were able to develop to the blastocyst stage without significant differences to control oocytes. Our results indicate that fs laser systems offer great potential for oocyte imaging and enucleation as a fast, easy to use and reliable tool which may improve the efficiency of somatic cell clone production.

  8. Microinjection of Follicle-Enclosed Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Jaffe, Laurinda A.; Norris, Rachael P.; Freudzon, Marina; Ratzan, William J.; Mehlmann, Lisa M.

    The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.

  9. Two Dimensional Finite Element Model to Study Calcium Distribution in Oocytes

    NASA Astrophysics Data System (ADS)

    Naik, Parvaiz Ahmad; Pardasani, Kamal Raj

    2015-06-01

    Cytosolic free calcium concentration is a key regulatory factor and perhaps the most widely used means of controlling cellular function. Calcium can enter cells through different pathways which are activated by specific stimuli including membrane depolarization, chemical signals and calcium depletion of intracellular stores. One of the important components of oocyte maturation is differentiation of the Ca2+ signaling machinery which is essential for egg activation after fertilization. Eggs acquire the ability to produce the fertilization-specific calcium signal during oocyte maturation. The calcium concentration patterns required during different stages of oocyte maturation are still not completely known. Also the mechanisms involved in calcium dynamics in oocyte cell are still not well understood. In view of above a two dimensional FEM model has been proposed to study calcium distribution in an oocyte cell. The parameters such as buffers, ryanodine receptor, SERCA pump and voltage gated calcium channel are incorporated in the model. Based on the biophysical conditions the initial and boundary conditions have been framed. The model is transformed into variational form and Ritz finite element method has been employed to obtain the solution. A program has been developed in MATLAB 7.10 for the entire problem and executed to obtain numerical results. The numerical results have been used to study the effect of buffers, RyR, SERCA pump and VGCC on calcium distribution in an oocyte cell.

  10. Combined multiphoton imaging and automated functional enucleation of porcine oocytes using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Lucas-Hahn, Andrea; Petersen, Bjoern; Lemme, Erika; Hassel, Petra; Niemann, Heiner; Heisterkamp, Alexander

    2010-07-01

    Since the birth of ``Dolly'' as the first mammal cloned from a differentiated cell, somatic cell cloning has been successful in several mammalian species, albeit at low success rates. The highly invasive mechanical enucleation step of a cloning protocol requires sophisticated, expensive equipment and considerable micromanipulation skill. We present a novel noninvasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically identified the metaphase plate. Subsequent irradiation of the metaphase chromosomes with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation (functional enucleation). We show that fs laser-based functional enucleation of porcine oocytes completely inhibited the parthenogenetic development without affecting the oocyte morphology. In contrast, nonirradiated oocytes were able to develop parthenogenetically to the blastocyst stage without significant differences to controls. Our results indicate that fs laser systems have great potential for oocyte imaging and functional enucleation and may improve the efficiency of somatic cell cloning.

  11. Effect of open pulled straw (OPS) vitrification on the fertilisation rate and developmental competence of porcine oocytes.

    PubMed

    Varga, Erika; Gardón, J C; Papp, Agnes Bali

    2006-03-01

    Freezing technologies are very important to preserve gametes and embryos of animals with a good pedigree or those having high genetic value. The aim of this work was to compare immature and in vitro matured porcine oocytes regarding their morphology and ability to be fertilised after vitrification by the open pulled straw (OPS) method. In four experiments 830 oocytes were examined. To investigate the effect of cumulus cells on oocyte survival after OPS vitrification, both denuded and cumulus-enclosed oocytes were vitrified at the germinal vesicle (GV) stage, then after vitrification they were matured in vitro. Besides, in vitro matured oocytes surrounded with a cumulus and those without a cumulus were also vitrified. The survival of oocytes was evaluated by their morphology. After in vitro fertilisation the rates of oocytes penetrated by spermatozoa were compared. Our results suggest that the vitrification/warming procedure is the most effective in cumulus-enclosed oocytes (22.35 +/- 1.75%). There was no difference between the order of maturation and vitrification in cumulus-enclosed oocytes, which suggests the importance of cumulus cells in protecting the viability of oocytes during cryopreservation.

  12. Oocyte cryopreservation: where are we now?

    PubMed

    Argyle, Catrin E; Harper, Joyce C; Davies, Melanie C

    2016-06-01

    Since the first live birth from oocyte cryopreservation three decades ago, oocyte cryopreservation has become an important component of ART. Cryopreservation techniques have evolved, leading to higher success rates and the introduction of oocyte cryopreservation into IVF clinics worldwide. Concurrently, there has been an increase in patient demand, especially for so-called 'social egg freezing' that allows women to preserve their fertility in anticipation of age-related fertility decline. This review addresses a need to evaluate the current status of oocyte cryopreservation. It explores current techniques and success rates, clinical applications, the rise of elective oocyte cryopreservation, and future implications. A search was performed using Web of Science and PubMed databases for publications between January 1980 and December 2015. Keywords used included 'egg freezing', 'oocyte freezing', 'oocyte cryopreservation', 'oocyte vitrification', and 'fertility preservation'. The success rate of oocyte cryopreservation has risen, and the increasing use of vitrification offers has improved outcomes, with IVF pregnancy rates now similar to those achieved with fresh oocytes. There are conflicting opinions about the comparative success rates of open and closed vitrification. Patients are accessing and receiving oocyte cryopreservation for a wide range of indications, and there has been a marked increase in patient numbers and oocyte cryopreservation cycles. Oocyte cryopreservation for circumventing age-related infertility is becoming more widely accepted. Oocyte cryopreservation is an established component of ART, with vitrification now being the cryopreservation technique of choice. Increasing numbers of women undergo oocyte cryopreservation for both medical and social reasons. It is important to continue auditing outcomes and reporting long-term follow-up of children born from frozen-thawed oocytes. © The Author 2016. Published by Oxford University Press on behalf of

  13. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.

    PubMed

    McGrew, L L; Richter, J D

    1990-11-01

    The expression of certain maternal mRNAs during oocyte maturation is regulated by cytoplasmic polyadenylation. To understand this process, we have focused on a maternal mRNA from Xenopus termed G10. This mRNA is stored in the cytoplasm of stage 6 oocytes until maturation when the process of poly(A) elongation stimulates its translation. Deletion analysis of the 3' untranslated region of G10 RNA has revealed that two sequence elements, UUUUUUAU and AAUAAA were both necessary and sufficient for polyadenylation and polysomal recruitment. In this communication, we have defined the U-rich region that is optimal for polyadenylation as UUUUUUAUAAAG, henceforth referred to as the cytoplasmic polyadenylation element (CPE). We have also identified unique sequence requirements in the 3' terminus of the RNA that can modulate polyadenylation even in the presence of wild-type cis elements. A time course of cytoplasmic polyadenylation in vivo shows that it is an early event of maturation and that it requires protein synthesis within the first 15 min of exposure to progesterone. MPF and cyclin can both induce polyadenylation but, at least with respect to MPF, cannot obviate the requirement for protein synthesis. To identify factors that may be responsible for maturation-specific polyadenylation, we employed extracts from oocytes and unfertilized eggs, the latter of which correctly polyadenylates exogenously added RNA. UV crosslinking demonstrated that an 82 kd protein binds to the U-rich CPE in egg, but not oocyte, extracts. The data suggest that progesterone, either in addition to or through MPF/cyclin, induces the synthesis of a factor during very early maturation that stimulates polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Mouse oocytes fertilised by ICSI during in vitro maturation retain the ability to be activated after refertilisation in metaphase II and can generate Ca2+ oscillations

    PubMed Central

    Jędrusik, Agnieszka; Ajduk, Anna; Pomorski, Paweł; Maleszewski, Marek

    2007-01-01

    Background At fertilisation, mammalian oocytes are activated by oscillations of intracellular Ca2+ ([Ca2+]i). Phospholipase Cζ, which is introduced by fertilising spermatozoon, triggers [Ca2+]i oscillations through the generation of inositol 1,4,5-triphosphate (IP3), which causes Ca2+ release by binding to IP3 receptors located on the endoplasmic reticulum (ER) of the oocyte. Ability to respond to this activating stimulus develops during meiotic maturation of the oocyte. Here we examine how the development of this ability is perturbed when a single spermatozoon is introduced into the oocyte prematurely, i.e. during oocyte maturation. Results Mouse oocytes during maturation in vitro were fertilised by ICSI (intracytoplasmic sperm injection) 1 – 4 h after germinal vesicle break-down (GVBD) and were subsequently cultured until they reached metaphase II (MII) stage. At MII stage they were fertilised in vitro for the second time (refertilisation). We observed that refertilised oocytes underwent activation with similar frequency as control oocytes, which also went through maturation in vitro, but were fertilised only once at MII stage (87% and 93%, respectively). Refertilised MII oocytes were able to develop [Ca2+]i oscillations in response to penetration by spermatozoa. We found however, that they generated a lower number of transients than control oocytes. We also showed that the oocytes, which were fertilised during maturation had a similar level of MPF activity as control oocytes, which were not subjected to ICSI during maturation, but had reduced level of IP3 receptors. Conclusion Mouse oocytes, which were experimentally fertilised during maturation retain the ability to generate repetitive [Ca2+]i transients, and to be activated after completion of maturation. PMID:17584490

  15. Human oocyte cryopreservation.

    PubMed

    Tao, Tao; Zhang, Wenling; Del Valle, Alfonso

    2009-06-01

    This review summarized the clinical breakthroughs in the human oocyte cryopreservation field in the past 2 years and gave special emphasis on the role of vitrification method. Human oocyte cryopreservation is an attractive strategy to preserve female fertility, as it offers more opportunities to the future destination of the female gametes and also raises fewer legal and ethical questions compared with embryo cryopreservation. It became promising in recent years because of dramatic improvement in cryopreservation technologies. Human oocyte cryopreservation would not become a clinical routine until the availability of reliable cryopreservation methods and long-term follow-up results of the babies born by this technique. Oocyte cryopreservation produced very exciting results with pregnancy and implantation rates comparable to embryo cryopreservation and in some cases comparable to fresh in-vitro fertilization cycles with both modified slow-freezing and vitrification methods. A cancer patient conceived and delivered her own babies by this technology after recovery from the disease. Oocyte cryopreservation became a new focus in assisted reproductive technology. We witnessed the advanced development of human oocyte cryopreservation in the past years because of increasing demand, medically, legally and ethically, and also because of the dramatic improvement of the freezing technique. There is still a long way to go to integrate it into a routine clinical procedure to benefit more patients and encourage clinicians to follow the standard protocols.

  16. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluatemore » whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kg bw/day BPA for a period encompassing the first three reproductive cycles (12–15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. - Highlights: • Bisphenol A targets the fertilization ability of oocytes. • Bisphenol A does not alter ovulation. • Young adult females may be susceptible to the effects of bisphenol A on fertilization.« less

  17. Comparative performances of staging systems for early hepatocellular carcinoma.

    PubMed

    Nathan, Hari; Mentha, Gilles; Marques, Hugo P; Capussotti, Lorenzo; Majno, Pietro; Aldrighetti, Luca; Pulitano, Carlo; Rubbia-Brandt, Laura; Russolillo, Nadia; Philosophe, Benjamin; Barroso, Eduardo; Ferrero, Alessandro; Schulick, Richard D; Choti, Michael A; Pawlik, Timothy M

    2009-08-01

    Several staging systems for patients with hepatocellular carcinoma (HCC) have been proposed, but studies of their prognostic accuracy have yielded conflicting conclusions. Stratifying patients with early HCC is of particular interest because these patients may derive the greatest benefit from intervention, yet no studies have evaluated the comparative performances of staging systems in patients with early HCC. A retrospective cohort study was performed using data on 379 patients who underwent liver resection or liver transplantation for HCC at six major hepatobiliary centres in the USA and Europe. The staging systems evaluated were: the Okuda staging system, the International Hepato-Pancreato-Biliary Association (IHPBA) staging system, the Cancer of the Liver Italian Programme (CLIP) score, the Barcelona Clinic Liver Cancer (BCLC) staging system, the Japanese Integrated Staging (JIS) score and the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC) staging system, 6th edition. A recently proposed early HCC prognostic score was also evaluated. The discriminative abilities of the staging systems were evaluated using Cox proportional hazards models and the bootstrap-corrected concordance index (c). Overall survival of the cohort was 74% at 3 years and 52% at 5 years, with a median survival of 62 months. Most systems demonstrated poor discriminatory ability (P > 0.05 on Cox proportional hazards analysis, c approximately 0.5). However, the AJCC/UICC system clearly stratified patients (P < 0.001, c = 0.59), albeit only into two groups. The early HCC prognostic score also clearly stratified patients (P < 0.001, c = 0.60) and identified three distinct prognostic groups. The early HCC prognostic score is superior to the AJCC/UICC staging system (6th edition) for predicting the survival of patients with early HCC after liver resection or liver transplantation. Other major HCC staging systems perform poorly in patients with early HCC.

  18. Cyclin B in mouse oocytes and embryos: importance for human reproduction and aneuploidy.

    PubMed

    Polański, Zbigniew; Homer, Hayden; Kubiak, Jacek Z

    2012-01-01

    Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.

  19. Increased accuracy of batch fecundity estimates using oocyte stage ratios in Plectropomus leopardus.

    PubMed

    Carter, A B; Williams, A J; Russ, G R

    2009-08-01

    Using the ratio of the number of migratory nuclei to hydrated oocytes to estimate batch fecundity of common coral trout Plectropomus leopardus increases the time over which samples can be collected and, therefore, increases the sample size available and reduces biases in batch fecundity estimates.

  20. Cryopreserved oocyte versus fresh oocyte assisted reproductive technology cycles, United States, 2013

    PubMed Central

    Crawford, Sara; Boulet, Sheree L.; Kawwass, Jennifer F.; Jamieson, Denise J.; Kissin, Dmitry M.

    2017-01-01

    Objective To compare characteristics, explore predictors, and compare assisted reproductive technology (ART) cycle, transfer, and pregnancy outcomes of autologous and donor cryopreserved oocyte cycles with fresh oocyte cycles. Design Retrospective cohort study from the National ART Surveillance System. Setting Fertility treatment centers. Patient(s) Fresh embryo cycles initiated in 2013 utilizing embryos created with fresh and cryopreserved, autologous and donor oocytes. Intervention(s) Cryopreservation of oocytes versus fresh. Main Outcomes Measure(s) Cancellation, implantation, pregnancy, miscarriage, and live birth rates per cycle, transfer, and/or pregnancy. Result(s) There was no evidence of differences in cancellation, implantation, pregnancy, miscarriage, or live birth rates between autologous fresh and cryopreserved oocyte cycles. Donor cryopreserved oocyte cycles had a decreased risk of cancellation before transfer (adjusted risk ratio [aRR] 0.74, 95% confidence interval [CI] 0.57–0.96) as well as decreased likelihood of pregnancy (aRR 0.88, 95% CI 0.81–0.95) and live birth (aRR 0.87, 95% CI 0.80–0.95); however, there was no evidence of differences in implantation, pregnancy, or live birth rates when cycles were restricted to those proceeding to transfer. Donor cryopreserved oocyte cycles proceeding to pregnancy had a decreased risk of miscarriage (aRR 0.75, 95% CI 0.58–0.97) and higher live birth rate (aRR 1.05, 95% CI 1.01–1.09) with the transfer of one embryo, but higher miscarriage rate (aRR 1.28, 95% CI 1.07–1.54) and lower live birth rate (aRR 0.95, 95% CI 0.92–0.99) with the transfer of two or more. Conclusion(s) There was no evidence of differences in ART outcomes between autologous fresh and cryopreserved oocyte cycles. There was evidence of differences in per-cycle and per-pregnancy outcomes between donor cryopreserved and fresh oocyte cycles, but not in per-transfer outcomes. PMID:27842997

  1. Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.

    PubMed

    Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C

    2007-02-01

    Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation

  2. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos

    PubMed Central

    Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping

    2017-01-01

    Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401

  3. Developmental competence of different quality bovine oocytes retrieved through ovum pick-up following in vitro maturation and fertilization.

    PubMed

    Saini, N; Singh, M K; Shah, S M; Singh, K P; Kaushik, R; Manik, R S; Singla, S K; Palta, P; Chauhan, M S

    2015-12-01

    In the present study, oocytes retrieved from cross bred Karan Fries cows by ovum pick-up technique were graded into Group 1 and Group 2, based on the morphological appearance of the individual cumulus-oocyte complexes (COCs). To analyze whether the developmental potential of the COCs bears a relation to morphological appearance, relative expression of a panel of genes associated with; (a) cumulus-oocyte interaction (Cx43, Cx37, GDF9 and BMP15), (b) fertilization (ZP2 and ZP3), (c) embryonic development (HSF1, ZAR1 and bFGF) and (d) apoptosis and survival (BAX, BID and BCL-XL, MCL-1, respectively) was studied at two stages: germinal vesicle (GV) stage and after in vitro maturation. The competence was further corroborated by evaluating the embryonic progression of the presumed zygotes obtained from fertilization of the graded COCs. The gene expression profile and development rate in pooled A and B grade (Group 1) COCs and pooled C and D grade (Group 2) COCs were determined and compared according to the original grades. The results of the study demonstrated that the morphologically characterized Group 2 COCs showed significantly (P<0.05) lower expression for most of the genes related to cumulus-oocyte interplay, fertilization and embryonic development, both at GV stage as well as after maturation. Group 1 COCs also showed greater expression of anti-apoptotic genes (BCL-XL and MCL1) both at GV stage and after maturation, while pro-apoptotic genes (BAX and BID) showed significantly (P<0.05) elevated expression in poor quality COCs at both the stages. The cleavage rate in Group 1 COCs was significantly higher than that of Group 2 (74.46±7.06 v. 31.57±5.32%). The development of the presumed zygotes in Group 2 oocytes proceeded up to 8- to 16-cell stages only, while in Group 1 it progressed up to morulae (35.38±7.11%) and blastocyst stages (9.70±3.15%), indicating their better developmental potential.

  4. What does the cryopreserved oocyte look like? A fresh look at the characteristic oocyte features following cryopreservation.

    PubMed

    Hosseini, Sayyed Morteza; Nasr-Esfahani, Mohammad Hossein

    2016-04-01

    In October 2012, the American Society for Reproductive Medicine (ASRM) and, in March 2012, the European Society of Human Reproduction and Embryology (ESHRE), lifted the categorization of oocyte cryopreservation as being "experimental" and endorsed its entrance into the mainstream of assisted reproductive techniques. This change in policy, with the considerable advantages that oocytes offer over embryos for cryopreservation, has increased applications of oocyte cryopreservation in assisted reproduction techniques. A deep understanding of oocyte cryobiology, however, is lagging behind the forces propelling the clinical application of oocyte cryopreservation. We have drawn attention to this shortcoming by initiating a debate on whether a vitrified-warmed oocyte has the same characteristics as its fresh sibling. The answer to this question may explain why the oocyte cryopreservation success rate is as yet far from satisfactory and why cryopreserved oocytes should be treated differently from their fresh siblings. A fresh look at the characteristic features of oocytes after cryopreservation is the main scope of this review as a stimulus to further improvement of oocyte cryopreservation. Copyright © 2016. Published by Elsevier Ltd.

  5. Does dietary fat intake influence oocyte competence and embryo quality by inducing oxidative stress in follicular fluid?

    PubMed

    Kazemi, Ashraf; Ramezanzadeh, Fatemeh; Nasr-Esfahani, Mohammad Hosein; Saboor Yaraghi, Ali Akbar; Ahmadi, Mehdi

    2013-12-01

    Fat-rich diet may alter oocyte development and maturation and embryonic development by inducing oxidative stress (OS) in follicular environment. To investigate the relationship between fat intake and oxidative stress with oocyte competence and embryo quality. In observational study follicular fluid was collected from 236 women undergoing assisted reproduction program. Malon-di-aldehyde (MDA) levels and total antioxidant capacity (TAC) levels of follicular fluid were assessed as oxidative stress biomarkers. In assisted reproduction treatment cycle fat consumption and its component were assessed. A percentage of metaphase ΙΙ stage oocytes, fertilization rate were considered as markers of oocyte competence and non-fragmented embryo rate, mean of blastomer and good cleavage (embryos with more than 5 cells on 3 days post insemination) rate were considered as markers of embryo quality. The MDA level in follicular fluid was positively related to polyunsaturated fatty acids intake level (p=0.02) and negatively associated with good cleavage rate (p=0.045). Also good cleavage rate (p=0.005) and mean of blastomer (p=0.006) was negatively associated with polyunsaturated fatty acids intake levels. The percentage of metaphase ΙΙ stage oocyte was positively related to the TAC levels in follicular fluid (p=0.046). The relationship between the OS biomarkers in FF and the fertilization rate was not significant. These findings revealed that fat rich diet may induce the OS in oocyte environment and negatively influence embryonic development. This effect can partially be accounted by polyunsaturated fatty acids uptake while oocyte maturation is related to TAC and oocytes with low total antioxidant capacity have lower chance for fertilization and further development.

  6. Comparison of glucose metabolism in in vivo- and in vitro-matured tammar wallaby oocytes and its relationship to developmental potential following intracytoplasmic sperm injection.

    PubMed

    Magarey, Genevieve M; Mate, Karen E

    2004-01-01

    Although marsupial oocytes undergo nuclear maturation in vitro, there is, at present, no indication of their developmental potential, largely owing to the lack of in vitro fertilisation and related technologies for marsupials. Glucose metabolism has proven a useful indicator of oocyte cytoplasmic maturation and developmental potential in several eutherian species. Therefore, the aims of the present study were to compare: (1) the rates of glycolysis and glucose oxidation in immature, in vitro-matured and in vivo-matured tammar wallaby oocytes; and (2) the metabolic rate of individual oocytes with their ability to form pronuclei after intracytoplasmic sperm injection. The rates of glycolysis measured in immature (2.18 pmol oocyte(-1) h(-1)), in vitro- matured (0.93 pmol oocyte(-1) h(-1)) and in vivo-matured tammar wallaby oocytes (0.54 pmol oocyte(-1) h(-1)) were within a similar range to values obtained in eutherian species. However, unlike the trend observed in eutherian oocytes, the glycolytic rate was significantly higher in immature oocytes compared with either in vivo- or in vitro-matured oocytes (P < 0.001) and significantly higher in in vitro-matured oocytes compared with in vivo-matured oocytes (P < 0.001). No relationship was identified between glucose metabolism and the developmental capacity of oocytes after intracytoplasmic sperm injection when assessed after 17-19 h. Oocytes that became fertilised (two pronuclei) or activated (one or more pronucleus) were not distinguished from others by their metabolic rates. Longer culture after intracytoplasmic sperm injection (e.g. blastocyst stage) may show oocyte glucose metabolism to be predictive of developmental potential; however, culture to the single-cell stage did not reveal any significant differences in normally developing embryos.

  7. Oocyte glutathione and fertilisation outcome of Macaca nemestrina and Macaca fascicularis in in vivo- and in vitro-matured oocytes.

    PubMed

    Curnow, E C; Ryan, J P; Saunders, D M; Hayes, E S

    2010-01-01

    Fertilisation and development of IVM non-human primate oocytes is limited compared with that of in vivo-matured (IVO) oocytes. The present study describes the IVM of macaque oocytes with reference to oocyte glutathione (GSH). Timing of maturation, comparison of IVM media and cysteamine (CYS) supplementation as a modulator of GSH were investigated. A significantly greater proportion of oocytes reached MII after 30 h compared with 24 h of IVM. Following insemination, IVM oocytes had a significantly lower incidence of normal fertilisation (i.e. 2PN = two pronuclei and at least one polar body) and a higher rate of abnormal fertilisation (1PN = one pronucleus and at least one polar body) compared with IVO oocytes. Immunofluorescence of 1PN zygotes identified incomplete sperm head decondensation and failure of male pronucleus formation as the principal cause of abnormal fertilisation in IVM oocytes. The IVO oocytes had significantly higher GSH content than IVM oocytes. Cumulus-denuded oocytes had significantly lower GSH following IVM compared with immature oocytes at collection. Cysteamine supplementation of the IVM medium significantly increased the GSH level of cumulus-intact oocytes and reduced the incidence of 1PN formation, but did not improve GSH levels of the denuded oocyte. Suboptimal GSH levels in macaque IVM oocytes may be related to reduced fertilisation outcomes.

  8. An oocyte-specific ELAVL2 isoform is a translational repressor ablated from meiotically competent antral oocytes

    PubMed Central

    Chalupnikova, Katerina; Solc, Petr; Sulimenko, Vadym; Sedlacek, Radislav; Svoboda, Petr

    2014-01-01

    At the end of the growth phase, mouse antral follicle oocytes acquire full developmental competence. In the mouse, this event is marked by the transition from the so-called non-surrounded nucleolus (NSN) chromatin configuration into the transcriptionally quiescent surrounded nucleolus (SN) configuration, which is named after a prominent perinucleolar condensed chromatin ring. However, the SN chromatin configuration alone is not sufficient for determining the developmental competence of the SN oocyte. There are additional nuclear and cytoplamic factors involved, while a little is known about the changes occurring in the cytoplasm during the NSN/SN transition. Here, we report functional analysis of maternal ELAVL2 an AU-rich element binding protein. Elavl2 gene encodes an oocyte-specific protein isoform (denoted ELAVL2°), which acts as a translational repressor. ELAVL2° is abundant in fully grown NSN oocytes, is ablated during the NSN/SN transition and remains low during the oocyte-to-embryo transition (OET). ELAVL2° overexpression during meiotic maturation causes errors in chromosome segregation, indicating the significance of naturally reduced ELAVL2° levels in SN oocytes. On the other hand, during oocyte growth, prematurely reduced Elavl2 expression results in lower yields of fully grown and meiotically matured oocytes, suggesting that Elavl2 is necessary for proper oocyte maturation. Moreover, Elavl2 knockdown showed stimulating effects on translation in fully grown oocytes. We propose that ELAVL2 has an ambivalent role in oocytes: it functions as a pleiotropic translational repressor in efficient production of fully grown oocytes, while its disposal during the NSN/SN transition contributes to the acquisition of full developmental competence. PMID:24553115

  9. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity.

    PubMed

    Levy, Gary; Hill, Micah J; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S; Segars, James H; Csokmay, John

    2013-05-01

    To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Retrospective cohort study. Military assisted reproductive technology (ART) program. Fresh autologous ART cycles. Serum hCG level the day before oocyte retrieval. Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. Copyright © 2013. Published by Elsevier Inc.

  10. Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation.

    PubMed

    Labas, Valérie; Teixeira-Gomes, Ana-Paula; Bouguereau, Laura; Gargaros, Audrey; Spina, Lucie; Marestaing, Aurélie; Uzbekova, Svetlana

    2018-03-20

    Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (<17kDa) of single oocytes, cumulus cells (CC) and granulosa cells (GC), which shared a total of 439 peaks. By comparing the ICM-MS profiles of single oocytes and CC before and after in vitro maturation (IVM), 71 different peaks were characterised, and their relative abundance was found to vary depending on the stage of oocyte meiotic maturation. To identify these endogenous biomolecules, top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Oocyte maturation and origin of the germline as revealed by the expression of Nanos-like in the Pacific oyster Crassostrea gigas.

    PubMed

    Xu, Rui; Li, Qi; Yu, Hong; Kong, Lingfeng

    2018-04-13

    Nanos gene plays an important role in germline development in animals. However, the molecular mechanisms involved in germline development in Mollusca, the second largest animal phylum, are still poorly understood. Here we identified the Nanos orthologue from the Pacific oyster Crassostrea gigas (Cg-Nanos-like), and investigated the expression patterns of Nanos during gametogenesis and embryogenesis in C. gigas. Tissue expression analysis showed that Cg-Nanos-like was specifically expressed in female gonads. During the reproductive cycle, the expression of Cg-Nanos-like mRNA increased matching the seasonal development of the ovarian tissues in diploids, while the expression levels were significantly lower in the ovaries of sterile triploids compared to diploids. High expression of Cg-Nanos-like transcripts were detected in early embryonic stages, while the expression significantly dropped at gastrulation and was barely detectable in veliger stages. In situ hybridization showed that Cg-Nanos-like was expressed at different stages of developing oocytes, whereas positive signals were detected only in spermatogonia during the spermatogenic cycle. These findings indicated that Cg-Nanos-like was involved in the development of germ cells, and maintenance of oocyte maturation. In early embryogenesis, the transcripts were broadly expressed; following gastrulation, the expression was restricted to two cell clumps, which might be the putative primordial germ cells (PGCs) or their precursors. Based on the results, the formation of the PGCs in C. gigas was consistent with the model of transition from epigenesis to preformation. Copyright © 2017. Published by Elsevier B.V.

  12. Ovarian and oocyte cryopreservation.

    PubMed

    Lornage, Jacqueline; Salle, Bruno

    2007-08-01

    The present article is an update on progress in the two available techniques of oocyte and ovarian cryopreservation: slow cooling/rapid thawing and vitrification. A new line of research has opened in recent years: freezing the whole ovary with its vascular pedicle, so as to enable vascular grafts limiting ischemia-related follicle reserve loss. The technique of mature oocyte vitrification has advanced significantly, with improved oocyte physiology, increased safety, and higher clinical pregnancy rates. The number of studies on whole ovary freezing has grown, and there has been a large-mammal (sheep) live birth by orthotopic graft with vascular anastomosis of a cryopreserved ovary. Ovarian and oocyte cryopreservation is essential to conserving the fertility of young women. Results of mature oocyte freezing techniques have improved significantly over the past few years, but remain poorer than those with embryo freezing. Mature oocyte vitrification is progressing well, but requires safety validation in view of the high cryoprotectant concentrations used. Ovarian cortex fragment freezing is widely used in patients, with two live births after orthotopic graft, worldwide. The problem of rapid graft exhaustion has led to a focus on whole ovary cryopreservation which has resulted in one live birth in a ewe.

  13. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation.

    PubMed

    Lin, Zi-Li; Kim, Nam-Hyung

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes. © 2015 International Federation for Cell Biology.

  14. Oocyte glutathione and fertilisation outcome of Macaca nemestrina and Macaca fascicularis in in vivo- and in vitro-matured oocytes

    PubMed Central

    Curnow, E. C.; Ryan, J. P.; Saunders, D. M.; Hayes, E. S.

    2010-01-01

    Fertilisation and development of IVM non-human primate oocytes is limited compared with that of in vivo-matured (IVO) oocytes. The present study describes the IVM of macaque oocytes with reference to oocyte glutathione (GSH). Timing of maturation, comparison of IVM media and cysteamine (CYS) supplementation as a modulator of GSH were investigated. A significantly greater proportion of oocytes reached MII after 30 h compared with 24 h of IVM. Following insemination, IVM oocytes had a significantly lower incidence of normal fertilisation (i.e. 2PN = two pronuclei and at least one polar body) and a higher rate of abnormal fertilisation (1PN = one pronucleus and at least one polar body) compared with IVO oocytes. Immunofluorescence of 1PN zygotes identified incomplete sperm head decondensation and failure of male pronucleus formation as the principal cause of abnormal fertilisation in IVM oocytes. The IVO oocytes had significantly higher GSH content than IVM oocytes. Cumulus-denuded oocytes had significantly lower GSH following IVM compared with immature oocytes at collection. Cysteamine supplementation of the IVM medium significantly increased the GSH level of cumulus-intact oocytes and reduced the incidence of 1PN formation, but did not improve GSH levels of the denuded oocyte. Suboptimal GSH levels in macaque IVM oocytes may be related to reduced fertilisation outcomes. PMID:20591337

  15. Evidence for an absence of deleterious effects of ultrasound on human oocytes.

    PubMed

    Mahadevan, M; Chalder, K; Wiseman, D; Leader, A; Taylor, P J

    1987-10-01

    Animal and human data would suggest that ultrasound causes deleterious effects to oocytes during meiosis. We directly compared the fertilization rate and embryonic development following in vitro fertilization and embryo transfer of those oocytes exposed to ultrasound and those not exposed in the same patient. In 39 unscreened patients a combination of laparoscopy and ultrasound was used for oocyte recovery. Laparoscopy was performed first on the most accessible ovary (usually the right) and at least one oocyte was obtained. Ultrasound-guided oocyte recovery was successful in the other inaccessible ovary. To assess how oocytes obtained by ultrasound or laparoscopy related to the pregnancy rate, two groups of patients were evaluated in whom the embryos transferred either had been exposed to ultrasound or had not been. The fertilization and the embryo cleavage rates were not significantly different between the ultrasound-exposed and the unexposed groups. The pregnancy rate was also not significantly different [9 of 49 (18.4%) for ultrasound exposed versus 14 of 74 (18.9%) for unexposed]. There was one early spontaneous abortion in each group. Further analysis of a group of 40 patients, in whom the oocytes were exposed to ultrasound in situ, after the endogenous luteinizing hormone (LH) surge had begun 1-27 hr earlier, revealed that 6 became pregnant (15%). This preliminary study suggests that exposure of human oocytes to ultrasonic waves, either during the different phases of meiosis or after the completion of meiosis, did not significantly influence the developmental potential of the in vitro fertilized embryos.

  16. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity

    PubMed Central

    Levy, Gary; Hill, Micah J.; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S.; Segars, James H.; Csokmay, John

    2014-01-01

    Objective To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Design Retrospective cohort study. Setting Military assisted reproductive technology (ART) program. Patient(s) Fresh autologous ART cycles. Intervention(s) Serum hCG level the day before oocyte retrieval. Main Outcome Measure(s) Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥ 75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. Result(s) A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥ 75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Conclusion(s) Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. PMID:23375205

  17. Establishment of pregnancy after the transfer of nuclear transfer embryos produced from the fusion of argali (Ovis ammon) nuclei into domestic sheep (Ovis aries) enucleated oocytes.

    PubMed

    White, K L; Bunch, T D; Mitalipov, S; Reed, W A

    1999-01-01

    by exposure to ionomycin (5 microM, 4 minutes) followed by incubation in 6-dimethylaminopurine (0.2 mM, 4 hours) and cultured in microdrops of CR1aa medium. From a total of 166 constructed nuclear donor cell-bovine cytoplasm NT couples, 128 (77%) successfully fused, 100 (78%) developed to 8-16 cell stage, and 2 (1.56%) developed to the blastocyst stage. The presence of argali nuclei in 8-16 cell stage embryo clones was confirmed after observation of Hoechst 33342 stained embryos under UV light and chromosome analysis of metaphase spreads from blastomeres. A total of 127 constructed nuclear donor cell-ovine cytoplasm NT couples were produced, 101 (80%) successfully fused, 81 (80% of fused) developed to the 16- to 32-cell stage. A total of 28 hybrid (argali-sheep) and 21 sheep-sheep NT embryos were transferred into 6 recipients and 4 recipients, respectively. Two of these recipients, 1 carrying argali-sheep and 1 sheep-sheep, were confirmed pregnant at 49 days by ultrasound, but both pregnancies terminated by 59 days. The results of this study demonstrate the possibility of using xenogenic oocytes to produce early-stage embryos and pregnancies from an established fibroblast cell line of an endangered species.

  18. Ultrastructural characteristics of the follicle cell-oocyte interface in the oogenesis of Ceratophrys cranwelli.

    PubMed

    Villecco, Evelina I; Genta, Susana B; Sánchez Riera, Alicia N; Sánchez, Sara S

    2002-05-01

    In this work we carried out an ultrastructural analysis of the cell interface between oocyte and follicle cells during the oogenesis of the amphibian Ceratophrys cranwelli, which revealed a complex cell-cell interaction. In the early previtellogenic follicles, the plasma membrane of the follicle cells lies in close contact with the plasma membrane of the oocyte, with no interface between them. In the mid-previtellogenic follicles the follicle cells became more active and their cytoplasm has vesicles containing granular material. Their apical surface projects cytoplasmic processes (macrovilli) that contact the oocyte, forming gap junctions. The oocyte surface begins to develop microvilli. At the interface both processes delimit lacunae containing granular material. The oocyte surface has endocytic vesicles that incorporate this material, forming cortical vesicles that are peripherally arranged. In the late previtellogenic follicle the interface contains fibrillar material from which the vitelline envelope will originate. During the vitellogenic period, there is an increase in the number and length of the micro- and macrovilli, which become regularly arranged inside fibrillar tunnels. At this time the oocyte surface exhibits deep crypts where the macrovilli enter, thus increasing the follicle cell-oocyte junctions. In addition, the oocyte displays coated pits and vesicles evidencing an intense endocytic activity. At the interface of the fully grown oocyte the fibrillar network of the vitelline envelope can be seen. The compact zone contains a fibrillar electron-dense material that fills the spaces previously occupied by the now-retracted microvilli. The macrovilli are still in contact with the surface of the oocyte, forming gap junctions.

  19. Pyrrole-Based Macrocyclic Small-Molecule Inhibitors That Target Oocyte Maturation.

    PubMed

    Gunasekaran, Pethaiah; Lee, So-Rim; Jeong, Seung-Min; Kwon, Jeong-Woo; Takei, Toshiki; Asahina, Yuya; Bang, Geul; Kim, Seongnyeon; Ahn, Mija; Ryu, Eun Kyung; Kim, Hak Nam; Nam, Ki-Yub; Shin, Song Yub; Hojo, Hironobu; Namgoong, Suk; Kim, Nam-Hyung; Bang, Jeong Kyu

    2017-04-20

    Polo-like kinase 1 (PLK1) plays crucial roles in various stages of oocyte maturation. Recently, we reported that the peptidomimetic compound AB103-8, which targets the polo box domain (PBD) of PLK1, affects oocyte meiotic maturation and the resumption of meiosis. However, to overcome the drawbacks of peptidic compounds, we designed and synthesized a series of pyrrole-based small-molecule inhibitors and tested them for their effects on the rates of porcine oocyte maturation. Among them, the macrocyclic compound (E/Z)-3-(2,16-dioxo-19-(4-phenylbutyl)-3,19-diazabicyclo[15.2.1]icosa-1(20),6,17-trien-3-yl)propyl dihydrogen phosphate (4) showed the highest inhibitory activity with enhanced inhibition against embryonic blastocyst formation. Furthermore, the addition of this compound to culture media efficiently blocked the maturation of porcine and mouse oocytes, indicating its ability to penetrate the zona pellucida and cell membrane. We investigated mouse oocytes treated with compound 4, and the resulting impairment of spindle formation confirmed PLK1 inhibition. Finally, molecular modeling studies with PLK1 PBD also confirmed the presence of significant interactions between compound 4 and PLK1 PBD binding pocket residues, including those in the phosphate, tyrosine-rich, and pyrrolidine binding pockets. Collectively, these results suggest that the macrocyclic compound 4 may serve as a promising template for the development of novel contraceptive agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Milrinone treatment of bovine oocytes during in vitro maturation benefits production of nuclear transfer embryos by improving enucleation rate and developmental competence.

    PubMed

    Naruse, Kenji; Iga, Kosuke; Shimizu, Manabu; Takenouchi, Naoki; Akagi, Satoshi; Somfai, Tamas; Hirao, Yuji

    2012-01-01

    In the production of cattle nuclear transfer embryos, the production efficiency is affected by the oocyte developmental competence and successful enucleation rate. This study investigated the effect of treating oocytes with milrinone, a phosphodiesterase inhibitor, on these two characteristics. When cumulus-oocyte complexes (COCs) were cultured for 19 h with 0, 50 or 100 μM of milrinone, the enucleation rate was significantly improved by 100 μM milrinone. However, milrinone treatment during in vitro maturation (IVM) also delayed meiotic progression by at least 2 h, which would affect the examination of enucleation rate and developmental competence of oocytes. Thus, in the second experiment, meiotic resumption was temporarily inhibited with butyrolactone I (BL-I; 100 μM, 18 h) to decrease the delayed maturation caused by milrinone; this enabled a more accurate comparison of the effects of milrinone after oocyte maturation. In nuclear transfer embryo production, oocytes treated with milrinone (100 μM, 20 h) showed a significantly higher rate of enucleation compared with that of control oocytes. This improved enucleation rate was associated with a closer location of the metaphase plate to the first polar body in the treated oocytes compared with that in control oocytes. Furthermore, milrinone improved the frequency of development to the blastocyst stage in the resulting embryos. In conclusion, milrinone supplementation during IVM improved enucleation rates by rendering the metaphase plate in close proximity to the first polar body, and this treatment also improved oocyte developmental competence. These benefits additively improved the yield of cloned embryos that developed to the blastocyst stage.

  1. Aurelia aurita (Cnidaria) Oocytes' Contact Plate Structure and Development

    PubMed Central

    Adonin, Leonid S.; Shaposhnikova, Tatyana G.; Podgornaya, Olga

    2012-01-01

    One of the A. aurita medusa main mesoglea polypeptides, mesoglein, has been described previously. Mesoglein belongs to ZP-domain protein family and therefore we focused on A.aurita oogenesis. Antibodies against mesoglein (AB RA47) stain the plate in the place where germinal epithelium contacts oocyte on the paraffin sections. According to its position, we named the structure found the “contact plate”. Our main instrument was AB against mesoglein. ZP-domain occupies about half of the whole amino acid sequence of the mesoglein. Immunoblot after SDS-PAGE and AU-PAGE reveals two charged and high Mr bands among the female gonad germinal epithelium polypeptides. One of the gonads' polypeptides Mr corresponds to that of mesogleal cells, the other ones' Mr is higher. The morphological description of contact plate formation is the subject of the current work. Two types of AB RA47 positive granules were observed during progressive oogenesis stages. Granules form the contact plate in mature oocyte. Contact plate of A.aurita oocyte marks its animal pole and resembles Zona Pellucida by the following features: (1) it attracts spermatozoids; (2) the material of the contact plate is synthesized by oocyte and stored in granules; (3) these granules and the contact plate itself contain ZP domain protein(s); (4) contact plate is an extracellular structure made up of fiber bundles similar to those of conventional Zona Pellucida. PMID:23185235

  2. Developmental potential of murine germinal vesicle stage cumulus-oocyte complexes following exposure to dimethylsulphoxide or cryopreservation: loss of membrane integrity of cumulus cells after thawing.

    PubMed

    Ruppert-Lingham, C J; Paynter, S J; Godfrey, J; Fuller, B J; Shaw, R W

    2003-02-01

    Cumulus cells of the cumulus-oocyte complex (COC) are important in oocyte maturation. Thus, in preserving immature oocytes it is prudent to also preserve their associated cumulus cells. The survival and function of oocytes and their associated cumulus cells was assessed following cryopreservation or exposure to cryoprotectant without freezing. Immature COCs were collected from mice primed with pregnant mare's serum. COCs were either slow-cooled or exposed to 1.5 mol/l dimethylsulphoxide without freezing. Treated and fresh COCs were stained for membrane integrity or, after in-vitro maturation and IVF, were assessed for developmental capability. Development of cumulus-denuded fresh oocytes, as well as denuded and frozen-thawed oocytes co-cultured with fresh cumulus cells, was assessed. Slow-cooled oocytes had significantly reduced coverage by intact cumulus cells compared with fresh COCs. Cumulus cell association and developmental capability were not substantially affected by exposure to cryoprotectant without freezing. Denuded fresh oocytes and cryopreserved COCs had decreased developmental potential that was not overcome by co-culture with fresh cumulus cells. Loss of association between oocyte and cumulus cells was induced by cryopreservation, but not by treatment with cryoprotectant alone. The data indicate that direct physical contact between cumulus cells and the oocyte, throughout maturation, improves subsequent embryo development.

  3. The effect of clomiphene citrate on human preovulatory oocyte maturation in vivo.

    PubMed

    Seibel, M M; Smith, D M

    1989-02-01

    Sixty-four infertile women underwent diagnostic laparoscopy in the periovulatory period at time-bracketed intervals following their endogenous luteinizing hormone (LH) surge. Forty-eight of these women were studied during natural cycles and 16 had mild oligoovulation and were administered clomiphene citrate (CC) to regulate their cycles. No patient received human chorionic gonadotropin. No patient was undergoing either in vitro fertilization (IVF) or gamete intrafallopian transfer (GIFT). Follicle puncture was performed and the oocytes were observed immediately for stage of maturation. Oocytes obtained from follicles exposed to CC were found to require an increased interval of time to reach metaphase I compared to oocytes obtained from natural cycles (27.75 +/- 2.2 vs 22.5 hr; mean +/- SE). Furthermore, the interval of time required for metaphase I oocytes to achieve metaphase II was statistically significantly shortened for CC cycles (2.4 hr for CC vs 10 hr for natural cycles. Nevertheless, there was no difference between natural and CC cycles in the time interval between LH surge onset and ovulation. These in vivo findings suggest a direct effect of CC on human oocyte maturation and may help explain the well-established discrepancy between the relatively high ovulation rate and the relatively low conception rate in clomiphene-induced cycles.

