Sample records for early summer rainfall

  1. Prediction of early summer rainfall over South China by a physical-empirical model

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2014-10-01

    In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.

  2. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  3. Early summer southern China rainfall variability and its oceanic drivers

    NASA Astrophysics Data System (ADS)

    Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li

    2018-06-01

    Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.

  4. Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Kwon, MinHo

    2014-03-01

    East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.

  5. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    NASA Astrophysics Data System (ADS)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  6. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  7. Summer Leeside Rainfall Maxima over the Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Chen, Y. L.

    2016-12-01

    The Kona area on the leeside in the island of Hawaii has distinctive summer rainfall maxima. The primary physical processes for the summer rainfall maxima in Kona are analyzed by comparing it with the winter rainfall. The annual and diurnal cycles there are investigated by employing the Fifth-generation Pennsylvania State University-NCAR Mesoscale Model coupled with the advanced land surface model from June 2004 and February 2010. During the summer, the nocturnal rainfall maximum adjacent to the Kona coast is larger than in winter because of the stronger, moister westerly reversed flow and offshore flow in summer. Comparisons between winter trade-wind days and winter mean show that the leeside Kona rainfall offshore in winter mainly occurs under trade-wind conditions. Moreover, the model results also attest to the impact of moisture content on the Kona leeside rainfall offshore. Comparisons between winter and summer trade-wind days indicate that upslope flows on the Kona slopes are stronger and the moisture content from the westerly reversed flow is higher in summer than in winter. The rainfall maximum on the lower Kona slopes is more pronounced in summer than in winter as a result of enhanced orographic lifting due to stronger upslope flow in the afternoon hours and the moister westerly reversed flow offshore, which merges with the upslope flow inland.

  8. Skilful Seasonal Predictions of Summer European Rainfall

    NASA Astrophysics Data System (ADS)

    Dunstone, Nick; Smith, Doug; Scaife, Adam; Hermanson, Leon; Fereday, David; O'Reilly, Chris; Stirling, Alison; Eade, Rosie; Gordon, Margaret; MacLachlan, Craig; Woollings, Tim; Sheen, Katy; Belcher, Stephen

    2018-04-01

    Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however, current seasonal forecast systems show no significant forecast skill. Here we show that skillful predictions are possible (r 0.5, p < 0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g., wet summers 2007-2012) and some of the large individual events (e.g., dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapor into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general—although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses), very large ensembles (>80 members) are required for skillful predictions. This work is promising for the development of European summer rainfall climate services.

  9. Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin; Yim, So-Young

    2016-07-01

    The interannual variation of East Asia summer monsoon (EASM) rainfall exhibits considerable differences between early summer [May-June (MJ)] and peak summer [July-August (JA)]. The present study focuses on peak summer. During JA, the mean ridge line of the western Pacific subtropical High (WPSH) divides EASM domain into two sub-domains: the tropical EA (5°N-26.5°N) and subtropical-extratropical EA (26.5°N-50°N). Since the major variability patterns in the two sub-domains and their origins are substantially different, the Part I of this study concentrates on the tropical EA or Southeast Asia (SEA). We apply the predictable mode analysis approach to explore the predictability and prediction of the SEA peak summer rainfall. Four principal modes of interannual rainfall variability during 1979-2013 are identified by EOF analysis: (1) the WPSH-dipole sea surface temperature (SST) feedback mode in the Northern Indo-western Pacific warm pool associated with the decay of eastern Pacific El Niño/Southern Oscillation (ENSO), (2) the central Pacific-ENSO mode, (3) the Maritime continent SST-Australian High coupled mode, which is sustained by a positive feedback between anomalous Australian high and sea surface temperature anomalies (SSTA) over Indian Ocean, and (4) the ENSO developing mode. Based on understanding of the sources of the predictability for each mode, a set of physics-based empirical (P-E) models is established for prediction of the first four leading principal components (PCs). All predictors are selected from either persistent atmospheric lower boundary anomalies from March to June or the tendency from spring to early summer. We show that these four modes can be predicted reasonably well by the P-E models, thus they are identified as the predictable modes. Using the predicted PCs and the corresponding observed spatial patterns, we have made a 35-year cross-validated hindcast, setting up a bench mark for dynamic models' predictions. The P-E hindcast

  10. Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan W.; Lin W.; Yu, R.

    2012-05-01

    Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morningmore » peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.« less

  11. Challenges in predicting and simulating summer rainfall in the eastern China

    NASA Astrophysics Data System (ADS)

    Liang, Ping; Hu, Zeng-Zhen; Liu, Yunyun; Yuan, Xing; Li, Xiaofan; Jiang, Xingwen

    2018-05-01

    To demonstrate the challenge of summer rainfall prediction and simulation in the eastern China, in this work, we examine the skill of the state-of-the-art climate models, evaluate the impact of sea surface temperature (SST) on forecast skill and estimate the predictability by using perfect model approach. The challenge is further demonstrated by assessing the ability of various reanalyses in capturing the observed summer rainfall variability in the eastern China and by examining the biases in reanalyses and in a climate model. Summer rainfall forecasts (hindcasts) initiated in May from eight seasonal forecast systems have low forecast skill with linear correlation of - 0.3 to 0.5 with observations. The low forecast skill is consistent with the low perfect model score ( 0.1-0.3) of atmospheric model forced by observed SST, due to the fact that external forcing (SST) may play a secondary role in the summer rainfall variation in the eastern China. This is a common feature for the climate variation over the middle and high latitude lands, where the internal dynamical processes dominate the rainfall variation in the eastern China and lead to low predictability, and external forcing (such as SST) plays a secondary role and is associated with predictable fraction. Even the reanalysis rainfall has some remarkable disagreements with the observation. Statistically, more than 20% of the observed variance is not captured by the mean of six reanalyses. Among the reanalyses, JRA55 stands out as the most reliable one. In addition, the reanalyses and climate model have pronounced biases in simulating the mean rainfall. These defaults mean an additional challenge in predicting the summer rainfall variability in the eastern China that has low predictability in nature.

