Sample records for early stellar evolution

  1. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  2. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  3. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  4. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less

  5. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  6. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  7. Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshifts 0.4 and 0.8

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer

    2010-03-01

    We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.

  8. The assembly of stellar haloes in massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    Massive (Mstellar >= 5×1010 M⊙) Early-Type Galaxies (ETGs) must build an outer stellar envelope over cosmic time in order to account for their remarkable size evolution. This is similar to what occurs to nearby Late-Type Galaxies (LTGs), which create their stellar haloes out of the debris of lower mass systems. We analysed the outer parts of massive ETGs at z < 1 by exploiting the Hubble Ultra Deep Field imaging. These galaxies store 10-30% of their stellar mass at distances 10 < R/kpc < 50, in contrast to the low percentages (< 5%) found for LTGs. We find evidence for a progressive outskirt development with redshift driven solely via merging.

  9. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  10. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  11. Stellar nucleosynthesis and chemical evolution of the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1988-01-01

    Current theoretical models of nucleosynthesis (N) in stars are reviewed, with an emphasis on their implications for Galactic chemical evolution. Topics addressed include the Galactic population II red giants and early N; N in the big bang; star formation, stellar evolution, and the ejection of thermonuclearly evolved debris; the chemical evolution of an idealized disk galaxy; analytical solutions for a closed-box model with continuous infall; and nuclear burning processes and yields. Consideration is given to shell N in massive stars, N related to degenerate cores, and the types of observational data used to constrain N models. Extensive diagrams, graphs, and tables of numerical data are provided.

  12. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    NASA Astrophysics Data System (ADS)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  13. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan future multiband, high-resolution observations on high-redshift star-forming and quiescent galaxies with next-generation facilities.

  14. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, Brian D.; O’Shea, Brian W.; Beers, Timothy C.

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation andmore » evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.« less

  15. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  16. New insight into the physics of atmospheres of early type stars

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.

    1981-01-01

    The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested.

  17. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  18. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  19. VEGAS-SSS: A VST Early-Type GAlaxy Survey: Analysis of Small Stellar System

    NASA Astrophysics Data System (ADS)

    Cantiello, M.

    VEGAS-SSS is a program devoted to study the properties of small stellar systems (SSSs) around bright galaxies, built on the VEGAS survey. At completion, the survey will have collected detailed photometric information of ˜ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, SBF, etc.) and the clustered light (compact stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  1. Stellar Parameter Determination With J-Plus Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Whitten, Devin D.

    2017-10-01

    The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.

  2. Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Ciotti, Luca; Negri, Andrea; Ostriker, Jeremiah P.

    2018-04-01

    A recent determination of the relationships between the X-ray luminosity of the ISM (L X) and the stellar and total mass for a sample of nearby early-type galaxies (ETGs) is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z ≃ 2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions, and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different L X values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed L X; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.

  3. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  4. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages (<10Myr), XRBs may not have fully formed. Therefore, these observations provide constraints for the expected X-ray emission from XRBs in the early Universe. Post-starburst galaxies, selected by the strength of the Hδ equivalent width (> 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  5. VEGAS-SSS: A VST Programme to Study the Satellite Stellar Systems around Bright Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; Capaccioli, M.; Napolitano, N.; Grado, A.; Limatola, L.; Paolillo, M.; Iodice, E.; Romanowsky, A. J.; Forbes, D. A.; Raimondo, G.; Spavone, M.; La Barbera, F.; Puzia, T. H.; Schipani, P.

    2015-03-01

    The VEGAS-SSS programme is devoted to studying the properties of small stellar systems (SSSs) in and around bright galaxies, built on the VLT Survey Telescope early-type galaxy survey (VEGAS), an ongoing guaranteed time imaging survey distributed over many semesters (Principal Investigator: Capaccioli). On completion, the VEGAS survey will have collected detailed photometric information of ~ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, surface brightness fluctuations, etc.) and the distribution of clustered light (compact ''small'' stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  6. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) and its successor, APOGEE-2

    NASA Astrophysics Data System (ADS)

    Majewski, S. R.; APOGEE Team; APOGEE-2 Team

    2016-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) of Sloan Digital Sky Survey III (SDSS-III) has produced a large catalog of high resolution ({R = 22 500}), high quality (S/N > 100), infrared (H-band) spectra for stars throughout all stellar populations of the Milky Way, including in regions veiled by significant dust opacity. APOGEE's half million spectra collected on > 163 000 unique stars, with time series information via repeat visits to each star, are being applied to numerous problems in stellar populations, Galactic astronomy, and stellar astrophysics. From among the early results of the APOGEE project - which span from measurements of Galactic dynamics, to multi-element chemical maps of the disk and bulge, new views of the interstellar medium, explorations of stellar companions, the chemistry of star clusters, and the discovery of rare stellar species - I highlight a few results that demonstrate APOGEE's unique ability to sample and characterize the Galactic disk and bulge. Plans are now under way for an even more ambitious successor to APOGEE: the six-year, dual-hemisphere APOGEE-2 project. Both phases of APOGEE feature a strong focus on targets having asteroseismological measurements from either Kepler or {CoRoT}, from which it is possible to derive relatively precise stellar ages. The combined APOGEE and APOGEE-2 databases of stellar chemistry, dynamics and ages constitute an unusually comprehensive, systematic and homogeneous resource for constraining models of Galactic evolution.

  7. Multiplicity in Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  8. Evolution of solitary density waves in stellar winds of early-type stars: A simple explanation of discrete absorption component behavior

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Klein, Larry; Altner, Bruce

    1994-01-01

    We model the evolution of a density shell propagating through the stellar wind of an early-type star, in order to investigate the effects of such shells on UV P Cygni line profiles. Unlike previous treatments, we solve the mass, momentum, and energy conservation equations, using an explicit time-differencing scheme, and present a parametric study of the density, velocity, and temperature response. Under the assumed conditions, relatively large spatial scale, large-amplitude density shells propagate as stable waves through the supersonic portion of the wind. Their dynamical behavior appears to mimic propagating 'solitary waves,' and they are found to accelerate at the same rate as the underlying steady state stellar wind (i.e., the shell rides the wind). These hydrodynamically stable structures quantitatively reproduce the anomalous 'discrete absorption component' (DAC) behavior observed in the winds of luminous early-type stars, as illustrated by comparisons of model predictions to an extensive International Ultraviolet Explorer (IUE) time series of spectra of zeta Puppis (O4f). From these comparisons, we find no conclusive evidence indicative of DACs accelerating at a significantly slower rate than the underlying stellar wind, contrary to earlier reports. In addition, these density shells are found to be consistent within the constraints set by the IR observations. We conclude that the concept of propagating density shells should be seriously reconsidered as a possible explanation of the DAC phenomenon in early-type stars.

  9. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  10. TRACING REJUVENATION EVENTS IN NEARBY S0 GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Antonietta; Bianchi, Luciana; Thilker, David A.

    2011-08-01

    With the aim of characterizing rejuvenation processes in early-type galaxies, we analyzed five barred S0 galaxies showing a prominent outer ring in ultraviolet (UV) imaging. We analyzed Galaxy Evolution Explorer far-UV (FUV) and near-UV (NUV), and optical data using stellar population models and estimated the age and the stellar mass of the entire galaxies and the UV-bright ring structures. Outer rings consist of young ({approx}<200 Myr old) stellar populations, accounting for up to 70% of the FUV flux but containing only a few percent of the total stellar mass. Integrated photometry of the whole galaxies places four of these objectsmore » on the green valley, indicating a globally evolving nature. We suggest such galaxy evolution is likely driven by bar-induced instabilities, i.e., inner secular evolution, that conveys gas to the nucleus and the outer rings. At the same time, H I observations of NGC 1533 and NGC 2962 suggest external gas re-fueling can play a role in the rejuvenation processes of such galaxies.« less

  11. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  12. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.

    2017-08-01

    Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.

  13. Convective penetration in a young sun

    NASA Astrophysics Data System (ADS)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  14. Early dynamical evolution of young substructured clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  15. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  16. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  17. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less

  18. Delayed Gratification Habitable Zones (DG-HZs): When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. A.

    2002-09-01

    Late in the Sun's evolution it, like all low and moderate mass stars, it will burn as a red giant, generating 1000s of solar luminosities for a few tens of millions of years. A dozen years ago this stage of stellar evolution was predicted to create observable sublimation signatures in systems where Kuiper Belts (KBs) are extant (Stern et al. 1990, Nature, 345, 305); recently, the SWAS spacecraft detected such systems (Melnick et al. 2001, 412, 160). During the red giant phase, the habitable zone of our solar system will lie in the region where Triton, Pluto-Charon, and KBOs orbit. Compared to the 1 AU habitable zone where Earth resided early in the solar system's history, this "delayed gratification habitable zone (DG-HZ)" will enjoy a far less biologically hazardous environment-- with far lower harmful UV radiation levels from the Sun, and a far quieter collisional environment. Objects like Triton, Pluto-Charon, and KBOs, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Sun's DG-HZ may only be of academic interest owing to its great separation from us in time. However, several 108 approximately solar-type Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our solar system (and as inferred in numerous main sequence stellar disk systems), then DG-HZs form a kind of niche habitable zone that is likely to be numerically common in the galaxy. I will show the calculated temporal evolution of DG-HZs around various stellar types using modern stellar evolution luminosity tracks, and then discuss various aspects of DG-HZs, including the effects of stellar pulsations and mass loss winds. This work was supported by NASA's Origins of Solar Systems Program.

  19. Early dynamical evolution of substructured stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2015-08-01

    It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.

  20. Convective penetration in stars

    NASA Astrophysics Data System (ADS)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; Constantino, Tom; Popov, M. V.; Walder, Rolf; Folini, Doris; TOFU Collaboration

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC, currently being developed at the University of Exeter. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework (FP7/2007-2013)/ERC Grant agreement no. 320478.

  1. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; hide

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  2. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  3. The applicability of the viscous α-parameterization of gravitational instability in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2010-01-01

    We study numerically the applicability of the effective-viscosity approach for simulating the effect of gravitational instability (GI) in disks of young stellar objects with different disk-to-star mass ratios ξ . We adopt two α-parameterizations for the effective viscosity based on Lin and Pringle [Lin, D.N.C., Pringle, J.E., 1990. ApJ 358, 515] and Kratter et al. [Kratter, K.M., Matzner, Ch.D., Krumholz, M.R., 2008. ApJ 681, 375] and compare the resultant disk structure, disk and stellar masses, and mass accretion rates with those obtained directly from numerical simulations of self-gravitating disks around low-mass (M∗ ∼ 1.0M⊙) protostars. We find that the effective viscosity can, in principle, simulate the effect of GI in stellar systems with ξ≲ 0.2- 0.3 , thus corroborating a similar conclusion by Lodato and Rice [Lodato, G., Rice, W.K.M., 2004. MNRAS 351, 630] that was based on a different α-parameterization. In particular, the Kratter et al.'s α-parameterization has proven superior to that of Lin and Pringle's, because the success of the latter depends crucially on the proper choice of the α-parameter. However, the α-parameterization generally fails in stellar systems with ξ≳ 0.3 , particularly in the Classes 0 and I phases of stellar evolution, yielding too small stellar masses and too large disk-to-star mass ratios. In addition, the time-averaged mass accretion rates onto the star are underestimated in the early disk evolution and greatly overestimated in the late evolution. The failure of the α-parameterization in the case of large ξ is caused by a growing strength of low-order spiral modes in massive disks. Only in the late Class II phase, when the magnitude of spiral modes diminishes and the mode-to-mode interaction ensues, may the effective viscosity be used to simulate the effect of GI in stellar systems with ξ≳ 0.3 . A simple modification of the effective viscosity that takes into account disk fragmentation can somewhat improve the performance of α-models in the case of large ξ and even approximately reproduce the mass accretion burst phenomenon, the latter being a signature of the early gravitationally unstable stage of stellar evolution [Vorobyov, E.I., Basu, S., 2006. ApJ 650, 956]. However, further numerical experiments are needed to explore this issue.

  4. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  5. 1961-2011: Fifty years of Hayashi tracks

    NASA Astrophysics Data System (ADS)

    Palla, Francesco

    2012-09-01

    Fifty years after the seminal paper by Prof. C. Hayashi, the field of pre-main sequence (PMS) evolution still plays a fundamental role in observational and theoretical astrophysics. In this contribution, I highlight the contribution made by Hayashi in establishing the theoretical foundation of early stellar evolution. Then, I discuss the changes of the classical theory introduced by the inclusion of protostellar evolution in PMS models and present selected results on young stars.

  6. Carbon Monoxide Isotopes: On the Trail of Galactic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1995-01-01

    From the early days of the discovery of radio emission from carbon monoxide it was realized that it offered unusual potential for under- standing the chemical evolution of the Galaxy and external galaxies through measurements of molecular isotopes. These results bear on stellar nucleosynthesis, star formation, and gases in the interstellar medium. Progress in isotopic radio measurements will be reviewed.

  7. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  8. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2012-09-01

    Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.

  9. The evolution of early-type galaxies in nearby clusters: breaking the age-metallicity degeneracy with Spitzer IRS Blue Peak-Up Imaging

    NASA Astrophysics Data System (ADS)

    Bressan, Alessandro; Buson, Lucio; Clemens, Marcel; Danese, Luigi; Granato, Gian Luigi; Panuzzo, Pasquale; Rampazzo, Roberto; Silva, Laura; Valdes, Jose Ramon

    2005-06-01

    We have shown with Cycle 1 observations that Spitzer has the capability of disentangling age and metallicity in old stellar populations. By looking to the broad emission feature left by dust enshrouded asymptotic giant branch stars above 9.7 microns, Spitzer IRS can provide direct evidence that the colour- magnitude relation of Virgo ellipticals is mainly driven by metallicity. However, with the IRS spectrograph we can only probe the bright tail of the colour-magnitude relation, and only in the nearest cluster. We propose to use IRS Blue Peak-Up, the only Spitzer band that looks directly in the core of that spectral feature, to reach fainter galaxies. We will perform a thorough investigation of early type galaxies along the colour-magnitude relation in Virgo and in Coma clusters. These observations, when coupled with already existing IRAC and Optical-NIR observations, will allow a) an unbiased census of the stellar populations in cluster early type galaxies; b) an estimate of the AGB material recycled into the ISM in these systems; c) a direct check of the universality of the colour- magnitude relation on a wide range of magnitudes; d) a spatial study of the stellar populations within the galaxies, e.g. investigating differences between bulge and disk populations within S0; e) the most secure reference frame with which to compare the evolution of early type galaxies in other environments (groups and field).

  10. New Directions in Giant Planet Formation

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew

    The proposed research will explore the limits of the core accretion mechanism for forming giant planets, both in terms of timescale and orbital distance. This theoretical research will be useful in interpreting the results of ongoing exoplanet searches. The effects of radiogenic heating and aerodynamic accretion of pebbles and boulders will be included in time-dependent models of atmospheric structure and growth. To investigate these issues, we will develop and publicly share a protoplanet atmospheric evolution code as an extension of the MESA stellar evolution code. By focusing on relevant processes in the early stages of giant planet formation, we can refine model predictions for exoplanet searches at a wide range of stellar ages and distances from the host star.

  11. Stellar Archaeology: New Science with Old Stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2011-01-01

    The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars are relics from the high-redshift Universe, they probe the chemical and dynamical conditions as the Milky Way began to form, the origin and evolution of the elements, and the physics of nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. I will present exemplary metal-poor stars with which these different topics can be addressed. Those are the most metal-poor stars in the Galaxy ([Fe/H] < -5.0), and metal-poor stars with strong overabundances of heavy elements, in particular uranium and thorium, which can be used to radioactively date the stars to be 13 Gyr old. I will then transition to recent discoveries of metal-poor ([Fe/H] -3.0) stars in the least luminous dwarf satellites orbiting the Milky Way. Their stellar chemical signatures support the concept that small systems, analogous to the surviving dwarf galaxies, were the building blocks of the Milky Way's low-metallicity halo. This opens a new window for studying galaxy formation through stellar chemistry.

  12. Galactic chemical evolution in hierarchical formation models

    NASA Astrophysics Data System (ADS)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  13. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre < outer), while the gradients for most massive galaxies are negative. The metallicity gradients show a clear peak around velocity dispersion log10 σe ≈ 2.0, which corresponds to the critical mass ˜3 × 1010 M⊙ of the break in the mass-size relation. Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  14. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  15. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  16. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less

  17. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  18. White dwarfs in the Gaia era

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Gentile-Fusillo, N.; Cummings, J.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.

    2018-04-01

    The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M ⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.

  19. Revisiting the bulge-halo conspiracy - II. Towards explaining its puzzling dependence on redshift

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Sonnenfeld, Alessandro; Grylls, Philip; Zanisi, Lorenzo; Nipoti, Carlo; Chae, Kyu-Hyun; Bernardi, Mariangela; Petrillo, Carlo Enrico; Huertas-Company, Marc; Mamon, Gary A.; Buchan, Stewart

    2018-04-01

    We carry out a systematic investigation of the total mass density profile of massive (log Mstar/M⊙ ˜ 11.5) early-type galaxies and its dependence on redshift, specifically in the range 0 ≲ z ≲ 1. We start from a large sample of Sloan Digital Sky Survey early-type galaxies with stellar masses and effective radii measured assuming two different profiles, de Vaucouleurs and Sérsic. We assign dark matter haloes to galaxies via abundance matching relations with standard ΛCDM profiles and concentrations. We then compute the total, mass-weighted density slope at the effective radius γ΄, and study its redshift dependence at fixed stellar mass. We find that a necessary condition to induce an increasingly flatter γ΄ at higher redshifts, as suggested by current strong lensing data, is to allow the intrinsic stellar profile of massive galaxies to be Sérsic and the input Sérsic index n to vary with redshift as n(z) ∝ (1 + z)δ, with δ ≲ -1. This conclusion holds irrespective of the input Mstar-Mhalo relation, the assumed stellar initial mass function (IMF), or even the chosen level of adiabatic contraction in the model. Secondary contributors to the observed redshift evolution of γ΄ may come from an increased contribution at higher redshifts of adiabatic contraction and/or bottom-light stellar IMFs. The strong lensing selection effects we have simulated seem not to contribute to this effect. A steadily increasing Sérsic index with cosmic time is supported by independent observations, though it is not yet clear whether cosmological hierarchical models (e.g. mergers) are capable of reproducing such a fast and sharp evolution.

  20. SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars - radially dependent metal outflow versus IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin

    2018-05-01

    In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.

  1. A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Loeb, Abraham; Johnson, Benjamin D.; Conroy, Charlie; Behroozi, Peter

    2018-02-01

    We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties—including halo mass, stellar mass, star formation rate, gas mass, and metallicity—to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z ≈ 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array.

  2. The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies

    NASA Astrophysics Data System (ADS)

    Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.

    2017-01-01

    We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.

  3. The Evolution of the Protoplanetary Disk Recorded by Nucleosynthetic Isotope Variations of Variable Stellar Origin in Refractory Inclusions

    NASA Astrophysics Data System (ADS)

    Schönbächler, M.; Lai, Y.-J.; Henshall, T.; Fehr, M. A.; Cook, D. L.; Bullock, E. S.

    2017-07-01

    New CAI data confirm the homogeneous distribution of the short-lived p-process isotope 92Nb in the early solar system with the exception of CAIs with group II REE pattern that show increased 92Nb abundances.

  4. Stellar population models in the Near-Infrared (Ph.D. thesis)

    NASA Astrophysics Data System (ADS)

    Meneses-Goytia, Sofia

    2015-11-01

    The study of early-type elliptical and lenticular galaxies provides important information about the formation and evolution of galaxies in the early Universe. These distant systems cannot be studied by looking at their individual stars but information can still be obtained by studying their unresolved spectrum in detail. During my PhD I have constructed accurate unresolved stellar population models for populations of a single age and metallicity in the near-infrared range. The extension to the NIR is important for the study of early-type galaxies, since these galaxies are predominantly old and therefore emit most of their light in this wavelength range. The models are based on the NASA IRTF library of empirical stellar spectra. Integrating these spectra along theoretical isochrones, while assuming an initial mass function, we have produced model spectra of single age-metallicity stellar populations at an intermediate resolution. Comparison to literature results show that our models are well suited for studying stellar populations in unresolved galaxies. They are particularly useful for studying the old and intermediate-age stellar populations in galaxies, relatively free from contamination of young stars and extinction by dust. Subsequently, we use the models to fit the observed spectra of globular clusters and galaxies, to derive their age distribution, chemical abundances and IMF properties. We show that the contribution of AGB stars to the galaxy spectrum is clearly larger in the field than it is in the Fornax cluster. This implies that the environment plays an important role in driving the evolutionary histories of the galaxies.

  5. Active Galactic Nuclei with James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    I'll discuss several ways in which JWST will probe the cosmic history of accretion onto supermassive black holes, and the co-evolution of host galaxies. Key investigations include: 1) Measurements of redshift, luminosity, and AGN fraction for obscured AGN candidates identified by other missions. 2) Measurements of AGN hosts at all redshifts, including stellar masses, morphology, interactions, and star formation rates. 3) Measurements of stellar mass and black hole mass in AGN at high redshift, to chart the early history of black hole and galaxy growth.

  6. The signatures of the parental cluster on field planetary systems

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  7. A Panchromatic View of Star-Forming Regions in the Magellanic Clouds: Characterizing Physical and Evolutionary Parameters of 1,000 Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Carlson, Lynn R.

    2010-01-01

    I discuss newly discovered Young Stellar Objects (YSOs) in several star-forming regions in the Magellanic Clouds. I exploit the synergy between infrared photometry from the Spitzer SAGE (Surveying the Agents of Galaxy Evolution) legacy programs, near-infrared and optical photometry from ground-based surveys, and HST imaging to characterize young stellar populations. This reveals a variety of Main Sequence Stars and Proto-Stars over a wide range of evolutionary stages. Through SED fitting, I characterize the youngest, embedded, infrared-bright YSOs. Complementary color-Magnitude analysis and isochrone fitting of optical data allows a statistical description of more evolved, unembedded stellar and protostellar populations within these same regions. I examine the early evolution of Magellanic star clusters, including propagating and triggered star formation, and take a step toward characterizing evolutionary timescales for YSOs. In this talk, I present an overview of the project and exemplify the analysis by focusing on NGC 602 in the SMC and Henize 206 in the LMC as examples. The SAGE Project is supported by NASA/Spitzer grant 1275598 and NASA NAG5-12595.

  8. POET: Planetary Orbital Evolution due to Tides

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  9. Exploring stellar evolution with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2018-05-01

    Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.

  10. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  11. Estimating precise metallicity and stellar mass evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  12. Chemical element transport in stellar evolution models

    PubMed Central

    Cassisi, Santi

    2017-01-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints. PMID:28878972

  13. Chemical element transport in stellar evolution models.

    PubMed

    Salaris, Maurizio; Cassisi, Santi

    2017-08-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

  14. Galaxy evolution in protoclusters

    NASA Astrophysics Data System (ADS)

    Muldrew, Stuart I.; Hatch, Nina A.; Cooke, Elizabeth A.

    2018-01-01

    We investigate galaxy evolution in protoclusters using a semi-analytic model applied to the Millennium Simulation, scaled to a Planck cosmology. We show that the model reproduces the observed behaviour of the star formation history (SFH) both in protoclusters and the field. The rate of star formation peaks ∼0.7 Gyr earlier in protoclusters than in the field and declines more rapidly afterwards. This results in protocluster galaxies forming significantly earlier: 80 per cent of their stellar mass is already formed by z = 1.4, but only 45 per cent of the field stellar mass has formed by this time. The model predicts that field and protocluster galaxies have similar average specific star-formation rates (sSFR) at z > 3, and we find evidence of an enhancement of star formation in the dense protoclusters at early times. At z < 3, protoclusters have lower sSFRs, resulting in the disparity between the SFHs. We show that the stellar mass functions of protoclusters are top-heavy compared with the field due to the early formation of massive galaxies, and the disruption and merging of low-mass satellite galaxies in the main haloes. The fundamental cause of the different SFHs and mass functions is that dark matter haloes are biased tracers of the dark matter density field: the high density of haloes and the top-heavy halo mass function in protoclusters result in the early formation then rapid merging and quenching of galaxies. We compare our results with observations from the literature and highlight which observables provide the most informative tests of galaxy formation.

  15. STELLAR BORON ABUNDANCES NEAR THE MAIN-SEQUENCE TURNOFF OF THE OPEN CLUSTER NGC 3293 AND IMPLICATIONS FOR THE EFFICIENCY OF ROTATIONALLY DRIVEN MIXING IN STELLAR ENVELOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, Charles R.; Lennon, Daniel J.; Langer, Norbert

    2016-06-10

    Spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph covering the B iii resonance line have been obtained for 10 early-B stars near the turnoff of the young Galactic open cluster NGC 3293. This is the first sample of boron abundance determinations in a single, clearly defined population of early-B stars that also covers a substantial range of projected rotational velocities. In most of these stars we detect partial depletion of boron at a level consistent with that expected for rotational mixing in single stars, but inconsistent with expectations for depletion from close binarymore » evolution. However, our results do suggest that the efficiency of rotational mixing is at or slightly below the low end of the range predicted by the available theoretical calculations. The two most luminous targets observed have a very large boron depletion and may be the products of either binary interactions or post-main-sequence evolution.« less

  16. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  17. Thousands of Stellar SiO masers in the Galactic center: The Bulge Asymmetries and Dynamic Evolution (BAaDE) survey

    NASA Astrophysics Data System (ADS)

    Sjouwerman, Loránt O.; Pihlström, Ylva M.; Rich, R. Michael; Morris, Mark R.; Claussen, Mark J.

    2017-01-01

    A radio survey of red giant SiO sources in the inner Galaxy and bulge is not hindered by extinction. Accurate stellar velocities (<1 km/s) are obtained with minimal observing time (<1 min) per source. Detecting over 20,000 SiO maser sources yields data comparable to optical surveys with the additional strength of a much more thorough coverage of the highly obscured inner Galaxy. Modeling of such a large sample would reveal dynamical structures and minority populations; the velocity structure can be compared to kinematic structures seen in molecular gas, complex orbit structure in the bar, or stellar streams resulting from recently infallen systems. Our Bulge Asymmetries and Dynamic Evolution (BAaDE) survey yields bright SiO masers suitable for follow-up Galactic orbit and parallax determination using VLBI. Here we outline our early VLA observations at 43 GHz in the northern bulge and Galactic plane (0

  18. Spheroidal Populated Star Systems

    NASA Astrophysics Data System (ADS)

    Angeletti, Lucio; Giannone, Pietro

    2008-10-01

    Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.

  19. Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation

    NASA Astrophysics Data System (ADS)

    Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya

    2015-11-01

    The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.

  20. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  1. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  2. A Comprehensive Stellar Astrophysical Study of the Old Open Cluster M67 with Kepler

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Vanderburg, Andrew; K2 M67 Team

    2016-06-01

    M67 is among the best studied of all star clusters. Being at an age and metallicity very near solar, at an accessible distance of 850 pc with low reddening, and rich in content (over 1000 members including main-sequence dwarfs, a well populated subgiant branch and red giant branch, white dwarfs, blue stragglers, sub-subgiants, X-ray sources and CVs), M67 is a cornerstone of stellar astrophysics.The K2 mission (Campaign 5) has obtained long-cadence observations for 2373 stars, both within an optimized central superaperture and as specified targets outside the superaperture. 1,432 of these stars are likely cluster members based on kinematic and photometric criteria.We have extracted light curves and corrected for K2 roll systematics, producing light curves with noise characteristics qualitatively similar to Kepler light curves of stars of similar magnitudes. The data quality is slightly poorer than for field stars observed by K2 due to crowding near the cluster core, but the data are of sufficient quality to detect seismic oscillations, binary star eclipses, flares, and candidate transit events. We are in the process of uploading light curves and various diagnostic files to MAST; light curves and supporting data will also be made available on ExoFOP.Importantly, several investigators within the M67 K2 team are independently doing light curve extractions and analyses for confirmation of science results. We also are adding extensive ground-based supporting data, including APOGEE near-infrared spectra, TRES and WIYN optical spectra, LCOGT photometry, and more.Our science goals encompass asteroseismology and stellar evolution, alternative stellar evolution pathways in binary stars, stellar rotation and angular momentum evolution, stellar activity, eclipsing binaries and beaming, and exoplanets. We will present early science results as available by the time of the meeting, and certainly including asteroseismology, blue stragglers and sub-subgiants, and newly discovered eclipsing binaries.This work is supported by NASA grant NNX15AW24A to the University of Wisconsin - Madison.

  3. Stellar Populations. A User Guide from Low to High Redshift

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Renzini, Alvio

    2011-09-01

    This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar populations, and then using galaxies at low ! and high redshifts and clusters of galaxies to set tight constraints on possible IMF variations in space or time. In Chapter 9 a phenomenological model of galaxy evolution is presented which illustrates a concrete application of the stellar population tools described in the previous chapters. Finally, Chapter 10 is dedicated to the chemical evolution on the scale of galaxies, clusters of galaxies and the whole Universe.

  4. The imprint of dark matter haloes on the size and velocity dispersion evolution of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Posti, Lorenzo; Nipoti, Carlo; Stiavelli, Massimo; Ciotti, Luca

    2014-05-01

    Early-type galaxies (ETGs) are observed to be more compact, on average, at z ≳ 2 than at z ≃ 0, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter halo density as a function of the time of galaxy quenching. We explore this hypothesis by studying the distribution of halo central velocity dispersion (σ0) and half-mass radius (rh) as functions of halo mass M and redshift z, in a cosmological Λ cold dark matter N-body simulation. In the range 0 ≲ z ≲ 2.5, we find σ0∝M0.31-0.37 and rh∝M0.28-0.32, close to the values expected for homologous virialized systems. At fixed M in the range 1011 M⊙ ≲ M ≲ 5.5 × 1014 M⊙ we find σ0 ∝ (1 + z)0.35 and rh ∝ (1 + z)-0.7. We show that such evolution of the halo scaling laws is driven by individual haloes growing in mass following the evolutionary tracks σ0 ∝ M0.2 and rh ∝ M0.6, consistent with simple dissipationless merging models in which the encounter orbital energy is accounted for. We compare the N-body data with ETGs observed at 0 ≲ z ≲ 3 by populating the haloes with a stellar component under simple but justified assumptions: the resulting galaxies evolve consistently with the observed ETGs up to z ≃ 2, but the model has difficulty in reproducing the fast evolution observed at z ≳ 2. We conclude that a substantial fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes structural properties.

  5. LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu

    2016-09-20

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the openmore » cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.« less

  6. Searching for the pulsar in SN1987A

    NASA Astrophysics Data System (ADS)

    Staveley-Smith, Lister; Manchester, Dick; Zanardo, Giovanna

    2013-10-01

    We propose to search for a pulsar in the remnant of SN1987A. The existence of a neutron star formed after the explosion of the progenitor, Sk -69-202, is predicted by stellar evolution theory. Early neutrino detection by three separate ground-based detectors appears to confirm the formation of neutrons. Moreover, recent Compact Array observations hint at the presence of a flat-spectrum component near the centre of the remnant, possibly the result of synchrotron emission from a pulsar-powered nebula. However, the initial mass of the SN1987A progenitor is close to the limit where collapse into a black hole is predicted. It is therefore possible that fallback of matter onto the neutron star resulted in later formation of a black hole, or even a quark star. Detection or otherwise of the SN1987A pulsar would make a powerful contribution to stellar evolution theory.

  7. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  8. Cluster galaxy population evolution from the Subaru Hyper Suprime-Cam survey: brightest cluster galaxies, stellar mass distribution, and active galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration

    2018-01-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.

  9. The Dependence of Galaxy Clustering on Stellar-mass Assembly History for LRGs

    NASA Astrophysics Data System (ADS)

    Montero-Dorta, Antonio D.; Pérez, Enrique; Prada, Francisco; Rodríguez-Torres, Sergio; Favole, Ginevra; Klypin, Anatoly; Cid Fernandes, Roberto; González Delgado, Rosa M.; Domínguez, Alberto; Bolton, Adam S.; García-Benito, Rubén; Jullo, Eric; Niemiec, Anna

    2017-10-01

    We analyze the spectra of 300,000 luminous red galaxies (LRGs) with stellar masses {M}* ≳ {10}11 {M}⊙ from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). By studying their star formation histories, we find two main evolutionary paths converging into the same quiescent galaxy population at z˜ 0.55. Fast-growing LRGs assemble 80% of their stellar mass very early on (z˜ 5), whereas slow-growing LRGs reach the same evolutionary state at z˜ 1.5. Further investigation reveals that their clustering properties on scales of ˜1-30 Mpc are, at a high level of significance, also different. Fast-growing LRGs are found to be more strongly clustered and reside in overall denser large-scale structure environments than slow-growing systems, for a given stellar-mass threshold. Our results show a dependence of clustering on a property that is directly related to the evolution of galaxies, I.e., the stellar-mass assembly history, for a homogeneous population of similar mass and color. In a forthcoming work, we will address the halo connection in the context of galaxy assembly bias.

  10. Evolution of the Stellar Mass–Metallicity Relation. I. Galaxies in the z ∼ 0.4 Cluster Cl0024

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha; Kirby, Evan N.; Moran, Sean M.; Ellis, Richard S.; Treu, Tommaso

    2018-03-01

    We present the stellar mass–stellar metallicity relationship (MZR) in the galaxy cluster Cl0024+1654 at z ∼ 0.4 using full-spectrum stellar population synthesis modeling of individual quiescent galaxies. The lower limit of our stellar mass range is M * = 109.7 M ⊙, the lowest galaxy mass at which individual stellar metallicity has been measured beyond the local universe. We report a detection of an evolution of the stellar MZR with observed redshift at 0.037 ± 0.007 dex per Gyr, consistent with the predictions from hydrodynamical simulations. Additionally, we find that the evolution of the stellar MZR with observed redshift can be explained by an evolution of the stellar MZR with the formation time of galaxies, i.e., when the single stellar population (SSP)-equivalent ages of galaxies are taken into account. This behavior is consistent with stars forming out of gas that also has an MZR with a normalization that decreases with redshift. Lastly, we find that over the observed mass range, the MZR can be described by a linear function with a shallow slope ([{Fe}/{{H}}]\\propto (0.16+/- 0.03){log}{M}* ). The slope suggests that galaxy feedback, in terms of mass-loading factor, might be mass-independent over the observed mass and redshift range.

  11. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  12. Improving 1D Stellar Models with 3D Atmospheres

    NASA Astrophysics Data System (ADS)

    Mosumgaard, Jakob Rørsted; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2017-10-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  13. HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx

    2013-03-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or amore » very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.« less

  14. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  15. Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Parigger, Christian G.; Woods, Alexander C.

    2017-03-01

    This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.

  16. Astrobiology: Life on Earth (and Elsewhere?)

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  17. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram andmore » their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.« less

  18. Star clusters in evolving galaxies

    NASA Astrophysics Data System (ADS)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  19. Astrophysics with Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Ciesla, Fred

    2016-09-01

    Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.

  20. A Physical Parameterization of the Evolution of X-ray Binary Emission

    NASA Astrophysics Data System (ADS)

    Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael

    2018-01-01

    The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.

  1. Testing stellar evolution models with detached eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Higl, J.; Weiss, A.

    2017-12-01

    Stellar evolution codes, as all other numerical tools, need to be verified. One of the standard stellar objects that allow stringent tests of stellar evolution theory and models, are detached eclipsing binaries. We have used 19 such objects to test our stellar evolution code, in order to see whether standard methods and assumptions suffice to reproduce the observed global properties. In this paper we concentrate on three effects that contain a specific uncertainty: atomic diffusion as used for standard solar model calculations, overshooting from convective regions, and a simple model for the effect of stellar spots on stellar radius, which is one of the possible solutions for the radius problem of M dwarfs. We find that in general old systems need diffusion to allow for, or at least improve, an acceptable fit, and that systems with convective cores indeed need overshooting. Only one system (AI Phe) requires the absence of it for a successful fit. To match stellar radii for very low-mass stars, the spot model proved to be an effective approach, but depending on model details, requires a high percentage of the surface being covered by spots. We briefly discuss improvements needed to further reduce the freedom in modelling and to allow an even more restrictive test by using these objects.

  2. Reevaluating Old Stellar Populations

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Eldridge, J. J.