  4. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development.

    PubMed

    Kasowitz, Seth D; Ma, Jun; Anderson, Stephen J; Leu, N Adrian; Xu, Yang; Gregory, Brian D; Schultz, Richard M; Wang, P Jeremy

    2018-05-25

    The N6-methyladenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotes. The majority of m6A sites are found in the last exon and 3' UTRs. Here we show that the nuclear m6A reader YTHDC1 is essential for embryo viability and germline development in mouse. Specifically, YTHDC1 is required for spermatogonial development in males and for oocyte growth and maturation in females; Ythdc1-deficient oocytes are blocked at the primary follicle stage. Strikingly, loss of YTHDC1 leads to extensive alternative polyadenylation in oocytes, altering 3' UTR length. Furthermore, YTHDC1 deficiency causes massive alternative splicing defects in oocytes. The majority of splicing defects in mutant oocytes are rescued by introducing wild-type, but not m6A-binding-deficient, YTHDC1. YTHDC1 is associated with the pre-mRNA 3' end processing factors CPSF6, SRSF3, and SRSF7. Thus, YTHDC1 plays a critical role in processing of pre-mRNA transcripts in the oocyte nucleus and may have similar non-redundant roles throughout fetal development.

  5. 76 FR 81430 - Small Business Investment Companies-Early Stage SBICs; Public Webinars

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 107 Small Business Investment Companies--Early Stage... Webinars regarding its proposed Early Stage Small Business Investment Companies (Early Stage SBIC) rule. The proposed Early Stage SBIC rule defines a new sub-category of small business investment companies...

  6. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. © 2015 Wiley Periodicals, Inc.

  7. Morphogenesis of early stage melanoma

    NASA Astrophysics Data System (ADS)

    Chatelain, Clément; Amar, Martine Ben

    2015-08-01

    Melanoma early detection is possible by simple skin examination and can insure a high survival probability when successful. However it requires efficient methods for identifying malignant lesions from common moles. This paper provides an overview first of the biological and physical mechanisms controlling melanoma early evolution, and then of the clinical tools available today for detecting melanoma in vivo at an early stage. It highlights the lack of diagnosis methods rationally linking macroscopic observables to the microscopic properties of the tissue, which define the malignancy of the tumor. The possible inputs of multiscale models for improving these methods are shortly discussed.

  8. Fourteen babies born after round spermatid injection into human oocytes

    PubMed Central

    Tanaka, Atsushi; Nagayoshi, Motoi; Takemoto, Youichi; Tanaka, Izumi; Kusunoki, Hiroshi; Watanabe, Seiji; Kuroda, Keiji; Takeda, Satoru; Ito, Masahiko; Yanagimachi, Ryuzo

    2015-01-01

    During the human in vitro fertilization procedure in the assisted reproductive technology, intracytoplasmic sperm injection is routinely used to inject a spermatozoon or a less mature elongating spermatid into the oocyte. In some infertile men, round spermatids (haploid male germ cells that have completed meiosis) are the most mature cells visible during testicular biopsy. The microsurgical injection of a round spermatid into an oocyte as a substitute is commonly referred to as round spermatid injection (ROSI). Currently, human ROSI is considered a very inefficient procedure and of no clinical value. Herein, we report the birth and development of 14 children born to 12 women following ROSI of 734 oocytes previously activated by an electric current. The round spermatids came from men who had been diagnosed as not having spermatozoa or elongated spermatids by andrologists at other hospitals after a first Micro-TESE. A key to our success was our ability to identify round spermatids accurately before oocyte injection. As of today, all children born after ROSI in our clinic are without any unusual physical, mental, or epigenetic problems. Thus, for men whose germ cells are unable to develop beyond the round spermatid stage, ROSI can, as a last resort, enable them to have their own genetic offspring. PMID:26575628

  9. Fourteen babies born after round spermatid injection into human oocytes.

    PubMed

    Tanaka, Atsushi; Nagayoshi, Motoi; Takemoto, Youichi; Tanaka, Izumi; Kusunoki, Hiroshi; Watanabe, Seiji; Kuroda, Keiji; Takeda, Satoru; Ito, Masahiko; Yanagimachi, Ryuzo

    2015-11-24

    During the human in vitro fertilization procedure in the assisted reproductive technology, intracytoplasmic sperm injection is routinely used to inject a spermatozoon or a less mature elongating spermatid into the oocyte. In some infertile men, round spermatids (haploid male germ cells that have completed meiosis) are the most mature cells visible during testicular biopsy. The microsurgical injection of a round spermatid into an oocyte as a substitute is commonly referred to as round spermatid injection (ROSI). Currently, human ROSI is considered a very inefficient procedure and of no clinical value. Herein, we report the birth and development of 14 children born to 12 women following ROSI of 734 oocytes previously activated by an electric current. The round spermatids came from men who had been diagnosed as not having spermatozoa or elongated spermatids by andrologists at other hospitals after a first Micro-TESE. A key to our success was our ability to identify round spermatids accurately before oocyte injection. As of today, all children born after ROSI in our clinic are without any unusual physical, mental, or epigenetic problems. Thus, for men whose germ cells are unable to develop beyond the round spermatid stage, ROSI can, as a last resort, enable them to have their own genetic offspring.

  10. Cloned embryos from semen. Part 2: Intergeneric nuclear transfer of semen-derived eland (Taurotragus oryx) epithelial cells into bovine oocytes

    USGS Publications Warehouse

    Nel-Themaat, L.; Gomez, M.C.; Pope, C.E.; Lopez, M.; Wirtu, G.; Jenkins, J.A.; Cole, A.; Dresser, B.L.; Bondioli, K.R.; Godke, R.A.

    2008-01-01

    The production of cloned offspring by nuclear transfer (NT) of semen-derived somatic cells holds considerable potential for the incorporation of novel genes into endangered species populations. Because oocytes from endangered species are scarce, domestic species oocytes are often used as cytoplasts for interspecies NT. In the present study, epithelial cells isolated from eland semen were used for intergeneric transfer (IgNT) into enucleated bovine oocytes and compared with bovine NT embryos. Cleavage rates of bovine NT and eland IgNT embryos were similar (80 vs. 83%, respectively; p > 0.05); however, development to the morula and blastocyst stage was higher for bovine NT embryos (38 and 21%, respectively; p < 0.0001), than for eland IgNT embryos (0.5 and 0%, respectively). DNA synthesis was not observed in either bovine NT or eland IgNT cybrids before activation, but in 75 and 70% of bovine NT and eland igNT embryos, respectively, cell-cycle resumption was observed at 16 h postactivation (hpa). For eland IgNT embryos, 13% had ???8 cells at 84 hpa, while 32% of the bovine NT embryos had ???8 cells at the same interval. However, 100 and 66% of bovine NT and eland IgNT embryos, respectively, that had ???8 cells synthesized DNA. From these results we concluded that (1) semen-derived epithelial cell nuclei can interact and be transcriptionally controlled by bovine cytoplast, (2) the first cell-cycle occurred in IgNT embryos, (3) a high frequency of developmental arrest occurs before the eight-cell stage in IgNT embryos, and (4) IgNT embryos that progress through the early cleavage stage arrest can (a) synthesize DNA, (b) progress through subsequent cell cycles, and (c) may have the potential to develop further. ?? 2008 Mary Ann Liebert, Inc.

  11. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3more » and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.« less

  12. Detailed lipid analysis of yolk platelets of amphibian (Bufo arenarum) oocytes.

    PubMed

    Buschiazzo, Jorgelina; Bruzzone, Ariana; Alonso, Telma Susana

    2003-06-01

    Yolk platelets, the principal components of amphibian oocytes, have been generally considered as material reservoirs. Their biochemical composition and function during oogenesis and early development have not been fully elucidated. The aim of this study was to carry out a lipidic characterization of yolk platelets from full-grown Bufo arenarum oocytes. Ovarian oocytes were manually obtained and the subcellular fraction was isolated by centrifugation at low velocity. Lipids were separated by thin-layer chromatography. For compositional analysis, they were derived by methanolysis, being identified and quantified in a gas-liquid chromatograph. Phospholipid content indicates that phosphatidylcholine and phosphatidylethanolamine are the main phospholipids followed by phosphatidylinositol, sphingomyelin, phosphatidylserine, and phosphatidic acid. Phospholipidic profile is similar to that in whole oocytes except for the absence of diphosphatidylglycerol in yolk platelets. Oleic, palmitic, and linoleic acids are the main fatty acids in phosphatidylcholine, and oleic acid is the principal one in phosphatidylethanolamine. In phosphatidic acid, palmitic, estearic, palmitoleic, and oleic acids represent 68 mol% of the total acyl groups. Phosphatidylinositol, enriched in arachidonic acid, is the most unsaturated phospholipid while sphingomyelin shows the lowest unsaturation index. The acyl group distribution in triacylglycerols is similar when yolk platelets and whole oocytes are compared. Polar and neutral lipids of yolk platelets determine the lipidic profile of the whole oocyte. The presence of unusual fatty acids as 14:0, 15:0, 15:1, 17:0, and 17:1 in phospholipids and triacylglycerols may indicate an oxidation mechanism different from beta-oxidation in yolk platelets and/or a structural and functional relation with mitochondria. Given that yolk platelets in amphibian oocytes may act in a dynamic fashion in development, their role should be reconsidered.

  13. Effects of culture media and energy sources on the inhibition of nuclear maturation in bovine oocytes.

    PubMed

    Bilodeau-Goeseels, Sylvie

    2006-07-15

    The influence of the culture medium and energy sources on spontaneous nuclear maturation and inhibition of maturation in bovine cumulus-enclosed oocytes (CEO) was examined. CEO were cultured in Medium 199, minimum essential medium, M16, or synthetic oviduct fluid (SOF), all containing 3 mg/mL bovine serum albumin (BSA), and SOF without BSA, alone or supplemented with hypoxanthine (HYPO, 4 mM) or forskolin (FSK, 100 microM) for 21 h. More CEO remained at the GV stage in M16 compared to other media (P < 0.05). Supplementation with HYPO increased and FSK reduced the percentage of CEO remaining at the GV stage (P < 0.05) only in M16. The effects of energy sources, in the absence or presence of HYPO or FSK, were examined in CEO cultured in M16 salts+PVA. Glucose (0.5 and 5.5 mM), pyruvate (0.32 and 3.2 mM), lactate (3.3 mM) and glutamine (1.3 mM) significantly reduced the percentage of CEO remaining at the GV stage compared to M16 salts alone; only glutamine significantly increased the percentage of CEO at the MII stage compared to M16 salts. In M16 salts+HYPO, glucose (0.5 mM), pyruvate (0.32 mM), lactate (3.3 mM) and glutamine (1.3 mM) significantly reduced the percentage of GV and degenerate oocytes and increased the percentage of CEO at the MI stage. In M16 salts+FSK, the energy sources significantly decreased the percentage of oocytes with condensed chromosomes and increased the percentage of CEO reaching metaphase I. In conclusion, meiotic inhibitors had different effects in different culture media and glucose, pyruvate, lactate and glutamine were stimulatory to nuclear maturation. It was noteworthy that some of the results obtained were contrary to previous findings in mouse oocytes.

  14. SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements.

    PubMed

    Do, Dang Vinh; Strauss, Bernhard; Cukuroglu, Engin; Macaulay, Iain; Wee, Keng Boon; Hu, Tim Xiaoming; Igor, Ruiz De Los Mozos; Lee, Caroline; Harrison, Andrew; Butler, Richard; Dietmann, Sabine; Jernej, Ule; Marioni, John; Smith, Christopher W J; Göke, Jonathan; Surani, M Azim

    2018-01-01

    The RNA-binding protein SRSF3 (also known as SRp20) has critical roles in the regulation of pre-mRNA splicing. Zygotic knockout of Srsf3 results in embryo arrest at the blastocyst stage. However, SRSF3 is also present in oocytes, suggesting that it might be critical as a maternally inherited factor. Here we identify SRSF3 as an essential regulator of alternative splicing and of transposable elements to maintain transcriptome integrity in mouse oocyte. Using 3D time-lapse confocal live imaging, we show that conditional deletion of Srsf3 in fully grown germinal vesicle oocytes substantially compromises the capacity of germinal vesicle breakdown (GVBD), and consequently entry into meiosis. By combining single cell RNA-seq, and oocyte micromanipulation with steric blocking antisense oligonucleotides and RNAse-H inducing gapmers, we found that the GVBD defect in mutant oocytes is due to both aberrant alternative splicing and derepression of B2 SINE transposable elements. Together, our study highlights how control of transcriptional identity of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-competent oocytes.

  15. Early stages of soldering reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, R.A.; Umantsev, A.

    2005-09-15

    An experiment on the early stages of intermetallic compound layer growth during soldering and its theoretical analysis were conducted with the intent to study the controlling factors of the process. An experimental technique based on fast dipping and pulling of a copper coupon in liquid solder followed by optical microscopy allowed the authors to study the temporal behavior of the sample on a single micrograph. The technique should be of value for different areas of metallurgy because many experiments on crystallization may be described as the growth of a layer of intermediate phase. Comparison of the experimental results with themore » theoretical calculations allowed one to identify the kinetics of dissolution as the rate-controlling mechanism on the early stages and measure the kinetic coefficient of dissolution. A popular model of intermetallic compound layer structure coarsening is discussed.« less

  16. EGFR mutations in early-stage and advanced-stage lung adenocarcinoma: Analysis based on large-scale data from China.

    PubMed

    Pi, Can; Xu, Chong-Rui; Zhang, Ming-Feng; Peng, Xiao-Xiao; Wei, Xue-Wu; Gao, Xing; Yan, Hong-Hong; Zhou, Qing

    2018-05-02

    EGFR-tyrosine kinase inhibitors play an important role in the treatment of advanced non-small cell lung cancer (NSCLC). EGFR mutations in advanced NSCLC occur in approximately 35% of Asian patients and 60% of patients with adenocarcinoma. However, the frequency and type of EGFR mutations in early-stage lung adenocarcinoma remain unclear. We retrospectively collected data on patients diagnosed with lung adenocarcinoma tested for EGFR mutation. Early stage was defined as pathological stage IA-IIIA after radical lung cancer surgery, and advanced stage was defined as clinical stage IIIB without the opportunity for curative treatment or stage IV according to the American Joint Committee on Cancer Staging Manual, 7th edition. A total of 1699 patients were enrolled in this study from May 2014 to May 2016; 750 were assigned to the early-stage and 949 to the advanced-stage group. Baseline characteristics of the two groups were balanced, except that there were more smokers in the advanced-stage group (P < 0.001). The total EGFR mutation rate in the early-stage group was similar to that in the advanced-stage group (53.6% vs. 51.4%, respectively; P = 0.379). There was no significant difference in EGFR mutation type between the two groups. In subgroup analysis of smoking history, there was no difference in EGFR mutation frequency or type between the early-stage and advanced-stage groups. Early-stage and advanced-stage groups exhibited the same EGFR mutation frequencies and types. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  17. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin.

    PubMed

    Baumann, Claudia; Wang, Xiaotian; Yang, Luhan; Viveiros, Maria M

    2017-04-01

    Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly. © 2017. Published by The Company of Biologists Ltd.

  18. Immunophotoaffinity labeling of binders of 1-methyladenine, the oocyte maturation-inducing hormone of starfish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toraya, Tetsuo; Kida, Tetsuo; Kuyama, Atsushi

    Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary and resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the oocyte maturation-inducing hormone of starfish. Putative 1-MeAde receptors on the oocyte surface have been suggested, but not yet been biochemically characterized. Immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection, was attempted to detect unknown 1-MeAde binders including putative maturation-inducing hormone receptors in starfish oocytes. When the oocyte crude membrane fraction or its Triton X-100/EDTA extract was incubated with N{sup 6}-[6-(5-azido-2-nitrobenzoyl)aminohexyl]carboxamidomethyl-1-methyladenine and then photo-irradiated, followed by western blotting with antibody that was raised againstmore » a 1-MeAde hapten, a single band with M{sub r} of 47.5 K was detected. The band was lost when extract was heated at 100 °C. A similar 47.5 K band was detected in the crude membrane fraction of testis as well. Upon labeling with whole cells, this band was detected in immature and maturing oocytes, but only faintly in mature oocytes. As judged from these results, this 1-MeAde binder might be a possible candidate of the starfish maturation-inducing hormone receptors. - Highlights: • Synthesis of photoaffinity labeling reagents for 1-methyladenine binders of starfish. • Immunochemical detection of photoaffinity-labeled 1-methyladenine binders. • Immunophotoaffinity labeling of a 47.5 K 1-methyladenine binder in oocytes and testis. • A possible candidate of oocyte maturation-inducing hormone receptors of starfish.« less

  19. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition.

    PubMed

    Fulka, Helena; Langerova, Alena

    2014-04-01

    The oocyte (maternal) nucleolus is essential for early embryonic development and embryos originating from enucleolated oocytes arrest at the 2-cell stage. The reason for this is unclear. Surprisingly, RNA polymerase I activity in nucleolus-less mouse embryos, as manifested by pre-rRNA synthesis, and pre-rRNA processing are not affected, indicating an unusual role of the nucleolus. We report here that the maternal nucleolus is indispensable for the regulation of major and minor satellite repeats soon after fertilisation. During the first embryonic cell cycle, absence of the nucleolus causes a significant reduction in major and minor satellite DNA by 12% and 18%, respectively. The expression of satellite transcripts is also affected, being reduced by more than half. Moreover, extensive chromosome bridging of the major and minor satellite sequences was observed during the first mitosis. Finally, we show that the absence of the maternal nucleolus alters S-phase dynamics and causes abnormal deposition of the H3.3 histone chaperone DAXX in pronuclei of nucleolus-less zygotes.

  20. The cytochemistry of oocytes of Chinese shrimp Penaeus orientalis

    NASA Astrophysics Data System (ADS)

    Chen, Qiu

    1991-06-01

    In the growth of oocytes of Penaeus orientalis Kishinouye, five stages were distinguished. Histochemical tests showed the presence of DNA in the chromatin and nucleolus of the cell. The cytoplasm at the previtellogenetic stage and the nucleolus are rich in RNA and the proteins abounding with cysteine, tyrosine and tryptophan. The yolk consists mainly of proteins and phospholipids. The 1,2-glycol groups of carbohydrate occur in the cytoplasm at stage II, and aggregate mostly into cortical rods at stages IV and V. Neutral lipid droplets, and protein containing disulfides, appear in the cytoplasm at stages III and IV respectively. The proteins in the cortical rod differ from those in other components of the cell in the presence of cystine and absence of arginine.

  1. Chemical defense of early life stages of benthic marine invertebrates.

    PubMed

    Lindquist, Niels

    2002-10-01

    Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

  2. Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes.

    PubMed

    Yi, Zi-Yun; Ma, Xue-Shan; Liang, Qiu-Xia; Zhang, Teng; Xu, Zhao-Yang; Meng, Tie-Gang; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan; Quan, Song

    2016-12-19

    Kif2a is a member of the Kinesin-13 microtubule depolymerases. Here, we report the expression, subcellular localization and functions of Kif2a during mouse oocyte meiotic maturation. Immunoblotting analysis showed that Kif2a was gradually increased form GV to the M I stages, and then decreased slightly at the M II stage. Confocal microscopy identified that Kif2a localized to the meiotic spindle, especially concentrated at the spindle poles and inner centromeres in metaphase and translocated to the midbody at telophase. Kif2a depletion by siRNA microinjection generated severely defective spindles and misaligned chromosomes, reduced microtubule depolymerization, which led to significant pro-M I/M Iarrest and failure of first polar body (PB1) extrusion. Kif2a-depleted oocytes were also defective in spindle pole localization of γ-tubulin and showed spindle assembly checkpoint (SAC) protein Bub3 at the kinetochores even after 10 hr extended culture. These results demonstrate that Kif2a may act as a microtubule depolymerase, regulating microtubule dynamics, spindle assembly and chromosome congression, and thus cell cycle progression during mouse oocyte meiotic maturation.

  3. G-protein coupled estrogen receptor (GPER) inhibits final oocyte maturation in common carp, Cyprinus carpio.

    PubMed

    Majumder, Suravi; Das, Sumana; Moulik, Sujata Roy; Mallick, Buddhadev; Pal, Puja; Mukherjee, Dilip

    2015-01-15

    GPR-30, now named as GPER (G protein-coupled estrogen receptor) was first identified as an orphan receptor and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. Later studies demonstrated that GPER has the characteristics of a high affinity estrogen membrane receptor on Atlantic croaker and zebra fish oocytes and mediates estrogen inhibition of oocyte maturation in these two distantly related teleost. To determine the broad application of these findings to other teleost, expression of GPER mRNA and its involvement in 17β-estradiol mediated inhibition of oocyte maturation in other cyprinid, Cyprinus carpio was investigated. Carp oocytes at pre-vitellogenic, late-vitellogenic and post-vitellogenic stages of development contained GPER mRNA and its transcribed protein with a maximum at late-vitellogenic oocytes. Ovarian follicular cells did not express GPER mRNA. Carp oocytes GPER mRNA was essentially identical to that found in other perciformes and cyprinid fish oocytes. Both spontaneous and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced oocyte maturation in carp was significantly decreased when they were incubated with either E2, or GPER agonist G-1. On the other hand spontaneous oocyte maturation was significantly increased when carp ovarian follicles were incubated with an aromatase inhibitor, fadrozole, GPER antagonist, G-15 and enzymatic removal of the ovarian follicle cell layers. This increase in oocyte maturation was partially reversed by co-treatment with E2. Consistent with previous findings with human and fish GPR30, E2 treatment in carp oocytes caused increase in cAMP production and simultaneously decrease in oocyte maturation, which was inhibited by the addition of 17,20β-P. The results suggest that E2 and GPER play a critical role in regulating re-entry in to meiotic cell cycle in carp oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Quercetin supplemented diet improves follicular development, oocyte quality, and reduces ovarian apoptosis in rabbits during summer heat stress.

    PubMed

    Naseer, Zahid; Ahmad, Ejaz; Epikmen, Erkmen Tuğrul; Uçan, Uğur; Boyacioğlu, Murat; İpek, Emrah; Akosy, Melih

    2017-07-01

    The present study was designed to test the modulatory effect of dietary quercetin on follicle population, apoptosis, in vitro maturation rate and quality of oocytes in heat stressed female rabbits. A total of thirty-four New Zealand White heat stress (HS) exposed female rabbits were either fed with quercetin supplemented diet (QU-HS) or non-supplemented (HS) diet. Firstly, laparotomy was performed for oocyte retrieval and then, oocyte grading and COCs dimensional assessments were conducted. The A and B-grade oocytes were submitted for in vitro maturation. Thereafter, the ovaries were collected from rabbits and were processed for follicular population estimation and granulosa cells apoptosis. The results showed that follicle number, retrieved oocytes and A-grade oocytes were higher in QU-HS, comparatively. A significant difference was observed in A-grade oocytes dimensions between QU-HS and HS treatment groups. The oocyte maturation rate was same across the groups. The quercetin supplementation significantly improved primordial and antral stage follicles. A greater number of apoptotic cells were observed in primary and antral follicles in the HS group. In conclusion, the quercetin provision improves the follicular development, minimize granulosa cells apoptosis, and maintain the oocyte competence in HS rabbits. Copyright © 2017. Published by Elsevier Inc.

  5. Relationship between time post-ovulation and progesterone on oocyte maturation and pregnancy in canine cloning.

    PubMed

    Kim, Joung Joo; Park, Kang Bae; Choi, Eun Ji; Hyun, Sang Hwan; Kim, Nam-Hyung; Jeong, Yeon Woo; Hwang, Woo Suk

    2017-10-01

    Canine oocytes ovulated at prophase complete meiosis and continue to develop in presence of a high progesterone concentration in the oviduct. Considering that meiotic competence of canine oocyte is accomplished in the oviductal environment, we postulate that hormonal milieu resulting from the circulating progesterone concentration may affect oocyte maturation and early development of embryos. From 237 oocyte donors, 2620 oocytes were collected and their meiotic status and morphology were determined. To determine optimal characteristics of the mature oocytes subjected to nuclear transfer, a proportion of the meiotic status of the oocytes were classified in reference to time post-ovulation as well as progesterone (P4) level. A high proportion of matured oocytes were collected from >126h (55.5%) post-ovulation or 40-50ngmL -1 (46.4%) group compared to the other groups. Of the oocyte donors that provided mature oocytes in vivo, there was no correlation between serum progesterone of donors and time post ovulation, however, time post-ovulation were significantly shorter for <30ng/mL group (P<0.05). Using mature oocytes, 1161 cloned embryos were reconstructed and transferred into 77 surrogates. In order to determine the relationship between pregnancy performance and serum progesterone level, embryos were transferred into surrogates showing various P4 serum levels. The highest pregnancy (31.8%) and live birth cloning efficacy (2.2%) rates were observed when the embryos were transferred into surrogates with circulating P4 levels were from 40 to 50ngmL -1 . In conclusion, measurement of circulating progesterone of female dog could be a suitable an indicator of the optimal time to collect quality oocyte and to select surrogates for cloning. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Equine sperm-oocyte interaction: results after intraoviductal and intrauterine inseminations of recipients for oocyte transfer.

    PubMed

    Carnevale, E M; Maclellan, L J; Coutinho da Silva, M A; Checura, C M; Scoggin, C F; Squires, E L

    2001-12-03

    Insemination of recipients for oocyte transfer and gamete intrafallopian transfer (GIFT) in five experiments were reviewed, and factors that affected pregnancy rates were ascertained. Oocytes were transferred into recipients that were (1) cyclic and ovulated at the approximate time of oocyte transfer, (2) cyclic with aspiration of the preovulatory follicle, and (3) noncyclic and treated with hormones. Recipients were inseminated before, after, or before and after transfer. Intrauterine and intraoviductal inseminations were done. Pregnancy rates were not different between cyclic and noncyclic recipients (8/15, 53% and 37/93, 39%). The highest numerical pregnancy rates resulted when recipients were inseminated with fresh semen from fertile stallions before oocyte transfer or inseminated with cooled transported semen before and after oocyte transfer. Oxytocin was administered to recipients before oocyte transfer when fluid was imaged within the uterus. Administration of oxytocin to recipients at the time of oocyte transfer resulted in significantly higher pregnancy rates than when oxytocin was not administered (17/26, 65% and 28/86, 33%). Intraoviductal and intrauterine inseminations of recipients during oocyte transfer resulted in similar embryo development rates when fresh semen was used (12/22, 55% and 14/26, 55%). However, embryo development rates significantly reduced when frozen (1/21, 5%) versus fresh sperm were inseminated into the oviduct. Results suggest that insemination of a recipient before and after transfer could be beneficial when semen quality is not optimal; however, a single insemination before transfer was adequate when fresh semen from fertile stallions was used. Absence of a preovulatory follicle did not appear to affect pregnancy rates in the present experiments. The transfer of sperm and oocytes (GIFT) into the oviduct was successful and repeatable as an assisted reproductive technique in the equine.

  7. Effects of trehalose vitrification and artificial oocyte activation on the development competence of human immature oocytes.

    PubMed

    Zhang, Zhiguo; Wang, Tianjuan; Hao, Yan; Panhwar, Fazil; Chen, Zhongrong; Zou, Weiwei; Ji, Dongmei; Chen, Beili; Zhou, Ping; Zhao, Gang; Cao, Yunxia

    2017-02-01

    Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Oocyte competence in in vitro fertilization and intracytoplasmic sperm injection patients suffering from endometriosis and its possible association with subsequent treatment outcome: a matched case-control study.

    PubMed

    Shebl, Omar; Sifferlinger, Ida; Habelsberger, Alwin; Oppelt, Peter; Mayer, Richard B; Petek, Erwin; Ebner, Thomas

    2017-06-01

    Endometriosis affects up to 15% of women of reproductive age. There is an obvious lack of studies dealing with morphological parameters of oocyte morphology in endometriosis patients in assisted reproduction. One aim of the study is to describe oocyte morphology in patients undergoing intracytoplasmic sperm injection suffering from endometriosis. In addition, the impact of endometriosis on in vitro fertilization results is analyzed. Both in vitro fertilization and intracytoplasmic sperm injection patients are then matched with an endometriosis-free control group for highlighting the possible association of endometriosis with pregnancy outcome. Oocyte morphology of endometriosis patients was assessed in two groups. Both study group and control group consisted of 129 in vitro fertilization/intracytoplasmic sperm injection cycles each. Patients were matched according to anti-Müllerian hormone, female age, previous treatment cycles, and method of fertilization. Endometriosis was graded according to the revised American Society for Reproductive Medicine guidelines of 1997. Patients with endometriosis had a significantly lower rate of mature oocytes (p < 0.03) and morphologically normal oocytes (p < 0.001). In particular, brownish oocytes (p < 0.009; stage I-IV) and the presence of refractile bodies (p < 0.001; stage IV) were found to be increased. Endometriosis stage IV was associated with significantly worse-quality oocytes than stages I-III (p < 0.01). Fertilization was significantly reduced in conventional in vitro fertilization but not in intracytoplasmic sperm injection (p < 0.03). This was due to lower fertilization rates in stage III-IV endometriosis compared with stage I-II (p < 0.04). No difference was observed with respect to rates of implantation, clinical pregnancy, miscarriage, live birth, and malformation. Endometriosis patients, in particular those with severe endometriosis, present lower-quality oocytes. Once fertilized, no impairment

  9. Intrauterine human chorionic gonadotropin infusion in oocyte donors promotes endometrial synchrony and induction of early decidual markers for stromal survival: a randomized clinical trial.

    PubMed

    Strug, Michael R; Su, Renwei; Young, James E; Dodds, William G; Shavell, Valerie I; Díaz-Gimeno, Patricia; Ruíz-Alonso, Maria; Simón, Carlos; Lessey, Bruce A; Leach, Richard E; Fazleabas, Asgerally T

    2016-07-01

    Does a single intrauterine infusion of human chorionic gonadotropin (hCG) at the time corresponding to a Day 3 embryo transfer in oocyte donors induce favorable molecular changes in the endometrium for embryo implantation? Intrauterine hCG was associated with endometrial synchronization between endometrial glands and stroma following ovarian stimulation and the induction of early decidual markers associated with stromal cell survival. The clinical potential for increasing IVF success rates using an intrauterine hCG infusion prior to embryo transfer remains unclear based on previously reported positive and non-significant findings. However, infusion of CG in the non-human primate increases the expression of pro-survival early decidual markers important for endometrial receptivity, including α-smooth muscle actin (α-SMA) and NOTCH1. Oocyte donors (n=15) were randomly assigned to receive an intrauterine infusion of 500 IU hCG (n=7) or embryo culture media vehicle (n=8) 3 days following oocyte retrieval during their donor stimulation cycle. Endometrial biopsies were performed 2 days later, followed by either RNA isolation or tissue fixation in formalin and paraffin embedding. Reverse transcription of total RNA from endometrial biopsies generated cDNA, which was used for analysis in the endometrial receptivity array (ERA; n = 5/group) or quantitative RT-PCR to determine relative expression of ESR1, PGR, C3 and NOTCH1. Tissue sections were stained with hematoxylin and eosin followed by blinded staging analysis for dating of endometrial glands and stroma. Immunostaining for ESR1, PGR, α-SMA, C3 and NOTCH1 was performed to determine their tissue localization. Intrauterine hCG infusion was associated with endometrial synchrony and reprograming of stromal development following ovarian stimulation. ESR1 and PGR were significantly elevated in the endometrium of hCG-treated patients, consistent with earlier staging. The ERA did not predict an overall positive impact of

  10. Intrauterine human chorionic gonadotropin infusion in oocyte donors promotes endometrial synchrony and induction of early decidual markers for stromal survival: a randomized clinical trial

    PubMed Central

    Strug, Michael R.; Su, Renwei; Young, James E.; Dodds, William G.; Shavell, Valerie I.; Díaz-Gimeno, Patricia; Ruíz-Alonso, Maria; Simón, Carlos; Lessey, Bruce A.; Leach, Richard E.; Fazleabas, Asgerally T.

    2016-01-01

    STUDY QUESTION Does a single intrauterine infusion of human chorionic gonadotropin (hCG) at the time corresponding to a Day 3 embryo transfer in oocyte donors induce favorable molecular changes in the endometrium for embryo implantation? SUMMARY ANSWER Intrauterine hCG was associated with endometrial synchronization between endometrial glands and stroma following ovarian stimulation and the induction of early decidual markers associated with stromal cell survival. WHAT IS KNOWN ALREADY The clinical potential for increasing IVF success rates using an intrauterine hCG infusion prior to embryo transfer remains unclear based on previously reported positive and non-significant findings. However, infusion of CG in the non-human primate increases the expression of pro-survival early decidual markers important for endometrial receptivity, including α-smooth muscle actin (α-SMA) and NOTCH1. STUDY DESIGN, SIZE, DURATION Oocyte donors (n=15) were randomly assigned to receive an intrauterine infusion of 500 IU hCG (n=7) or embryo culture media vehicle (n=8) 3 days following oocyte retrieval during their donor stimulation cycle. Endometrial biopsies were performed 2 days later, followed by either RNA isolation or tissue fixation in formalin and paraffin embedding. PARTICIPANTS/MATERIALS, SETTING, METHODS Reverse transcription of total RNA from endometrial biopsies generated cDNA, which was used for analysis in the endometrial receptivity array (ERA; n = 5/group) or quantitative RT–PCR to determine relative expression of ESR1, PGR, C3 and NOTCH1. Tissue sections were stained with hematoxylin and eosin followed by blinded staging analysis for dating of endometrial glands and stroma. Immunostaining for ESR1, PGR, α-SMA, C3 and NOTCH1 was performed to determine their tissue localization. MAIN RESULTS AND THE ROLE OF CHANCE Intrauterine hCG infusion was associated with endometrial synchrony and reprograming of stromal development following ovarian stimulation. ESR1 and PGR were

  11. Surgical treatment for apparent early stage endometrial cancer

    PubMed Central

    2014-01-01

    Most experts would agree that the standard surgical treatment for endometrial cancer includes a hysterectomy and bilateral salpingo-oophorectomy; however, the benefit of full surgical staging with lymph node dissection in patients with apparent early stage disease remains a topic of debate. Recent prospective data and advances in laparoscopic techniques have transformed this disease into one that can be successfully managed with minimally invasive surgery. This review will discuss the current surgical management of apparent early stage endometrial cancer and some of the new techniques that are being incorporated. PMID:24596812

  12. Effect of a high fat diet on ovary morphology, in vitro development, in vitro fertilisation rate and oocyte quality in mice.

    PubMed

    Sohrabi, Maryam; Roushandeh, Amaneh Mohammadi; Alizadeh, Zohreh; Vahidinia, Aliasghar; Vahabian, Mehrangiz; Hosseini, Mahnaz

    2015-10-01

    The aim of this study was to determine the effect of a high-fat diet (HFD) on oocyte maturation and quality in a mouse model. Female BALB/c mice were allocated to one of the following groups: (a) control group (n = 40), which received a controlled diet; or (b) HFD group (n = 40), which received an HFD for 12 weeks. Sections of the ovary were examined histologically. The number of follicles and corpora lutea were counted. In vitro maturation and in vitro fertilisation (IVF) were assessed in germinal vesicle (GV) and metaphase II (MII) oocytes, respectively. The expression of bone morphogenetic protein 15 (BMP15) and leptin receptor genes in GV and MII oocytes was evaluated using reverse transcription real-time polymerase chain reactions. In the HFD group, there was a decreased number of primordial and Graafian follicles, as well as corpora lutea (p < 0.05). The rate of oocyte development to the MII stage was also reduced (p < 0.001). Cumulus expansion was observed more frequently in the control group than the HFD group (p < 0.05). The IVF rate in the HFD group was lower than that in the control group (p < 0.05). In the HFD group, BMP15 and leptin receptor genes were upregulated in the GV stage (p > 0.05) and MII stage (p < 0.05), compared to the control group. An HFD reduces folliculogenesis in the primordial and Graafian stages, in vitro maturation and in vitro fertilisation rates, as well as oocyte quality in mice.

  13. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation.

    PubMed

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2015-02-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P < 0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3'-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack thereof (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation. © 2015 Wiley Periodicals, Inc.

  14. Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification

    PubMed Central

    Cha, Soo Kyung; Kim, Bo Yeun; Kim, Mi Kyung; Kim, You Shin; Lee, Woo Sik

    2011-01-01

    Objective The objectives of this study were to analyze efficacy of immature and mature mouse oocytes after vitrification and warming by applying various combinations of cryoprotectants (CPAs) and/or super-rapid cooling using slush nitrogen (SN2). Methods Four-week old ICR female mice were superovulated for GV- and MII-stage oocytes. Experimental groups were divided into two groups. Ethylene glycol (EG) only group: pre-equilibrated with 1.5 M EG for 2.5 minutes and then equilibrated with 5.5 M EG and 1.0 M sucrose for 20 seconds. EG+dimethylsulfoxide (DMSO) group: pre-equilibrated with 1.3 M EG+1.1 M DMSO for 2.5 minutes and equilibrated with 2.7 M EG+2.1 M DMSO+0.5 M sucrose for 20 seconds. The oocytes were loaded onto grids and plunged into SN2 or liquid nitrogen (LN2). Stored oocytes were warmed by a five-step method, and then their survival, maturation, cleavage, and developmental rates were observed. Results The EG only and EG+DMSO groups showed no significant difference in survival of immature oocytes vitrified after warming. However, maturation and cleavage rates after conventional insemination were greater in the EG only group than in the EG+DMSO group. In mature oocytes, survival, cleavage, and blastocyst formation rates after warming showed no significant difference when EG only or EG+DMSO was applied. Furthermore, cleavage and blastocyst formation rates of MII oocytes vitrified using SN2 were increased in both the EG only and EG+DMSO groups. Conclusion A combination of CPAs in oocyte cryopreservation could be formulated according to the oocyte stage. In addition, SN2 may improve the efficiency of vitrification by reducing cryoinjury. PMID:22384414

  15. Production of lion (Panthera leo) blastocysts after in vitro maturation of oocytes and intracytoplasmic sperm injection.

    PubMed

    Fernandez-Gonzalez, Lorena; Hribal, Romy; Stagegaard, Julia; Zahmel, Jennifer; Jewgenow, Katarina

    2015-04-01

    Assisted reproductive techniques are becoming widely applied to the breeding of endangered species, but establishing reliable protocols for the production of embryos in vitro is challenging because of the scarcity of sample material. In our study, we applied an assisted reproductive technique protocol for IVM and intracytoplasmic sperm injection (ICSI), developed in the domestic cat, to oocytes retrieved from ovaries of four 2-year-old lionesses (Panthera leo) eight hours postmortem. In total, 68 cumulus-oocyte complexes of good quality were randomly distributed and cultured for 32 to 34 hours in two different maturation culture media, consisting of Medium 199 with Earle's salts, 3 mg/mL BSA, 0.1 mg/mL cysteine, 1.4 mg/mL sodium pyruvate, 0.6 mg/mL sodium lactate, 0.15 mg/mL l-glutamine, and 0.055 mg/mL gentamicin. Hormonal supplementation of IVM_1 was 0.02 IU/mL FSH and 0.05 IU/mL LH; IVM_2 consisted of 1.64 IU/mL FSH, 1.06 IU/mL LH, and 1 μg/mL 17ß-estradiol. Differences in hormonal supplementation did not produce significant differences in oocyte maturation rates, which were 39.4% in IVM_1 and 34.3% in IVM_2. Matured oocytes were microinjected with homologous frozen-thawed spermatozoa, and subsequent cleavage rates were 30.8% and 58.3%, respectively. Half of the embryos derived from oocytes matured in IVM_1 developed into blastocysts, whereas only 28.6% of embryos from oocytes matured in IVM_2 reached the blastocyst stage. Morula stages were present from Day 6 onward, and blastocyst stages from Day 9 on, indicating a slower developmental speed in comparison with domestic cats. This is the first report of in vitro-produced blastocysts using ICSI in the lion, and the results report that IVM and ICSI can be successfully performed with cumulus-oocyte complexes retrieved from ovaries after eight hours of shipping, obtaining competent embryos in culture. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Elective oocyte cryopreservation for deferred childbearing.

    PubMed

    Goldman, Kara N; Grifo, Jamie A

    2016-12-01

    Elective oocyte cryopreservation for deferred childbearing has gained popularity worldwide, commensurate with increased knowledge regarding age-related fertility decline. The purpose of this review is to summarize recent data regarding trends in delayed childbearing, review recent findings surrounding age-related fertility decline, acknowledge significant gaps in knowledge among patients and providers regarding fertility decline and review outcomes following elective oocyte cryopreservation. Despite an inevitable decline in fertility and increase in miscarriage with increasing female age, there is a growing worldwide trend to delay childbearing. Patients and providers alike demonstrate large gaps in knowledge surrounding age-related fertility decline. Oocyte cryopreservation is clinically approved for medically indicated fertility preservation, but a growing number of women are using oocyte cryopreservation to defer childbearing and maintain reproductive autonomy. Mounting data support the efficacy and safety of oocyte cryopreservation when used to electively defer childbearing, with recent studies demonstrating rates of euploidy, implantation and live birth rates equivalent to in-vitro fertilization (IVF) with fresh oocytes. Oocyte cryopreservation provides women with an option to defer childbearing and maintain reproductive autonomy, with IVF success rates on par with fresh IVF. However, it is critical that patients understand the limitations of oocyte cryopreservation. Greater education regarding age-related fertility decline should be geared toward patients and providers to prevent unintended childlessness.

  17. Holding equine oocytes in a commercial embryo-holding medium: New perspective on holding temperature and maturation time.

    PubMed

    Dini, Pouya; Bogado Pascottini, Osvaldo; Ducheyne, Kaatje; Hostens, Miel; Daels, Peter

    2016-09-15

    In the present study, we examined the effect of holding equine oocytes in Syngro embryo holding medium (EHM) overnight at either 4 °C, 17 °C, or 22 °C to 25 °C, on the time to maturation and developmental competence. We also examined the effect of placing denuded oocyte without extruded polar body back in maturation condition on subsequent maturation rate. In experiment 1, cumulus-oocyte complexes (COCs) were recovered postmortem and placed in EHM at 22 °C to 25 °C for 18 to 20 hours (OH) or placed directly in maturation (DM). The maturation rate was assessed after 22, 24, or 28 hours of culture. After denuding cumulus cells at 22 or 24 hours, oocytes without obvious polar body were placed back into culture and reassessed at subsequent time points. At 22 hours, a higher proportion of oocytes placed in OH achieved nuclear maturation than those placed in DM (63% and 37%, respectively, P = 0.008). At 24 and 28 hours, no significant differences in the % MII stage oocytes were observed between OH and DM. The nuclear maturation rate for OH oocytes was similar at 22, 24, and 28 hours, indicating that the maximum maturation rate was reached at an earlier time than that in DM. Oocytes fertilized by intracytoplasmic sperm injection resulted in a 7.1% and 6.3% blastocyst rate for OH and DM, respectively. Denuding oocytes after 22 hours or more of culture did not have an adverse effect on the final nuclear maturation rate. After 28 hours of culture, the same nuclear maturation rate (MII) was reached for nondenuded oocytes and oocytes denuded after 22 hours of 24 hours of culture. In experiment 2, COCs were held overnight at room temperature in EHM, then placed in maturation for 20, 22, and 28 hours. Nuclear maturation rate was significantly lower at 20 hours than 22 and 28 hours of culture and was similar at 22 and 28 hours, suggesting that at least 22 hours of culture is required to reach maximal maturation rate for stored oocytes (43%, 62%, and 65% at 20, 22

  18. Isolation and expression of the human gametocyte-specific factor 1 gene (GTSF1) in fetal ovary, oocytes, and preimplantation embryos.

    PubMed

    Huntriss, John; Lu, Jianping; Hemmings, Karen; Bayne, Rosemary; Anderson, Richard; Rutherford, Anthony; Balen, Adam; Elder, Kay; Picton, Helen M

    2017-01-01

    Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos.

  19. Spiritual Diversity and Living with Early-Stage Dementia.

    PubMed

    McGee, Jocelyn Shealy; Zhao, Holly Carlson; Myers, Dennis R; Seela Eaton, Hannah

    2018-01-01

    Attention to spiritual diversity is necessary for the provision of culturally informed clinical care for people with early-stage dementia and their family members. In this article, an evidence-based theoretical framework for conceptualizing spiritual diversity is described in detail (Pargament, 2011). The framework is then applied to two clinical case studies of people living with early-stage dementia to elucidate the multilayered components of spiritual diversity in this population. The case studies were selected from a larger mixed-methods study on spirituality, positive psychological factors, health, and well-being in people living with early-stage dementia and their family members. To our knowledge this is the first systematic attempt to apply a theoretical framework for understanding spiritual diversity in this population. Implications for clinical practice are provided.