  12. Seasonal prediction of East Asian summer rainfall using a multi-model ensemble system

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Lee, Doo-Young; Yoo, Jin‑Ho

    2015-04-01

    Using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers, the prediction skills of climate models in the western tropical Pacific (WTP) and East Asian region are assessed. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research

  13. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.

    2017-04-01

    In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the

  14. Influence of Latent Heating over the Asian and Western Pacific Monsoon Region on Sahel Summer Rainfall.

    PubMed

    He, Shan; Yang, Song; Li, Zhenning

    2017-08-09

    There has been an interdecadal shift towards a less humid state in Sahel summer rainfall since the 1960s. The decreased Sahel summer rainfall was associated with enhanced summer latent heating over the South Asian and western Pacific summer monsoon region and anomalous zonal-vertical cell of the Asian summer monsoon circulation, indicating that the latent heating plays a significant role in the change in Sahel rainfall. The effects of the latent heating over different monsoon domains on the Sahel rainfall are investigated through several model experiments. Results show that the remote monsoon heating mainly affects Sahel rainfall by generating changes in the zonal-vertical atmospheric circulation.

  15. Enhancement of seasonal prediction of East Asian summer rainfall related to western tropical Pacific convection

    NASA Astrophysics Data System (ADS)

    Lee, Doo Young; Ahn, Joong-Bae; Yoo, Jin-Ho

    2015-08-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone.

  16. Three-dimensional circulation structures leading to heavy summer rainfall over central North China

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Yu, Rucong; Li, Jian; Yuan, Weihua

    2016-04-01

    Using daily and hourly rain gauge records and Japanese 25 year reanalysis data over 30 years, this work reveals two major circulation structures leading to heavy summer rainfall events in central North China (CNC), and further analyzes the effects of the circulations on these rainfall events. One circulation structure has an extensive upper tropospheric warm anomaly (UTWA) covering North China (NC). By strengthening the upper anticyclonic anomaly and lower southerly flows around NC, the UTWA plays a positive role in forming upper level divergence and lower level moisture convergence. As a result, the warm anomalous circulation has a solid relationship with large-scale, long-duration rainfall events with a diurnal peak around midnight to early morning. The other circulation structure has an upper tropospheric cold anomaly (UTCA) located in the upper stream of NC. Contributed to by the UTCA, a cold trough appears in the upper stream of NC and an unstable configuration with upper (lower) cold (warm) anomalies forms around CNC. Consequently, CNC is covered by strong instability and high convective energy, and the cold anomalous circulation is closely connected with local, short-duration rainfall events concentrated from late afternoon to early nighttime. The close connections between circulation structures and typical rainfall events are confirmed by two independent converse analysis processes: from circulations to rainfall characteristics, and from typical rainfall events to circulations. The results presented in this work indicate that the upper tropospheric temperature has significant influences on heavy rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses.

  17. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua

    2018-03-01

    The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.

  18. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years

    PubMed Central

    Hong, Bing; Gasse, Françoise; Uchida, Masao; Hong, Yetang; Leng, Xuetian; Shibata, Yasuyuki; An, Ning; Zhu, Yongxuan; Wang, Yu

    2014-01-01

    A detailed and well-dated proxy record of summer rainfall variation in arid Central Asia is lacking. Here, we report a long-term, high resolution record of summer rainfall extracted from a peat bog in arid eastern-Central Asia (AECA). The record indicates a slowly but steadily increasing trend of summer rainfall in the AECA over the past 8500 years. On this long-term trend are superimposed several abrupt increases in rainfall on millennial timescales that correspond to rapid cooling events in the North Atlantic. During the last millennium, the hydrological climate pattern of the AECA underwent a major change. The rainfall in the past century has reached its highest level over the 8500-year history, highlighting the significant impact of the human-induced greenhouse effect on the hydrological climate in the AECA. Our results demonstrate that even in very dry eastern-Central Asia, the climate can become wetter under global warming. PMID:24923304

  19. East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River

    NASA Technical Reports Server (NTRS)

    Weng, H.-Y.; Lau, K.-M.

    1999-01-01

    One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.

  20. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    NASA Astrophysics Data System (ADS)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  1. Preceding winter La Niña reduces Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arindam

    2018-05-01

    Leaving out the strong El Niño Southern Oscillation (ENSO) years, our understanding in the interannual variation of the Indian summer monsoon rainfall (ISMR) stands poor for the rest. This study quantifies the role of ENSO in the preceding winter on ISMR with a particular emphasis on ENSO-neutral summer and La Niña winter. Results show that, unlike the simultaneous ENSO-ISMR relationship, La Niña of previous winter reduces mean rainfall over the country by about 4% even during ENSO neutral summer. Moreover, when ENSO changes phase from La Niña in winter to El Niño in summer, ISMR is anomalously lower than during persisting El Niño years (‑14.5% and ‑5.3%, respectively), increasing the probability of severe drought. This suppression effect of La Niña of the preceding winter on summer monsoon precipitation over India is mostly experienced in its western and southern parts. Principal component analysis of the zonal propagation of surface pressure anomalies from winter to summer along Northern Hemisphere subtropics decomposes interannual variations of seasonally persisting anomalies from zonal propagations. The dominant modes are associated with the seasonal transition of the ENSO phase, and are well correlated with date of onset and seasonal mean rainfall of monsoon over India. These results improve our understanding of the interannual variations of ISMR and could be used for diagnostics of general circulation models.

  2. Enhancement of seasonal prediction of East Asian summer rainfall related to the western tropical Pacific convection

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Ahn, J. B.; Yoo, J. H.