    2018-05-01

    Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

  3. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    NASA Astrophysics Data System (ADS)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reines, Amy E.; Volonteri, Marta, E-mail: reines@umich.edu

    Scaling relations between central black hole (BH) mass and host galaxy properties are of fundamental importance to studies of BH and galaxy evolution throughout cosmic time. Here we investigate the relationship between BH mass and host galaxy total stellar mass using a sample of 262 broad-line active galactic nuclei (AGNs) in the nearby universe (z < 0.055), as well as 79 galaxies with dynamical BH masses. The vast majority of our AGN sample is constructed using Sloan Digital Sky Survey spectroscopy and searching for Seyfert-like narrow-line ratios and broad Hα emission. BH masses are estimated using standard virial techniques. Wemore » also include a small number of dwarf galaxies with total stellar masses M{sub stellar} ≲ 10{sup 9.5} M{sub ⊙} and a subsample of the reverberation-mapped AGNs. Total stellar masses of all 341 galaxies are calculated in the most consistent manner feasible using color-dependent mass-to-light ratios. We find a clear correlation between BH mass and total stellar mass for the AGN host galaxies, with M{sub BH} ∝ M{sub stellar}, similar to that of early-type galaxies with dynamically detected BHs. However, the relation defined by the AGNs has a normalization that is lower by more than an order of magnitude, with a BH-to-total stellar mass fraction of M{sub BH}/M{sub stellar} ∼ 0.025% across the stellar mass range 10{sup 8} ≤ M{sub stellar}/M{sub ⊙} ≤ 10{sup 12}. This result has significant implications for studies at high redshift and cosmological simulations in which stellar bulges cannot be resolved.« less

  5. Testing Models of Stellar Structure and Evolution I. Comparison with Detached Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2018-05-01

    We present the results of an analysis aimed at testing the accuracy and precision of the PARSEC v1.2S library of stellar evolution models, combined with a Bayesian approach, to infer stellar parameters. We mainly employ the online DEBCat catalogue by Southworth, a compilation of detached eclipsing binary systems with published measurements of masses and radii to ˜ 2 per cent precision. We select a sample of 318 binary components, with masses between 0.10 and 14.5 solar units, and distances between 1.3 pc and ˜ 8 kpc for Galactic objects and ˜ 44-68 kpc for the extragalactic ones. The Bayesian analysis applied takes on input effective temperature, radius, and [Fe/H], and their uncertainties, returning theoretical predictions for other stellar parameters. From the comparison with dynamical masses, we conclude inferred masses are precisely derived for stars on the main-sequence and in the core-helium-burning phase, with respective uncertainties of 4 per cent and 7 per cent, on average. Subgiants and red giants masses are predicted within 14 per cent, and early asymptotic giant branch stars within 24 per cent. These results are helpful to further improve the models, in particular for advanced evolutionary stages for which our understanding is limited. We obtain distances and ages for the binary systems and compare them, whenever possible, with precise literature estimates, finding excellent agreement. We discuss evolutionary effects and the challenges associated with the inference of stellar ages from evolutionary models. We also provide useful polynomial fittings to theoretical zero-age main-sequence relations.

  6. The Evolution and Stability of Massive Stars

    NASA Astrophysics Data System (ADS)

    Shiode, Joshua Hajime

    Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the envelope has the potential to unbind a significant amount of mass in close proximity to a star's eventual explosion as a core collapse supernova.

  7. The Magellanic Bridge Cluster NGC 796: Deep Optical AO Imaging Reveals the Stellar Content and Initial Mass Function of a Massive Open Cluster

    NASA Astrophysics Data System (ADS)

    Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica

    2018-04-01

    NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.

  8. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  9. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.

  10. Centennial History of the Carnegie Institution of Washington

    NASA Astrophysics Data System (ADS)

    Sandage, Allan

    2013-01-01

    Foreword Richard A. Meserve; Acknowledgements; Prologue; Part I. Before the Beginning (1542-1904): 1. A telegram; 2. The origin of a name; 3. Three observatories for Mount Wilson before the real one; 4. The creation of the Carnegie Institution and its initial Astronomy Advisory Committee; Part II. Creation of the Observatory and the First Scientific Results: 5. The instruments of detection: solar telescopes, coelostats, spectrographs and spectra; 6. Snow, hale, frost and gale: just the right people to study storms on the sun; 7. Tower telescopes and magnetic fields and cycles; 8. Pioneers of peering: the scientific staff in the early years (1904-9); 9. Solar physics: the intermediate years (1910-30); 10. Yet more solar physics: motions on the surface, clocks in the gravity field and the reality of prominences; Part III. The Beginning of Nighttime Sidereal Astronomy at Mount Wilson: 11. The coming of the 60-inch and 100-inch reflectors; 12. Life on the mountain; 13. Anatomy of an observatory; Part IV. Preparation for an Understanding of Stellar Evolution and Galactic Structure: 14. Galactic structure in the raw; 15. Spectral classification and the invention of spectroscopic parallaxes; 16. Radial velocity; 17. Globular star clusters and the galactocentric revolution; 18. Galactic rotation: Stromberg, Lindblad and Oort; 19. The Carnegie Meridian Astrometry Department at the Dudley Observatory; 20. Absolute magnitudes from direct parallaxes and stellar motions; 21. Threads leading to the population concept that became the fabric of evolution; Part V. Physics of the Stars and the Interstellar Medium: 22. Five problems in astrophysics; 23. Long-term research associates and short-term visitors; 24. Interstellar gas, instruments and the spiral arms of the galaxy; Part VI. Observational Cosmology and the Code of Stellar Evolution: 25. Observational cosmology I: galaxy classification and the discovery of cepheids; 26. Observational cosmology II: the expansion of the universe and the search for the curvature of space; 27. Down more corridors of time; 28. The observational approach to stellar evolution; Epilogue; Abbreviations; Notes; Bibliography; Index.

  11. Centennial History of the Carnegie Institution of Washington

    NASA Astrophysics Data System (ADS)

    Sandage, Allan

    2005-03-01

    Foreword Richard A. Meserve; Acknowledgements; Prologue; Part I. Before the Beginning (1542-1904): 1. A telegram; 2. The origin of a name; 3. Three observatories for Mount Wilson before the real one; 4. The creation of the Carnegie Institution and its initial Astronomy Advisory Committee; Part II. Creation of the Observatory and the First Scientific Results: 5. The instruments of detection: solar telescopes, coelostats, spectrographs and spectra; 6. Snow, hale, frost and gale: just the right people to study storms on the sun; 7. Tower telescopes and magnetic fields and cycles; 8. Pioneers of peering: the scientific staff in the early years (1904-9); 9. Solar physics: the intermediate years (1910-30); 10. Yet more solar physics: motions on the surface, clocks in the gravity field and the reality of prominences; Part III. The Beginning of Nighttime Sidereal Astronomy at Mount Wilson: 11. The coming of the 60-inch and 100-inch reflectors; 12. Life on the mountain; 13. Anatomy of an observatory; Part IV. Preparation for an Understanding of Stellar Evolution and Galactic Structure: 14. Galactic structure in the raw; 15. Spectral classification and the invention of spectroscopic parallaxes; 16. Radial velocity; 17. Globular star clusters and the galactocentric revolution; 18. Galactic rotation: Stromberg, Lindblad and Oort; 19. The Carnegie Meridian Astrometry Department at the Dudley Observatory; 20. Absolute magnitudes from direct parallaxes and stellar motions; 21. Threads leading to the population concept that became the fabric of evolution; Part V. Physics of the Stars and the Interstellar Medium: 22. Five problems in astrophysics; 23. Long-term research associates and short-term visitors; 24. Interstellar gas, instruments and the spiral arms of the galaxy; Part VI. Observational Cosmology and the Code of Stellar Evolution: 25. Observational cosmology I: galaxy classification and the discovery of cepheids; 26. Observational cosmology II: the expansion of the universe and the search for the curvature of space; 27. Down more corridors of time; 28. The observational approach to stellar evolution; Epilogue; Abbreviations; Notes; Bibliography; Index.

  12. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  13. A new technique for calculations of binary stellar evolution, with application to magnetic braking

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Joss, P. C.; Verbunt, F.

    1983-01-01

    The development of appropriate computer programs has made it possible to conduct studies of stellar evolution which are more detailed and accurate than the investigations previously feasible. However, the use of such programs can also entail some serious drawbacks which are related to the time and expense required for the work. One approach for overcoming these drawbacks involves the employment of simplified stellar evolution codes which incorporate the essential physics of the problem of interest without attempting either great generality or maximal accuracy. Rappaport et al. (1982) have developed a simplified code to study the evolution of close binary stellar systems composed of a collapsed object and a low-mass secondary. The present investigation is concerned with a more general, but still simplified, technique for calculating the evolution of close binary systems with collapsed binaries and mass-losing secondaries.

  14. Habitable Zone Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.; Lota, J.

    2012-12-01

    The location of the habitable zone around a star depends upon stellar luminosity and upon the properties of a potentially habitable planet such as its mass and near-surface volatile inventory. Stellar luminosity generally increases as a star ages whilst planetary properties change through time as a consequence of biological and geological evolution. Hence, the location of the habitable zone changes through time as a result of both stellar evolution and planetary evolution. Using the Earth's Phanerozoic temperature history as a constraint, it is shown that changes in our own habitable zone over the last 540 My have been dominated by planetary evolution rather than solar evolution. Furthermore, sparse data from earlier times suggests that planetary evolution may have dominated habitable zone development throughout our biosphere's history. Hence, the existence of a continuously habitable zone depends upon accidents of complex bio-geochemical evolution more than it does upon relatively simple stellar-evolution. Evolution of the inner margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations. Evolution of the outer margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations.

  15. Constraints on the Evolution of the Galaxy Stellar Mass Function I: Role of Star Formation, Mergers, and Stellar Stripping

    NASA Astrophysics Data System (ADS)

    Contini, E.; Kang, Xi; Romeo, A. D.; Xia, Q.

    2017-03-01

    We study the connection between the observed star formation rate-stellar mass (SFR-M *) relation and the evolution of the stellar mass function (SMF) by means of a subhalo abundance matching technique coupled to merger trees extracted from an N-body simulation. Our approach, which considers both galaxy mergers and stellar stripping, is to force the model to match the observed SMF at redshift z> 2, and let it evolve down to the present time according to the observed SFR-M * relation. In this study, we use two different sets of SMFs and two SFR-M * relations: a simple power law and a relation with a mass-dependent slope. Our analysis shows that the evolution of the SMF is more consistent with an SFR-M * relation with a mass-dependent slope, in agreement with predictions from other models of galaxy evolution and recent observations. In order to fully and realistically describe the evolution of the SMF, both mergers and stellar stripping must be considered, and we find that both have almost equal effects on the evolution of SMF at the massive end. Taking into account the systematic uncertainties in the observed data, the high-mass end of the SMF obtained by considering stellar stripping results in good agreement with recent observational data from the Sloan Digital Sky Survey. At {log} {M}* < 11.2, our prediction at z = 0.1 is close to Li & White data, but the high-mass end ({log} {M}* > 11.2) is in better agreement with D’Souza et al. data which account for more massive galaxies.

  16. The Outer Halos of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Arnaboldi, Magda; Longobardi, Alessia

    2015-04-01

    The outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.

  17. Demonstration of a Novel Method for Measuring Mass-loss Rates for Massive Stars

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Chick, William T.; Povich, Matthew S.

    2018-03-01

    The rate at which massive stars eject mass in stellar winds significantly influences their evolutionary path. Cosmic rates of nucleosynthesis, explosive stellar phenomena, and compact object genesis depend on this poorly known facet of stellar evolution. We employ an unexploited observational technique for measuring the mass-loss rates of O and early-B stars. Our approach, which has no adjustable parameters, uses the principle of pressure equilibrium between the stellar wind and the ambient interstellar medium for a high-velocity star generating an infrared bow shock nebula. Results for 20 bow-shock-generating stars show good agreement with two sets of theoretical predictions for O5–O9.5 main-sequence stars, yielding \\dot{M} = 1.3 × 10‑6 to 2 × 10‑9 {M}ȯ {yr}}-1. Although \\dot{M} values derived for this sample are smaller than theoretical expectations by a factor of about two, this discrepancy is greatly reduced compared to canonical mass-loss methods. Bow-shock-derived mass-loss rates are factors of 10 smaller than Hα-based measurements (uncorrected for clumping) for similar stellar types and are nearly an order of magnitude larger than P4+ and some other diagnostics based on UV absorption lines. Ambient interstellar densities of at least several cm‑3 appear to be required for formation of a prominent infrared bow shock nebula. Measurements of \\dot{M} for early-B stars are not yet compelling owing to the small number in our sample and the lack of clear theoretical predictions in the regime of lower stellar luminosities. These results may constitute a partial resolution of the extant “weak-wind problem” for late-O stars. The technique shows promise for determining mass-loss rates in the weak-wind regime.

  18. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  19. VizieR Online Data Catalog: Evolution of rotating very massive LC stars (Kohler, 2015)

    NASA Astrophysics Data System (ADS)

    Kohler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Grafener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2014-11-01

    A dense model grid with chemical composition appropriate for the Large Magellanic Cloud is presented. A one-dimensional hydrodynamic stellar evolution code was used to compute our models on the main sequence, taking into account rotation, transport of angular momentum by magnetic fields and stellar wind mass loss. We present stellar evolution models with initial masses of 70-500M⊙ and with initial surface rotational velocities of 0-550km/s. (2 data files).

  20. Stellar haloes in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    The Hubble Ultra Deep Field (HUDF) opens up an unique window to witness galaxy assembly at all cosmic distances. Thanks to its extraordinary depth, it is a privileged tool to beat the cosmological dimming, which affects any extragalactic observations and has a very strong dependence with redshift (1 +z)^4. In particular, massive (M_{stellar}>5 × 10^{10} M_⊙) Early Type Galaxies (ETGs) are the most interesting candidates for these studies, as they must grow in an inside-out fashion developing an extended stellar envelope/halo that accounts for their remarkable size evolution (˜5 times larger in the nearby Universe than at z=2-3). To this end we have analysed the 6 most massive ETGs at z <1 in the HUDF12. Because of the careful data reduction and the exhaustive treatment of the Point Spread Function (PSF), we are able to trace the galaxy surface brightness profiles up to the same levels as in the local Universe but this time at = 0.65 (31 mag arcsec^{-2} in all 8 HST bands, ˜ 29 mag arcsec^{-2} restframe or beyond 25 effective radii). This fact enables us to investigate the galactic outskirts or stellar haloes at a previously unexplored era, characterising their light and mass profiles, colors and for the first time the amount of mass in ongoing mergers.

  1. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  2. Radiative Feedback from Primordial Protostars and Final Mass of the First Stars

    NASA Technical Reports Server (NTRS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.

    2012-01-01

    In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.

  3. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    NASA Astrophysics Data System (ADS)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  4. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Van Grootel, V.; Bergeron, P.; Zong, W.; Dupret, M.-A.

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars—in particular their oxygen content and the stratification of their cores—is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  5. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.

    PubMed

    Giammichele, N; Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Bergeron, P; Zong, W; Dupret, M-A

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars-in particular their oxygen content and the stratification of their cores-is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  6. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  7. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2013-01-01

    Recent observations show evidence that high-z (z ˜ 2-3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ˜ 0. Such size evolution is most likely explained by the `dry merger sceanario'. However, previous studies based on this scenario cannot consistently explain the properties of both high-z compact massive ETGs and local ETGs. We investigate the effect of multiple sequential dry minor mergers on the size evolution of compact massive ETGs. From an analysis of the Millennium Simulation Data Base, we show that such minor (stellar mass ratio M2/M1 < 1/4) mergers are extremely common during hierarchical structure formation. We perform N-body simulations of sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. Typical mass ratios of these minor mergers are 1/20 < M2/M1 ≤q 1/10. We show that sequential minor mergers of compact satellite galaxies are the most efficient at promoting size growth and decreasing the velocity dispersion of compact massive ETGs in our simulations. The change of stellar size and density of the merger remnants is consistent with recent observations. Furthermore, we construct the merger histories of candidates for high-z compact massive ETGs using the Millennium Simulation Data Base and estimate the size growth of the galaxies through the dry minor merger scenario. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained during sequential minor mergers in our simulations. However, we note that our numerical result is only valid for merger histories with typical mass ratios between 1/20 and 1/10 with parabolic and head-on orbits and that our most efficient size-growth efficiency is likely an upper limit.

  8. POET: A Model for Planetary Orbital Evolution Due to Tides on Evolving Stars

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan; Zhang, Michael; Jackson, Brian

    2014-06-01

    We make publicly available an efficient, versatile, easy to use and extend tool for calculating the evolution of circular aligned planetary orbits due to the tidal dissipation in the host star. This is the first model to fully account for the evolution of the angular momentum of the stellar convective envelope by the tidal coupling, the transfer of angular momentum between the stellar convective and radiative zones, the effects of the stellar evolution on the tidal dissipation efficiency and stellar core and envelope spins, the loss of stellar convective zone angular momentum to a magnetically launched wind and frequency dependent tidal dissipation. This is only a first release and further development is under way to allow calculating the evolution of inclined and eccentric orbits, with the latter including the tidal dissipation in the planet and its feedback on planetary structure. Considerable effort has been devoted to providing extensive documentation detailing both the usage and the complete implementation details, in order to make it as easy as possible for independent groups to use and/or extend the code for their purposes. POET represents a significant improvement over some previous models for planetary tidal evolution and so has many astrophysical applications. In this article, we describe and illustrate several key examples.

  9. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter

    2014-08-20

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10{sup 10} M {sub ☉}. At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by themore » slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.« less

  10. Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie

    2018-04-01

    Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.

  11. M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets

    NASA Astrophysics Data System (ADS)

    Vidotto, A. A.; Jardine, M.; Morin, J.; Donati, J. F.; Opher, M.; Gombosi, T. I.

    2014-02-01

    We perform three-dimensional numerical simulations of stellar winds of early-M-dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass-loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures ptot (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planet's magnetic field and ptot, variations of up to a factor of 3 in ptot (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 per cent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M-dwarf stars like DT Vir, DS Leo and GJ 182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.

  12. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  13. EFFECT OF ENVIRONMENT ON GALAXIES' MASS-SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappellari, Michele

    2013-11-20

    The distribution of galaxies on the mass-size plane as a function of redshift or environment is a powerful test for galaxy formation models. Here we use integral-field stellar kinematics to interpret the variation of the mass-size distribution in two galaxy samples spanning extreme environmental densities. The samples are both identically and nearly mass-selected (stellar mass M {sub *} ≳ 6 × 10{sup 9} M {sub ☉}) and volume-limited. The first consists of nearby field galaxies from the ATLAS{sup 3D} parent sample. The second consists of galaxies in the Coma Cluster (Abell 1656), one of the densest environments for which good, resolvedmore » spectroscopy can be obtained. The mass-size distribution in the dense environment differs from the field one in two ways: (1) spiral galaxies are replaced by bulge-dominated disk-like fast-rotator early-type galaxies (ETGs), which follow the same mass-size relation and have the same mass distribution as in the field sample; (2) the slow-rotator ETGs are segregated in mass from the fast rotators, with their size increasing proportionally to their mass. A transition between the two processes appears around the stellar mass M {sub crit} ≈ 2 × 10{sup 11} M {sub ☉}. We interpret this as evidence for bulge growth (outside-in evolution) and bulge-related environmental quenching dominating at low masses, with little influence from merging. In contrast, significant dry mergers (inside-out evolution) and halo-related quenching drives the mass and size growth at the high-mass end. The existence of these two processes naturally explains the diverse size evolution of galaxies of different masses and the separability of mass and environmental quenching.« less

  14. The new galaxy evolution paradigm revealed by the Herschel surveys

    NASA Astrophysics Data System (ADS)

    Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine

    2018-01-01

    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.

  15. The Effects of Single and Close Binary Evolution on the Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.

    2013-06-01

    Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.

  16. Rotational stellar structures based on the Lagrangian variational principle

    NASA Astrophysics Data System (ADS)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi

    2017-06-01

    A new method for multi-dimensional stellar structures is proposed in this study. As for stellar evolution calculations, the Heney method is the defacto standard now, but basically assumed to be spherical symmetric. It is one of the difficulties for deformed stellar-evolution calculations to trace the potentially complex movements of each fluid element. On the other hand, our new method is very suitable to follow such movements, since it is based on the Lagrange coordinate. This scheme is also based on the variational principle, which is adopted to the studies for the pasta structures inside of neutron stars. Our scheme could be a major break through for evolution calculations of any types of deformed stars: proto-planets, proto-stars, and proto-neutron stars, etc.

  17. The Infrared Spectral Region of Stars

    NASA Astrophysics Data System (ADS)

    Jaschek, Carlos; Andrillat, Y.

    1991-09-01

    1. Stars in the infrared: results from IRAS H. J. G. L. M. Lamers and L. B. F. M. Watera; 2. What is expected from ISO J. P. Baluteau; 3. New infrared instrumentation S. Bensammar; 4. High resolution atomic spectroscopy in the infrared and its application to astrophysics S. Johansson; 5. Spectroscopy of early -type stars C. Jaschek; 6. Spectroscopy of late type stars U. F. Jøgensen; 7. Dust formation and evolution in circumstellar media J. P. J. Lafon; 8. The infrared solar spectrum N. Grevesse; 9. Symbiotic and related objects M. Hack; 10. Stellar photometry and spectrophotometry in the infrared R. F. Wing; 11. Stellar variability in the infrared A. Evans; 12. Circumstellar material in main sequence H. H. Aamann.

  18. Stellar mass and velocity functions of galaxies. Backward evolution and the fate of Milky Way siblings

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Buat, V.; Ilbert, O.

    2010-11-01

    Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.

  19. Cyberhubs: Virtual Research Environments for Astronomy

    NASA Astrophysics Data System (ADS)

    Herwig, Falk; Andrassy, Robert; Annau, Nic; Clarkson, Ondrea; Côté, Benoit; D’Sa, Aaron; Jones, Sam; Moa, Belaid; O’Connell, Jericho; Porter, David; Ritter, Christian; Woodward, Paul

    2018-05-01

    Collaborations in astronomy and astrophysics are faced with numerous cyber-infrastructure challenges, such as large data sets, the need to combine heterogeneous data sets, and the challenge to effectively collaborate on those large, heterogeneous data sets with significant processing requirements and complex science software tools. The cyberhubs system is an easy-to-deploy package for small- to medium-sized collaborations based on the Jupyter and Docker technology, which allows web-browser-enabled, remote, interactive analytic access to shared data. It offers an initial step to address these challenges. The features and deployment steps of the system are described, as well as the requirements collection through an account of the different approaches to data structuring, handling, and available analytic tools for the NuGrid and PPMstar collaborations. NuGrid is an international collaboration that creates stellar evolution and explosion physics and nucleosynthesis simulation data. The PPMstar collaboration performs large-scale 3D stellar hydrodynamics simulations of interior convection in the late phases of stellar evolution. Examples of science that is currently performed on cyberhubs, in the areas of 3D stellar hydrodynamic simulations, stellar evolution and nucleosynthesis, and Galactic chemical evolution, are presented.

  20. Constraining Stellar Population Models. I. Age, Metallicity and Abundance Pattern Compilation for Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane; Graves, Genevieve; Schiavon, Ricardo P.

    2014-01-01

    We present an extensive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavors, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the α elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels: in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbor them. Finally, using data on individual stars, we verify that stellar atmospheres become progressively polluted by CN(O)-processed material after they leave the main sequence. We also uncover evidence which suggests that the α elements Mg and Ca may originate from more than one nucleosynthetic production site. We estimate that our compilation incorporates all relevant analyses from the literature up to mid-2012. As an aid to investigators in the fields named above, we provide detailed electronic tables of the data upon which our work is based at http://www.astro.queensu.ca/people/Stephane_Courteau/roediger2013/index.html.

  1. Globular-cluster stars - Results of theoretical evolution and pulsation studies compared with the observations.

    NASA Technical Reports Server (NTRS)

    Iben, I., Jr.

    1971-01-01

    Survey of recently published studies on globular clusters, and comparison of stellar evolution and pulsation theory with reported observations. The theory of stellar evolution is shown to be capable of describing, in principle, the behavior of a star through all quasi-static stages. Yet, as might be expected, estimates of bulk properties obtained by comparing observations with results of pulsation and stellar atmosphere theory differ somewhat from estimates of these same properties obtained by comparing observations with results of evolution theory. A description is given of how such estimates are obtained, and suggestions are offered as to where the weak points in each theory may lie.

  2. Chemical enrichment in Ultra-Faint Dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Romano, Donatella

    2016-08-01

    Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

  3. Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela

    We study galaxy mass assembly and cosmic star formation rate (SFR) at high redshift (z ≳ 4), by comparing data from multiwavelength surveys with predictions from the GAlaxy Evolution and Assembly (gaea) model. gaea implements a stellar feedback scheme partially based on cosmological hydrodynamical simulations, which features strong stellar-driven outflows and mass-dependent timescales for the re-accretion of ejected gas. In previous work, we have shown that this scheme is able to correctly reproduce the evolution of the galaxy stellar mass function (GSMF) up to z ∼ 3. We contrast model predictions with both rest-frame ultraviolet (UV) and optical luminosity functionsmore » (LFs), which are mostly sensitive to the SFR and stellar mass, respectively. We show that gaea is able to reproduce the shape and redshift evolution of both sets of LFs. We study the impact of dust on the predicted LFs, and we find that the required level of dust attenuation is in qualitative agreement with recent estimates based on the UV continuum slope. The consistency between data and model predictions holds for the redshift evolution of the physical quantities well beyond the redshift range considered for the calibration of the original model. In particular, we show that gaea is able to recover the evolution of the GSMF up to z ∼ 7 and the cosmic SFR density up to z ∼ 10.« less

  4. Lithium in halo stars from standard stellar evolution

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.

    1990-01-01

    A grid has been constructed of theoretical evolution sequences of models for low-metallicity stars from the premain-sequence to the giant branch phases. The grid is used to study the history of surface Li abundance during standard stellar evolution. The Li-7 observations of halo stars by Spite and Spite (1982) and subsequent observations are synthesized to separate the halo stars by age. The theory of surface Li abundance is illustrated by following the evolution of a reference halo star model from the contracting fully convective premain sequence to the giant branch phase. The theoretical models are compared with observed Li abundances. The results show that the halo star lithium abundances can be explained in the context of standard stellar evolution theory using completely standard assumptions and physics.

  5. An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    van Zee, Liese

    The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.

  6. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  7. Probing stellar mass build-up in galaxies at z=4-7 with CANDELS and S-CANDELS

    NASA Astrophysics Data System (ADS)

    Song, Mimi; Finkelstein, Steven L.; Ashby, Matthew; Merlin, Emiliano

    2015-01-01

    Over the last few years the advent of the Hubble Space Telescope (HST) Wide Field Camera 3 has enabled us to build statistically significant samples of galaxies out to z=8. We have subsequently witnessed remarkable progress in our understanding of galaxy evolution in the early universe. However, our understanding of the galaxy stellar mass growth in this era has been limited due to the lack of rest-frame optical data at a comparable depth as the HST data. Here we present results on the galaxy stellar mass function at z=4-7 from a sample of ~7500 galaxies over an area of ~280 square arcmin in the CANDELS GOODS-South and North fields, as well as the Hubble Ultra Deep Field. Utilizing deep IRAC data from the S-CANDELS and IUDF10 programs to robustly constrain the stellar masses of galaxies in our sample, we measure the stellar-mass to rest-frame ultraviolet (UV) luminosity trends in each of our redshift bins. We convolve these trends with recent measurements of the rest-frame ultraviolet luminosity function to derive the stellar mass functions. Contrary to initial studies at these redshifts, we find steeper low-mass-end slopes (-1.6 at z=4, and -2.0 at z=7), similar to recent simulations. Our results provide the most accurate estimates to date of the cosmic stellar mass density over the first two billion years after the Big Bang.

  8. Search for Primitive Matter in the Solar System

    NASA Technical Reports Server (NTRS)

    Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.

    2017-01-01

    Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.

  9. Nucleosynthesis in relation to cosmology

    NASA Astrophysics Data System (ADS)

    El Eid, Mounib F.

    2018-04-01

    While the primordial (or Big Bang) nucleosynthesis delivers important clues about the conditions in the high red-shift universe (termed far-field cosmology), the nucleosynthesis of the heavy elements beyond iron by the r-process or the s-process deliver information about the early phase and history of the Galaxy (termed near-field cosmology). In particular, the r-process nucleosynthesis is unique, because it is a primary process that helps to associate individual stars with the composition of the protocloud. The present contribution is intended to give a brief overview about these nucleosynthesis processes and describe their link to the early universe, stellar evolution and to the chemical evolution of the Galaxy. The focus of this present contribution is on illumination the role of nucleosynthesis in the Universe. Owing to the complexity of this subject, a general scenario is more appealing to address interested readers.

  10. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  11. Dust formation at low metallicity

    NASA Astrophysics Data System (ADS)

    Ferrarotti, A. S.; Gail, H.-P.

    Stars between 3Modot and 25Modot reach their final stages of stellar evolution either as AGB (asymptotic giant branch) stars and finally become white dwarfs, or end in a supernova explosion. The last evolutionary stages, shortly before the final state, are regularly accompanied by stellar winds which lead to substantial mass loss and develop optically very thick dust shells. Mass loss for smaller and medium sized stars higher up on the AGB depends predominantly on the metallicity of the star. For Pop I metallicity, the mass loss is caused by dust condensation. This process is not possible for stars of small Z. Thus, their final evolution strongly depends on the possibility of dust formation. Our research focuses on the dependence of dust formation of the first stellar generation on Z and on the initial mass of the star. Furthermore, we investigate when dust formation becomes possible in stellar winds and the effects this process has on the evolution of the star at the final evolutionary stages. With synthetic AGB evolution models some important issues in stellar evolution can tried to be answered: (1) mass loss on the AGB, (2) the shift of the limit (γ>1) for the onset of dust driven winds with Z and (3) the critical Z when dust formation becomes possible.

  12. Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution.

    PubMed

    Stanghellini; Shaw; Balick; Blades

    2000-05-10

    Planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the Hubble Space Telescope Data Archive and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, and S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extragalactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe-specifically, that the genesis of PNe structure should relate strongly to the population type, and by inference the mass, of the progenitor star and less strongly on whether the central star is a member of a close binary system.

  13. Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars

    NASA Astrophysics Data System (ADS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Colín, Pedro; Ceverino, Daniel; Arraki, Kenza S.; Primack, Joel

    2015-01-01

    Despite recent success in forming realistic present-day galaxies, simulations still form the bulk of their stars earlier than observations indicate. We investigate the process of stellar mass assembly in low-mass field galaxies, a dwarf and a typical spiral, focusing on the effects of radiation from young stellar clusters on the star formation (SF) histories. We implement a novel model of SF with a deterministic low efficiency per free-fall time, as observed in molecular clouds. Stellar feedback is based on observations of star-forming regions, and includes radiation pressure from massive stars, photoheating in H II regions, supernovae and stellar winds. We find that stellar radiation has a strong effect on the formation of low-mass galaxies, especially at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component. This behaviour is evident in a variety of observations but had so far eluded analytical and numerical models without radiation feedback. Compared to supernovae alone, radiation feedback reduces the SF rate by a factor of ˜100 at z ≲ 2, yielding rising SF histories which reproduce recent observations of Local Group dwarfs. Stellar radiation also produces bulgeless spiral galaxies and may be responsible for excess thickening of the stellar disc. The galaxies also feature rotation curves and baryon fractions in excellent agreement with current data. Lastly, the dwarf galaxy shows a very slow reduction of the central dark matter density caused by radiation feedback over the last ˜7 Gyr of cosmic evolution.

  14. Rotation of low-mass stars - A new probe of stellar evolution

    NASA Technical Reports Server (NTRS)

    Pinsonneault, M. H.; Kawaler, Steven D.; Demarque, P.

    1990-01-01

    Models of stars of various masses and rotational parameters were developed and compared with observations of stars in open clusters of various ages in order to analyze the evolution of rotating stars from the early premain sequence to an age of 1.7 x 10 to the 9th yrs. It is shown that, for stars older than 10 to the 8th yrs and less massive than 1.1 solar mass, the surface rotation rates depend most strongly on the properties of the angular momentum loss. The trends of the currently available observations suggest that the rotation periods are a good indicator of the field-star ages.

  15. Results from the APOGEE IN-SYNC Orion: parameters and radial velocities for thousands of young stars in the Orion Complex.

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; SDSS Apogee IN-SYNC ancillary program Team

    2015-01-01

    I will present the results of our characterization of the dynamical status of the young stellar population in the Orion A star forming region. This is based on radial velocity measurements obtained within the SDSS-III Apogee IN-SYNC Orion Survey, which obtained high-resolution spectroscopy of ~3000 objects in the region, from the dense Orion Nebula Cluster - the prototypical nearby region of active massive star formation - to the low-density environments of the L1641 region. We find evidence for kinematic subclustering along the star forming filament, where the stellar component remains kinematically associated to the gas; in the ONC we find that the stellar population is supervirial and currently expanding. We rule out the existence of a controversial candidate foreground cluster to the south of the ONC. These results, complemented with an analysis of the spatial structure of the population, enables critical tests of theories that describe the formation and early evolution of Orion and young clusters in general.

  16. Introduction to Galactic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Matteucci, Francesca

    2016-04-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galaxies. I will show how, from these comparisons, one can derive important constraints on stellar nucleosynthesis and galaxy formation mechanisms. Most of the concepts described in this lecture can be found in the monograph by Matteucci (2012).

  17. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with the two-phase scenario proposed for the formation of ETGs. (f) Evidence of an early and fast quenching is found only in the most massive (M⋆ > 2 × 1011 M⊙) E galaxies of the sample, but not in spirals of similar mass, suggesting that halo quenching is not the main mechanism for the shut down of star formation in galaxies. Less massive E and disk galaxies show more extended SFHs and a slow quenching. (g) Evidence of fast quenching is also found in the nuclei of ETG and early spirals, with SFR and ΣSFR indicating that they can be the relic of the "red nuggets" detected at high redshift.

  18. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.

  19. Comparisons between stellar models and reliability of the theoretical models

    NASA Astrophysics Data System (ADS)

    Lebreton, Yveline; Montalbán, Josefina

    2010-07-01

    The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.

  20. Exploring the cosmic evolution of habitability with galaxy merger trees

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Hoskin, M. J.; Lane, M. A.; Brown, G. C.; Childs, H. J. T.; Greis, S. M. L.; Levan, A. J.

    2018-04-01

    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma-ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar-mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar-mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.

  1. Spin Evolution of Stellar Progenitors in Compact Binaries

    NASA Astrophysics Data System (ADS)

    Steinle, Nathan; Kesden, Michael

    2018-01-01

    Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.

  2. The Far Ultraviolet M-dwarf Evolution Survey (FUMES): Overview and Initial Results

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; France, Kevin; Youngblood, Allison

    2018-01-01

    M-dwarf stars are prime targets for exoplanet searches because of their close proximity and favorable properties for both planet detection and characterization, with current searches around these targets having already discovered several Earth-sized planets within their star’s habitable zones. However, the atmospheric characterization and potential habitability of these exoplanetary systems depends critically on the high-energy stellar radiation environment from X-rays to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey provided the first comprehensive assessment of the high-energy radiation field around old, planet hosting M-dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high-energy spectrum of young M-dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, introduce the Far Ultraviolet M-dwarf Evolution Survey (FUMES), a new HST-STIS observing campaign targeting 10 early-mid M dwarfs with known rotation periods, including 6 targets with known ages, to assess the evolution of the FUV radiation, including Lyα, of M-dwarf stars with stellar rotation period. We present the initial results of our survey characterizing the FUV emission features of our targets and the implications of our measurements for the evolution of the entire high-energy radiation environment around M-dwarfs from youth to old age.

  3. First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi

    2017-12-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.