  20. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development

    PubMed Central

    Leu, N. Adrian; Xu, Yang; Schultz, Richard M.

    2018-01-01

    The N6-methyladenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotes. The majority of m6A sites are found in the last exon and 3’ UTRs. Here we show that the nuclear m6A reader YTHDC1 is essential for embryo viability and germline development in mouse. Specifically, YTHDC1 is required for spermatogonial development in males and for oocyte growth and maturation in females; Ythdc1-deficient oocytes are blocked at the primary follicle stage. Strikingly, loss of YTHDC1 leads to extensive alternative polyadenylation in oocytes, altering 3’ UTR length. Furthermore, YTHDC1 deficiency causes massive alternative splicing defects in oocytes. The majority of splicing defects in mutant oocytes are rescued by introducing wild-type, but not m6A-binding-deficient, YTHDC1. YTHDC1 is associated with the pre-mRNA 3’ end processing factors CPSF6, SRSF3, and SRSF7. Thus, YTHDC1 plays a critical role in processing of pre-mRNA transcripts in the oocyte nucleus and may have similar non-redundant roles throughout fetal development. PMID:29799838

  1. 76 FR 76907 - Small Business Investment Companies-Early Stage SBICs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... respect to geographic location. SBA's primary concern in terms of geography is to ensure that the Early... SBICs is the primary source of cash used to service their SBA debt. SBA expects that some Early Stage...--Early Stage SBICs AGENCY: U.S. Small Business Administration. ACTION: Proposed rule. SUMMARY: In this...

  2. Reproductive experiences of women who cryopreserved oocytes for non-medical reasons.

    PubMed

    Hammarberg, Karin; Kirkman, Maggie; Pritchard, Natasha; Hickey, Martha; Peate, Michelle; McBain, John; Agresta, Franca; Bayly, Chris; Fisher, Jane

    2017-03-01

    What are the reproductive experiences of women who cryopreserve oocytes for non-medical reasons? One in three women had been pregnant at some stage in their lives and while most still wanted to have a child or another child, very few had used their stored oocytes, predominantly because they did not want to be single parents. The number of healthy women who freeze oocytes to avoid age-related infertility is increasing. Evidence about reproductive outcomes after oocyte cryopreservation for non-medical reasons is needed to help women make informed decisions. A cross-sectional survey was carried out. Study packs which included a self-administered questionnaire were mailed by clinic staff to 193 eligible women. Women who had stored oocytes for non-medical reasons at Melbourne IVF, a private ART clinic, between 1999 and 2014 were identified from medical records and invited to complete an anonymous questionnaire about their reproductive histories and experience of oocyte cryopreservation. A total of 10 survey packs were returned to the clinic marked 'address unknown'. Of the 183 potential respondents, 96 (53%) returned the questionnaire. One respondent provided only free-text comments, thus data from 95 respondents were compiled. The mean age at the time of freezing oocytes was 37.1 years (SD ± 2.6, range: 27-42) and the average number of oocytes stored was 14.2 (SD ± 7.9, range: 0-42); 2% had attempted to store oocytes but had none suitable for freezing, 24% had stored <8 oocytes, 35% had 8-15, 25% had 16-23 and 14% had stored >23 oocytes. About one-third of respondents (34%) had been pregnant at some point in their lives. Six women (6%) had used their stored oocytes and three of them had given birth as a result. The main reason for not using stored oocytes was not wanting to be a single parent. Of the 87 (91%) women who still had oocytes stored, 21% intended to use them while 69% indicated that their circumstances would determine usage. The mean number of children

  3. [New possibilities resulting from oocyte banking].

    PubMed

    Revel, Ariel; Revel, Michel; Laufer, Neri; Kasher, Asa

    2011-06-01

    Oocyte cryopreservation solves the legal and ethical problems associated with the cryopreservation of embryos in patients undergoing in vitro fertilization procedures. Furthermore, it may also offer the possibility of extending the reproductive capability of young women with malignant diseases in cases where the treatment may compromise the ovarian reserve. Moreover, it may also offer alternatives for infertile patients who are subject to ovarian hyper-stimulation syndrome or premature ovarian faiLure or who require oocyte donation. The creation of banks for cryopreserved oocytes avoids the need for cycle synchronization or the formation of an over-supply of embryos destined for cryopreservation. If a Large number of oocytes is obtained it could possibly enable women and couples the opportunity to postpone childbirth according to their wishes. This paper reviews the revolution obtained by oocyte vitrification, reports on ethical issues and discusses the pros and cons of oocyte banking and its potential effects on society.

  4. The phosphodiesterase 3 inhibitor ORG 9935 inhibits oocyte maturation in the naturally selected dominant follicle in rhesus macaques.

    PubMed

    Jensen, Jeffrey T; Zelinski, Mary B; Stanley, Jessica E; Fanton, John W; Stouffer, Richard L

    2008-04-01

    The study was conducted to determine whether the phosphodiesterase (PDE) 3 inhibitor ORG 9935 prevents the resumption of meiosis in primate oocytes during natural menstrual cycles. Regularly cycling adult female macaques (n=8) were followed during the follicular phase and then started on a 2-day treatment regimen of human recombinant gonadotropins to control the timing of ovulation. Monkeys received no further treatment (controls) or ORG 9935. Oocytes were recovered by laparoscopic follicle aspiration 27 h after an ovulatory stimulus, cultured in vitro in the absence of inhibitor and inseminated. The primary outcome was the meiotic stage of the oocyte. In six ORG 9935 cycles, five of the recovered oocytes were germinal vesicle (GV)-intact, and one exhibited GV breakdown (GVBD). In contrast, all three oocytes that recovered during control cycles were GVBD (p<.05). None of the ORG 9935-treated oocytes underwent fertilization compared with 2/3 (67%) from controls. These results demonstrate that ORG 9935 blocks resumption of meiosis in the naturally selected dominant follicle in primates and suggest that PDE3 inhibitors have potential clinical use as contraceptives in women.

  5. Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence.

    PubMed

    Canosa, S; Adriaenssens, T; Coucke, W; Dalmasso, P; Revelli, A; Benedetto, C; Smitz, J

    2017-05-01

    Do the mRNA expression levels of zona pellucida (ZP) genes, ZP1, 2, 3 and 4 in oocyte and cumulus cells (CC) reveal relevant information on the oocyte? The ZP mRNA expression in human oocytes is related to oocyte maturity, zona inner layer (IL) retardance and fertilization capacity. ZP structure and birefringence provide useful information on oocyte cytoplasmic maturation, developmental competence for embryonic growth, blastocyst formation and pregnancy. In order to understand the molecular basis of morphological changes in the ZP, in the current study, the polarized light microscopy (PLM) approach was combined with analysis of the expression of the genes encoding ZP1, 2, 3 and 4, both in the oocytes and in the surrounding CC. This is a retrospective study comprising 98 supernumerary human cumulus oocyte complexes (COC) [80 Metaphase II (MII), 10 Metaphase I (MI) and 8 germinal vesicle (GV)] obtained from 39 patients (median age 33.4 years, range 22-42) after controlled ovarian stimulation. Single oocytes and their corresponding CC were analysed. Oocytes were examined using PLM, and quantitative RT-PCR was performed for ZP1, 2, 3 and 4 in these individual oocytes and their CC. Ephrin-B2 (EFNB2) mRNA was measured in CC as a control. Presence of ZP3 protein in CC and oocytes was investigated using immunocytochemistry. Data were analysed using one-parametric and multivariate analysis and were corrected for the potential impact of patient and cycle characteristics. Oocytes contained ZP1/2/3 and 4 mRNA while in CC only ZP3 was quantifiable. Also ZP3 protein was detected in human CC. When comparing mature (MII) and immature oocytes (MI/GV) or their corresponding CC, ZP1/2 and 4 expression was lower in mature oocytes compared to the expression in immature oocytes (all P < 0.05) and ZP3 expression was lower in the CC of mature oocytes compared to the expression in CC of immature oocytes (P < 0.05). This coincided with a significantly smaller IL-ZP area and thickness in

  6. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Regulation of Fatty Acid Oxidation in Mouse Cumulus-Oocyte Complexes during Maturation and Modulation by PPAR Agonists

    PubMed Central

    Dunning, Kylie R.; Anastasi, Marie R.; Zhang, Voueleng J.; Russell, Darryl L.; Robker, Rebecca L.

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation

  8. Establishment of autologous embryonic stem cells derived from preantral follicle culture and oocyte parthenogenesis.

    PubMed

    Lee, Seung Tae; Choi, Mun Hwan; Lee, Eun Ju; Gong, Seung Pyo; Jang, Mi; Park, Sang Hyun; Jee, Hyang; Kim, Dae Yong; Han, Jae Yong; Lim, Jeong Mook

    2008-11-01

    To evaluate whether autologous embryonic stem cells can be established without generating clone embryos. Prospective model study. Gamete and stem cell biotechnology laboratory in Seoul National University, Seoul, Korea. F1 hybrid B6D2F1 mice. Preantral follicles were cultured, and oocytes matured in the follicles were parthenogenetically activated. Preimplantation development and stem cell characterization. More intrafollicular oocytes that were retrieved from secondary follicles matured and developed into blastocysts after parthenogenesis than those that were retrieved from primary follicles. Of those 35 blastocysts derived from 193 parthenotes, one line of colony-forming cells was established from the culturing of early secondary follicles. The established cells were positive for embryonic stem cell-specific markers and had normal diploid karyotype and telomerase activity. They differentiated into embryoid bodies in vitro and teratomas in vivo. Inducible differentiation of the established cells into neuronal lineage cells also was possible. Autologous embryonic stem cells can be established by preantral follicle culture and oocyte parthenogenesis. A combined technique of follicle culture and oocyte parthenogenesis that does not use developmentally competent oocytes has the potential to replace somatic cell nuclear transfer for autologous cell therapy.

  9. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes.

    PubMed

    Stigliani, Sara; Moretti, Stefano; Anserini, Paola; Casciano, Ida; Venturini, Pier Luigi; Scaruffi, Paola

    2015-11-01

    Does storage time have any impact on the transcriptome of slowly frozen cryopreserved human metaphase II (MII) oocytes? The length of cryostorage has no effect on the gene expression profile of human MII oocytes. Oocyte cryopreservation is a widely used technique in IVF for storage of surplus oocytes, as well as for fertility preservation (i.e. women undergoing gonadotoxic therapies) and oocyte donation programs. Although cryopreservation has negative impacts on oocyte physiology and it is associated with decrease of transcripts, no experimental data about the effect of storage time on the oocyte molecular profile are available to date. This study included 27 women, ≤38 years aged, without any ovarian pathology, undergoing IVF treatment. Surplus MII oocytes were donated after written informed consent. A total of 31 non-cryopreserved oocytes and 68 surviving slow-frozen/rapid-thawed oocytes (32 oocytes cryostored for 3 years and 36 cryostored for 6 years) were analyzed. Pools of ≈10 oocytes for each group were prepared. Total RNA was extracted from each pool, amplified, labeled and hybridized on oligonucleotide microarrays. Analyses were performed by R software using the limma package. Comparison of gene expression profiles between surviving thawed oocytes after 3 and 6 years of storage in liquid nitrogen found no differently expressed genes. The expression profiles of cryopreserved MII oocytes significantly differed from those of non-cryopreserved oocytes in 107 probe sets corresponding to 73 down-regulated and 29 up-regulated unique transcripts. Gene Ontology analysis by DAVID bioinformatics resource disclosed that cryopreservation deregulates genes involved in oocyte function and early embryo development, such as chromosome organization, RNA splicing and processing, cell cycle, cellular response to DNA damage and to stress, DNA repair, calcium ion binding, malate dehydrogenase activity and mitochondrial activity. Among the probes significantly up-regulated in

  10. Gonad development during the early life of Octopus maya (Mollusca: Cephalopoda).

    PubMed

    Avila-Poveda, Omar Hernando; Colin-Flores, Rafael Francisco; Rosas, Carlos

    2009-02-01

    Gonad development during the early life of Octopus maya is described in terms of histological, morphometric, oocytes growth, and somatic-oocyte relationship data obtained from octopus cultured at the UMDI-UNAM, in Sisal, Yucatan, Mexico. This study is the first publication on gonad development during the early life of Octopus maya. A total of 83 O. maya specimens were used; their sizes ranged from 6.5 to 76 mm of total length (TL), 4 to 28 mm of dorsal mantle length (DML), 2.5 to 20 mm of ventral mantle length (VML), and 0.0180 to 7.2940 g of fixed body weight (fBW). Animals were weighed and measured only after preservation. A loss of 10% of living weight was estimated for juvenile octopuses after formalin preservation. The relation of length to weight (VML, DML, TL/fBW) pooled for both sexes had a strong positive correlation (r), as shown by a potential power function that was quite close to 1. Compound images were produced from numerous microscopic fields. The histological examination revealed that, 4 months after hatching, male octopus (24.5 mm DML and 7.2940 g fBW) were in gonad stages 2 (maturing) to 3 (mature), with spermatogonia and spermatocytes in the tubule wall and abundant spermatids and spermatozoa in the central lumen of the seminiferous tubules, suggesting the occurrence of different phases of gonad development at different maturity stages. In contrast, females (22.5 mm DML and 4.8210 g fBW) at the same time since hatching were immature (stage 1), with many oogonia, few oocytes, and germinal epithelium. This suggests that males reach maturity earlier than females, indicating a probable onset of maturity for males at around 4 months of culture or 8 g of wet body weight. Our results indicate the possibility that the size-at-weight can be recognized early with a degree of certainty that allows the sexes to be separated for culture purposes; but more detailed studies on reproduction in relation to endocrinology and nutrition are needed.

  11. Living with early-stage dementia: a review of qualitative studies.

    PubMed

    Steeman, Els; de Casterlé, Bernadette Dierckx; Godderis, Jan; Grypdonck, Mieke

    2006-06-01

    This paper presents a literature review whose aim was to provide better understanding of living with early-stage dementia. Even in the early stages, dementia may challenge quality of life. Research on early-stage dementia is mainly in the domain of biomedical aetiology and pathology, providing little understanding of what it means to live with dementia. Knowledge of the lived experience of having dementia is important in order to focus pro-active care towards enhancing quality of life. Qualitative research is fundamentally well suited to obtaining an insider's view of living with early-stage dementia. We performed a meta-synthesis of qualitative research findings. We searched MEDLINE, CINAHL, and PsycINFO and reviewed the papers cited in the references of pertinent articles, the references cited in a recently published book on the subjective experience of dementia, one thesis, and the journal Dementia. Thirty-three pertinent articles were identified, representing 28 separate studies and 21 different research samples. Findings were coded, grouped, compared and integrated. Living with dementia is described from the stage a person discovers the memory impairment, through the stage of being diagnosed with dementia, to that of the person's attempts to integrate the impairment into everyday life. Memory loss often threatens perceptions of security, autonomy and being a meaningful member of society. At early stages of memory loss, individuals use self-protecting and self-adjusting strategies to deal with perceived changes and threats. However, the memory impairment itself may make it difficult for an individual to deal with these changes, thereby causing frustration, uncertainty and fear. Our analysis supports the integration of proactive care into the diagnostic process, because even early-stage dementia may challenge quality of life. Moreover, this care should actively involve both the individual with dementia and their family so that both parties can adjust positively

  12. Embryonic development in human oocytes fertilized by split insemination

    PubMed Central

    Kim, Myo Sun; Kim, Jayeon; Youm, Hye Won; Park, Jung Yeon; Choi, Hwa Young

    2015-01-01

    Objective To compare the laboratory outcomes of intracytoplasmic sperm injection (ICSI) and conventional insemination using sibling oocytes in poor prognosis IVF cycles where ICSI is not indicated. Methods Couples undergoing IVF with following conditions were enrolled: history of more than 3 years of unexplained infertility, history of ≥3 failed intrauterine insemination, leukocytospermia or wide variation in semen analysis, poor oocyte quality, or ≥50% of embryos had poor quality in previous IVF cycle(s). Couples with severe male factor requiring ICSI were excluded. Oocytes were randomly assigned to the conventional insemination (conventional group) or ICSI (ICSI group). Fertilization rate (FR), total fertilization failure, and embryonic development at day 3 and day 5 were assessed. Results A total of 309 mature oocytes from 37 IVF cycles (32 couples) were obtained: 161 were assigned to conventional group and 148 to ICSI group. FR was significantly higher in the ICSI group compared to the conventional group (90.5% vs. 72.7%, P<0.001). Total fertilization failure occurred in only one cycle in conventional group. On day 3, the percentage of cleavage stage embryos was higher in ICSI group however the difference was marginally significant (P=0.055). In 11 cycles in which day 5 culture was attempted, the percentage of blastocyst (per cleaved embryo) was significantly higher in the ICSI group than the conventional group (55.9% vs. 25.9%, P=0.029). Conclusion Higher FR and more blastocyst could be achieved by ICSI in specific circumstances. Fertilization method can be tailored accordingly to improve IVF outcomes. PMID:26023671

  13. Effects of cilostamide and/or forskolin on the meiotic resumption and development competence of growing ovine oocytes selected by brilliant cresyl blue staining.

    PubMed

    Azari-Dolatabad, Nima; Rahmani, H R; Hajian, M; Ostadhosseini, S; Hosseini, S M; Nasr-Esfahani, M H

    2016-05-01

    The relevance of low developmental competence of in vitro-matured oocyte to the incomplete/delayed cytoplasmic maturation, and the heterogeneity of retrieved oocytes is well established in several species. A short phase of prematuration culture was used to allow better oocyte cytoplasmic maturation. The preselection of growing and fully grown oocytes has been proposed to improve developmental competency. This study investigated the effects of phosphodiesterase type 3-specific inhibitor, cilostamide, and adenylate cyclase activator, forskolin, on the resumption of meiosis and developmental competence of growing ovine oocytes selected by brilliant cresyl blue (BCB) staining. Results indicate that cilostamide, forskolin, and their combination significantly (P < 0.05) increased the percentage of growing (BCB-) oocytes maintained at the germinal vesicle stage. However, only forskolin significantly (P < 0.05) increased the yield and quality of blastocysts derived from BCB- oocytes compared with non-BCB-treated oocytes. We conclude that a short prematuration culture with forskolin may improve the in vitro developmental competency of growing oocytes in ovine. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cyclic AMP Affects Oocyte Maturation and Embryo Development in Prepubertal and Adult Cattle

    PubMed Central

    Bernal-Ulloa, Sandra Milena; Heinzmann, Julia; Herrmann, Doris; Hadeler, Klaus-Gerd; Aldag, Patrick; Winkler, Sylke; Pache, Dorit; Baulain, Ulrich; Lucas-Hahn, Andrea; Niemann, Heiner

    2016-01-01

    High cAMP levels during in vitro maturation (IVM) have been related to improved blastocyst yields. Here, we employed the cAMP/cGMP modulators, forskolin, IBMX, and cilostamide, during IVM to unravel the role of high cAMP in early embryonic development produced from prepubertal and adult bovine oocytes. Oocytes were collected via transvaginal aspiration and randomly assigned to three experimental groups: TCM24 (24h IVM/control), cAMP30 (2h pre-IVM (forskolin-IBMX), 30h IVM-cilostamide), and DMSO30 (Dimethyl Sulfoxide/vehicle control). After IVM, oocytes were fertilized in vitro and zygotes were cultured in vitro to blastocysts. Meiotic progression, cAMP levels, mRNA abundance of selected genes and DNA methylation were evaluated in oocytes. Blastocysts were used for gene expression or DNA methylation analyses. Blastocysts from the cAMP30 groups were transferred to recipients. The cAMP elevation delayed meiotic progression, but developmental rates were not increased. In immature oocytes, mRNA abundance of PRKACA was higher for cAMP30 protocol and no differences were found for PDE3A, SMAD2, ZAR1, PRDX1 and SLC2A8. EGR1 gene was up-regulated in prepubertal cAMP30 immature oocytes and down-regulated in blastocysts from all in vitro treatments. A similar gene expression profile was observed for DNMT3b, BCL2L1, PRDX1 and SLC2A8 in blastocysts. Satellite DNA methylation profiles were different between prepubertal and adult oocytes and blastocysts derived from the TCM24 and DMSO30 groups. Blastocysts obtained from prepubertal and adult oocytes in the cAMP30 treatment displayed normal methylation profiles and produced offspring. These data indicate that cAMP regulates IVM in prepubertal and adult oocytes in a similar manner, with impact on the establishment of epigenetic marks and acquisition of full developmental competency. PMID:26926596

  15. The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence.

    PubMed

    Ivanova, Ivayla; Much, Christian; Di Giacomo, Monica; Azzi, Chiara; Morgan, Marcos; Moreira, Pedro N; Monahan, Jack; Carrieri, Claudia; Enright, Anton J; O'Carroll, Dónal

    2017-09-21

    YTHDF2 binds and destabilizes N 6 -methyladenosine (m 6 A)-modified mRNA. The extent to which this branch of m 6 A RNA-regulatory pathway functions in vivo and contributes to mammalian development remains unknown. Here we find that YTHDF2 deficiency is partially permissive in mice and results in female-specific infertility. Using conditional mutagenesis, we demonstrate that YTHDF2 is autonomously required within the germline to produce MII oocytes that are competent to sustain early zygotic development. Oocyte maturation is associated with a wave of maternal RNA degradation, and the resulting relative changes to the MII transcriptome are integral to oocyte quality. The loss of YTHDF2 results in the failure to regulate transcript dosage of a cohort of genes during oocyte maturation, with enrichment observed for the YTHDF2-binding consensus and evidence of m 6 A in these upregulated genes. In summary, the m 6 A-reader YTHDF2 is an intrinsic determinant of mammalian oocyte competence and early zygotic development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Treatment with acetyl-l-carnitine during in vitro maturation of buffalo oocytes improves oocyte quality and subsequent embryonic development.

    PubMed

    Xu, Hui-Yan; Yang, Xiao-Gan; Lu, Sheng-Sheng; Liang, Xing-Wei; Lu, Yang-Qing; Zhang, Ming; Lu, Ke-Huan

    2018-06-01

    Oocyte quality is one of the important factors in female fertility, in vitro maturation (IVM), and subsequent embryonic development. In the present study, we assessed whether acetyl-l-carnitine (ALC) supplementation during in vitro maturation of buffalo oocytes could improve oocyte quality and subsequent embryonic development. To determine the optimal level of ALC supplementation, we matured cumulus-oocyte complexes in maturation medium supplemented with 0, 2.5, and 5 mM ALC. The oocytes with a polar body were selected for parthenogenetic activation (PA) and in vitro fertilization (IVF). We found that oocytes matured in 2.5 mM ALC had significantly higher PA blastocyst rate (P < 0.05) and blastocyst cell number than those of unsupplemented oocytes (P < 0.05) and a significantly higher IVF blastocyst rate than that of oocytes matured in 5 mM ALC (P < 0.05). In all further experiments, we supplemented the maturation medium with 2.5 mM ALC. We then tested whether ALC supplementation could improve various markers of oocytes and cumulus cells. We compared cell proliferation; concentrations of reactive oxygen species (ROS), intracellular ATP, estradiol, and progesterone; mitochondrial distribution; mitochondrial DNA copy number (mtDNA); and expression levels of four genes encoding oocyte-derived factors (GDF9, BMP15) and steroid hormones (StAR, P450scc) between the supplemented and unsupplemented oocytes and cumulus cells. Cumulus cells matured with ALC supplementation were more prolific than those matured without ALC supplementation (P < 0.05). Oocytes treated with ALC had lower concentrations of intracellular ROS (P < 0.05) and a higher rate of diffuse mitochondrial distributions (P < 0.05) than those of untreated oocytes. Additionally, the mtDNA was higher in the ALC-treated oocytes (P < 0.05) and cumulus cells (P < 0.05) than that in the untreated cells. The ALC-treated maturation medium had a higher postmaturation

  17. Ethical issues in transnational "mail order" oocyte donation.

    PubMed

    Heng, B C

    2006-12-01

    The rising demand for donor oocytes in developed countries has led to what is referred to as transnational or international oocyte donation, or the outsourcing of oocyte donation to poorer countries. In a further twist, frozen sperm from a recipient's partner can also be mailed to a foreign clinic to fertilize donor oocytes, and the resulting embryos are mailed back, cryopreserved, for transfer to the recipient. Among the numerous ethical concerns raised by this practice of mail order oocyte donation, the most obvious are that underprivileged women from poorer countries are often exploited; fertility physicians from richer counties abdicate responsibility for the welfare of donors; and responsibility could become an issue of contention if transmission of disease to the oocyte recipient or congenital defects in offspring born from such oocyte donation were to occur. Moreover, savings from utilizing donors from poorer countries ought to be shared with oocyte recipients.

  18. Photons from the early stages of relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  19. The current challenges to efficient immature oocyte cryopreservation.

    PubMed

    Brambillasca, Fausta; Guglielmo, Maria Cristina; Coticchio, Giovanni; Mignini Renzini, Mario; Dal Canto, Mariabeatrice; Fadini, Rubens

    2013-12-01

    Oocyte cryopreservation represents an important tool for assisted reproductive technology. It offers the opportunity to preserve fertility in women at risk of loss of the ovarian function for various pathologies. It also represents a treatment alternative for couples that cannot benefit from embryo cryopreservation because of moral, religious, or legal constrains. On the other hand, in vitro oocyte maturation has a range of applications. It can be applied in patients with a contraindication to ovarian stimulation to prevent ovarian hyperstimulation syndrome or to eliminate the risk of stimulation of hormone-sensitive tumours in cancer patients. However, while mature oocyte cryopreservation has found wide-spread application and oocyte in vitro maturation has a place for the treatment of specific clinical conditions, data on the efficiency of freezing of immature or in vitro matured oocytes are poorer. In this review we will focus on the combination of oocyte in vitro maturation with oocyte cryopreservation with particular emphasis on the biological implications of the cryopreservation of immature or in vitro matured oocytes. The two cryopreservation approaches, slow freezing and vitrification, will be discussed in relation to possible cryodamage occurring to subcellular structures of the oocyte and the functional interaction between oocyte and cumulus cells.

  20. Addition of insulin-like growth factor I to the maturation medium of bovine oocytes subjected to heat shock: effects on the production of reactive oxygen species, mitochondrial activity and oocyte competence.

    PubMed

    Ascari, I J; Alves, N G; Jasmin, J; Lima, R R; Quintão, C C R; Oberlender, G; Moraes, E A; Camargo, L S A

    2017-07-01

    This study was performed to investigate the effects of insulin-like growth factor-I (IGF-I) addition to in vitro maturation (IVM) medium on apoptosis, mitochondrial membrane potential, ROS production, and developmental competence of bovine oocytes subjected to heat shock. Two temperatures (conventional: 24 h at 38.5°C, or heat shock: 12 h at 41°C followed by 12 h at 38.5°C) and 3 IGF-I concentrations (0, 25, and 100 ng/mL) were tested during IVM. The oocytes were then fertilized in vitro, and the presumptive zygotes were cultured until reaching the blastocyst stage. There was no interaction between temperature and IGF-I concentration for any variable evaluated (P > 0.05). The addition of IGF-I did not alter the proportion of nuclear maturation, TUNEL-positive oocytes and caspase-3 activity, or blastocyst proportion on Days 7 and 8 post-fertilization. Furthermore, the total number of cells and the number of cells in the inner cell mass (ICM) in the blastocyst were not altered (P > 0.05). However, IGF-I increased (P < 0.05) the mitochondrial membrane potential and the production of ROS in oocytes and decreased (P < 0.05) the proportion of apoptotic cells in the ICM in blastocysts. Heat shock increased (P < 0.05) the proportion of TUNEL-positive oocytes and ROS production and reduced (P < 0.05) the mitochondrial membrane potential. Moreover, heat shock increased (P < 0.05) the apoptosis proportion in the ICM cells. In conclusion, supplementing IVM medium with IGF-I may increase the mitochondrial membrane potential and ROS production in oocytes and decrease apoptosis in the ICM in blastocysts. Heat shock for 12 h compromised oocyte developmental competence and increased apoptosis within the ICM cells of the blastocysts. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. ATRX, a member of the SNF2 family of helicase/ATPases, is required for chromosome alignment and meiotic spindle organization in metaphase II stage mouse oocytes.

    PubMed

    De La Fuente, Rabindranath; Viveiros, Maria M; Wigglesworth, Karen; Eppig, John J

    2004-08-01

    ATRX is a centromeric heterochromatin binding protein belonging to the SNF2 family of helicase/ATPases with chromatin remodeling activity. Mutations in the human ATRX gene result in X-linked alpha-thalassaemia with mental retardation (ATRX) syndrome and correlate with changes in methylation of repetitive DNA sequences. We show here that ATRX also functions to regulate key stages of meiosis in mouse oocytes. At the germinal vesicle (GV) stage, ATRX was found associated with the perinucleolar heterochromatin rim in transcriptionally quiescent oocytes. Phosphorylation of ATRX during meiotic maturation is dependent upon calcium calmodulin kinase (CamKII) activity. Meiotic resumption also coincides with deacetylation of histone H4 at lysine 5 (H4K5 Ac) while ATRX and histone H3 methylated on lysine 9 (H3K9) remained bound to the centromeres and interstitial regions of condensing chromosomes, respectively. Inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) disrupted ATRX binding to the centromeres of hyperacetylated chromosomes resulting in abnormal chromosome alignments at metaphase II (MII). Similarly, while selective ablation of ATRX by antibody microinjection and RNA interference (RNAi) had no effect on the progression of meiosis, it had severe consequences for the alignment of chromosomes on the metaphase II spindle. These results suggest that genome-wide epigenetic modifications such as global histone deacetylation are essential for the binding of ATRX to centromeric heterochromatin. Moreover, centromeric ATRX is required for correct chromosome alignment and organization of a bipolar meiotic metaphase II spindle.

  2. Successful ongoing pregnancies after vitrification of oocytes.

    PubMed

    Lucena, Elkin; Bernal, Diana Patricia; Lucena, Carolina; Rojas, Alejandro; Moran, Abby; Lucena, Andrés

    2006-01-01

    To demonstrate the efficiency of vitrifying mature human oocytes for different clinical indications. Descriptive case series. Cryobiology laboratory, Centro Colombiano de Fertilidad y Esterilidad-CECOLFES LTDA. (Bogotá, Colombia). Oocyte vitrification was offered as an alternative management for patients undergoing infertility treatment because of ovarian hyperstimulation syndrome, premature ovarian failure, natural ovarian failure, male factor, poor response, or oocyte donation. Mature oocytes were obtained from 33 donor women and 40 patients undergoing infertility treatment. Oocytes were retrieved by ultrasound-guided transvaginal aspiration and vitrified with the Cryotops method, with 30% ethylene glycol, 30% dimethyl sulfoxide, and 0.5 mol/L sucrose. Viability was assessed 3 hours after thawing. The surviving oocytes were inseminated by intracytoplasmic sperm injection. Fertilization was evaluated after 24 hours. The zygotes were further cultured in vitro for up to 72 hours until time of embryo transfer. Recovery, viability, fertilization, and pregnancy rates. Oocyte vitrification with the Cryotop method resulted in high rates of recovery, viability, fertilization, cleavage, and ongoing pregnancy. Vitrification with the Cryotop method is an efficient, fast, and economical method for oocyte cryopreservation that offers high rates of survival, fertilization, embryo development, and ongoing normal pregnancies, providing a new alternative for the management of female infertility.

  3. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer

    2005-07-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requiresmore » permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.« less

  4. Birth after 12 hours of oocyte refrigeration.

    PubMed

    Coban, Onder; Hacifazlioglu, Oguzhan; Ciray, H Nadir; Ulug, Ulun; Tekin, H Ibrahim; Bahceci, Mustafa

    2010-12-01

    To assess cycle outcome after oocyte refrigeration. Case report. Private IVF center. One couple in a donor oocyte program. Intracytoplasmic sperm injection and blastocyst culture after refrigeration of oocytes for 12 hours. Birth. Fourteen two-pronuclei zygotes from 17 metaphase II refrigerated oocytes resulted in transfer of two blastocysts at day 5 and cryopreservation of six excess embryos at day 6. The patient delivered one healthy male baby after 38 weeks' gestation. The successful outcome of oocyte refrigeration indicates that this protocol could be useful in circumstances in which a delay in obtaining spermatozoa arises. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential.

    PubMed

    Martino, Nicola A; Dell'Aquila, Maria E; Filioli Uranio, Manuel; Rutigliano, Lucia; Nicassio, Michele; Lacalandra, Giovanni M; Hinrichs, Katrin

    2014-10-11

    Evaluation of mitochondrial function offers an alternative to evaluate embryo development for assessment of oocyte viability, but little information is available on the relationship between mitochondrial and chromatin status in equine oocytes. We evaluated these parameters in immature equine oocytes either fixed immediately (IMM) or held overnight in an Earle's/Hank's' M199-based medium in the absence of meiotic inhibitors (EH treatment), and in mature oocytes. We hypothesized that EH holding may affect mitochondrial function and that holding temperature may affect the efficiency of meiotic suppression. Experiment 1 - Equine oocytes processed immediately or held in EH at uncontrolled temperature (22 to 27°C) were evaluated for initial chromatin configuration, in vitro maturation (IVM) rates and mitochondrial energy/redox potential. Experiment 2 - We then investigated the effect of holding temperature (25°C, 30°C, 38°C) on initial chromatin status of held oocytes, and subsequently repeated mitochondrial energy/redox assessment of oocytes held at 25°C vs. immediately-evaluated controls. EH holding at uncontrolled temperature was associated with advancement of germinal vesicle (GV) chromatin condensation and with meiotic resumption, as well as a lower maturation rate after IVM. Holding did not have a significant effect on mitochondrial distribution within chromatin configurations. Independent of treatment, oocytes having condensed chromatin had a significantly higher proportion of perinuclear/pericortical mitochondrial distribution than did other GV configurations. Holding did not detrimentally affect oocyte energy/redox parameters in viable GV-stage oocytes. There were no significant differences in chromatin configuration between oocytes held at 25°C and controls, whereas holding at higher temperature was associated with meiosis resumption and loss of oocytes having the condensed chromatin GV configuration. Holding at 25°C was not associated with progression

  6. Early Development of Cloned Bovine Embryos Produced from Oocytes Enucleated by Fluorescence Metaphase II Imaging Using a Conventional Halogen-Lamp Microscope

    PubMed Central

    Iwamoto, Daisaku; Yamagata, Kazuo; Kishi, Masao; Hayashi-Takanaka, Yoko; Kimura, Hiroshi; Wakayama, Teruhiko

    2015-01-01

    Abstract Enucleation of a recipient oocyte is one of the key processes in the procedure of somatic cell nuclear transfer (SCNT). However, especially in bovine species, lipid droplets spreading in the ooplasm hamper identification and enucleation of metaphase II (MII) chromosomes, and thereby the success rate of the cloning remains low. In this study we used a new experimental system that enables fluorescent observation of chromosomes in living oocytes without any damage. We succeeded in visualizing and removing the MII chromosome in matured bovine oocytes. This experimental system consists of injecting fluorescence-labeled antibody conjugates that bind to chromosomes and fluorescent observation using a conventional halogen-lamp microscope. The cleavage rates and blastocyst rates of bovine embryos following in vitro fertilization (IVF) decreased as the concentration of the antibody increased (p<0.05). The enucleation rate of the conventional method (blind enucleation) was 86%, whereas all oocytes injected with the antibody conjugates were enucleated successfully. Fusion rates and developmental rates of SCNT embryos produced with the enucleated oocytes were the same as those of the blind enucleation group (p>0.05). For the production of SCNT embryos, the new system can be used as a reliable predictor of the location of metaphase plates in opaque oocytes, such as those in ruminant animals. PMID:25826723

  7. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    PubMed

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  8. Current trends and progress in clinical applications of oocyte cryopreservation

    PubMed Central

    Cil, Aylin P.; Seli, Emre

    2013-01-01

    Purpose of review To delineate the current trends in the clinical application of oocyte cryopreservation. Recent findings Although the first live birth from oocyte cryopreservation was reported approximately three decades ago, significant improvement in the clinical application of oocyte cryopreservation took place only over the past decade. On the basis of the available evidence suggesting that success rates with donor oocyte vitrification are similar to that of IVF with fresh donor oocytes, the American Society of Reproductive Medicine has recently stated that oocyte cryopreservation should no longer be considered experimental for medical indications, outlying elective oocyte cryopreservation. Meanwhile, a few surveys on the attitudes toward oocyte cryopreservation revealed that elective use for the postponement of fertility is currently the most common indication for oocyte cryopreservation. Most recently, a randomized controlled trial revealed important evidence on the safety of nondonor oocyte cryopreservation, and confirmed that the clinical success of vitrification is comparable to that of IVF with fresh oocytes. Summary The evidence suggesting similar IVF success rates with both donor and nondonor cryopreserved oocytes compared with fresh oocytes will increase the utilization of elective oocyte cryopreservation. Appropriate counseling of women for oocyte cryopreservation requires the establishment of age-based clinical success rates with cryopreserved oocytes for various indications. PMID:23562954

  9. Current trends and progress in clinical applications of oocyte cryopreservation.

    PubMed

    Cil, Aylin P; Seli, Emre

    2013-06-01

    To delineate the current trends in the clinical application of oocyte cryopreservation. Although the first live birth from oocyte cryopreservation was reported approximately three decades ago, significant improvement in the clinical application of oocyte cryopreservation took place only over the past decade. On the basis of the available evidence suggesting that success rates with donor oocyte vitrification are similar to that of IVF with fresh donor oocytes, the American Society of Reproductive Medicine has recently stated that oocyte cryopreservation should no longer be considered experimental for medical indications, outlying elective oocyte cryopreservation. Meanwhile, a few surveys on the attitudes toward oocyte cryopreservation revealed that elective use for the postponement of fertility is currently the most common indication for oocyte cryopreservation. Most recently, a randomized controlled trial revealed important evidence on the safety of nondonor oocyte cryopreservation, and confirmed that the clinical success of vitrification is comparable to that of IVF with fresh oocytes. The evidence suggesting similar IVF success rates with both donor and nondonor cryopreserved oocytes compared with fresh oocytes will increase the utilization of elective oocyte cryopreservation. Appropriate counseling of women for oocyte cryopreservation requires the establishment of age-based clinical success rates with cryopreserved oocytes for various indications.

  10. Current developments in the treatment of early-stage classical Hodgkin lymphoma.

    PubMed

    Borchmann, Sven; von Tresckow, Bastian; Engert, Andreas

    2016-09-01

    After presenting the current treatment recommendations for early-stage Hodgkin lymphoma, we give an overview on recently published clinical trials in this setting. Furthermore, the potential influence of current trials on the treatment of early-stage Hodgkin lymphoma and integration of newly emerging drugs into treatment protocols will be discussed. Trials attempting treatment de-escalation and omission of radiotherapy on the basis of early interim PET-scans have been disappointing so far, but results of some large trials employing this strategy are still awaited. In contrast, a more defensive strategy of starting treatment with less aggressive doxorubicine, bleomycin, vinblastine, dacarbazine (ABVD) chemotherapy and intensifying treatment in early interim PET-positive patients has shown encouraging results. New drugs such as brentuximab vedotin and immune checkpoint inhibitors have shown promising results in relapsed and refractory Hodgkin lymphoma. Clinical trials of brentuximab vedotin in early-stage Hodgkin lymphoma have been initiated. Additionally, biomarker-based treatment de-escalation might be a possible route for future improvements. The challenge for future clinical research in early-stage Hodgkin lymphoma is to continue to cure the majority of patients with first-line treatment while reducing long-term toxicity. New strategies to achieve that goal are currently being developed and will further refine treatment of early-stage Hodgkin lymphoma.

  11. [Can one authorize oocyte donation in the Grand Duchy of Luxembourg?].

    PubMed

    Arendt, J

    2012-01-01

    In the case of early ovary extinction, the only way to have a child is either adoption or egg/embryo reception by donation. To day, egg donation is prohibited in Luxembourg by ministerial decision in 2003. Germ cell donation is part of artificial reproductive therapy. Oocyte donation, in particular, needs to be done by IVF treatment, which makes it more complicated then sperm donation What makes it more difficult is the fact that there are no oocyte bank yet. Today, prohibition encourages procreative tourism what only wealthy people can afford. Although donation programs are well established many questions arise about egg donation such as refunds, divulging information, women's age limit, health insurance participation.

  12. Impact of prolonged oocyte incubation time before vitrification on oocyte survival, embryo formation, and embryo quality in mice.

    PubMed

    Karami, Azade; Bakhtiari, Mitra; Azadbakht, Mehri; Ghorbani, Rostam; Khazaei, Mozafar; Rezaei, Mansour

    2017-06-01

    Oocyte incubation time before freezing is one of the factors affecting oocyte vitrification. In the assisted reproductive technology (ART) clinics, it is sometimes decided to perform oocyte vitrification after a long period of incubation time due to various conditions, such as inability to collect semen samples, unsuccessful urological interventions (PESA, TESE, etc.), or unexpected conditions. A time factor of up to 6 h has been studied in the available reports. Therefore, this study was designed to evaluate oocyte incubation time before freezing at 0, 6, 12, 18, and 24 h after retrieval. Metaphase II (MII) oocytes were obtained from NMRI female mice after being randomly divided into the five groups of 0, 6, 12, 18, and 24 h of freezing via hormonal stimulation following retrieval and entered into the vitrification-warming process. The thawed oocytes were evaluated according to the survival criteria and then inseminated with the sperms of male mice for in vitro fertilization. The next day, the embryo formation rate and embryo quality were assessed. Our results demonstrated that even after 24 h of incubation, the survival rate of oocytes was 51.35% with the embryo formation rate of 73.21%. However, the survival and embryo formation rates significantly decreased within 12, 18, and 24 h after retrieval compared to the groups vitrified at 0 h. The embryo quality was significantly reduced by vitrification at 0 to 24 h after retrieval. According to our data, although a prolonged incubation time before freezing reduced the survival rate, there was still a chance for oocytes to stay alive with acceptable embryo formation and quality rates after vitrification warming of oocytes.

  13. Generic Difference Between Early and Late Stages of BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Litvak, Maxim L.; Anfimov, Dimitrij S.; Sanin, Anton B.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.

    2001-01-01

    The early and late stages of gamma-ray bursts are studied in a statistical analysis of the large sample of long BATSE events. The primary peak is used as the boundary between the early and late stages of emission. Significant differences are found between the stages: the early stage is shorter, it has harder emission, and it becomes a smaller fraction of the total burst duration for burst groups of decreasing intensity.

  14. General Differences between Early and Late Stages of BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Mitrofanov, I. G.; Litvak, M. L.; Anfimov, D. S.; Sanin, A. B.; Briggs, M. S.; Paciesas, W. S.; Pendleton, G. N.; Preece, R. D.; Meegan, C. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The early and late stages of gamma-ray bursts are studied in a statistical analysis of the large sample of long BATSE events. The primary peak is used as the boundary between the early and late stages of emission. Significant differences are found between the stages: the early stage is shorter, it has harder emission, and it becomes a smaller fraction of the total burst duration for burst groups of decreasing intensity.

  15. The human cumulus--oocyte complex gene-expression profile

    PubMed Central

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  16. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertz, L.M.; Catt, K.J.

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less

  17. Human oocyte cryopreservation and the fate of cortical granules.

    PubMed

    Ghetler, Yehudith; Skutelsky, Ehud; Ben Nun, Isaac; Ben Dor, Liah; Amihai, Dina; Shalgi, Ruth

    2006-07-01

    To examine the effect of the commonly used oocyte cryopreservation protocol on the cortical granules (CGs) of human immature germinal vesicle (GV) and mature metaphase II (MII) oocytes. Laboratory study. IVF unit. Unfertilized, intracytoplasmic sperm injected (ICSI) oocytes, and immature oocytes were cryopreserved using a slow freezing-rapid thawing program with 1,2-propanediol (PROH) as a cryoprotectant. Cortical granule exocytosis (CGE) was assessed by either confocal microscopy or transmission electron microscopy (TEM). The survival rates of frozen-thawed oocytes (mature and immature) were significantly lower compared with zygotes. Both mature and immature oocytes exhibited increased fluorescence after cryopreservation, indicating the occurrence of CGE. Mere exposure of oocytes to cryoprotectants induced CGE of 70% the value of control zygotes. The TEM revealed a drastic reduction in the amount of CGs at the cortex of frozen-thawed GV and MII oocytes, as well as appearance of vesicles in the ooplasm. The commonly used PROH freezing protocol for human oocytes resulted in extensive CGE. This finding explains why ICSI is needed to achieve fertilization of frozen-thawed human oocytes.