    2014-12-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation (ENSO) developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index (EASMI) or each MP index (MPI). Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by statistical-empirical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using the statistical-empirical method compared to the dynamical models

  3. Can the Southern annular mode influence the Korean summer monsoon rainfall?

    NASA Astrophysics Data System (ADS)

    Prabhu, Amita; Kripalani, Ramesh; Oh, Jaiho; Preethi, Bhaskar

    2017-05-01

    We demonstrate that a large-scale longitudinally symmetric global phenomenon in the Southern Hemisphere sub-polar region can transmit its influence over a remote local region of the Northern Hemisphere traveling more than 100° of latitudes (from 70°S to 40°N). This is illustrated by examining the relationship between the Southern Annular Mode (SAM) and the Korean Monsoon Rainfall (KMR) based on the data period 1983-2013. Results reveal that the May-June SAM (MJSAM) has a significant in-phase relationship with the subsequent KMR. A positive MJSAM is favorable for the summer monsoon rainfall over the Korean peninsula. The impact is relayed through the central Pacific Ocean. When a negative phase of MJSAM occurs, it gives rise to an anomalous meridional circulation in a longitudinally locked air-sea coupled system over the central Pacific that propagates from sub-polar to equatorial latitudes and is associated with the central Pacific warming. The ascending motion over the central Pacific descends over the Korean peninsula during peak-boreal summer resulting in weakening of monsoon rainfall. The opposite features prevail during a positive phase of SAM. Thus, the extreme modes of MJSAM could possibly serve as a predictor for ensuing Korean summer monsoon rainfall.

  4. Evaluation of different rainfall products over India for the summer monsoon

    NASA Astrophysics Data System (ADS)

    Prakash, Satya; Mitra, Ashis; Turner, Andrew; Collins, Mathew; AchutoRao, Krishna

    2015-04-01

    Summer rainfall over India forms an integral part of the Asian monsoon, which plays a key role in the global water cycle and climate system through coupled atmospheric and oceanic processes. Accurate prediction of Indian summer monsoon rainfall and its variability at various spatiotemporal scales are crucial for agriculture, water resources and hydroelectric-power sectors. Reliable rainfall observations are very important for verification of numerical model outputs and model development. However, high spatiotemporal variability of rainfall makes it difficult to measure adequately with ground-based instruments over a large region of various surface types from deserts to oceans. A number of multi-satellite rainfall products are available to users at different spatial and temporal scales. Each rainfall product has some advantages as well as limitations, hence it is essential to find a suitable region-specific data set among these rainfall products for a particular user application, such as water resources, agricultural modelling etc. In this study, we examine seasonal-mean and daily rainfall datasets for monsoon model validation. First, six multi-satellite and gauge-only rainfall products were evaluated over India at seasonal scale for 27 (JJAS 1979-2005) summer monsoon seasons against gridded 0.5-degree IMD gauge-based rainfall. Various skill metrics are computed to assess the potential of these data sets in representation of large-scale monsoon rainfall at all-India and sub-regional scales. Among the gauge-only data sets, APHRODITE and GPCC appear to outperform the others whereas GPCP is better than CMAP in the merged multi-satellite category. However, there are significant differences among these data sets indicating uncertainty in the observed rainfall over this region, with important implications for the evaluation of model simulations. At the daily scale, TRMM TMPA-3B42 is one of the best available products and is widely used for various hydro

  5. Short-term modulation of Indian summer monsoon rainfall by West Asian dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinoj, V.; Rasch, Philip J.; Wang, Hailong

    The Indian summer monsoon is the result of a complex interplay between radiative heating, dynamics and cloud and aerosol interactions. Despite increased scientific attention, the effect of aerosols on monsoons still remains uncertain. Here we present both observational evidence and numerical modeling results demonstrating a remote aerosol link to Indian summer monsoon rainfall. Rainfall over central India is positively correlated to natural aerosols over the Arabian Sea and West Asia. Simulations using a state-of-the-art global climate model support this remote aerosol link and indicate that dust aerosols induce additional moisture transport and convergence over Central India, producing increased monsoon rainfall.more » The convergence is driven through solar heating and latent heating within clouds over West Asia that increases surface winds over the Arabian Sea. On the other hand, sea-salt aerosol tends to counteract the effect of dust and reduces rainfall. Our findings highlight the importance of natural aerosols in modulating the strength of the Indian summer monsoon, and motivate additional research in how changes in background aerosols of natural origin may be influencing long-term trends in monsoon precipitation.« less

  6. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    NASA Astrophysics Data System (ADS)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  7. Fingerprinting the Impacts of Aerosols on Long-Term Trends of the Indian Summer Monsoon Regional Rainfall

    NASA Technical Reports Server (NTRS)

    Laul, K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present corroborative observational evidences from satellites, in-situ observations, and re-analysis data showing possible impacts of absorbing aerosols (black carbon and dust) on subseasonal and regional summer monsoon rainfall over India. We find that increased absorbing aerosols in the Indo-Gangetic Plain in recent decades may have lead to long-term warming of the upper troposphere over northern India and the Tibetan Plateau, enhanced rainfall in northern India and the Himalayas foothill regions in the early part (may-June) of the monsoon season, followed by diminished rainfall over central and southern India in the latter part (July-August) of the monsoon season. These signals which are consistent with current theories of atmospheric heating and solar dimming by aerosol and induced cloudiness in modulating the Indian monsoon, would have been masked by conventional method of using al-India rainfall averaged over the entire monsoon season.

  8. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    NASA Astrophysics Data System (ADS)

    Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.

    2018-06-01

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  9. Asian Summer Monsoon Rainfall associated with ENSO and its Predictability

    NASA Astrophysics Data System (ADS)

    Shin, C. S.; Huang, B.; Zhu, J.; Marx, L.; Kinter, J. L.; Shukla, J.