  4. Stellar Mass and 3.4 μm M/L Ratio Evolution of Brightest Cluster Galaxies in COSMOS since z ∼ 1.0

    NASA Astrophysics Data System (ADS)

    Cooke, Kevin C.; Fogarty, Kevin; Kartaltepe, Jeyhan S.; Moustakas, John; O’Dea, Christopher P.; Postman, Marc

    2018-04-01

    We investigate the evolution of star formation rates (SFRs), stellar masses, and M/L 3.4 μm ratios of brightest cluster galaxies (BCGs) in the COSMOS survey since z ∼ 1 to determine the contribution of star formation to the growth-rate of BCG stellar mass over time. Through the spectral energy density (SED) fitting of the GALEX, CFHT, Subaru, Vista, Spitzer, and Herschel photometric data available in the COSMOS2015 catalog, we estimate the stellar mass and SFR of each BCG. We use a modified version of the iSEDfit package to fit the SEDs of our sample with both stellar and dust emission models, as well as constrain the impact of star formation history assumptions on our results. We find that in our sample of COSMOS BCGs, star formation evolves similarly to that in BCGs in samples of more massive galaxy clusters. However, compared to the latter, the magnitude of star formation in our sample is lower by ∼1 dex. Additionally, we find an evolution of BCG baryonic mass-to-light ratio (M/L 3.4 μm) with redshift which is consistent with a passively aging stellar population. We use this to build upon Wen et al.'s low-redshift νL 3.4 μm–M Stellar relation, quantifying a correlation between νL 3.4 μm and M Stellar to z ∼ 1. By comparing our results to BCGs in Sunyaev–Zel’dovich and X-ray-selected samples of galaxy clusters, we find evidence that the normalization of star formation evolution in a cluster sample is driven by the mass range of the sample and may be biased upwards by cool cores.

  5. Stellar Parameters, Chemical composition and Models of chemical evolution

    NASA Astrophysics Data System (ADS)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.

    2018-04-01

    We present an in-depth study of metal-poor stars, based high resolution spectra combined with newly released astrometric data from Gaia, with special attention to observational uncertainties. The results are compared to those of other studies, including Gaia benchmark stars. Chemical evolution models are discussed, highlighting few puzzles that are still affecting our understanding of stellar nucleosynthesis and of the evolution of our Galaxy.

  6. Planetary nebulae as standard candles. IV - A test in the Leo I group

    NASA Technical Reports Server (NTRS)

    Ciardullo, Robin; Jacoby, George H.; Ford, Holland C.

    1989-01-01

    In this paper, PN are used to determine accurate distances to three galaxies in the Leo I group - The E0 giant elliptical NGC 3379, its optical companion, the SB0 spiral NGC 3384, and the smaller E6 elliptical NGC 3377. In all three galaxies, the luminosity-specific PN number densities are roughly the same, and the derived stellar death rates are in remarkable agreement with the predictions of stellar evolution theory. It is shown that the shape of the forbidden O III 5007 A PN luminosity function is the same in each galaxy and indistinguishable from that observed in M31 and M81. It is concluded that the PN luminosity function is an excellent standard candle for early-type galaxies.

  7. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  8. A population of compact elliptical galaxies detected with the Virtual Observatory.

    PubMed

    Chilingarian, Igor; Cayatte, Véronique; Revaz, Yves; Dodonov, Serguei; Durand, Daniel; Durret, Florence; Micol, Alberto; Slezak, Eric

    2009-12-04

    Compact elliptical galaxies are characterized by small sizes and high stellar densities. They are thought to form through tidal stripping of massive progenitors. However, only a handful of them were known, preventing us from understanding the role played by this mechanism in galaxy evolution. We present a population of 21 compact elliptical galaxies gathered with the Virtual Observatory. Follow-up spectroscopy and data mining, using high-resolution images and large databases, show that all the galaxies exhibit old metal-rich stellar populations different from those of dwarf elliptical galaxies of similar masses but similar to those of more massive early-type galaxies, supporting the tidal stripping scenario. Their internal properties are reproduced by numerical simulations, which result in compact, dynamically hot remnants resembling the galaxies in our sample.

  9. Shaping Disk Galaxy Stellar Populations via Internal and External Processes

    NASA Astrophysics Data System (ADS)

    Roškar, Rok

    2015-03-01

    In recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.

  10. Stellar models with calibrated convection and temperature stratification from 3D hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Mosumgaard, Jakob Rørsted; Ball, Warrick H.; Aguirre, Víctor Silva; Weiss, Achim; Christensen-Dalsgaard, Jørgen

    2018-06-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common simplifications related to the outer layers of stars. We seek to improve on this by the use of results from realistic and highly detailed 3D hydrodynamics simulations of stellar convection. We implement a temperature stratification extracted directly from the 3D simulations into two stellar evolution codes to replace the simplified atmosphere normally used. Our implementation also contains a non-constant mixing-length parameter, which varies as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. We give a detailed account of our fully consistent implementation and compare to earlier works, and also provide a freely available MESA-module. The evolution of low-mass stars with different masses is investigated, and we present for the first time an asteroseismic analysis of a standard solar model utilising calibrated convection and temperature stratification from 3D simulations. We show that the inclusion of 3D results have an almost insignificant impact on the evolution and structure of stellar models - the largest effect are changes in effective temperature of order 30 K seen in the pre-main sequence and in the red-giant branch. However, this work provides the first step for producing self-consistent evolutionary calculations using fully incorporated 3D atmospheres from on-the-fly interpolation in grids of simulations.

  11. Scale covariant gravitation. V - Kinetic theory. VI - Stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Hsieh, S.-H.; Canuto, V. M.

    1981-01-01

    A scale covariant kinetic theory for particles and photons is developed. The mathematical framework of the theory is given by the tangent bundle of a Weyl manifold. The Liouville equation is derived, and solutions to corresponding equilibrium distributions are presented and shown to yield thermodynamic results identical to the ones obtained previously. The scale covariant theory is then used to derive results of interest to stellar structure and evolution. A radiative transfer equation is derived that can be used to study stellar evolution with a variable gravitational constant. In addition, it is shown that the sun's absolute luminosity scales as L approximately equal to GM/kappa, where kappa is the stellar opacity. Finally, a formula is derived for the age of globular clusters as a function of the gravitational constant using a previously derived expression for the absolute luminosity.

  12. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook, E-mail: chulchung@yonsei.ac.kr, E-mail: sjyoon0691@yonsei.ac.kr

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y {sub ini}). We show that Y {sub ini} brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y {sub ini}. We discuss the implications and prospects for the helium-enhanced populations in relation to themore » second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.« less

  13. Delivery of complex organic compounds from evolved stars to the solar system.

    PubMed

    Kwok, Sun

    2011-12-01

    Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth.

  14. Gravitational Instabilities in Disks: From Polytropes to Protoplanets?

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.

    2004-12-01

    Gravitational instabilities (GI's) probably occur in disks around young stellar objects during their early embedded phase. This paper reviews what is known about the nonlinear consequences of GI's for planet formation and disk evolution. All researchers agree that, for sufficiently fast cooling, disks fragment into dense clumps or arclike structures, but there is no universal agreement about whether fast enough cooling to cause fragmentation ever occurs and, if it does, whether any clumps that form will become bound protoplanets.

  15. Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2017-06-01

    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.

  16. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  17. Some Unanswered Questions in Astronomy: Are There More than Nine Planets in the Universe? Is the Theory of Stellar Evolution Wrong?

    ERIC Educational Resources Information Center

    Field, George

    1982-01-01

    Based on the premise that discoveries raise more questions than they answer, explores various research questions related to the discovery of the planets and discoveries related to the theory of stellar evolution. (SK)

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances inmore » solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.« less

  19. Determining the Stellar Initial Mass by Means of the 17O/18O Ratio on the AGB

    NASA Astrophysics Data System (ADS)

    De Nutte, Rutger; Decin, Leen; Olofsson, Hans; de Koter, Alex; Karakas, Amanda; Lombaert, Robin; Milam, Stefanie; Ramstedt, Sofia; Stancliffe, Richard; Homan, Ward; Van de Sande, Marie

    2016-07-01

    This poster presentsnewly obtainedcircumstellar 12C17O and 12C18O line observations, from which theline intensity are then related directly tothe 17O/18O surface abundance ratiofor a sample of nine AGB stars covering the three spectral types ().These ratios are evaluated in relation to a fundamental stellar evolution parameters: the stellar initial mass. The17O/18O ratio is shown to function as an effective method of determining the initial stellar mass. Through comparison with predictions bystellar evolution models, accurate initial mass estimates are calculated for all nine sources.

  20. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  1. A Teaching Module about Stellar Structure and Evolution

    ERIC Educational Resources Information Center

    Colantonio, Arturo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella; Testa, Italo

    2017-01-01

    In this paper, we present a teaching module about stellar structure, functioning and evolution. Drawing from literature in astronomy education, we designed the activities around three key ideas: spectral analysis, mechanical and thermal equilibrium, energy and nuclear reactions. The module is divided into four phases, in which the key ideas for…

  2. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  3. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  4. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  5. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less

  6. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigatemore » the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.« less

  7. MERIDIONAL TILT OF THE STELLAR VELOCITY ELLIPSOID DURING BAR BUCKLING INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Kanak; Pfenniger, Daniel; Taam, Ronald E., E-mail: saha@mpe.mpg.de

    2013-02-20

    The structure and evolution of the stellar velocity ellipsoid play an important role in shaping galaxies undergoing bar-driven secular evolution and the eventual formation of a boxy/peanut bulge such as is present in the Milky Way. Using collisionless N-body simulations, we show that during the formation of such a boxy/peanut bulge, the meridional shear stress of stars, which can be measured by the meridional tilt of the velocity ellipsoid, reaches a characteristic peak in its time evolution. It is shown that the onset of a bar buckling instability is closely connected to the maximum meridional tilt of the stellar velocitymore » ellipsoid. Our findings bring a new insight to this complex gravitational instability of the bar which complements the buckling instability studies based on orbital models. We briefly discuss the observed diagnostics of the stellar velocity ellipsoid during such a phenomenon.« less

  8. The Evolution of the Tully-Fisher Relation between z ˜ 2.3 and z ˜ 0.9 with KMOS3D

    NASA Astrophysics Data System (ADS)

    Übler, H.; Förster Schreiber, N. M.; Genzel, R.; Wisnioski, E.; Wuyts, S.; Lang, P.; Naab, T.; Burkert, A.; van Dokkum, P. G.; Tacconi, L. J.; Wilman, D. J.; Fossati, M.; Mendel, J. T.; Beifiori, A.; Belli, S.; Bender, R.; Brammer, G. B.; Chan, J.; Davies, R.; Fabricius, M.; Galametz, A.; Lutz, D.; Momcheva, I. G.; Nelson, E. J.; Saglia, R. P.; Seitz, S.; Tadaki, K.

    2017-06-01

    We investigate the stellar mass and baryonic mass Tully-Fisher relations (TFRs) of massive star-forming disk galaxies at redshift z˜ 2.3 and z˜ 0.9 as part of the {{KMOS}}3{{D}} integral field spectroscopy survey. Our spatially resolved data allow reliable modeling of individual galaxies, including the effect of pressure support on the inferred gravitational potential. At fixed circular velocity, we find higher baryonic masses and similar stellar masses at z˜ 2.3 as compared to z˜ 0.9. Together with the decreasing gas-to-stellar mass ratios with decreasing redshift, this implies that the contribution of dark matter to the dynamical mass on the galaxy scale increases toward lower redshift. A comparison to local relations reveals a negative evolution of the stellar and baryonic TFR zero points from z = 0 to z˜ 0.9, no evolution of the stellar TFR zero point from z˜ 0.9 to z˜ 2.3, and a positive evolution of the baryonic TFR zero point from z˜ 0.9 to z˜ 2.3. We discuss a toy model of disk galaxy evolution to explain the observed nonmonotonic TFR evolution, taking into account the empirically motivated redshift dependencies of galactic gas fractions and the relative amount of baryons to dark matter on galaxy and halo scales. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

  9. Rotation and magnetism in intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  10. Dynamical evolution of young binaries and multiple systems

    NASA Astrophysics Data System (ADS)

    Reipurth, B.

    Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.

  11. STRUCTURAL GLITCHES NEAR THE CORES OF RED GIANTS REVEALED BY OSCILLATIONS IN G-MODE PERIOD SPACINGS FROM STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, M. S.; Avelino, P. P.; Stello, D.

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacingmore » and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.« less

  12. Failures no More: The Radical Consequences of Realistic Stellar Feedback for Dwarf Galaxies, the Milky Way, and Reionization

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-06-01

    Many of the most fundamental unsolved questions in star and galaxy formation revolve around star formation and "feedback" from massive stars, in-extricably linking galaxy formation and stellar evolution. I'll present simulations with un-precedented resolution of Milky-Way (MW) mass galaxies, followed cosmologically to redshift zero. For the first time, these simulations resolve the internal structure of small dwarf satellites around a MW-like host, with detailed models for stellar evolution including radiation pressure, supernovae, stellar winds, and photo-heating. I'll show that, without fine-tuning, these feedback processes naturally resolve the "missing satellites," "too big to fail," and "cusp-core" problems, and produce realistic galaxy populations. At high redshifts however, the realistic ISM structure predicted, coupled to standard stellar population models, naively leads to the prediction that only ~1-2% of ionizing photons can ever escape galaxies, insufficient to ionize the Universe. But these models assume all stars are single: if we account for binary evolution, the escape fraction increases dramatically to ~20% for the small, low-metallicity galaxies believed to ionize the Universe.

  13. Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores

    NASA Astrophysics Data System (ADS)

    Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David

    2017-10-01

    Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.

  14. Biography of Professor Hayashi

    NASA Astrophysics Data System (ADS)

    Sato, Humitaka

    2012-09-01

    Biography of Chushiro Hayashi(1920-2010) is described with an emphasis on his early career as a theoretical physicist. In spite of his well-recognized achievements in theoretical astrophysics, such as Hayashi phase, p/n-ratio at Big Bang, stellar evolution and nucleosynthesis and Kyoto Model on the origin of solar system, Hayashi had once wished to devote in study of non-local field theory of particle physics. However, the various changes of situation around Hideki Yukawa(Nobel prize laureate in 1949) had guided him to the study of astrophysics.

  15. WHY ARE RAPIDLY ROTATING M DWARFS IN THE PLEIADES SO (INFRA)RED? NEW PERIOD MEASUREMENTS CONFIRM ROTATION-DEPENDENT COLOR OFFSETS FROM THE CLUSTER SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Kevin R.; Agüeros, Marcel A.; Liu, Jiyu

    2016-05-10

    Stellar rotation periods ( P {sub rot}) measured in open clusters have proved to be extremely useful for studying stars’ angular momentum content and rotationally driven magnetic activity, which are both age- and mass-dependent processes. While P {sub rot} measurements have been obtained for hundreds of solar-mass members of the Pleiades, measurements exist for only a few low-mass (<0.5 M {sub ⊙}) members of this key laboratory for stellar evolution theory. To fill this gap, we report P {sub rot} for 132 low-mass Pleiades members (including nearly 100 with M ≤ 0.45 M {sub ⊙}), measured from photometric monitoring ofmore » the cluster conducted by the Palomar Transient Factory in late 2011 and early 2012. These periods extend the portrait of stellar rotation at 125 Myr to the lowest-mass stars and re-establish the Pleiades as a key benchmark for models of the transport and evolution of stellar angular momentum. Combining our new P {sub rot} with precise BVIJHK photometry reported by Stauffer et al. and Kamai et al., we investigate known anomalies in the photometric properties of K and M Pleiades members. We confirm the correlation detected by Kamai et al. between a star's P {sub rot} and position relative to the main sequence in the cluster's color–magnitude diagram. We find that rapid rotators have redder ( V − K ) colors than slower rotators at the same V , indicating that rapid and slow rotators have different binary frequencies and/or photospheric properties. We find no difference in the photometric amplitudes of rapid and slow rotators, indicating that asymmetries in the longitudinal distribution of starspots do not scale grossly with rotation rate.« less

  16. Status and future of MUSE

    NASA Astrophysics Data System (ADS)

    Harfst, S.; Portegies Zwart, S.; McMillan, S.

    2008-12-01

    We present MUSE, a software framework for combining existing computational tools from different astrophysical domains into a single multi-physics, multi-scale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a ``Noah's Ark'' milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multi-scale and multi-physics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe two examples calculated using MUSE: the merger of two galaxies and an N-body simulation with live stellar evolution. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.

  17. MY Cam: can homogeneous evolution produce gravitational-wave progenitors?

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio

    2016-10-01

    Besides opening the era of gravitational-wave astrophysics, GW150914 has revolutionized the field of massive stars. GW150914 proves the existence of stellar-mass black holes in a configuration that current models for stellar evolution can only reproduce in special conditions of homogeneous evolution and/or low metallicity.Only a handful of very-massive binaries that could lead to a binary black hole are known. We request UV spectroscopy of MY Cam (38Msun+32Msun), the best laboratory to test several predictions by current models, in order to derive stellar abundances and wind parameters that are inaccessible from the ground. Together with our previous photometric and spectroscopic exhaustive coverage, the STIS spectra will be key to characterize the pre-common envelope phase and test the homogeneous evolution hypothesis, critical ingredients of the different progenitor scenarios proposed to explain GW15091.

  18. Preface (for CUP)

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1993-01-01

    Study of changes in solar and stellar irradiances has been of high interest for a long time. Determining the absolute value of the luminosity of stars with different ages is a crucial question for the theory of stellar evolution and energy production in stellar interiors.

  19. What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes

    NASA Astrophysics Data System (ADS)

    Collier, Angela; Shlosman, Isaac; Heller, Clayton

    2018-05-01

    We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.

  20. IMF–METALLICITY: A TIGHT LOCAL RELATION REVEALED BY THE CALIFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús

    2015-06-20

    Variations in the stellar initial mass function (IMF) have been invoked to explain the spectroscopic and dynamical properties of early-type galaxies (ETGs). However, no observations have yet been able to disentangle the physical driver. We analyze here a sample of 24 ETGs drawn from the CALIFA survey, deriving in a homogeneous way their stellar population and kinematic properties. We find that the local IMF is tightly related to the local metallicity, becoming more bottom-heavy toward metal-rich populations. Our result, combined with the galaxy mass–metallicity relation, naturally explains previous claims of a galaxy mass–IMF relation, derived from non-IFU spectra. If wemore » assume that—within the star formation environment of ETGs—metallicity is the main driver of IMF variations, a significant revision of the interpretation of galaxy evolution observables is necessary.« less

  1. A First Robust Measurement of the Aging of Field Low Mass X-ray Binary Populations from Hubble and Chandra

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret

    Our understanding of X-ray binary (XRB) formation and evolution have been revolutionized by HST and Chandra by allowing us to study in detail XRBs in extragalactic environments. Theoretically, XRB formation is sensitive to parent stellar population properties like metallicity and stellar age. These dependencies not only make XRBs promising populations for aiding in the measurement of galaxy properties themselves, but also have important astrophysical implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that XRBs were more luminous than today and played a significant role in the heating of the intergalactic medium. Unlocking the potential of XRBs as useful probes of galaxy properties and understanding in detail their evolutionary pathways critically requires empirical constraints using well-studied galaxies that span a variety of evolutionary stages. In this ADAP, we will use the combined power of archival observations from Hubble and Chandra data of 16 nearby early-type galaxies to study how low-mass XRBs (LMXBs) populations evolve with age. LMXBs are critically important since they are the most numerous XRBs in the MW and are expected to dominate the normal galaxy Xray emissivity of the Universe out to z ~ 2. Understanding separately LMXBs that form via dynamical interactions (e.g., in globular clusters; GCs) versus those that form in-situ in galactic fields is an important poorly constrained area of XRB astrophysics. We are guided by the following key questions: 1. How does the shape and normalization of the field LMXB X-ray luminosity function (XLF) evolve as parent stellar populations age? Using theoretical population synthesis models, what can we learn about the evolution of contributions from various LMXB donor stars (e.g., red-giant, main-sequence, and white dwarf donors)? 2. Is there any evidence that globular cluster (GC) LMXBs seeded field LMXB populations through the dissolving of GCs or LMXBs being kicked out of their parent GCs? 3. What implications do our results have for the evolution of LMXBs throughout cosmic history and X-ray emission observed in distant galaxy populations (e.g., in the Chandra Deep Field surveys)? The combination of HST and Chandra are critical for addressing these questions, as HST can be used to decipher between GC and field LMXBs and Chandra can detect the sources. We will make public HST and Chandra data and catalogs of X-ray sources and GCs, and will include basic properties (eg.., GC sizes, colors, LMXB spectral shapes, fluxes, luminosities).

  2. The New 30 Doradus

    NASA Astrophysics Data System (ADS)

    Walborn, N. R.; Barbá, R. H.

    A groundbased, blue-violet spectral classification study of the 30 Doradus stellar content has revealed five spatially and/or temporally distinct components: (1) the central ionizing cluster including R136 (corresponding to the Carina phase of OB cluster evolution with an age of 2-3 Myr); (2) a younger generation in or near the bright nebular filaments west and northeast of R136, containing heavily embedded early-O dwarfs and IR sources, the formation of which was likely triggered by the central cluster (Orion phase, <1 Myr); (3) an older population of late-O and early-B supergiants throughout the central field whose structural relationship, if any, to the younger groups is unclear (Scorpius OB1 phase, 4-6 Myr); (4) a previously known, older still compact cluster 3' northwest of R136, containing A and M supergiants and evidently affecting the nebular dynamics substantially (h and chi Persei phase, 10 Myr); and (5) a newly recognized Sco OB1-phase association surrounding the recently discovered Luminous Blue Variable R143 in the southern part of the Nebula. Evidently, star formation has occurred in discrete events at different epochs in 30 Dor, and there are clear implications for the interpretation of more distant starbursts. This presentation emphasizes the second component above, a new stellar generation currently being formed in 30 Doradus. Groundbased IR images by Rubio et al. and H2 observations by Probst and Rubio show many sources, with detailed relationships to the embedded optical O stars as well as to the nebular microstructures visible in HST/WFPC2 images. Recent observations of these fields with HST/NICMOS reveal an even greater wealth of structural detail, including compact IR multiple systems and clusters, and probable jets associated with two of the embedded early-O systems; one of the latter may also be related to an H2O maser source. These and future IR data will provide new insights into the evolution of starbursts on the scale of 30 Doradus, as well as the early evolution of individual massive stars and compact groups.

  3. Dynamical Models of Elliptical Galaxies in z = 0.5 Clusters. I. Data-Model Comparison and Evolution of Galaxy Rotation

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; van Dokkum, Pieter G.

    2007-10-01

    We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.

  4. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Grützbauch, R.; Rampazzo, R.; Bressan, A.; Zeilinger, W. W.

    2011-04-01

    We present the stellar population properties of 13 dwarf galaxies residing in poor groups (low-density environment, LDE) observed with VIMOS at VLT. Ages, metallicities, and [α/Fe] ratios were derived within an r < re/2 aperture from the Lick indices Hβ, Mgb, Fe5270, and Fe5335 through comparison with our simple stellar population (SSP) models that account for variable [α/Fe] ratios. For a fiducial subsample of 10 early-type dwarfs, we derived median values and scatters around the medians of 5.7 ± 4.4 Gyr, -0.26 ± 0.28, and -0.04 ± 0.33 for age, log Z/Z⊙, and [α/Fe] , respectively. For a selection of bright early-type galaxies (ETGs) from an earlier sample residing in a comparable environment, we derive median values of 9.8 ± 4.1 Gyr, 0.06 ± 0.16, and 0.18 ± 0.13 for the same stellar population parameters. It follows that dwarfs are on average younger, less metal rich, and less enhanced in the α-elements than giants, in agreement with the extrapolation to the low-mass regime of the scaling relations derived for giant ETGs. From the total (dwarf + giant) sample, we find that age ∝ σ0.39 ± 0.22, Z ∝ σ0.80 ± 0.16, and α/Fe ∝ σ0.42 ± 0.22. We also find correlations with morphology, in the sense that the metallicity and the [α/Fe] ratio increase with the Sersic index n or with the bulge-to-total light fraction B/T. The presence of a strong morphology-[α/Fe] relation appears to contradict the possible evolution along the Hubble sequence from low B/T (low n) to high B/T (high n) galaxies. We also investigate the role played by environment by comparing the properties of our LDE dwarfs with those of Coma red passive dwarfs from the literature. We find possible evidence that LDE dwarfs experienced more prolonged star formations than Coma dwarfs, however larger data samples are needed to draw firmer conclusions. Based on observations obtained at the European Southern Observatory, La Silla, Chile.

  5. Star formation in early-type galaxies: the role of stellar winds and kinematics.

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca

    2015-08-01

    Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in newly formed stars formed a few Gyr ago; the SF rate at the present epoch is low (≤0.1 M⊙/yr) and agrees well with that observed, at least for ETGs of stellar mass <1011 M⊙.

  6. Stellar mass distribution of S4G disk galaxies and signatures of bar-induced secular evolution

    NASA Astrophysics Data System (ADS)

    Díaz-García, S.; Salo, H.; Laurikainen, E.

    2016-12-01

    Context. Models of galaxy formation in a cosmological framework need to be tested against observational constraints, such as the average stellar density profiles (and their dispersion) as a function of fundamental galaxy properties (e.g. the total stellar mass). Simulation models predict that the torques produced by stellar bars efficiently redistribute the stellar and gaseous material inside the disk, pushing it outwards or inwards depending on whether it is beyond or inside the bar corotation resonance radius. Bars themselves are expected to evolve, getting longer and narrower as they trap particles from the disk and slow down their rotation speed. Aims: We use 3.6 μm photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to trace the stellar distribution in nearby disk galaxies (z ≈ 0) with total stellar masses 108.5 ≲ M∗/M⊙ ≲ 1011 and mid-IR Hubble types - 3 ≤ T ≤ 10. We characterize the stellar density profiles (Σ∗), the stellar contribution to the rotation curves (V3.6 μm), and the m = 2 Fourier amplitudes (A2) as a function of M∗ and T. We also describe the typical shapes and strengths of stellar bars in the S4G sample and link their properties to the total stellar mass and morphology of their host galaxy. Methods: For 1154 S4G galaxies with disk inclinations lower than 65°, we perform a Fourier decomposition and rescale their images to a common frame determined by the size in physical units, by their disk scalelength, and for 748 barred galaxies by both the length and orientation of their bars. We stack the resized density profiles and images to obtain statistically representative average stellar disks and bars in bins of M∗ and T. Based on the radial force profiles of individual galaxies we calculate the mean stellar contribution to the circular velocity. We also calculate average A2 profiles, where the radius is normalized to R25.5. Furthermore, we infer the gravitational potentials from the synthetic bars to obtain the tangential-to-radial force ratio (QT) and A2 profiles in the different bins. We also apply ellipse fitting to quantitatively characterize the shape of the bar stacks. Results: For M∗ ≥ 109M⊙, we find a significant difference in the stellar density profiles of barred and non-barred systems: (I) disks in barred galaxies show larger scalelengths (hR) and fainter extrapolated central surface brightnesses (Σ°); (II) the mean surface brightness profiles (Σ∗) of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation; and (III) the central mass concentration of barred galaxies is higher (by almost a factor 2 when T ≤ 5) than in their non-barred counterparts. The averaged Σ∗ profiles follow an exponential slope down to at least 10 M⊙ pc-2, which is the typical depth beyond which the sample coverage in the radial direction starts to drop. Central mass concentrations in massive systems (≥1010M⊙) are substantially larger than in fainter galaxies, and their prominence scales with T. This segregation also manifests in the inner slope of the mean stellar component of the circular velocity: lenticular (S0) galaxies present the most sharply rising V3.6 μm. Based on the analysis of bar stacks, we show that early- and intermediate-type spirals (0 ≤ T< 5) have intrinsically narrower bars than later types and S0s, whose bars are oval-shaped. We show a clear agreement between galaxy family and quantitative estimates of bar strength. In early- and intermediate-type spirals, A2 is larger within and beyond the typical bar region among barred galaxies than in the non-barred subsample. Strongly barred systems also tend to have larger A2 amplitudes at all radii than their weakly barred counterparts. Conclusions: Using near-IR wavelengths (S4G 3.6 μm), we provide observational constraints that galaxy formation models can be checked against. In particular, we calculate the mean stellar density profiles, and the disk(+bulge) component of the rotation curve (and their dispersion) in bins of M∗ and T. We find evidence for bar-induced secular evolution of disk galaxies in terms of disk spreading and enhanced central mass concentration. We also obtain average bars (2D), and we show that bars hosted by early-type galaxies are more centrally concentrated and have larger density amplitudes than their late-type counterparts. The FITS files of the synthetic images and the tabulated radial profiles of the mean (and dispersion of) stellar mass density, 3.6 μm surface brightness, Fourier amplitudes, gravitational force, and the stellar contribution to the circular velocity are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A84

  7. Stellar Occultation Studies of Pluto, Triton, Charon, and Chiron

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    2002-01-01

    Bodies inhabiting the outer solar system are of interest because, due to the colder conditions, they exhibit unique physical processes. Also, some of the lessons learned from them can be applied to understanding what occurred in the outer solar system during its formation and early evolution. The thin atmospheres of Pluto and Triton have structure that is not yet understood, and they have been predicted to undergo cataclysmic seasonal changes. Charon may have an atmosphere - we don't know. Chiron exhibits cometary activity so far from the sun (much further than most comets), so that H2O sublimation cannot be the driving mechanism. Probing these bodies from Earth with a spatial resolution of a few kilometers can be accomplished only with the stellar occultation technique. In this program we find and predict stellar occultation events by small outer-solar system bodies and then attempt observations of the ones that can potentially answer interesting questions. We also develop new methods of data analysis for occultations and secure other observations that are necessary for interpretation of the occultation data.

  8. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  9. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1975-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. A general relativistic version of the mixing-length formalism for convection is presented. It is argued that in work on spherical systems, general relativity theorists have identified the wrong quantity as total mass-energy inside radius r.

  10. An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.

    2008-10-01

    We present an integrated study of star formation and galactic stellar mass assembly from z = 0.05 to 1.5 and galactic metallicity evolution from z = 0.05 to 0.9 using a very large and highly spectroscopically complete sample selected by rest-frame NIR bolometric flux in the GOODS-N. We assume a Salpeter IMF and fit Bruzual & Charlot models to compute the galactic stellar masses and extinctions. We determine the expected formed stellar mass density growth rates produced by star formation and compare them with the growth rates measured from the formed stellar mass functions by mass interval. We show that the growth rates match if the IMF is slightly increased from the Salpeter IMF at intermediate masses (~10 M⊙). We investigate the evolution of galaxy color, spectral type, and morphology with mass and redshift and the evolution of mass with environment. We find that applying extinction corrections is critical when analyzing galaxy colors; e.g., nearly all of the galaxies in the green valley are 24 μm sources, but after correcting for extinction, the bulk of the 24 μm sources lie in the blue cloud. We find an evolution of the metallicity-mass relation corresponding to a decrease of 0.21 +/- 0.03 dex between the local value and the value at z = 0.77 in the 1010-1011 M⊙ range. We use the metallicity evolution to estimate the gas mass of the galaxies, which we compare with the galactic stellar mass assembly and star formation histories. Overall, our measurements are consistent with a galaxy evolution process dominated by episodic bursts of star formation and where star formation in the most massive galaxies (gtrsim1011 M⊙) ceases at z < 1.5 because of gas starvation. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Abundance Patterns in S-type AGB Stars: Setting Constraints on Nucleosynthesis and Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Neyskens, P.; van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.

    2011-09-01

    During evolution on the AGB, stars of type S are the first to experience s-process nucleosynthesis and the third dredge-up, and therefore to exhibit s-process signatures in their atmospheres. Their high mass-loss rates (10-7 to 10-6 M⊙/year) make them major contributors to the AGB nucleosynthesis yields at solar metallicity. Precise abundance determinations in S stars are of the utmost importance for constraining e.g. the third dredge-up luminosity and efficiency (which has been only crudely parameterized in current nucleosynthetic models so far). Here, dedicated S-star model atmospheres are used to determine precise abundances of key s-process elements, and to set constraints on nucleosynthesis and stellar evolution models. Special interest is paid to technetium, an element with no stable isotopes. Its detection is considered the best signature that the star effectively populates the thermally-pulsing AGB phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The [Zr/Fe] overabundances are in good agreement with model predictions, while the Tc/Zr abundances are slightly overpredicted. This discrepancy can help to set better constraints on nucleosynthesis and stellar evolution models of AGB stars.

  12. The evolution of massive stars and their spectra. I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril

    2014-04-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 104 years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). Tables 1, 4 and 5 are available in electronic form at http://www.aanda.orgSynthetic spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A30

  13. Minicourses in Astrophysics, Modular Approach, Vol. II.

    ERIC Educational Resources Information Center

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  14. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  15. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.

  16. Hubble Tarantula Treasury Project: Unraveling Tarantula's Web. I. Observational Overview and First Results

    NASA Technical Reports Server (NTRS)

    Sabbi, E.; Anderson, J.; Lennon, D. J.; van der Marel, R. P.; Aloisi, A.; Boyer, Martha L.; Cignoni, M.; De Marchi, G.; De Mink, S. E.; Evans, C. J.; hide

    2013-01-01

    The Hubble Tarantula Treasury Project (HTTP) is an ongoing panchromatic imaging survey of stellar populations in the Tarantula Nebula in the Large Magellanic Cloud that reaches into the sub-solar mass regime (<0.5 Stellar Mass). HTTP utilizes the capability of the Hubble Space Telescope to operate the Advanced Camera for Surveys and the Wide Field Camera 3 in parallel to study this remarkable region in the near-ultraviolet, optical, and near-infrared spectral regions, including narrow-band H(alpha) images. The combination of all these bands provides a unique multi-band view. The resulting maps of the stellar content of the Tarantula Nebula within its main body provide the basis for investigations of star formation in an environment resembling the extreme conditions found in starburst galaxies and in the early universe. Access to detailed properties of individual stars allows us to begin to reconstruct the temporal and spatial evolution of the stellar skeleton of the Tarantula Nebula over space and time on a sub-parsec scale. In this first paper we describe the observing strategy, the photometric techniques, and the upcoming data products from this survey and present preliminary results obtained from the analysis of the initial set of near-infrared observations.

  17. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  18. Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal

    2018-03-01

    The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.

  19. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  20. Common Envelope Shaping of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    García-Segura, Guillermo; Ricker, Paul M.; Taam, Ronald E.

    2018-06-01

    The morphology of planetary nebulae emerging from the common envelope phase of binary star evolution is investigated. Using initial conditions based on the numerical results of hydrodynamical simulations of the common envelope phase, it was found that the shapes and sizes of the resulting nebula are very sensitive to the effective temperature of the remnant core, the mass-loss rate at the onset of the common envelope phase, and the mass ratio of the binary system. These parameters are related to the efficiency of the mass ejection after the spiral-in phase, the stellar evolutionary phase (i.e., RG, AGB, or TP-AGB), and the degree of departure from spherical symmetry in the stellar wind mass-loss process itself, respectively. It was also found that the shapes are mostly bipolar in the early phase of evolution, but that they can quickly transition to elliptical and barrel-type shapes. Solutions for nested lobes are found where the outer lobes are usually bipolar and the inner lobes are elliptical, bipolar, or barrel-type, a result due to the flow of the photo-evaporated gas from the equatorial region. Also, the lobes can be produced without the need for two distinct mass ejection events. In all the computations, the bulk of the mass is concentrated in the orbital or equatorial plane, in the form of a large toroid, which can be either neutral (early phases) or photoionized (late phases), depending of the evolutionary state of the system.

  1. Where can a Trappist-1 planetary system be produced?

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Facchini, Stefano; Clarke, Cathie J.; Mohanty, Subhanjoy

    2018-04-01

    We study the evolution of protoplanetary discs that would have been precursors of a Trappist-1-like system under the action of accretion and external photoevaporation in different radiation environments. Dust grains swiftly grow above the critical size below which they are entrained in the photoevaporative wind, so although gas is continually depleted, dust is resilient to photoevaporation after only a short time. This means that the ratio of the mass in solids (dust plus planetary) to the mass in gas rises steadily over time. Dust is still stripped early on, and the initial disc mass required to produce the observed 4 M⊕ of Trappist-1 planets is high. For example, assuming a Fatuzzo & Adams distribution of UV fields, typical initial disc masses have to be >30 per cent the stellar (which are still Toomre Q stable) for the majority of similar mass M dwarfs to be viable hosts of the Trappist-1 planets. Even in the case of the lowest UV environments observed, there is a strong loss of dust due to photoevaporation at early times from the weakly bound outer regions of the disc. This minimum level of dust loss is a factor of 2 higher than that which would be lost by accretion on to the star during 10 Myr of evolution. Consequently, even in these least irradiated environments, discs that are viable Trappist-1 precursors need to be initially massive (>10 per cent of the stellar mass).