  18. Effects of sorbitol on porcine oocyte maturation and embryo development in vitro.

    PubMed

    Lin, Tao; Zhang, Jin Yu; Diao, Yun Fei; Kang, Jung Won; Jin, Dong-Il

    2015-04-01

    In the present study, a porcine system was supplemented with sorbitol during in vitro maturation (IVM) or in vitro culture (IVC), and the effects of sorbitol on oocyte maturation and embryonic development following parthenogenetic activation were assessed. Porcine immature oocytes were treated with different concentrations of sorbitol during IVM, and the resultant metaphase II stage oocytes were activated and cultured in porcine zygote medium-3 (PZM-3) for 7 days. No significant difference was observed in cumulus expansion and the nuclear maturation between the control and sorbitol-treated groups, with the exception of the 100 mM group, which showed significantly decreased nuclear maturation and cumulus expansion. There was no significant difference in the intracellular reactive oxygen species (ROS) levels between oocytes matured with 10 or 20 mM sorbitol and control groups, but 50 and 100 mM groups had significantly higher ROS levels than other groups. The 20 mM group showed significant increases in intracellular glutathione and subsequent blastocyst formation rates following parthenogenetic activation compared with the other groups. During IVC, supplementation with sorbitol significantly reduced blastocyst formation and increased the apoptotic index compared with the control. The apoptotic index of blastocysts from the sorbitol-treated group for entire culture period was significantly higher than those of the partially sorbitol-exposed groups. Based on these findings, it can be concluded that the addition of a low concentration of sorbitol (20 mM) during IVM of porcine oocytes benefits subsequent blastocyst development and improves embryo quality, whereas sorbitol supplement during IVC has a negative effect on blastocyst formation.

  19. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Fish early life stage toxicity test... Fish early life stage toxicity test. (a) Purpose. This guideline is intended to be used for assessing...

  20. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Fish early life stage toxicity test... Fish early life stage toxicity test. (a) Purpose. This guideline is intended to be used for assessing...

  1. Prediction of Developmentally Competent Chromatin Conformation in Mouse Antral Oocytes.

    PubMed

    Daszkiewicz, Regina; Szymoniak, Magdalena; Gąsior, Łukasz; Polański, Zbigniew

    Mouse prophase oocytes isolated from antral follicles may possess two alternative types of chromatin configuration: NSN configuration represents more dispersed chromatin and is characteristic mainly for growing oocytes whereas SN configuration, attained upon oocyte growth, comprises more condensed chromatin with a significant fraction concentrated around the nucleolus. Importantly, fully grown oocytes isolated from antral follicles represent a non-homogenous population in which some oocytes posses NSN-type and others SN-type of chromatin conformation. From these two, only oocytes with SN configuration are able to complete full development upon fertilization. We show that among mouse oocytes isolated from antral follicles, those surrounded by cumulus cells were larger and more frequently possessed SN chromatin than oocytes lacking the complete cumulus cell layer. Females primed with PMSG gave a higher number of oocytes with a complete layer of cumulus cells and the frequency of oocytes with SN chromatin was also elevated. Within the whole population of isolated antral oocytes, we observed subtle variation in size which allowed fractionation of oocytes under a stereomicroscope into groups representing oocytes of slightly different sizes. The occurrence of SN chromatin configuration was highly dependent on the oocyte size and its frequency increased gradually in subsequent size groups reaching 95-100% in the group representing the largest oocytes. These findings demonstrate that the subtle differences in the size of antral oocytes allow prediction of the status of their chromatin, thus providing a simple, fast, non-invasive and non-expensive way to select good quality oocytes for ART purposes in mammals.

  2. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification.

    PubMed

    Trapphoff, Tom; Heiligentag, Martyna; Simon, Jenny; Staubach, Nora; Seidel, Thorsten; Otte, Kathrin; Fröhlich, Thomas; Arnold, Georg J; Eichenlaub-Ritter, Ursula

    2016-12-01

    Can supplementation of media with a glutathione (GSH) donor, glutathione ethyl ester (GEE), prior to vitrification protect the mouse oocyte from oxidative damage and critical changes in redox homeostasis, and thereby improve cryotolerance? GEE supplementation supported redox regulation, rapid recovery of spindle and chromosome alignment after vitrification/warming and improved preimplantation development of mouse metaphase II (MII) oocytes. Cryopreservation may affect mitochondrial functionality, induce oxidative stress, and thereby affect spindle integrity, chromosome segregation and the quality of mammalian oocytes. GEE is a membrane permeable GSH donor that promoted fertilization and early embryonic development of macaque and bovine oocytes after IVM. Two experimental groups consisted of (i) denuded mouse germinal vesicle (GV) oocytes that were matured in vitro in the presence or absence of 1 mM GEE (IVM group 1) and (ii) in vivo ovulated (IVO) MII oocytes that were isolated from the ampullae and exposed to 1 mM GEE for 1 h prior to vitrification (IVO group 2). Recovery of oocytes from both groups was followed after CryoTop vitrification/warming for up to 2 h and parthenogenetic activation. Reactive oxygen species (ROS), spindle morphology and chromosome alignment were analyzed by confocal laser scanning microscopy (CLSM) and polarization microscopy in control and GEE-supplemented MII oocytes. The relative overall intra-oocyte GSH content was assessed by analysis of monochlorobimane (MBC)-GSH adduct fluorescence in IVM MII oocytes. The GSH-dependent intra-mitochondrial redox potential (E m GSH ) of IVM MII oocytes was determined after microinjection with specific mRNA at the GV stage to express a redox-sensitive probe within mitochondria (mito-Grx1-roGFP2). The absolute negative redox capacity (in millivolts) was determined by analysis of fluorescence of the oxidized versus the reduced form of sensor by CLSM and quantification according to Nernst equation

  3. Characterization of urea transport in Bufo arenarum oocytes.

    PubMed

    Silberstein, Claudia; Zotta, Elsa; Ripoche, Pierre; Ibarra, Cristina

    2003-07-01

    Xenopus laevis oocytes have been extensively used for expression cloning, structure/function relationships, and regulation analysis of transporter proteins. Urea transporters have been expressed in Xenopus oocytes and their properties have been described. In order to establish an alternative system in which urea transporters could be efficiently expressed and studied, we determined the urea transport properties of ovarian oocytes from Bufo arenarum, a toad species common in Argentina. Bufo oocytes presented a high urea permeability of 22.3 x 10(-6) cm/s, which was significantly inhibited by the incubation with phloretin. The urea uptake in these oocytes was also inhibited by mercurial reagents, and high-affinity urea analogues. The urea uptake was not sodium dependent. The activation energy was 3.2 Kcal/mol, suggesting that urea movement across membrane oocytes may be through a facilitated urea transporter. In contrast, Bufo oocytes showed a low permeability for mannitol and glycerol. From these results, we propose that one or several specific urea transporters are present in ovarian oocytes from Bufo arenarum. Therefore, these oocytes cannot be used in expression studies of foreign urea transporters. The importance of Bufo urea transporter is not known but could be implicated in osmotic regulation during the laying of eggs in water. Copyright 2003 Wiley-Liss, Inc.

  4. Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee Megachile rotundata.

    PubMed

    O'Neill, Kevin M; Delphia, Casey M; O'Neill, Ruth P

    2014-01-01

    Females of solitary, nest-provisioning bees have relatively low fecundity, but produce large eggs as part of their overall strategy of investing substantially in each offspring. In intraspecific comparisons of several species of solitary, nest-provisioning bees and wasps, the size of the mature eggs produced increases with female body size. We further examined oocyte size-body size correlations in the solitary bee Megachile rotundata (F.), an important crop pollinator. We hypothesized that larger females carry larger basal oocytes (i.e., those next in line to be oviposited) but that body size-oocyte size correlations would be absent soon after emergence, before their first eggs fully matured. Because egg production is likely affected by the quantity of stored lipids carried over from the bees' immature stages, we also tested the hypothesis that female body size is correlated with the body lipid content at adult emergence, the time during which oocyte growth accelerates. We found significant correlations of body size with oocyte size variables chosen to reflect: (1) the magnitude of the investment in the next egg to be laid (i.e., the length and volume of the basal oocyte) and (2) the longer term potential to produce mature oocytes (i.e., the summed lengths and volumes of the three largest oocytes in each female). Positive correlations existed throughout the nesting season, even during the first week following adult emergence. The ability to produce and carry larger oocytes may be linked to larger females starting the nesting season with greater lipid stores (which we document here) or to greater space within the abdomen of larger females. Compared to other species of solitary bees, M. rotundata appears to have (1) smaller oocytes than solitary nest-provisioning bees in general, (2) comparable oocyte sizes relative to congeners, and (3) larger oocytes than related brood parasitic megachilids.

  5. Ethics of medical and nonmedical oocyte cryopreservation.

    PubMed

    Patrizio, Pasquale; Molinari, Emanuela; Caplan, Arthur

    2016-12-01

    To assess the effectiveness and ethical dimensions of oocyte cryopreservation for both medical and social indications. As more women are postponing motherhood for a variety of reasons, including lack of partner, for completing career plans and reaching financial stability, they are resorting to oocyte cryopreservation. To make informed choices, women rely on their primary care physicians (PCPs) for initial advice, but PCPs are not always fully prepared to discuss oocyte cryopreservation. Interestingly, there are mixed feelings among obstetricians/gynecologists on whether oocyte cryopreservation should be used for elective reasons, whereas it is fully supported for medical indications. Oocyte vitrification has become an established procedure for safeguarding future reproductive chances for medical reasons, and its use is progressively expanding. There is an urgent need in preparing future PCPs and obstetricians/gynecologists as to how to initiate discussions with their patients about elective oocyte banking consistent with fully respecting patient autonomy so as to facilitate informed decisions.

  6. [A prospective study to compare the efficiency of oocyte vitrification using closed or open devices].

    PubMed

    Sarandi, S; Herbemont, C; Sermondade, N; Benoit, A; Sonigo, C; Poncelet, C; Benard, J; Gronier, H; Boujenah, J; Grynberg, M; Sifer, C

    2016-05-01

    Oocyte vitrification using an open device is thought to be a source of microbiological and chemical contaminations that can be avoided using a closed device. The principal purpose of this study was to compare the two vitrification protocols: closed and open system. The secondary aim was to study the effects of the storage in the vapor phase of nitrogen (VPN) on oocytes vitrified using an open system and to compare it to those of a storage in liquid nitrogen (LN). Forty-four patients have been included in our study between November 2014 and May 2015. Two hundred and fourteen oocytes have been vitrified at germinal vesicle (GV), metaphase I (0PB) and metaphase II (1PB) stages. We vitrified 96 oocytes (59 GV/37 0PB) using a closed vitrification device and 118 oocytes (57 GV/31 0PB/30 1PB) using an open device. The vitrified oocytes were then stored either in LN or in VPN. The main outcome measures were the survival rate after warming (SR), meiosis resumption rate (MRR) and maturation rate (MR). The global post-thaw SR was significantly higher for oocytes vitrified using an open system (93.2%) compared to those vitrified using a closed one (64.5%; P<0.001). On the contrary, there was no significant difference in terms of global MRR and MR (82.1% vs. 87.5% and 60.7% vs. 61.2% using closed and open system respectively). The SR, MRR and the MR were not significantly different when vitrified oocytes were stored in VPN or LN (91.6, 83.8, 64.5% vs. 93.9, 89.8, 59.1% respectively). Taking into account the limits of our protocol, the open vitrification system remains the more efficient system. The use of sterile liquid nitrogen for oocyte vitrification and the subsequent storage in vapor phase of nitrogen could minimize the hypothetical risks of biological and chemical contaminations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility.

    PubMed

    Eliyahu, Efrat; Shtraizent, Nataly; Shalgi, Ruth; Schuchman, Edward H

    2012-01-01

    The number of resting follicles in the ovary and their successful maturation during development define the fertile female lifespan. Oocytes, enclosed within follicles, are subject to natural selection, and the majority will undergo apoptosis during prenatal life through adulthood. Our previous studies revealed high levels of the lipid hydrolase, acid ceramidase (AC), in human and mouse oocytes, follicular fluid and cumulus cells. In addition, supplementation of in vitro fertilization media with recombinant AC enhanced the survival of oocytes and preimplantation embryos. Herein we constructed and used a conditional knockout mouse model of AC deficiency (cACKO) to further investigate the role of this enzyme in oocyte survival in vivo. Immunohistochemical staining, activity assays, and western blot analysis revealed that AC expression was high in the ovaries of normal mice, particularly in the theca cells. After induction of the AC gene knockout with tamoxifen (TM), AC levels decreased in ovaries, and ceramide was correspondingly elevated. A novel immunostaining method was developed to visualize follicles at various stages, and together with light microscopic examination, the transition of the follicle from the secondary to antral stage was found to be defective in the absence of AC. Western blot analysis showed elevated BAX and PARP expression in TM-treated cACKO mouse ovaries compared to control animals. In parallel, the levels of BCL-2 and anti-Mullerian hormone, a marker of ovarian reserve, were decreased. In addition to the above, there was a significant decrease in fertility observed in the TM-treated cACKO mice. Together, these data suggest that AC plays an important role in the preservation of fertility by maintaining low ceramide levels and preventing apoptosis of theca cells, thereby promoting survival of the follicle during the transition from the secondary to antral stage. Copyright © 2012 S. Karger AG, Basel.

  8. Hepatocellular carcinoma: early-stage management challenges

    PubMed Central

    Erstad, Derek J; Tanabe, Kenneth K

    2017-01-01

    Hepatocellular carcinoma (HCC) is a major cause of cancer death and is increasing in incidence. This review focuses on HCC surveillance and treatment of early-stage disease, which are essential to improving outcomes. Multiple societies have published HCC surveillance guidelines, but screening efforts have been limited by noncompliance and overall lack of testing for patients with undiagnosed chronic liver disease. Treatment of early-stage HCC has become increasingly complex due to expanding therapeutic options and better outcomes with established treatments. Surgical indications for HCC have broadened with improved preoperative liver testing, neoadjuvant therapy, portal vein embolization, and perioperative care. Advances in post-procedural monitoring have improved efficacies of transarterial chemoembolization and radiofrequency ablation, and novel therapies involving delivery of radiochemicals are being studied in small trials. Finally, advances in liver transplantation have allowed for expanded indications beyond Milan criteria with non-inferior outcomes. More clinical trials evaluating new therapies and multimodal regimens are necessary to help clinicians design better treatment algorithms and improve outcomes. PMID:28721349

  9. Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization.

    PubMed

    Wang, Feng; Tian, XiuZhi; Zhang, Lu; He, ChangJiu; Ji, PengYun; Li, Yu; Tan, DunXian; Liu, GuoShi

    2014-02-01

    To analyze the potential beneficial effects and mechanisms of action of resveratrol on the maturation of bovine oocytes that were incubated in different concentrations of resveratrol (0.1, 1.0, or 10.0 μM) as germinal vesicle-stage oocytes. In vitro prospective study. University research laboratory. Animal models for human studies. In vitro culture in the presence of various concentrations of the antioxidant resveratrol. Parameters of hormone levels, oocyte nuclear maturation, cumulus expansion, levels of intracellular glutathione and reactive oxygen species, embryonic cleavage, blastocyst formation, gene expression associated with mature bovine oocytes and cumulus cells, and level of sirtuin 1 gene expression. Resveratrol statistically significantly increased progesterone secretion and decreased estradiol-17β secretion by cumulus cells. The elevated levels of progesterone activated the Mos/MEK/p42 mitogen-activated protein kinase (MAPK) cascade in the oocytes. At a concentration of 1.0 μM, resveratrol statistically significantly improved cumulus expansion, polar body formation, the (hatched) blastocyst rate, and the mean number of cells/blastocysts. Meanwhile, resveratrol statistically significantly reduced the level of reactive oxygen species (ROS) and increased the level of glutathione (GSH). For the first time, the expression of the sirtuin-1 gene was identified in granulosa cells, cumulus cells, oocytes, and blastocysts. Further studies revealed that resveratrol promoted sirtuin-1 gene expression. Resveratrol promoted bovine oocyte maturation and subsequent post-in vitro fertilization embryonic development by inducing progesterone secretion and an antioxidant effect, probably in a manner dependent on sirtuin-1. Copyright © 2014 American Society for Reproductive Medicine. All rights reserved.

  10. Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions.

    PubMed

    Li, H J; Sutton-McDowall, M L; Wang, X; Sugimura, S; Thompson, J G; Gilchrist, R B

    2016-04-01

    Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators? Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality. Oocytes are susceptible to oxidative stress and the oocyte's most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development. This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocyte's major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes. Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis. Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P < 0.05), regardless of

  11. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age.

    PubMed

    Jones, Keith T

    2008-01-01

    Mammalian oocytes begin meiosis in the fetal ovary, but only complete it when fertilized in the adult reproductive tract. This review examines the cell biology of this protracted process: from entry of primordial germ cells into meiosis to conception. The defining feature of meiosis is two consecutive cell divisions (meiosis I and II) and two cell cycle arrests: at the germinal vesicle (GV), dictyate stage of prophase I and at metaphase II. These arrests are spanned by three key events, the focus of this review: (i) passage from mitosis to GV arrest during fetal life, regulated by retinoic acid; (ii) passage through meiosis I and (iii) completion of meiosis II following fertilization, both meiotic divisions being regulated by cyclin-dependent kinase (CDK1) activity. Meiosis I in human oocytes is associated with an age-related high rate of chromosomal mis-segregation, such as trisomy 21 (Down's syndrome), resulting in aneuploid conceptuses. Although aneuploidy is likely to be multifactorial, oocytes from older women may be predisposed to be becoming aneuploid as a consequence of an age-long decline in the cohesive ties holding chromosomes together. Such loss goes undetected by the oocyte during meiosis I either because its ability to respond and block division also deteriorates with age, or as a consequence of being inherently unable to respond to the types of segregation defects induced by cohesion loss.

  12. A Four Stage Approach to Early Childhood Intervention.

    ERIC Educational Resources Information Center

    Haber, Julian S.

    This paper describes a model for the involvement of primary health care personnel in the identification and treatment of developmental disabilities as a part of early childhood intervention programs. The integrated multidisciplinary model is divided into four stages. During the first stage an assignment of prenatal, perinatal, and postnatal risk…

  13. Motility contrast imaging of live porcine cumulus-oocyte complexes

    NASA Astrophysics Data System (ADS)

    An, Ran; Turek, John; Machaty, Zoltan; Nolte, David

    2013-02-01

    Freshly-harvested porcine oocytes are invested with cumulus granulosa cells in cumulus-oocyte complexes (COCs). The cumulus cell layer is usually too thick to image the living oocyte under a conventional microscope. Therefore, it is difficult to assess the oocyte viability. The low success rate of implantation is the main problem for in vitro fertilization. In this paper, we demonstrate our dynamic imaging technique called motility contrast imaging (MCI) that provides a non-invasive way to monitor the COCs before and after maturation. MCI shows a change of intracellular activity during oocyte maturation, and a measures dynamic contrast between the cumulus granulosa shell and the oocytes. MCI also shows difference in the spectral response between oocytes that were graded into quality classes. MCI is based on shortcoherence digital holography. It uses intracellular motility as the endogenous imaging contrast of living tissue. MCI presents a new approach for cumulus-oocyte complex assessment.

  14. Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology

    PubMed Central

    2012-01-01

    Infertility affects one in seven couples globally and has recently been classified as a disease by the World Health Organisation (WHO). While in-vitro fertilisation (IVF) offers effective treatment for many infertile couples, cases exhibiting severe male infertility (19–57%) often remain difficult, if not impossible to treat. In such cases, intracytoplasmic sperm injection (ICSI), a technique in which a single sperm is microinjected into the oocyte, is implemented. However, 1–5% of ICSI cycles still fail to fertilise, affecting over 1000 couples per year in the UK alone. Pregnancy and delivery rates for IVF and ICSI rarely exceed 30% and 23% respectively. It is therefore imperative that Assisted Reproductive Technology (ART) protocols are constantly modified by associated research programmes, in order to provide patients with the best chances of conception. Prior to fertilisation, mature oocytes are arrested in the metaphase stage of the second meiotic division (MII), which must be alleviated to allow the cell cycle, and subsequent embryogenesis, to proceed. Alleviation occurs through a series of concurrent events, collectively termed ‘oocyte activation’. In mammals, oocytes are activated by a series of intracellular calcium (Ca2+) oscillations following gamete fusion. Recent evidence implicates a sperm-specific phospholipase C, PLCzeta (PLCζ), introduced into the oocyte following membrane fusion as the factor responsible. This review summarises our current understanding of oocyte activation failure in human males, and describes recent advances in our knowledge linking certain cases of male infertility with defects in PLCζ expression and activity. Systematic literature searches were performed using PubMed and the ISI-Web of Knowledge. Databases compiled by the United Nations and World Health Organisation databases (UNWHO), and the Human Fertilization and Embryology Authority (HFEA) were also scrutinised. It is clear that PLCζ plays a fundamental role in

  15. Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology.

    PubMed

    Ramadan, Walaa M; Kashir, Junaid; Jones, Celine; Coward, Kevin

    2012-07-09

    Infertility affects one in seven couples globally and has recently been classified as a disease by the World Health Organisation (WHO). While in-vitro fertilisation (IVF) offers effective treatment for many infertile couples, cases exhibiting severe male infertility (19-57%) often remain difficult, if not impossible to treat. In such cases, intracytoplasmic sperm injection (ICSI), a technique in which a single sperm is microinjected into the oocyte, is implemented. However, 1-5% of ICSI cycles still fail to fertilise, affecting over 1000 couples per year in the UK alone. Pregnancy and delivery rates for IVF and ICSI rarely exceed 30% and 23% respectively. It is therefore imperative that Assisted Reproductive Technology (ART) protocols are constantly modified by associated research programmes, in order to provide patients with the best chances of conception. Prior to fertilisation, mature oocytes are arrested in the metaphase stage of the second meiotic division (MII), which must be alleviated to allow the cell cycle, and subsequent embryogenesis, to proceed. Alleviation occurs through a series of concurrent events, collectively termed 'oocyte activation'. In mammals, oocytes are activated by a series of intracellular calcium (Ca2+) oscillations following gamete fusion. Recent evidence implicates a sperm-specific phospholipase C, PLCzeta (PLCζ), introduced into the oocyte following membrane fusion as the factor responsible. This review summarises our current understanding of oocyte activation failure in human males, and describes recent advances in our knowledge linking certain cases of male infertility with defects in PLCζ expression and activity. Systematic literature searches were performed using PubMed and the ISI-Web of Knowledge. Databases compiled by the United Nations and World Health Organisation databases (UNWHO), and the Human Fertilization and Embryology Authority (HFEA) were also scrutinised. It is clear that PLCζ plays a fundamental role in the

  16. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  17. The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage.

    PubMed Central

    Yamauchi, N; Kiessling, A A; Cooper, G M

    1994-01-01

    We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. Images PMID:7935384

  18. Ultrasonographic-guided retrieval of cumulus oocyte complexes after super-stimulation in dromedary camel (Camelus dromedarius).

    PubMed

    Wani, N A; Skidmore, J A

    2010-08-01

    higher proportion (P < 0.05) of in vivo matured oocytes cleaved (84.6 +/- 2.1 vs. 60.9 +/- 6.6) and developed to blastocyst stages (52.4 +/- 4.1 vs. 30.5 +/- 3.3) when compared with in vitro matured oocytes collected from slaughterhouse ovaries. In Experiment 3, no difference was observed between the developmental competences of oocytes, collected from super stimulated camels, matured in vitro with those collected after their in vivo maturation. In conclusion, about 80-90% mature oocytes can be collected by ultrasound guided transvaginal ovum pick-up from super-stimulated dromedary camels 26-28 h after GnRH administration. The developmental response, to chemical activation, of in vivo matured oocytes collected by ultrasound guided transvaginal OPU is better than in vitro matured oocytes obtained from slaughterhouse ovaries. However, no difference was observed in the developmental competence of oocytes collected by OPU whether they were matured in vivo or in vitro. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Fourier analysis of mitochondrial distribution in oocytes

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Brooks, Dana H.; Newmark, Judith A.; Warner, Carol M.; DiMarzio, Charles A.

    2011-03-01

    This paper describes a novel approach to quantifying mitochondrial patterns which are typically described using the qualitative terms "diffuse" "aggregated" and are potentially key indicators for an oocyte's health and survival potential post-implantation. An oocyte was isolated in a confocal image and a coarse grid was superimposed upon it. The spatial spectrum was calculated and an aggregation factor was generated. A classifier for healthy cells was developed and verified. The aggregation factor showed a clear distinction between the healthy and unhealthy oocytes. The ultimate goal is to screen oocytes for viability preimplantation, thus improving the outcome of in vitro fertilization (IVF) treatments.

  20. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis.

    PubMed

    Chen, Chia-Chi; Chan, Wen-Hsiung

    2012-01-01

    Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.

  1. Comparison of sucrose and trehalose media modification as an update of oocyte vitrification: A study of apoptotic level

    NASA Astrophysics Data System (ADS)

    Lestari, Silvia W.; Fitriyah, Nurin N.; Pangestu, Mulyoto; Pratama, Gita; Margiana, Ria

    2018-02-01

    Number of women who are not being able to have offspring in their reproductive life is increasing which might be influenced by several factors. As a consequence, oocyte cryopreservation could be an ensuring solution for women fertility preservation. A good vitrification could be conducted by combining an appropriate of type and concentration of cryoprotectants. One of the marks of successful vitrification is the vitrified oocytes could avoid apoptosis. This study aimed to evaluate the modification of cryoprotectant media as un update of oocyte vitrification as follow: the combination and the concentration of cryoprotectant media of oocytes vitrification, based on their effects on the apoptosis or DNA damage of oocytes. A total of 84 MII stage oocytes from adult female Deutschland, Denken and Yoken (DDY) mice (7-8 weeks old) were used in this study. Vitrification procedure was performed by using VS1 contained 15% EG, 15% DMSO, 0.5 mol/l sucrose (Merck, Darmstadt, Germany) and VS2 contained 15% EG, 15% DMSO, 0.5 mol/l trehalose (Merck, Darmstadt, Germany) in HM. Furthermore, warming solution (WS) was divided into four groups. There were: WS1a contained 0.3 mol/l sucrose, WS1b contained 0.15 mol/l sucrose, WS2a contained 0.3 mol/l trehalose, and WS2b contained 0.15 mol/l trehalose. Apoptotic level was performed by staining the oocytes with TUNEL and propidium iodide (PI) based on Brison and Schultz method then examined under confocal microscope. The rate of apoptosis in oocytes after vitrification and warming was higher compared to the fresh control oocytes. Furthermore, the rate of apoptosis in the vitrified oocytes by sucrose media (28%) was higher compared to the vitrified oocytes by trehalose media (16%). The results of this study indicated that vitrification increased apoptosis in the vitrified oocytes related to the oocyte injury after vitrification. Moreover, the vitrification increased apoptosis more in the vitrified oocytes by sucrose media than the vitrified

  2. Effect of sericin supplementation during in vitro maturation on the maturation, fertilization and development of porcine oocytes.

    PubMed

    Do, L T K; Namula, Z; Luu, V V; Sato, Y; Taniguchi, M; Isobe, T; Kikuchi, K; Otoi, T

    2014-04-01

    This study aimed to examine the effects of sericin supplementation during in vitro oocyte maturation on the nuclear maturation, fertilization and development of porcine oocytes. Cumulus-oocyte complexes (COCs) were cultured in maturation medium supplemented with 0 (control), 0.1, 0.5, 1.0, 2.5 or 5.0% sericin and were then subjected to in vitro fertilization and embryo culture. More COCs matured with 1.0% sericin underwent germinal vesicle breakdown and reached metaphase II compared with the control COCs matured without sericin (p < 0.01). The proportions of oocytes with DNA-fragmented nuclei did not differ between the groups, regardless of the sericin level. The total fertilization rate of oocytes matured with 1.0% sericin was higher (p < 0.05) than that of oocytes matured with 0.1%, 2.5% and 5.0% sericin. Supplementation with more than 1.0% sericin decreased the DNA fragmentation index of the blastocysts compared with the control group (p < 0.05). However, the supplementation of the maturation medium with sericin had no beneficial effects on the cleavage, development to the blastocyst stage and the total cell number of the embryos. Our findings indicate that supplementation with 1.0% sericin during maturation culture may improve the nuclear maturation and the quality of the embryos but does not affect blastocyst formation. © 2014 Blackwell Verlag GmbH.

  3. The evolution of oocyte donation in China.

    PubMed

    Wang, Fang; Sun, Yingpu; Kong, Huijuan; Li, Jing; Su, Yingchun; Guo, Yihong

    2010-07-01

    To review the experience with and clinical outcomes for recipients of embryos from oocytes donated under different regulatory standards in China. Initially, the oocytes were provided by one of the patient's consanguineous sisters. Then, the oocytes were obtained from another patient treated with assisted reproduction techniques (ART). Presently, oocytes thus produced are cryopreserved for at least 6months before transfer. The records from all women treated with ART at First Affiliated Hospital of Zhengzhou University since 2001 were reviewed and the pregnancy rates and clinical outcomes were determined for each of the 3 periods. In the second period, the mean implantation and clinical pregnancy rates were significantly higher for the 22 oocyte recipients than for their donors. In the third period, the rates for the 56 recipients were compared with the 78 other regular ART patients fertilized with their own oocytes. There were 40 live births for 32 of the recipients over 28 cycles, and the rates of implantation and clinical pregnancy were much higher for the recipients than for the other ART patients (P<0.001). Using freshly donated eggs yields a higher pregnancy rate but there is a risk of infectious disease. Using frozen oocytes can significantly decrease this risk but implantation rates are lower. Copyright (c) 2010 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Early stages of Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Shneidman, Vitaly A.

    2013-07-01

    The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the matrix.

  5. Influence of hope, social support, and self-esteem in early stage dementia.

    PubMed

    Cotter, Valerie T; Gonzalez, Elizabeth W; Fisher, Kathleen; Richards, Kathy C

    2018-02-01

    Background People in the early stages of dementia adjust to the illness through stages of awareness, coping, and evaluation. Studies have found that hope, social support, and self-esteem facilitate coping, adjustment, and adaptation in chronic illness. Objective The purpose of this descriptive study was to examine the relationships between hope, social support, and self-esteem in individuals with early stage dementia. Methods Data were obtained from 53 individuals with early stage dementia. The scores on the Herth Hope Index, Social Support Questionnaire Short-Form, and the State Self-Esteem Scale were analyzed using linear regression. Results Hope was moderately associated with self-esteem ( r = .49, p < .001). Hope accounted for 25% of the variance in self-esteem and was a key component in predicting self-esteem. No significant relationship was found between social support and self-esteem. Conclusion Findings suggest that hope may be an important factor to help individuals manage potential threats to self-esteem in the experience of early stage dementia. Strategies to inspire hope and then enhance self-esteem are promising for individuals living with early stage dementia.

  6. All-optical photoacoustic imaging and detection of early-stage dental caries

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Hughes, David A.; Longbottom, Chris; Kirk, Katherine J.

    2015-02-01

    Dental caries remain one of the most common oral diseases in the world. Current detection methods, such as dental explorer and X-ray radiography, suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease because of the small size (< 100 microns) of early-stage lesions. We have developed a fine-resolution (480 nm), ultra-broadband (1 GHz), all-optical photoacoustic imaging (AOPAI) system to image and detect early stages of tooth decay. This AOPAI system provides a non-contact, non-invasive and non-ionizing means of detecting early-stage dental caries. Ex-vivo teeth exhibiting early-stage, white-spot lesions were imaged using AOPAI. Experimental scans targeted each early-stage lesion and a reference healthy enamel region. Photoacoustic (PA) signals were generated in the tooth using a 532-nm pulsed laser and the light-induced broadband ultrasound signal was detected at the surface of the tooth with an optical path-stabilized Michelson interferometer operating at 532 nm. The measured time-domain signal was spatially resolved and back-projected to form 2D and 3D maps of the lesion using k-wave reconstruction methods. Experimental data collected from areas of healthy and diseased enamel indicate that the lesion generated a larger PA response compared to healthy enamel. The PA-signal amplitude alone was able to detect a lesion on the surface of the tooth. However, time- reversal reconstructions of the PA scans also quantitatively depicted the depth of the lesion. 3D PA reconstruction of the diseased tooth indicated a sub-surface lesion at a depth of 0.6 mm, in addition to the surface lesion. These results suggest that our AOPAI system is well suited for rapid clinical assessment of early-stage dental caries. An overview of the AOPAI system, fine-resolution PA and histology results of diseased and healthy teeth will be presented.

  7. Efficient harvesting methods for early-stage snake and turtle embryos.

    PubMed

    Matsubara, Yoshiyuki; Kuroiwa, Atsushi; Suzuki, Takayuki

    2016-04-01

    Reptile development is an intriguing research target for understating the unique morphogenesis of reptiles as well as the evolution of vertebrates. However, there are numerous difficulties associated with studying development in reptiles. The number of available reptile eggs is usually quite limited. In addition, the reptile embryo is tightly adhered to the eggshell, making it a challenge to isolate reptile embryos intact. Furthermore, there have been few reports describing efficient procedures for isolating intact embryos especially prior to pharyngula stage. Thus, the aim of this review is to present efficient procedures for obtaining early-stage reptilian embryos intact. We first describe the method for isolating early-stage embryos of the Japanese striped snake. This is the first detailed method for obtaining embryos prior to oviposition in oviparous snake species. Second, we describe an efficient strategy for isolating early-stage embryos of the soft-shelled turtle. © 2016 Japanese Society of Developmental Biologists.

  8. High-throughput optofluidic system for the laser microsurgery of oocytes

    NASA Astrophysics Data System (ADS)

    Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Alliegro, Mark C.; Berns, Michael W.

    2012-01-01

    This study combines microfluidics with optical microablation in a microscopy system that allows for high-throughput manipulation of oocytes, automated media exchange, and long-term oocyte observation. The microfluidic component of the system transports oocytes from an inlet port into multiple flow channels. Within each channel, oocytes are confined against a microfluidic barrier using a steady fluid flow provided by an external computer-controlled syringe pump. This allows for easy media replacement without disturbing the oocyte location. The microfluidic and optical-laser microbeam ablation capabilities of the system were validated using surf clam (Spisula solidissima) oocytes that were immobilized in order to permit ablation of the 5 μm diameter nucleolinus within the oocyte nucleolus. Oocytes were the followed and assayed for polar body ejection.

  9. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  10. Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer

    DTIC Science & Technology

    2012-03-01

    patients with early stage ErbB2-overexpressing biopsies and ER- atypia . 13 REFERENCES: 1. Jordan VC. Tamoxifen for breast cancer prevention. Proc Soc...Summary01-03-2012 Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer Shalini Jain University of Texas M.D. Anderson Cancer Center Houston...SUBTITLE “Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer” 5a. CONTRACT NUMBER W81XWH-11-1-0004 5b. GRANT NUMBER

  11. [Wide support for oocyte donation and banking in the Netherlands].

    PubMed

    Bos, Annelies M E; Klapwijk, Petra; Fauser, Bart C J M

    2012-01-01

    To assess the general consensus on the cryopreservation of oocytes and the introduction of oocyte banking facilities in the Netherlands. Poll investigation A poll with the use of an online questionnaire was conducted among nearly 19,000 participants of the Dutch EenVandaag opinion panel in May 2011. The poll results were adjusted to the Dutch population based on data from the Dutch Central Office for Statistics for age, gender, education, marital status, geographical area and political preference (measured according to the lower house elections of 2010). The primary endpoints were the percentages of supporters of oocyte freezing for own future use and of the concept of introducing oocyte banking facilities in The Netherlands. The secondary endpoints were the demographic differences between supporters and opponents. Approximately half of 18.911 participants supported oocyte freezing (47%). Fifty-percent of all participants supported oocyte banking in the Netherlands. Supporters of oocyte freezing were mainly women ≤ 45 years of age, who are highly educated and have no children. Four percent of the participating women aged ≤ 45 years would seriously consider obtaining donor oocytes from an available oocyte banking facility. Twelve percent of the participating women ≤ 45 years of age said they would definitely donate their oocytes or would seriously consider donating. Thirty-seven percent of all participants were against the introduction of oocyte banking facilities. The most important arguments against oocyte freezing were that women should reproduce during normal reproductive years and that it was not medically necessary. Poll results showed much support for oocyte freezing and for the introduction of oocyte banking facilities in the Netherlands. In addition, the poll shows that oocyte banking facilities would fulfil a need in the population.

  12. Usability of tablet computers by people with early-stage dementia.

    PubMed

    Lim, Fabian S; Wallace, Tim; Luszcz, Mary A; Reynolds, Karen J

    2013-01-01

    Tablet computers are generally associated with an intuitive interface. The adoption and use of tablet computers within the early-stage dementia context could potentially assist in daily living and provide users with a source for leisure activities and social networking. As dementia mainly affects the older adult population, it is expected that many people with dementia and even their carers do not use tablet computers as part of their everyday living. This paper explores the usability of tablet computers within the early-stage dementia context as a source of leisure for people with dementia. The main advantage of the use of tablet computers in this manner is to provide carers some reprieve from the constant care and attention often required in caring for people with dementia. Seven-day in-home trials were conducted to determine whether people with early-stage dementia were -capable of using a tablet computer independently. Twenty-one people with early-stage dementia and carer dyads participated in the trial. Feedback was gathered through questionnaires from both the person with dementia and their carer regarding the use of a tablet computer as part of their everyday living. Approximately half the participants with dementia were able to engage with and use the tablet computer independently, which proved to be helpful to their carers. No significant traits were observed to help identify those who were less likely to use a tablet computer. Carer relief was quantified by the amount of time participants with dementia spent using the device without supervision. The results and feedback from the trial provide significant insights to introducing new technology within the early-stage dementia context. Users' needs must be considered on a case-by-case basis to successfully facilitate the uptake of tablet computers in the dementia context. The trial has provided sufficient justification to further explore more uses of tablet computers in the dementia context, and not just for

  13. Lipid droplet analysis using in vitro bovine oocytes and embryos.

    PubMed

    Ordoñez-Leon, E A; Merchant, H; Medrano, A; Kjelland, M; Romo, S

    2014-04-01

    The aim of this study was to quantify the content of lipid droplets in bovine oocytes and embryos from Bos indicus (Bi), Bos taurus (Bt) and Bos indicus × Bos taurus (Bi × Bt). Oocytes were aspirated post-mortem and subjected to in vitro maturation, in vitro fertilization and in vitro development; the medium employed at each stage (TCM-199, TALP, SOF) was supplemented with (i) serum replacement (SR), (ii) foetal calf serum (FCS) or (iii) oestrous cow serum (ECS). The structure and distribution of the lipid droplets were established using electron microscopy, but were quantified using an optical microscope on semi-fine toluidine blue-stained sections. The highest percentage of embryos corresponded to those produced with FCS and ECS, which differed from embryos generated with SR (p < 0.05). The highest percentage of morulae and the lowest percentage of blastocysts were obtained with the SR supplement (p < 0.05). The oocytes cultured in FCS demonstrated a higher number of lipid droplets compared to those cultured in SR and ECS (p < 0.05). Less accumulation of lipids was observed in embryos supplemented with SR. The lowest and highest numbers of lipid droplets in oocytes corresponded to the Bi and Bt strain, respectively. The lowest amount of lipid droplets in embryos was observed in Bi (p < 0.05). In conclusion, supplementation of the in vitro development culture medium (synthetic oviduct fluid) with a synthetic substitute serum produced similar results in terms of embryo development compared to those obtained with FCS, but a decreased degree of lipid droplet accumulation was observed in the in vitro-cultured embryos. © 2014 Blackwell Verlag GmbH.

  14. Surgical Staging of Early Stage Endometrial Cancer: Comparison Between Laparotomy and Laparoscopy

    PubMed Central

    Api, Murat; Kayatas, Semra; Boza, Aysen Telce; Nazik, Hakan; Adiguzel, Cevdet; Guzin, Kadir; Eroglu, Mustafa

    2013-01-01

    Background The aim of the present study was to compare the laparotomy (LT) and laparoscopy (LS) in patients who undergone surgical staging for early stage endometrium cancer. Methods Retrospective data were collected and analyzed for amount of intraoperative bleeding, complication rates, total resected and laterality specific number of lymph nodes and duration of operation in patients operated with either LT or LS. Results Seventy-nine stage I endometrium cancer patients were found to be eligible for the trial purposes: 58 (73.4%) treated by LT and 21 (26.6%) treated by LS. The number of lymph nodes was similar in LT (8.9 ± 5.3) and LS (9.2 ± 4.8) (P = 0.8). In LT group, there was no difference in the number of lymph nodes between the right and left sides (10 ± 5.8 and 8.7 ± 4.8 respectively, P = 0.19); in LS group, the number of lymph nodes resected from the right side was higher than the left side (9.8 ± 5 and 7 ± 3.5 respectively, P = 0.039). The amount of intraoperative bleeding and hospitalization period were significantly higher in LT group. Seventy-nine patients had a median follow-up of 30 months. The two groups were similar for disease-free survival (P = 0.46, log rank test). Conclusions There was no significant difference between the two methods in terms of number of total resected lymph nodes. In early stage endometrial carcinoma, LS has provided adequate staging and similar survival rates with LT. PMID:29147363

  15. DNA Copy Number Signature to Predict Recurrence in Early Stage Ovarian Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0194 TITLE: DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer 5b. GRANT NUMBER W81XWH-14-1-0194 5c. PROGRAM...determine the copy number gain and loss for early stage high grade ovarian cancers through IlluminaHumanOmniExpress-FFPE BeadChip system • Subtask 1 DNA

  16. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  17. Oocyte-specific deletion of N-WASP does not affect oocyte polarity, but causes failure of meiosis II completion.

    PubMed

    Wang, Zhen-Bo; Ma, Xue-Shan; Hu, Meng-Wen; Jiang, Zong-Zhe; Meng, Tie-Gang; Dong, Ming-Zhe; Fan, Li-Hua; Ouyang, Ying-Chun; Snapper, Scott B; Schatten, Heide; Sun, Qing-Yuan

    2016-09-01

    There is an unexplored physiological role of N-WASP (neural Wiskott-Aldrich syndrome protein) in oocyte maturation that prevents completion of second meiosis. In mice, N-WASP deletion did not affect oocyte polarity and asymmetric meiotic division in first meiosis, but did impair midbody formation and second meiosis completion. N-WASP regulates actin dynamics and participates in various cell activities through the RHO-GTPase-Arp2/3 (actin-related protein 2/3 complex) pathway, and specifically the Cdc42 (cell division cycle 42)-N-WASP-Arp2/3 pathway. Differences in the functions of Cdc42 have been obtained from in vitro compared to in vivo studies. By conditional knockout of N-WASP in mouse oocytes, we analyzed its in vivo functions by employing a variety of different methods including oocyte culture, immunofluorescent staining and live oocyte imaging. Each experiment was repeated at least three times, and data were analyzed by paired-samples t-test. Oocyte-specific deletion of N-WASP did not affect the process of oocyte maturation including spindle formation, spindle migration, polarity establishment and maintenance, and homologous chromosome or sister chromatid segregation, but caused failure of cytokinesis completion during second meiosis (P < 0.001 compared to control). Further analysis showed that a defective midbody may be responsible for the failure of cytokinesis completion. The present study did not include a detailed analysis of the mechanisms underlying the results, which will require more extensive further investigations. N-WASP may play an important role in mediating and co-ordinating the activity of the spindle (midbody) and actin (contractile ring constriction) when cell division occurs. The findings are important for understanding the regulation of oocyte meiosis completion and failures in this process that affect oocyte quality. None. This work was supported by the National Basic Research Program of China (No. 2012CB944404) and the National Natural

  18. Management of Early Stage, High-Risk Endometrial Carcinoma: Preoperative and Surgical Considerations

    PubMed Central

    Pettigrew, Gaetan

    2013-01-01

    Endometrial cancer is the most common gynecologic malignancy in the developed world. Most cases are diagnosed at an early stage and have low-grade histology, portending an overall excellent prognosis. There exists a subgroup of patients with early, high-risk disease, whose management remains controversial, as current data is clouded by inclusion of early stage tumors with different high-risk features for recurrence, unstandardized protocols for surgical staging, and an evolving staging system by which we are grouping these patients. Here, we present preoperative and intraoperative considerations that should be taken into account when planning surgical management for this population of patients. PMID:23878545

  19. Holding immature equine oocytes in the absence of meiotic inhibitors: effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection.