    2015-12-01

    The leading modes of the Asian summer monsoon (ASM) rainfall variability and their seasonal predictability are investigated using the CFSv2 hindcasts initialized from multiple ocean analyses over the period of 1979-2008 and observation-based analyses. It is shown that the two leading empirical orthogonal function (EOF) modes of the observed ASM rainfall anomalies, which together account for about 34% of total variance, largely correspond to the ASM responses to the ENSO influences during the summers of the developing and decaying years of a Pacific anomalous event, respectively. These two ASM modes are then designated as the contemporary and delayed ENSO responses, respectively. It is demonstrated that the CFSv2 is capable of predicting these two dominant ASM modes up to the lead of 5 months. More importantly, the predictability of the ASM rainfall are much higher with respect to the delayed ENSO mode than the contemporary one, with the predicted principal component time series of the former maintaining high correlation skill and small ensemble spread with all lead months whereas the latter shows significant degradation in both measures with lead-time. A composite analysis for the ASM rainfall anomalies of all warm ENSO events in this period substantiates the finding that the ASM is more predictable following an ENSO event. The enhanced predictability mainly comes from the evolution of the warm SST anomalies over the Indian Ocean in the spring of the ENSO maturing phases and the persistence of the anomalous high sea surface pressure over the western Pacific in the subsequent summer, which the hindcasts are able to capture reasonably well. The results also show that the ensemble initialization with multiple ocean analyses improves the CFSv2's prediction skill of both ENSO and ASM rainfall. In fact, the skills of the ensemble mean hindcasts initialized from the four different ocean analyses are always equivalent to the best ones initialized from any individual ocean

  10. Month-to-month variability of Indian summer monsoon rainfall in 2016: role of the Indo-Pacific climatic conditions

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Srinivas, G.; Du, Yan; Gopinath, K.; Gnanaseelan, C.; Parekh, Anant; Singh, Prem

    2018-03-01

    Indian summer monsoon (ISM) rainfall during 2016 exhibited a prominent month-to-month fluctuations over India, with below normal rainfall in June and August and above normal rainfall in July. The factors determining the month-to-month fluctuations in ISM rainfall during 2016 are investigated with main focus on the Indo-Pacific climatic anomalies. Warm sea surface temperature (SST) anomalies associated with super El Niño 2015 disappeared by early summer 2016 over the central and eastern Pacific. On the other hand, negative Indian Ocean dipole (IOD) like SST anomaly pattern over the equatorial Indian Ocean and anomalous anticyclonic circulation over the western North Pacific (WNP) are reported in summer 2016 concurrently with decaying El Niño/developing La Niña phase. Observations revealed that the low rainfall over central north India in June is due to moisture divergence caused by the westward extension of ridge corresponding to WNP anticyclone and subsidence induced by local Hadley cell partly related to negative IOD. Low level convergence of southeasterly wind from Bay of Bengal associated with weak WNP anticyclone and northwesterly wind corresponding to anticyclonic circulation over the northwest India remarkably contributed to positive rainfall in July over most of the Indian subcontinent. While reduced rainfall over the Indian subcontinent in August 2016 is associated with the anomalous moisture transport from ISM region to WNP region, in contrast to July, due to local cyclogenesis corroborated by number of tropical cyclones in the WNP. In addition to this, subsidence related to strong convection supported by cyclonic circulation over the WNP also resulted in low rainfall over the ISM region. Coupled General Circulation model sensitivity experiments confirmed that strong convective activities associated with cyclonic circulation over the WNP is primarily responsible for the observed negative ISM rainfall anomalies in August 2016. It is noted that the Indo

  11. Influence of large-scale climate modes on dynamical complexity patterns of Indian Summer Monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen

    2015-04-01

    Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.

  12. On the association between pre-monsoon aerosol and all-India summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Preethi, B.; Bansod, S. D.; Singh, H. N.; Revadekar, J. V.; Munot, A. A.

    2013-09-01

    Summer monsoon rainfall which gives 75-90% of the annual rainfall plays vital role in Indian economy as the food grain production in India is very much dependent on the summer monsoon rainfall. It has been suggested by recent studies that aerosol loading over the Indian region plays significant role in modulating the monsoon circulation and consequent rainfall distribution over the Indian sub-continent. Increased industrialization and the increasing deforestation over past few decades probably cause a gradual increase in the aerosol concentration. A significant negative relationship between pre-monsoon (March-May i.e. MAM) aerosol loading over BOB and IGP regions and the forthcoming monsoon rainfall have been observed from the thorough analysis of the fifteen years (1997-2011) monthly Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and All-India Summer Monsoon Rainfall (AISMR) data. Composite analysis revealed that AI anomalies during pre-monsoon season are negative for excess year and positive for deficient monsoon years over the Indian subcontinent, with strong variation over Bay of Bengal (BOB) and Indo-Gangetic Plain (IGP) regions from the month of March onwards. The correlation coefficients between AISMR and pre-monsoon AI over BOB and IGP regions are found to be negative and significant at 5% level. The study clearly brings out that the pre-monsoon aerosol loading over the BOB and IGP regions has a significant correlational link with the forthcoming monsoon intensity; however a further study of the aerosol properties and their feedback to the cloud microphysical properties is asked for establishing their causal linkage.

  13. Different impacts of mega-ENSO and conventional ENSO on the Indian summer rainfall: developing phase

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wu, Zhiwei; Zhou, Yefan

    2016-04-01

    Mega-El Niño-Southern Oscillation (ENSO), a boarder version of conventional ENSO, is found to be a main driving force of Northern Hemisphere summer monsoon rainfall including the Indian summer rainfall (ISR). The simultaneous impacts of "pure" mega-ENSO and "pure" conventional ENSO events on the ISR in its developing summer remains unclear. This study examines the different linkages between mega-ENSO-ISR and conventional ENSO-ISR. During the developing summer of mega-El Niño, negative rainfall anomalies are seen over the northeastern Indian subcontinent, while the anomalous rainfall pattern is almost the opposite for mega-La Niña; as for the conventional ENSO, the approximate "linear opposite" phenomenon vanishes. Furthermore, the global zonal wave trains anomalous are found at mid-latitude zones, with a local triple circulation pattern over the central-east Eurasia during mega-ENSO events, which might be an explanation of corresponding rainfall response over the Indian Peninsula. Among 106-year historical run (1900-2005) of 9 state-of-the-art models from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), HadGEM2-ES performs a promising skill in simulating the anomalous circulation pattern over mid-latitude and central-east Eurasia while CanESM2 cannot. Probably, it is the models' ability of capturing the mega-ENSO-ISR linkage and the characteristic of mega-ENSO that make the difference.