  2. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 kK ) apparently single WR stars lost their envelope after a phase of strong expansion, e.g., as the result of common envelope evolution with a lower mass companion. The so far undetected companions, either main sequence stars or compact objects, are then expected to still be present. A corresponding search might identify the first immediate double black hole binary progenitor with masses as high as those detected in GW150914.

  3. The Evolution of Dwarf-Irregular Galaxy NGC 1569: A Kinematic Study of the Stars and Gas

    NASA Astrophysics Data System (ADS)

    Johnson, Megan C.

    2011-12-01

    The evolution and formation of dwarf galaxies has great importance to our knowledge of cosmological history from the Big Bang through the present day structure we observe in our local universe. Dwarf galaxies are believed to be the "building blocks" of larger galaxies, which implies that interactions and mergers of these small systems must have occurred frequently in the early universe. There is a population of starburst dwarf irregular (dIm) galaxies that seem to have characteristics indicative of interactions or mergers. One of these dIm galaxies is the nearby post-starburst NGC 1569. This dissertation project explores the stellar and gas kinematics of NGC 1569 as well as examines a deep neutral Hydrogen (HI) map made using the Robert C. Byrd Green Bank Telescope (GBT). From these observations, this dissertation analyzes the evolution of NGC 1569 by understanding the three-dimensional shape of this dIm system for the first time. The structure of dIm galaxies is an important fundamental, physical property necessary to understand the evolution and formation of these common systems. However, the intrinsic shape of dIm galaxies remains controversial. Projected minor-to-major axis ratios provide insufficient data to determine the shapes of dIm galaxies. Fortunately, there is another method by which accurate structures can be measured. The stellar velocity dispersion, coupled with the maximum rotational velocity derived from HI observations, gives a measure of how kinematically hot a system is, and, therefore, indicates its structure. In this dissertation, we present the stellar kinematics, including the stellar velocity dispersion, of NGC 1569 obtained using the Kitt Peak National Observatory (KPNO) Mayall 4-m+Echelle spectrograph. These data are combined with an in depth analysis of high resolution HI data and a discussion of the nature of this starburst dwarf system. The dissertation concludes with a deep HI map of NGC 1569 and three of its nearest neighbors in the IC 342 galaxy group. Extended HI structures are observed in this map and are likely associated with NGC 1569. However, distinguishing if these structures are from an interaction or a merger is not possible and hydrodynamic simulations are needed. These simulations are for future work.

  4. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    NASA Astrophysics Data System (ADS)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr, while RR Lyrae can have delay-times < 10 Gyrs. These observations cannot be explained by models using mass and metallicity alone. In future projects, I will apply the DTD technique to constrain the supergiant and pre-supernova evolutionary models.

  5. Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters

    NASA Astrophysics Data System (ADS)

    Winter, A. J.; Clarke, C. J.; Rosotti, G.; Ih, J.; Facchini, S.; Haworth, T. J.

    2018-04-01

    Most stars form and spend their early life in regions of enhanced stellar density. Therefore the evolution of protoplanetary discs (PPDs) hosted by such stars are subject to the influence of other members of the cluster. Physically, PPDs might be truncated either by photoevaporation due to ultraviolet flux from massive stars, or tidal truncation due to close stellar encounters. Here we aim to compare the two effects in real cluster environments. In this vein we first review the properties of well studied stellar clusters with a focus on stellar number density, which largely dictates the degree of tidal truncation, and far ultraviolet (FUV) flux, which is indicative of the rate of external photoevaporation. We then review the theoretical PPD truncation radius due to an arbitrary encounter, additionally taking into account the role of eccentric encounters that play a role in hot clusters with a 1D velocity dispersion σv ≳ 2 km/s. Our treatment is then applied statistically to varying local environments to establish a canonical threshold for the local stellar density (nc ≳ 104 pc-3) for which encounters can play a significant role in shaping the distribution of PPD radii over a timescale ˜3 Myr. By combining theoretical mass loss rates due to FUV flux with viscous spreading in a PPD we establish a similar threshold for which a massive disc is completely destroyed by external photoevaporation. Comparing these thresholds in local clusters we find that if either mechanism has a significant impact on the PPD population then photoevaporation is always the dominating influence.

  6. The GALAH Survey and Galactic Archaeology in the Next Decade

    NASA Astrophysics Data System (ADS)

    Martell, S. L.

    2016-10-01

    The field of Galactic Archaeology aims to understand the origins and evolution of the stellar populations in the Milky Way, as a way to understand galaxy formation and evolution in general. The GALAH (Galactic Archaeology with HERMES) Survey is an ambitious Australian-led project to explore the Galactic history of star formation, chemical evolution, minor mergers and stellar migration. GALAH is using the HERMES spectrograph, a novel, highly multiplexed, four-channel high-resolution optical spectrograph, to collect high-quality R˜28,000 spectra for one million stars in the Milky Way. From these data we will determine stellar parameters, radial velocities and abundances for up to 29 elements per star, and carry out a thorough chemical tagging study of the nearby Galaxy. There are clear complementarities between GALAH and other ongoing and planned Galactic Archaeology surveys, and also with ancillary stellar data collected by major cosmological surveys. Combined, these data sets will provide a revolutionary view of the structure and history of the Milky Way.

  7. ABUNDANCES IN THE LOCAL REGION. I. G AND K GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luck, R. Earle, E-mail: rel2@case.edu

    2015-09-15

    Parameters and abundances for 1133 stars of spectral types F, G, and K of luminosity class III have been derived. In terms of stellar parameters, the primary point of interest is the disagreement between gravities derived with masses determined from isochrones, and gravities determined from an ionization balance. This is not a new result per se, but the size of this sample emphasizes the severity of the problem. A variety of arguments led to the selection of the ionization-balance gravity as the working value. The derived abundances indicate that the giants in the solar region have Sun-like total abundances andmore » abundance ratios. Stellar evolution indicators have also been investigated with the Li abundances and the [C/Fe] and C/O ratios, indicating that standard processing has been operating in these stars. The more salient result for stellar evolution is that the [C/Fe] data across the red-giant clump indicates the presence of mass-dependent mixing in accord with standard stellar evolution predictions.« less

  8. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Genel, Shy; Springel, Volker; Torrey, Paul; Sijacki, Debora; Xu, Dandan; Snyder, Greg; Nelson, Dylan; Hernquist, Lars

    2014-10-01

    We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of (106.5 Mpc)3, has a dark mass resolution of 6.26 × 106 M⊙, and an initial baryonic matter mass resolution of 1.26 × 106 M⊙. At z = 0 gravitational forces are softened on scales of 710 pc, and the smallest hydrodynamical gas cells have an extent of 48 pc. We follow the dynamical evolution of 2 × 18203 resolution elements and in addition passively evolve 18203 Monte Carlo tracer particles reaching a total particle count of more than 18 billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. Here we describe the simulation suite, and contrast basic predictions of our model for the present-day galaxy population with observations of the local universe. At z = 0 our simulation volume contains about 40 000 well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at z = 0. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disc galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime, the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.

  9. Presolar stardust in meteorites: recent advances and scientific frontiers

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.

    2003-04-01

    Grains of stardust that formed in stellar outflows prior to the formation of the solar system survive intact as trace constituents of primitive meteorites. The presolar origin of the grains is indicated by enormous isotopic ratio variations compared to solar system materials. Identified presolar phases include diamond, silicon carbide, graphite, silicon nitride, corundum, spinel, hibonite, titanium oxide, and, most recently, silicates. Sub-grains of refractory carbides (e.g. TiC), and Fe-Ni metal have also been observed within individual presolar graphite grains. Isotopic compositions indicate that the grains formed in red giants, asymptotic giant branch (AGB) stars, supernovae and novae; thus they provide unique insights into the evolution of and nucleosynthesis within these environments. Some of the isotopic variations also reflect the chemical evolution of the galaxy and can be used to constrain corresponding models. Presolar grain microstructures provide information about physical and chemical conditions of dust formation in stellar environments; recent studies have focused on graphite grains from supernovae as well as SiC and corundum from AGB stars. The survival of presolar grains in different classes of meteorites has important implications for early solar system evolution. Recent analytical developments, including resonance ionization mass spectrometry, high spatial resolution secondary ion mass spectrometry and site-selective ion milling, should help solve many outstanding problems but are likely to also introduce new surprises.

  10. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  11. The great escape - III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Evans, N. Wyn; Wyatt, Mark C.; Tout, Christopher A.

    2014-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galenvironment before, during and after asymptotic giant branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass-loss, Galactic tidal perturbations and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass-loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass-loss will shrink a planetary system's Hill ellipsoid axes by about 20 to 40 per cent, Oort clouds orbiting WDs are likely to be more depleted and dynamically excited than on the MS.

  12. UV Astronomy: Stars from Birth to Death

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Barstow, Martin A.

    The Joint Discussion on UV Astronmy: Stars from Birth to Death was held during the IAU General Assembly of 2006, in August 2006. It was aimed to provide a forum where the accomplishments of UV astrophysics could be highlighted and a new roadmap for the future discussed. This meeting focussed in particular on stellar astrophysics. The understanding of stellar physics is at the very base of our understanding of the Universe. The chemical evolution of the Universe is controlled by stars. Supernovae are prime distance indicators that have allowed to measure the evolution of the curvature of the Universe and to detect the existence of dark energy. The development of life sustaining system depends strongly on the evolution of stars like our Sun. Some of the most extreme forms of matter in the Universe, the densest and more strongly magnetized, are the magnetars, debris of stellar evolution. The excellent contributions presented in this Joint Discussion dealt with the many aspects of stellar astrophysics from the analysis of dissipative processes in the atmosphere of cool stars and their impact on the evolution of the planetary systems to the study of the atmospheres and winds of the hot massive stars or the determination of the abundances in white dwarfs. The physics of disks, its role in the evolution of binary systems, and the formation of supernovae were among the main topics treated in the meeting. We should also not forget the role of starbursts and, in general, high mass stars in the chemical evolution of galaxies. The metallicity gradient in the Galaxy is traced in the UV spectrum of planetary nebulae. The evolution of young planetary disks and the role of the central stars in the photoevaporation of the giant gaseous planets that have been detected recently. The book contains a summary of the numerous and high quality contributions to this Joint Discussion classified in five chapters: * Chapter 1: Star Formation and Young Stellar Objects * Chapter 2: Life in Main Sequence * Chapter 3: Star Death * Chapter 4: Compact Objects * Chapter 5: The impact of stellar astrophysics in understanding the formation of life sustainable systems; That correspond to the five sessions held during the meeting. A summary of the current status of UV astronomy and the discussions that took place during the XXVIth I. A. U. General Assembly can be found in Highlights of Astronomy, Volume 14.

  13. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main-sequence stars from their mass and rotation period that is largely independent of the wind braking model adopted. These effectively represent gyro-chronology relationships that take the physics of the two-zone model for the stellar angular momentum evolution into account.

  14. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  15. Universes without the weak force: Astrophysical processes with stable neutrons

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Howe, Alex R.; Adams, Fred C.

    2018-02-01

    We investigate a class of universes in which the weak interaction is not in operation. We consider how astrophysical processes are altered in the absence of weak forces, including big bang nucleosynthesis (BBN), galaxy formation, molecular cloud assembly, star formation, and stellar evolution. Without weak interactions, neutrons no longer decay, and the universe emerges from its early epochs with a mixture of protons, neutrons, deuterium, and helium. The baryon-to-photon ratio must be smaller than the canonical value in our Universe to allow free nucleons to survive the BBN epoch without being incorporated into heavier nuclei. At later times, the free neutrons readily combine with protons to make deuterium in sufficiently dense parts of the interstellar medium, and provide a power source before they are incorporated into stars. Almost all of the neutrons are incorporated into deuterium nuclei before stars are formed. As a result, stellar evolution proceeds primarily through strong interactions, with deuterium first burning into helium, and then helium fusing into carbon. Low-mass deuterium-burning stars can be long-lived, and higher-mass stars can synthesize the heavier elements necessary for life. Although somewhat different from our own, such universes remain potentially habitable.

  16. Wolf-Rayet stars in the central region of the Milky Way

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Graefener, Goetz; Oskinova, Lidia; Zinnecker, Hans

    2004-09-01

    We propose to take mid-IR spectra of two Wolf-Rayet stars in the inner part of our Galaxy, within 30pc projected distance from the central Black Hole. Massive stars dominate the central galactic region by their mass-loss and ionizing radiation. A quantitative analysis of this stellar inventory is essential for understanding the energy, momentum and mass budget, for instance with respect to the feeding of the central black hole. Our group developed a highly advanced model code for the expanding atmospheres of WR stars. Recently we extended the spectrum synthesis to IR wavelengths. These models will be applied for the analysis of the Spitzer IRS data. The proposed mid-IR observations will provide a wide spectral range with many lines which are needed to determine the stellar parameters, such as stellar luminosity, effective temperature, mass-loss rate and chemical composition. Near-IR spectra of the program stars are available and will augment the analysis. The capability of our code to reproduce the observed mid-IR spectrum of a WN star has been demonstrated. The two targets we selected are sufficiently isolated, while the Galactic center cluster is too crowded for the size of Spitzer's spectrograph slit. As estimated from the K-band spectra, one of the stars (WR102ka) is of very late subtype (WN9), while the other star (WR102c) has the early subtype WN6. Hence they represent different stages in the evolutionary sequence of massive stars, the late-WN just having entered the Wolf-Rayet phase and the early WN being further evolved. We expect that the parameters of massive stars in the inner galaxy differ from the usual Galactic population. One reason is that higher metallicity should lead to stronger mass-loss, which affects the stellar evolution. The Spitzer IRS, with its high sensitivity, provides a unique opportunity to study representative members of the stellar population in the vicinity of the Galactic center.

  17. Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-08-01

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.

  18. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  19. Spin-down of radio millisecond pulsars at genesis.

    PubMed

    Tauris, Thomas M

    2012-02-03

    Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.

  20. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.

    2018-03-01

    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.

  1. Imaging the Hot Stellar Content of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco

    1991-07-01

    WE PROPOSE TO IMAGE WITH THE FOC IN THE F/96 CONFIGURATION FIVE EARLY TYPE GALAXIES IN FOUR PASSBANDS CENTERED AT 1500 A, 2200 A, 2800 A AND 3400 A. WHEN COUPLED WITH PHOTOMETRY OBTAINED FROM THE GROUND OUR OBSERVATIONS WILL ALLOW US TO DERIVE COMPLETE SED OF THESE GALAXIES AS A FUNCTION OF THE DISTANCE FROM THE CENTER. THIS IS A KEY STEP TOWARDS THE UNDERSTANDING OF STELLAR POPULATIONS - IN PARTICULAR THE ONE RESPONSIBLE FOR THE UV EMISSION - IN EARLY TYPE GALAXIES AND WILL PROVIDE IMPORTANT INSIGHT IN THEIR FORMATION AND EVOLUTION. WE PLAN TO OBSERVE NGC 1399, NGC 2681, NGC 4552, NGC 5018 AND NGC 4627 WHICH SAMPLE A WIDE RANGE OF INTRINSIC PROPERTIES AS INDICATED BY PREVIOUS IUE OBSERVATIONS. FOR NGC 4627 THERE IS EVIDENCE OF ONGOING STAR FORMATION AND THE HST WILL BE ABLE TO SHOW THE CHARACTERISTIC CLUMPINESS. NGC 2681 HAD A STARBUST OF AGE GREATER THAN 1 GYR. NGC 4552 IS ONE OF THE MOST METAL RICH GALAXY KNOWN. NGC 1399 HAS THE SAME METALLICITY AND LUMINOSITY OF THE PREVIOUS GALAXY BUT IS A MUCH STRONGER X-RAY EMITTER. NGC 5018 IS A VERY GOOD CANDIDATE FOR ONGOING STAR FORMATION. WE BELIEVE IN THIS WAY WE CAN OBTAIN SED FOR THE TWO-DIMENSIONAL IMAGES OF EARLY TYPE GALAXIES FROM BROAD BAND IMAGING ALONE. THE CALIBRATION OF OUR FILTER SYSTEM WILL ALLOW US TO APPLY IT TO THE BIDIMENSIONAL ANALYSIS OF THE GENERAL SAMPLE OF EARLY TYPE GALAXIES.

  2. Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S. (Editor); Golub, L. (Editor)

    1981-01-01

    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.

  3. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our calculations also suggest that the relatively low disk accretion rates characteristic of T Tauri stars below the birthline cause low-mass stars to contract only slightly faster than normal Hayashi track evolution, so that ages for older pre-main-sequence stars estimated from H-R diagram positions are relatively secure.

  4. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  5. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  6. Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Mitschang, A. W.; De Silva, G.; Zucker, D. B.; Anguiano, B.; Bensby, T.; Feltzing, S.

    2014-03-01

    The early science results from the new generation of high-resolution stellar spectroscopic surveys, such as Galactic Archaeology with HERMES (GALAH) and the Gaia European Southern Observatory survey (Gaia-ESO), will represent major milestones in the quest to chemically tag the Galaxy. Yet this technique to reconstruct dispersed coeval stellar groups has remained largely untested until recently. We build on previous work that developed an empirical chemical tagging probability function, which describes the likelihood that two field stars are conatal, that is, they were formed in the same cluster environment. In this work, we perform the first ever blind chemical tagging experiment, i.e. tagging stars with no known or otherwise discernible associations, on a sample of 714 disc field stars with a number of high-quality high-resolution homogeneous metal abundance measurements. We present evidence that chemical tagging of field stars does identify coeval groups of stars, yet these groups may not represent distinct formation sites, e.g. as in dissolved open clusters, as previously thought. Our results point to several important conclusions, among them that group finding will be limited strictly to chemical abundance space, e.g. stellar ages, kinematics, colours, temperature and surface gravity do not enhance the detectability of groups. We also demonstrate that in addition to its role in probing the chemical enrichment and kinematic history of the Galactic disc, chemical tagging represents a powerful new stellar age determination technique.

  7. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.

    2017-08-01

    I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.

  8. The colour-magnitude relation as a constraint on the formation of rich cluster galaxies

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Kodama, Tadayuki; Terlevich, Ale

    1998-10-01

    The colours and magnitudes of early-type galaxies in galaxy clusters are strongly correlated. The existence of such a correlation has been used to infer that early-type galaxies must be old passively evolving systems. Given the dominance of early-type galaxies in the cores of rich clusters, this view sits uncomfortably with the increasing fraction of blue galaxies found in clusters at intermediate redshifts, and with the late formation of galaxies favoured by cold dark matter type cosmologies. In this paper, we make a detailed investigation of these issues and examine the role that the colour-magnitude relation can play in constraining the formation history of galaxies currently found in the cores of rich clusters. We start by considering the colour evolution of galaxies after star formation ceases. We show that the scatter of the colour-magnitude relation places a strong constraint on the spread in age that is allowed for the bulk of the stellar population. In the extreme case that the stars are formed in a single event, the spread in age cannot be more than 4 Gyr. Although the bulk of stars must be formed in a short period, continuing formation of stars in a fraction of the galaxies is not so strongly constrained. We examine a model in which star formation occurs over an extended period of time in most galaxies with star formation being truncated randomly. This model is consistent with the formation of stars in a few systems until look-back times of ~5Gyr. An extension of this type of star formation history allows us to reconcile the small present-day scatter of the colour-magnitude relation with the observed blue galaxy fractions of intermediate redshift galaxy clusters. In addition to setting a limit on the variations in luminosity-weighted age between the stellar populations of cluster galaxies, the colour-magnitude relation can also be used to constrain the degree of merging between pre-existing stellar systems. This test relies on the slope of the colour-magnitude relation: mergers between galaxies of unequal mass tend to reduce the slope of the relation and to increase its scatter. We show that random mergers between galaxies very rapidly remove any well-defined colour-magnitude correlation. This model is not physically motivated, however, and we prefer to examine the merger process using a self-consistent merger tree. In such a model there are two effects. First, massive galaxies preferentially merge with systems of similar mass. Secondly, the rate of mass growth is considerably smaller than for the random merger case. As a result of both of these effects, the colour-magnitude correlation persists through a larger number of merger steps. The passive evolution of galaxy colours and their averaging in dissipationless mergers provide opposing constraints on the formation of cluster galaxies in a hierarchical model. At the level of current constraints, a compromise solution appears possible. The bulk of the stellar population must have formed before z=1, but cannot have formed in mass units much less than about half the mass of a present-day L_* galaxy. In this case, the galaxies are on average old enough that stellar population evolution is weak, yet formed recently enough that mass growth resulting from mergers is small.

  9. Is High Primordial Deuterium Consistent with Galactic Evolution?

    NASA Astrophysics Data System (ADS)

    Tosi, Monica; Steigman, Gary; Matteucci, Francesca; Chiappini, Cristina

    1998-05-01

    Galactic destruction of primordial deuterium is inevitably linked through star formation to the chemical evolution of the Galaxy. The relatively high present gas content and low metallicity suggest only modest D destruction. In concert with deuterium abundances derived from solar system and/or interstellar observations, this suggests a primordial deuterium abundance in possible conflict with data from some high-redshift, low-metallicity QSO absorbers. We have explored a variety of chemical evolution models including infall of processed material and early, supernovae-driven winds with the aim of identifying models with large D destruction that are consistent with the observations of stellar-produced heavy elements. When such models are confronted with data, we reconfirm that only modest destruction of deuterium (less than a factor of 3) is permitted. When combined with solar system and interstellar data, these results favor the low deuterium abundances derived for the QSO absorbers by Tytler et al.

  10. Evolution of Galaxy Luminosity and Stellar-Mass Functions since $z=1$ with the Dark Energy Survey Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozzi, D.; et al.

    We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made ofmore » $$\\sim 4\\times 10^{6}$$ galaxies at $$0« less

  11. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  12. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less

  13. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  14. The Class of Jsolated Stars and Luminous Planetary Nebulae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Sabach, Efrat; Soker, Noam

    2018-06-01

    We suggest that stars whose angular momentum (J) does not increase by a companion, star or planet, along their post-main sequence evolution have much lower mass loss rates along their giant branches. Their classification to a separate group can bring insight on their late evolution stages. We here term these Jsolated stars. We argue that the mass loss rate of Jsolated stars is poorly determined because the mass loss rate expressions on the giant branches are empirically based on samples containing stars that experience strong binary interaction, with stellar or sub-stellar companions, e.g., planetary nebula (PN) progenitors. We use our earlier claim for a low mass loss rate of asymptotic giant branch (AGB) stars that are not spun-up by a stellar or substellar companion to show that we can account for the enigmatic finding that the brightest PNe in old stellar populations reach the same luminosity as the brightest PNe in young populations. It is quite likely that the best solution to the existence of bright PNe in old stellar populations is the combination of higher AGB luminosities, as obtained in some new stellar models, and the lower mass loss rates invoked here.

  15. Feedback Driven Chemical Evolution in Simulations of Low Mass Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Emerick, Andrew; Bryan, Greg; Mac Low, Mordecai-Mark

    2018-06-01

    Galaxy chemical properties place some of the best constraints on models of galaxy evolution. Both gas and stellar metal abundances in galaxies depend upon the integrated star formation history of the galaxy, gas accretion, outflows, and the effectiveness of metal mixing within the interstellar medium (ISM). Capturing the physics that governs these processes in detail, however, is challenging, in part due to the difficulty in self-consistently modelling stellar feedback physics that impacts each of these processes. Using high resolution hydrodynamics simulations of isolated dwarf galaxies where we follow stars as individual star particles, we examine the role of feedback in driving dwarf galaxy chemical evolution. This star-by-star method allows us to directly follow feedback from stellar winds from massive and AGB stars, stellar ionizing radiation and photoelectric heating, and supernovae. Additionally, we track 15 individual metal species yields from these stars as they pollute the ISM and enrich new stellar populations. I will present initial results from these simulations in the context of observational constraints on the retention/ejection of metals from Local Group dwarf galaxies. In addition, I will discuss the variations with which individual elements evolve in the various phases of the ISM, as they progress from hot, ionized gas down to cold, star forming regions. I will conclude by outlining the implications of these results on interpretations of observed chemical abundances in dwarf galaxies and on standard assumptions made in semi-analytic chemical evolution models of these galaxies.

  16. The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Meert, A.; Sheth, R. K.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.

    2016-02-01

    We describe the luminosity function, based on Sérsic fits to the light profiles, of CMASS galaxies at z ˜ 0.55. Compared to previous estimates, our Sérsic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sérsic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ˜ 0.1. This implies a significant revision of the high-mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k + e corrections. In turn, these depend on the assumed age of the population. Applying k + e corrections taken from fitting the models of Maraston et al. to the colours of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.

  17. Infrared surface photometry of 3C 65: Stellar evolution and the Tolman signal

    NASA Astrophysics Data System (ADS)

    Rigler, M. A.; Lilly, S. J.

    1994-06-01

    We present an analysis of the infrared surface brightness profile of the high-redshift radio galaxy 3C 65 (z = 1.176), which is well fitted by a de Vaucouleurs r1/4 law. A model surface fitting routine yields characteristic photometric parameters comparable to those of low-redshift radio galaxies and brightest cluster members (BCMs) in standard cosmologies. The small displacement of this galaxy from the locus of low-redshift systems on the mur - log(re) plane suggests that little or no luminosity evolution is required in a cosmological model with (Omega0, lambda0 = (1,0), while a modest degree of luminosity evolution, accountable by passive evolution of the stellar population, is implied in models with (0, 0) or (0.1, 0.9). A nonexpanding cosmology is unlikely because it would require 3C 65 to lie at the extreme end of the distribution of properties of local gE galaxies, and the effects of plausible stellar and/or dynamic evolution would make 3C 65 even more extreme by the present epoch.

  18. CoRoT-2b: a Tidally Inflated, Young Exoplanet?

    NASA Astrophysics Data System (ADS)

    Guillot, Tristan; Havel, M.

    2009-09-01

    CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.

  19. The evolution of rotating very massive stars with LMC composition

    NASA Astrophysics Data System (ADS)

    Köhler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2015-01-01

    Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims: We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods: We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M⊙ and with initial surface rotational velocities from 0 to 550 km s-1, covering the core-hydrogen burning phase of evolution. Results: We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M⊙, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ~150 M⊙ at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ~56 000 K, at ~180 M⊙, and to an evolution of stars in the mass range 50 M⊙...100 M⊙ to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ~180 M⊙. Conclusions: The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses. The dataset of the presented stellar evolution models is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A71Appendices are available in electronic form at http://www.aanda.org

  20. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraffe, I.; Chabrier, G.; Gallardo, J.

    2009-09-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T{sub eff}. Themore » best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an {approx}10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T{sub eff}, as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young ({<=} a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.« less

  1. Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Mathis, Stéphane

    2016-11-01

    Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star-planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from 0.6~M_⊙ to 1.2~M_⊙) where we compute the simultaneous evolution of the star's structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.

  2. The VLT-FLAMES survey of massive stars: mass loss and rotation of early-type stars in the SMC

    NASA Astrophysics Data System (ADS)

    Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.; Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer, N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.; Yoon, S.-C.

    2006-09-01

    We have studied the optical spectra of a sample of 31 O-and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v_r sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v_r) distribution that can be characterised by a mean velocity of about 160 - 190 km s-1 and an effective half width of 100 - 150 km s-1. The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring v_r. The mass loss rates of the SMC objects having luminosities of log L*/L⊙ ≳ 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine dot{M} accurately from the optical spectrum. Three targets were classifiedas Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower luminosity targets that were not classified as Vz stars are also found to lie near the ZAMS. We argue that this is related to a temperature effect inhibiting cooler from displaying the spectral features required for the Vz luminosity class.

  3. Influence of Non-spherical Initial Stellar Structure on the Core-Collapse Supernova Mechanism

    NASA Astrophysics Data System (ADS)

    Couch, Sean M.

    I review the state of investigation into the impact that nonspherical stellar progenitor structure has on the core-collapse supernova mechanism. Although modeling stellar evolution relies on 1D spherically symmetric calculations, massive stars are not truly spherical. In the stellar evolution codes, this fact is accounted for by "fixes" such as mixing length theory and attendant modifications. Of particular relevance to the supernova mechanism, the Si- and O-burning shells surrounding the iron core at the point of collapse can be violently convective, with convective speeds of hundreds of km s-1. It has recently been shown by a number of groups that the presence of nonspherical perturbations in the layers surrounding the collapsing iron core can have a favorable impact on the likelihood for shock revival and explosion via the neutrino heating mechanism. This is due in large part to the strengthening of turbulence behind the stalled shock due to the presence of finite amplitude seed perturbations to speed the growth of convection which drives the post-shock turbulence. Efforts are now underway to simulate the final minutes of stellar evolution to core-collapse in 3D with the aim to generate realistic multidimensional initial conditions for use in simulations of the supernova mechanism.

  4. Stars and Nuclei. Part II

    ERIC Educational Resources Information Center

    Ames, Oakes

    1972-01-01

    A brief review of the evidence that nuclear reactions are the main source of stellar energy, how nuclear reactions synthesize the elements, and how nuclear reactions determine the course of stellar evolution. (Author/CP)

  5. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  6. Stellar Evolution and Modelling Stars

    NASA Astrophysics Data System (ADS)

    Silva Aguirre, Víctor

    In this chapter I give an overall description of the structure and evolution of stars of different masses, and review the main ingredients included in state-of-the-art calculations aiming at reproducing observational features. I give particular emphasis to processes where large uncertainties still exist as they have strong impact on stellar properties derived from large compilations of tracks and isochrones, and are therefore of fundamental importance in many fields of astrophysics.

  7. The cosmological density of baryons from observations of 3He+ in the Milky Way.

    PubMed

    Bania, T M; Rood, Robert T; Balser, Dana S

    2002-01-03

    Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.

  8. Stellar populations of bulges in galaxies with a low surface-brightness disc

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  9. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  10. Open clusters. II. Fundamental parameters of B stars in Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025

    NASA Astrophysics Data System (ADS)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2015-05-01

    Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (<14 Myr) with overline{E(B-V) = 0.58 ± 0.05} mag and overline{(mv - M_v)0 = 12.18 ± 0.30} mag. The cluster parameters of NGC 3114 are overline{E(B-V) = 0.10 ± 0.01} mag and overline{(mv - M_v)0 = 9.20 ± 0.15} mag. This cluster presents an important population of Be star, but it is difficult to define the cluster membership of stars because of the high contamination by field stars or the possible overlapping with a nearby cluster. Finally, we derive the following cluster parameters of NGC 6025: overline{E(B-V) = 0.34 ± 0.02} mag, overline{(mv - M_v)0 = 9.25 ± 0.17} mag, and an age between 40 Myr and 69 Myr. In all the cases, new Be candidate stars are reported based on the appearance of a second Balmer discontinuity. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina.

  11. H2-based star formation laws in hierarchical models of galaxy formation

    NASA Astrophysics Data System (ADS)

    Xie, Lizhi; De Lucia, Gabriella; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, Anna

    2017-07-01

    We update our recently published model for GAlaxy Evolution and Assembly (GAEA), to include a self-consistent treatment of the partition of cold gas in atomic and molecular hydrogen. Our model provides significant improvements with respect to previous ones used for similar studies. In particular, GAEA (I) includes a sophisticated chemical enrichment scheme accounting for non-instantaneous recycling of gas, metals and energy; (II) reproduces the measured evolution of the galaxy stellar mass function; (III) reasonably reproduces the observed correlation between galaxy stellar mass and gas metallicity at different redshifts. These are important prerequisites for models considering a metallicity-dependent efficiency of molecular gas formation. We also update our model for disc sizes and show that model predictions are in nice agreement with observational estimates for the gas, stellar and star-forming discs at different cosmic epochs. We analyse the influence of different star formation laws including empirical relations based on the hydrostatic pressure of the disc, analytic models and prescriptions derived from detailed hydrodynamical simulations. We find that modifying the star formation law does not affect significantly the global properties of model galaxies, neither their distributions. The only quantity showing significant deviations in different models is the cosmic molecular-to-atomic hydrogen ratio, particularly at high redshift. Unfortunately, however, this quantity also depends strongly on the modelling adopted for additional physical processes. Useful constraints on the physical processes regulating star formation can be obtained focusing on low-mass galaxies and/or at higher redshift. In this case, self-regulation has not yet washed out differences imprinted at early time.

  12. The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Roy, N.; Radovich, M.; Getman, F.; Koopmans, L. V. E.; Verdoes Kleijn, G. A.; Kuijken, K. H.

    2018-01-01

    We study the dark matter (DM) assembly in the central regions of massive early-type galaxies up to z ∼ 0.65. We use a sample of ∼3800 massive (log M⋆/M⊙ > 11.2) galaxies with photometry and structural parameters from 156 deg2 of the Kilo Degree Survey (KiDS), and spectroscopic redshifts and velocity dispersions from Sloan Digital Sky Survey (SDSS). We obtain central total-to-stellar mass ratios, Mdyn/M⋆, and DM fractions, by determining dynamical masses, Mdyn, from Jeans modelling of SDSS aperture velocity dispersions and stellar masses, M⋆, from KiDS galaxy colours. We first show how the central DM fraction correlates with structural parameters, mass and density proxies, and demonstrate that most of the local correlations are still observed up to z ∼ 0.65; at fixed M⋆, local galaxies have larger DM fraction, on average, than their counterparts at larger redshift. We also interpret these trends with a non-universal initial mass function (IMF), finding a strong evolution with redshift, which contrast independent observations and is at odds with the effect of galaxy mergers. For a fixed IMF, the galaxy assembly can be explained, realistically, by mass and size accretion, which can be physically achieved by a series of minor mergers. We reproduce both the Re-M⋆ and Mdyn/M⋆-M⋆ evolution with stellar and dark mass changing at a different rate. This result suggests that the main progenitor galaxy is merging with less massive systems, characterized by a smaller Mdyn/M⋆, consistently with results from halo abundance matching.

  13. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-06

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum.

  14. Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud.

    PubMed

    Howk, J Christopher; Lehner, Nicolas; Fields, Brian D; Mathews, Grant J

    2012-09-06

    The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted primordial (7)Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the in situ modifications that may affect stellar atmospheres. Here we report observations of interstellar (7)Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity. The present-day (7)Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an extremely fine-tuned depletion of stellar Li with metallicity. They are also consistent with non-standard BBN.

  15. The Ca II V/R ratio and mass loss. [stellar spectral emission lines

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1978-01-01

    High-dispersion coude spectrograms of 181 MK standards of types early F through late M, including luminosity classes Ia, Ib, II, and III, are analyzed. It is shown that the brightness ratio of the V and R self-reversed emission peaks (denoted V/R) in the center of the Ca II K line is correlated with spectral type as well as with certain other spectral-type and luminosity-sensitive parameters, including indicators of mass loss and the H-K wing emission lines. The observations indicate that V/R varies smoothly from less than unity in late K and M giants to greater than unity for G giants. This trend appears to be true for bright giants as well but not necessarily for supergiants and seems to hold for the average V/R for a given star, although short-term variations in V/R occur. It is suggested that the V/R values, which can be interpreted in terms of atmospheric motions, may indirectly relate to effects of evolutionary changes in stellar structure and that V/R among late-type stars could be useful as an indicator of both chromospheric activity and the state of stellar evolution.

  16. Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin

    2018-01-01

    Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.

  17. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electronmore » temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.« less

  18. Supernovae from massive stars with extended tenuous envelopes

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Yoon, Sung-Chul; Livne, Eli; Waldman, Roni

    2018-04-01

    Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8-5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.

  19. The Structural Evolution of Milky-Way-Like Star-Forming Galaxies zeta is approximately 1.3

    NASA Technical Reports Server (NTRS)

    Patel, Shannon G.; Fumagalli, Mattia; Franx, Marun; VanDokkum, Pieter G.; VanDerWel, Arjen; Leja, Joel; Labbe, Ivo; Brammr, Gabriel; Whitaker, Katherine E.; Skelton, Rosalind E.; hide

    2013-01-01

    We follow the structural evolution of star-forming galaxies (SFGs) like the Milky Way by selecting progenitors to zeta is approx. 1.3 based on the stellar mass growth inferred from the evolution of the star-forming sequence. We select our sample from the 3D-HT survey, which utilizes spectroscopy from the HST-WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of zeta = 0 SFGs with stellar mass M = 10(exp 10.5) solar mass are typically half as massive at zeta is approx. 1. This late-time stellar mass grow is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at zeta is approx. 0 have grown in half-light radius by a factor of approx. 1.4 zeta is approx. 1. The half-light radius grows with stellar mass as r(sub e) alpha stellar mass(exp 0.29). While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of H(a) maps for SFGs at zeta approx. are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R - 8 kkpc to have increased by a factor of approx. 2 since zeta is approx. 1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.