    PubMed

    Choi, Y H; Love, L B; Varner, D D; Hinrichs, K

    2006-09-01

    Holding immature oocytes before the onset of maturation simplifies oocyte transport and aids in scheduling later manipulations. We report here a method for holding equine oocytes in the absence of meiotic inhibitors. In Experiment 1, immature oocytes with expanded cumuli were cultured at 38.2 degrees C in medium containing cycloheximide, or were held at room-temperature in M199 with Hanks' salts, for 16-18 h before maturation. Control oocytes were matured immediately after recovery. Oocytes were fertilized by intracytoplasmic sperm injection and cultured for 4d. Embryo development was not different among treatments. In Experiment 2, oocytes were treated as in Experiment 1, but embryos were cultured for 7.5d. Blastocyst development was significantly lower in the cycloheximide-treated group than in controls (7% versus 30%) with the room-temperature group intermediate (16%). In Experiment 3, oocytes were cultured at 38.2 degrees C in medium containing roscovitine, or were held at room temperature in sealed glass vials in a mixture of 40% M199 with Earle's salts, 40% M199 with Hanks' salts, and 20% FBS (EH treatment) for 16-18 h, before maturation, sperm injection, and embryo culture for 7.5d. Blastocyst development of oocytes in the EH treatment was significantly higher than that for roscovitine-treated oocytes (34% versus 12%), but not significantly different from that for controls (25%). Oocytes in the EH treatment did not mature during holding (70% germinal vesicle stage after 18 h holding). Whereas culture with cycloheximide or roscovitine of equine oocytes with expanded cumuli reduced subsequent blastocyst formation, these oocytes could be held in a modified M199 at room temperature overnight without adverse affecting meiotic or developmental competence.

  20. Multimodal imaging findings in 'hyper-early' stage MEWDS.

    PubMed

    Cahuzac, Armelle; Wolff, Benjamin; Mathis, Thibaud; Errera, Marie-Hélène; Sahel, José-Alain; Mauget-Faÿsse, Martine

    2017-10-01

    To describe a new stage of multiple evanescent white dot syndrome (MEWDS), occurring at a very early phase of the disease. Retrospective analysis of clinical, angiographic and tomographic findings in four patients with 'hyper-early' stage MEWDS. In four patients seen within 1 week of the onset of symptoms, fundus analysis revealed macular granity and the classic yellow-white dots, some having no corresponding hyperautofluorescent pattern. Spectral-domain optical coherence tomography (SD-OCT) showed central foveal disruption of the ellipsoid zone (EZ) and interdigitation layer with a hyper-reflective dome-shaped lesion. In two patients, fluorescein angiography (FA) revealed an intermediate hypofluorescent perimacular halo, whereas late indocyanine green angiography (ICGA) showed a hyperfluorescent halo as well as the classic MEWDS features. After a few days, the EZ disruption appeared complete on OCT and fundus autofluorescence (FAF) in all patients. Visual acuity, OCT and FAF findings had fully recovered within 3 months. We have shown a new feature of MEWDS on FAF, OCT, FA and ICGA, corresponding to a very early stage of the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior.

    PubMed

    Hall, Kyle Wm; Zhang, Zhengcai; Kusalik, Peter G

    2016-12-29

    The molecular-level details of mixed hydrate nucleation remain unclear despite the broad implications of this process for a variety of scientific domains. Through analysis of mixed hydrate nucleation in a prototypical CH 4 /H 2 S/H 2 O system, we demonstrate that high-level kinetic similarities between mixed hydrate systems and corresponding pure hydrate systems are not a reliable basis for estimating the composition of early stage mixed hydrate nuclei. Moreover, we show that solution compositions prior to and during nucleation are not necessarily effective proxies for the composition of early stage mixed hydrate nuclei. Rather, microscopic details, (e.g., guest-host interactions and previously neglected cage types) apparently play key roles in determining early stage behavior of mixed hydrates. This work thus provides key foundational concepts and insights for understanding mixed hydrate nucleation.

  2. Driving behaviors in early stage dementia: a study using in-vehicle technology.

    PubMed

    Eby, David W; Silverstein, Nina M; Molnar, Lisa J; LeBlanc, David; Adler, Geri

    2012-11-01

    According to the Alzheimer's Association (2011), (1) in 8 people age 65 and older, and about one-half of people age 85 and older, have Alzheimer's disease in the United States (US). There is evidence that drivers with Alzheimer's disease and related dementias are at an increased risk for unsafe driving. Recent advances in sensor, computer, and telecommunication technologies provide a method for automatically collecting detailed, objective information about the driving performance of drivers, including those with early stage dementia. The objective of this project was to use in-vehicle technology to describe a set of driving behaviors that may be common in individuals with early stage dementia (i.e., a diagnosis of memory loss) and compare these behaviors to a group of drivers without cognitive impairment. Seventeen drivers with a diagnosis of early stage dementia, who had completed a comprehensive driving assessment and were cleared to drive, participated in the study. Participants had their vehicles instrumented with a suite of sensors and a data acquisition system, and drove 1-2 months as they would under normal circumstances. Data from the in-vehicle instrumentation were reduced and analyzed, using a set of algorithms/heuristics developed by the research team. Data from the early stage dementia group were compared to similar data from an existing dataset of 26 older drivers without dementia. The early stage dementia group was found to have significantly restricted driving space relative to the comparison group. At the same time, the early stage dementia group (which had been previously cleared by an occupational therapist as safe to drive) drove as safely as the comparison group. Few safety-related behavioral errors were found for either group. Wayfinding problems were rare among both groups, but the early stage dementia group was significantly more likely to get lost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Signal recognition particle assembly in relation to the function of amplified nucleoli of Xenopus oocytes.

    PubMed

    Sommerville, John; Brumwell, Craig L; Politz, Joan C Ritland; Pederson, Thoru

    2005-03-15

    The signal recognition particle (SRP) is a ribonucleoprotein machine that controls the translation and intracellular sorting of membrane and secreted proteins. The SRP contains a core RNA subunit with which six proteins are assembled. Recent work in both yeast and mammalian cells has identified the nucleolus as a possible initial site of SRP assembly. In the present study, SRP RNA and protein components were identified in the extrachromosomal, amplified nucleoli of Xenopus laevis oocytes. Fluorescent SRP RNA microinjected into the oocyte nucleus became specifically localized in the nucleoli, and endogenous SRP RNA was also detected in oocyte nucleoli by RNA in situ hybridization. An initial step in the assembly of SRP involves the binding of the SRP19 protein to SRP RNA. When green fluorescent protein (GFP)-tagged SRP19 protein was injected into the oocyte cytoplasm it was imported into the nucleus and became concentrated in the amplified nucleoli. After visiting the amplified nucleoli, GFP-tagged SRP19 protein was detected in the cytoplasm in a ribonucleoprotein complex, having a sedimentation coefficient characteristic of the SRP. These results suggest that the amplified nucleoli of Xenopus oocytes produce maternal stores not only of ribosomes, the classical product of nucleoli, but also of SRP, presumably as a global developmental strategy for stockpiling translational machinery for early embryogenesis.

  4. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization--a prospective analysis of follicular fluid and a matched oocyte in a 'one follicle--one retrieved oocyte--one resulting embryo' investigational setting.

    PubMed

    Ciepiela, Przemysław; Bączkowski, Tomasz; Drozd, Arleta; Kazienko, Anna; Stachowska, Ewa; Kurzawa, Rafał

    2015-01-01

    To evaluate human oocyte ability to undergo fertilization and subsequent preimplantation embryonic development in relation to a wide panel of follicular fluid (FF) arachidonic acid derivatives (AAD) and linoleic acid derivatives (LAD) of prospectively selected patients undergoing intracytoplasmic sperm injection (ICSI). Study was designed as a two center (a university clinic and a private clinic) prospective study. 54 women of 181 consecutive couples undergoing ICSI were prospectively found to be eligible for analysis. 'One follicle - one retrieved oocyte - one resulting embryo' approach was used. Each individual follicle was aspirated independently and matched to an oocyte growing in this particular follicular milieu. FF samples were assessed for AAD and LAD by high-performance liquid chromatography; additionally, activity of secretory phospholipase A (sPLA2) was determined by enzyme-linked immunosorbent assay. Increased activity of sPLA2 and significantly higher AAD and LAD levels were found in FF of oocytes that did not show two pronuclei or underwent degeneration after ICSI in comparison to oocytes with the appearance of two pronuclei. Receiver operating characteristics curve analysis identified acids with the highest sensitivity and specificity: 5oxo-hydroxyeicosatetraenoic, 16-hydroxyeicosatetraenoic, 9-hydroxyoctadecadieneoic and 12-hydroxyeicosatetraenoic. No significant differences between AAD and LAD related to embryo quality were found. Our study demonstrates for the first time that elevated concentrations of AAD and LAD in FF at the time of oocyte retrieval significantly decrease the ability of oocytes to form pronuclei after ICSI. This may serve as a new tool for non-invasive assessment of oocyte developmental capacity. However, levels of AAD and LAD are not associated with subsequent embryo quality or pregnancy rate, and therefore more studies are needed to determine their usefulness in human IVF procedure.

  5. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte.

    PubMed

    Dahlgaard, Katja; Raposo, Alexandre A S F; Niccoli, Teresa; St Johnston, Daniel

    2007-10-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex.

  6. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice

    PubMed Central

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Chen, Su-Ren; Deng, Shou-Long; Jin, Cheng; Zhang, Yan; Wang, Xiu-Xia; Zhou, Chen-Xi; Liu, Yi-Xun

    2016-01-01

    ABSTRACT Increases in the aneuploidy rate caused by the deterioration of cohesion with increasing maternal age have been well documented. However, the molecular mechanism for the loss of cohesion in aged oocytes remains unknown. In this study, we found that intracellular pH (pHi) was elevated in aged oocytes, which might disturb the structure of the cohesin ring to induce aneuploidy. We observed for the first time that full-grown germinal vesicle (GV) oocytes displayed an increase in pHi with advancing age in CD1 mice. Furthermore, during the in vitro oocyte maturation process, the pHi was maintained at a high level, up to ∼7.6, in 12-month-old mice. Normal pHi is necessary to maintain protein localization and function. Thus, we put forward a hypothesis that the elevated oocyte pHi might be related to the loss of cohesion and the increased aneuploidy in aged mice. Through the in vitro alkalinization treatment of young oocytes, we observed that the increased pHi caused an increase in the aneuploidy rate and the sister inter-kinetochore (iKT) distance associated with the strength of cohesion and caused a decline in the cohesin subunit SMC3 protein level. Young oocytes with elevated pHi exhibited substantially the increase in chromosome misalignment. PMID:27472084

  7. Bioaccumulation of lipophilic substances in fish early life stages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, G.I.; Kristensen, P.

    1998-07-01

    Accumulation of {sup 14}C-labeled polycyclic aromatic hydrocarbons, naphthalene, phenanthrene, pyrene, and benzo(a)pyrene and polychlorinated biphenyl (PCB) congeners PCB 31 and PCB 105 with a log octanol/water partition coefficient (K{sub ow}) range from 3.37 to 6.5 was investigated in eggs and larvae of zebra fish (Brachydanio rerio), and in larvae of cod (Gadus morhua), herring (Clupea harengus), and turbot (Scophthalmus maximus). Significant differences in the uptake and elimination rate constants between eggs and larvae of zebra fish were seen. The low rate of uptake and the lower elimination rate of eggs did, however, lead to bioconcentration factors (BCFs) comparable to thosemore » for larvae. As biotransformation of xenobiotics in embryonic and larval stages was indicated to be insignificant compared to juvenile/adult stages, body burdens of readily biotransformed chemicals may be higher in fish early life stages. Because weight and lipid content did not differ much between the investigated species, the main reason for the variability in BCFs between marine species and freshwater species was considered to be caused by differences in exposure temperatures that affect the degree of biotransformation. Due to the smaller size of larvae and thus an increased total surface of the membranes per unit fish weight, steady-state conditions were reached at a faster r/ate in early life stages than in juvenile/adult life stages. The lipid-normalized bioconcentration factors (BCF{sub L}) were linearly related to K{sub ow} but BCF{sub L} was, in general, higher than K{sub ow}, indicating that octanol is not a suitable surrogate for fish lipids. Differences in bioconcentration kinetics between larvae and juvenile/adult life stages are considered to be the main reason for the higher sensitivity, with respect to external effect concentrations, generally obtained for early life stages of fish.« less

  8. Effects of gonadotropins on in vitro maturation and of electrical stimulation on parthenogenesis of canine oocytes.

    PubMed

    Kim, B S; Lee, S R; Hyun, B H; Shin, M J; Yoo, D H; Lee, S; Park, Y S; Ha, J H; Ryoo, Z Y

    2010-02-01

    The objective of this study was to determine the effects of gonadotropins on in vitro maturation (IVM) and electrical stimulation on the parthenogenesis of canine oocytes. In experiment I, cumulus oocyte complexes were collected from ovaries at a random phase of the oestrus cycle and cultured on maturation medium treated with hCG or eCG for 48 or 72 h. There were no significant differences in the effects on the metaphase II (MII) rate between the hCG and eCG treatment groups over 48 h (5.4% vs 5.5%). The MII rate in the co-treatment group of hCG and eCG for 48 h was higher than in each hormone treated group (15.5%, p < 0.05). In experiment 2, the parthenogenetic effect on oocyte development, at various electrical field strengths (1.0, 1.5, 2.0 kV/cm DC) for 60 or 80 mus with a single DC pulse after IVM on the co-treatment of hCG and eCG, was examined. The rate of pronuclear formation (37.1%) in electrical activation at 1.5 kV/60 mus without cytochalasin B (CB) was higher than that of oocytes activated in the other groups (p < 0.05). However, we did not observe the cleavage stages. Also, CB did not influence parthenogenesis of canine oocytes. The results showed that the pronucleus formation rate, indicative of the parthenogenesis start point, could be increased by electrical stimulation. Therefore, these results can provide important data for the parthenogenesis of canine oocytes and suggest the probability of parthenogenesis in canines.

  9. Pregnancy and delivery after in vitro maturation of naked ICSI-GV oocytes with GH and transfer of a frozen thawed blastocyst: case report.

    PubMed

    Menezo, Yves J R; Nicollet, Bernard; Rollet, Jacques; Hazout, André

    2006-01-01

    To determine if GV oocytes, collected at the time of ICSI, can be matured in vitro and rescued for therapeutic treatment. A patient for whom all the collected oocytes at the GV stage after a classical COH protocol were matured in vitro with GH. All the naked oocytes were matured in a culture medium (ISM2) containing 15% patient serum +1.6 units of GH (Saizen) per millilitre. Oocytes were incubated overnight at 37 degrees C. The MII oocytes obtained were micro-injected. A fresh transfer was performed and a supernumerary blastocyst was frozen. The patient was pregnant and delivered a healthy girl after transfer of the frozen/thawed blastocyst. The baby girl is now 2 years old. In vitro maturation with GH allows rescuing naked GV oocytes collected at the time of ICSI. GH action does not pass through the cumulus cells. According to the possible lack of synchrony between the embryo and the uterus, we recommend to freeze the embryos obtained and to replace them in a controlled cycle.

  10. Sex aneuploidy of unfertilized human oocytes after intracytoplasmic sperm injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.; Ward, D.C.; Jones, E.E.

    1994-09-01

    Intracytoplasmic sperm injection (ICSI) has recently achieved successful fertilization and pregnancy in human in vitro fertilization, particularly in cases of severe male factor infertility. One criticism of this novel clinical technique is that it bypasses the natural selection process of fertilization. We use fluorescence in situ hybridization (FISH) to analyze oocytes which fail to fertilize after ICSI in the Yale IVF Program. The purpose of this study is to determine whether failed fertilization after ICSI can be attributed to sex chromosome aneuploidy in the oocyte. Fertilization of oocytes is determined by the presence of two pronuclei on light microscopic examinationmore » (400X). Multi-probe FISH with DAPI (4,6,-diamino-2-phenyl-indole) counterstain is then performed to determine oocyte ploidy and the presence of decondensed sperm. Centromeric probes for X, Y and 17 are used simultaneously in each oocyte for in situ hybridization to oocyte chromatin. In all oocytes examined after ICSI to date, unfertilized oocytes have decondensed sperm DNA present confirming appropriate intracytoplasmic placement of the sperm. Preliminary results obtained from 31 oocytes have not identified any sex chromosome aneuploidies. The FISH technique used in post-ICSI oocytes is a model system for delineating genetic causes of failed fertilization in the human.« less

  11. How do oocytes disappear?

    PubMed

    Bonilla-Musoles, F; Renau, J; Hernandez-Yago, J; Torres, J

    1975-07-29

    It has been study using transmission and scanner electron microscopy the mean procedures of dessaparence of the oocytes. On described three methods: 1. The necrosis of the oocytes. 2. The autolysis and fagocitosis by granulosa cells. 3. The migration of those to the superphicie and fall into the peritoneal cavity. Using the scanner electron microscopy in ovaries of fetus and newborn it seems the latest method to bee the most important during the intrauterine life. After the birth, this last phenomenon seems to disappear.

  12. bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring

    PubMed Central

    Trovisco, Vítor; Belaya, Katsiaryna; Nashchekin, Dmitry; Irion, Uwe; Sirinakis, George; Butler, Richard; Lee, Jack J; Gavis, Elizabeth R; St Johnston, Daniel

    2016-01-01

    bicoid mRNA localises to the Drosophila oocyte anterior from stage 9 of oogenesis onwards to provide a local source for Bicoid protein for embryonic patterning. Live imaging at stage 9 reveals that bicoid mRNA particles undergo rapid Dynein-dependent movements near the oocyte anterior, but with no directional bias. Furthermore, bicoid mRNA localises normally in shot2A2, which abolishes the polarised microtubule organisation. FRAP and photo-conversion experiments demonstrate that the RNA is stably anchored at the anterior, independently of microtubules. Thus, bicoid mRNA is localised by random active transport and anterior anchoring. Super-resolution imaging reveals that bicoid mRNA forms 110–120 nm particles with variable RNA content, but constant size. These particles appear to be well-defined structures that package the RNA for transport and anchoring. DOI: http://dx.doi.org/10.7554/eLife.17537.001 PMID:27791980

  13. Role of arachidonic acid cascade in Rhinella arenarum oocyte maturation.

    PubMed

    Ortiz, Maria Eugenia; Arias-Torres, Ana Josefina; Zelarayán, Liliana Isabel

    2015-08-01

    There are no studies that document the production of prostaglandins (PGs) or their role in Rhinella arenarum oocyte maturation. In this study, we analysed the effect of arachidonic acid (AA) and prostaglandins (PGs) on maturation, activation and pronuclear formation in R. arenarum oocytes. Our results demonstrated that AA was capable of inducing maturation in time-dependent and dose-dependent manner. Arachidonic acid-induced maturation was inhibited by indomethacin. PGs from AA hydrolysis, such as prostaglandin F2α (PGF2α) and, to a lesser extent, PGE2, induced meiosis resumption. Oocyte maturation in response to PGF2α was similar to that produced by progesterone (P4). Oocyte response to PGE1 was scarce. Rhinella arenarum oocyte PGF2α-induced maturation showed seasonal variation. From February to June, oocytes presented low sensitivity to PGF2α. In following periods, this response increased until a maximum was reached during October to January, a close temporal correlation with oocyte response to P4 being observed. The effect of PGF2α on maturation was verified by analysing the capacity of oocytes to activate and form pronuclei after being injected with homologous sperm. The cytological analysis of activated oocytes demonstrated the absence of cortical granules in oocytes, suggesting that PGF2α induces germinal vesicle breakdown (GVBD) and meiosis resumption up to metaphase II. In turn, oocytes matured by the action of PGF2α were able to form pronuclei after fertilization in a similar way to oocyte maturated by P4. In microinjection of mature cytoplasm experiments, the transformation of pre-maturation promoting factor (pre-MPF) to MPF was observed when oocytes were treated with PGF2α. In summary, our results illustrated the participation of the AA cascade and its metabolites in maturation, activation and pronuclei formation in R. arenarum.

  14. Vitrification, in vitro fertilization, and development of Atg7 deficient mouse oocytes.

    PubMed

    Bang, Soyoung; Lee, Geun-Kyung; Shin, Hyejin; Suh, Chang Suk; Lim, Hyunjung Jade

    2016-03-01

    Autophagy contributes to the clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified mouse oocytes show acute increases in autophagy during warming. Herein, we investigate the potential role of Atg7 in oocyte vitrification by using an oocyte-specific deletion model of the Atg7 gene, a crucial upstream gene in the autophagic pathway. Oocyte-specific Atg7 deficient mice were generated by crossing Atg7 floxed mice and Zp3-Cre transgenic mice. The oocytes were vitrified-warmed and then subjected to in vitro fertilization and development. The rates of survival, fertilization, and development were assessed in the Atg7 deficient oocytes in comparison with the wildtype oocytes. Light chain 3 (LC3) immunofluorescence staining was performed to determine whether this method effectively evaluates the autophagy status of oocytes. The survival rate of vitrified-warmed Atg7(f/f) ;Zp3-Cre (Atg7(d/d) ) metaphase II (MII) oocytes was not significantly different from that of the wildtype (Atg7(f/f) ) oocytes. Fertilization and development in the Atg7(d/d) oocytes were significantly lower than the Atg7(f/f) oocytes, comparable to the Atg5(d/d) oocytes previously described. Notably, the developmental rate improved slightly in vitrified-warmed Atg7(d/d) MII oocytes when compared to fresh Atg7(d/d) oocytes. LC3 immunofluorescence staining showed that this method can be reliably used to assess autophagic activation in oocytes. We confirmed that the LC3-positive signal is nearly absent in Atg7(d/d) oocytes. While autophagy is induced during the warming process after vitrification of MII oocytes, the Atg7 gene is not essential for survival of vitrified-warmed oocytes. Thus, induction of autophagy during warming of vitrified MII oocytes seems to be a natural response to manage cold or other cellular stresses.

  15. Injurious effects of emodin on maturation of mouse oocytes, fertilization and fetal development via apoptosis.

    PubMed

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-10-29

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20-40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process.

  16. In vitro maturation of dromedary (Camelus dromedarius) oocytes: effect of different protein supplementations and epidermal growth factor*.

    PubMed

    Wani, Na; Wernery, U

    2010-10-01

    The present experiment was aimed to compare the effect of different protein supplementation sources, foetal calf serum (FCS), oestrous dromedary serum (EDS) and BSA, in experiment 1, and the effect of different concentrations of epidermal growth factor (EGF), in experiment 2, on in vitro nuclear maturation of the dromedary oocytes. Cumulus oocyte complexes (COCs) were harvested from the ovaries collected from a local slaughterhouse by aspirating the visible follicles in PBS supplemented with 5% FCS. Pooled COCs were randomly distributed to 4-well culture plates containing 500 μl of the maturation medium and cultured at 38.5 °C in an atmosphere of 5% CO(2) in air for 32-36 h. The basic maturation medium consisted of TCM-199 supplemented with 0.1 mg/ml L-glutamine, 0.8 mg/ml sodium bicarbonate, 0.25 mg/ml pyruvate, 50 μg/ml gentamicin, 10 μg/ml bFSH, 10 μg/ml bLH and 1 μg/ml estradiol. In experiment 1, this medium was supplemented with 10% FCS, 10% EDS or 0.4% BSA, whereas in experiment 2, it was supplemented with 0.4% BSA and 0, 10, 20 or 50 ng/ml of EGF. The oocytes were fixed, stained with 1% aceto-orcein stain and their nuclear status was evaluated. Oocytes were classified as germinal vesicle, diakinesis, metaphase-I, anaphase-I (A-I), metaphase-II (M-II) and those with degenerated, fragmented, scattered, activated or without visible chromatin as others. There was no difference (p > 0.05) observed in the proportion of oocytes reaching M-II stage between the media supplemented with FCS (71.5 ± 4.8), EDS (72.8 ± 2.9) and BSA (72.7 ± 6.2). In experiment 2, a higher proportion (p < 0.05) of oocytes reached M-II stage when the medium was supplemented with 20 ng/ml of EGF (81.4 ± 3.2) when compared with the media supplemented with 10 ng/ml (66.9 ± 4.1) and control (67.2 ± 7.1) groups. It may be concluded that the maturation media for dromedary camel oocytes can be supplemented with any of the three protein sources, i.e. FCS, EDS and BSA without any

  17. [Successful pregnancies after oocyte and embryo vitrification].

    PubMed

    Salazar, Francisco Hernández; Loza, Erik Omar Okhuysen; Lucas, Maria Teresa Huerta J; Gutiérrez, Gustavo Romero

    2008-02-01

    Cryopreservation of human oocytes represents a solution for ethic conflict about frozen embryo storage for patients with risk to develop ovarian hyperstimulation syndrome; also is an available technique to preserve fertility in women with cancer under treatment, in poor response patients, in case of premature ovarian failure or aging and for other medical or social conditions that require to delay pregnancies, as well as to make easier oocyte donation programs. This paper reports two cases of successful pregnancies after embryo and oocyte vitrification, as well as their results. The technique of vitrification with the cryotop method is an excellent alternative, efficient, fast and cheap for oocyte and embryo cryopreservation with high ranges of fertilization, cleavage and pregnancies with a normal evolution.

  18. Oocyte Degeneration Associated with Follicle Cells in Female Mactra chinensis (Bivalvia: Mactridae)

    PubMed Central

    Kim, Sung Han; Chung, Ee-Yung; Lee, Ki-Young

    2014-01-01

    Ultrastructural studies of oocyte degeneration in the oocyte, and the functions of follicle cells during oocyte degeneration are described to clarify the reproductive mechanism on oocyte degeneration of Mactra chinensis using cytological methods. Commonly, the follicle cells are attached to the oocyte. Follicle cells play an important role in oocyte degeneration. In particular, the functions of follicle cells during oocyte degeneration are associated with phagocytosis and the intracellular digestion of products. In this study, morphologically similar degenerated phagosomes (various lysosomes), which were observed in the degenerated oocytes, appeared in the follicle cells. After the spawning of the oocytes, the follicle cells were involved in oocyte degeneration through phagocytosis by phagolysosomes. Therefore, it can be assumed that follicle cells reabsorb phagosomes from degenerated oocytes. In this study, the presence of lipid granules, which occurred from degenerating yolk granules, gradually increased in degenerating oocytes. The function of follicle cells can accumulate reserves of lipid granules and glycogen in the cytoplasm, which can be employed by the vitellogenic oocyte. Based on observations of follicle cells attached to degenerating oocytes after spawning, the follicle cells of this species are involved in the lysosomal induction of oocyte degeneration for the reabsorption of phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. PMID:25949203

  19. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  20. Cortical granule exocytosis in Bufo arenarum oocytes matured in vitro.

    PubMed

    Oterino, J; Sanchez Toranzo, G; Zelarayán, L; Valz-Gianinet, J N; Bühler, M I

    2001-08-01

    Denuded Bufo arenarum oocytes matured in vitro by progesterone treatment exhibited abnormal segmentation due to the penetration of more than one sperm. These oocytes were able to respond to activation stimuli and exhibited the external signs characteristic of activation. However, the prevention of polyspermy was not effective in these oocytes, which exhibited numerous sperm in their cytoplasm. The aim of this work was to analyse the cortical reaction in polyspermic Bufo arenarum oocytes matured in vitro. The result indicate that the cortical reaction of these oocytes seems to occur with a chronological sequence similar to that described for ovoposited oocytes of this species. In addition, when, 1 min after pricking, cortical granule exocytosis occurred, the oocytes became refractory to sperm entry, suggesting that they are able to establish a slow block to polyspermy.

  1. Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA.

    PubMed

    Shishova, Kseniya V; Lavrentyeva, Elena A; Dobrucki, Jurek W; Zatsepina, Olga V

    2015-01-15

    It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Collaboration with Pharma Will Introduce Nanotechnologies in Early Stage Drug Development | FNLCR Staging

    Cancer.gov

    The Frederick National Lab has begun to assist several major pharmaceutical companies in adopting nanotechnologies in early stage drug development, when the approach is most efficient and cost-effective. For some time, the national lab’s Nanotechno

  3. Evolution of human oocyte cryopreservation: slow freezing versus vitrification.

    PubMed

    Levi-Setti, Paolo Emanuele; Patrizio, Pasquale; Scaravelli, Giulia

    2016-12-01

    The purpose is to determine the efficiency and efficacy of oocyte cryopreservation by slow freezing versus vitrification, recent data collected from the Italian National Assisted Reproductive Technology Register during the period 2009-2014 will be presented and reviewed. The data on oocyte cryopreservation were also compared with the results obtained with embryo cryopreservation and relative IVF with fresh oocytes. During the period 2009-2014 preservation of oocytes by vitrification had a significantly higher survival rate, implantation, and pregnancy rate than slow freezing; however, there are still large variations in success rates among centers in relation to the number of procedures performed. Vitrification has now become the method of choice for oocyte cryopreservation because of better results than slow freezing, but still requires a more standardized utilization. The transfer of fresh or cryopreserved embryo still shows a statistically significant better performance than transfers with embryos obtained with cryopreserved oocytes. Only in a few centers with much experience in cryopreservation are the results between transfers of frozen embryos or embryos obtained from oocyte cryopreservation comparable.

  4. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging.

    PubMed

    Di Emidio, Giovanna; Falone, Stefano; Vitti, Maurizio; D'Alessandro, Anna Maria; Vento, Marilena; Di Pietro, Cinzia; Amicarelli, Fernanda; Tatone, Carla

    2014-09-01

    Is SIRT1 involved in the oxidative stress (OS) response in mouse oocytes? SIRT1 plays a pivotal role in the adaptive response of mouse germinal vesicle (GV) oocytes to OS and promotes a signalling cascade leading to up-regulation of the MnSod gene. OS is known to continuously threaten acquisition and maintenance of oocyte developmental potential during in vivo processes and in vitro manipulations. Previous studies in somatic cells have provided strong evidence for the role of SIRT1 as a sensor of the cell redox state and a protector against OS and aging. GV oocytes obtained from young (4-8 weeks) and reproductively old (48-52 weeks) CD1 mice were blocked in the prophase stage by 0.5 µM cilostamide. Groups of 30 oocytes were exposed to 25 µM H2O2 and processed following different times for the analysis of intracellular localization of SIRT1 and FOXO3A, and evaluation of Sirt1, miRNA-132, FoxO3a and MnSod gene expression. Another set of oocytes was cultured in the presence or absence of the SIRT1-specific inhibitor Ex527, and exposed to H2O2 in order to assess the involvement of SIRT1 in the activation of a FoxO3a-MnSod axis and ROS detoxification. In the last part of this study, GV oocytes were maturated in vitro in the presence of different Ex527 concentrations (0, 2.5, 5, 10, 20 µM) and assessed for maturation rates following 16 h. Effects of Ex527 on spindle morphology and ROS levels were also evaluated. SIRT1 and FOXO3A intracellular distribution in response to OS was investigated by immunocytochemistry. Real-time RT-PCR was employed to analyse Sirt1, miR-132, FoxO3a and MnSod gene expression. Reactive oxygen species (ROS) production was evaluated by in vivo measurement of carboxy-H2DCF diacetate labelling. Spindle and chromosomal distribution in in vitro matured oocytes were analysed by immunocytochemistry and DNA fluorescent labelling, respectively. Specific changes in the intracellular localization of SIRT1 and up-regulation of Sirt1 gene were detected in

  5. Identification of oocyte progenitor cells in the zebrafish ovary.

    PubMed

    Draper, Bruce W

    2012-01-01

    Zebrafish breed year round and females are capable of producing thousands of eggs during their lifetime. This amazing fecundity is due to the fact that the adult ovary, contains premeiotic oocyte progenitor cells, called oogonia, which produce a continuous supply of new oocytes throughout adult life. Oocyte progenitor cells can be easily identified based on their expression of Vasa, and their characteristic nuclear morphology. Thus, the zebrafish ovary provides a unique and powerful system to study the genetic regulation of oocyte production in a vertebrate animal. A method is presented here for identifying oocyte progenitor cells in the zebrafish ovary using whole-mount confocal immunofluorescence that is simple and accurate.

  6. Ethical Dilemmas for Oocyte Donations: Slippery Slope for Conflicts of Interest.

    PubMed

    Tulay, Pinar

    2016-01-01

    Oocyte donations have increased with improvements in oocyte cryopreservation procedures in recent years. Women with medical conditions that require chemotherapy or radiotherapy have begun to opt for oocyte cryo¬preservation prior to their treatment or to enroll in an oocyte donation program. Alternatively, some women apply for "third-party" oocyte donation programs for nonmedical reasons such as delayed childbearing. Although society seems to accept oocyte donations for medical reasons, it appears that there are still some moral issues surrounding nonmedical oocyte donations. In this review, the ethical aspects of oocyte donations and donors' perspectives are discussed. With developing technologies, the genetic screening of donors has expanded to include diseases. This review explores the ethical issues involved in genetic screening of gamete donors.

  7. Vitrification of oocytes from endangered Mexican gray wolves (Canis lupus baileyi).

    PubMed

    Boutelle, S; Lenahan, K; Krisher, R; Bauman, K L; Asa, C S; Silber, S

    2011-03-01

    Careful genetic management, including cryopreservation of genetic material, is central to conservation of the endangered Mexican gray wolf. We tested a technique, previously used to vitrify human and domestic animal oocytes, on oocytes from domestic dogs as a model and from the endangered Mexican wolf. This method provided a way to conserve oocytes from genetically valuable older female Mexican wolves as an alternative to embryos for preserving female genes. Oocytes were aspirated from ovaries of 36 female dogs in December and March (0 to 65 oocytes per female) and from six female wolves (4 to 73 per female) during their physiologic breeding season, or following stimulation with the GnRH agonist deslorelin. Oocytes from dogs were pooled; half were immediately tested for viability and the remainder vitrified, then warmed and tested for viability. All oocytes were vitrified by being moved through media of increasing cryoprotectant concentration, placed on Cryotops, and plunged into liquid nitrogen. There was no difference in viability (propidium iodide staining) between fresh and vitrified, warmed dog oocytes (65.7 and 61.0%, respectively, P = 0.27). Oocyte viability after warming was similarly assessed in a subset of wolves (4 to 15 oocytes from each of three females; total 29 oocytes). Of these, 57.1% of the post-thaw intact oocytes were viable, which was 41.4% of all oocytes warmed. These were the first oocytes from a canid or an endangered species demonstrated to have maintained viability after vitrification and warming. Furthermore, our results demonstrated that vitrification of oocytes with the Cryotop technique was an option for preserving female gametes from Mexican wolves for future use in captive breeding programs, although in vitro embryo production techniques must first be developed in canids for this technique to be used. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Neither Aurora B activity nor histone H3 phosphorylation is essential for chromosome condensation during meiotic maturation of porcine oocytes.

    PubMed

    Jelínková, Lucie; Kubelka, Michal

    2006-05-01

    Aurora kinase B (AURKB) is a chromosomal passenger protein that is essential for a number of processes during mitosis. Its activity is regulated by association with two other passenger proteins, INCENP and Survivin, and by phosphorylation on Thr 232. In this study, we examine expression and phosphorylation on Thr-232 of AURKB during meiotic maturation of pig oocytes in correlation with histone H3 phosphorylation and chromosome condensation. We show that histone H3 phosphorylation on Ser-10, but not on Ser-28, correlates with progressive chromosome condensation during oocyte maturation; Ser-10 phosphorylation starts around the time of the breakdown of the nuclear envelope, with the maximal activity in metaphase I, whereas Ser-28 phosphorylation does not significantly change in maturing oocytes. Treatment of oocytes with 50 microM butyrolactone I (BL-I), an inhibitor of cyclin-dependent kinases, or cycloheximide (10 microg/ml), inhibitor of proteosynthesis, results in a block of oocytes in the germinal vesicle stage, when nuclear membrane remains intact; however, condensed chromosome fibers or highly condensed chromosome bivalents can be seen in the nucleoplasm of BL-I- or cycloheximide-treated oocytes, respectively. In these treated oocytes, no or only very weak AURKB activity and phosphorylation of histone H3 on Ser-10 can be detected after 27 h of treatment, whereas phosphorylation on Ser-28 is not influenced. These results suggest that AURKB activity and Ser-10 phosphorylation of histone H3 are not required for chromosome condensation in pig oocytes, but might be required for further processing of chromosomes during meiosis.

  9. Follicular fluid dehydroepiandrosterone sulfate is a credible marker of oocyte maturity and pregnancy outcome in conventional in vitro fertilization cycles.

    PubMed

    Chimote, Natachandra M; Nath, Nirmalendu M; Chimote, Nishad N; Chimote, Bindu N

    2015-01-01

    To investigate if the level of dehydroepiandrosterone sulfate (DHEA-s) in follicular fluid (FF) influences the competence of oocytes to fertilize, develop to the blastocyst stage, and produce a viable pregnancy in conventional in vitro fertilization (IVF) cycles. Prospective study of age-matched, nonpolycystic ovary syndrome (PCOS) women undergoing antagonist stimulation protocol involving conventional insemination and day 5 blastocyst transfer. FF levels of DHEA-s and E2 were measured by a radio-immuno-assay method using diagnostic kits. Fertilization rate, embryo development to the blastocyst stage and live birth rate were main outcome measures. Cycles were divided into pregnant/nonpregnant groups and also into low/medium/high FF DHEA-s groups. Statistical analysis was done by GraphPad Prism V software. FF DHEA-s levels were significantly higher in pregnant (n = 111) compared to nonpregnant (n = 381) group (1599 ± 77.45 vs. 1372 ± 40.47 ng/ml; P = 0.01). High (n = 134) FF DHEA-s group had significantly higher percentage of metaphase II (MII) oocytes (91.5 vs. 85.54 vs. 79.44%, P < 0.0001), fertilization rate (78.86 vs. 74.16 vs. 71.26%, P < 0.0001), cleavage rate (83.67 vs. 69.1 vs. 66.17%, P = 0.0002), blastocyst formation rate (37.15 vs. 33.01 vs. 26.95%, P < 0.0001), and live birth rate (29.85 vs. 22.22 vs. 14.78%, P = 0.017) compared to medium (n = 243) and low (n = 115) FF DHEA-s groups, respectively despite comparable number of oocytes retrieved and number of blastocysts transferred. FF DHEA-s levels correlated significantly with the attainment of MII oocytes (Pearson r = 0.41) and fertilization rates (Pearson r = 0.35). FF DHEA-s level influences the oocyte maturation process and is predictive of fertilization, embryo development to the blastocyst stage and live birth rates in non-PCOS women undergoing conventional IVF cycles.

  10. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule organization during fertilization and early preimplantation development in the human.

    PubMed

    Van Blerkom, J; Davis, P; Merriam, J; Sinclair, J

    1995-09-01

    This report describes spatial and temporal aspects of sperm penetration and intracytoplasmic migration, pronuclear evolution and the specificity of presyngamic opposition, stage-specific changes in cytoskeletal organization and the relative contribution of maternal and paternal components to mitotic spindle formation. These studies involved observations of living human oocytes during conventional insemination in vitro and after intracytoplasmic deposition of spermatozoa, analysis of chromatin organization and distribution during pronuclear evolution, and detection of actin and alpha-, beta- and gamma-tubulin by confocal immunofluorescence microscopy. Immature and mature oocytes, penetrated but unfertilized oocytes, fertilized but arrested eggs, and cleavage-stage embryos from normal and dispermic fertilizations were examined. The results demonstrate that sperm nuclear migration to the maternal perinuclear region is rapid and linear, occurs in the absence of a detectable cytoskeletal system and appears to be assisted by an unusual configuration of the sperm tail principal piece which results from either retained intracytoplasmic motility or the process by which the sperm tail is progressively incorporated into the oocyte. Our findings also show a specificity of pronuclear alignment that is associated with a polarized distribution of both maternal and paternal chromatin, and with the position of the sperm centrosome and the presence of microtubules nucleated from this structure. The results also indicate that a maternal microtubule nucleating capacity is present in the immature oocyte but is apparently inactive until spindle formation. The poles of the first mitotic spindle appear to be derived from the sperm centrosome, although some maternal contribution cannot be excluded. The sperm tail and centrosome persist in a single cell through the cleavage stages, and the latter serves as a prominent site of cytoplasmic microtubule nucleation. The results provide a

  11. The influence of cumulus cells during in vitro fertilization of buffalo (Bubalus bubalis) denuded oocytes that have undergone vitrification.

    PubMed

    Attanasio, Laura; De Rosa, Anna; De Blasi, Marina; Neglia, Gianluca; Zicarelli, Luigi; Campanile, Giuseppe; Gasparrini, Bianca

    2010-11-01

    The aim of this work was to evaluate whether providing a support of cumulus cells during IVF of buffalo denuded oocytes submitted to vitrification-warming enhances their fertilizing ability. In vitro matured denuded oocytes were vitrified by Cryotop in 20% EG + 20% of DMSO and 0.5 M sucrose and warmed into decreasing concentrations of sucrose (1.25 M-0.3M). Oocytes that survived vitrification were fertilized: 1) in the absence of a somatic support (DOs); 2) in the presence of bovine cumulus cells in suspension (DOs+susp); 3) on a bovine cumulus monolayer (DOs+monol); and 4) with intact bovine COCs in a 1:1 ratio (DOs+COCs). In vitro matured oocytes were fertilized and cultured to the blastocyst stage as a control. An increased cleavage rate was obtained from DOs+COCs (60.9%) compared to DOs, DOs+susp (43.6 and 38.4, respectively; P < 0.01) and DOs+monol (47.5%; P < 0.05). Interestingly, cleavage rate of DOs+COCs was similar to that of fresh control oocytes (67.8%). However, development to blastocysts significantly decreased in all vitrification groups compared to the control (P < 0.01). In conclusion the co-culture with intact COCs during IVF completely restores fertilizing capability of buffalo denuded vitrified oocytes, without improving blastocyst development. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Lower blastocyst quality after conventional vs. Piezo ICSI in the horse reflects delayed sperm component remodeling and oocyte activation.

    PubMed

    Salgado, R M; Brom-de-Luna, J G; Resende, H L; Canesin, H S; Hinrichs, Katrin

    2018-04-10

    The aim of this study was to evaluate the differential effects of conventional and Piezo-driven ICSI on blastocyst development, and on sperm component remodeling and oocyte activation, in an equine model. In vitro-matured equine oocytes underwent conventional (Conv) or Piezo ICSI, the latter utilizing fluorocarbon ballast. Blastocyst development was compared between treatments to validate the model. Then, oocytes were fixed at 0, 6, or 18 h after injection, and stained for the sperm tail, acrosome, oocyte cortical granules, and chromatin. These parameters were compared between injection techniques and between sham-injected and sperm-injected oocytes among time periods. Blastocyst rates were 39 and 40%. The nucleus number was lower, and the nuclear fragmentation rate was higher, in blastocysts produced by Conv. Cortical granule loss started at 0H after both sperm and sham injection. The acrosome was present at 0H in both ICSI treatments, and persisted to 18H in significantly more Conv than Piezo oocytes (72 vs. 21%). Sperm head area was unchanged at 6H in Conv but significantly increased at this time in Piezo; correspondingly, at 6H significantly more Conv than Piezo oocytes remained at MII (80 vs. 9.5%). Sham injection did not induce significant meiotic resumption. These data show that Piezo ICSI is associated with more rapid sperm component remodeling and oocyte meiotic resumption after sperm injection than is conventional ICSI, and with higher embryo quality at the blastocyst stage. This suggests that there is value in exploring the Piezo technique, utilized with a non-toxic fluorocarbon ballast, for use in clinical human ICSI.

  13. Balancing risk and benefit in early-stage classical Hodgkin lymphoma.

    PubMed

    Bröckelmann, Paul J; Sasse, Stephanie; Engert, Andreas

    2018-04-12

    With defined chemotherapy and radiotherapy (RT) and risk-adapted treatment, early-stage classical Hodgkin lymphoma (HL) has become curable in a majority of patients. Hence, a major current goal is to reduce treatment-related toxicity while maintaining long-term disease control. Patients with early-stage favorable disease (ie, limited stage without risk factors [RFs]) are frequently treated with 2 cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine (2×ABVD) followed by 20-Gy involved-field or involved-site RT (IF/ISRT). In patients with early-stage unfavorable disease (ie, limited stage with RFs), 4 cycles of chemotherapy are usually consolidated with 30-Gy IF/ISRT. Compared with 4×ABVD, 2 cycles of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (2×BEACOPP escalated ) followed by 2×ABVD improved 5-year progression-free survival (PFS), with similar 5-year overall survival. Recently, treatment strategies based on [ 18 F]fluorodeoxyglucose positron emission tomography (PET) response were evaluated. In early-stage unfavorable HL, a majority of patients achieved a negative interim PET after 2×ABVD and an excellent outcome after 4×ABVD, whereas in those with a positive interim PET, 2×BEACOPP escalated improved 5-year PFS. Furthermore, a PET-guided RT approach was evaluated to decrease long-term toxicity. Although both the RAPID and H10 trials reported poorer disease control without RT, PET-guided omission of RT can constitute a valid therapeutic option in patients with an increased risk of RT-associated toxicity (eg, because of sex, age, or disease localization). Implementation of drugs such as the anti-CD30 antibody-drug conjugate brentuximab vedotin or the anti-programmed death 1 antibodies nivolumab or pembrolizumab might allow further reduction of overall mortality and improve quality of life in affected patients. © 2018 by The American Society of Hematology.