  14. Perceptible changes in Indian summer monsoon rainfall in relation to Indian Monsoon Index

    NASA Astrophysics Data System (ADS)

    Naidu, C. V.; Dharma Raju, A.; Vinay Kumar, P.; Satyanarayana, G. Ch.

    2017-10-01

    The changes in the summer monsoon rainfall over 30 meteorological subdivisions of India with respect to changes in circulation and the Indian Monsoon Index (IMI) have been studied for the period 1953-2012. The relationship between the IMIs in different months and whole season and the corresponding summer monsoon rainfall is studied and tested. The positive and negative extremes are evaluated basing on the normalized values of the deviations from the mean of the IMI. Composite rainfall distributions over India and the zonal wind distributions in the lower and upper troposphere of IMI's both positive and negative extremes are evaluated separately and discussed. In the recent three decades of global warming, the negative values of IMI in July and August lead to weakening of the monsoon system over India. It is observed that the rainfall variations in the Northeast India are different from the rest of India except Tamil Nadu in general.

  15. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  16. Internally Generated and Externally Forced Multidecadal Oceanic Modes and their Influence on the Summer Rainfall over East Asia

    NASA Astrophysics Data System (ADS)

    Si, D.; Hu, A.

    2017-12-01

    The interdecadal oceanic variabilities can be generated from both internal and external processes, and these variabilities can significantly modulate our climate on global and regional scale, such as the warming slowdown in the early 21st century, and the rainfall in East Asia. By analyzing simulations from a unique Community Earth System Model (CESM) Large Ensemble (CESM_LE) project, we show that the Interdecadal Pacific Oscillation (IPO) is primarily an internally generated oceanic variability, while the Atlantic Multidecadal Oscillation (AMO) may be an oceanic variability generated by internal oceanic processes and modulated by external forcings in the 20th century. Although the observed relationship between IPO and the Yangtze-Huaihe River valley (YHRV) summer rainfall in China is well simulated in both the preindustrial control and 20th century ensemble, none of the 20th century ensemble members can reproduce the observed time evolution of both IPO and YHRV due to the unpredictable nature of IPO on multidecade timescale. On the other hand, although CESM_LE cannot reproduce the observed relationship between AMO and Huanghe River valley (HRV) summer rainfall of China in the preindustrial control simulation, this relationship in the 20th century simulations is well reproduced, and the chance to reproduce the observed time evolution of both AMO and HRV rainfall is about 30%, indicating the important role of the interaction between the internal processes and the external forcing to realistically simulate the AMO and HRV rainfall.

  17. Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh K.; Pokhrel, Samir; Sujith, K.; Halder, Subhadeep

    2015-05-01

    A possible link between preonset land atmospheric conditions and the Indian summer monsoon rainfall (ISMR) is explored. It is shown that, the preonset positive (negative) rainfall anomaly over northwest India, Pakistan, Afghanistan, and Iran is associated with decrease (increase) in ISMR, primarily in the months of June and July, which in turn affects the seasonal mean. ISMR in the months of June and July is also strongly linked with the preonset 2 m air temperature over the same regions. The preonset rainfall/2 m air temperature variability is linked with stationary Rossby wave response, which is clearly evident in the wave activity flux diagnostics. As the predictability of Indian summer monsoon relies mainly on the El Niño-Southern Oscillation (ENSO), the found link may further enhance our ability to predict the monsoon, particularly during a non-ENSO year.

  18. Latitudinal variation in summer monsoon rainfall over Western Ghat of India and its association with global sea surface temperatures.

    PubMed

    Revadekar, J V; Varikoden, Hamza; Murumkar, P K; Ahmed, S A

    2018-02-01

    The Western Ghats (WG) of India are basically north-south oriented mountains having narrow zonal width with a steep rising western face. The summer monsoon winds during June to September passing over the Arabian Sea are obstructed by the WG and thus orographically uplift to produce moderate-to-heavy precipitation over the region. However, it is seen that characteristic features of rainfall distribution during the season vary from north to south. Also its correlation with all-India summer monsoon rainfall increases from south to north. In the present study, an attempt is also made to examine long-term as well as short-term trends and variability in summer monsoon rainfall over different subdivisions of WG using monthly rainfall data for the period 1871-2014. Konkan & Goa and Coastal Karnataka show increase in rainfall from 1871 to 2014 in all individual summer monsoon months. Short-term trend analysis based on 31-year sliding window indicates that the trends are not monotonous, but has epochal behavior. In recent epoch, magnitudes of negative trends are consistently decreasing and have changed its sign to positive during 1985-2014. It has been observed that Indian Ocean Dipole (IOD) plays a dominant positive role in rainfall over entire WG in all summer monsoon months, whereas role of Nino regions are asymmetric over WG rainfall. Indian summer monsoon is known for its negative relationship with Nino SST. Negative correlations are also seen for WG rainfall with Nino regions but only during onset and withdrawal phase. During peak monsoon months July and August subdivisions of WG mostly show positive correlation with Nino SST. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interannual and Decadal Variability of Summer Rainfall over South America

    NASA Technical Reports Server (NTRS)

    Zhou, Jiayu; Lau, K.-M.

    1999-01-01

    Using the CPC (Climate Prediction Center) Merged Analysis of Precipitation product along with the Goddard Earth Observing System reanalysis and the Climate Analysis Center sea surface temperature (SST) data, we conduct a diagnostic study of the interannual and decadal scale variability of summer rainfall over South America. Results show three leading modes of rainfall variation identified with interannual, decadal, and long-term trend variability. Together, these modes explain more than half the total variance. The first mode is highly correlated with El Nino/southern oscillation (ENSO), showing severe drought over Northeast Brazil and copious rainfall over the Ecuador coast and the area of Uruguay-Southern Brazil in El Nino years. This pattern is attributed to the large scale zonal shift of the Walker circulation and local Hadley cell anomaly induced by positive (negative) SST anomaly over the eastern (western) equatorial Pacific. In El Nino years, two convective belts indicated by upper tropospheric velocity potential trough and mid-tropospheric rising motion, which are somewhat symmetric about the equator, extend toward the northeast and the southeast into the tropical North and South Atlantic respectively. Sandwiched between the ascent is a region of descending motion over Northeast Brazil. The southern branch of the anomalous Hadley cell is dynamically linked to the increase of rainfall over Uruguay-Southern Brazil. The regional response of anomalous circulation shows a stronger South American summer monsoon and an enhanced (weakened) subtropical high over the South Atlantic (South Pacific) Ocean. The decadal variation displays a meridional shift of the Intertropical Convergence Zone (ITCZ), which is tie to the anomalous cross-equatorial SST gradient over the Atlantic and the eastern Pacific. In conjunction with this mode is a large scale mass swing between the polar regions and midlatitudes in both hemispheres. Over the South Atlantic and the South Pacific