  20. Nuclear Structure Aspects in Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Scott

    2006-12-01

    Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that wemore » have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.« less

  1. The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies

    NASA Astrophysics Data System (ADS)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús

    2018-02-01

    We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.

  2. On the habitability of universes without stable deuterium

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Grohs, Evan

    2017-05-01

    In both stars and in the early universe, the production of deuterium is the first step on the way to producing heavier nuclei. If the strong force were slightly weaker, then deuterium would not be stable, and many authors have noted that nuclesynthesis would be compromised so that helium production could not proceed through standard reaction chains. Motivated by the possibility that other regions of space-time could have different values for the fundamental constants, this paper considers stellar evolution in universes without stable deuterium and argues that such universes can remain habitable. Even in universes with no stellar nucleosynthesis, stars can form and will generate energy through gravitational contraction. Using both analytic estimates and a state-of-the-art stellar evolution code, we show that such stars can be sufficiently luminous and long-lived to support life. Stars with initial masses that exceed the Chandrasekhar mass cannot be supported by degeneracy pressure and will explode at the end of their contraction phase. The resulting explosive nucleosynthesis can thus provide the universe with some heavy elements. We also explore the possibility that helium can be produced in stellar cores through a triple-nucleon reaction that is roughly analogous to the triple-alpha reaction that operates in our universe. Stars burning hydrogen through this process are somewhat hotter than those in our universe, but otherwise play the same role. Next we show that with even trace amounts (metallicity Z ∼10-10) of heavy elements - produced through the triple-nucleon process or by explosive nucleosynthesis - the CNO cycle can operate and allow stars to function. Finally, we consider Big Bang Nucleosynthesis without stable deuterium and find that only trace amounts of helium are produced, with even smaller abundances of other nuclei. With stars evolving through gravitational contraction, explosive nucleosynthesis, the triple-nucleon reaction, and the CNO cycle, universes with no stable deuterium are thus potentially habitable, contrary to many previous claims.

  3. Hiding in Plain Sight: An Abundance of Compact Massive Spheroids in the Local Universe

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Dullo, Bililign T.; Savorgnan, Giulia A. D.

    2015-05-01

    It has been widely remarked that compact, massive, elliptical-like galaxies are abundant at high redshifts but exceedingly rare in the universe today, implying significant evolution such that their sizes at z ˜ 2 ± 0.6 have increased by factors of 3 to 6 to become today’s massive elliptical galaxies. These claims have been based on studies that measured the half-light radii of galaxies as though they are all single-component systems. Here we identify 21 spheroidal stellar systems within 90 Mpc that have half-light, major-axis radii {{R}e}≲ 2 kpc, stellar masses 0.7× {{10}11}\\lt {{M}*}/ {{M}⊙ }\\lt 1.4× {{10}11}, and Sérsic indices typically around a value of n = 2-3. This abundance of compact, massive spheroids in our own backyard—with a number density of 6.9× {{10}-6} Mpc-3 (or 3.5 × 10-5 Mpc-3 per unit dex-1 in stellar mass)—and with the same physical properties as the high-redshift galaxies, had been overlooked because they are encased in stellar disks that usually result in galaxy sizes notably larger than 2 kpc. Moreover, this number density is a lower limit because it has not come from a volume-limited sample. The actual density may be closer to 10-4, although further work is required to confirm this. We therefore conclude that not all massive “spheroids” have undergone dramatic structural and size evolution since z ˜ 2 ± 0.6. Given that the bulges of local early-type disk galaxies are known to consist of predominantly old stars that existed at z ˜ 2, it seems likely that some of the observed high-redshift spheroids did not increase in size by building (three-dimensional) triaxial envelopes as commonly advocated, and that the growth of (two-dimensional) disks has also been important over the past 9-11 billion years.

  4. Effects of secular evolution on the star formation history of galaxies

    NASA Astrophysics Data System (ADS)

    Lorenzo, M. Fernández; Sulentic, J.; Verdes-Montenegro, L.; Argudo-Fernández, M.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.

    2015-03-01

    We report the study performed as part of the AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es) project, focused on the SDSS (g-r) colors of the sample. Assuming that color is an indicator of star formation history, this work better records the signature of passive star formation via pure secular evolution. Median values for each morphological type in AMIGA were compared with equivalent measures for galaxies in denser environments. We found a tendency for AMIGA spiral galaxies to be redder than galaxies in close pairs, but no clear difference when we compare with galaxies in other (e.g. group) environments. The (g-r) color of isolated galaxies presents a Gaussian distribution, as indicative of pure secular evolution, and a smaller median absolute deviation (almost half) compared to both wide and close pairs. This redder color and lower color dispersion of AMIGA spirals compared with close pairs is likely due to a more passive star formation in very isolated galaxies. In Fig. 1, we represent the size versus stellar mass for early and late-type galaxies of our sample, compared with the local relations of Shen et al. (2003). The late-type isolated galaxies are ~1.2 times larger or have less stellar mass than local spirals in other environments. The latter would be in agreement with the passive star formation found in the previous part. We acknowledge Grant AYA2011-30491-C02-01, P08-FQM-4205 and TIC-114.

  5. A Kinematic Survey in the Perseus Molecular Cloud: Results from the APOGEE Infrared Survey of Young Nebulous Clusters (IN-SYNC)

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, M.; Foster, J. B.; Nidever, D. L.; Meyer, M.; Tan, J.; Da Rio, N.; Flaherty, K. M.; Stassun, K.; Frinchaboy, P. M.; Majewski, S.; APOGEE IN-SYNC Team

    2014-01-01

    Demographic studies of stellar clusters indicate that relatively few persist as bound structures for 100 Myrs or longer. If cluster dispersal is a 'violent' process, it could strongly influence the formation and early evolution of stellar binaries and planetary systems. Unfortunately, measuring the dynamical state of 'typical' (i.e., ~300-1000 member) young star clusters has been difficult, particularly for clusters still embedded within their parental molecular cloud. The near-infrared spectrograph for the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which can measure precise radial velocities for 230 cluster stars simultaneously, is uniquely suited to diagnosing the dynamics of Galactic star formation regions. We give an overview of the INfrared Survey of Young Nebulous Clusters (IN-SYNC), an APOGEE ancillary science program that is carrying out a comparative study of young clusters in the Perseus molecular cloud: NGC 1333, a heavily embedded cluster, and IC 348, which has begun to disperse its surrounding molecular gas. These observations appear to rule out a significantly super-virial velocity dispersion in IC 348, contrary to predictions of models where a cluster's dynamics is strongly influenced by the dispersal of its primordial gas. We also summarize the properties of two newly identified spectroscopic binaries; binary systems such as these play a key role in the dynamical evolution of young clusters, and introduce velocity offsets that must be accounted for in measuring cluster velocity dispersions.

  6. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkolnik, Evgenya L.; Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation andmore » evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.« less

  7. Solar astrophysics - Ghettosis from, or symbiosis with, stellar and galactic astrophysics

    NASA Technical Reports Server (NTRS)

    Pecker, J.-C.; Thomas, R. N.

    1976-01-01

    The purpose of the paper is to show how the solar-stellar symbiotic approach has led to the modeling of a star as a concentration of matter and energy. By 'solar-stellar symbiosis' is meant the philosophy of investigation according to which one asks what change in our general understanding of stellar structure and of stellar spectroscopic diagnostics is required to satisfy both the sun and an unusual star when, for example, some feature of an unusual star is discovered. The evolution of stellar models is traced, from walled, thermodynamic-equilibrium models to de-isolated models featuring transition zones and nonlocal thermodynamic equilibrium.

  8. The evolution of magnetic hot massive stars: Implementation of the quantitative influence of surface magnetic fields in modern models of stellar evolution

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique

    2017-11-01

    Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.

  9. Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Chaboyer, B.

    2018-03-01

    Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived characteristics of metal-poor ([Fe/H] ∼ ‑2.3) stars representing a range of evolutionary phases: subgiant HD 140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120, HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length parameter α MLT in models of these objects is ineffective at reproducing their observed properties. Empirically calibrated values of α MLT are presented for each object, accounting for uncertainties in the input physics employed in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar evolution models to maintain fidelity in the era of high-precision observations.

  10. Physical Orbit for Lam Vir and Testing of Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Monnier, J. D.; Torres, G.; Pedretti, E.; Millan-Gabet, R.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.

    2005-12-01

    Lambda Virginis is a well-known double-lined spectroscopic Am binary with the interesting property that both stars are very similar in abundance but one is sharp-lined and the other is broad-lined. The differing rotation rates and the unusual metallic-lined nature of this system presents a unique opportunity to test stellar evolution models. In this poster, we present high resolution observations of Lam Vir, taken with the Infrared-Optical Telescopes Array (IOTA) between 2003 and 2005. By combining our interferometric data with double-lined radial velocity data, we determined for the first time the physical orbit of Lam Vir, as well as the orbital parallax of the system. In addition, the masses of the two components are determined with 1% and 1.5% errors respectively. Our preliminary result from comparison with stellar evolution models suggests a discrepancy between Lam Vir and standard models.

  11. STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5-0.9 GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Inger; Chiboucas, Kristin, E-mail: ijorgensen@gemini.edu, E-mail: kchiboucas@gemini.edu

    2013-03-15

    We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6-0305 (z = 0.54), RXJ0152.7-1357 (z = 0.83), and RXJ1226.9+3332 (z = 0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices andmore » velocity dispersions. We confirm that the FP is steeper at z Almost-Equal-To 0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z{sub form}, depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of {sigma} = 125 km s{sup -1} (Mass = 10{sup 10.55} M{sub Sun }) we find z{sub form} = 1.24 {+-} 0.05, while at {sigma} = 225 km s{sup -1} (Mass = 10{sup 11.36} M{sub Sun }) the formation redshift is z{sub form} = 1.95{sup +0.3}{sub -0.2}, for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines H{delta} and H{gamma} implies z{sub form} > 2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model. Based on the absorption line indices and recent stellar population models from Thomas et al., we find that MS0451.6-0305 has a mean metallicity [M/H] approximately 0.2 dex below that of the other clusters and our low-redshift sample. We confirm our previous result that RXJ0152.7-1357 has a mean abundance ratio [{alpha}/Fe] approximately 0.3 dex higher than that of the other clusters. The differences in [M/H] and [{alpha}/Fe] between the high-redshift clusters and the low-redshift sample are inconsistent with a passive evolution scenario for early-type cluster galaxies over the redshift interval studied. Low-level star formation may be able to bring the metallicity of MS0451.6-0305 in agreement with the low-redshift sample, while we speculate whether galaxy mergers can lead to sufficiently large changes in the abundance ratios for the RXJ0152.7-1357 galaxies to allow them to reach the low-redshift sample values in the time available.« less

  12. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  13. Stellar disc destruction by dynamical interactions in the Orion Trapezium star cluster

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.

    2016-03-01

    We compare the observed size distribution of circumstellar discs in the Orion Trapezium cluster with the results of N-body simulations in which we incorporated an heuristic prescription for the evolution of these discs. In our simulations, the sizes of stellar discs are affected by close encounters with other stars (with discs). We find that the observed distribution of disc sizes in the Orion Trapezium cluster is excellently reproduced by truncation due to dynamical encounters alone. The observed distribution appears to be a sensitive measure of the past dynamical history of the cluster, and therewith on the conditions of the cluster at birth. The best comparison between the observed disc-size distribution and the simulated distribution is realized with a cluster of N = 2500 ± 500 stars with a half-mass radius of about 0.5 pc in virial equilibrium (with a virial ratio of Q = 0.5, or somewhat colder Q ≃ 0.3), and with a density structure according to a fractal dimension of F ≃ 1.6. Simulations with these parameters reproduce the observed distribution of circumstellar discs in about 0.2-0.5 Myr. We conclude that the distribution of disk sizes in the Orion Trapezium cluster is the result of dynamical interactions in the early evolution of the cluster.

  14. THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.

    2010-08-01

    We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for thesemore » stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.« less

  15. Songlines from Direct Collapse Seed Black Holes

    NASA Astrophysics Data System (ADS)

    Aykutalp, Aycin; Wise, John; Spaans, Marco; Meijerink, Rowin

    2015-01-01

    In the last decade, the growth of supermassive black holes (SMBHs) has been intricately linked to galaxy formation and evolution, and is a key ingredient in the assembly of galaxies. Observations of SMBHs with masses of 109 solar at high redshifts (z~7) poses challenges to the theory of seed black hole formation and their growth in young galaxies. Fundamental to understanding their existence within the first billion years after the Big Bang, is the identification of their formation processes, growth rate and evolution through cosmic time. We perform cosmological hydrodynamic simulations following the growth of direct collapse seed black holes (DCBH) including X-ray irradiation from the central black hole, stellar feedback both from metal-free and metal-rich stars and H2 self-shielding. These simulations demonstrate that X-ray irradiation from the central black hole regulates its growth and influence the formation of stellar population in the host halo. In particular, X-ray radiation enhances H2 formation in metal-free gas and initially induces the star formation in the halo. However, in the long term, X-ray irradiation from the accreting seed DCBH stifles the initial growth relative to the Eddington rate argument. This further complicates the explanation for the existence of SMBHs in the early universe.

  16. Protomagnetar and black hole formation in high-mass stars

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Aloy, M. Á.

    2017-07-01

    Using axisymmetric simulations coupling special relativistic magnetohydrodynamics (MHD), an approximate post-Newtonian gravitational potential and two-moment neutrino transport, we show different paths for the formation of either protomagnetars or stellar mass black holes. The fraction of prototypical stellar cores which should result in collapsars depends on a combination of several factors, among which the structure of the progenitor star and the profile of specific angular momentum are probably the foremost. Along with the implosion of the stellar core, we also obtain supernova-like explosions driven by neutrino heating and hydrodynamic instabilities or by magneto-rotational effects in cores of high-mass stars. In the latter case, highly collimated, mildly relativistic outflows are generated. We find that after a rather long post-collapse phase (lasting ≳1 s) black holes may form in cases both of successful and failed supernova-like explosions. A basic trend is that cores with a specific angular momentum smaller than that obtained by standard, one-dimensional stellar evolution calculations form black holes (and eventually collapsars). Complementary, protomagnetars result from stellar cores with the standard distribution of specific angular momentum obtained from prototypical stellar evolution calculations including magnetic torques and moderate to large mass-loss rates.

  17. Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.

    2002-12-01

    Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.

  18. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  19. What Makes Red Giants Tick? Linking Tidal Forces, Activity, and Solar-Like Oscillations via Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason

    2016-01-01

    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.

  20. The shock-heated atmosphere of an asymptotic giant branch star resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Vlemmings, Wouter; Khouri, Theo; O'Gorman, Eamon; De Beck, Elvire; Humphreys, Elizabeth; Lankhaar, Boy; Maercker, Matthias; Olofsson, Hans; Ramstedt, Sofia; Tafoya, Daniel; Takigawa, Aki

    2017-12-01

    Our current understanding of the chemistry and mass-loss processes in Sun-like stars at the end of their evolution depends critically on the description of convection, pulsations and shocks in the extended stellar atmosphere1. Three-dimensional hydrodynamical stellar atmosphere models provide observational predictions2, but so far the resolution to constrain the complex temperature and velocity structures seen in the models has been lacking. Here we present submillimetre continuum and line observations that resolve the atmosphere of the asymptotic giant branch star W Hydrae. We show that hot gas with chromospheric characteristics exists around the star. Its filling factor is shown to be small. The existence of such gas requires shocks with a cooling time longer than commonly assumed. A shocked hot layer will be an important ingredient in current models of stellar convection, pulsation and chemistry at the late stages of stellar evolution.

  1. ACCURATE LOW-MASS STELLAR MODELS OF KOI-126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron, E-mail: gregory.a.feiden@dartmouth.edu

    2011-10-10

    The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influencemore » of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.« less

  2. Constructing and Monitoring the Infrared SED of the First Known Recent Stellar Merger

    NASA Astrophysics Data System (ADS)

    McCollum, Bruce; Laine, Seppo; Bruhweiler, Frederick; Rottler, Lee

    2012-12-01

    Stellar mergers have long been thought to be astrophysically important to the evolution and global properties of dense stellar aggregates and even open clusters. However, the study of this phenomenon has until now been severely impeded by the lack of any definite, recent merger with which to compare models. It was recently realized that a 2008 nova was in fact a contact binary which erupted when the two stars finally merged. We have obtained post-merger infrared observations which show a large IR excess and a nonstellar SED which have changed subsantially over time, and near-IR emission lines from shocked material. This object is an important opportunity to learn about the nature and time evolution of recent merger products, and to assemble a unique data set which will be used for many years as a basis for modeling stellar mergers.

  3. ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.

    2015-04-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency. This paper contains data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  4. The birth of gravitational evolutionary dynamics of stellar systems (from Th. Wright to W. Herschel).

    NASA Astrophysics Data System (ADS)

    Eremeeva, A. J.

    1995-05-01

    Th. Wright, I. Kant and I. H. Lambert used well-known ideas about the structure and dynamics of the Solar system as a basis of their concepts of the stellar Universe. W. Herschel discovered the main features of the true, non-hierarchical large-scale structure of the Universe. He was also a pioneer of stellar dynamics with its new statistical laws and also of the theory of dynamical evolution in stellar systems at different scales.

  5. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  6. The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie

    2014-11-01

    We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.

  7. X-ray diving in the center of Sh2-129: looking for the driving source of Ou4

    NASA Astrophysics Data System (ADS)

    Grosso, Nicolas

    2012-10-01

    The outflow phenomenon is associated both with the early and the last phase of the stellar evolution. Recently, a unique bipolar outflow with an angular size of 1.2 degrees was discovered in the blister HII region Sh2-129. Ou4, nicknamed "The Giant Squid", is to our knowledge the bipolar outflow with the largest angular size ever found. We propose joint XMM-Newton/EPIC (35 ks) and Chandra/HRC-I (16 ks) observations to look for the driving source of Ou4 and to clarify the nature of this object.

  8. Photochemical fractionation of O-16 in the space medium modeled by resonance excitation of CO by H-Lyman alpha

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Corrigan, M. J.; Fitzgerald, R. W.

    1988-01-01

    Analyses of meteorite matter, the present structure of the solar system, and the evolution of matter in stellar systems are used to provide inferences concerning the formation of primordial matter in the solar system. Results indicate that molecular excitation processes similar to those observed today in circumstellar regions and dark interstellar clouds were operating in the early solar nebula. It is suggested that resonance excitation of broad isotopic bands by strong UV line sources may have resulted in the anomalous isotopic compositions noted in meteorites.

  9. Evidence of a primordial solar wind. [T Tauri-type evolution model

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1974-01-01

    A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.

  10. VISIONS - Vista Star Formation Atlas

    NASA Astrophysics Data System (ADS)

    Meingast, Stefan; Alves, J.; Boui, H.; Ascenso, J.

    2017-06-01

    In this talk I will present the new ESO public survey VISIONS. Starting in early 2017 we will use the ESO VISTA survey telescope in a 550 h long programme to map the largest molecular cloud complexes within 500 pc in a multi-epoch program. The survey is optimized for measuring the proper motions of young stellar objects invisible to Gaia and mapping the cloud-structure with extinction. VISIONS will address a series of ISM topics ranging from the connection of dense cores to YSOs and the dynamical evolution of embedded clusters to variations in the reddening law on both small and large scales.

  11. NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-08-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the {}13{{C}} pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.

  12. The Chemical Evolution of Phosphorus

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning -3.3 <= [Fe/H] <= -0.2, and obtained an upper limit for a star with [Fe/H] ~ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of -1 <= [Fe/H] <= +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246. Other portions of this work are based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the McDonald Observatory of the University of Texas at Austin.

  13. What do Simulations Predict for the Galaxy Stellar Mass Function and its Evolution in Different Environments?

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; De Lucia, Gabriella; Poggianti, Bianca M.; Bundy, Kevin; More, Surhud; Calvi, Rosa

    2014-06-01

    We present a comparison between the observed galaxy stellar mass function and the one predicted from the De Lucia & Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z ~ 0.06), and at intermediate redshift (z ~ 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z ~ 0.6 and in clusters at both redshifts. Above M * = 1010.25 M ⊙, it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M * = 109.4 M ⊙, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.

  14. Discovery of starspots on Vega. First spectroscopic detection of surface structures on a normal A-type star

    NASA Astrophysics Data System (ADS)

    Böhm, T.; Holschneider, M.; Lignières, F.; Petit, P.; Rainer, M.; Paletou, F.; Wade, G.; Alecian, E.; Carfantan, H.; Blazère, A.; Mirouh, G. M.

    2015-05-01

    Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims: The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods: Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895-6270 Å. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a Teff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results: We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes ΔF/Fc ~ 5 × 10-4. A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower equatorial latitudes. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked to explain the existence of activity tracing starspots. At this stage it is difficult to disentangle a rotational from a stellar pulsational origin for the existing higher frequency periodic variations. Conclusions: This first strong evidence that standard A-type stars can show surface structures opens a new field of research and ask about a potential link with the recently discovered weak magnetic field discoveries in this category of stars. Based on observations obtained with the SOPHIE spectrograph at the 2 m OHP telescope operated by the Institut National des Sciences de l'Univers (INSU) of the Centre National de la Recherche Scientifique of France (CNRS).

  15. Stellar and Binary Evolution in Star Clusters

    NASA Technical Reports Server (NTRS)

    McMillan, Stephen L. W.

    2001-01-01

    This paper presents a final report on research activities covered on Stellar and Binary Evolution in Star Clusters. Substantial progress was made in the development and dissemination of the "Starlab" software environment. Significant improvements were made to "kira," an N-body simulation program tailored to the study of dense stellar systems such as star clusters and galactic nuclei. Key advances include (1) the inclusion of stellar and binary evolution in a self-consistent manner, (2) proper treatment of the anisotropic Galactic tidal field, (3) numerous technical enhancements in the treatment of binary dynamics and interactions, and (4) full support for the special-purpose GRAPE-4 hardware, boosting the program's performance by a factor of 10-100 over the accelerated version. The data-reduction and analysis tools in Starlab were also substantially expanded. A Starlab Web site (http://www.sns.ias.edu/-starlab) was created and developed. The site contains detailed information on the structure and function of the various tools that comprise the package, as well as download information, "how to" tips and examples of common operations, demonstration programs, animations, etc. All versions of the software are freely distributed to all interested users, along with detailed installation instructions.

  16. The History of the M31 Disk from Resolved Stellar Populations as Seen by PHAT

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Dalcanton, J. J.; Dolphin, A. E.; Weisz, D. R.; Williams, B. F.; PHAT Collaboration

    2014-03-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that is mapping the resolved stellar populations of ˜1/3 of M31 from the UV through the near-IR. These data provide color and luminosity information for more than 150 million stars in the M31 disk. We use stellar evolution models to fit the luminous main sequence to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 50-100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. We use the gridded SFHs to create movies of star formation activity to study the evolution of individual star-forming events across the disk. Outside of the star-forming regions, we use our resolved stellar photometry to derive the full SFHs of larger regions. These allow us to probe spatial and temporal trends in age and metallicity across a large radial baseline, providing constraints on the global formation and evolution of the disk over a Hubble time. M31 is the only large disk galaxy that is close enough to obtain the photometry necessary for this type of spatially-resolved SFH mapping.

  17. Herschel-ATLAS: the surprising diversity of dust-selected galaxies in the local submillimetre Universe

    NASA Astrophysics Data System (ADS)

    Clark, C. J. R.; Dunne, L.; Gomez, H. L.; Maddox, S.; De Vis, P.; Smith, M. W. L.; Eales, S. A.; Baes, M.; Bendo, G. J.; Bourne, N.; Driver, S. P.; Dye, S.; Furlanetto, C.; Grootes, M. W.; Ivison, R. J.; Schofield, S. P.; Robotham, A. S. G.; Rowlands, K.; Valiante, E.; Vlahakis, C.; van der Werf, P.; Wright, A. H.; de Zotti, G.

    2015-09-01

    We present the properties of the first 250 μm blind sample of nearby galaxies (15 < D < 46 Mpc) containing 42 objects from the Herschel Astrophysical Terahertz Large Area Survey. Herschel's sensitivity probes the faint end of the dust luminosity function for the first time, spanning a range of stellar mass (7.4 < M⋆ < 11.3 log10 M⊙), star formation activity (-11.8 < SSFR < -8.9 log10 yr-1), gas fraction (3-96 per cent), and colour (0.6 < FUV-KS < 7.0 mag). The median cold dust temperature is 14.6 K, colder than in the Herschel Reference Survey (18.5 K) and Planck Early Release Compact Source Catalogue (17.7 K). The mean dust-to-stellar mass ratio in our sample is higher than these surveys by factors of 3.7 and 1.8, with a dust mass volume density of (3.7 ± 0.7) × 105 M⊙ Mpc-3. Counter-intuitively, we find that the more dust rich a galaxy, the lower its UV attenuation. Over half of our dust-selected sample are very blue in FUV-KS colour, with irregular and/or highly flocculent morphology; these galaxies account for only 6 per cent of the sample's stellar mass but contain over 35 per cent of the dust mass. They are the most actively star-forming galaxies in the sample, with the highest gas fractions and lowest UV attenuation. They also appear to be in an early stage of converting their gas into stars, providing valuable insights into the chemical evolution of young galaxies.

  18. Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Maggio, A.; Sciortino, S.

    2000-09-01

    We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.

  19. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs cannot simultaneously explain the run of [Al/Fe] with [Fe/H], and vice versa. The comparison with stellar ages is hampered by severe uncertainties. Indeed, reliable age estimates are available for only a half of the stars of the sample. We conclude that Al is underproduced by the models, except for stellar ages younger than about 7 Gyr. In addition, some significant source of late Na production seems to be missing in the models. Either current Na and Al yields are affected by large uncertainties, and/or some important Galactic source(s) of these elements has as yet not been taken into account. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey), and on data obtained from the ESO Archive originally observed under programs 60.A-9143, 076.B-0263 and 082.D-0726.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A115

  20. Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.

    2017-02-01

    Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.

  1. Chandra Early Type Galaxy Atals

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  2. The Hadean, Through a Glass Telescopically: Observations of Young Solar Analogs

    NASA Technical Reports Server (NTRS)

    Gaidos, E. J.

    1998-01-01

    Investigations into the Earth's surface environment during the Hadean eon (prior to 3.8 Ga) are hampered by the paucity of the geological and geochemical record and the relative inaccessibility of better-preserved surfaces with possibly similar early histories (i.e., Mars). One approach is to observe nearby, young solar-mass stars as analogs to the Hadean Sun and its environment. A catalog of 38 G and early K stars within 25 pc was constructed based on main-sequence status, bolometric luminosity, lack of known stellar companions within 800 AU, and coronal X-ray luminosities commensurate with the higher activity of solar-mass stars <0.8 b.y. old. Spectroscopic data support the assignment of ages of 0.2 - 0.8 Ga for most of these stars. Observations of these objects will provide insight into external forces that influenced Hadean atmosphere, ocean, and surface evolution (and potential ecosystems), including solar luminosity evolution, the flux and spectrum of solar ultraviolet radiation, the intensity of the solar wind, and the intensity and duration of a late period of heavy bombardment. The standard model of solar evolution predicts a luminosity of 0.75 solar luminosity at the end of the Hadean, implying a terrestrial surface temperature inconsistent with the presence of liquid water and motivating atmospheric greenhouse models. An alternative model fo solar evolution that invokes mass loss, constructed to explain solar Li depletion, attenuates or reverses this luminosity evolution of the atmospheres of Earth and the other terrestrial planets. This model can be tested by Li abundance measurements. The continuum emission from stellar wind plasma during significant mass loss may be detectable at millimeter and radio wavelengths. The Earth (and Moon) experienced a period of intense bombardment prior to 3.8 Ga, long after accretion was completed in the inner solar system and possibly associated with the clearing of residual planetesimals in the outer solar system. Such a bombardment may have contributed volatiles and organics to the surface, but also have limited the appearacne of a biosphere. While planetary systems around solar systems cannot be detected directly with present technology, the thermal emission from the interplanetary dust generated during a similar heavy bombardment period can be. Midinfrared observations of a large uniform sample of solar analogs are used to constrain the frequency and duration of such events.

  3. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  4. A complex approach to the blue-loop problem

    NASA Astrophysics Data System (ADS)

    Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga

    2015-08-01

    The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.

  5. Some Characteristics of Current Star Formation in the 30 Doradus Nebula Revealed by HST/NICMOS

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Barbá, Rodolfo H.; Brandner, Wolfgang; Rubio, Mónica; Grebel, Eva K.; Probst, Ronald G.

    1999-01-01

    The extensive ``second generation'' of star formation within the 30 Doradus Nebula, evidently triggered by the R136 central cluster around its periphery, has been imaged with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope. Many new IR sources, including multiple systems, clusters, and nebular structures, are found in these images. Six of the NICMOS fields are described here, in comparison with the WFPC2 images of the same fields. Knots 1-3 of Walborn & Blades (early O stars embedded in dense nebular knots) are all found to be compact multiple systems. Knot 1 is shown to reside at the top of a massive dust pillar oriented directly toward R136, whose summit has just been removed, exposing the newborn stellar system. Knots 1 and 3 are also near the brightest IR sources in the region, while parsec-scale jet structures are discovered in association with Knots 2 and 3. The Knot 2 structures consist of detached, nonstellar IR sources aligned on either side of the stellar system, which are interpreted as impact points of a highly collimated, possibly rotating bipolar jet on the surrounding dark clouds; the H_2O maser found by Whiteoak et al. is also in this field. These outflows from young massive stars in 30 Dor are the first extragalactic examples of the phenomenon. In the field of the pillars south of R136, recently discussed in comparison with the M16 pillars by Scowen et al., a new luminous stellar IR source has been discovered. These results establish the 30 Doradus Nebula as a prime region in which to investigate the formation and very early evolution of massive stars and multiple systems. The theme of triggered formation within the heads of extensive dust pillars oriented toward R136 is strong. In addition, these results provide further insights into the global structure and evolution of 30 Doradus, which are significant in view of its status as the best resolved extragalactic starburst. This paper is dedicated to W. W. Morgan, who taught me the power of morphology to uncover new phenomena in astronomy.-N. R. W.

  6. The impact and evolution of magnetic confinement in hot stars

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Z.; Wade, G. A.; Petit, V.; Meynet, G.; Georgy, C.

    2018-01-01

    Magnetic confinement of the winds of hot, massive stars has far-reaching consequences on timescales ranging from hours to Myr. Understanding the long-term effects of this interplay has already led to the identification of two new evolutionary pathways to form `heavy' stellar mass black holes and pair-instability supernova even at galactic metallicity. We are performing 1D stellar evolution model calculations that, for the first time, account for the surface effects and the time evolution of fossil magnetic fields. These models will be thoroughly confronted with observations and will potentially lead to a significant revision of the derived parameters of observed magnetic massive stars.

  7. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  8. On the theory of group generation of stars

    NASA Technical Reports Server (NTRS)

    Zhilyayev, B. Y.; Porfiryev, V. V.; Shulman, L. M.

    1973-01-01

    The hypothesis proposed is that topology of a rotating gaseous cloud can be variable in the contraction process. Due to rotation an originally spherical cloud is transformed into a toroidal body. The contraction of a thin torus is considered with different suppositions on cooling the gas. In the determined time the torus will become gravitationally unstable. The excitation of Jeans' waves is shown to result in the disintegration of the torus into fragments. The number of the fragments and their mass distributions are calculated. The proposed hypothesis on toroidal stages in stellar evolution can remove some difficulties in the theory of structure and evolution of stars, such as absence of limitary stars, distribution of rotation velocities of early-type stars, origin of poloidal magnetic fields and decline rotators with the magnetic axis orthogonal to the axis of rotation.

  9. Gamma Ray Bursts as Cosmological Probes with EXIST

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter; EXIST Team

    2006-12-01

    The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.

  10. A Physical Model for Mass Ejection in Failed Supernovae

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric Robert; Quataert, Eliot; Fernandez, Rodrigo; Kasen, Daniel

    2018-01-01

    During the core collapse of a massive star, the formation of the protoneutron star is accompanied by the emission of a significant amount of mass-energy (a few tenths of a Solar mass) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova -- where the shock associated with the original core collapse cannot unbind the envelope in a successful explosion. We provide both rough estimates of the energy contained in the shock that powers the transient and a general formalism for analyzing the propagation and steepening of the pressure wave, and we apply this formalism to polytropic stellar models. We compare our results to simulations, and we find excellent agreement in both the early evolution of the pressure wave and in the energy contained in the shock. Our estimates provide important constraints on the observational implications of failed supernovae.

  11. Two distinct sequences of blue straggler stars in the globular cluster M 30.

    PubMed

    Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S

    2009-12-24

    Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

  12. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  13. THE YOUNG OPEN CLUSTERS KING 12, NGC 7788, AND NGC 7790: PRE-MAIN-SEQUENCE STARS AND EXTENDED STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidge, T. J.

    2012-12-20

    The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less

  14. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  15. Not Alone: Tracing the Origins of Very-Low-Mass Stars and Brown Dwarfs Through Multiplicity Studies

    NASA Astrophysics Data System (ADS)

    Burgasser, A. J.; Reid, I. N.; Siegler, N.; Close, L.; Allen, P.; Lowrance, P.; Gizis, J.

    The properties of multiple stellar systems have long provided important empirical constraints for star-formation theories, enabling (along with several other lines of evidence) a concrete, qualitative picture of the birth and early evolution of normal stars. At very low masses (VLM; M ? 0.1 solar mass), down to and below the hydrogen-burning minimum mass, our understanding of formation processes is not as clear, with several competing theories now under consideration. One means of testing these theories is through the empirical characterization of VLM multiple systems. Here, we review the results of various VLM multiplicity studies to date. These systems can be generally characterized as closely separated (93% have projected separations ? < 20 AU), near equal-mass (77% have M2/M1 ? 0.8) and occurring infrequently (perhaps 10-30% of systems are binary). Both the frequency and maximum separation of stellar and brown dwarf binaries steadily decrease for lower system masses, suggesting that VLM binary formation and/or evolution may be a mass-dependent process. There is evidence for a fairly rapid decline in the number of loosely bound systems below ~0.3 solar mass, corresponding to a factor of 10-20 increase in the minimum binding energy of VLM binaries as compared to more massive stellar binaries. This wide-separation "desert" is present among both field (~1-5 G.y.) and older (>100 m.y.) cluster systems, while the youngest (<10 m.y.) VLM binaries, particularly those in nearby, low-density star-forming regions, appear to have somewhat different systemic properties. We compare these empirical trends to predictions laid out by current formation theories, and outline future observational studies needed to probe the full parameter space of the lowest-mass multiple systems.

  16. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  17. Stellar Populations in BL Lac type Objects

    NASA Astrophysics Data System (ADS)

    Serote Roos, Margarida

    The relationship between an Active Galactic Nucleus (AGN) and its host galaxy is a crucial question in the study of galaxy evolution. We present an estimate of the stellar contribution in a sample of low luminosity BL Lac type objects. We have performed stellar population synthesis for a sample of 19 objects selected from Marchã et al. (1996, MNRAS 281, 425). The stellar content is quantified using the equivalent widths of all absorption features available throughout the spectrum. The synthesis is done by a variant of the GPG method (Pelat: 1997, MNRAS 284, 365).

  18. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-08

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  19. The early evolution of protostellar disks

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad

    1994-01-01

    We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).

  20. The growth of discs and bulges during hierarchical galaxy formation - II. Metallicity, stellar populations and dynamical evolution

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.

    2017-03-01

    We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.

  1. COUPLED EVOLUTIONS OF THE STELLAR OBLIQUITY, ORBITAL DISTANCE, AND PLANET'S RADIUS DUE TO THE OHMIC DISSIPATION INDUCED IN A DIAMAGNETIC HOT JUPITER AROUND A MAGNETIC T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Ling; Gu, Pin-Gao; Bodenheimer, Peter H.