  14. Influence of co-culture with denuded oocytes during in vitro maturation on fertilization and developmental competence of cumulus-enclosed porcine oocytes in a defined system.

    PubMed

    Appeltant, Ruth; Somfai, Tamás; Kikuchi, Kazuhiro; Maes, Dominiek; Van Soom, Ann

    2016-04-01

    Co-culture of cumulus-oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte-secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β-mercaptoethanol. Cumulus-oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co-culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus-enclosed porcine oocytes in a defined system. © 2015 Japanese Society of Animal Science.

  15. How FSH and AMH reflect probabilities of oocyte numbers in poor prognosis patients with small oocyte yields.

    PubMed

    Gleicher, Norbert; Darmon, Sarah K; Kushnir, Vitaly A; Weghofer, Andrea; Wang, Qi; Zhang, Lin; Albertini, David F; Barad, David H

    2016-11-01

    In poor prognosis patients undergoing in vitro fertilization, advance determinations of likely oocyte yields are especially important since oocyte numbers to large degree determine in vitro fertilization cycle outcomes. Based on baseline follicle stimulating hormone and anti-müllerian hormone levels at time of initial presentation, we here, therefore, determined at all ages the probabilities of obtaining 1-≥5 oocytes in a retrospective analysis of 1554 consecutive patients undergoing in vitro fertilization cycles at an academically affiliated private fertility center. At lowest levels (≤2.5 mIU/mL), Follicle stimulating hormone at all ages was highly predictable for ≥1 oocyte (88-96 %). Probabilities declined and diverged between ages with increasing follicle stimulating hormone, though narrowed again at high follicle stimulating hormone. Anti-Müllerian hormone demonstrated at higher levels (2.5-≥5 ng/ml) at all ages almost perfect probabilities (99-100 %). With declining anti-Müllerian hormone, age categories, however, increasingly diverged, though to lesser degree than follicle stimulating hormone. In poor prognosis patients, follicle stimulating hormone and anti-Müllerian hormone, thus, offer at different ages very specific probabilities for retrieval of 1-≥5 oocytes. Since oocyte numbers are associated with embryo numbers, and numbers of transferable embryos with live birth rates, here presented probability tables should facilitate improved prognostication of poor prognosis patients. Discrepancies in here reported probabilities between follicle stimulating hormone and anti-müllerian hormone also further define follicle stimulating hormone and anti-müllerian hormone in their respective abilities to represent functional ovarian reserve at different ages.

  16. Minimally invasive transcanal myringotomy for pediatric early stage congenital cholesteatoma.

    PubMed

    Jang, Chul Ho; Jung, Eun Kyung; Sung, Chung Man; Kim, Seung Beom; Kim, Young Yoon; Seong, Jong Yuap; Kang, Sung Hoon; Cho, Yong Beom

    2016-11-01

    Recently, minimally invasive transcanal myringotomy (MITM), which is a useful surgical technique for early stage congenital cholesteatoma (CC) in children, was introduced. The purpose of this study is to evaluate the short-term surgical results of MITM in pediatric early stage CC. We retrospectively reviewed the charts of 24 patients who underwent MITM between January 2013 and October 2015. The patients' ages ranged from 1 to 16 years (mean, 2.6 years). There were 17 male and 7 female patients. The right side (n = 13) was affected twice as often as the left side (n = 11). The most common site was the anterosuperior quadrant (15 cases). The diameter of the CC on axial computed tomography images ranged from 2.8 to 5.7 mm (mean, 3.9 mm). CCs were graded according to Potsic's system: 18 cases were classified as stage I, 3 case as stage II, and 3 cases as stage III. AllCCs except 1 were closed type. In21 patients, the tympanic membrane closed naturally without recurrence. Three patients showed small persistent dry perforation. Natural closure occurred in these patients, who were treated with paper patches. MITM is a simple, effective technique for removing an early stage CC from the middle ear, and it can minimize operative time, length of hospitalization, and postoperative morbidity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. N-octanoylated ghrelin peptide inhibits bovine oocyte meiotic resumption.

    PubMed

    Xu, X L; Bai, J H; Feng, T; Xiao, L L; Song, Y Q; Xiao, Y X; Liu, Y

    2018-07-01

    Studies have shown that ghrelin plays an important role in the mammalian reproductive system, including the central, gonadal levels, and also during in vitro maturation of oocytes; however, the functions of ghrelin in bovine oocyte meiosis require further investigation. We aimed to evaluate the effects of an n-octanoylated ghrelin peptide on oocyte meiotic resumption and the developmental competence of mature oocytes in vitro. design: The expression of GHRL (encoding ghrelin) mRNA and its receptor (the growth hormone secretagogue receptor, GHSR) in the cumulus-oocyte complex (COCs), denuded oocytes (DOs), and cumulus cells (CCs) was assessed using quantitative real-time reverse transcription PCR (qRT-PCR), and the effects of the n-octanoylated ghrelin peptide on meiotic resumption were studied at four different doses (0, 10, 50, and 100 ng/mL) in a 6 h culture system. qRT-PCR analysis showed that GHRL and GHSR mRNAs were expressed in all tested samples; however, GHRL was predominantly expressed in DOs, and GHSR was predominantly expressed in CCs. Germinal vesicle breakdown was inhibited significantly by 50 ng/mL ghrelin compared with that in the negative control (P < 0.05). Further studies showed that n-octanoylated ghrelin increased the levels of cAMP and cGMP in the CCs and DOs, which inhibited the meiotic resumption of bovine oocytes. And the inhibitory role in the developmental competence of mature oocytes were also included, ghrelin could significantly improve the cleavage rate (P < 0.05) and blastocyst rate (P < 0.05). N-octanoylated ghrelin maintained bovine oocytes meiotic arrest and further improved their developmental competence; therefore, n-octanoylated ghrelin could be considered as a potential pharmaceutical inhibitor of meiosis for the in vitro maturation of bovine oocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  19. Clinical Practice of Adjuvant Chemotherapy in Patients with Early-Stage Epithelial Ovarian Cancer.

    PubMed

    Frielink, Lindy M J; Pijlman, Brenda M; Ezendam, Nicole P M; Pijnenborg, Johanna M A

    2016-01-01

    Adjuvant platinum-based chemotherapy improves survival in women with early-stage epithelial ovarian cancer (EOC). Yet, there is a wide variety in clinical practice. All patients diagnosed with FIGO I and IIa EOC (2006-2010) in the south of the Netherlands were analyzed. The percentage of patients that received adjuvant chemotherapy was determined as well as the comprehensiveness of staging and outcome. Forty percent (54/135) of the patients with early-stage EOC received adjuvant chemotherapy. Treatment with adjuvant chemotherapy was associated with FIGO stage, clear-cell histology and nonoptimal staging. Optimal staging was achieved in 50%, and nonoptimal staging was associated with advanced age, comorbidity and treatment in a non-referral hospital. Overall, there was no difference in outcome between patients with and without adjuvant chemotherapy. Yet, in grade 3 tumors, adjuvant chemotherapy seems beneficial. Selective treatment of patients with early-stage EOC might reduce adjuvant chemotherapy without compromising outcome. © 2016 S. Karger AG, Basel.

  20. Oocyte cryopreservation for donor egg banking.

    PubMed

    Cobo, Ana; Remohí, José; Chang, Ching-Chien; Nagy, Zsolt Peter

    2011-09-01

    Oocyte donation is an efficient alternative to using own oocytes in IVF treatment for different indications. Unfortunately, 'traditional' (fresh) egg donations are challenged with inefficiency, difficulties of synchronization, very long waiting periods and lack of quarantine measures. Given the recent improvements in the efficiency of oocyte cryopreservation, it is reasonable to examine if egg donation through oocyte cryopreservation has merits. The objective of the current manuscript is to review existing literature on this topic and to report on the most recent outcomes from two established donor cryobank centres. Reports on egg donation using slow freezing are scarce and though results are encouraging, outcomes are not yet comparable to a fresh egg donation treatment. Vitrification on the other hand appears to provide high survival rates (90%) of donor oocytes and comparable fertilization, embryo development, implantation and pregnancy rates to traditional (fresh) egg donation. Besides the excellent outcomes, the ease of use for both donors and recipients, higher efficiency, lower cost and avoiding the problem of synchronization are all features associated with the benefit of a donor egg cryobank and makes it likely that this approach becomes the future standard of care. Oocyte donation is one of the last resorts in IVF treatment for couples challenged with infertility problems. However, traditional (fresh) egg donation, as it is performed today, is not very efficient, as typically all eggs from one donor are given to only one recipient, it is arduous as it requires an excellent synchronization between the donor and recipient and there are months or years of waiting time. Because of the development of an efficient oocyte cryopreservation technique, it is now possible to cryo-store donor (as well as non-donor) eggs, maintaining their viability and allowing their use whenever there is demand. Therefore, creating a donor oocyte cryobank would carry many advantages

  1. [Aging affects early stage direction selectivity of MT cells in rhesus monkeys].

    PubMed

    Liang, Zhen; Chen, Yue-Ming; Meng, Xue; Wang, Yi; Zhou, Bao-Zhuo; Xie, Ying-Ying; He, Wen-Sheng

    2012-10-01

    The middle temporal area (MT/V5) plays an important role in motion processing. Neurons in this area have a strongly selective response to the moving direction of objects and as such, the selectivity of MT neurons was proposed to be a neural mechanism for the perception of motion. Our previous studies have found degradation in direction selectivity of MT neurons in old monkeys, but this direction selectivity was calculated during the whole response time and the results were not able to uncover the mechanism of motion perception over a time course. Furthermore, experiments have found that direction selectivity was enhanced by attention at a later stage. Therefore, the response should be excluded in experiments with anesthesia. To further characterize the neural mechanism over a time course, we investigated the age-related changes of direction selectivity in the early stage by comparing the proportions of direction selective MT cells in old and young macaque monkeys using in vivo single-cell recording techniques. Our results show that the proportion of early-stage-direction-selective cells is lower in old monkeys than in young monkeys, and that the early stage direction bias (esDB) of old MT cells decreased relative to young MT cells. Furthermore, the proportion of MT cells having strong early stage direction selectivity in old monkeys was decreased. Accordingly, the functional degradation in the early stage of MT cells may mediate perceptual declines of old primates in visual motion tasks.

  2. Xenopus laevis oocyte maturation is affected by metal chlorides.

    PubMed

    Marin, Matthieu; Slaby, Sylvain; Marchand, Guillaume; Demuynck, Sylvain; Friscourt, Noémie; Gelaude, Armance; Lemière, Sébastien; Bodart, Jean-François

    2015-08-01

    Few studies have been conducted using Xenopus laevis germ cells as oocytes, though these cells offer many advantages allowing both electrophysiological studies and morphological examination. Our aim was to investigate the effects of metal (cadmium, lead, cobalt and zinc) exposures using cell biology approaches. First, cell survival was evaluated with both phenotypical and electrophysiological approaches. Secondly, the effect of metals on oocyte maturation was assessed with morphological observations and electrophysiological recordings. From survival experiments, our results showed that metal chlorides did not affect cell morphology but strongly depolarized X. laevis oocyte resting potential. In addition, cadmium chloride was able to inhibit progesterone-induced oocyte maturation. By contrast, zinc, but also to a lesser extent cadmium, cobalt and lead, were able to enhance spontaneous oocyte maturation in the absence of progesterone stimulation. Finally, electrophysiological recordings revealed that some metal chlorides (lead, cadmium) exposures could disturb calcium signaling in X. laevis oocyte by modifying calcium-activated chloride currents. Our results demonstrated the high sensitivity of X. laevis oocytes toward exogenous metals such as lead and cadmium. In addition, the cellular events recorded might have a predictive value of effects occurring later on the ability of oocytes to be fertilized. Together, these results suggest a potential use of this cellular lab model as a tool for ecotoxicological assessment of contaminated fresh waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Prognostic model for survival in patients with early stage cervical cancer.

    PubMed

    Biewenga, Petra; van der Velden, Jacobus; Mol, Ben Willem J; Stalpers, Lukas J A; Schilthuis, Marten S; van der Steeg, Jan Willem; Burger, Matthé P M; Buist, Marrije R

    2011-02-15

    In the management of early stage cervical cancer, knowledge about the prognosis is critical. Although many factors have an impact on survival, their relative importance remains controversial. This study aims to develop a prognostic model for survival in early stage cervical cancer patients and to reconsider grounds for adjuvant treatment. A multivariate Cox regression model was used to identify the prognostic weight of clinical and histological factors for disease-specific survival (DSS) in 710 consecutive patients who had surgery for early stage cervical cancer (FIGO [International Federation of Gynecology and Obstetrics] stage IA2-IIA). Prognostic scores were derived by converting the regression coefficients for each prognostic marker and used in a score chart. The discriminative capacity was expressed as the area under the curve (AUC) of the receiver operating characteristic. The 5-year DSS was 92%. Tumor diameter, histological type, lymph node metastasis, depth of stromal invasion, lymph vascular space invasion, and parametrial extension were independently associated with DSS and were included in a Cox regression model. This prognostic model, corrected for the 9% overfit shown by internal validation, showed a fair discriminative capacity (AUC, 0.73). The derived score chart predicting 5-year DSS showed a good discriminative capacity (AUC, 0.85). In patients with early stage cervical cancer, DSS can be predicted with a statistical model. Models, such as that presented here, should be used in clinical trials on the effects of adjuvant treatments in high-risk early cervical cancer patients, both to stratify and to include patients. Copyright © 2010 American Cancer Society.

  4. [RNA polymerase II and pre-mRNA splicing factors in diplotene oocyte nuclei of the giant African gastropod Achatina fulica].

    PubMed

    Stepanova, I S; Bogoliubov, D S

    2003-01-01

    The nuclear distribution of pre-mRNA splicing factors (snRNPs and SR-protein SC35) and unphosphorylated from of RNA polymerase II (Pol II) was studied using fluorescent and immunoelectron cytochemistry in diplotene oocytes of the gastropod Achatina fulica. Association of Pol II and splicing factors with oocyte nuclear structures was analysed. The antibodies against splicing factors and Pol II were shown to label perichromatin fibrils at the periphery of condensed chromatin blocks as well as those in interchromatin regions of nucleoplasm. The revealed character of distribution of snRNPs, SC35 protein, and Pol II, together with the decondensed chromatin and absence of karyosphere, enable us to suggest that oocyte chromosomes maintain their transcriptional activity at the diplotene stage of oogenesis. In A. fulica oocytes, sparse nuclear bodies (NBs) of a complex morphological structure were revealed. These NBs contain snRNPs rather than SC35 protein. NBs are associated with a fibrogranular material (FGM), which contains SC35 protein. No snRNPs were revealed in this material. Homology of A. fulica oocyte nuclear structures to Cajal bodies and interchromatin granule clusters is discussed.

  5. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    PubMed

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  6. Pertussis toxin-catalyzed ADP-ribosylation of a G protein in mouse oocytes, eggs, and preimplantation embryos: Developmental changes and possible functional roles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.; Schultz, R.M.

    1990-06-01

    G proteins, which in many somatic cells serve as mediators of signal transduction, were identified in preimplantation mouse embryos by their capacity to undergo pertussis toxin-catalyzed ADP-ribosylation. Two pertussis toxin (PT) substrates with Mr = 38,000 and 39,000 (alpha 38 and alpha 39) are present in approximately equal amounts. Relative to the amount in freshly isolated germinal vesicle (GV)-intact oocytes, the amount of PT-catalyzed ADP-ribosylation of alpha 38-39 falls during oocyte maturation, rises between the one- and two-cell stages, falls by the eight-cell and morula stages, and increases again by the blastocyst stage. The decrease in PT-catalyzed ADP-ribosylation of alphamore » 38-39 that occurs during oocyte maturation, however, does not require germinal vesicle breakdown (GVBD), since inhibiting GVBD with 3-isobutyl-1-methyl xanthine (IBMX) does not prevent the decrease in the extent of PT-catalyzed ADP-ribosylation. A biologically active phorbol diester (12-O-tetradecanoyl phorbol 13-acetate), but not an inactive one (4 alpha-phorbol 12,13-didecanoate, 4 alpha-PDD), totally inhibits the increase in PT-catalyzed ADP-ribosylation of alpha 38-39 that occurs between the one- and two-cell stage; TPA inhibits cleavage, but not transcriptional activation, which occurs in the two-cell embryo. In contrast, cytochalasin D, genistein, or aphidicolin, each of which inhibits cleavage of one-cell embryos, or alpha-amanitin or H8, each of which inhibits transcriptional activation but not cleavage of one-cell embryos, have little or inhibitory effects on the increase in PT-catalyzed ADP-ribosylation of alpha 38-39. Results of immunoblotting experiments using an antibody that is highly specific for alpha il-3 reveal the presence of a cross-reactive species of Mr = 38,000 (alpha 38) in the GV-intact oocyte, metaphase II-arrested egg, and one-, two-cell embryos.« less

  7. Effect of the timing of the first cleavage on the developmental potential of nuclear-transferred mouse oocytes receiving embryonic stem cells.

    PubMed

    Kobayashi, T; Kato, Y; Tsunoda, Y

    2004-09-01

    The present study examined whether the timing of the first cleavage has an effect on the in vitro and in vivo developmental potential of nuclear-transferred mouse oocytes receiving embryonic stem cells. First, the timing of the first cleavage and the developmental potential of nuclear-transferred oocytes were examined every hour from 12 to 24 h after the start of culture and compared with in vitro-fertilized oocytes. The developmental potential of in vitro-fertilized oocytes decreased gradually according to the time required for cleavage (84% (32/38) for 15 h to 50% (1/2) for 20 h), but intermediate-cleaved (15-16 h) nuclear-transferred oocytes had a higher potential to develop into blastocysts (55% (17/31) to 67% (45/67) versus 0-43% (6/14)]. Second the nuclear-transferred oocytes were divided into three groups according to the timing of the first cleavage; each group was cultured to blastocysts in vitro, and then transferred to recipients. The potential of intermediate-cleaved oocytes (15-16 h) to develop into blastocysts was significantly higher than fast-cleaved (before 15 h) and slow-cleaved (after 16 h) oocytes (65, 46, and 37%). The proportion of fetuses on Day 10.5 of pregnancy was highest in the intermediate-cleaved group (4 versus 2 and 1%, respectively) and a full-term fetus was obtained from this group. The present study demonstrated that the timing of the first cleavage could be used to determine the potential of nuclear-transferred oocytes with embryonic stem cells to develop to the blastocyst stage in vitro, but not to determine post-implantation viability after transfer to recipients.

  8. Parthenogenesis and somatic cell nuclear transfer in sheep oocytes using Polscope.

    PubMed

    Nandedkar, Pandit; Chohan, Parul; Patwardhan, Archana; Gaikwad, Santosh; Bhartiya, Deepa

    2009-07-01

    Parthenogenesis and Somatic cell nuclear transfer (SCNT) techniques, offer a unique approach to manipulate the genetic composition of derived human embryonic stem cells - an essential step if the full opportunities for disease modeling, drug discovery or individualized stem cell therapy are to be realized. The present study describes the use of sheep oocytes to acquire expertise and establish methods to reconstruct embryos for obtaining blastocysts before venturing into human SCNT where the oocytes are a very precious starting material. Maturation of sheep eggs in vitro for 20-24 hr resulted in 65% metaphase II (MII) eggs which were either parthenogenetically activated using calcium ionomycin or ethanol or subjected to SCNT using cumulus cell as somatic cell. Sixteen blastocysts were produced by parthenogenetic activation of 350 eggs whereas reconstructed embryos, after SCNT carried out in 139 eggs, progressed only up to morula stage. The procedure of parthenogenesis and SCNT will be useful to generate autologous ES cells using human eggs.

  9. Social oocyte cryopreservation: a portrayal of Brazilian women.

    PubMed

    Santo, Elisangela V Espirito; Dieamant, Felipe; Petersen, Claudia G; Mauri, Ana L; Vagnini, Laura D; Renzi, Adriana; Zamara, Camila; Oliveira, João Batista A; Baruffi, Ricardo L R; Franco, José G

    2017-06-01

    This study aimed to determine what Brazilian childless women of reproductive age think about oocyte cryopreservation to postpone pregnancy and their reasons for performing or not performing this procedure. Women of reproductive age were randomly selected from the general population using different e-mail lists and were invited to participate in the study by completing an online web survey regarding social oocyte cryopreservation. The survey was also distributed through social media to women of reproductive age. Although most of the responders had a partner (86.9%) and had already planned the pregnancy of their first child (69.6%), 85.4% (379) considered the potential of social oocyte freezing to improve their chances of giving birth later in life. Those that had already planned pregnancy were two times more likely to intend to freeze their oocytes (p=0.03). The most important barrier for not undergoing oocyte cryopreservation was cost. The women who indicated that they could not currently undergo the procedure now because of cost were two times (p=0.03) more likely to intend to cryopreserve their oocytes than women who thought that they would not need to delay pregnancy. Brazilian women who think that they are not ready to have a family are discovering the option of oocyte cryopreservation. Most participants considered safeguarding their reproductive potential. Making the procedure more accessible could give women the opportunity to make proactive decisions about the future of their fertility.

  10. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development.

    PubMed

    Tian, X; Diaz, F J

    2013-04-01

    Recent findings show that zinc is an important factor necessary for regulating the meiotic cell cycle and ovulation. However, the role of zinc in promoting oocyte quality and developmental potential is not known. Using an in vivo model of acute dietary zinc deficiency, we show that feeding a zinc deficient diet (ZDD) for 3-5 days before ovulation (preconception) dramatically disrupts oocyte chromatin methylation and preimplantation development. There was a dramatic decrease in histone H3K4 trimethylation and global DNA methylation in zinc deficient oocytes. Moreover, there was a 3-20 fold increase in transcript abundance of repetitive elements (Iap, Line1, Sineb1, Sineb2), but a decrease in Gdf9, Zp3 and Figla mRNA. Only 53% and 8% of mature eggs reached the 2-cell stage after IVF in animals receiving a 3 and 5 days ZDD, respectively, while a 5 day ZDD in vivo reduced the proportion of 2-cells to 49%. In vivo fertilized 2-cell embryos cultured in vitro formed fewer (38%) blastocysts compared to control embryos (74%). Likewise, fewer blastocyst and expanded blastocyst were collected from the reproductive tract of zinc deficient animals on day 3.5 of pregnancy. This could be due to a decrease in Igf2 and H19 mRNA in ZDD blastocyst. Supplementation with a methyl donor (SAM) during IVM restored histone H3K4me3 and doubled the IVF success rate from 17% to 43% in oocytes from zinc deficient animals. Thus, the terminal period of oocyte development is extremely sensitive to perturbation in dietary zinc availability. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Ultrastructure of the human preovulatory oocyte.

    PubMed

    Szöllösi, D; Mandelbaum, J; Plachot, M; Salat-Baroux, J; Cohen, J

    1986-08-01

    The ultrastructure of preovulatory human oocyte-cumulus complexes was described after inducing maturation by clomiphene, human menopausal gonadotropin (hMG), human chorionic gonadotropin (hCG) treatment. The majority of the oocytes was at metaphase II of meiosis, with a radially orientated spindle. The oocyte surface was covered by a multitude of microvilli. Cortical granules were nonuniformly distributed along the cortex. A cytoplasmic polarization was observed. The cytoplasmic organelles were in general uniformly dispersed, with the exception of a narrow segment within which cytoplasmic membranes and mitochondria formed clusters. The spindle was usually found at the borderline between the two regions of the cytoplasm. The functional significance of this polarization is not yet known.

  12. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.

    PubMed

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-04-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation.

  13. Current status of human oocyte and embryo cryopreservation.

    PubMed

    Herrero, Leyre; Martínez, Mónica; Garcia-Velasco, Juan A

    2011-08-01

    To summarize recent advances in oocyte and embryo cryopreservation techniques and outcomes. Vitrification is gradually replacing slow freezing due to a better survival rate after thawing. Most units use vitrification for both oocyte and blastocyst cryopreservation, as these two biological structures did not perform very well with slow freezing technique. Basic experiments show that cellular damage seems lower after vitrification. Taken all together, this is helping vitirification to be expanding rapidly, and new clinical indications are being incorporated as well (i.e., fertility preservation). Cryopreservation has been used as a complement to IVF, and recent publications indicate that pregnancy rates achieved with frozen oocytes and embryos are comparable with those achieved in fresh cycles. Multiple publications studying oocyte and embryo physiology during cryopreservation have been published recently; however, larger studies are needed to verify the efficacy of new cryopreservation techniques. Vitrification is a simple and robust technique that is being incorporated into the majority of IVF units, mainly for oocyte and blastocyst cryopreservation.

  14. Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway.

    PubMed

    Han, Longsen; Wang, Haichao; Li, Ling; Li, Xiaoyan; Ge, Juan; Reiter, Russel J; Wang, Qiang

    2017-10-01

    Maternal obesity in humans is associated with poor outcomes across the reproductive spectrum. Emerging evidence indicates that these defects are likely attributed to factors within the oocyte. Although various molecules and pathways may contribute to impaired oocyte quality, prevention of fertility issues associated with maternal obesity is a challenge. Using mice fed a high-fat diet (HFD) as an obesity model, we document spindle disorganization, chromosome misalignment, and elevated reactive oxygen species (ROS) levels in oocytes from obese mice. Oral administration of melatonin to HFD mice not only reduces ROS generation, but also prevents spindle/chromosome anomalies in oocytes, consequently promoting the developmental potential of early embryos. Consistent with this finding, we find that melatonin supplement during in vitro maturation also markedly attenuates oxidative stress and meiotic defects in HFD oocytes. Finally, by performing morpholino knockdown and acetylation-mimetic mutant overexpression assays, we reveal that melatonin ameliorates maternal obesity-induced defective phenotypes in oocytes through the SIRT3-SOD2-dependent mechanism. In sum, our data uncover the marked beneficial effects of melatonin on oocyte quality from obese females; this opens a new area for optimizing culture system as well as fertility management. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography.

    PubMed

    Payne, D; Flaherty, S P; Barry, M F; Matthews, C D

    1997-03-01

    arose from oocytes that had more uniform timing from injection to pronuclear abuttal and tended to have a longer cytoplasmic wave. In conclusion, we have shown that time-lapse video cinematography is an excellent tool for studying fertilization and early embryo development, and have demonstrated that human fertilization comprises numerous complex dynamic events.

  16. Selection occurs within linear fruit and during the early stages of reproduction in Robinia pseudoacacia

    PubMed Central

    2014-01-01

    Background Pollen donor compositions differ during the early stages of reproduction due to various selection mechanisms. In addition, ovules linearly ordered within a fruit have different probabilities of reaching maturity. Few attempts, however, have been made to directly examine the magnitude and timing of selection, as well as the mechanisms during early life stages and within fruit. Robinia pseudoacacia, which contains linear fruit and non-random ovule maturation and abortion patterns, has been used to study the viability of selection within fruit and during the early stages of reproduction. To examine changes in the pollen donor composition during the early stages of reproduction and of progeny originating from different positions within fruit, paternity analyses were performed for three early life stages (aborted seeds, mature seeds and seedlings) in the insect-pollinated tree R. pseudoacacia. Results Selection resulted in an overall decrease in the level of surviving selfed progeny at each life stage. The greatest change was observed between the aborted seed stage and mature seed stage, indicative of inbreeding depression (the reduced fitness of a given population that occurs when related individual breeding was responsible for early selection). A selective advantage was detected among paternal trees. Within fruits, the distal ends showed higher outcrossing rates than the basal ends, indicative of selection based on the order of seeds within the fruit. Conclusions Our results suggest that selection exists both within linear fruit and during the early stages of reproduction, and that this selection can affect male reproductive success during the early life stages. This indicates that tree species with mixed-mating systems may have evolved pollen selection mechanisms to increase the fitness of progeny and adjust the population genetic composition. The early selection that we detected suggests that inbreeding depression caused the high abortion rate and low

  17. Selection occurs within linear fruit and during the early stages of reproduction in Robinia pseudoacacia.

    PubMed

    Yuan, Cun-Quan; Sun, Yu-Han; Li, Yun-Fei; Zhao, Ke-Qi; Hu, Rui-Yang; Li, Yun

    2014-03-21

    Pollen donor compositions differ during the early stages of reproduction due to various selection mechanisms. In addition, ovules linearly ordered within a fruit have different probabilities of reaching maturity. Few attempts, however, have been made to directly examine the magnitude and timing of selection, as well as the mechanisms during early life stages and within fruit. Robinia pseudoacacia, which contains linear fruit and non-random ovule maturation and abortion patterns, has been used to study the viability of selection within fruit and during the early stages of reproduction. To examine changes in the pollen donor composition during the early stages of reproduction and of progeny originating from different positions within fruit, paternity analyses were performed for three early life stages (aborted seeds, mature seeds and seedlings) in the insect-pollinated tree R. pseudoacacia. Selection resulted in an overall decrease in the level of surviving selfed progeny at each life stage. The greatest change was observed between the aborted seed stage and mature seed stage, indicative of inbreeding depression (the reduced fitness of a given population that occurs when related individual breeding was responsible for early selection). A selective advantage was detected among paternal trees. Within fruits, the distal ends showed higher outcrossing rates than the basal ends, indicative of selection based on the order of seeds within the fruit. Our results suggest that selection exists both within linear fruit and during the early stages of reproduction, and that this selection can affect male reproductive success during the early life stages. This indicates that tree species with mixed-mating systems may have evolved pollen selection mechanisms to increase the fitness of progeny and adjust the population genetic composition. The early selection that we detected suggests that inbreeding depression caused the high abortion rate and low seed set in R. pseudoacacia.

  18. Oocyte stem cells: fact or fantasy?

    PubMed

    Horan, Corrina J; Williams, Suzannah A

    2017-07-01

    For many decades, the dogma prevailed that female mammals had a finite pool of oocytes at birth and this was gradually exhausted during a lifetime of reproductive function. However, in 2004, a new era began in the field of female oogenesis. A study was published that appeared to detect oocyte-stem cells capable of generating new eggs within mouse ovaries. This study was highly controversial and the years since this initial finding have produced extensive research and even more extensive debate into their possibility. Unequivocal evidence testifying to the existence of oocyte-stem cells (OSCs) has yet to be produced, meanwhile the spectrum of views from both sides of the debate are wide-ranging and surprisingly passionate. Although recent studies have presented some convincing results that germ cells exist and are capable of creating new oocytes, many questions remain. Are these cells present in humans? Do they exist in physiological conditions in a dormant state? This comprehensive review first examines where and how the dogma of a finite pool was established, how this has been challenged over the years and addresses the most pertinent questions as to the current status of their existence, their role in female fertility, and perhaps most importantly, if they do exist, how can we harness these cells to improve a woman's oocyte reserve and treat conditions such as premature ovarian insufficiency (POI: also known as premature ovarian failure, POF). © 2017 Society for Reproduction and Fertility.

  19. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes

    PubMed Central

    Liu, Honglin; Gu, Xi; Boots, Christina; Moley, Kelle H.

    2015-01-01

    Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical comorbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring. PMID:25280482

  20. Injurious Effects of Emodin on Maturation of Mouse Oocytes, Fertilization and Fetal Development via Apoptosis

    PubMed Central

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process. PMID:23203041

  1. Carryover Effects of Acute DEHP Exposure on Ovarian Function and Oocyte Developmental Competence in Lactating Cows

    PubMed Central

    Kalo, Dorit; Hadas, Ron; Furman, Ori; Ben-Ari, Julius; Maor, Yehoshua; Patterson, Donald G.; Tomey, Cynthia; Roth, Zvi

    2015-01-01

    We examined acute exposure of Holstein cows to di(2-ethylhexyl) phthalate (DEHP) and its carryover effects on ovarian function and oocyte developmental competence. Synchronized cows were tube-fed with water or 100 mg/kg DEHP per day for 3 days. Blood, urine and milk samples were collected before, during and after DEHP exposure to examine its clearance pattern. Ovarian follicular dynamics was monitored through an entire estrous cycle by ultrasonographic scanning. Follicular fluids were aspirated from the preovulatory follicles on days 0 and 29 of the experiment and analyzed for phthalate metabolites and estradiol concentration. The aspirated follicular fluid was used as maturation medium for in-vitro embryo production. Findings revealed that DEHP impairs the pattern of follicular development, with a prominent effect on dominant follicles. The diameter and growth rate of the first- and second-wave dominant follicles were lower (P < 0.05) in the DEHP-treated group. Estradiol concentration in the follicular fluid was lower in the DEHP-treated group than in controls, and associated with a higher number of follicular pathologies (follicle diameter >25 mm). The pattern of growth and regression of the corpus luteum differed between groups, with a lower volume in the DEHP-treated group (P < 0.05). The follicular fluid aspirated from the DEHP-treated group, but not the controls, contained 23 nM mono(2-ethylhexyl) phthalate. Culturing of cumulus oocyte complexes in the follicular fluid aspirated from DEHP-treated cows reduced the proportion of oocytes progressing to the MII stage, and the proportions of 2- to 4-cell-stage embryos (P < 0.04) and 7-day blastocysts (P < 0.06). The results describe the risk associated with acute exposure to DEHP and its deleterious carryover effects on ovarian function, nuclear maturation and oocyte developmental competence. PMID:26154164

  2. Three-peat NREL Intern Pushes Boundaries of Early-Stage Fuels Research on

    Science.gov Websites

    Early-Stage Fuels Research on Way to Master's Degree Three-peat NREL Intern Pushes Boundaries of Early -Stage Fuels Research on Way to Master's Degree January 4, 2018 Woman preparing a fuel evaluation in a constant volume combustion vessel Drew Cameron, Research Participant Program Intern, prepares a test for

  3. Oocytes from small and large follicles exhibit similar development competence following goat cloning despite their differences in meiotic and cytoplasmic maturation.

    PubMed

    Yang, Min; Hall, Justin; Fan, Zhiqiang; Regouski, Misha; Meng, Qinggang; Rutigliano, Heloisa M; Stott, Rusty; Rood, Kerry A; Panter, Kip E; Polejaeva, Irina A

    2016-12-01

    Reduced developmental competence after IVF has been reported using oocyte derived from small follicles in several species including cattle, sheep, and goats. No information is currently available about the effect of follicle size of the cytoplast donor on in vivo development after somatic cell nuclear transfer (SCNT) in goats. Oocytes collected from large (≥3 mm) and small follicles (<3 mm) were examined for maturation and in vivo developmental competence after SCNT. Significantly greater maturation rate was observed in oocytes derived from large follicles compared with that of small follicles (51.6% and 33.7%, P < 0.05). Greater percent of large follicle oocytes exhibited a low glucose-6-phosphate dehydrogenase activity at germinal vesicle stage compared with small follicle oocytes (54.9% and 38.7%, P < 0.05). Relative mRNA expression analysis of 48 genes associated with embryonic and fetal development revealed that three genes (MATER, IGF2R, and GRB10) had higher level of expression in metaphase II oocytes from large follicles compared with oocytes from small follicles. Nevertheless, no difference was observed in pregnancy rates (33.3% vs. 47.1%) and birth rates (22.2% vs. 16.7%) after SCNT between the large and small follicle groups). These results indicate that metaphase II cytoplasts from small and large follicles have similar developmental competence when used in goat SCNT. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Urine biomarkers in the early stages of diseases: current status and perspective.

    PubMed

    Jing, Jian; Gao, Youhe

    2018-02-01

    As a noninvasive and easily available biological fluid, the urine is becoming an important source for disease biomarker study. Change is essential for the usefulness of a biomarker. Without homeostasis mechanisms, urine can accommodate more changes, especially in the early stages of diseases. In this review, we summarize current status and discuss perspectives on the discovery of urine biomarkers in the early stages of diseases. We emphasize the advantages of urine biomarkers compared to plasma biomarkers for the diagnosis of diseases at early stages, propose a urine biomarker research roadmap, and highlight a novel membrane storage technique that enables large-scale urine sample collection and storage efficiently and economically. It is anticipated that urine biomarker studies will greatly promote early diagnosis, prevention, treatment, and prognosis of a variety of diseases, and provide strong support for translational and precision medicine.

  5. Methods for Surgical Targeting of the STN in Early-Stage Parkinson’s Disease

    PubMed Central

    Camalier, Corrie R.; Konrad, Peter E.; Gill, Chandler E.; Kao, Chris; Remple, Michael R.; Nasr, Hana M.; Davis, Thomas L.; Hedera, Peter; Phibbs, Fenna T.; Molinari, Anna L.; Neimat, Joseph S.; Charles, David

    2013-01-01

    Patients with Parkinson’s disease (PD) experience progressive neurological decline, and future interventional therapies are thought to show most promise in early stages of the disease. There is much interest in therapies that target the subthalamic nucleus (STN) with surgical access. While locating STN in advanced disease patients (Hoehn–Yahr Stage III or IV) is well understood and routinely performed at many centers in the context of deep brain stimulation surgery, the ability to identify this nucleus in early-stage patients has not previously been explored in a sizeable cohort. We report surgical methods used to target the STN in 15 patients with early PD (Hoehn–Yahr Stage II), using a combination of image guided surgery, microelectrode recordings, and clinical responses to macrostimulation of the region surrounding the STN. Measures of electrophysiology (firing rates and root mean squared activity) have previously been found to be lower than in later-stage patients, however, the patterns of electrophysiology seen and dopamimetic macrostimulation effects are qualitatively similar to those seen in advanced stages. Our experience with surgical implantation of Parkinson’s patients with minimal motor symptoms suggest that it remains possible to accurately target the STN in early-stage PD using traditional methods. PMID:24678307

  6. Early-stage valuation of medical devices: the role of developmental uncertainty.

    PubMed

    Girling, Alan; Young, Terry; Brown, Celia; Lilford, Richard

    2010-08-01

    At the concept stage, many uncertainties surround the commercial viability of a new medical device. These include the ultimate functionality of the device, the cost of producing it and whether, and at what price, it can be sold to a health-care provider (HCP). Simple assessments of value can be made by estimating such unknowns, but the levels of uncertainty may mean that their operational value for investment decisions is unclear. However, many decisions taken at the concept stage are reversible and will be reconsidered later before the product is brought to market. This flexibility can be exploited to enhance early-stage valuations. To develop a framework for valuing a new medical device at the concept stage that balances benefit to the HCP against commercial costs. This is done within a simplified stage-gated model of the development cycle for new products. The approach is intended to complement existing proposals for the evaluation of the commercial headroom available to new medical products. A model based on two decision gates can lead to lower bounds (underestimates) for product value that can serve to support a decision to develop the product. Quantifiable uncertainty that can be resolved before the device is brought to market will generally enhance early-stage valuations of the device, and this remains true even when some components of uncertainty cannot be fully described. Clinical trials and other evidence-gathering activities undertaken as part of the development process can contribute to early-stage estimates of value.

  7. In vitro acute exposure to DEHP affects oocyte meiotic maturation, energy and oxidative stress parameters in a large animal model.

    PubMed

    Ambruosi, Barbara; Uranio, Manuel Filioli; Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena

    2011-01-01

    Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos

  8. In Vitro Acute Exposure to DEHP Affects Oocyte Meiotic Maturation, Energy and Oxidative Stress Parameters in a Large Animal Model

    PubMed Central

    Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena

    2011-01-01

    Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos

  9. Elective oocyte cryopreservation: who should pay?

    PubMed

    Mertes, Heidi; Pennings, Guido

    2012-01-01

    Despite the initial reactions of disapproval, more and more fertility clinics are now offering oocyte cryopreservation to healthy women in order to extend their reproductive options. However, so-called social freezing is not placed on an equal footing with 'regular' IVF treatments where public funding is concerned. In those countries or states where IVF patients receive a number of free cycles, we argue that fertilization and transfer cycles of women who proactively cryopreserved their oocytes should be covered. Moreover, when the argument of justice is consistently applied, coverage should also include the expenses of ovarian stimulation, oocyte retrieval and storage. Different modalities are possible: full coverage from the onset, reimbursement in cash or reimbursement in kind, by offering more free transfer cycles.

  10. A Voltage Dependent Non-Inactivating Na+ Channel Activated during Apoptosis in Xenopus Oocytes

    PubMed Central

    Englund, Ulrika H.; Gertow, Jens; Kågedal, Katarina; Elinder, Fredrik

    2014-01-01

    Ion channels in the plasma membrane are important for the apoptotic process. Different types of voltage-gated ion channels are up-regulated early in the apoptotic process and block of these channels prevents or delays apoptosis. In the present investigation we examined whether ion channels are up-regulated in oocytes from the frog Xenopus laevis during apoptosis. The two-electrode voltage-clamp technique was used to record endogenous ion currents in the oocytes. During staurosporine-induced apoptosis a voltage-dependent Na+ current increased three-fold. This current was activated at voltages more positive than 0 mV (midpoint of the open-probability curve was +55 mV) and showed almost no sign of inactivation during a 1-s pulse. The current was resistant to the Na+-channel blockers tetrodotoxin (1 µM) and amiloride (10 µM), while the Ca2+-channel blocker verapamil (50 µM) in the bath solution completely blocked the current. The intracellular Na+ concentration increased in staurosporine-treated oocytes, but could be prevented by replacing extracellular Na+ whith either K+ or Choline+. Prevention of this influx of Na+ also prevented the STS-induced up-regulation of the caspase-3 activity, suggesting that the intracellular Na+ increase is required to induce apoptosis. Taken together, we have found that a voltage dependent Na+ channel is up-regulated during apoptosis and that influx of Na+ is a crucial step in the apoptotic process in Xenopus oocytes. PMID:24586320

  11. Birth after human chorionic gonadotropin-primed oocyte in vitro maturation and fertilization with testicular sperm in a normo-ovulatory patient.

    PubMed

    González-Ortega, Claudia; Piña-Aguilar, Raul Eduardo; Cancino-Villareal, Patricia; Gutiérrez-Gutiérrez, Antonio Martin

    2016-01-01

    In this report, we present a case of in vitro maturation (IVM) with surgical retrieved testicular sperm in a normo-ovulatory female. Human chorionic gonadotropin-primed IVM, testicular biopsy for sperm retrieval and intracytoplasmic sperm injection with fresh sperm were performed. Fourteen cumulus-oocyte complexes were obtained in germinal vesicle or metaphase I stage, eight oocytes reached metaphase II, seven presumptive zygotes were obtained, and three cleavage stages embryos in day 2 were transferred producing a singleton pregnancy. A single healthy newborn was obtained. Our results suggest that IVM may be an alternative for in vitro fertilization in normo-ovulatory women even if surgical retrieval of sperm is needed. Further research is required to depict contributing factors to the success of IVM in indications different from polycystic ovaries syndrome and the role of male gamete.

  12. In vitro production of Sudanese camel (Camelus dromedarius) embryos from epididymal spermatozoa and follicular oocytes of slaughtered animals.

    PubMed

    Abdelkhalek, A E; Gabr, Sh A; Khalil, W A; Shamiah, Sh M; Pan, L; Qin, G; Farouk, M H

    2017-03-28

    Application of assisted reproductive technology in camelidea, such as artificial insemination (AI) and embryo transfer, has been slow in comparison to that for other livestock species. In Egypt, there are few attempts to establish in vitro maturation (IVM) and fertilization (IVF) techniques in dromedary camel. The present study was carried out to produce Sudanese camel embryos using in vitro matured oocytes and epididymal spermatozoa. Dromedary camel ovaries were collected from abattoirs and then, the oocytes were aspirated from all the visible follicles on the ovarian surface (~2-8 mm in a diameter). Meanwhile, Fetal Dromedary Camel Serum (FDCS) was obtained from camel fetuses after slaughtering. Thereafter, only Cumulus Oocyte Complexes (COCs) were matured in vitro in the Tissue Culture Medium (TCM-199) complemented with 10% FDCS. Spermatozoa required for in vitro fertilization were collected from testes (epididymal cauda) of the slaughtered camel bulls. The results clearly showed that the maturation rate of oocytes at metaphase II was about 59.5% while the fertilization rate was around 70.4%. Intriguingly, the embryo rates determined were 13.1%, in 2-cell; 0.0%, in 4-cell; 34.7%, in 8-16% cell; 39.1%, in morula and 13.1% in a blastocyst stage. This study represented a successful in vitro production of Sudanese dromedary camel embryos from epididymal sperm cells and in vitro matured oocytes recovered from slaughtered camels.