  20. Possible impacts of the Arctic oscillation on the interdecadal variation of summer monsoon rainfall in East Asia

    NASA Astrophysics Data System (ADS)

    Jianhua, Ju; Junmei, Lü; Jie, Cao; Juzhang, Ren

    2005-01-01

    The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.

  1. How much of the interannual variability of East Asian summer rainfall is forced by SST?

    NASA Astrophysics Data System (ADS)

    He, Chao; Wu, Bo; Li, Chunhui; Lin, Ailan; Gu, Dejun; Zheng, Bin; Zhou, Tianjun

    2016-07-01

    It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.

  2. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Li, Gen; Xie, Shang-Ping; He, Chao; Chen, Zesheng

    2017-10-01

    The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall. How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance. In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall. This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern. Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this `present-future relationship’ and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

  3. Peak-summer East Asian rainfall predictability and prediction part II: extratropical East Asia

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2016-07-01

    The part II of the present study focuses on northern East Asia (NEA: 26°N-50°N, 100°-140°E), exploring the source and limit of the predictability of the peak summer (July-August) rainfall. Prediction of NEA peak summer rainfall is extremely challenging because of the exposure of the NEA to midlatitude influence. By examining four coupled climate models' multi-model ensemble (MME) hindcast during 1979-2010, we found that the domain-averaged MME temporal correlation coefficient (TCC) skill is only 0.13. It is unclear whether the dynamical models' poor skills are due to limited predictability of the peak-summer NEA rainfall. In the present study we attempted to address this issue by applying predictable mode analysis method using 35-year observations (1979-2013). Four empirical orthogonal modes of variability and associated major potential sources of variability are identified: (a) an equatorial western Pacific (EWP)-NEA teleconnection driven by EWP sea surface temperature (SST) anomalies, (b) a western Pacific subtropical high and Indo-Pacific dipole SST feedback mode, (c) a central Pacific-El Nino-Southern Oscillation mode, and (d) a Eurasian wave train pattern. Physically meaningful predictors for each principal component (PC) were selected based on analysis of the lead-lag correlations with the persistent and tendency fields of SST and sea-level pressure from March to June. A suite of physical-empirical (P-E) models is established to predict the four leading PCs. The peak summer rainfall anomaly pattern is then objectively predicted by using the predicted PCs and the corresponding observed spatial patterns. A 35-year cross-validated hindcast over the NEA yields a domain-averaged TCC skill of 0.36, which is significantly higher than the MME dynamical hindcast (0.13). The estimated maximum potential attainable TCC skill averaged over the entire domain is around 0.61, suggesting that the current dynamical prediction models may have large rooms to improve

  4. Aerosol-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.

    2012-02-01

    We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the roles of different forcing agents as drivers of summer rainfall trends in the Australasian region. Our results suggest that anthropogenic aerosols have contributed to the observed multi-decadal rainfall increase over north-western Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we performed multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. We also compare a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). Simulated aerosol-induced rainfall trends over the Indo-Pacific region for austral summer and boreal summer show a distinct contrast. In boreal summer, there is a southward shift of equatorial rainfall, consistent with the idea that anthropogenic aerosols have suppressed Asian monsoonal rainfall, and caused a southward shift of the local Hadley circulation. In austral summer, the aerosol-induced response more closely resembles a westward shift and strengthening of the upward branch of the Walker circulation, rather than a coherent southward shift of regional tropical rainfall. Thus the mechanism by which anthropogenic aerosols may affect Australian summer rainfall is unclear. Focusing on summer rainfall trends over north-western Australia (NWA), we find that CSIRO-Mk3.6 simulates a strong rainfall decrease in RCP4.5, whereas simulated trends in HIST are weak and insignificant during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol

  5. ENSO relationship to Summer Rainfall Variability and its Potential Predictability over Arabian Peninsula Region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred

    2017-04-01

    Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.

  6. Meta-heuristic ant colony optimization technique to forecast the amount of summer monsoon rainfall: skill comparison with Markov chain model

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Goswami, Sayantika; Das, Debanjana; Middey, Anirban

    2014-05-01

    Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5-35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.

  7. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales

    PubMed Central

    Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.

    2017-01-01

    Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288

  8. The statistical extended-range (10-30-day) forecast of summer rainfall anomalies over the entire China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Li, Tim

    2017-01-01

    The extended-range (10-30-day) rainfall forecast over the entire China was carried out using spatial-temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10-80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20-25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003-2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.

  9. How predictable is the anomaly pattern of the Indian summer rainfall?

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wang, Bin

    2016-05-01

    Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the

  10. Variability in rainfall over tropical Australia during summer and relationships with the Bilybara High

    NASA Astrophysics Data System (ADS)

    Reason, C. J. C.

    2018-04-01

    Variability in summer rainfall over tropical Australia, defined here as that part of the continent north of 25° S, and its linkages with regional circulation are examined. In particular, relationships with the mid-level anticyclone (termed the Bilybara High) that exists over the northwestern Australia/Timor Sea region between August and April are considered. This High forms to the southwest of the upper-level anticyclone via a balance between the upper-level divergence over the region of tropical precipitation maximum and planetary vorticity advection and moves south and strengthens during the spring and summer. It is shown that variations in the strength and position of the Bilybara High are related to anomalies in precipitation and temperature over large parts of tropical Australia as well as some areas in the south and southeast of the landmass. Some of the interannual variations in the High are related to ENSO, but there are also a number of neutral years with large anomalies in the High and hence in rainfall. On decadal time scales, a strong relationship exists between the leading mode of tropical Australian rainfall and the Bilybara High. On both interannual and decadal scales, the relationships between the High and the regional rainfall involve changes in the monsoonal northwesterlies blowing towards northern Australia, and further south, in the easterly trade winds over the region.