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay bymore » the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.« less

  2. The primary role of the SW Sextantis stars in the evolution of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Torres, Manuel; Gaensicke, Boris; Rodriguez-Gil, Pablo; Long, Knox; Marsh, Tom; Steeghs, Danny; Munoz-Darias, Teodoro; Shahbaz, Tariq; Schmidtobreick, Linda; Schreiber, Matthias

    2009-02-01

    SW Sextantis stars are a relatively large group of cataclysmic variables (CVs) which plays a fundamental role in our understanding of CV structure and evolution. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of a number of SW Sex stars and request here Gemini/GMOS-N ToO time to obtain orbital phase-resolved spectroscopy if one of them enters a low state, since this is the only opportunity for studying the stellar components individually. These data will be used to accurately measure the binary parameters, white dwarf temperature, and distance to the system for a SW Sex star for the first time. The measured stellar masses and radii will especially be a precious input to the theory of compact binary evolution as a whole.

  3. Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1994-01-01

    The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.

  4. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  5. RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiners, Ansgar; Mohanty, Subhanjoy, E-mail: Ansgar.Reiners@phys.uni-goettingen.de

    2012-02-10

    Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from themore » large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.« less

  6. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, L.; Ballester, G. E.

    2013-05-01

    Detecting heavy atoms in the inflated atmospheres of giant exoplanets that orbit close to their parent stars is a key factor for understanding their bulk composition, their evolution, and the processes that drive their expansion and interaction with the impinging stellar wind. Unfortunately, very few detections have been made thus far. Here, we use archive data obtained with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope to report an absorption of ~6.4% ± 1.8% by neutral oxygen during the HD 189733b transit. Using published results from a simple hydrodynamic model of HD 189733b, and assuming a mean temperature of ~(8-12) × 103 K for the upper atmosphere of the exoplanet, a mean vertical integrated O I density column of ~8 × 1015 cm-2 produces only a 3.5% attenuation transit. Much like the case of the hot-Jupiter HD 209458b, super-solar abundances and/or super-thermal broadening of the absorption lines are required to fit the deep transit drop-off observed in most far-ultraviolet lines. We also report evidence of short-time variability in the measured stellar flux, a variability that we analyze using time series derived from the time-tagged exposures, which we then compare to solar flaring activity. In that frame, we find that non-statistical uncertainties in the measured fluxes are not negligible, which calls for caution when reporting transit absorptions. Despite cumulative uncertainties that originate from variability in the stellar and sky background signals and in the instrument response, we also show a possible detection for both a transit and early-ingress absorption in the ion C II 133.5 nm lines. If confirmed, this would be the second exoplanet for which an early ingress absorption is reported. In contrast, such an early ingress signature is not detected for neutral O I. Assuming the HD 189733b magnetosphere to be at the origin of the early absorption, we use the Parker model for the stellar wind and a particle-in-cell code for the magnetosphere to show that its orientation should be deflected ~10-30° from the planet-star line, while its nose's position should be at least ~16.7 Rp upstream of the exoplanet in order to fit the C II transit light curve. The derived stand-off distance is consistent with a surface magnetic field strength of ~5.3 Gauss for the exoplanet, and a supersonic stellar wind impinging at ~250 km s-1, with a temperature of 1.2 × 105 K and a density ~6.3 × 106 cm-3 at the planetary orbit, yet the fit is not unique.

  7. Coronal Elemental Abundances in Solar Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Baker, Deborah; Brooks, David H.; van Driel-Gesztelyi, Lidia; James, Alexander W.; Démoulin, Pascal; Long, David M.; Warren, Harry P.; Williams, David R.

    2018-03-01

    The chemical composition of solar and stellar atmospheres differs from the composition of their photospheres. Abundances of elements with low first ionization potential (FIP) are enhanced in the corona relative to high-FIP elements with respect to the photosphere. This is known as the FIP effect and it is important for understanding the flow of mass and energy through solar and stellar atmospheres. We used spectroscopic observations from the Extreme-ultraviolet Imaging Spectrometer on board the Hinode observatory to investigate the spatial distribution and temporal evolution of coronal plasma composition within solar emerging flux regions inside a coronal hole. Plasma evolved to values exceeding those of the quiet-Sun corona during the emergence/early-decay phase at a similar rate for two orders of magnitude in magnetic flux, a rate comparable to that observed in large active regions (ARs) containing an order of magnitude more flux. During the late-decay phase, the rate of change was significantly faster than what is observed in large, decaying ARs. Our results suggest that the rate of increase during the emergence/early-decay phase is linked to the fractionation mechanism that leads to the FIP effect, whereas the rate of decrease during the later decay phase depends on the rate of reconnection with the surrounding magnetic field and its plasma composition.

  8. Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Devriendt, J.; Slyz, A.; Peirani, S.; Richardson, M. L. A.; Dubois, Y.; Pichon, C.; Chisari, N. E.; Kaviraj, S.; Laigle, C.; Volonteri, M.

    2017-11-01

    The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard Λ cold dark matter paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGN by comparing two simulations from the HORIZON suite, which are identical except that one also includes supermassive black holes (SMBHs) and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies (M* ≥ 1011 M⊙) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80 per cent at z = 0. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range 109 M⊙ ≤ M* ≤ 1011 M⊙, and a disruption of central gas inflows, which limits in situ star formation. As a result, net gas inflows on to massive galaxies, M* ≥ 1011 M⊙, drop by up to 70 per cent. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the MSMBH-M* relation with redshift, particularly for galaxies with M* ≤ 1010 M⊙. MSMBH/M* ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.

  9. A Close Hidden Stellar Companion to the SX Phe-Type Variable Star DW Psc

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Li, L.-J.; Wang, S.-M.; He, J.-J.; Zhou, X.; Jiang, L.-Q.

    2015-01-01

    DW Psc is a high-amplitude SX Phe-type variable with a period of pulsation of 0.05875 days. Using a few newly determined times of maximum light together with those collected from the literature, the changes in the observed-calculated (O-C) diagram are analyzed. It is discovered that the O-C curve of DW Psc shows a cyclic variation with a period of 6.08 years and a semi-amplitude of 0.0066 days. The periodic variation is analyzed for the light travel time effect, which is due to the presence of a stellar companion ({{M}2}sin i˜ 0.45(+/- 0.03) {{M}⊙ }). The two-component stars in the binary system are orbiting each other in an eccentric orbit (e ˜ 0.4) at an orbital separation of about 2.7(±0.3) AU. The detection of a close stellar companion to an SX Phe-type star supports the idea that SX Phe-type pulsating stars are blue stragglers that were formed from the merging of close binaries. The stellar companion has played an important role in the merging of the original binary by removing angular momentum from the central binary during early dynamical interaction or/and late dynamical evolution. After the more massive component in DW Psc evolves into a red giant, the cool close companion should help to remove the giant envelope via possible critical Roche-lobe overflow, and the system may be a progenitor of a cataclysmic variable. The detection of a close stellar companion to DW Psc makes it a very interesting system to study in the future.

  10. SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2017-04-01

    Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.

  11. Quenching of Star-formation Activity of High-redshift Galaxies in Cluster and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton M.

    2015-08-01

    How the galaxy evolution differs at different environment is one of intriguing questions in the study of structure formation. At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped.In this presentation, we will present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~ 2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, covering ~2800 arcmin2, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range.Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  12. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.

  13. New HST/STIS Spectroscopy of Massive Members of R136 in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Bostroem, Kyra; Walborn, Nolan; Crowther, Paul; Caballero-Nieves, Saida; Lennon, Daniel; Maíz Apellániz, Jesús

    2013-06-01

    We display new (in some cases, the first ever) spatially resolved optical and UV spectroscopy of a number of early O-type stars in R136, the massive core cluster of 30 Doradus in the LMC. Some of them are of the earliest spectral types, O2-O3, which accompany the more luminous WN members that are the most massive stars known, near or exceeding 300~M_⊙ initially. These results are relevant to the very top of the IMF and to the structure and formation of starburst clusters. The data are from HST/STIS programs GO 12465/13052 (PI Crowther), in which the long slit was stepped across the inner 4 arcsec (1 parsec) of R136, yielding both optical photospheric and FUV stellar-wind spectra of at least 100 resolved members, many of them for the first time. The optical data were obtained at 4 epochs to support eventual radial-velocity detection of spectroscopic binaries. This program vitally complements the VLT-FLAMES Tarantula Survey of the wider stellar content of 30 Doradus, by adding that of the massive core cluster, which is inaccessible to such observations from the ground. These combined datasets will provide unprecedented information about massive stellar evolution and starbursts.

  14. The fate of the Antennae galaxies

    NASA Astrophysics Data System (ADS)

    Lahén, Natalia; Johansson, Peter H.; Rantala, Antti; Naab, Thorsten; Frigo, Matteo

    2018-04-01

    We present a high-resolution smoothed particle hydrodynamic simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyr beyond the final coalescence. The simulation includes metallicity-dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduce well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional (2D) metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters; however, the nuclear metallicities are overproduced by ˜0.5 dex. Using the radiative transfer code SKIRT, we produce multiwavelength observations of both the Antennae and the merger remnant. The 1-Gyr-old remnant is well fitted with a Sérsic profile of n = 7.07, and with an r-band effective radius of re = 1.6 kpc and velocity dispersion of σe = 180 km s-1 the remnant is located on the Fundamental Plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves on to the red sequence after ˜2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λRe ≈ 0.11 to 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common amongst local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379, and NGC 4494) in the atlas3D sample, whose photometric and kinematic properties most resemble the Antennae remnant.

  15. Introduction

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.

    2018-06-01

    Dwarf galaxies are excellent laboratories of chemical evolution. Many dwarf galaxies have simple star formation histories with very low average star formation rates. These conditions simplify models of chemical evolution and facilitate the identification of sites of nucleosynthesis. Dwarf galaxies also host extremely metal-poor stars, which sample the ejecta of the first generations of supernovae in the universe. This meeting-in-a-meeting, "Stellar Abundances in Dwarf Galasxies," will recognize the importance of dwarf galaxies in learning about the creation and evolution of the elements. Topics include: * the most metal-poor stars * the connection between dwarf galaxies and the Milky Way halo * dwarf galaxies as the paragons of r-process nucleosynthesis * modern techniques in stellar abundance measurements * recent advances in chemical evolution modelingI will give a very brief introduction to set the stage for the meeting.

  16. From Luminous Hot Stars to Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Conti, Peter S.; Crowther, Paul A.; Leitherer, Claus

    2012-10-01

    1. Introduction; 2. Observed properties; 3. Stellar atmospheres; 4. Stellar winds; 5. Evolution of single stars; 6. Binaries; 7. Birth of massive stars and star clusters; 8. The interstellar environment; 9. From giant HII regions to HII galaxies; 10. Starburst phenomena; 11. Cosmological implications; References; Index.

  17. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-03-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamicalmore » stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.« less

  18. The Stellar Population Histories of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Trager, Scott Charles

    1997-08-01

    This dissertation sets out to probe the stellar population histories of local field and distant cluster elliptical galaxies. Absorption-line strengths of the centers of 381 early-type galaxies and 38 globular clusters measured from the Lick Image Dissector Scanner (Lick/IDS) are presented. Error estimation and corrections for velocity-dispersion broadening are described in detail. Monte Carlo simulations show that the Lick/IDS data are not accurate enough to infer ages and abundances of individual ellipticals with confidence. The excellent data of Gonzalez (1993) are therefore used to infer the stellar population ages and abundances of the centers of local field ellipticals. Elliptical galaxy nuclei follow three relations in this sample. (1) The t-Z relation. Elliptical nuclei have an age-abundance relation at fixed velocity dispersion σ that follows the Worthey (1994) '3/2 rule.' Ellipticals therefore have fixed color and metal-line strengths at fixed σ. (2) The σ-Z relation. The abundance zeropoint of the t-Z relation increases with increasing σ. Taken together, (1) and (2) predict scaling relations like the Mg2-σ and color-magnitude relations. (3) The σ- (Mg/Fe) relation. The abundance ratio (Mg/Fe) increases with increasing σ, as the σ-Z relation for Mg has twice the slope of the σ-Z relation for Fe. Relations (1)-(3) can be expressed as a pair of planes in t-Z-σ space, one for Fe and one for Mg, with similar age dependences but different σ-dependences. Scenarios for the possible origins of these relations are presented. Absorption-line strengths of eighteen early-type galaxies in two rich clusters at z = 0.41 (CL0939 + 4713) and z = 0.76 (CL1322 + 3027) have been measured from Keck LRIS spectra. The Balmer-line strengths of ellipticals at z = 0.41 are consistent with passive evolution of local field ellipticals but seem too metal-rich. Both Balmer- and metal-line strengths of ellipticals at z = 0.76 are consistent with passive evolution of local field ellipticals. Spectra of four z $>$ 3 objects discovered serendipitiously are presented. They are small (r1/2 ~ 10 kpc), bright (LB ~ 1-10 LB*), lumpy, and are most likely gravitationally lensed. They are metal-poor (Z/ ~/ 2 Msolar yr-1). A model for their evolution is presented. It is suggested that they are the progenitors of the Population II component of local spheroids.

  19. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Manara, C. F.; Natta, A.; Frasca, A.; Testi, L.; Nisini, B.; Stelzer, B.; Williams, J. P.; Antoniucci, S.; Biazzo, K.; Covino, E.; Esposito, M.; Getman, F.; Rigliaco, E.

    2017-04-01

    The mass accretion rate, Ṁacc, is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M⋆ ≲ 2.0 M⊙) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, L⋆, with an overall slope of 1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L⋆ ≈ 0.1 L⊙, where Lacc is always lower than 0.01 L⋆. We argue that the Lacc - L⋆ slope is not due to observational biases, but is a true property of the Lupus YSOs. The log Ṁacc - log M⋆ correlation shows a statistically significant evidence of a break, with a steeper relation for M⋆ ≲ 0.2 M⊙ and a flatter slope for higher masses. The bimodality of the Ṁacc - M⋆ relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. The sample studied here more than doubles the number of YSOs with homogeneously and simultaneously determined Lacc and luminosity, Lline, of many permitted emission lines. Hence, we also refined the empirical relationships between Lacc and Lline on a more solid statistical basis. Based on observations collected at the European Southern Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A), 089.C-0143(A), 095.C-0134(A), 097.C-0349(A), and archive data of programmes 085.C-0764(A) and 093.C-0506(A).

  20. The new semi-analytic code GalICS 2.0 - reproducing the galaxy stellar mass function and the Tully-Fisher relation simultaneously

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Blaizot, J.; Devriendt, J. E. G.; Mamon, G. A.; Tollet, E.; Dekel, A.; Guiderdoni, B.; Kucukbas, M.; Thob, A. C. R.

    2017-10-01

    GalICS 2.0 is a new semi-analytic code to model the formation and evolution of galaxies in a cosmological context. N-body simulations based on a Planck cosmology are used to construct halo merger trees, track subhaloes, compute spins and measure concentrations. The accretion of gas on to galaxies and the morphological evolution of galaxies are modelled with prescriptions derived from hydrodynamic simulations. Star formation and stellar feedback are described with phenomenological models (as in other semi-analytic codes). GalICS 2.0 computes rotation speeds from the gravitational potential of the dark matter, the disc and the central bulge. As the rotation speed depends not only on the virial velocity but also on the ratio of baryons to dark matter within a galaxy, our calculation predicts a different Tully-Fisher relation from models in which vrot ∝ vvir. This is why, GalICS 2.0 is able to reproduce the galaxy stellar mass function and the Tully-Fisher relation simultaneously. Our results are also in agreement with halo masses from weak lensing and satellite kinematics, gas fractions, the relation between star formation rate (SFR) and stellar mass, the evolution of the cosmic SFR density, bulge-to-disc ratios, disc sizes and the Faber-Jackson relation.

  1. An examination of astrophysical habitats for targeted SETI

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.; Mckay, Christopher P.; Reynolds, Ray T.; Whitmire, Daniel P.; Matese, John J.

    1991-01-01

    Planetary atmospheric radiative transfer models have recently given valuable insights into the definition of the solar system's ecoshell. In addition, however, results have indicated that constraints on solar evolution also need to be addressed, with even minor solar variations, (mass loss, for example), having important consequences from an exobiological standpoint. Following the definition of the solar system's ecoshell evolution, the ecoshells around different stellar spectral types can then be modeled. In this study the astrophysical constraints on the definition of ecoshells and possible exobiological habitats includes: (1) the investigation of the evolution of the solar system's ecoshell under different initial solar/stellar model conditions as indicated by both solar abundance considerations as well as planetary evidence; (2) an outline of considerations necessary to define the ecoshells around the most abundant spectral-type stars, the K and M stars looking at the effects on exobiological habitats of planetary rotational tidal locking effects, and stellar flare/chromospheric-activity cycles, among other effects; (3) a preliminary examination of the factors defining the expected ecoshells around binary stars determining the of regular stellar eclipses, and the expected shortening of the semi-major axis. These results can then be applied to the targeted microwave search for extraterrestrial intelligent signals by constraining the ecoshell space in the solar neighborhood.

  2. M Dwarf Rotation from the K2 Young Clusters to the Field. I. A Mass-Rotation Correlation at 10 Myr

    NASA Astrophysics Data System (ADS)

    Somers, Garrett; Stauffer, John; Rebull, Luisa; Cody, Ann Marie; Pinsonneault, Marc

    2017-12-01

    Recent observations of the low-mass (0.1-0.6 {M}⊙ ) rotation distributions of the Pleiades and Praesepe clusters have revealed a ubiquitous correlation between mass and rotation, such that late M dwarfs rotate an order-of-magnitude faster than early M dwarfs. In this paper, we demonstrate that this mass-rotation correlation is present in the 10 Myr Upper Scorpius association, as revealed by new K2 rotation measurements. Using rotational evolution models, we show that the low-mass rotation distribution of the 125 Myr Pleiades cluster can only be produced if it hosted an equally strong mass-rotation correlation at 10 Myr. This suggests that physical processes important in the early pre-main sequence (PMS; star formation, accretion, disk-locking) are primarily responsible for the M dwarf rotation morphology, and not quirks of later angular momentum (AM) evolution. Such early mass trends must be taken into account when constructing initial conditions for future studies of stellar rotation. Finally, we show that the average M star loses ˜25%-40% of its AM between 10 and 125 Myr, a figure accurately and generically predicted by modern solar-calibrated wind models. Their success rules out a lossless PMS and validates the extrapolation of magnetic wind laws designed for solar-type stars to the low-mass regime at early times.

  3. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  4. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    NASA Astrophysics Data System (ADS)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-06-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution that can include a filamentary structure in addition to gas surrounding the stellar sub-clusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young protostar clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  5. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-07-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  6. Circumstellar shells, the formation of grains, and radiation transfer

    NASA Technical Reports Server (NTRS)

    Lefevre, Jean

    1987-01-01

    Advances in infrared astronomy during the last decade have firmly established the presence of dust around a large number of cold giant and supergiant stars. To describe the properties of stars and to understand their evolution, it is necessary to know the nature of the giants and their influence on stellar radiation. Two questions are considered: the formation of grains around cold stars and the modification of stellar radiation by the stellar shell.

  7. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.

    2016-10-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extrasolar planets yet to be discovered.

  8. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    NASA Technical Reports Server (NTRS)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extra solar planets yet to be discovered.

  9. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  10. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  11. Light Chemical Elements in Stars: Mysteries and Unsolved Problems

    NASA Astrophysics Data System (ADS)

    Lyubimkov, L. S.

    2018-06-01

    The first eight elements of the periodic table are discussed: H, He, Li, Be, B, C, N, and O. They are referred to as key elements, given their important role in stellar evolution. It is noteworthy that all of them were initially synthesized in the Big Bang. The primordial abundances of these elements calculated using the Standard Model of the Big Bang (SMBB) are presented in this review. The good agreement between the SMBB and observations of the primordial abundances of the isotopes of hydrogen and helium, D, 3He, and 4He, is noted, but there is a difference of 0.5 dex for lithium (the isotope 7Li) between the SMBB and observations of old stars in the galactic halo that has not yet been explained. The abundances of light elements in stellar atmospheres depends on the initial rotation velocity, so the typical rotation velocities of young Main Sequence (MS) stars are examined. Since the data on the abundances of light elements in stars are very extensive, the main emphasis in this review is on several unsolved problems. The helium abundance He/H in early B-type of the MS stars shows an increment with age; in particular, for the most massive B stars with masses M = 12-19M ⊙, He/H increases by more than a factor of two toward the end of the MS. Theoretical models of stars with rotation cannot explain such a large increase in He/H. For early B- and late O-type MS stars that are components of close binary systems, He/H undergoes a sharp jump in the middle of the MS stage that is a mystery for the theory. The anomalous abundance of helium (and lithium) in the atmospheres of chemically peculiar stars (types He-s, He-w, HgMn, Ap, and Am) is explained in terms of the diffusion of atoms in surface layers of the stars, but this hypothesis cannot yet explain all the features of the chemical composition of these stars. The abundances of lithium, beryllium, and boron in FGK-dwarfs manifest a trend with decreasing effective temperature T eff as well as a dip at T eff 6600 K in the Hyades and other old clusters. The two effects are among the unsolved problems. In the case of lithium, there is special interest in FGK-giants and supergiants that are rich in lithium (they have logɛ(Li)≥ 2). Most of them cannot be explained in terms of the standard theory of stellar evolution, so nonstandard hypotheses are invoked: the recent synthesis of lithium in a star and the engulfment by a star of a giant planet with mass equal to that of Jupiter or greater. An analysis of the abundances of carbon, nitrogen, and oxygen in early B- and late O-stars of the MS indicates that the C II, N II, and O II ions are overionized in their atmospheres. For early B-type MS stars, good agreement is found between observations of the N/O ratio and model calculations for rotating stars. A quantitative explanation of the well-known "nitrogen-oxygen" anticorrelation in FGK-giants and supergiants is found. It reflects the dependence of the anomalies in N and C on the initial rotation velocity V 0. The stellar rotation models which yield successful explanations for C, N. and O cannot, however, explain the observed helium enrichment in early B-type MS stars.

  12. Ubiquitous time variability of integrated stellar populations.

    PubMed

    Conroy, Charlie; van Dokkum, Pieter G; Choi, Jieun

    2015-11-26

    Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected 'pixel shimmer' in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.

  13. The Universe, Two by Two.

    ERIC Educational Resources Information Center

    Metz, William

    1983-01-01

    Discusses the nature of and current research related to binary stars, indicating that the knowledge that most stars come in pairs is critical to the understanding of stellar phenomena. Subjects addressed include aberrant stellar behavior, x-ray binaries, lobes/disks, close binaries, planetary nebulas, and formation/evolution of binaries. (JN)

  14. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan

    2017-11-01

    We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.

  15. The dichotomy between strong and ultra-weak magnetic fields among intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Lignières, François; Petit, Pascal; Aurière, Michel; Wade, Gregg A.; Böhm, Torsten

    2014-08-01

    Until recently, the detection of magnetic fields at the surface of intermediate-mass main-sequence stars has been limited to Ap/Bp stars, a class of chemically peculiar stars. This class represents no more than 5-10% of the stars in this mass range. This small fraction is not explained by the fossil field paradigm that describes the Ap/Bp type magnetism as a remnant of an early phase of the star-life. Also, the limitation of the field measurements to a small and special group of stars is obviously a problem to study the effect of the magnetic fields on the stellar evolution of a typical intermediate-mass star. Thanks to the improved sensitivity of a new generation of spectropolarimeters, a lower bound to the magnetic fields of Ap/Bp stars, a two orders of magnitude desert in the longitudinal magnetic field and a new type of sub-gauss magnetism first discovered on Vega have been identified. These advances provide new clues to understand the origin of intermediate-mass magnetism as well as its influence on stellar evolution. In particular, a scenario has been proposed whereby the magnetic dichotomy between Ap/Bp and Vega-like magnetism originate from the bifurcation between stable and unstable large scale magnetic configurations in differentially rotating stars. In this paper, we review these recent observational findings and discuss this scenario.

  16. Lithium in a short-period tidally locked binary of M67: Implications for stellar evolution, Galactic Lithium evolution, and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; King, Jeremy R.; Boesgaard, Ann M.; Ryan, Sean G.

    1994-01-01

    In open clusters, late-F stars exhibit a Li maximum (the Li 'peak' region) at lower abundance with age, which could be due either to stellar depletion or Galactic Li enrichment (or some other cause). We have observed a short-period tidally locked binary (SPTLB) on the Li peak region in the old cluster M67 to distinguish between alternatives. SPTLBs which synchronized in the early pre-main sequence would avoid the rotational mixing which, according to Yale models, may be responsible for depleting Li with age in open cluster dwarfs. We find that both components of the M67 SPTLB have a Li abundance lying about a factor of 2 or more above any other M67 single star and about a factor of 3 or more above the mean Li peak region abundance in M67. Our results suggest that the initial Li abundance in M67 is at least as high as approximately 3.0 = 12 + log (N(sub Li)/N(sub H)). Our high M67 SPTLB Li abundance and those in other clusters support the combination of Zahn's tidal circularization and the Yale rotational mixing theories and may indicate that the halo Li plateau (analogous to the cluster Li peak region) abundance has been depleted from a higher primordial value. Implications are discussed.

  17. Brown dwarfs in young stellar clusters

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.

    1991-01-01

    The present calculations of the early evolution of brown dwarfs and very low mass stars (LMSs) yield isochrones spanning 0.01-0.2 solar masses for ages in the 1 to 300 million year range. Since the brown dwarfs remain sharply segregated in T(eff) from LMSs for ages of less than 100 million years, it follows that for coeval populations of known age, a domain exists in the H-R diagram in which only brown dwarfs exist. These theoretical results are compared with recent observations of the Pleiades brown dwarf candidates, using two new sets of color-T(eff) transformations. Both sets yield consistent interpretations.

  18. n-capture elements in the Sculptor dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Skúladóttir, Ása

    2018-06-01

    Sculptor is a well studied dwarf galaxy in the Local Group, which is dominated by an old stellar population (>10 Gyr) and is therefore an ideal system to study early chemical evolution. With high-resolution VLT/FLAMES spectra, R~20,000, we are able to get accurate abundances of several n-capture elements in ~100 stars, from both the lighter n-capture elements (Y) as well as the heavier ones, both tracers of the s-process (e.g. Ba) and the r-process (e.g. Eu). I will discuss the similarities and differences in the n-capture elements in Sculptor and the Milky Way, as well as other dwarf galaxies.

  19. Global Clusters as Laboratories for Stellar Evolution

    NASA Technical Reports Server (NTRS)

    Catelan, Marcio; Valcarce, Aldo A. R.; Sweigart, Allen V.

    2010-01-01

    Globular clusters have long been considered the closest approximation to a physicist's laboratory in astrophysics, and as such a near-ideal laboratory for (low-mass) stellar evolution, However, recent observations have cast a shadow on this long-standing paradigm, suggesting the presence of multiple populations with widely different abundance patterns, and - crucially - with widely different helium abundances as welL In this review we discuss which features of the Hertzsprung-Russell diagram may be used as helium abundance indicators, and present an overview of available constraints on the helium abundance in globular clusters,

  20. Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2014-05-01

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  1. The stellar metallicity gradients in galaxy discs in a cosmological scenario

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Machado, Rubens E. G.; Sanchez-Blazquez, Patricia; Pedrosa, Susana E.; Sánchez, Sebastián F.; Snaith, Owain; Vilchez, Jose

    2016-08-01

    Context. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance. Aims: We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs. Methods: We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey. Results: The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses o f around 1010M⊙ show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions. Conclusions: Our results suggest that inside-out formation is the main process responsible for the metallicity and age profiles. The large dispersions in the metallicity gradients as a function of stellar mass could be ascribed to the effects of dynamical processes such as mergers, interactions and/or migration as well as those regulating the conversion of gas into stars. The fingerprints of the inside-out formation seem better preserved by the stellar metallicity gradients as a function of the half-mass radius.

  2. Energy Feedback from X-ray Binaries in the Early Universe

    NASA Technical Reports Server (NTRS)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  3. ABOUT EXOBIOLOGY: THE CASE FOR DWARF K STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuntz, M.; Guinan, E. F., E-mail: cuntz@uta.edu, E-mail: edward.guinan@villanova.edu

    2016-08-10

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3)more » the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray–UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray–far-UV irradiances for G0 V–M5 V stars over a wide range of ages.« less

  4. Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew

    2017-10-01

    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.

  5. About Exobiology: The Case for Dwarf K Stars

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Guinan, E. F.

    2016-08-01

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray-UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray-far-UV irradiances for G0 V-M5 V stars over a wide range of ages.

  6. Early-type galaxy archeology: Ages, abundance ratios, and effective temperatures from full-spectrum fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Charlie; Graves, Genevieve J.; Van Dokkum, Pieter G.

    2014-01-01

    The stellar populations of galaxies hold vital clues to their formation histories. In this paper we present results based on modeling stacked spectra of early-type galaxies drawn from the Sloan Digital Sky Survey as a function of velocity dispersion, σ, from 90 km s{sup –1} to 300 km s{sup –1}. The spectra are of extremely high quality, with typical signal-to-noise ratio of 1000 Å{sup –1}, and a wavelength coverage of 4000 Å –8800 Å. Our population synthesis model includes variation in 16 elements from C to Ba, a two-component star formation history, the shift in effective temperature, Δ T {submore » eff}, of the stars with respect to a solar metallicity isochrone, and the stellar initial mass function, among other parameters. In our approach we fit the full optical spectra rather than a select number of spectral indices and are able to, for the first time, measure the abundances of the elements V, Cr, Mn, Co, and Ni from the integrated light of distant galaxies. Our main results are as follows: (1) light-weighted stellar ages range from 6-12 Gyr from low to high σ; (2) [Fe/H] varies by less than 0.1 dex across the entire sample; (3) Mg closely tracks O, and both increase from ≈0.0 at low σ to ∼0.25 at high σ; Si and Ti show a shallower rise with σ, and Ca tracks Fe rather than O; (4) the iron peak elements V, Cr, Mn, and Ni track Fe, while Co tracks O, suggesting that Co forms primarily in massive stars; (5) C and N track O over the full sample and [C/Fe] and [N/Fe] exceed 0.2 at high σ; and (6) the variation in Δ T {sub eff} with total metallicity closely follows theoretical predictions based on stellar evolution theory. This last result is significant because it implies that we are robustly solving not only for the detailed abundance patterns but also the detailed temperature distributions (i.e., isochrones) of the stars in these galaxies. A variety of tests reveal that the systematic uncertainties in our measurements are probably 0.05 dex or less. Our derived [Mg/Fe] and [O/Fe] abundance ratios are 0.05-0.1 dex lower than most previous determinations. Under the conventional interpretation that the variation in these ratios is due to star formation timescale variations, our results suggest longer star formation timescales for massive early-type galaxies than previous studies. Detailed chemical evolution models are necessary in order to translate the abundance ratio distributions of these galaxies into constraints on their formation histories. Alternatively, these data may provide useful constraints on the nucleosynthetic pathways for elements whose production is not well understood.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, J. L.; Knapp, G. R.; Rest, A.

    We present follow-up optical imaging and spectroscopy of one of the light echoes of η Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ∼0.9 mag in ∼1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrummore » at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ∼300 days after peak brightness, the spectra show strong molecular transitions of CN at ≳ 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula.« less

  8. Understanding Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Lamers, Henny J. G. L. M.; Levesque, Emily M.

    2017-12-01

    'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote® and PowerPoint® formats.

  9. Mass-loss rates of cool stars

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  10. A multiphysics and multiscale software environment for modeling astrophysical systems

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon; McMillan, Steve; Harfst, Stefan; Groen, Derek; Fujii, Michiko; Nualláin, Breanndán Ó.; Glebbeek, Evert; Heggie, Douglas; Lombardi, James; Hut, Piet; Angelou, Vangelis; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Gaburov, Evghenii; Izzard, Rob; Jurić, Mario; Justham, Stephen; Sottoriva, Andrea; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel

    2009-05-01

    We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a "Noah's Ark" milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multiscale and multiphysics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.

  11. AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.

    2016-12-20

    All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less

  12. VizieR Online Data Catalog: NuGrid stellar data set I. Yields from H to Bi (Pignatari+, 2016)

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-10-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z=0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the 13C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced. (12 data files).

  13. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  14. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A120Appendices are available in electronic form at http://www.aanda.org

  15. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Lugaro, M.; Karakas, A. I.

    2010-11-01

    Context. Models of primordial and hyper-metal-poor stars that have masses similar to the Sun are known to experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core. Aims: We aim to model the nucleosynthesis occurring during the proton ingestion event to ascertain if any significant neutron-capture nucleosynthesis occurs. Methods: We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star with mass 1 M_⊙ and a metallicity of [Fe/H] = -6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2366 reactions and treats mixing and burning simultaneously. Results: We find that the mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(α, n)16O reaction, releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 14N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later carried to the stellar surface and ejected via stellar winds. We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance. Conclusions: Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ˜ ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early Universe. If this is true, it puts constraints on the primordial initial mass function.

  16. A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity

    NASA Astrophysics Data System (ADS)

    Damiani, Cilia

    2017-10-01

    It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.

  17. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC 2264

    NASA Astrophysics Data System (ADS)

    Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.

    2016-02-01

    Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age of the cluster was 1 Myr. Dichotomy and bimodality appear in the simulated distribution, presenting one peak at 2 days and another one at 5-7 days, indicating that the assumption of Plock = 8 days is plausible. Our hypotheses are compared with observational disk diagnoses available in the literature for the ONC and NGC 2264, such as near-infrared excess, Hα emission, and spectral energy distribution slope in the mid-infrared. Conclusions: Disk-locking models with Plock = 8 days and 0.2 Myr ≤ Tdisk ≤ 3 Myr are consistent with observed periods of moderate rotators of the ONC. For NGC 2264, the more promising explanation for the observed period distribution is an evolution with disk-locking (with Plock near 8 days) during the first 1 Myr, approximately, but after this, the evolution continued with constant angular momentum. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A96

  18. Revealing the Location of the Mixing Layer in a Hot Bubble

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Fang, X.; Chu, Y.-H.; Toalá, J. A.; Gruendl, R. A.

    2017-10-01

    The fast stellar winds can blow bubbles in the circumstellar material ejected from previous phases of stellar evolution. These are found at different scales, from planetary nebulae (PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is shock-heated and a hot bubble is produced. Processes of mass evaporation and mixing of nebular material and heat conduction occurring at the mixing layer between the hot bubble and the optical nebula are key to determine the thermal structure of these bubbles and their evolution. In this contribution we review our current understanding of the X-ray observations of hot bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.

  19. Adiabatic invariants in stellar dynamics. 1: Basic concepts

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1994-01-01

    The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.

  20. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  1. Infrared Extinction and Stellar Populations in the Milky Way Midplane

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Majewski, S. R.; Benjamin, R. A.; Nidever, D. L.; Skrutskie, M. F.; Indebetouw, R.; Patterson, R. J.; Meade, M. R.; Whitney, B. A.; Babler, B.; Churchwell, E.; Watson, C.

    2012-01-01

    The primary laboratory for developing and testing models of galaxy formation, structure, and evolution is our own Milky Way, the closest large galaxy and the only one in which we can resolve large numbers of individual stars. The recent availability of extensive stellar surveys, particularly infrared ones, has enabled precise, contiguous measurement of large-scale Galactic properties, a major improvement over inferences based on selected, but scattered, sightlines. However, our ability to fully exploit the Milky Way as a galactic laboratory is severely hampered by the fact that its midplane and central bulge -- where most of the Galactic stellar mass lies -- is heavily obscured by interstellar dust. Therefore, proper consideration of the interstellar extinction is crucial. This thesis describes a new extinction-correction method (the RJCE method) that measures the foreground extinction towards each star and, in many cases, enables recovery of its intrinsic stellar type. We have demonstrated the RJCE Method's validity and used it to produce new, reliable extinction maps of the heavily-reddened Galactic midplane. Taking advantage of the recovered stellar type information, we have generated maps probing the extinction at different heliocentric distances, thus yielding information on the elusive three-dimensional distribution of the interstellar dust. We also performed a study of the interstellar extinction law itself which revealed variations previously undetected in the diffuse ISM and established constraints on models of ISM grain formation and evolution. Furthermore, we undertook a study of large-scale stellar structure in the inner Galaxy -- the bar(s), bulge(s), and inner spiral arms. We used observed and extinction-corrected infrared photometry to map the coherent stellar features in these heavily-obscured parts of the Galaxy, placing constraints on models of the central stellar mass distribution.