  13. MPK-1/ERK regulatory network controls the number of sperm by regulating timing of sperm-oocyte switch in C. elegans germline.

    PubMed

    Yoon, Dong Suk; Alfhili, Mohammad A; Friend, Kyle; Lee, Myon-Hee

    2017-09-30

    The precise regulation of germline sexual fate is crucial for animal fertility. In C. elegans, the production of either type of gamete, sperm or oocyte, becomes mutually exclusive beyond the larval stage. Hermaphrodites initially produce sperm and then switch to produce oocytes. This change of fate during germline development is tightly controlled by several regulators. In C. elegans hermaphrodites, FBF-1 and FBF-2 (>95% identical, members of the Pumilio RNA-binding protein family) proteins function redundantly to promote the sperm-oocyte switch. Here, we demonstrate that loss of LIP-1 (dual specificity phosphatase) in fbf-1(ok91) single mutants leads to excess sperm production due to a delayed sperm-oocyte switch. This phenotype was dramatically rescued by depletion of MPK-1 (an ERK homolog). In contrast, loss of LIP-1 in fbf-2(q738) single mutants leads to a premature sperm-oocyte switch and loss of sperm. Notably, fbf-1 fbf-2; lip-1 triple mutants produce excess sperm. These results suggest that the MPK-1/ERK regulatory network, including FBF-1, FBF-2, and LIP-1, controls the number of sperm by regulating the timing of the sperm-oocyte switch in C. elegans. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Recovery and light microscopic evaluation of follicular oocytes of swine and relationship between the degeneration rate of oocytes and the estrus phase].

    PubMed

    Schnurrbusch, U; Schmette, C; Elze, K

    1990-10-01

    Cumulus-oocyte complexes were recovered from 25 gilts by aspiration of follicular fluid or cutting of follicles from all Graafian follicles of greater than or equal to 3 mm in diameter during diestrus, proestrus or estrus. In 5 gilts the oocytes were collected post ovulation by flushing of oviducts. The recovery rate of follicular oocytes differed between 75.5% during the late diestrus (days 13-17) and 43.5% during the proestrus (days 18-21). During the proestrus and on day 1 of the estrus the recovery of oocytes was more difficult as a result of the higher viscosity of follicular fluid and the mucification of cumulus-oocyte complexes. The degeneration rate of oocytes was high during the diestrus with a peak at the time of regression of corpora lutea. From diestrus to the estrus the degeneration rate decreased. Following degeneration rates were found in the oocytes during the cycle: days 7-12: 38.8%, days 13-17: 50.0%, days 18-21: 29.6%, day 1 of the estrus: 10.8%, day 2 of the estrus ante ovulation: 11.8%, day 2 of the estrus post ovulation: 6.2%. Signs of degeneration were: Loss of cumulus cells (during diestrus and proestrus), damaged zona pellucida, enlargement of perivitelline space, deformation of oocyte, alteration of structure of the ooplasm, diameter of vitellus less than 100 microns. It was concluded that the selection of dominant follicles takes place in pigs during a long time of the cycle, especially during the diestrus. There were not any indications of a 2-wave hypothesis of follicular growth during the cycle in pig.

  15. Progressive obesity alters the steroidogenic response to ovulatory stimulation and increases the abundance of mRNAs stored in the ovulated oocyte.

    PubMed

    Pohlmeier, William E; Xie, Fang; Kurz, Scott G; Lu, Ningxia; Wood, Jennifer R

    2014-08-01

    Obese women who are able to attain pregnancy are at increased risk for early-pregnancy loss due, in part, to reduced oocyte quality. We and others have demonstrated that female Lethal Yellow (LY) mice and female C57BL/6 mice fed a high fat diet (B6-HFD) exhibit phenotypes consistent with human obesity. These studies also showed that zygotes collected from LY and B6-HFD females have reduced developmental competence. The current hypothesis is that LY and B6-HFD females exhibit an abnormal response to gonadotropin stimulation compared to C57BL/6 controls fed normal rodent chow (B6-ND), resulting in the ovulation of oocytes with an altered molecular phenotype which may contribute to its reduced developmental competence. To test this hypothesis, age-matched B6-ND, B6-HFD, and LY females were stimulated with exogenous gonadotropins, then circulating hormone levels and the phenotypes of ovulated oocytes were analyzed. There was no difference in ovulation rate or in the percentage of morphologically abnormal oocytes collected from the oviduct of any females. Progesterone and progesterone/estradiol ratios, however, were increased in B6-HFD and LY compared to B6-ND females 16 hr post-human chorionic gonadotropin treatment. The transcript abundance of several candidate oocyte genes was also increased in B6-HFD- and LY-derived oocytes compared to B6-ND-derived oocytes. These data suggest that increased insulin and leptin levels of obese females elevated circulating progesterone concentrations, altered transcriptional activity during oocyte growth, and/or impaired mechanisms of RNA translation and degradation during oocyte maturation. These changes in mRNA abundance likely contribute to reduced oocyte quality and the subsequent poor embryogenesis associated with obesity. © 2014 Wiley Periodicals, Inc.

  16. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes.

    PubMed

    Gahurova, Lenka; Tomizawa, Shin-Ichi; Smallwood, Sébastien A; Stewart-Morgan, Kathleen R; Saadeh, Heba; Kim, Jeesun; Andrews, Simon R; Chen, Taiping; Kelsey, Gavin

    2017-01-01

    Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci. Given the predominant role of transcription, we sought to investigate whether transcription timing is rate limiting for de novo methylation and determines the asynchrony of methylation events. Therefore, we generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that most sequence elements, including most classes of transposable elements, acquire methylation at similar rates overall. However, methylation of CpG islands (CGIs) is delayed compared with the genome average and there are reproducible differences amongst CGIs in onset of methylation. Although more highly transcribed genes acquire methylation earlier, the major transitions in the oocyte transcriptome occur well before the de novo methylation phase, indicating that transcription is generally not rate limiting in conferring permissiveness to DNA methylation. Instead, CGI methylation timing negatively correlates with enrichment for histone 3 lysine 4 (H3K4) methylation and dependence on the H3K4 demethylases KDM1A and KDM1B, implicating chromatin remodelling as a major determinant of methylation timing. We also identified differential enrichment of transcription factor binding motifs in CGIs acquiring methylation early or late in oocyte growth. By combining these parameters into multiple regression models, we were able to account for about a fifth of the variation in methylation timing of CGIs. Finally

  17. SEOM clinical guidelines in early-stage breast cancer 2015.

    PubMed

    Garcia-Saenz, J A; Bermejo, B; Estevez, L G; Palomo, A G; Gonzalez-Farre, X; Margeli, M; Pernas, S; Servitja, S; Rodriguez, C A; Ciruelos, E

    2015-12-01

    Breast cancer is a major public health problem. Despite remarkable advances in early diagnosis and treatment, one in three women may have metastases since diagnosis. Better understanding of prognostic and predictive factors allows us to select the most appropriate adjuvant therapy in each patient. In these guidelines, we summarize current evidence for the medical management of early-stage breast cancer.

  18. Activation of amphibian oocytes by sperm extracts.

    PubMed

    Bonilla, F; Ajmat, M T; Sánchez Toranzo, G; Zelarayán, L; Oterino, J; Bühler, M I

    2008-11-01

    In the fertilization of most animals, egg activation is accompanied by an increase in cytoplasmatic Ca2+; however, the mechanism through which the fertilizing sperm induce this phenomenon is still controversial. An increase in intracellular free Ca2+ is required to trigger egg activation events, a process that includes cortical granule exocytosis, resumption and completion of meiosis and DNA replication, and culminates in the first mitotic cleavage. In this work, we investigated the effect of microinjection and incubation of different fractions of homologous sperm extract on the activation of Bufo arenarum oocytes matured in vitro. Two heat treatment-sensitive fractions obtained by chromatography were able to induce oocyte activation. The sperm fraction, which contained a 24 kDa protein, induced 90% activation when it was microinjected into the oocytes. Whilst the sperm fraction, which contained a 36 kDa protein, was able to induce about 70% activation only when it was applied on the oocyte surface.

  19. Presence of early stage cancer does not impair the early protein metabolic response to major surgery

    PubMed Central

    Klimberg, V. Suzanne; Allasia, Arianna; Deutz, Nicolaas EP

    2017-01-01

    Abstract Background Combined bilateral mastectomy and reconstruction is a common major surgical procedure in women with breast cancer and in those with a family history of breast cancer. As this large surgical procedure induces muscle protein loss, a preserved anabolic response to nutrition is warranted for optimal recovery. It is unclear whether the presence of early stage cancer negatively affects the protein metabolic response to major surgery as this would mandate perioperative nutritional support. Methods In nine women with early stage (Stage II) breast malignancy and nine healthy women with a genetic predisposition to breast cancer undergoing the same large surgical procedure, we examined whether surgery influences the catabolic response to overnight fasting and the anabolic response to nutrition differently. Prior to and within 24 h after combined bilateral mastectomy and reconstruction surgery, whole body protein synthesis and breakdown rates were assessed after overnight fasting and after meal intake by stable isotope methodology to enable the calculation of net protein catabolism in the post‐absorptive state and net protein anabolic response to a meal. Results Major surgery resulted in an up‐regulation of post‐absorptive protein synthesis and breakdown rates (P < 0.001) and lower net protein catabolism (P < 0.05) and was associated with insulin resistance and increased systemic inflammation (P < 0.01). Net anabolic response to the meal was reduced after surgery (P < 0.05) but higher in cancer (P < 0.05) indicative of a more preserved meal efficiency. The significant relationship between net protein anabolism and the amount of amino acids available in the circulation (R 2 = 0.85, P < 0.001) was independent of the presence of non‐cachectic early stage breast cancer or surgery. Conclusions The presence of early stage breast cancer does not enhance the normal catabolic response to major surgery or further attenuates the

  20. Presence of early stage cancer does not impair the early protein metabolic response to major surgery.

    PubMed

    Engelen, Mariëlle P K J; Klimberg, V Suzanne; Allasia, Arianna; Deutz, Nicolaas Ep

    2017-06-01

    Combined bilateral mastectomy and reconstruction is a common major surgical procedure in women with breast cancer and in those with a family history of breast cancer. As this large surgical procedure induces muscle protein loss, a preserved anabolic response to nutrition is warranted for optimal recovery. It is unclear whether the presence of early stage cancer negatively affects the protein metabolic response to major surgery as this would mandate perioperative nutritional support. In nine women with early stage (Stage II) breast malignancy and nine healthy women with a genetic predisposition to breast cancer undergoing the same large surgical procedure, we examined whether surgery influences the catabolic response to overnight fasting and the anabolic response to nutrition differently. Prior to and within 24 h after combined bilateral mastectomy and reconstruction surgery, whole body protein synthesis and breakdown rates were assessed after overnight fasting and after meal intake by stable isotope methodology to enable the calculation of net protein catabolism in the post-absorptive state and net protein anabolic response to a meal. Major surgery resulted in an up-regulation of post-absorptive protein synthesis and breakdown rates (P < 0.001) and lower net protein catabolism (P < 0.05) and was associated with insulin resistance and increased systemic inflammation (P < 0.01). Net anabolic response to the meal was reduced after surgery (P < 0.05) but higher in cancer (P < 0.05) indicative of a more preserved meal efficiency. The significant relationship between net protein anabolism and the amount of amino acids available in the circulation (R 2  = 0.85, P < 0.001) was independent of the presence of non-cachectic early stage breast cancer or surgery. The presence of early stage breast cancer does not enhance the normal catabolic response to major surgery or further attenuates the anabolic response to meal intake within 24 h after

  1. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    PubMed

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures. Copyright © 2011 Wiley Periodicals, Inc.

  2. Arachidonic and Linoleic Acid Derivatives Impact Oocyte ICSI Fertilization – A Prospective Analysis of Follicular Fluid and a Matched Oocyte in a ‘One Follicle – One Retrieved Oocyte – One Resulting Embryo’ Investigational Setting

    PubMed Central

    Bączkowski, Tomasz; Drozd, Arleta; Kazienko, Anna

    2015-01-01

    Objective To evaluate human oocyte ability to undergo fertilization and subsequent preimplantation embryonic development in relation to a wide panel of follicular fluid (FF) arachidonic acid derivatives (AAD) and linoleic acid derivatives (LAD) of prospectively selected patients undergoing intracytoplasmic sperm injection (ICSI). Methodology Study was designed as a two center (a university clinic and a private clinic) prospective study. 54 women of 181 consecutive couples undergoing ICSI were prospectively found to be eligible for analysis. 'One follicle – one retrieved oocyte – one resulting embryo' approach was used. Each individual follicle was aspirated independently and matched to an oocyte growing in this particular follicular milieu. FF samples were assessed for AAD and LAD by high-performance liquid chromatography; additionally, activity of secretory phospholipase A (sPLA2) was determined by enzyme-linked immunosorbent assay. Principal Findings Increased activity of sPLA2 and significantly higher AAD and LAD levels were found in FF of oocytes that did not show two pronuclei or underwent degeneration after ICSI in comparison to oocytes with the appearance of two pronuclei. Receiver operating characteristics curve analysis identified acids with the highest sensitivity and specificity: 5oxo-hydroxyeicosatetraenoic, 16-hydroxyeicosatetraenoic, 9-hydroxyoctadecadieneoic and 12-hydroxyeicosatetraenoic. No significant differences between AAD and LAD related to embryo quality were found. Conclusions/Significance Our study demonstrates for the first time that elevated concentrations of AAD and LAD in FF at the time of oocyte retrieval significantly decrease the ability of oocytes to form pronuclei after ICSI. This may serve as a new tool for non-invasive assessment of oocyte developmental capacity. However, levels of AAD and LAD are not associated with subsequent embryo quality or pregnancy rate, and therefore more studies are needed to determine their

  3. Expanding reproductive lifespan: a cost-effectiveness study on oocyte freezing.

    PubMed

    van Loendersloot, L L; Moolenaar, L M; Mol, B W J; Repping, S; van der Veen, F; Goddijn, M

    2011-11-01

    The average age of women bearing their first child has increased strongly. This is an important reproductive health problem as fertility declines with increasing female age. Unfortunately, IVF using fresh oocytes cannot compensate for this age-related fertility decline. Oocyte freezing could be a solution. We used the Markov model to estimate the cost-effectiveness of three strategies for 35-year-old women who want to postpone pregnancy till the age of 40: Strategy 1: women undergo three cycles of ovarian hyperstimulation at age 35 for oocyte freezing, then at age 40, use these frozen oocytes for IVF; Strategy 2: women at age 40 attempt to conceive without treatment; and the reference strategy: women at age 40 attempt to conceive and, if not pregnant after 1 year, undergo IVF. Sensitivity analyses were carried out to investigate assumptions of the model and to identify which model inputs had most impact on the results. Oocyte freezing (Strategy 1) resulted in a live birth rate of 84.5% at an average cost of €10,419. Natural conception (Strategy 2) resulted in a live birth rate of 52.3% at an average cost of €310 per birth. IVF (the reference strategy) resulted in a cumulative live birth rate of 64.6% at an average cost of €7798. The cost per additional live birth for the oocyte freezing strategy was €13,156 compared to the IVF strategy. If at least 61% of the women return to collect their oocytes, and if there is a willingness to pay €19,560 extra per additional live birth, the oocyte freezing strategy is the most cost-effective strategy. Oocyte freezing is more cost effective compared to IVF, if at least 61% of the women return to collect their oocytes and if one is willing to pay €19,560 extra per additional live birth. Our Markov model shows that, considering all the used assumptions, oocyte freezing provides more value for money than IVF.

  4. In vitro penetration of swine oocytes by homologous spermatozoa: Distinct systems for gamete's co-incubation and oocyte's cryopreservation.

    PubMed

    Macedo, M C; Lucia, T; Rambo, G; Ferreira Filho, E B; Rosa, A P; Fabiane, C; Cabral, M; Deschamps, J C

    2010-02-01

    In vitro penetration (IVP) of swine oocytes by homologous spermatozoa was evaluated in two experiments using four boars as semen donors. In experiment 1, the IVP rate and the number of penetrating spermatozoa (PSP) were compared using three co-incubation systems for vitrified oocytes and fresh sperm: (1) 35mL petri dishes in a CO(2) incubator, (2) 35mL petri dishes in bags (submarine system) and (3) glass flasks partially submerged in water bath with the same gas mixture used for the bag system. Mean PSP was 8.2+/-10.1 and the IVP rate was 90.5%. The PSP differed across all systems (P=0.0006): 15.5+/-0.5 for flasks, 6.3+/-0.4 for CO(2), and 3.9+/-0.4 for bags. The IVP rate for flasks (95.0%) was greater (P=0.01) than for CO(2) and bags (90.8% and 85.0%, respectively), but it did not differ between flasks and CO(2) for three boars (P>0.05). In experiment 2, co-incubation was done as described for glass flasks in experiment 1. The IVP rate and PSP were compared for cryopreserved oocytes: either vitrified in open pulled straws (OPS), or frozen in cryotubes. Mean PSP was 5.4+/-6.5 and IVP rate was 89.6%. Both PSP and IVP rate were greater (P<0.0001) for oocytes frozen in cryotubes (7.0+/-0.3% and 95.8%, respectively) than those frozen in OPS (3.7+/-0.3% and 83.4%, respectively), with no differences found for three boars (P>0.05). In summary, successful IVP of swine oocytes by homologous spermatozoa can be achieved using gametes incubated in glass flasks and oocytes frozen in cryotubes.

  5. Establishment of an oocyte donor program. Donor screening and selection.

    PubMed

    Quigley, M M; Collins, R L; Schover, L R

    1991-01-01

    IVF with donated oocytes, followed by embryo placement in the uterus of a recipient who has been primed with exogenous steroids, is a successful treatment for special cases of infertility. Preliminary results indicate that the success rate in this situation is even greater than that usually seen with normal IVF (with placement of the embryos back into the uteri of the women from whom the oocytes were recovered). Although different sources for donated oocytes have been identified, the use of "excess" oocytes from IVF cycles and the attempted collection of oocytes at the time of otherwise indicated pelvic surgery have ethical and practical problems associated with their use. We have herein described the establishment of a successful program relying on anonymous volunteers who go through ovarian stimulation, monitoring, and oocyte recovery procedures solely to donate oocytes. The potential donors go through an exhaustive screening and education process before they are accepted in the program. Psychological evaluation of our potential donors indicated a great degree of turmoil in their backgrounds and a wide variety of motivations for actually participating. Despite the extensive educational and screening process, a substantial percentage of the donors did not complete a donation cycle, having either voluntarily withdrawn or been dropped because of lack of compliance. Further investigation of the psychological aspects of participating in such a program is certainly warranted. The use of donated oocytes to alleviate specific types of infertility is quite successful, but the application of this treatment is likely to be limited by the relative unavailability of suitable oocyte donors.

  6. Oocyte vitrification for elective fertility preservation: the past, present, and future.

    PubMed

    Gunnala, Vinay; Schattman, Glenn

    2017-02-01

    Oocyte cryopreservation is no longer experimental and one of its rapidly growing indications is elective fertility preservation. Currently there is no sufficient evidence to support its practice and therefore its place in IVF remains uncertain. Vitrification has superior post-thaw survival and fertilization outcomes compared with oocytes that were frozen with the slow-freeze technique. Oocyte vitrification produces similar IVF outcomes compared with fresh oocytes and is not associated with further obstetrical or perinatal morbidity. Undergoing elective oocyte cryopreservation between ages 35 and 37 will optimize live birth rates as well as cost effectiveness from mathematical models. In women who delay child bearing, elective oocyte cryopreservation in the mid 30s may be beneficial in terms of live birth rates and cost effectiveness. Prospective studies of women who have undergone oocyte cryopreservation and are now attempting conception are needed before official recommendations can be made regarding elective egg freezing.

  7. Full-grown oocytes from Xenopus laevis resume growth when placed in culture

    PubMed Central

    Wallace, Robin A.; Misulovin, Ziva; Etkin, Laurence D.

    1981-01-01

    When most full-grown, follicle cell-invested oocytes from Xenopus laevis are placed in an appropriate culture medium, they resume growth and remain physiologically healthy for at least 2-3 weeks. Rates of growth by full-grown oocytes in vitro generally approximate and can even exceed the most rapid growth rate achieved by vitellogenic oocytes in vivo. Resumption of oocyte growth can be correlated with the loss of investing follicle cells, which under normal conditions appear to interfere with vitellogenin and nutrient access to the oocyte. The final size reached by the oocyte within the ovary is thus not an intrinsic property of the oocyte but is extrinsically imposed by the somatic environment. Images PMID:16593019

  8. Histochemical Characterization of Oocytes in the Pink Cuskeel (Genypterus blacodes).

    PubMed

    Cohen, Stefanía; Petcoff, Gladys; Freijo, Roberto O; Portiansky, Enrique L; Barbeito, Claudio G; Macchi, Gustavo J; Díaz, Alcira O

    2015-08-01

    In the present study we histochemically and lectinhistochemically characterized the growing oocytes of the pink cuskeel (Genypterus blacodes). We used histochemical methods for the localization and characterization of glycoconjugates (GCs) and lectin histochemical techniques for the identification of specific sugar residues. We analyzed presence and distribution of GCs in the different structures of the growing follicles (cortical alveoli, globules, yolk granules and zona radiata). During the initial stage of vitellogenesis, the oocytes presented small yolk granules composed of GCs that gradually increased during exogenous vitellogenesis. These GCs contained moderate quantities of α-D-mannose, D-glucose, N-acetylglucosamine and N-acetyl-neuraminic acid. The cortical alveoli contained both neutral and carboxylated GCs, and lectin techniques detected N-acetylgalactosamine, galactose and L-fucose. The zona radiata showed a strong positive reaction to PAS and it reacted weakly with more specific techniques, such as KOH/PA*S and PA/Bh/KOH/PAS. This structure showed GCs with oxidizable vicinal diols, O-acyl sugars and sialic acid residues with different substitution types and presented N-acetylgalactosamine and L-fucose specific residues. The oocytes follicular envelope evidenced neutral and acidic non-sulfated GCs and high concentrations of α-D-mannose, D-glucose, galactose and N-acetylgalactosamine. The intergranular cytoplasmic GCs were mainly rich in α-D-mannose, D-glucose, N-acetylgalactosamine, N-acetylglucosamine and N-acetyl-neuraminic acid. These results enhance the comprehension of the structure and functionality of the pink cuskeel ovarian follicles, and provide a useful tool for the study of this tissue in other teleost species.

  9. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes

    PubMed Central

    Hwang, Grace; Sun, Fengyun; Eppig, John J.; Handel, Mary Ann

    2017-01-01

    SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis. The infertility phenotypes of females with a Zp3-Cre-driven conditional knockout (cKO) of Smc5 demonstrated that maternally expressed SMC5 protein is essential for early embryogenesis. Interestingly, protein levels of SMC5/6 complex components in oocytes decline as wild-type females age. When SMC5/6 complexes were completely absent in oocytes during meiotic resumption, homologous chromosomes failed to segregate accurately during meiosis I. Despite what appears to be an inability to resolve concatenation between chromosomes during meiosis, localization of topoisomerase IIα to bivalents was not affected; however, localization of condensin along the chromosome axes was perturbed. Taken together, these data demonstrate that the SMC5/6 complex is essential for the formation of segregation-competent bivalents during meiosis I, and findings suggest that age-dependent depletion of the SMC5/6 complex in oocytes could contribute to increased incidence of oocyte aneuploidy and spontaneous abortion in aging females. PMID:28302748

  10. Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP).

    PubMed

    Tani, Tetsuya; Shimada, Hiroaki; Kato, Yoko; Tsunoda, Yukio

    2007-01-01

    Despite the long-held assumption that reprogramming factors are present in mammalian oocytes at the second metaphase stage, the molecular nature of these factors is not known. Here, we demonstrated that oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Injection of TCTP double-stranded RNA into germinal vesicle oocytes decreased the potential of nuclear-transferred (NT) oocytes, but not in vitro fertilized oocytes, to develop into blastocysts. Phosphorylated TCTP is considered to facilitate the first step of somatic cell reprogramming. After transfer of blastocysts that developed from NT oocytes fused with cumulus cells in which phosphorylated TCTP peptide was previously incorporated, the recipient pregnancy rate (47%) increased and the abortion rate (13%) decreased. Moreover, all seven cloned calves survived for at least 1 month after parturition, and had no morphologic abnormalities. The present study demonstrated that pretreatment of donor cells with phosphorylated TCTP peptide has a beneficial effect on the potential of bovine somatic cell nuclei to develop into normal cloned calves. Before widespread application of TCTP for bovine cloning, however, a large-scale embryo transfer study using different donor cell lines of various origins is necessary.

  11. Intraovarian markers of follicular and oocyte maturation.

    PubMed

    Pellicer, A; Diamond, M P; DeCherney, A H; Naftolin, F

    1987-08-01

    The use of ovulation induction for multiple follicular growth in in vitro fertilization (IVF) has introduced the problem of follicular asynchrony. As a consequence of the asynchrony, the parameters most commonly used by IVF groups to assess follicular and oocyte quality within those follicles are not sufficiently sensitive or specific. Thus, each follicle must be considered separately, and specific markers of follicular and/or oocyte maturation must be sought from within the follicle. In this review we analyze previous reports of potential markers of follicular and oocyte maturation. In regards to the follicular fluid constituents, the level of estradiol in follicular fluid correlates with fertilization and pregnancy in stimulated cycles. Other steroids are only helpful when specific stimulation protocols are used. The level of some follicular proteins such as alpha-1-antitrypsin and fibrinogen also correlates with fertilization and pregnancy outcome. Cyclic AMP levels in follicular fluid are significantly reduced in follicles leading to conception. Regulators of oocyte maturation, such as the Oocyte Maturation Inhibitor (OMI) or the Meiosis Inducing Substance (MIS) have also been correlated with IVF outcome, but their exact structure remains still unknown. In addition, other sophisticated parameters, such as chemotactic activity of human leukocytes, or simple methods, such as the presence of intrafollicular echoes, have also been used as successful markers in predicting IVF outcome.

  12. Membrane currents in the oocyte of the toad Bufo arenarum.

    PubMed

    Kotsias, Basilio A; Damiano, Alicia E; Godoy, Sebastian; Assef, Yanina; Ibarra, Cristina; Cantiello, Horacio F

    2002-03-01

    The amphibian oocyte cell model is widely used for heterologous expression of ionic channels and receptors. Little is known, however, about the physiology of oocyte cell models other than Xenopus laevis. In this study, the two-electrode voltage clamp technique was used to assess the most common electrical patterns of oocytes of the South American toad Bufo arenarum. Basal membrane resistance, resting potential, and ionic currents were determined in this cell model. The oocyte transmembrane resistance was 0.35 M(Omega), and the resting potential in normal saline was about -33 mV with a range between -20 mV and -50 mV. This is, to our knowledge, the first attempt to begin an understanding of the ion transport mechanisms of Bufo arenarum oocytes. This cell model may provide a viable alternative to the expression of ion channels, in particular those endogenously observed in Xenopus laevis oocytes. Copyright 2002 Wiley-Liss, Inc.

  13. Chapter 10 Human Oocyte Vitrification.

    PubMed

    Rienzi, Laura; Cobo, Ana; Ubaldi, Filippo Maria

    2017-01-01

    Discovery and widespread application of successful cryopreservation methods for MII-phase oocytes was one of the greatest successes in human reproduction during the past decade. Although considerable improvements in traditional slow-rate freezing were also achieved, the real breakthrough was the result of introduction of vitrification. Here we describe the method that is most commonly applied for this purpose, provides consistent survival and in vitro developmental rates, results in pregnancy and birth rates comparable to those achievable with fresh oocytes, and does not result in higher incidence of gynecological or postnatal complications.

  14. Live Birth from Slow-Frozen Rabbit Oocytes after In Vivo Fertilisation

    PubMed Central

    Jiménez-Trigos, Estrella; Vicente, José S.; Marco-Jiménez, Francisco

    2013-01-01

    In vivo fertilisation techniques such as intraoviductal oocyte transfer have been considered as alternatives to bypass the inadequacy of conventional in vitro fertilisation in rabbit. There is only one study in the literature, published in 1989, that reports live offspring from cryopreserved rabbit oocytes. The aim of the present study was to establish the in vivo fertilisation procedure to generate live offspring with frozen oocytes. First, the effect of two recipient models (i) ovariectomised or (ii) oviduct ligated immediately after transfer on the ability of fresh oocytes to fertilise were compared. Second, generation of live offspring from slow-frozen oocytes was carried out using the ligated oviduct recipient model. Throughout the experiment, recipients were artificially inseminated 9 hours prior to oocyte transfer. In the first experiment, two days after unilateral transfer of fresh oocytes, oviducts and uterine horns were flushed to assess embryo recovery rates. The embryo recovery rates were low compared to control in both ovariectomised and ligated oviduct groups. However, ligated oviduct recipient showed significantly (P<0.05) higher embryo recovery rates compared to ovariectomised and control-transferred. In the second experiment, using bilateral oviduct ligation model, all females that received slow-frozen oocytes became pregnant and delivered a total of 4 live young naturally. Thus, in vivo fertilisation is an effective technique to generate live offspring using slow-frozen oocytes in rabbits. PMID:24358281

  15. Effects of genistein on early-stage cutaneous wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Eunkyo; Lee, Seung Min; Jung, In-Kyung

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected bymore » antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These

  16. IVF versus ICSI for the fertilization of in-vitro matured human oocytes.

    PubMed

    Walls, M; Junk, S; Ryan, J P; Hart, R

    2012-12-01

    Traditional dogma suggests that intracytoplasmic sperm injection (ICSI) should be performed to ensure successful oocyte fertilization in an in-vitro maturation (IVM) cycle. This study postulated that there would be no difference in the fertilization rate when ICSI was compared with IVF. This hypothesis was tested in a randomized trial of IVF versus ICSI in IVM. A total of 150 immature oocytes were collected in eight cycles of IVM for patients diagnosed with polycystic ovarian syndrome (PCOS). Patients were primed with minimal FSH before transvaginal oocyte aspiration. Sibling oocytes were inseminated by 50% IVF and 50% ICSI. There was no significant difference in fertilization, useable or total blastocyst development between the two insemination technique groups. Clinical pregnancy results for combined fresh and cryopreserved transfers were identical between the two insemination techniques with a total of two fresh and five cryopreserved IVF-inseminated embryos resulting in three clinical pregnancies (42.9%) and five fresh and two cryopreserved ICSI-derived embryos resulting in three clinical pregnancies (42.9%). This research has shown IVF to be a legitimate fertilization technique for IVM oocytes in PCOS patients and provides a greater awareness of the use of a fertilization method previously not utilized with IVM. In-vitro maturation (IVM) is an alternative treatment method to traditional IVF. Due to the minimal use of stimulating hormones in this treatment, IVM has a lower risk of ovarian hyperstimulation syndrome, it can be used for fertility preservation in cancer patients and it is more cost conservative. Early research into the effects of IVM showed a hardening effect on the membrane surrounding the egg (the zona pellucida). It was initially believed that, to overcome this hardening in order to allow the egg to be fertilized, spermatozoa would need to be injected into the egg using intracytoplasmic sperm injection. Due to recent advances in hormonal

  17. The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development.

    PubMed

    Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C

    2017-10-01

    The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.

  18. In vitro maturation of human oocytes for assisted reproduction.

    PubMed

    Jurema, Marcus W; Nogueira, Daniela

    2006-11-01

    To describe and evaluate the current practice of in vitro maturation of oocytes for assisted reproduction. Review of the available and relevant literature regarding in vitro maturation of oocytes. In vitro maturation of human oocytes retrieved from antral ovarian follicles is an emerging procedure quickly being incorporated into the realm of assisted reproductive technologies. This new technology has several potential advantages over traditional controlled ovarian hyperstimulation for IVF, such as reduction of costs by minimizing gonadotropin and GnRH analogue use, elimination of ovarian hyperstimulation syndrome, and simplicity of protocol. In vitro maturation of oocytes for assisted reproduction in human beings still is undergoing refinement but currently is providing efficacy and safety outcome comparable to that of traditional IVF in recent selected studies. Implementing in vitro maturation into an established IVF practice is feasible and requires only a few simple adjustments. Crucial to the advancement and optimization of the technology is a better understanding of how to maximize immature oocyte developmental competence and endometrial receptivity.

  19. Psychological Stress on Female Mice Diminishes the Developmental Potential of Oocytes: A Study Using the Predatory Stress Model

    PubMed Central

    Liu, Yu-Xiang; Cheng, Ya-Nan; Miao, Yi-Long; Wei, De-Li; Zhao, Li-Hua; Luo, Ming-Jiu; Tan, Jing-He

    2012-01-01

    Although the predatory stress experimental protocol is considered more psychological than the restraint protocol, it has rarely been used to study the effect of psychological stress on reproduction. Few studies exist on the direct effect of psychological stress to a female on developmental competence of her oocytes, and the direct effect of predatory maternal stress on oocytes has not been reported. In this study, a predatory stress system was first established for mice with cats as predators. Beginning 24 h after injection of equine chorionic gonadotropin, female mice were subjected to predatory stress for 24 h. Evaluation of mouse responses showed that the predatory stress system that we established increased anxiety-like behaviors and plasma cortisol concentrations significantly and continuously while not affecting food and water intake of the mice. In vitro experiments showed that whereas oocyte maturation and Sr2+ activation or fertilization were unaffected by maternal predatory stress, rate of blastocyst formation and number of cells per blastocyst decreased significantly in stressed mice compared to non-stressed controls. In vivo embryo development indicated that both the number of blastocysts recovered per donor mouse and the average number of young per recipient after embryo transfer of blastocysts with similar cell counts were significantly lower in stressed than in unstressed donor mice. It is concluded that the predatory stress system we established was both effective and durative to induce mouse stress responses. Furthermore, predatory stress applied during the oocyte pre-maturation stage significantly impaired oocyte developmental potential while exerting no measurable impact on nuclear maturation, suggesting that cytoplasmic maturation of mouse oocytes was more vulnerable to maternal stress than nuclear maturation. PMID:23118931

  20. Folding of Polymer Chains in Early Stage of Crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Shichen; Miyoshi, Toshikazu

    Understanding the structural formation of long polymer chains in the early stage of crystallization is one of the long-standing problems in polymer science. Using solid state NMR, we investigated chain trajectory of isotactic polypropylene in the mesomorphic nano-domains formed via rapid and deep quenching. Comparison of experimental and simulated 13C-13C Double Quantum (DQ) buildup curves demonstrated that instead of random re-entry models and solidification models, individual chains in the mesomorphic form iPP adopt adjacent reentry sequences with an average folding number of = 3-4 (assuming an adjacent re-entry fraction of of 100%) during mesomorphic formation process via nucleation and growth in the early stage. This work was financially supported by the National Science Foundation (Grant DMR-1105829 and 1408855) and startup funds from the UA.

  1. Optimizing the conditions for in vitro maturation and artificial activation of sika deer (Cervus nippon hortulorum) oocytes.

    PubMed

    Yin, Y; Tang, L; Zhang, P; Kong, D; Wang, Z; Guan, J; Song, G; Tang, B; Li, Z

    2013-02-01

    With the goal of establishing experimental protocols for cloning sika deer, various conditions for in vitro maturation (IVM) and artificial activation of sika deer oocytes were examined. In vitro maturation was evaluated in seven different culture media. The highest rate of oocyte maturation was 75.4% in 10 μg/ml follicle-stimulating hormone (FSH), 1 μg/ml LH, 0.2 mm cysteamine and 50 ng/ml epidermal growth factor (EGF) after 24 h of IVM. The efficiency after 24 h of IVM did not differ significantly (p > 0.05) from that observed after 20 h. Cysteamine (0.2 mm) significantly increased the maturation rates after 20 h (from 59.1% to 67.2%, p < 0.05) and after 24 h (from 63.2% to 71.6%, p < 0.05) of IVM. The IVM rates of oocytes collected during the oestrous season (75.4%) and the anoestrous season (23.3%) were significantly different at 24 h. The 20 μg/ml FSH, 2 μg/ml LH, 0.4 mm cysteamine and 100 ng/ml EGF significantly increased the maturation rates (from 23.3% to 54.2%, p < 0.01) at 24 h during the anoestrous season. For the activation experiments, the most effective method was chemical activation [ionomycin + 6-dimethylaminopurine (6-DMAP)], which promoted the development of sika deer oocytes to the blastocyst stage (32.4%). Our results indicate that in vitro matured sika deer oocytes are good candidates for parthenogenetic activation and that chemical treatment is needed for relatively efficient activation of the oocytes. These optimized conditions for IVM and parthenogenetic activation may be useful for efforts to restore populations of the endangered sika deer using the somatic cell nuclear transfer technique. © 2012 Blackwell Verlag GmbH.

  2. Is knowledge translation adequate? A quality assurance study of staging investigations in early stage breast cancer patients.

    PubMed

    Han, Dolly; Hogeveen, Sophie; Sweet Goldstein, Miriam; George, Ralph; Brezden-Masley, Christine; Hoch, Jeffrey; Haq, Rashida; Simmons, Christine E

    2012-02-01

    After primary surgery, patients diagnosed with early stage breast cancer undergo radiological investigations based on pathologic stage of disease to rule out distant metastases. Published guidelines can aid clinicians in determining which tests are appropriate based on stage of disease. We wished to assess the consistency of radiological staging in an academic community oncology setting with standard guidelines and to determine the overall impact of non-adherence to these guidelines. A retrospective cohort study was conducted for new breast cancer patients seen at a single institution between January 2009 and April 2010. Patients were included if initial diagnosis and primary surgery was at this institution. Pathologic stage and radiological tests completed were recorded. A literature review was performed and the results were compared with those from this study to determine overall adherence rates. Subsequently, a cost analysis was performed to determine the financial impact at this centre. 231 patients met eligibility criteria for inclusion in this study. A large proportion of patients were over-staged with 129 patients (55%) undergoing unnecessary investigations according to guidelines. Specifically, 59% of stage I patients and 58% of stage II patients were over-investigated. Distant metastases at the time of diagnosis were found in three patients, all of whom had stage III disease (1.3%). The literature reviewed revealed similar non-adherence rates in other centres. The estimated cost of such non-adherence is in the range of $78 (CDN) per new early stage breast cancer patient seen at this centre. This oncology centre has a low adherence to practice guidelines for staging investigations in breast cancer patients, with 55% of patients undergoing unnecessary tests. Very few patients had metastases at diagnosis, and all had pathological stage III disease. Efforts may need to focus on improving knowledge translation across clinical oncology settings to increase

  3. Coordination of cellular differentiation, polarity, mitosis and meiosis - New findings from early vertebrate oogenesis.

    PubMed

    Elkouby, Yaniv M; Mullins, Mary C

    2017-10-15

    A mechanistic dissection of early oocyte differentiation in vertebrates is key to advancing our knowledge of germline development, reproductive biology, the regulation of meiosis, and all of their associated disorders. Recent advances in the field include breakthroughs in the identification of germline stem cells in Medaka, in the cellular architecture of the germline cyst in mice, in a mechanistic dissection of chromosomal pairing and bouquet formation in meiosis in mice, in tracing oocyte symmetry breaking to the chromosomal bouquet of meiosis in zebrafish, and in the biology of the Balbiani body, a universal oocyte granule. Many of the major events in early oogenesis are universally conserved, and some are co-opted for species-specific needs. The chromosomal events of meiosis are of tremendous consequence to gamete formation and have been extensively studied. New light is now being shed on other aspects of early oocyte differentiation, which were traditionally considered outside the scope of meiosis, and their coordination with meiotic events. The emerging theme is of meiosis as a common groundwork for coordinating multifaceted processes of oocyte differentiation. In an accompanying manuscript we describe methods that allowed for investigations in the zebrafish ovary to contribute to these breakthroughs. Here, we review these advances mostly from the zebrafish and mouse. We discuss oogenesis concepts across established model organisms, and construct an inclusive paradigm for early oocyte differentiation in vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Radiation therapy in early-stage invasive breast cancer.

    PubMed

    Lin, Ray; Tripuraneni, Prabhakar

    2011-06-01

    The treatment of breast cancer involves a multi-disciplinary approach with radiation therapy playing a key role. Breast-conserving surgery has been an option for women with early-stage breast cancer for over two decades now. Multiple randomized trials now have demonstrated the efficacy of breast-conserving surgery followed by radiation therapy. With the advancements in breast imaging and the successful campaign for early detection of breast cancer, more women today are found to have early-stage small breast cancers. Patient factors (breast size, tumor location, history of prior radiation therapy, preexisting conditions such as collagen vascular disease, age, having prosthetically augmented breasts), pathological factors (margin status, tumor size, presence of extensive intraductal component requiring multiple surgical excisions), as well as patient preference are all taken into consideration prior to surgical management of breast cancer. Whole-breast fractionated radiation therapy between 5 and 7 weeks is considered as the standard of care treatment following breast-conserving surgery. However, new radiation treatment strategies have been developed in recent years to provide alternatives to the conventional 5-7 week whole-breast radiation therapy for some patients. Accelerated partial breast radiation therapy (APBI) was introduced because the frequency of breast recurrences outside of the surgical cavity has been shown to be low. This technique allows treatments to be delivered quicker (usually 1 week, twice daily) to a limited volume. Often times, this treatment involves the use of a brachytherapy applicator to be placed into the surgical cavity following breast-conserving surgery. Accelerated hypofractionated whole-breast irradiation may be another faster way to deliver radiation therapy following breast-conserving surgery. This journal article reviews the role of radiation therapy in women with early-stage breast cancer addressing patient selection in breast

  5. Liquid biopsy for early stage lung cancer.

    PubMed

    Liang, Wenhua; Zhao, Yi; Huang, Weizhe; Liang, Hengrui; Zeng, Haikang; He, Jianxing

    2018-04-01

    Liquid biopsy, which analyzes biological fluids especially blood specimen to detect and quantify circulating cancer biomarkers, have been rapidly introduced and represents a promising potency in clinical practice of lung cancer diagnosis and prognosis. Unlike conventional tissue biopsy, liquid biopsy is non-invasive, safe, simple in procedure, and is not influenced by manipulators' skills. Notably, some circulating cancer biomarkers are already detectable in disease with low-burden, making liquid biopsy feasible in detecting early stage lung cancer. In this review, we described a landscape of different liquid biopsy methods by highlighting the rationale and advantages, accessing the value of various circulating biomarkers and discussing their possible future development in the detection of early lung cancer.

  6. Characterization of oocyte retrieval cycles with empty zona pellucida.

    PubMed

    Oride, Aki; Kanasaki, Haruhiko; Hara, Tomomi; Ohta, Hiroko; Kyo, Satoru

    2018-01-01

    To identify the factors that characterize cycles with empty zona pellucida (EZP). Thirty-six oocyte retrieval cycles from which EZP were collected and another 36 cycles from which no EZP was collected were compared. The patients were divided into three groups: those with no EZP collected during any cycle, those with EZP collected during all cycles, and those experiencing cycles both with and without EZP. The mean number of oocytes collected per cycle was higher in the cycles with EZP than without EZP. The fertilization rate of the collected oocytes and the rate of good embryo formation were significantly lower in the cycles with EZP. No significant difference was observed between the three groups in terms of age, number of oocytes collected, or hormone levels before and after the oocyte retrieval. The fertilization and pregnancy rates were highest in the patients with no EZP being collected during any cycle, followed by those experiencing cycles both with and without EZP, and then by those with EZP collected during all cycles. The observation of lower fertilization, poor embryo formation, and a low pregnancy rate in the patients with EZP suggests the poor quality of oocytes that were collected with EZP in the same cycle.

  7. Human Chorionic Gonadotropin Mediated Generation of Reactive Oxygen Species Is Sufficient to Induce Meiotic Exit but Not Apoptosis in Rat Oocytes

    PubMed Central

    Tiwari, Meenakshi; Chaube, Shail K.