  11. Effects of ocean-atmosphere coupling on rainfall over the Indian Ocean and northwestern Pacific Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Q.; Xie, S. P.; Zhou, W.

    2016-12-01

    Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.

  12. Long-range prediction of Indian summer monsoon rainfall using data mining and statistical approaches

    NASA Astrophysics Data System (ADS)

    H, Vathsala; Koolagudi, Shashidhar G.

    2017-10-01

    This paper presents a hybrid model to better predict Indian summer monsoon rainfall. The algorithm considers suitable techniques for processing dense datasets. The proposed three-step algorithm comprises closed itemset generation-based association rule mining for feature selection, cluster membership for dimensionality reduction, and simple logistic function for prediction. The application of predicting rainfall into flood, excess, normal, deficit, and drought based on 36 predictors consisting of land and ocean variables is presented. Results show good accuracy in the considered study period of 37years (1969-2005).

  13. New spatial and temporal indices of Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.

    2018-02-01

    The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.

  14. Application of Radar-Based Accumulated Rainfall Products for Early Detection of Heavy Rainfall Occurrence

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Wakimizu, K.; Yokota, I.; Tsukahara, K.; Moriyama, T.

    2016-12-01

    In Japan, river and debris flow disasters have been frequently caused by heavy rainfall occurrence under the influence of the activity of a stationary front and associated inflow of a large amount of moisture into the front. However, it is very difficult to predict numerically-based heavy rainfall and associated landslide accurately. Therefore, the use of meteorological radar information is required for enhancing decision-making ability to urge the evacuation of local residents by local government staffs prior to the occurrence of the heavy rainfall disaster. It is also desirable that the local residents acquire the ability to determine the evacuation immediately after confirming radar information by themselves. Actually, it is difficult for untrained local residents and local government staffs to easily recognize where heavy rainfall occurs locally for a couple of hours. This reason is that the image of radar echoes is equivalent to instant electromagnetic distribution measured per a couple of minutes, and the distribution of the radar echoes moves together with the movement of a synoptic system. Therefore, in this study, considering that the movement of radar echoes also may stop in a specific area if stationary front system becomes dominant, radar-based accumulated rainfall information is defined here. The rainfall product is derived by the integration of radar intensity measured every ten minutes during previous 1 hours. Using this product, it was investigated whether and how the radar-based accumulated rainfall displayed at an interval of ten minutes can be applied for early detection of heavy rainfall occurrence. The results are summarized as follows. 1) Radar-based accumulated rainfall products could confirm that some of stationary heavy rainfall systems had already appeared prior to disaster occurrence, and clearly identify the movement of heavy rainfall area. 2) Moreover, accumulated area of rainfall could be visually and easily identified, compared with

  15. Indian summer monsoon rainfall: Dancing with the tunes of the sun

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.; Manjunath, Hegde; Soon, Willie

    2015-02-01

    There is strong statistical evidence that solar activity influences the Indian summer monsoon rainfall. To search for a physical link between the two, we consider the coupled cloud hydrodynamic equations, and derive an equation for the rate of precipitation that is similar to the equation of a forced harmonic oscillator, with cloud and rain water mixing ratios as forcing variables. Those internal forcing variables are parameterized in terms of the combined effect of external forcing as measured by sunspot and coronal hole activities with several well known solar periods (9, 13 and 27 days; 1.3, 5, 11 and 22 years). The equation is then numerically solved and the results show that the variability of the simulated rate of precipitation captures very well the actual variability of the Indian monsoon rainfall, yielding vital clues for a physical understanding that has so far eluded analyses based on statistical correlations alone. We also solved the precipitation equation by allowing for the effects of long-term variation of aerosols. We tentatively conclude that the net effects of aerosols variation are small, when compared to the solar factors, in terms of explaining the observed rainfall variability covering the full Indian monsoonal geographical domains.

  16. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to

  17. Analysis of anthropogenic contributions to record high Australian summer rainfall (2010-2012) using CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Lewis, Sophie; Karoly, David

    2013-04-01

    Changes in extreme climate events pose significant challenges for both human and natural systems. Some climate extremes are likely to become "more frequent, more widespread and/or more intense during the 21st century" (Intergovernmental Panel on Climate Change, 2007) due to anthropogenic climate change. Particularly in Australia, El Niño-Southern Oscillation (ENSO) has a relationship to the relative frequency of temperature and precipitation extremes. In this study, we investigate the record high two-summer rainfall observed in Australia (2010-2011 and 2011-2012). This record rainfall occurred in association with a two year extended La Niña event and resulted in severe and extensive flooding. We examine simulated changes in seasonal-scale rainfall extremes in the Australian region in a suite of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). In particular, we utilise the novel CMIP5 detection and attribution historical experiments with various forcings (natural forcings only and greenhouse gas forcings only) to examine the impact of various anthropogenic forcings on seasonal-scale extreme rainfall across Australia. Using these standard detection and attribution experiments over the period of 1850 to 2005, we examine La Niña contributions to the 2-season record rainfall, as well as the longer-term climate change contribution to rainfall extremes. Was there an anthropogenic influence in the record high Australian summer rainfall over 2010 to 2012, and if so, how much influence? Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report on the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, Cambridge, U. K.

  18. On the statistical aspects of sunspot number time series and its association with the summer-monsoon rainfall over India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    The present paper reports studies on the association between the mean annual sunspot numbers and the summer monsoon rainfall over India. The cross correlations have been studied. After Box-Cox transformation, the time spectral analysis has been executed and it has been found that both of the time series have an important spectrum at the fifth harmonic. An artificial neural network (ANN) model has been developed on the data series averaged continuously by five years and the neural network could establish a predictor-predict and relationship between the sunspot numbers and the mean yearly summer monsoon rainfall over India.