  2. The FMOS-COSMOS survey of star-forming galaxies at z ∼ 1.6. II. The mass-metallicity relation and the dependence on star formation rate and dust extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. J.; Sanders, D. B.; Chu, J.

    We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z ∼ 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z ∼ 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z ∼ 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z ∼ 1.6. The most massive galaxies at z ∼ 1.6 (∼10{sup 11} M {sub ☉})more » are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z ∼ 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z ∼ 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction.« less

  3. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  4. Extrasolar comets: The origin of dust in exozodiacal disks?

    NASA Astrophysics Data System (ADS)

    Marboeuf, U.; Bonsor, A.; Augereau, J.-C.

    2016-11-01

    Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. In this paper we investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi-3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70L⊙. This paper provides thermal evolution, physical alteration, mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The mass loss per revolution and the lifetime of comets depend on their initial size, orbital parameters and follow a power law with stellar luminosity. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.

  5. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemskova, Varvara; Garaud, Pascale; Deal, Morgan

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complexmore » opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the nonlinear regime) remain to be added in the future to improve the quantitative predictions of the model.« less

  6. The metallicity and elemental abundance gradients of simulated galaxies and their environmental dependence

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Kobayashi, Chiaki

    2017-11-01

    The internal distribution of heavy elements, in particular the radial metallicity gradient, offers insight into the merging history of galaxies. Using our cosmological, chemodynamical simulations that include both detailed chemical enrichment and feedback from active galactic nuclei (AGN), we find that stellar metallicity gradients in the most massive galaxies (≳3 × 1010M⊙) are made flatter by mergers and are unable to regenerate due to the quenching of star formation by AGN feedback. The fitting range is chosen on a galaxy-by-galaxy basis in order to mask satellite galaxies. The evolutionary paths of the gradients can be summarized as follows: (I) creation of initial steep gradients by gas-rich assembly, (II) passive evolution by star formation and/or stellar accretion at outskirts, and (III) sudden flattening by mergers. There is a significant scatter in gradients at a given mass, which originates from the last path, and therefore from galaxy type. Some variation remains at given galaxy mass and type because of the complexity of merging events, and hence we find only a weak environmental dependence. Our early-type galaxies (ETGs), defined from the star formation main sequence rather than their morphology, are in excellent agreement with the observed stellar metallicity gradients of ETGs in the SAURON and ATLAS3D surveys. We find small positive [O/Fe] gradients of stars in our simulated galaxies, although they are smaller with AGN feedback. Gas-phase metallicity and [O/Fe] gradients also show variation, the origin of which is not as clear as for stellar populations.

  7. The origin and evolution of r- and s-process elements in the Milky Way stellar disk

    NASA Astrophysics Data System (ADS)

    Battistini, Chiara; Bensby, Thomas

    2016-02-01

    Context. Elements heavier than iron are produced through neutron-capture processes in the different phases of stellar evolution. Asymptotic giant branch (AGB) stars are believed to be mainly responsible for elements that form through the slow neutron-capture process, while the elements created in the rapid neutron-capture process have production sites that are less understood. Knowledge of abundance ratios as functions of metallicity can lead to insight into the origin and evolution of our Galaxy and its stellar populations. Aims: We aim to trace the chemical evolution of the neutron-capture elements Sr, Zr, La, Ce, Nd, Sm, and Eu in the Milky Way stellar disk. This will allow us to constrain the formation sites of these elements, as well as to probe the evolution of the Galactic thin and thick disks. Methods: Using spectra of high resolution (42 000 ≲ R ≲ 65 000) and high signal-to-noise (S/N ≳ 200) obtained with the MIKE and the FEROS spectrographs, we determine Sr, Zr, La, Ce, Nd, Sm, and Eu abundances for a sample of 593 F and G dwarf stars in the solar neighborhood. The abundance analysis is based on spectral synthesis using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. Results: We present abundance results for Sr (156 stars), Zr (311 stars), La (242 stars), Ce (365 stars), Nd (395 stars), Sm (280 stars), and Eu (378 stars). We find that Nd, Sm, and Eu show trends similar to what is observed for the α elements in the [X/Fe]-[Fe/H] abundance plane. For [Sr/Fe] and [Zr/Fe], we find decreasing abundance ratios for increasing metallicity, reaching sub-solar values at super-solar metallicities. [La/Fe] and [Ce/Fe] do not show any clear trend with metallicity, and they are close to solar values at all [Fe/H]. The trends of abundance ratios [X/Fe] as a function of stellar ages present different slopes before and after 8 Gyr. Conclusions: The rapid neutron-capture process is active early in the Galaxy, mainly in type-II supernovae from stars in the mass range 8-10 M⊙. Europium is almost completely produced by the r-process, but Nd and Sm show similar trends to Eu even if their s-process component is higher. Strontium and Zr are thought to be mainly produced by the s-process, but show significant enrichment at low metallicity that requires extra r-process production, which probably is different from the classical r-process. Finally, La and Ce are mainly produced via s-process from AGB stars in the mass range 2-4 M⊙, which can be seen by the decrease in [La/Eu] and [Ce/Eu] at [Fe/H] ≈ -0.5. The trend of [X/Fe] with age could be explained by considering that the decrease in [X/Fe] for the thick disk stars can be due to the decrease in type-II supernovae with time, meaning a reduced enrichment of r-process elements in the interstellar medium. In the thin disk, the trends are flatter, which is probably due to the main production from the s-process being balanced by Fe production from type-Ia supernovae. This paper includes data gathered with the 6.5 m Magellan Telescopes at the Las Campanas Observatory, Chile and the ESO 1.5-m, 2.2-m. and 3.6-m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A49

  8. Role of nuclear reactions on stellar evolution of intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Möller, H.; Jones, S.; Fischer, T.; Martínez-Pinedo, G.

    2018-01-01

    The evolution of intermediate-mass stars (8 - 12 solar masses) represents one of the most challenging subjects in nuclear astrophysics. Their final fate is highly uncertain and strongly model dependent. They can become white dwarfs, they can undergo electron-capture or core-collapse supernovae or they might even proceed towards explosive oxygen burning and a subsequent thermonuclear explosion. We believe that an accurate description of nuclear reactions is crucial for the determination of the pre-supernova structure of these stars. We argue that due to the possible development of an oxygen-deflagration, a hydrodynamic description has to be used. We implement a nuclear reaction network with ∼200 nuclear species into the implicit hydrodynamic code AGILE. The reaction network considers all relevant nuclear electron captures and beta-decays. For selected relevant nuclear species, we include a set of updated reaction rates, for which we discuss the role for the evolution of the stellar core, at the example of selected stellar models. We find that the final fate of these intermediate-mass stars depends sensitively on the density threshold for weak processes that deleptonize the core.

  9. Accounting for planet-shaped planetary nebulae

    NASA Astrophysics Data System (ADS)

    Sabach, Efrat; Soker, Noam

    2018-01-01

    By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.

  10. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  11. The Cosmic Abundance of 3He: Green Bank Telescope Observations

    NASA Astrophysics Data System (ADS)

    Balser, Dana; Bania, Thomas

    2018-01-01

    The Big Bang theory for the origin of the Universe predicts that during the first ~1,000 seconds significant amounts of the light elements (2H, 3He, 4He, and 7Li) were produced. Many generations of stellar evolution in the Galaxy modifies these primordial abundances. Observations of the 3He+ hyperfine transition in Galactic HII regions reveals a 3He/H abundance ratio that is constant with Galactocentric radius to within the uncertainties, and is consistent with the primordial value as determined from cosmic microwave background experiments (e.g., WMAP). This "3He Plateau" indicates that the net production and destruction of 3He in stars is approximately zero. Recent stellar evolution models that include thermohaline mixing, however, predict that 3He/H abundance ratios should slightly decrease with Galactocentric radius, or in places in the Galaxy with lower star formation rates. Here we discuss sensitive Green Bank Telescope (GBT) observations of 3He+ at 3.46 cm in a subset of our HII region sample. We develop HII region models and derive accurate 3He/H abundance ratios to better constrain these new stellar evolution models.

  12. Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When other physical processes interplay, such as apsidal motion, mass transfer or third body interactions, the times of eclipses deviate from predictions: they either come early or late. These deviations are called eclipse timing variations (ETVs) and can range from a few seconds to a few hours. Our team measured ETVs for the entire Kepler data-set of eclipsing binaries and found 516 that demonstrate significant deviations. Of those, 16 show strong interactions between the binary system and the tertiary component that significantly affects the binary orbit within a single encounter. This observed rate of dynamical perturbation events is unexpectedly high and at odds with current theories. We propose to study these objects in great detail: (1) to apply a developed photodynamical code to model multiple body interactions; (2) to fully solve orbital dynamics of these interacting bodies using all available Kepler data, deriving masses of all objects to better than 1%; (3) to measure the occurrence rate of strong orbital interactions in multiple systems and compare it to the predicted rates; (4) to hypothesize and simulate additional evolution channels that could potentially lead to such a high occurrence rate of disruptive events; and (5) to integrate these systems over time and test whether this dynamic evolution can cause efficient orbital tightening and the creation of short period binaries. The team consists of a PI who has experience with Kepler satellite's idiosyncrasies, two postdoctoral fellows, one graduate student, and six undergraduate students that will invest their summer months to learn about multiple body interactions. The proposed study has far-reaching research goals in stellar and planetary science astrophysics, a strong educational/training component and is aligned with NASA's objectives as outlined in the NRA call. Kepler is the only instrument that can provide the accuracy and temporal coverage required for the execution of this project.

  13. Constraining Star Formation in Old Stellar Populations from Theoretical Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    2007-12-01

    We are calculating stellar spectra using Kurucz codes, Castelli models, and Kurucz laboratory lines plus guesses; but must first finish adjusting gf values to match stars of solar metallicity and higher. We show that even now, 1D LTE spectral calculations fit a wide range of stellar spectra (from A to K types) over 2200 Å-9000Å once gf values are set to optimize them. Moreover, weighted coadditions of spectral calculations can be constructed that match M31 globular clusters over this entire wavelength range. Both stellar and composite grids will be archived on MAST. The age-metallicity degeneracy can be broken, but only with high-quality data, and only if rare stages of stellar evolution are incorporated where necessary.

  14. Dynamical effects of stellar companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2015-08-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.

  15. Inferring the star-formation histories of the most massive and passive early-type galaxies at z < 0.3

    NASA Astrophysics Data System (ADS)

    Citro, Annalisa; Pozzetti, Lucia; Moresco, Michele; Cimatti, Andrea

    2016-07-01

    Context. In the Λ cold dark matter (ΛCDM) cosmological framework, massive galaxies are the end-points of the hierarchical evolution and are therefore key probes for understanding how the baryonic matter evolves within the dark matter halos. Aims: The aim of this work is to use the archaeological approach in order to infer the stellar population properties and star formation histories of the most massive (M > 1010.75 M⊙) and passive early-type galaxies (ETGs) at 0 < z < 0.3 (corresponding to a cosmic time interval of ~3.3 Gyr) based on stacked, high signal-to-noise (S/N), spectra extracted from the Sloan Digital Sky Survey (SDSS). Our study is focused on the most passive ETGs in order to avoid the contamination of galaxies with residual star formation activity and extract the evolutionary information on the oldest envelope of the global galaxy population. Methods: Unlike most previous studies in this field, we did not rely on individual absorption features such as the Lick indices, but we used the information present in the full spectrum with the STARLIGHT public code, adopting different stellar population synthesis models. Successful tests have been performed to assess the reliability of STARLIGHT to retrieve the evolutionary properties of the ETG stellar populations such as the age, metallicity and star formation history. The results indicate that these properties can be derived with accuracy better than 10% at S/N ≳ 10-20, and also that the procedure of stacking galaxy spectra does not introduce significant biases into their retrieval. Results: Based on our spectral analysis, we found that the ETGs of our sample are very old systems - the most massive ones are almost as old as the Universe. The stellar metallicities are slightly supersolar, with a mean of Z ~ 0.027 ± 0.002 and Z ~ 0.029 ± 0.0015 (depending on the spectral synthesis models used for the fit) and do not depend on redshift. Dust extinction is very low, with a mean of AV ~ 0.08 ± 0.030 mag and AV ~ 0.16 ± 0.048 mag. The ETGs show an anti-hierarchical evolution (downsizing) where more massive galaxies are older. The SFHs can be approximated with a parametric function of the form SFR(t) ∝ τ- (c + 1)tc exp(-t/τ), with typical short e-folding times of τ ~ 0.6-0.8 Gyr (with a dispersion of ±0.1 Gyr) and c ~ 0.1 (with a dispersion of ±0.05). Based on the reconstructed SFHs, most of the stellar mass (≳75%) was assembled by z ~ 5 and ≲4% of it can be ascribed to stellar populations younger than ~1 Gyr. The inferred SFHs are also used to place constraints on the properties and evolution of the ETG progenitors. In particular, the ETGs of our samples should have formed most stars through a phase of vigorous star formation (SFRs ≳ 350-400 M⊙ yr-1) at z ≳ 4-5 and are quiescent by z ~ 1.5-2. The expected number density of ETG progenitors, their SFRs and contribution to the star formation rate density of the Universe, the location on the star formation main sequence and the required existence of massive quiescent galaxies at z ≲ 2, are compatible with the current observations, although the uncertainties are still large. Conclusions: Our results represent an attempt to demonstrate quantitatively the evolutionary link between the most massive ETGs at z < 0.3 and the properties of suitable progenitors at high redshifts. Our results also shows that the full-spectrum fitting is a powerful and complementary approach to reconstruct the star formation histories of massive quiescent galaxies.

  16. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.

    2017-09-01

    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A85

  17. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100 Solar masses. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained initially. Using our Monte Carlo code, we have investigated the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. Our study is the first to explore in detail the dynamics of BHs in clusters through a large number of realistic simulations covering a wide range of initial conditions (cluster masses from 105 -- 106 Solar masses, as well as variation in other key parameters, such as the virial radius, central concentration, and metallicity), that also includes all the required physics. In almost all of our models we find that significant numbers of black holes (up to about a 1000) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer "mass segregation instability'') is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously; this is one of the most important results of this dissertation. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  18. Analysis of the Einstein sample of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina

    1993-01-01

    The EINSTEIN galaxy catalog contains x-ray data for 148 early-type (E and SO) galaxies. A detailed analysis of the global properties of this sample are studied. By comparing the x-ray properties with other tracers of the ISM, as well as with observables related to the stellar dynamics and populations of the sample, we expect to determine more clearly the physical relationships that determine the evolution of early-type galaxies. Previous studies with smaller samples have explored the relationships between x-ray luminosity (L(sub x)) and luminosities in other bands. Using our larger sample and the statistical techniques of survival analysis, a number of these earlier analyses were repeated. For our full sample, a strong statistical correlation is found between L(sub X) and L(sub B) (the probability that the null hypothesis is upheld is P less than 10(exp -4) from a variety of rank correlation tests. Regressions with several algorithms yield consistent results.

  19. Cooling flows and X-ray emission in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.

    1990-01-01

    The X-ray properties of normal early-type galaxies and the limited theoretical understanding of the physics of the hot interstellar medium in these galaxies are reviewed. A number of simple arguments about the physical state of the gas are given. Steady-state cooling flow models for these galaxies are presented, and their time-dependent evolution is discussed. The X-ray emission found in early-type galaxies indicates that they contain significant amounts of hot interstellar gas, and that they are not the gas-poor systems they were previously thought to be. In the brighter X-ray galaxies, the amounts of hot gas observed are consistent with those expected given the present rates of stellar mass loss. The required rates of heating of the gas are consistent with those expected from the motions of gas-losing stars and supernovae. The X-ray observations are generally more consistent with a lower rate of Type I supernovae than was previously thought.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyory, Zsuzsanna; Bell, Eric F., E-mail: gyory.zsuzsa@googlemail.co, E-mail: ericbell@umich.ed

    One of the key predictions of the merger hypothesis for the origin of early-type (elliptical and lenticular) galaxies is that tidally induced asymmetric structure should correlate with signatures of a relatively young stellar population. Such a signature was found by Schweizer and Seitzer at roughly 4{sigma} confidence. In this paper, we revisit this issue with a nearly ten-fold larger sample of 0.01 < z < 0.03 galaxies selected from the Two Micron All-Sky Survey and the Sloan Digital Sky Survey. We parameterize tidal structure using a repeatable algorithmic measure of asymmetry, and correlate this with color offset from the early-typemore » galaxy color-magnitude relation. We recover the color offset-asymmetry correlation; furthermore, we demonstrate observationally for the first time that this effect is driven by a highly significant trend toward younger ages at higher asymmetry values. We present a simple model for the evolution of early-type galaxies through gas-rich major and minor mergers that reproduces their observed buildup from z = 1 to the present day and the distribution of present-day colors and ages. We show using this model that if both stellar populations and asymmetry were ideal 'clocks' measuring the time since last major or minor gas-rich interaction, then we would expect a rather tight correlation between age and asymmetry. We suggest that the source of extra scatter is natural diversity in progenitor star formation history, gas content, and merger mass ratio, but quantitative confirmation of this conjecture will require sophisticated modeling. We conclude that the asymmetry-age correlation is in basic accord with the merger hypothesis, and indicates that an important fraction of the early-type galaxy population is affected by major or minor mergers at cosmologically recent times.« less

  1. OB stars at the lowest Local Group metallicity. GTC-OSIRIS observations of Sextans A

    NASA Astrophysics Data System (ADS)

    Camacho, I.; Garcia, M.; Herrero, A.; Simón-Díaz, S.

    2016-01-01

    Context. Massive stars play an important role in the chemical and dynamical evolution of the Universe. The first metal-poor stars may have started the reionization of the Universe. To understand these early epochs it is necessary to know the behavior and the physical properties of massive stars in very metal-poor environments. We focus on the massive stellar content of the metal-poor irregular galaxy Sextans A. Aims: Our aim is to find and classify OB stars in Sextans A, so as to later determine accurate stellar parameters of these blue massive stars in this low-metallicity region (Z ~ 0.1 Z⊙). Methods: Using UBV photometry, the reddening-free index Q and GALEX imaging, we built a list of blue massive star candidates in Sextans A. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and carried out spectral classification. For the confirmed O-stars, we derived preliminary stellar parameters. Results: The target selection criteria and observations were successful and have produced the first spectroscopic atlas of OB-type stars in Sextans A. From the whole sample of 18 observed stars, 12 were classified as early OB-types, including 5 O-stars. The radial velocities of all target stars are in agreement with their Sextans A membership, although three of them show significant deviations. We determined the stellar parameters of the O-type stars using the stellar atmosphere code FASTWIND and revisited the sub-SMC temperature scale. Two of the O-stars are consistent with relatively strong winds and enhanced helium abundances, although results are not conclusive. We discuss the position of the OB stars in the HRD. Initial stellar masses run from slightly below 20 up to 40 solar masses. Conclusions: The target selection method worked well for Sextans A. The stellar temperatures are consistent with findings in other galaxies. Some of the targets deserve follow-up spectroscopy because of indications of a runaway nature, an enhanced helium abundance, or a relatively strong wind. We observe a correlation between HI and OB associations similar to the irregular galaxy IC 1613, confirming the previous result that the most recent star formation of Sextans A is currently ongoing near the rim of the H I cavity. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC59-12A.The data are available through the GTC archive: http://https://gtc.sdc.cab.inta-csic.es/gtc/jsp/searchres.jsp

  2. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    NASA Astrophysics Data System (ADS)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  3. Young LMC clusters: the role of red supergiants and multiple stellar populations in their integrated light and CMDs

    NASA Astrophysics Data System (ADS)

    Asa'd, Randa S.; Vazdekis, Alexandre; Cerviño, Miguel; Noël, Noelia E. D.; Beasley, Michael A.; Kassab, Mahmoud

    2017-11-01

    The optical integrated spectra of three Large Magellanic Cloud young stellar clusters (NGC 1984, NGC 1994 and NGC 2011) exhibit concave continua and prominent molecular bands which deviate significantly from the predictions of single stellar population (SSP) models. In order to understand the appearance of these spectra, we create a set of young stellar population (MILES) models, which we make available to the community. We use archival International Ultraviolet Explorer integrated UV spectra to independently constrain the cluster masses and extinction, and rule out strong stochastic effects in the optical spectra. In addition, we also analyse deep colour-magnitude diagrams of the clusters to provide independent age determinations based on isochrone fitting. We explore hypotheses, including age spreads in the clusters, a top-heavy initial mass function, different SSP models and the role of red supergiant stars (RSG). We find that the strong molecular features in the optical spectra can be only reproduced by modelling an increased fraction of about ˜20 per cent by luminosity of RSG above what is predicted by canonical stellar evolution models. Given the uncertainties in stellar evolution at Myr ages, we cannot presently rule out the presence of Myr age spreads in these clusters. Our work combines different wavelengths as well as different approaches (resolved data as well as integrated spectra for the same sample) in order to reveal the complete picture. We show that each approach provides important information but in combination we can better understand the cluster stellar populations.

  4. INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC TIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valsecchi, F.; Farr, W. M.; Willems, B.

    2013-08-10

    Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic tides in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic tides in close binaries.more » We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the {beta} Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic tides regime by investigating the effects of dynamic tides on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of tides on their orbital evolution.« less

  5. The Galaxy–Halo Connection for 1.5\\lesssim z\\lesssim 5 as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.

    2018-01-01

    The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.

  6. A Review of Stellar Abundance Databases and the Hypatia Catalog Database

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie Rose

    2018-01-01

    The astronomical community is interested in elements from lithium to thorium, from solar twins to peculiarities of stellar evolution, because they give insight into different regimes of star formation and evolution. However, while some trends between elements and other stellar or planetary properties are well known, many other trends are not as obvious and are a point of conflict. For example, stars that host giant planets are found to be consistently enriched in iron, but the same cannot be definitively said for any other element. Therefore, it is time to take advantage of large stellar abundance databases in order to better understand not only the large-scale patterns, but also the more subtle, small-scale trends within the data.In this overview to the special session, I will present a review of large stellar abundance databases that are both currently available (i.e. RAVE, APOGEE) and those that will soon be online (i.e. Gaia-ESO, GALAH). Additionally, I will discuss the Hypatia Catalog Database (www.hypatiacatalog.com) -- which includes abundances from individual literature sources that observed stars within 150pc. The Hypatia Catalog currently contains 72 elements as measured within ~6000 stars, with a total of ~240,000 unique abundance determinations. The online database offers a variety of solar normalizations, stellar properties, and planetary properties (where applicable) that can all be viewed through multiple interactive plotting interfaces as well as in a tabular format. By analyzing stellar abundances for large populations of stars and from a variety of different perspectives, a wealth of information can be revealed on both large and small scales.

  7. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-09-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  8. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  9. Kepler observations of the asteroseismic binary HD 176465

    NASA Astrophysics Data System (ADS)

    White, T. R.; Benomar, O.; Silva Aguirre, V.; Ball, W. H.; Bedding, T. R.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Garcia, R. A.; Gizon, L.; Stello, D.; Aigrain, S.; Antia, H. M.; Appourchaux, T.; Bazot, M.; Campante, T. L.; Creevey, O. L.; Davies, G. R.; Elsworth, Y. P.; Gaulme, P.; Handberg, R.; Hekker, S.; Houdek, G.; Howe, R.; Huber, D.; Karoff, C.; Marques, J. P.; Mathur, S.; McQuillan, A.; Metcalfe, T. S.; Mosser, B.; Nielsen, M. B.; Régulo, C.; Salabert, D.; Stahn, T.

    2017-05-01

    Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was observed by Kepler. We carefully analysed the system's power spectrum to measure individual mode frequencies, adapting our methods where necessary to accommodate the fact that both stars oscillate in a similar frequency range. We also modelled the two stars independently by fitting stellar models to the frequencies and complementaryparameters. We are able to cleanly separate the oscillation modes in both systems. The stellar models produce compatible ages and initial compositions for the stars, as is expected from their common and contemporaneous origin. Combining the individual ages, the system is about 3.0 ± 0.5 Gyr old. The two components of HD 176465 are young physically-similar oscillating solar analogues, the first such system to be found, and provide important constraints for stellar evolution and asteroseismology.

  10. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  11. Recent advances in non-LTE stellar atmosphere models

    NASA Astrophysics Data System (ADS)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  12. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  13. The Formation and Early Evolution of Embedded Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A measurement of the local star formation rate per gas mass surface density in the Milky Way, as well as examining arm versus interarm dependencies. Methods and Techniques: We will primarily use archival cryogenic-Spitzer, WISE, and Herschel data, and support this with existing data from ground- and space-based facilities, to conduct a comprehensive assay of critical metrics (as above) and provide observational calibration of theoretical models over the entire massive star formation process. The mm-wave molecular maps of 303 dense gas clumps in multiple species, comprising all the gas above a column density limit of 100 Msun/pc^2, are already inhand. We have also surveyed the embedded stellar content of these clumps, down to subsolar masses, in the near-infrared J, H, and K bands and with deep Warm Spitzer data. Relevance to NASA programs: Analysis to date of the space- and ground-based data has yielded several new insights into evolutionary timescales and the chemical & energy evolution of clumps during the cluster formation process. Investigations as described in this proposal will yield new demographic insights on how the properties and evolution of molecular clouds relate to the properties of massive stars and clusters that form within them, and significantly enhance the science return from these spacecraft missions. The large number of resulting data products are already being made publicly available to the astronomical community, providing crucial information for future NASA science targets. This research will be performed within the framework of a broad international collaboration spanning four continents. This ambitious but practical program will therefore maximise the science payoff from these archival data sets, provide enhanced legacy data for more advanced studies with the next generation of ground- and space-based instruments such as JWST, and open up several new windows into the discovery space of Galactic star formation & interstellar medium studies.

  14. Binary stellar winds. [flow and magnetic field geometry

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.

  15. Binary stellar winds. [flow and magnetic field interactions

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.

  16. Patrick Moore's Data Book of Astronomy

    NASA Astrophysics Data System (ADS)

    Moore, Patrick; Rees, Robin

    2014-01-01

    1. The Solar System; 2. The Sun; 3. The Moon; 4. Mercury; 5. Venus; 6. Earth; 7. Mars; 8. The asteroid belt; 9. Jupiter; 10. Saturn; 11. Uranus; 12. Neptune; 13. Beyond Neptune: the Kuiper Belt; 14. Comets; 15. Meteors; 16. Meteorites; 17. Glows and atmospheric effects; 18. The stars; 19. Stellar spectra and evolution; 20. Extrasolar planets; 21. Double stars; 22. Variable stars; 23. Stellar clusters; 24. Nebulae; 25. The Galaxy; 26. The evolution of the Universe; 27. The constellations; 28. The star catalogue; 29. Telescopes and observatories; 30. Non-optical astronomy; 31. The history of astronomy; 32. Astronomers; 33. Glossary; Index.

  17. Variance in binary stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  18. Planetary geology, stellar evolution and galactic cosmology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Field studies of selected basalt flows in the Snake River Plain, Idaho, were made for comparative lunar and Mars geological investigations. Studies of basalt lava tubes were also initiated in Washington, Oregon, Hawaii, and northern California. The main effort in the stellar evolution research is toward the development of a computer code to calculate hydrodynamic flow coupled with radiative energy transport. Estimates of the rotation effects on a collapsing cloud indicate that the total angular momentum is the critical parameter. The study of Paschen and Balmer alpha lines of positronium atoms in the center of a galaxy is mentioned.

  19. Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton

    At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. We present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing its dependence on their stellar mass and environment (Lee et al. 2015). In the UKIDSS/UDS region, covering ~2800 square arcmin, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z < 1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  20. Observational Searches for Star-Forming Galaxies at z > 6

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.

    2016-08-01

    Although the universe at redshifts greater than six represents only the first one billion years (< 10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.

  1. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

  2. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.

  3. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

    PubMed

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M

    2006-08-17

    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  4. Star and Dust Formation Activities in AzTEC-3, a Starburst Galaxy at z = 5.3

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.; Capak, Peter L.; Kovacs, Attila; Benford, Dominic J.; Fixsen, Dale; Karim, Alexander; Leclercq, Samuel; Maher, Stephen F.; Moseley, Samuel H.; Schinnerer, Eva; Sharp, Elmer H.

    2011-09-01

    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PÉGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with an SFR of ~500 M sun yr-1. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  5. STAR AND DUST FORMATION ACTIVITIES IN AzTEC-3, A STARBURST GALAXY AT z = 5.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.

    2011-09-01

    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to producemore » the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PEGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of {approx}200 Myr, with an SFR of {approx}500 M{sub sun} yr{sup -1}. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.« less

  6. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-02

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  7. The assembly histories of quiescent galaxies since z = 0.7 from absorption line spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jieun; Conroy, Charlie; Moustakas, John

    2014-09-10

    We present results from modeling the optical spectra of a large sample of quiescent galaxies between 0.1 < z < 0.7 from the Sloan Digital Sky Survey (SDSS) and the AGN and Galaxy Evolution Survey (AGES). We examine how the stellar ages and abundance patterns of galaxies evolve over time as a function of stellar mass from 10{sup 9.6}-10{sup 11.8} M {sub ☉}. Galaxy spectra are stacked in bins of mass and redshift and modeled over a wavelength range from 4000 Å to 5500 Å. Full spectrum stellar population synthesis modeling provides estimates of the age and the abundances ofmore » the elements Fe, Mg, C, N, and Ca. We find negligible evolution in elemental abundances at fixed stellar mass over roughly 7 Gyr of cosmic time. In addition, the increase in stellar ages with time for massive galaxies is consistent with passive evolution since z = 0.7. Taken together, these results favor a scenario in which the inner ∼0.3-3 R {sub e} of massive quiescent galaxies have been passively evolving over the last half of cosmic time. Interestingly, the derived stellar ages are considerably younger than the age of the universe at all epochs, consistent with an equivalent single-burst star formation epoch of z ≲ 1.5. These young stellar population ages coupled with the existence of massive quiescent galaxies at z > 1 indicate the inhomogeneous nature of the z ≲ 0.7 quiescent population. The data also permit the addition of newly quenched galaxies at masses below ∼10{sup 10.5} M {sub ☉} at z < 0.7. Additionally, we analyze very deep Keck DEIMOS spectra of the two brightest quiescent galaxies in a cluster at z = 0.83. There is tentative evidence that these galaxies are older than their counterparts in low-density environments. In the Appendix, we demonstrate that our full spectrum modeling technique allows for accurate and reliable modeling of galaxy spectra to low S/N (∼20 Å{sup –1}) and/or low spectral resolution (R ∼ 500).« less

  8. Star Formation Intensities Of Non-Isolated Galaxies With The Califa Survey

    NASA Astrophysics Data System (ADS)

    Morales Vargas, Abdías; Torres-Papaqui, Juan Pablo; Rosales-Ortega, Fernando Fabián; Sánchez, Sebastián F.; Chow-Martínez, Marcel; Ortega-Minakata, René Alberto; Romero-Cruz, Fernando J.; Trejo-Alonso, Josué de Jesús; Neri-Larios, Daniel Marcos; Robleto-Orús Aitor, Carlos

    2017-08-01

    Poster presented at the conference Galaxy Evolution Across Time, 12-16 June, Paris, France. The influence of interactions on the star formation (SF) is investigated by studying a sample of 34 CALIFA survey non-isolated galaxies. We use the instantaneous star formation rate intensity (SFRI) obtained from the Halpha recombination line emission normalized by a unit of projected area. We explore the SFRI, stellar mass and stellar age annulus structures (split by morphology group), also for a control population of star-forming isolated galaxies observed with the CALIFA survey likewise. By morphology groups, the SF efficiency of early type spirals (ETSs) results magnified likely because of angular momentum loss. The SFRI of the non-isolated sample is then compared with that one of the isolated sample. It is found statistically and moderately enhanced in the non-isolated sample by a factor of at most 2. We also find the SFRI as to be a function of the degree of tidal perturbation what might consequently suggest interactions as to facilitate the gas transport to central regions. Contrasting behaviors of the SFRI structures, a gradual quench with clear outer presence of SF (isolated sample) while a steeper decrease from the center with poor SFRIs outwards (non-isolated one) are found. Similitudes in a variety of stellar population properties support the closeness of companions as to be the cause of the SFRI differences between samples.

  9. Modelling the molecular composition and nuclear-spin chemistryof collapsing pre-stellar sources

    NASA Astrophysics Data System (ADS)

    Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.

    2018-07-01

    We study the gravitational collapse of pre-stellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H_3^+, and of the hydrides of carbon, nitrogen, oxygen, and sulphur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the pre-stellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes - as assumed in our gas-phase network - and direct nucleus- or atom-exchange reactions.

  10. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  11. Spectroscopic redshifts and age dating of a first statistical sample of passive galaxies at z 3

    NASA Astrophysics Data System (ADS)

    Daddi, Emanuele

    2017-08-01

    Ultradeep WFC3/G141 observations from one of our past HST programs allowed us to confirm the redshift and measure the age of a quiescent galaxy at z=3. This unique object was found inside a single WFC3 pointing (4 sq. arcmin) suggesting that massive old galaxies even at z 3 are more common than previously thought. The strong correlation observed between evolved stellar populations and a bulge-dominated morphology at least up to z 2 may also imply that the Hubble sequence comes into place at very early times. Guided by the properties of this spectroscopically confirmed z=3 passive galaxy, we have identified a substantial sample of 2.5

  12. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.

  13. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  14. The rise and fall of stellar across the peak of cosmic star formation history: effects of mergers versus diffuse stellar mass acquisition

    NASA Astrophysics Data System (ADS)

    Welker, C.; Dubois, Y.; Devriendt, J.; Pichon, C.; Kaviraj, S.; Peirani, S.

    2017-02-01

    Building galaxy merger trees from a state-of-the-art cosmological hydrodynamical simulation, Horizon-AGN, we perform a statistical study of how mergers and diffuse stellar mass acquisition processes drive galaxy morphologic properties above z > 1. By diffuse mass acquisition here, we mean both accretion of stars by unresolved mergers (relative stellar mass growth smaller than 4.5 per cent) as well as in situ star formation when no resolved mergers are detected along the main progenitor branch of a galaxy. We investigate how stellar densities, galaxy sizes and galaxy morphologies (defined via shape parameters derived from the inertia tensor of the stellar density) depend on mergers of different mass ratios. We investigate how stellar densities, effective radii and shape parameters derived from the inertia tensor depend on mergers of different mass ratios. We find strong evidence that diffuse stellar accretion and in situ formation tend to flatten small galaxies over cosmic time, leading to the formation of discs. On the other hand, mergers, and not only the major ones, exhibit a propensity to puff up and destroy stellar discs, confirming the origin of elliptical galaxies. We confirm that mergers grow galaxy sizes more efficiently than diffuse processes (r_{0.5}∝ M_s^{0.85} and r_{0.5}∝ M_s^{0.1} on average, respectively) and we also find that elliptical galaxies are more susceptible to grow in size through mergers than disc galaxies with a size-mass evolution r_{0.5}∝ M_s^{1.2} instead of r_{0.5}∝ M_s^{-0.5}-M^{0.5} for discs depending on the merger mass ratio. The gas content drives the size-mass evolution due to merger with a faster size growth for gas-poor galaxies r_{0.5}∝ M_s2 than for gas-rich galaxies r0.5 ∝ Ms.

  15. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  16. A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS-HALO MASS RELATION FOR 0 < z < 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2010-07-01

    We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass-halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertaintiesmore » from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z = 0 to z = 4. The shape and the evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10%-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub sun} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M {sup 2.3}{sub h} at low masses and M{sub *} {approx} M {sup 0.29}{sub h} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M{sub sun} has increased by 0.3-0.45 dex for halos since z {approx} 1. These results will provide a powerful tool to inform galaxy evolution models.« less

  17. A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Conroy, Charlie; Wechsler, Risa H.

    2010-06-07

    We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass - halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (GSMFs) (including stellar mass estimates and counting uncertainties), halo mass functions (includingmore » cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z=0 to z=4. The shape and evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub {circle_dot}} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M{sub h}{sup 2.3} at low masses and M{sub *} {approx} M{sub h}{sup 0.29} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M{sub {circle_dot}} has increased by 0.3-0.45 dex for halos since z {approx} 1. These results will provide a powerful tool to inform galaxy evolution models.« less

  18. An Unexpected Detection of Bifurcated Blue Straggler Sequences in the Young Globular Cluster NGC 2173

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu

    2018-03-01

    The bifurcated patterns in the color–magnitude diagrams of blue straggler stars (BSSs) have attracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence that cluster core-collapse-driven stellar collisions are an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large Magellanic Cloud cluster, NGC 2173. Because of the cluster’s low central stellar number density and its young age, dynamical analysis shows that stellar collisions alone cannot explain the observed BSSs. Therefore, binary evolution is instead the most viable explanation of the origin of these BSSs. However, the reason why binary evolution would render the color–magnitude distribution of BSSs bifurcated remains unclear. C. Li, L. Deng, and R. de Grijs jointly designed this project.