    2017-01-01

    Abstract Generation of reactive oxygen species (ROS) is associated with final stages of follicular development and ovulation in mammals. The human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone and triggers follicular development and ovulation. However, it remains unclear whether hCG induces generation of ROS, if yes, whether hCG-mediated increased level of ROS could induce meiotic exit and/or apoptosis in rat oocytes. For this purpose, cumulus–oocyte complexes (COCs) were collected from ovary of experimental rats injected with 20 IU pregnant mare's serum gonadotropin for 48 h followed by 20 IU hCG for 0, 7, 14, and 21 h. The morphological changes in COCs, meiotic status of oocyte, total ROS, hydrogen peroxide (H2O2), inducible nitric oxide synthase (iNOS), nitric oxide (NO), Bax, Bcl-2, cytochrome c, telomerase reverse transcriptase (TERT) expression levels, and DNA fragmentation were analyzed in COCs. Our data suggest that hCG surge increased total ROS as well as H2O2 levels but decreased iNOS expression and total NO level in oocytes. The hCG-mediated increased level of ROS was sufficient to induce meiotic cell cycle resumption in majority of oocytes as evidenced by meiotic exit from diplotene as well as metaphase-II (M-II) arrest and their meiotic status. However, increase of ROS level due to hCG surge was not sufficient to trigger Bax and cytochrome c expression levels and DNA fragmentation in COCs. In addition, increased TERT activity was observed in oocytes collected 21 h post-hCG surge showing onset of oocyte aging. Taken together, these results suggest that hCG induces generation of ROS sufficient to trigger meiotic exit from diplotene, as well as M-II arrest, but not good enough to induce apoptosis in rat oocytes. PMID:29098117

  8. The signaling pathways by which the Fas/FasL system accelerates oocyte aging.

    PubMed

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-02-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.

  9. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification.

    PubMed

    Smith, Gary D; Serafini, Paulo C; Fioravanti, Joyce; Yadid, Isaac; Coslovsky, Marcio; Hassun, Pericles; Alegretti, José Roberto; Motta, Eduardo L

    2010-11-01

    To compare cryopreservation of mature human oocytes with slow-rate freezing and vitrification and determine which is most efficient at establishing a pregnancy. Prospective randomized. Academically affiliated, private fertility center. Consenting patients with concerns about embryo cryopreservation and more than nine mature oocytes at retrieval were randomized to slow-rate freezing or vitrification of supernumerary (more than nine) oocytes. Oocytes were frozen or vitrified, and upon request oocytes were thawed or warmed, respectively. Oocyte survival, fertilization, embryo development, and clinical pregnancy. Patient use has resulted in 30 thaws and 48 warmings. Women's age at time of cryopreservation was similar. Oocyte survival was significantly higher following vitrification/warming (81%) compared with freezing/thawing (67%). Fertilization was more successful in oocytes vitrified/warmed compared with frozen/thawed. Fertilized oocytes from vitrification/warming had significantly better cleavage rates (84%) compared with freezing/thawing (71%) and resulted in embryos with significantly better morphology. Although similar numbers of embryos were transferred, embryos resulting from vitrified oocytes had significantly enhanced clinical (38%) pregnancy rates compared with embryos resulting from frozen oocyte (13%). Miscarriage and/or spontaneous abortion rates were similar. Our results suggest that vitrification/warming is currently the most efficient means of oocyte cryopreservation in relation to subsequent success in establishing pregnancy. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Molecular cloning and characterization of oocyte-specific Pat1a in Rana rugosa frogs.

    PubMed

    Nakamura, Yoriko; Iwasaki, Takehiro; Umei, Yosuke; Saotome, Kazuhiro; Nakajima, Yukiko; Kitahara, Shoichi; Uno, Yoshinobu; Matsuda, Yoichi; Oike, Akira; Kodama, Maho; Nakamura, Masahisa

    2015-10-01

    The Pat1 gene is expressed in the immature oocytes of Xenopus, and is reportedly involved in regulating the translation of maternal mRNAs required for oocyte-maturation. However, it is still unknown when Pat1a first appears in the differentiating ovary of amphibians. To address this issue, we isolated the full-length Pat1a cDNA from the frog Rana rugosa and examined its expression in the differentiating ovary of this frog. Among eight different tissues examined, the Pat1a mRNA was detectable in only the ovary. When frozen sections from the ovaries of tadpoles at various stages of development were immunostained for Vasa-a germ cell-specific protein-and Pat1a, Vasa-immunopositive signals were observed in all of the germ cells, whereas Pat1a signals were confined to the growing oocytes (50-200 μm in diameter), and absent from small germ cells (<50 μm in diameter). Forty days after testosterone injection into tadpoles to induce female-to-male sex-reversal, Pat1a-immunoreactive oocytes had disappeared completely from the sex-reversed gonad, but Vasa-positive small germ cells persisted. Thus, Pat1a would be a good marker for identifying the sexual status of the sex-reversing gonad in amphibians. In addition, fluorescence in situ hybridization analysis showed Pat1a to have an autosomal locus, suggesting that Pat1a transcription is probably regulated by a tissue-specific transcription factor in R. rugosa. © 2015 Wiley Periodicals, Inc.

  11. Vitrification of human pronuclear oocytes by direct plunging into cooling agent: Non sterile liquid nitrogen vs. sterile liquid air.

    PubMed

    Isachenko, Vladimir; Todorov, Plamen; Seisenbayeva, Akerke; Toishibekov, Yerzhan; Isachenko, Evgenia; Rahimi, Gohar; Mallmann, Peter; Foth, Dolores; Merzenich, Markus

    2018-02-01

    In fact, a full sterilization of commercially-produced liquid nitrogen contaminated with different pathogens is not possible. The aim of this study was to compare the viability of human pronuclear oocytes subjected to cooling by direct submerging of open carrier in liquid nitrogen versus submerging in clean liquid air (aseptic system). One- and three-pronuclei stage embryos (n = 444) were cryopreserved by direct plunging into liquid nitrogen (vitrified) in ethylene glycol (15%), dimethylsulphoxide (15%) and 0.2M sucrose. Oocytes were exposed in 20, 33, 50 and 100% vitrification solution for 2, 1 and 1 min, and 30-50 s, respectively at room temperature. Then first part of oocytes (n = 225) were directly plunged into liquid nitrogen, and second part of oocytes (n = 219) into liquid air. Oocytes were thawed rapidly at a speed of 20,000 °C/min and then subsequently were placed into a graded series of sucrose solutions (0.5, 0.25, 0.12 and 0.06M) at 2.5 min intervals and cultured in vitro for 3 days. In both groups, the rate of high-quality embryos (Grade 6A: 6 blastomeres, no fragmentation; Grade 8A: 8 blastomeres, no fragmentation; Grade 8A compacting: 8 blastomeres, beginning of compacting) was noted. The rates of high-quality embryos developed from one-pronuclear oocytes vitrified by cooling in liquid nitrogen and liquid air were: 39.4% ± 0.6 and 38.7% ± 0.8, respectively (P > 0.1). These rates for three-pronuclear oocytes were: 45.8 ± 0.8% and 52.0 ± 0.7%, respectively (P < 0.05). In conclusion, vitrification by direct submerging of oocytes in clean liquid air (aseptic system) is a good alternative for using of not sterile liquid nitrogen. Copyright © 2017. Published by Elsevier Inc.

  12. Effects of mineral supplements on ovulation and maturation of dog oocytes.

    PubMed

    Kim, Min Jung; Oh, Hyun Ju; Park, Jung Eun; Kim, Geon A; Park, Eun Jung; Jang, Goo; Lee, Byeong Chun

    2012-07-01

    The aim of this study was to assess the effects of trace mineral supplements near the time of ovulation on the number of ovulated oocytes, in vivo oocyte maturation and pregnancy for dog cloning. Sixteen oocyte donor dogs were used in each control and mineral supplement group, and 136 and 166 corpora lutea were counted from each group. No significant difference was observed between oocyte recovery rates in the control (91.2 ± 2.7%) and mineral (89.9 ± 2.7) groups. Proportions of mature (86.2 ± 7.2 and 88.4 ± 6.8%) and aged (13.8 ± 7.2 and 11.6 ± 6.8%) oocytes were not different in the control and mineral groups, respectively. Oocytes with fair (91.5 ± 3.6 and 93.6 ± 2.1%) and poor (8.5 ± 3.6 and 6.4 ± 2.1%) quality also showed no difference between the control and mineral groups. The concentrations of manganese and ferrous iron were higher and lower on the day of ovulation, respectively, in both groups, but trace element concentrations in peripheral blood were not affected by mineral treatment. Oocytes were used to make cloned embryos; after embryo transfer, four and two pups were delivered from the control and mineral group, respectively, but there was no difference in the delivery rate (4.6 and 2.7%). In conclusion, intravenous mineral supplements administered once close to the LH surge in oocyte donor dogs and recipients had no effect on the number of ovulated oocytes, in vivo oocyte maturation or pregnancy in dog cloning in this study. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Effects of tributyltin chloride on developing mouse oocytes and preimplantation embryos.

    PubMed

    Huang, Xian-Ju; Shen, Ming; Wang, Lizhong; Yu, Fengxiang; Wu, Wangjun; Liu, Hong-Lin

    2015-04-01

    Tributyltin, an organotin, is ubiquitous in estuaries and freshwater systems. Previous reports suggest that tributyltin is an endocrine disruptor in many wildlife species and it inhibits aromatase in mammalian placental and granulosa-like tumor cell lines. However, no evidence showing the effects of tributyltin on oocytes or preimplantation embryonic developmental competence exists. Therefore, we investigated the role of tributyltin chloride (TBTCl) in the development of female oocytes and preimplantation embryos. Briefly, female ICR mice were gavaged with 0 (vehicle), 4, and 8 mg/kg of TBTCl each day for 18 days. The fluorescence intensity analysis showed that the 5-methylcytosine level decreased after TBTCl treatment, indicating that the general DNA methylation level decreased in the treated oocytes. Our results demonstrate that TBTCl treatment results in decreased mRNA levels of imprinted genes H19, Igf2r, and Peg3 during oocyte growth. The TBTCl-treated oocytes showed a significant increase in reactive oxygen species levels in germinal vesicle oocytes. In TBTCl-treated oocytes, there was no difference in GPx and Sod1 expression, but a decreased mRNA level of Cat occurred when compared with control. Moreover, the blastocysts with TBTCl exposure displayed higher apoptotic signals. These results suggest that TBTCl induces developmental defects in oocytes and preimplantation embryos.

  14. Trichloroethylene Metabolism in the Rat Ovary Reduces Oocyte Fertilizability

    PubMed Central

    Wu, Katherine Lily; Berger, Trish

    2007-01-01

    Exposure to trichloroethylene (TCE, an environmental toxicant) reduced oocyte fertilizability in the rat. In vivo, TCE may be metabolized by cytochrome P450 dependent oxidation or glutathione conjugation in the liver or kidneys, respectively. Cytochrome P450 dependent oxidation is the higher affinity pathway. The primary isoform of cytochrome P450 to metabolize TCE in the liver, cytochrome P450 2E1, is present in the rodent ovary. Ovarian metabolism of TCE by the oxidative pathway and the production of reactive oxygen species may occur given the presence of the metabolizing enzyme. The objectives of this study were to define the sensitive interval of oocyte growth to TCE exposure, and to determine if TCE exposure resulted in the formation of ovarian protein carbonyls, an indicator of oxidative damage. Rats were exposed to TCE in drinking water (0.45% TCE (v/v) in 3% Tween) or 3% Tween (vehicle-control) during three 4–5 day intervals of oocyte development preceding ovulation. Oocytes from TCE-exposed females were less fertilizable compared with vehicle-control oocytes. Immunohistochemical labeling of ovaries and Western blotting of ovarian proteins demonstrated TCE treatment induced a greater incidence of protein carbonyls compared with vehicle controls. Protein carbonyl formation in the ovary is consistent with TCE metabolism by the cytochrome P450 pathway. Oxidative damage following ovarian TCE metabolism or the presence of TCE metabolites may contribute to reduced oocyte fertilizability. In summary, these results indicate maturing oocytes are susceptible to very short in vivo exposures to TCE. PMID:17673192

  15. Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.

    PubMed

    Kloc, Malgorzata; Bilinski, Szczepan; Kubiak, Jacek Z

    2016-01-01

    The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.

  16. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.

    PubMed

    McNatty, Kenneth P; Lawrence, Stephen; Groome, Nigel P; Meerasahib, Mohammed F; Hudson, Norma L; Whiting, Lynda; Heath, Derek A; Juengel, Jennifer L

    2006-01-01

    Sheep (Ovis aries) are a highly diverse species, with more than 900 different breeds that vary significantly in their physiological characteristics, including ovulation rate and fecundity. From examination of inherited patterns of ovulation rate, several breeds have been identified with point mutations in two growth factor genes that are expressed in oocytes. Currently, five different point mutations have been identified in the BMP15 (GDF9b) gene and one in GDF9. Animals heterozygous for the GDF9 and/or the BMP15 mutations have higher ovulation rates than their wild-type counterparts. In contrast, those homozygous for any of the aforementioned BMP15 or GDF9 mutations are sterile owing to arrested follicular development. In bovine and ovine ovaries, GDF9 was expressed exclusively in oocytes throughout follicular growth from the primordial stage of development, whereas in sheep BMP15 was expressed exclusively in oocytes from the primary stage: no data for the ontogeny of BMP15 expression are currently available for cattle. In vitro, ovine growth differentiation factor 9 (oGDF9) has no effect on (3)H-thymidine incorporation by either bovine or ovine granulosa cells, whereas ovine bone morphogenetic protein 15 (oBMP15) has modest (1.2- to 1.6-fold; P < 0.05) stimulatory effects. Ovine GDF9 or oBMP15 alone inhibited progesterone production by bovine granulosa cells, whereas in ovine cells only oGDF9 was inhibitory. The effects of oGDF9 and oBMP15 together were often cooperative and not always the same as those observed for each factor alone. Active immunisation of ewes with BMP15 and/or GDF9 peptides affected ovarian follicular development and ovulation rate. Depending on the GDF9 and/or BMP15 vaccine formulation, ovulation rate was either increased or suppressed. A primary and single booster immunisation of ewes with a BMP15 peptide in a water-based adjuvant has led to 19-40% increases in lambs born per ewe lambing. Collectively, the evidence suggests that oocyte

  17. H2O2-induced mild stress in relation with in vitro ovine oocyte developmental competence: implications for blastocyst apoptosis and related genes expression.

    PubMed

    Nikdel, K; Aminafshar, M; Mohammadi-Sangcheshmeh, A; EmamJomeh-Kashan, N; Seyedjafari, E

    2017-05-20

    In this study, in vitro maturation was performed in presence of various concentrations (0, 10, 100, or 1000 µM) of H2O2. The intracellular glutathione (GSH) level, fertilization, cleavage, and blastocyst rates, total cell number, and apoptotic cell number and expression of Bax, Bcl-2, and p53 genes in blastocyst-stage embryos were studied. At 10 μM H2O2 concentration, a higher GSH level was detected in comparison to the other groups while oocytes exposed to 1000 μM H2O2 had the lowest GSH level. Treatment of oocytes with 1000 μM H2O2 decreased the rate of two pronuclei formation as compared with other groups. A higher rate of blastocyst formation was seen in 100 μM H2O2 group as compared with the control group. However, exogenous H2O2 in maturation medium did not affect total cell numbers and apoptotic cell ratio at the blastocyst stage. Moreover, mRNA transcript abundance of Bax, Bcl-2, and p53 genes was similar between blastocysts derived from H2O2-induced oocytes and control blastocysts. Treatment of oocytes with H2O2 at mild level during in vitro maturation had a positive effect on GSH level and this, in turn, may lead to improvement in preimplantation embryonic development.

  18. Mature Oocyte Cryopreservation for Fertility Preservation.

    PubMed

    Liang, Tina; Motan, Tarek

    2016-01-01

    In recent decades, advances in cancer treatment have led to a dramatic improvement in long term survival. This has led to an increasing focus on quality of life after surviving cancer treatment, with fertility being an important aspect. Given the known reproductive risks of cancer therapies, there has been a growing interest in the field of fertility preservation (also referred to as oncofertility). Mature oocyte cryopreservation is no longer considered experimental and has become a realistic option for reproductive aged women prior to undergoing cancer treatment. Additionally, as cryopreservation techniques improve, mature oocyte cryopreservation is increasing being marketed to healthy women without cancer wishing to delay child bearing, also termed "social egg freezing". This chapter provides a review of the current technology, use, and outcomes of mature oocyte cryopreservation. It also outlines the ethical debate surrounding social egg freezing and directions for future research in female fertility preservation.

  19. The Human Oocyte Preservation Experience (HOPE) a phase IV, prospective, multicenter, observational oocyte cryopreservation registry.

    PubMed

    Ezcurra, Diego; Rangnow, Jennifer; Craig, Maryellen; Schertz, Joan

    2009-05-27

    It has been recommended by the American Society of Clinical Oncology and the American Society of Reproductive Medicine that options to preserve fertility be presented at the outset of treatment for cancer. This recommendation may have arisen, in part, to the increasing survival of patients with cancer and the realization that certain forms of cancer treatment can lead to infertility. One option for these patients, particularly those with ethical or religious objections to freezing embryos is oocyte cryopreservation. However universal acceptance of these procedures has yet to be established, most likely due to a poor history of success and concerns that there has yet to be a comprehensive approach to evaluating these techniques. In light of this, a registry of patients undergoing oocyte cryopreservation, called the HOPE registry, is being implemented. The intent of the HOPE Registry is to enroll approximately 400 women of reproductive age who will undergo thawing/warming of oocytes and subsequent transfer. Data from the patients enrolled will be collected via a uniform, standardized form and will document important parameters such as demographics, laboratory procedures and outcomes, including following the outcomes of babies born for one year after birth. The results of the registry will be published on a yearly basis. A patient registry has been established in order to systematically document the techniques and outcomes of oocyte cryopreservation procedures. The results will be published in order to provide a widely accessible resource that will allow patients who are considering these procedures validated information in order to make informed decisions as to how their treatment will proceed.

  20. Phospholipase C-zeta deficiency as a cause for repetitive oocyte fertilization failure during ovarian stimulation for in vitro fertilization with ICSI: a case report.

    PubMed

    Chithiwala, Zahabiya H; Lee, Hoi Chang; Hill, David L; Jellerette-Nolan, Teru; Fissore, Rafael; Grow, Daniel; Dumesic, Daniel A

    2015-09-01

    The purpose of this study is to describe impaired oocyte fertilization from phospholipase C-zeta (PLC-ζ) deficiency in normal-appearing sperm that was successfully treated using calcium (Ca(2+)) ionophore with intracytoplasmic sperm injection (ICSI) of oocytes matured in vitro. An infertile couple undergoing in vitro fertilization (IVF) experienced failed oocyte fertilization following ICSI with normal-appearing sperm. A semen sample collected from the patient was used to assess the expression of sperm PLC- ζ protein by Western blot analysis and immunofluorescence and PLC-ζ bioactivity by an in vitro model of Ca(2+) release. A second IVF cycle was performed using Ca(2+) ionophore with ICSI to enhance Ca(2+)-induced oocyte activation of oocytes matured in vitro. Sperm PLC-ζ protein deficiency was demonstrated by Western blot analysis and immunofluorescence and confirmed by reduced PLC-ζ bioactivity using an in vitro model of Ca(2+) release. Nevertheless, with this sperm and supplementation of Ca(2+) ionophore following ICSI, fertilization of four of six oocytes matured in vitro was obtained. In addition, four embryos underwent cleavage and two of them reached the blastocyst stage. Transfer of these blastocysts into the uterus led to a single pregnancy and live birth. Deficiency of PLC-ζ in normal-appearing human sperm is associated with impaired Ca(2+)-dependent oocyte activation during ICSI. Under this condition, use of Ca(2+) ionophore following ICSI of oocytes matured in vitro improves embryo developmental competence, possibly through the activation of Ca(2+)-dependent mechanisms governing fertilization and preimplantation embryogenesis.

  1. Development of an early-stage toll revenue estimation model.

    DOT National Transportation Integrated Search

    2012-05-01

    With agencies and states increasingly considering tolls as a means to finance transportation infrastructure, : there is an increasing need to quickly assess the feasibility of potential tolling projects. In the early stages : of a project when an age...

  2. Confidence interval estimation of the difference between two sensitivities to the early disease stage.

    PubMed

    Dong, Tuochuan; Kang, Le; Hutson, Alan; Xiong, Chengjie; Tian, Lili

    2014-03-01

    Although most of the statistical methods for diagnostic studies focus on disease processes with binary disease status, many diseases can be naturally classified into three ordinal diagnostic categories, that is normal, early stage, and fully diseased. For such diseases, the volume under the ROC surface (VUS) is the most commonly used index of diagnostic accuracy. Because the early disease stage is most likely the optimal time window for therapeutic intervention, the sensitivity to the early diseased stage has been suggested as another diagnostic measure. For the purpose of comparing the diagnostic abilities on early disease detection between two markers, it is of interest to estimate the confidence interval of the difference between sensitivities to the early diseased stage. In this paper, we present both parametric and non-parametric methods for this purpose. An extensive simulation study is carried out for a variety of settings for the purpose of evaluating and comparing the performance of the proposed methods. A real example of Alzheimer's disease (AD) is analyzed using the proposed approaches. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  4. Differential sensitivity of mouse oocytes to colchicine-induced aneuploidy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailhes, J.B.; Yuan, Z.P.

    1987-01-01

    Unpublished results from our laboratory showed that colchicine increased the incidence of hyperploid mouse metaphase II (MII) oocytes when injected at the same time as human chorionic gonadotrophin (HCG). The objective of the present study was to determine whether the time of administering colchicine influenced the incidence of aneuploidy in MII oocytes. CD-1 mice were given pregnant mare's serum (PMS) and, 48 hr later, HCG. An intraperitoneal injection of 0.2 mg/kg colchicine was given at +4, +2, 0, -2, or -4 hr relative to HCG. Oocytes were collected 17 hr post-HCG and processed, and chromosomes were subsequently C-banded. The percentagemore » of hyperploid oocytes was 0.77, 2.56, 5.71, 7.79, 3.54, and 2.70 for control, +4, +2, 0, -2, or -4 hr pre/post-HCG, respectively. Chi-square analyses of these data demonstrated that colchicine significantly increases the proportion of aneuploid oocytes, and that the relative sensitivity of colchicine-induced aneuploidy depends upon the time that this drug is administered relative to HCG.« less

  5. Signatures of unfolding in the early stages of protein denaturation

    NASA Astrophysics Data System (ADS)

    Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2012-04-01

    A comparative study of the early stages of unfolding of five proteins: cyt c, c-b 562, cyt c‧, azurin, and lysozyme is reported. From crystallographic data, helical regions and intervening non-helical (or 'turning') regions are identified in each. Exploiting a previously introduced geometrical model, the paper describes quantitatively the stepwise extension of a polypeptide chain subject to the geometrical constraint that the spatial relationship among the residues of each triplet is fixed by native-state crystallographic data. Despite differences among the above-cited proteins, remarkable universality of behavior is found in the early stages of unfolding. At the very earliest stages, internal residues in each helical region have a common unfolding history; the terminal residues, however, are extraordinarily sensitive to structural perturbations. Residues in non-helical sections of the polypeptide unfold after residues in the internal helical regions, but with increasing steric perturbation playing a dominant role in advancing denaturation.

  6. Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes.

    PubMed

    Trapphoff, Tom; Heiligentag, Martyna; El Hajj, Nady; Haaf, Thomas; Eichenlaub-Ritter, Ursula

    2013-12-01

    To determine whether exposure to low concentrations of the endocrine disrupting chemical bisphenol A (BPA) during follicle culture and oocyte growth alters the methylation status of differentially methylated regions (DMRs) of imprinted genes and histone posttranslational modification patterns in mammalian oocytes. Comparative and control study. Experimental laboratory. C57/Bl6JxCBA/Ca mice. Exposure of oocytes to 3 nM or 300 nM BPA during follicle culture from preantral to antral stage. Methylation status of DMRs of maternally imprinted (Snrpn, Igf2r, and Mest) and paternally imprinted gene(s) (H19) in mouse germinal vesicle oocytes; trimethylation of histone H3K9, acetylation of histone H4K12, and distance between centromeres of sister chromatids in metaphase II oocytes. Exposure to 3 nM BPA was associated with slightly accelerated follicle development, statistically significant increases in allele methylation errors in DMRs of maternally imprinted genes, and statistically significant decreases in histone H3K9 trimethylation and interkinetochore distance. The disturbances in oocyte genomic imprinting and modification of posttranslational histone and centromere architecture provide the first link between low BPA exposures and induction of epigenetic changes that may contribute to chromosome congression failures and meiotic errors, and to altered gene expression that might affect health of the offspring. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Zinc supplementation of vitrification medium improves in vitro maturation and fertilization of oocytes derived from vitrified-warmed mouse ovaries.

    PubMed

    Geravandi, Shirin; Azadbakht, Mehri; Pourmoradi, Mahsa; Nowrouzi, Fatemeh

    2017-02-01

    Oocyte cryopreservation is an approach for fertility preservation for normal women and cancer patients facing chemo and radiotherapy. The present study evaluated the effect of adding zinc chloride to the vitrification medium used for whole mouse ovaries and then assessing the in vitro maturation and fertilization of oocytes when they were subsequently extracted from these vitrified ovarian tissues. Four vitrification solutions with 0, 100,150 and 200 μg/dl zinc (V0, V1, V2 and V3 respectively) were compared. The viability of oocytes isolated from ovaries vitrified-warmed in the highest concentration of zinc (V3) was significantly higher after 24 than in the control V0 group (72.99 vs 85.97). Progression to the MII stage, fertilization and cleavage by 48 h was also higher in the V3 than V0 control group (35.55 vs 44.73), (47.67 vs 63.74), (28.72 vs 43.03) (P < 0.05) respectively. These results indicate that supplementation of vitrification medium for intact ovaries with zinc can improve the oocyte viability and in vitro maturation-fertilization rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes.

    PubMed

    Hwang, Grace; Sun, Fengyun; O'Brien, Marilyn; Eppig, John J; Handel, Mary Ann; Jordan, Philip W

    2017-05-01

    SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis. The infertility phenotypes of females with a Zp3-Cre -driven conditional knockout (cKO) of Smc5 demonstrated that maternally expressed SMC5 protein is essential for early embryogenesis. Interestingly, protein levels of SMC5/6 complex components in oocytes decline as wild-type females age. When SMC5/6 complexes were completely absent in oocytes during meiotic resumption, homologous chromosomes failed to segregate accurately during meiosis I. Despite what appears to be an inability to resolve concatenation between chromosomes during meiosis, localization of topoisomerase IIα to bivalents was not affected; however, localization of condensin along the chromosome axes was perturbed. Taken together, these data demonstrate that the SMC5/6 complex is essential for the formation of segregation-competent bivalents during meiosis I, and findings suggest that age-dependent depletion of the SMC5/6 complex in oocytes could contribute to increased incidence of oocyte aneuploidy and spontaneous abortion in aging females. © 2017. Published by The Company of Biologists Ltd.

  9. Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck.

    PubMed Central

    Marchington, D R; Hartshorne, G M; Barlow, D; Poulton, J

    1997-01-01

    While mtDNA polymorphisms at single base positions are common, the overwhelming majority of the mitochondrial genomes within a single individual are usually identical. When there is a point-mutation difference between a mother and her offspring, there may be a complete switching of mtDNA type within a single generation. It is generally assumed that there is a genetic bottleneck whereby a single or small number of founder mtDNA(s) populate the organism, but it is not known at which stages the restriction/amplification of mtDNA subtype(s) occur, and this uncertainty impedes antenatal diagnosis for mtDNA disorders. Length polymorphisms in homopolymeric tracts have been demonstrated in the large noncoding region of mtDNA. We have developed a new method, T-PCR (trimmed PCR), to quantitate heteroplasmy for two of these tracts (D310 and D16189). D310 variation is sufficient to indicate clonal origins of tissues and single oocytes. Tissues from normal individuals often possessed more than one length variant (heteroplasmy). However, there was no difference in the pattern of the length variants between somatic tissues in any control individual when bulk samples were taken. Oocytes from normal women undergoing in vitro fertilization were frequently heteroplasmic for length variants, and in two cases the modal length of the D310 tract differed in individual oocytes from the same woman. These data suggest that a restriction/amplification event, which we attribute to clonal expansion of founder mtDNA(s), has occurred by the time oocytes are mature, although further segregation may occur at a later stage. In contrast to controls, the length distribution of the D310 tract varied between tissues in a patient with heteroplasmic mtDNA rearrangements, suggesting that these mutants influence segregation. These findings have important implications for the genetic counselling of patients with pathogenic mtDNA mutations. Images Figure 2 Figure 1 Figure 3 Figure 4 Figure 5 PMID:9012414

  10. Human oocyte cryopreservation in infertility and oncology.

    PubMed

    Porcu, Eleonora; Bazzocchi, Antonia; Notarangelo, Leonardo; Paradisi, Roberto; Landolfo, Chiara; Venturoli, Stefano

    2008-12-01

    To evaluate the present state of research and clinical application of human oocyte cryopreservation in infertility and oncology. Recent literature documents have an increasing interest in cryopreserving human eggs. A number of studies report on different freezing protocols and various types of clinical application. Increasing attention is paid to vitrification as an alternative to slow cooling for oocyte cryopreservation. Several studies cover the modification of meiotic spindle during cryopreservation in order to assess the less damaging cryopreservation system. The first births with cryopreserved oocytes in cancer patients are reported. Egg freezing may circumvent the ethical and legal concerns regarding embryo cryopreservation, increase assisted reproduction flexibility and be a concrete option to save fertility in women with cancer. Recently, egg survival and pregnancy rates improved, with the birth of more than 500 children. The birth rate per thawed oocyte is around 5-6%. As regards safety, data on birth defects seems to be reassuring so far but must be monitored by an international registry. Comparative studies between slow freezing and vitrification in the same patient population are needed to elucidate pros and cons of each technique.

  11. Is the oocyte quality affected by endometriosis? A review of the literature.

    PubMed

    Sanchez, Ana Maria; Vanni, Valeria Stella; Bartiromo, Ludovica; Papaleo, Enrico; Zilberberg, Eran; Candiani, Massimo; Orvieto, Raoul; Viganò, Paola

    2017-07-12

    Endometriosis is an estrogen-dependent chronic inflammatory condition that affects women in their reproductive period causing infertility and pelvic pain. The disease, especially at the ovarian site has been shown to have a detrimental impact on ovarian physiology. Indeed, sonographic and histologic data tend to support the idea that ovarian follicles of endometriosis patients are decreased in number and more atretic. Moreover, the local intrafollicular environment of patients affected is characterized by alterations of the granulosa cell compartment including reduced P450 aromatase expression and increased intracellular reactive oxygen species generation. However, no comprehensive evaluation of the literature addressing the effect of endometriosis on oocyte quality from both a clinical and a biological perspective has so far been conducted. Based on this systematic review of the literature, oocytes retrieved from women affected by endometriosis are more likely to fail in vitro maturation and to show altered morphology and lower cytoplasmic mitochondrial content compared to women with other causes of infertility. Results from meta-analyses addressing IVF outcomes in women affected would indicate that a reduction in the number of mature oocytes retrieved is associated with endometriosis while a reduction in fertilization rates is more likely to be associated with minimal/mild rather than with moderate/severe disease. However, evidence in this field is still far to be conclusive, especially with regards to the effects of different stages of the disease and to the impact of patients' previous medical/surgical treatment(s).

  12. Occurrence of lymph node metastasis in early-stage parotid gland cancer.

    PubMed

    Stenner, Markus; Molls, Christoph; Luers, Jan C; Beutner, Dirk; Klussmann, Jens P; Huettenbrink, Karl-Bernd

    2012-02-01

    Lymph node metastasis is one of the most important factors in therapy and prognosis for patients with parotid gland cancer. Nevertheless, the extent of the primary tumor resection and the necessity of a neck dissection still is a common issue. Since little is known about lymph node metastasis in early-stage parotid gland cancer, the purpose of the present study was to evaluate the occurrence of lymph node metastases in T1 and T2 carcinomas and its impact on local control and survival. We retrospectively analyzed 70 patients with early-stage (T1 and T2) primary parotid gland cancer. All patients were treated with parotidectomy and an ipsilateral neck dissection from 1987 to 2009. Clinicopathological and survival parameters were calculated. The median follow-up time was 51.7 months. A positive pathological lymph node stage (pN+) was found in 21.4% of patients with a significant correlation to the clinical lymph node stage (cN) (p = 0.061). There were no differences in the clinical and histopathological data between pN- and pN+ patients. In 73.3% of pN+ patients, the metastases were located intraparotideal. The incidence of occult metastases (pN+/cN-) was 17.2%. Of all patients with occult metastases, 30.0% had extraparotideal lymphatic spread. A positive lymph node stage significantly indicated a poorer 5-year overall as well as 5-year disease-free survival rate compared to pN- patients (p = 0.048; p = 0.011). We propose total parotidectomy in combination with at least a level II-III selective neck dissection in any case of early-stage parotid gland cancer.

  13. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes

    USGS Publications Warehouse

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.

    2003-01-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  14. Anti-Müllerian hormone is produced heterogeneously in primate preantral follicles and is a potential biomarker for follicle growth and oocyte maturation in vitro.

    PubMed

    Xu, Jing; Xu, Fuhua; Letaw, John H; Park, Byung S; Searles, Robert P; Ferguson, Betsy M

    2016-12-01

    The main goals of this study were to investigate the expression of anti-Müllerian hormone (AMH) and its receptor (AMHR2) during follicular development in primates, and to evaluate the potential of AMH as a biomarker for follicle growth and oocyte maturation in vitro. The mRNA and protein expression of AMH and AMHR2 were determined using isolated follicles and ovarian sections from rhesus macaques (n = 4) by real-time PCR and immunohistochemistry, respectively. Isolated secondary follicles were cultured individually. Follicle growth and media AMH concentrations were assessed by ELISA. The mRNA expression profiles, obtained from RNA sequencing, of in vitro- and in vivo-developed antral follicles were compared. Secondary follicles from additional animals (n = 35) were cultured. Follicle growth, oocyte maturation, and media AMH concentrations were evaluated for forecasting follicular development in vitro by AMH levels. AMH immunostaining was heterogeneous in the population of preantral follicles that were also stained for AMHR2. The mRNA expression profiles were comparable between in vivo- and in vitro-developed follicles. AMH levels produced by growing follicles were higher than those of nongrowing follicles in culture. With a cutoff value of 1.40 ng/ml, 85 % of nongrowing follicles could be identified while eliminating only 5 % of growing follicles. Growing follicles that generated metaphase II-stage oocytes secreted greater amounts of AMH than did those yielding immature germinal vesicle-stage oocytes. AMH, co-expressed with AMHR2, was produced heterogeneously by preantral follicles in macaques with levels correlated positively with follicle growth and oocyte maturation. AMH may serve as a biomarker for primate follicular development in vitro.

  15. Birth of Healthy Offspring following ICSI in In Vitro-Matured Common Marmoset (Callithrix jacchus) Oocytes

    PubMed Central

    Takahashi, Tsukasa; Hanazawa, Kisaburo; Inoue, Takashi; Sato, Kenya; Sedohara, Ayako; Okahara, Junko; Suemizu, Hiroshi; Yagihashi, Chie; Yamamoto, Masafumi; Eto, Tomoo; Konno, Yusuke; Okano, Hideyuki; Suematsu, Makoto; Sasaki, Erika

    2014-01-01

    Intracytoplasmic sperm injection (ICSI), an important method used to treat male subfertility, is applied in the transgenic technology of sperm-mediated gene transfer. However, no study has described successful generation of offspring using ICSI in the common marmoset, a small non-human primate used as a model for biomedical translational research. In this study, we investigated blastocyst development and the subsequent live offspring stages of marmoset oocytes matured in vitro and fertilized by ICSI. To investigate the optimal timing of performing ICSI, corrected immature oocytes were matured in vitro and ICSI was performed at various time points (1–2 h, 2–4 h, 4–6 h, 6–8 h, and 8–10 h after extrusion of the first polar body (PB)). Matured oocytes were then divided randomly into two groups: one was used for in vitro fertilization (IVF) and the other for ICSI. To investigate in vivo development of embryos followed by ICSI, 6-cell- to 8-cell-stage embryos and blastocysts were nonsurgically transferred into recipient marmosets. Although no significant differences were observed in the fertilization rate of blastocysts among ICSI timing after the first PB extrusion, the blastocyst rate at 1–2 h was lowest among groups at 2–4 h, 4–6 h, 6–8 h, and 8–10 h. Comparing ICSI to IVF, the fertilization rates obtained in ICSI were higher than in IVF (p>0.05). No significant difference was noted in the cleaved blastocyst rate between ICSI and IVF. Following the transfer of 37 ICSI blastocysts, 4 of 20 recipients became pregnant, while with the transfer of 21 6-cell- to 8-cell-stage ICSI embryos, 3 of 8 recipients became pregnant. Four healthy offspring were produced and grew normally. These are the first marmoset offspring produced by ICSI, making it an effective fertilization method for marmosets. PMID:24751978

  16. Physiology and Endocrinology Symposium: influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature.

    PubMed

    Paula-Lopes, F F; Lima, R S; Satrapa, R A; Barros, C M

    2013-03-01

    High environmental temperatures during the hot months of the year reduce reproductive performance in cattle. Summer heat stress depression in fertility is a multifactorial problem; however, there is evidence that the bovine germinal vesicle and maturing oocyte, as well as the early embryo, are major targets of the deleterious effects of heat stress. Such adverse effects are less pronounced in heat-tolerant breeds (Bos indicus) than heat-sensitive breeds (Bos taurus). This genetic variation results from the greater thermoregulatory ability and cellular thermoresistance of heat-tolerant breeds. Heat-induced oocyte cellular damage occurs in both cytoplasmic and nuclear compartments. Heat shock has been shown to reduce oocyte nuclear maturation, induce apoptosis, compromise oocyte cytoskeleton, and impair oocyte mitochondrial function and developmental competence. However, the oocyte cytoplasm is more susceptible to heat shock than the nucleus. This effect is greater for Bos taurus than Bos indicus oocytes. The detrimental effects of heat shock are also critical during the first cleavage divisions when most of the embryonic genome is inactive; however, the bovine embryo becomes more resistant to increased temperature as it proceeds through development. Several studies demonstrated that Bos indicus embryos are more thermotolerant than Bos taurus embryos. Adaptive changes involved in acquisition of thermotolerance are likely derived from changes in gene expression and (or) activity of biochemical molecules that control cellular functions against stress. Recently, molecules such as IGF-I and caspase inhibitor z-DEVD-fmk have been shown to exert a thermoprotective role, rescuing heat-induced oocyte and embryo cellular damage and developmental competence. Therefore, cattle genotype and thermoprotective molecules can be considered as an alternative to modulate the effects of increased temperature in reproductive function.

  17. A comparison of the Cook single lumen immature ovum IVM needle to the Steiner-Tan pseudo double lumen flushing needle for oocyte retrieval for IVM.

    PubMed

    Rose, B I; Laky, D

    2013-06-01

    This study compared the impact of using the Steiner-Tan pseudo double lumen needle for antral follicle oocyte retrieval to using a conventional non-flushing needle. The Steiner-Tan needle has a much smaller dead space than the needles commonly used for IVM oocyte retrievals. This was a retrospective cohort study. The patient population was determined by the time period in which a patient underwent IVM in a single physician's IVF practice. The following data was abstracted from clinical and embryology records: oocytes retrieved, oocytes matured, early maturing oocytes, oocytes fertilized, embryo quality measures, retrieval time, needle punctures, clot formation, and clinical pregnancy rate. The Steiner-Tan needle did not increase the number of oocytes retrieved. It also did not increase the time required for retrieval. However, flushing of antral follicles significantly decreased clot formation in fluid aspirates. Use of the Steiner-Tan needle also significantly decreased the number of vaginal needle punctures during each case. There was a trend toward improved embryo quality, but statistical power was inadequate to show a difference. The primary benefit of the Steiner-Tan needle was on the embryological aspects of IVM. Decreased blood and blood clots in the aspirates made an IVM retrieval more like conventional IVF for the embryologist. The patient also experienced less tissue trauma without increasing anesthesia or surgical time. There was no improvement in the number of oocytes retrieved, but based on the results, we hypothesized that oocytes were more commonly retrieved from slightly large follicles than when using a routine needle.

  18. Primary Surgery vs Radiotherapy for Early Stage Oral Cavity Cancer.

    PubMed

    Ellis, Mark A; Graboyes, Evan M; Wahlquist, Amy E; Neskey, David M; Kaczmar, John M; Schopper, Heather K; Sharma, Anand K; Morgan, Patrick F; Nguyen, Shaun A; Day, Terry A

    2018-04-01

    Objective The goal of this study is to determine the effect of primary surgery vs radiotherapy (RT) on overall survival (OS) in patients with early stage oral cavity squamous cell carcinoma (OCSCC). In addition, this study attempts to identify factors associated with receiving primary RT. Study Design Retrospective cohort study. Setting National Cancer Database (NCDB, 2004-2013). Subjects and Methods Reviewing the NCDB from 2004 to 2013, patients with early stage I to II OCSCC were identified. Kaplan-Meier estimates of survival, Cox regression analysis, and propensity score matching were used to examine differences in OS between primary surgery and primary RT. Multivariable logistic regression analysis was performed to identify factors associated with primary RT. Results Of the 20,779 patients included in the study, 95.4% (19,823 patients) underwent primary surgery and 4.6% (956 patients) underwent primary RT. After adjusting for covariates, primary RT was associated with an increased risk of mortality (adjusted hazard ratio [aHR], 1.97; 99% confidence interval [CI], 1.74-2.22). On multivariable analysis, factors associated with primary RT included age ≥70 years, black race, Medicaid or Medicare insurance, no insurance, oral cavity subsite other than tongue, clinical stage II disease, low-volume treatment facilities, and earlier treatment year. Conclusion Primary RT for early stage OCSCC is associated with increased mortality. Approximately 5% of patients receive primary RT; however, this percentage is decreasing. Patients at highest risk for receiving primary RT include those who are elderly, black, with public insurance, and treated at low-volume facilities.

  19. In vitro differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization.

    PubMed

    Silvestris, Erica; Cafforio, Paola; D'Oronzo, Stella; Felici, Claudia; Silvestris, Franco; Loverro, Giuseppe

    2018-01-03

    Are the large cells derived from cultured DEAD box polypeptide 4 (DDX4)-positive oogonial stem cells (OSCs), isolated from the ovarian cortex of non-menopausal and menopausal women, oocyte-like cells? Under appropriate culture conditions, DDX4-positive OSCs from non-menopausal and menopausal women differentiate into large haploid oocyte-like cells expressing the major oocyte markers growth differentiation factor 9 (GDF-9) and synaptonemal complex protein 3 (SYCP3) and then enter meiosis. The recent reports of OSCs in the ovaries of non-menopausal and menopausal women suggest that neo-oogenesis is inducible during ovarian senescence. However, several questions remain regarding the isolation of these cells, their spontaneous maturation in vitro, and the final differentiation state of the resulting putative oocytes. DDX4-positive OSCs were obtained from 19 menopausal and 13 non-menopausal women (who underwent hysterectomy for uterine fibroma, ovarian cyst, or other benign pathologies) and cultured for up to 3 weeks. Large and small cells were individually isolated and typed for early and late differentiation markers. Ovarian cortex fragments were processed by immuno-magnetic separation using a rabbit anti-human DDX4 antibody and the positive populations were measured by assessing both FRAGILIS and stage-specific embryonic antigen 4 (SSEA-4) expression. After 3 weeks in culture, large oocyte-like cells were individually isolated by DEPArray based on PKH26 red staining and cell size determination. GDF-9 and SYCP3 as final, and developmental pluripotency-associated protein 3 (DPPA3) as primordial, germline markers were measured by droplet digital PCR. The haploid versus diploid chromosomal content of chromosomes X and 5 was investigated using fluorescence in situ hybridization (FISH). SSEA-4+ and FRAGILIS+ subsets of DDX4-positive populations were present at lower mean levels in menopausal (SSEA-4+: 46.7%; FRAGILIS+: 47.5%) than in non-menopausal (SSEA-4+: 64

  20. [Clinical Advanced in Early-stage ALK-positive Non-small Cell Lung Cancer Patients].

    PubMed

    Gao, Qiongqiong; Jiang, Xiangli; Huang, Chun

    2017-02-20

    Lung cancer is the leading cause of cancer death in China. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, with the majority of the cases diagnosed at the advanced stage. Molecular targeted therapy is becoming the focus attention for advanced NSCLC. Echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene (EML4-ALK) is among the most common molecular targets of NSCLC; its specific small-molecule tyrosine kinase inhibitors (TKIs) are approved for use in advanced NSCLC cases of ALK-positive. However, the influence of EML4-ALK fusion gene on the outcome of early-stage NSCLC cases and the necessity of application of TKIs for early-stage ALK-positive NSCLC patients are still uncertain. In this paper, we summarized the progression of testing methods for ALK-positive NSCLC patients as well as clinicopathological implication, outcome, and necessity of application of TKIs for early-stage ALK-positive NSCLC patients.