  19. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less

  20. The most massive galaxies in clusters are already fully grown at z ˜ 0.5

    NASA Astrophysics Data System (ADS)

    Oldham, L. J.; Houghton, R. C. W.; Davies, Roger L.

    2017-02-01

    By constructing scaling relations for galaxies in the massive cluster MACSJ0717.5 at z = 0.545 and comparing with those of Coma, we model the luminosity evolution of the stellar populations and the structural evolution of the galaxies. We calculate magnitudes, surface brightnesses and effective radii using Hubble Space Telescope (HST)/ACS images and velocity dispersions using Gemini/GMOS spectra, and present a catalogue of our measurements for 17 galaxies. We also generate photometric catalogues for ˜3000 galaxies from the HST imaging. With these, we construct the colour-magnitude relation, the Fundamental Plane, the mass-to-light versus mass relation, the mass-size relation and the mass-velocity dispersion relation for both clusters. We present a new, coherent way of modelling these scaling relations simultaneously using a simple physical model in order to infer the evolution in luminosity, size and velocity dispersion as a function of redshift, and show that the data can be fully accounted for with this model. We find that (a) the evolution in size and velocity dispersion undergone by these galaxies between z ˜ 0.5 and z ˜ 0 is mild, with Re(z) ˜ (1 + z)-0.40 ± 0.32 and σ(z) ˜ (1 + z)0.09 ± 0.27, and (b) the stellar populations are old, ˜10 Gyr, with a ˜3 Gyr dispersion in age, and are consistent with evolving purely passively since z ˜ 0.5 with Δ log M/L_B = -0.55_{-0.07}^{+0.15} z. The implication is that these galaxies formed their stars early and subsequently grew dissipationlessly so as to have their mass already in place by z ˜ 0.5, and suggests a dominant role for dry mergers, which may have accelerated the growth in these high-density cluster environments.

  1. Multiwavelength Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; hide

    2013-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.

  2. Nucleosynthesis in the early Galaxy: Progress and challenges.

    NASA Astrophysics Data System (ADS)

    Montes, Fernando

    2015-10-01

    Chemical imprints left by the first stars in the oldest stars of the Milky Way gives clues of the stellar nucleosynthesis responsible for the creation of elements heavier than iron. Recent progress in astronomical observations and in the modeling of the chemical evolution of the Galaxy have shown that multiple nucleosynthesis processes may operate at those early times. In this talk I will review some of that evidence along with the important role that nuclear reactions play in those processes. I will focus in progress in our understanding of the rapid neutron capture process (r-process) and in new results on nucleosynthesis in core-collapse supernovae and neutrino-driven winds that produce elements up to silver. I will show some examples of recent nuclear physics measurements addressing the need for better nuclear data and give an outlook of the remaining challenges and future plans to continue those measurements.

  3. THE IMPACT OF STELLAR FEEDBACK ON THE STRUCTURE, SIZE, AND MORPHOLOGY OF GALAXIES IN MILKY-WAY-SIZED DARK MATTER HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agertz, Oscar; Kravtsov, Andrey V., E-mail: o.agertz@surrey.ac.uk

    We use cosmological zoom-in simulations of galaxy formation in a Milky-Way-sized halo started from identical initial conditions to investigate the evolution of galaxy sizes, baryon fractions, morphologies, and angular momenta in runs with different parameters of the star formation–feedback cycle. Our fiducial model with a high local star formation efficiency, which results in efficient feedback, produces a realistic late-type galaxy that matches the evolution of basic properties of late-type galaxies: stellar mass, disk size, morphology dominated by a kinematically cold disk, stellar and gas surface density profiles, and specific angular momentum. We argue that feedback’s role in this success ismore » twofold: (1) removal of low angular momentum gas, and (2) maintaining a low disk-to-halo mass fraction, which suppresses disk instabilities that lead to angular momentum redistribution and a central concentration of baryons. However, our model with a low local star formation efficiency, but large energy input per supernova, chosen to produce a galaxy with a similar star formation history as our fiducial model, leads to a highly irregular galaxy with no kinematically cold component, overly extended stellar distribution, and low angular momentum. This indicates that only when feedback is allowed to become vigorous via locally efficient star formation in dense cold gas do resulting galaxy sizes, gas/stellar surface density profiles, and stellar disk angular momenta agree with observed z = 0 galaxies.« less

  4. Kinematics of Hα Emitting Stars in Andromeda

    NASA Astrophysics Data System (ADS)

    Ilango, Megha; Ilango, Anita; Damon, Gabriel; Prichard, Laura; Guhathakurta, Puragra; PHAT Collaboration; SPLASH Collaboration

    2017-01-01

    Studying emission line stars helps improve our understanding of stellar evolution, types of stars, and their environments. In this study, we analyzed stars exhibiting Hα emission (Hα stars) in the Andromeda Galaxy. We used a combination of spectroscopic and photometric diagnostic methods to remove a population of foreground Milky Way (MW) star contaminants from our data set. The Hα stars were selected from a sample of 5295 spectra from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) survey and accompanying photometric data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey. Velocities of two classes of Hα stars, main sequence (MS) stars and asymptotic giant branch (AGB) stars, were analyzed through a novel Age-Velocity Difference Correlation (AVDC) method, which utilizes line-of-sight velocity differences (LOSVDs) in order to estimate the age of a rare stellar population. Histograms, weighted means, and weighted standard deviations of the LOSVDs were used to conclude that MS stars are more kinematically coherent than AGB stars, and that Hα stars are kinematically comparable and thus close in age to their non-Hα counterparts. With these results, it can definitively be inferred that mass loss is important in two stages of stellar evolution: massive MS and intermediate mass AGB. We hypothesized that this mass loss could either occur as a normal part of MS and AGB evolution, or that it could be emitted by only a subpopulation of MS and AGB stars throughout their life cycle. Our use of the novel AVDC method sets a precedent for the use of similar methods in predicting the ages of rare stellar subgroups.This research was supported by NASA and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  5. The Distinct Build-Up Of Dense And Normal Massive Passive Galaxies In Vipers

    NASA Astrophysics Data System (ADS)

    Gargiulo, Adriana; Vipers Team

    2017-06-01

    At fixed stellar mass, the population of passive galaxies has increased its mean effective radius < Re > by a factor 5 in the last 10 Gyr, decreasing its mean stellar mass density (S = Mstar/(2πRe 2 ) by a factor >> 10. Whether this increase in < Re > is mainly due to the size-growth of individual galaxies through dry mergers, or to the fact that newly quenched galaxies have a larger size, is still matter of debate. A promising approach to shed light on this issue is to investigate the evolution of the number density of passive galaxies as a function of their mass density. In this context, massive (Mstar >10^11 Msun) passive galaxies are the most intriguing systems to study, since, in a hierarchical scenario, they are expected to accrete their stellar mass mainly by mergers. The wide area (˜ 16 sq. deg) and high sampling rate (˜ 40%) of the spectroscopic survey VIPERS allowed us to collect a sample of ˜ 2000 passive massive galaxies over the redshift range 0.5 < z < 1.0 and to study, with unprecedented statistics, the evolution of their number density as function of their mean stellar mass density in this redshift range. Taking advantage of both spectroscopic (D4000) and photometric (SED fitting) data available, we studied the age of the stellar population of passive galaxies as function both of redshift and mass density. This information, combined with the evolution of the number density allowed us to put constraints on the mass accretion scenarios of passive galaxies. In this talk I will present our results and conclusions and how they depend on the environment in which the galaxies reside.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{supmore » 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.« less

  7. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  8. Do Massive Galaxies at z~6 Present a Challenge for Hierarchical Merging?

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Capak, Peter L.; Masters, Daniel; Speagle, Josh S.; Splash

    2015-01-01

    The Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) recently released an initial view of the massive star-forming galaxy population at 4 < z < 6 over 1.8 square degrees. SPLASH found approximately 100 galaxy candidates with best-fit stellar masses over 10^11 solar. If even 10% of these are truly this massive and at such a high redshift, the corresponding number density would be inconsistent with the halo mass functions produced at these redshifts by numerical simulations. We will discuss these candidates, prospects for followup observations, and the potential implications for our understanding of the initial formation and early evolution of galaxies in the high-redshift universe.

  9. The Mass, Color, and Structural Evolution of Today’s Massive Galaxies Since z ˜ 5

    NASA Astrophysics Data System (ADS)

    Hill, Allison R.; Muzzin, Adam; Franx, Marijn; Clauwens, Bart; Schreiber, Corentin; Marchesini, Danilo; Stefanon, Mauro; Labbe, Ivo; Brammer, Gabriel; Caputi, Karina; Fynbo, Johan; Milvang-Jensen, Bo; Skelton, Rosalind E.; van Dokkum, Pieter; Whitaker, Katherine E.

    2017-03-01

    In this paper, we use stacking analysis to trace the mass growth, color evolution, and structural evolution of present-day massive galaxies ({log}({M}* /{M}⊙ )=11.5) out to z = 5. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by ≈ 1.5 {dex} since z = 5. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by z˜ 2, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build-up at r< 3 {kpc} beyond z> 4 probing an era of significant mass assembly in the interiors of present-day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with z at r< 3 {kpc}. We identify z˜ 1.5 as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in situ star formation in disks to a period of efficient growth in r e consistent with the minor merger scenario.

  10. Evolution of the stellar mass function in multiple-population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale

    2018-05-01

    We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.

  11. KPC-SCALE STUDY OF SUBSTRUCTURES INSIDE GALAXIES out to z ~ 1.3

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, B.; Miller, S.; Nayyeri, H.

    2014-01-01

    Studying the resolved properties of galaxies in kpc scale has the capability to address major questions in galaxy structure formation and stellar properties evolution. We use a unique sample of 129 morphologically inclusive disk-like galaxies in the redshift range 0.2

  12. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massivemore » galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.« less

  13. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trampedach, Regner; Asplund, Martin; Collet, Remo

    2013-05-20

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters,more » covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.« less

  14. Cosmochemistry

    NASA Astrophysics Data System (ADS)

    Esteban, C.; García López, R. J.; Herrero, A.; Sánchez, F.

    2004-03-01

    1. Primordial alchemy: from the Big Bang to the present Universe G. Steigman; 2. Stellar nucleosynthesis N. Langer; 3. Obervational aspects of stellar nucleosynthesis D. L. Lambert; 4. Abundance determinations in HII regions and planetary nebulae G. Stasinska; 5. Element abundances in nearby galaxies D. R. Garnett; 6. Chemical evolution of galaxies and intracluster medium F.Matteucci; 7. Element abundances through the cosmic ages M. Pettini.

  15. Cosmochemistry

    NASA Astrophysics Data System (ADS)

    Esteban, C.; García López, R. J.; Herrero, A.; Sánchez, F.

    2011-01-01

    1. Primordial alchemy: from the Big Bang to the present Universe G. Steigman; 2. Stellar nucleosynthesis N. Langer; 3. Obervational aspects of stellar nucleosynthesis D. L. Lambert; 4. Abundance determinations in HII regions and planetary nebulae G. Stasinska; 5. Element abundances in nearby galaxies D. R. Garnett; 6. Chemical evolution of galaxies and intracluster medium F.Matteucci; 7. Element abundances through the cosmic ages M. Pettini.

  16. The Masses and Stellar Content of Nuclei in Early-Type Galaxies from Multi-Band Photometry and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Spengler, Chelsea; Côté, Patrick; Roediger, Joel; Ferrarese, Laura; Sánchez-Janssen, Rubén; Toloba, Elisa; Liu, Yiqing; Guhathakurta, Puragra; Cuillandre, Jean-Charles; Gwyn, Stephen; Zirm, Andrew; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Peng, Eric; Mei, Simona; Powalka, Mathieu

    2018-01-01

    It is now established that most, if not all, massive galaxies host central supermassive black holes (SMBHs), and that these SMBHs are linked to the growth their host galaxies as shown by several scaling relations. Within the last couple of decades, it has become apparent that most lower-mass galaxies without obvious SMBHs nevertheless contain some sort of central massive object in the form of compact stellar nuclei that also follow identical (or similar) scaling relations. These nuclei are challenging to study given their small sizes and relatively faint magnitudes, but understanding their origins and relationship to their hosts is critical to gaining a more complete picture of galaxy evolution. To that end, we highlight selected results from an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, u*griz, and Ks. We estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of 0.33 ± 0.08% for galaxy stellar masses 108.4-1010.3 M⊙ with a typical precision of ~35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing 0.07 ± 0.3 dex more metal-rich on average — although, omitting galaxies with unusual origins (i.e., compact ellipticals), nuclei are 0.20 ± 0.28 dex more metal-rich. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi-major axes of their hosts, suggesting that they formed through predominantly dissipative processes.

  17. Formation of the first galaxies under Population III stellar feedback

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon

    2015-01-01

    The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I will discuss key physical quantities of the first galaxies derived from our simulations, such as their stellar population mix, star formation rates, metallicities, and resulting broad-band color and recombination spectra.

  18. The disappearance and reappearance of Titan's detached haze layer

    NASA Astrophysics Data System (ADS)

    West, Robert; Rannou, Pascal; Lavvas, Panayotis; Seignovert, Benoit; Turtle, Elizabeth P.; Perry, Jason; Ovanessian, Aida; Roy, Mou

    2016-10-01

    Titan's extended haze is a prominent and long-lived feature of the atmosphere that encompasses a rich variety of chemical, dynamical and microphysical processes operating over a wide range of temporal and spatial scales. The so-called 'detached' haze layer is easily seen in high-resolution short-wave (near-UV and blue wavelengths) images and is a consequence of a nearly global (outside of the winter polar hood region) layer depleted in aerosol content. It was first seen near 350 Km altitude in Voyager images (Rages and Pollack, 1983) and later observed by the Cassini ISS cameras (Porco et al., 2005; West et al., 2010) and UV stellar occultation profiles (Koskinen et al. 2011). A series of Cassini images from 2009 to 2010 revealed what appears to be a seasonally related altitude variation with remarkable regularity (comparing the Voyager and Cassini images). The drop in altitude is most rapid at equinox. Here we report on images of the upper haze layer over the period 2012 to early 2016. In the early part of this period the detached haze continued to drop in altitude and disappeared. There was no evidence for it beginning late in 2012 and extending to early 2016 when it was again detected with very low contrast at an altitude near 500 Km. We document this behavior and examine the evolution of the haze as functions of both latitude and time. These new details put additional constraints on models that attempt to account for the existence of the detached layer. Part of this work was done by the Jet Propulsion Laboratory, California Institute of Technology. References: Rages, K., and J. B. Pollack (1983), Vertical distribution of scattering hazes in Titan's upper atmosphere, Icarus, 55, 50-62, doi:10.1016/0019-1035 (83)90049-0; Porco, C. C. et al., Imaging Titan from the Cassini Spacecraft, Nature 434, 159-168 (2005); West, R. A. et al., The evolution of Titans detached haze layer near equinox in 2009", Geophys. Res. Lett. 38, L06204, doi:10.1029/2011GL046843, 2011; Koskinen T.T., et al., The mesosphere and lower thermosphere of Titan revealed by Cassini/UVIS stellar occultations, Icarus 216 507534, 2011.

  19. Morphological Perspectives on Galaxy Evolution since z~1.5

    NASA Astrophysics Data System (ADS)

    Rutkowski, Michael

    Galaxies represent a fundamental catalyst in the "lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d < 63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be "red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5--10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35 intermediate-redshift 0.35 < z < 1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.

  20. Measuring the Evolution of Stellar Populations And Gas Metallicity in Galaxies with Far-Infrared Space Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon

    We propose a study of the evolution of stellar populations and gas metallicities in about 80 nearby star forming galaxies based on mining the NASA data archives for observations of the [NIII] 57 µm, [OIII] 52 µm and/or 88 µm, [NII] 122 and [CII] 158 µm far-infrared (FIR) fine- structure lines and other archives for thermal radio continuum. These lines are powerful probes of both stellar populations and gas properties and our primary science derives from these tracers. For sources that show both signs of active galactic nuclei (AGN) and star formation, we will take advantage of the readily available NASA Spitzer IRS data base that includes mid-IR [NeII] 12.8 µm, [NeIII] 15.6 µm and [NeV] 14.3 µm, [OIV] 25.9 µm and PAH observations. These complementary data reveal the relative fractions of the FIR line emission that might arise from star formation and the narrow line regions (NLR) associated with an AGN, thereby providing a robust set of observations to compare with star formation models. Subsets of the FIR lines have been detected from hundreds of nearby galaxies. From both theoretical studies and the results of these pioneering observations we know that these lines can be powerful probes of stellar populations and star formation in galaxies. Here we plan to use various combinations of the lines to constrain (1) the age of the stellar populations (through lines that trace the hardness of the stellar radiation fields, hence stellar spectral type), (2) the degree of processing of the interstellar medium (through lines that trace growth of secondary to primary element abundances for example, the N/O ratio), (3) the efficiency of star formation (through growth in absolute abundances of N and O, the N/H and O/H ratios), and (4) the current day mass function of upper main sequence stars. Surprisingly, there has been no systematic study of the large sample of these line detections made with PACS on Herschel in order to truly assess and calibrate their diagnostic power. The rich Herschel/PACS data set is particularly attractive for this study due to its sensitivity and calibration uniformity. We propose to undertake such a study here. An initial search of the Herschel Archive reveals that there are at least 80 galaxies that have been observed in the [NII] 122 µm, [OIII] 52 and/or 88 µm and the [CII] 158 µm line. The primary goal of this proposal is to use these emission lines to study the star formation properties (age, metallicity, initial mass function (IMF) and star formation efficiency) in galaxies in the local Universe. This line of study ties into our overarching research objective which is to understand the evolution of star and galaxy formation over cosmic time. We have begun studying star formation in the early Universe by detecting these lines at high redshifts with our grating spectrometer ZEUS-2 on the APEX telescope, and through ALMA programs. The study we propose here will allow us to confidently apply these spectral probes to studies of high-z galaxies while also providing new insights into the characteristic and process of star-formation of galaxies in the nearby Universe. We will utilize NASA s space astrophysics archives to explore the evolution of stellar populations and the elements over cosmic time. The proposed work is therefore highly relevant to NASA s Strategic goal 1: Expand the frontiers of knowledge, capability, and opportunity in space. , Objective 1.6 Discover how the Universe works, explore how it began and evolved, and search for life on planets around other stars. Since the program involves both graduate and undergraduate students at a research university, we also address Strategic Goal 2 via Objective 2.4: Advance the Nation s STEM education and workforce pipeline by working collaborative with other agencies to engage students, teachers, and faculty in NASA s missions and unique assets.

  1. THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesini, Danilo; Van Dokkum, Pieter G.; Foerster Schreiber, Natascha M.

    2009-08-20

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget;more » (2) simultaneously probe the high-mass end and the low-mass end (down to {approx}0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of {approx}17{sup +7}{sub -10} since z = 4.0, mostly driven by a change in the normalization {phi}*. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 10{sup 10} M{sub sun} at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high-mass galaxies. The discrepancy at the high-mass end is susceptible to uncertainties in the models and the data, but the discrepancy at the low-mass end may be more difficult to explain.« less

  2. The Diversity of Chemical Composition: The Impact of Stellar Abundances on the Evolution of Stars and Habitable Zones

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.; Young, Patrick A.

    2018-01-01

    I have investigated how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of a “classical” HZ, the range of distances from a star over which liquid water could exist on a planet's surface. This is determined by the host star's luminosity and spectral characteristics; in order to gauge the habitability potential of a given system, both the evolutionary history and the detailed chemical characterization of the host star must be considered. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a better understanding of what factors play a role in creating “habitable” conditions of a planet. I will discuss how stellar evolution is integral to how we define the HZ, and how this work will apply to the search for Earth-like planets in the future.I have developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities (Z) of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements, not just total Z, impacts stellar lifetime. Time-dependent HZ boundaries are calculated for each track. I have also created a grid of M-dwarfs, and I am currently working to estimate stellar activity vs. age for each model.This catalog is meant to characterize potential host stars of interest. I have explored how to use existing observational data (i.e. Hypatia Catalog) for a more robust comparison to my grid of theoretical models, and I will discuss a new statistical analysis of the catalog to further refine our definition of “continuous” habitability. This work is an important step to assess whether a planet discovered in the HZ of its star has had sufficient time to develop a biosphere capable of producing detectable biosignatures. The catalog is designed for use by the astrobiology and exoplanet communities to characterize any real planetary systems of interest.

  3. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda; Young, Patrick A.

    2017-01-01

    For my dissertation under the supervision of Dr. Young, I investigate how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of the classical HZ - the range of distances from a star over which liquid water could exist on a planet's surface - determined primarily by the host star's luminosity and spectral characteristics. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a more complete understanding of what factors play a role in creating the “habitable” conditions of a planet. I discuss how stellar evolution is integral to how we define a HZ, and how this work will apply to the search for habitable Earth-like planets in the future.I developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements (and not just total metallicity) can impact evolutionary lifetime. The time-dependent HZ boundaries have also been calculated for each stellar track. Additionally, I recently created a grid of models for M-dwarfs, and I am currently working to make preliminary estimates of stellar activity vs. age for each representative star in the catalog.My results indicate that to gauge the habitability potential of a given system, both the evolutionary history as well as the detailed chemical characterization of the host star must be considered. This work can be used to assess whether a planet discovered in the HZ of its star has had sufficient time to develop a biosphere capable of producing detectable biosignatures. The catalog is designed for use by the astrobiology and exoplanet communities to characterize stars and their surrounding HZs for real planetary candidates of interest.

  4. Highlights of Astronomy, Vol. 16

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  5. NSV 11749, an Elder Sibling of the Born-again Stars V605 Aql and V4334 Sgr?

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, M. M.; Rohrmann, R. D.; Granada, A.; Althaus, L. G.

    2011-12-01

    We argue that NSV 11749, an eruption observed in the early twentieth century, was a rare event known as "very late thermal pulse" (VLTP). To support our argument we compare the light curve of NSV 11749 with those of the two bona fide VLTP objects known to date, V4334 Sgr and V605 Aql, and with those predicted by state-of-the-art stellar evolution models. Next, we explore the INT Photometric H-Alpha Survey (IPHAS) and Two Micron All Sky Survey (2MASS) catalogs for possible counterparts of the eruption. Our analysis shows that the VLTP scenario outperforms all other proposed scenarios as an explanation of NSV 11749. We identify an IPHAS/2MASS source at the eruption location of NSV 11749. The derived colors suggest that the object is not enshrouded in a thick dust shell as V605 Aql and V4334 Sgr. Also, the absence of an apparent planetary nebula at the eruption location suggests differences with known VLTP objects which might be linked to the intensity of the eruption and the mass of the object. Further exploration of this source and scenario seems desirable. If NSV 11749 was a born-again star, it would be the third event of its kind to have been observed and will strongly help us to increase our understanding of the later stages of stellar evolution and violent reactive convective burning.

  6. The history of the dark and luminous side of Milky Way-like progenitors

    NASA Astrophysics Data System (ADS)

    Graziani, L.; de Bennassuti, M.; Schneider, R.; Kawata, D.; Salvadori, S.

    2017-07-01

    Here we investigate the evolution of a Milky Way (MW)-like galaxy with the aim of predicting the properties of its progenitors all the way from z ∼ 20 to z = 0. We apply gamesh to a high-resolution N-body simulation following the formation of a MW-type halo and we investigate its properties at z ∼ 0 and its progenitors in 0 < z < 4. Our model predicts the observed galaxy main sequence, the mass-metallicity and the Fundamental Plane of metallicity relations in 0 < z < 4. It also reproduces the stellar mass evolution of candidate MW progenitors in 0 ≲ z ≲ 2.5, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman α cooling haloes, at z > 6 the contribution of star-forming minihaloes is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of minihaloes with old stellar populations, possibly Population III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.

  7. Strong stellar winds.

    PubMed

    Conti, P S; McCray, R

    1980-04-04

    The hottest and most luminous stars lose a substantial fraction of their mass in strong stellar winds. These winds not only affect the evolution of the star, they also carve huge expanding cavities in the surrounding interstellar medium, possibly affecting star formation. The winds are probably driven by radiation pressure, but uncertainties persist in their theoretical description. Strong x-ray sources associated with a few of these hot stars may be used to probe the stellar winds. The nature of the weak x-ray sources recently observed to be associated with many of these stars is uncertain. It is suggested that roughly 10 percent of the luminous hot stars may have as companions neutron stars or black holes orbiting within the stellar winds.

  8. Photometric Follow-up of Eclipsing Binary Candidates from KELT and Kepler

    NASA Astrophysics Data System (ADS)

    Garcia Soto, Aylin; Rodriguez, Joseph E.; Bieryla, Allyson; KELT survey

    2018-01-01

    Eclipsing binaries (EBs) are incredibly valuable, as they provide the opportunity to precisely measure fundamental stellar parameters without the need for stellar models. Therefore, we can use EBs to directly test stellar evolution models. Constraining the stellar properties of stars is important since they directly influence our understanding of any planets orbiting them. Using the Harvard University's Clay 0.4m telescope and Fred Lawrence Whipple Observatory’s 1.2m telescope on Mount Hopkins, Arizona, we conducted follow-up multi-band photometric observations of EB candidates from the Kilodegree Extremely Little Telescope (KELT) survey and the Kepler mission. We will present our follow-up observations and AstroImageJ analysis on these 5 EB systems.

  9. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cargile, P. A.; Pepper, J.; Siverd, R.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age ofmore » 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.« less

  10. Chempy: A flexible chemical evolution model for abundance fitting. Do the Sun's abundances alone constrain chemical evolution models?

    NASA Astrophysics Data System (ADS)

    Rybizki, Jan; Just, Andreas; Rix, Hans-Walter

    2017-09-01

    Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar nucleosynthesis with far more complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.

  11. Evidence from stellar rotation of enhanced disc dispersal. I. The case of the triple visual system BD-21 1074 in the β Pictoris association

    NASA Astrophysics Data System (ADS)

    Messina, S.; Monard, B.; Biazzo, K.; Melo, C. H. F.; Frasca, A.

    2014-10-01

    Context. The early stage of stellar evolution is characterized by a magnetic coupling between a star and its accretion disc, known as a star-disc locking mechanism. The disc-locking prevents the star to spin its rotation up, and its timescale depends on the disc lifetime, which should not be longer than about 10 Myr. Some mechanisms can significantly shorten this lifetime, allowing a few stars to start spinning up much earlier than other stars and increasing the observed rotation period dispersion among coeval stars. Aims: In the present study, we aim to investigate how the properties of the circumstellar environment can shorten the disc lifetime, more specifically the presence of a close stellar companion. Methods: We have identified a few multiple stellar systems, composed of stars with similar masses, which belong to associations with a known age. Since all parameters that are responsible for the rotational evolution, with the exception of environment properties and initial stellar rotation, are similar for all components, we expect that significant differences among the rotation periods can only arise from differences in the disc lifetimes. A photometric timeseries allowed us to measure the rotation periods of each component, while high-resolution spectra provided us with the fundamental parameters, v sin i and chromospheric line fluxes. Results: In the present study, we have collected timeseries photometry of BD-21 1074, a member of the 21 Myr old β Pictoris association, and measured the rotation periods of its brightest components A and B. They differ significantly, and the component B, which has a closer companion C, rotates faster than the more distant and isolated component A. It also displays a slightly higher chromospheric activity level. Conclusions: Since components A and B have similar mass, age, and initial chemical composition, we can ascribe the rotation period difference to either different initial rotation periods or different disc-locking phases arising from the presence of the close companion C. In the specific case of BD-21 1074, the second scenario seems to be more favored. However, a statistically meaningful sample is yet needed to be able to infer which scenario is more likely. In our hypothesis of different disc-locking phase, any planet orbiting this star, if found by future investigations, is likely formed very rapidly owing to a gravitational instability mechanism, rather than core accretion. Only a large difference of initial rotation periods alone could account for the observed period difference, leaving comparable disc lifetimes.

  12. A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Nonino, M.; Vanzella, E.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Santini, P.

    2007-04-01

    Context: The classification scheme for high redshift galaxies is complex at the present time, with simple colour-selection criteria (i.e. EROs, IEROs, LBGs, DRGs, BzKs), resulting in ill-defined properties for the stellar mass and star formation rate of these distant galaxies. Aims: The goal of this work is to investigate the properties of different classes of high-z galaxies, focusing in particular on the stellar masses of LBGs, DRGs, and BzKs, in order to derive their contribution to the total mass budget of the distant Universe. Methods: We used the GOODS-MUSIC catalog, containing ~3000 Ks-selected (~10 000 z-selected) galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8~μm band, with spectroscopic or accurate photometric redshifts. We selected samples of BM/BX/LBGs, DRGs, and BzK galaxies to discuss the overlap and the limitations of these criteria, which can be overridden by a selection criterion based on physical parameters. We then measured the stellar masses of these galaxies and computed the stellar mass density (SMD) for the different samples up to redshift ≃4. Results: We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. On the other hand, BzK-SF is highly contaminated by passively evolving galaxies at red z-Ks colours. We find that LBGs and DRGs contribute almost equally to the global SMD at z≥ 2 and, in general, that star-forming galaxies form a substantial fraction of the universal SMD. Passively evolving galaxies show a strong negative density evolution from redshift 2 to 3, indicating that we are witnessing the epoch of mass assembly of such objects. Finally we have indications that by pushing the selection to deeper magnitudes, the contribution of less massive DRGs could overtake that of LBGs. Deeper surveys, like the HUDF, are required to confirm this suggestion.

  13. A Pan-Carina Young Stellar Object Catalog: Intermediate-mass Young Stellar Objects in the Carina Nebula Identified Via Mid-infrared Excess Emission

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo

    2011-05-01

    We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.

  14. From protostellar to pre-main-sequence evolution

    NASA Astrophysics Data System (ADS)

    D'Antona, F.

    I summarize the status of pre-main-sequence evolutionary tracks starting from the first steps dating back to the concept of Hayashi track. Understanding of the dynamical protostellar phase in the vision of Palla & Stahler, who introduced the concept of the deuterium burning thermostat and of stellar birthline, provided for a long time a link between the dynamical and hydrostatic evolution. Disk accretion however changed considerably the view, but re-introducing some ambiguities which must still be solved. The limitations and uncertainties in the mass and age determination from models for young stellar objects are summarized, but the burning of light elements is still a powerful observational signature.

  15. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  16. High Resolution X-ray Spectroscopy and Star Formation: HETG Observations of the Pre-Main Sequence Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Principe, David; Huenemoerder, David P.; Schulz, Norbert; Kastner, Joel H.; Weintraub, David; Preibisch, Thomas

    2018-01-01

    We present Chandra High Energy Transmission Grating (HETG) observations of the ∼3 Myr old pre-main sequence (pre-MS) stellar cluster IC 348. With 400-500 cluster members at a distance of ∼300 pc, IC 348 is an ideal target to observe a large number of X-ray sources in a single pointing and is thus an extremely efficient use of Chandra-HETG. High resolution X-ray spectroscopy offers a means to investigate detailed spectral characteristic of X-ray emitting plasmas and their surrounding environments. We present preliminary results where we compare X-ray spectral signatures (e.g., luminosity, temperature, column density, abundance) of the X-ray brightest pre-MS stars in IC 348 with spectral type, multiwavelength signatures of accretion, and the presence of circumstellar disks at multiple stages of pre-MS stellar evolution. Assuming all IC 348 members formed from the same primordial molecular cloud, any disparity between coronal abundances of individual members, as constrained by the identification and strength of emission lines, will constrain the source(s) of coronal chemical evolution at a stage of pre-MS evolution vital to the formation of planets.

  17. Investigating the Consistency of Stellar Evolution Models with Globular Cluster Observations via the Red Giant Branch Bump

    NASA Astrophysics Data System (ADS)

    Joyce, Meridith; Chaboyer, Brian

    2016-01-01

    Synthetic Red Giant Branch Bump (RGBB) magnitudes are generated with the most recent theoretical stellar evolution models computed with the Dartmouth Stellar Evolution Program (DSEP) code. They are compared to the observational work of Nataf et al. (2013), who present RGBB magnitudes for 72 globular clusters. A DSEP model using a chemical composition with enhanced α capture [α/Fe] =+0.4 and an age of 13 Gyr shows agreement with observations over metallicities ranging from [Fe/H] = 0 to [Fe/H] ≈-1.5, with discrepancy emerging at lower metallicities. A model-independent, density-based outlier detection routine known as the Local Outlying Factor (LOF) algorithm is applied to the observations in order to identify clusters that deviate most in magnitude-metallicity space from the bulk of the observations. Our model's fit is scrutinized with a series of χ^2 routines performed on subsets of the data from which highly anomalous clusters have been selectively removed based on LOF identification. In particular, NGCs 6254, 6681, 6218, and 1904 are tagged recurrently as outliers. The effects of systematic and non-systematic error in metallicity are assessed, and the robustness of observational error bars is investigated.

  18. Do We Really Have an Age/H_0 Conflict?

    NASA Astrophysics Data System (ADS)

    Baum, W. A.

    1997-12-01

    Two independent methods for estimating the age of the universe can both be linked to the absolute magnitudes of the RR Lyrae stars, one based on stellar evolution in globular clusters and the other based on the Hubble Constant derived from globular clusters as distance indicators. The latter has recently been extracted from HST-WFPC2 data for globular clusters in the Coma Cluster galaxy IC 4051 (Baum et al. 1997, AJ, 113, 1483). If RR Lyrae stars are brighter than we have previously thought, the stellar-evolution age estimate is shortened whereas the Hubble age is increased, so we can ask a very simple question: For what RR Lyrae magnitude zero point would the stellar-evolution age coincide with the Hubble age, and is it a reasonable value? Allowing 1 Gyr for globular clusters to have formed, and assuming a classical Einstein-deSitter universe with Lambda = 0, I find the two ages to coincide if M_V(RR) ~ 0.16[Fe/H] + 0.46, which (among other things) puts the Large Magellanic Cloud at (m-M) = 18.78 +/- 0.17 mag. The implied age of the universe is 11.0 +/- 1.4 Gyr, and the corresponding H_0 = 59 +/- 8 km/s per Mpc.

  19. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z Almost-Equal-To 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z Almost-Equal-To 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z Almost-Equal-To 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin{sup 2} to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts.more » We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z Almost-Equal-To 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z Almost-Equal-To 8. Their derived stellar masses are on the order of a few Multiplication-Sign 10{sup 9} M{sub Sun }, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z Almost-Equal-To 8. The high number density of very luminous and very massive galaxies at z Almost-Equal-To 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.« less

  20. COSMIC-LAB: Double BSS sequences as signatures of the Core Collapse phenomenon in star clusters.

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2011-10-01

    Globular Clusters {GCs} are old stellar systems tracing key stages of the star formation and chemical enrichment history of the early Universe and the galaxy assembly phase. As part of a project {COSMIC-LAB} aimed at using GCs as natural laboratories to study the complex interplay between dynamics and stellar evolution, here we present a proposal dealing with the role of Blue Straggler Stars {BSS}.BSS are core-hydrogen burning stars more massive than the main-sequence turnoff population. The canonical scenarios for BSS formation are either the mass transfer between binary companions, or stellar mergers induced by collisions. We have recently discovered two distinct and parallel sequences of BSS in the core of M30 {Ferraro et al. 2009, Nature 462, 1082}. We suggested that each of the two sequences is populated by BSS formed by one of the two processes, both triggered by the cluster core collapse, that, based on the observed BSS properties, must have occurred 1-2 Gyr ago. Following this scenario, we have identified a powerful "clock" to date the occurrence of this key event in the GC history.Here we propose to secure WFC3 images of 4 post-core collapse GCs, reaching S/N=200 at the BSS magnitude level, in order to determine the ubiquity of the BSS double sequence and calibrate the "dynamical clock". This requires very high spatial resolution and very high precision photometry capabilities that are unique to the HST. The modest amount of requested time will have a deep impact on the current and future generations of dynamical evolutionary models of collisional stellar systems.

Top