  19. Circulation system configuration characteristics of four rainfall patterns in summer over the East China

    NASA Astrophysics Data System (ADS)

    Zhao, Junhu; Yang, Liu; Feng, Guolin

    2018-02-01

    In this study, the simultaneous atmospheric circulation system configuration characteristics of the four rainfall patterns (FRP) over the East China during the period 1951-2015 are analyzed in order to investigate their formation mechanisms. The results confirm that the FRP possess obvious differences in the upper-level, middle-level, and lower-level troposphere. In northern China rainfall pattern (NCP) years, the East Asian subtropical westerly jet stream (EAJS) shows a northward trend, with a higher intensity than normal; the blocking high (BH) in the mid-high latitudes is inactive; and the western Pacific subtropical high (WPSH) tends to be stronger, with a location to the north of its normal position. The East Asian summer monsoon (EASM) is stronger, which promotes vapor transport to northern China, and this leads to increased rainfall. In intermediate rainfall pattern (IRP) years, the EAJS position is close to that in normal years; the BH is inactive; the WPSH tends to be weaker, with a location to the east of its normal position; and the EASM is stronger, which is conducive to increased rainfall over the Huaihe River Basin. In Yangtze River rainfall pattern (YRP) years, the circulations are found to be almost opposite in their features to those in NCP years. In South China rainfall pattern (SCP) years, the circulations are found to be almost opposite in their features to those in IRP years. This leads to increased rainfall over South China. Therefore, the different circulation system configuration characteristics lead to the different rainfall patterns.

  20. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent

    PubMed Central

    Dong, Wenhao; Lin, Yanluan; Wright, Jonathon S.; Ming, Yi; Xie, Yuanyu; Wang, Bin; Luo, Yong; Huang, Wenyu; Huang, Jianbin; Wang, Lei; Tian, Lide; Peng, Yiran; Xu, Fanghua

    2016-01-01

    Despite the importance of precipitation and moisture transport over the Tibetan Plateau for glacier mass balance, river runoff and local ecology, changes in these quantities remain highly uncertain and poorly understood. Here we use observational data and model simulations to explore the close relationship between summer rainfall variability over the southwestern Tibetan Plateau (SWTP) and that over central-eastern India (CEI), which exists despite the separation of these two regions by the Himalayas. We show that this relationship is maintained primarily by ‘up-and-over' moisture transport, in which hydrometeors and moisture are lifted by convective storms over CEI and the Himalayan foothills and then swept over the SWTP by the mid-tropospheric circulation, rather than by upslope flow over the Himalayas. Sensitivity simulations confirm the importance of up-and-over transport at event scales, and an objective storm classification indicates that this pathway accounts for approximately half of total summer rainfall over the SWTP. PMID:26948491

  1. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing

    2018-03-01

    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing

  2. Prediction model for peninsular Indian summer monsoon rainfall using data mining and statistical approaches

    NASA Astrophysics Data System (ADS)

    Vathsala, H.; Koolagudi, Shashidhar G.

    2017-01-01

    In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.

  3. Land-Climate Feedbacks in Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Asharaf, Shakeel; Ahrens, Bodo

    2016-04-01

    induced precipitation and decrease of precipitation efficiency. However, the complementing precipitation components and their simulation uncertainties rendered climate projections of the Indian summer monsoon rainfall as an ongoing, highly ambiguous challenge for both the GCM and the RCM.

  4. Interannual Rainfall Variability in the Tropical Atlantic Region

    NASA Technical Reports Server (NTRS)

    Gu, Guojun

    2005-01-01

    Rainfall variability on seasonal and interannual-to-interdecadal time scales in the tropical Atlantic is quantified using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP). The ITCZ measured by monthly rainfall between 15-37.5 deg W attains its peak as moving to the northernmost latitude (4-10 deg N) during July-September in which the most total rainfall is observed in the tropical Atlantic basin (17.5 deg S-22.5 deg N, 15 deg-37.5 deg W); the ITCZ becomes weakest during January-February with the least total rainfall as it moves to the south. In contrast, rainfall variability on interannual to interdecadal time scales shows a quite different seasonal preference. The most intense interannual variability occurs during March-May when the ITCZ tends to be near the equator and becomes weaker. Significant, negative correlations between the ITCZ strength and latitude anomalies are observed during boreal spring and early summer. The ITCZ strength and total rainfall amount in the tropical Atlantic basin are significantly modulated by the Pacific El Nino and the Atlantic equatorial mode (or Atlantic Nino) particularly during boreal spring and summer; whereas the impact of the Atlantic interhemispheric mode is considerably weaker. Regarding the anomalous latitudes of the ITCZ, the influence can come from both local, i.e., the Atlantic interhemispheric and equatorial modes, and remote forcings, i. e., El Nino; however, a direct impact of El Nino on the latitudes of the ITCZ can only be found during April-July, not in winter and early spring in which the warmest SST anomalies are usually observed in the equatorial Pacific.

  5. Retrospective seasonal prediction of summer monsoon rainfall over West Central and Peninsular India in the past 142 years

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wang, Bin; Yang, Young-Min

    2017-04-01

    Prediction of Indian summer (June-September) rainfall on regional scales remains an open issue. The operational predictions of West Central Indian summer rainfall (WCI-R) and Peninsular Indian summer rainfall (PI-R) made by the Indian Meteorological Department (IMD) had no skills during 2004-2012. This motivates the present study aiming at better understanding the predictability sources and physical processes governing summer rainfall variability over these two regions. Analysis of 133 year data reveal that although the lower boundary forcing that associated with enhanced WCI-R and PI-R featured a similar developing La-Nina and "east high west low" sea-level pressure (SLP) dipole pattern across the Indo-Pacific, the anomalous high sea surface temperature (SST) over the northern Indian Ocean and weak low pressure over northern Asia tended to enhance PI-R but reduce WCI-R. Based on our understanding of physical linkages with the predictands, we selected four and two causative predictors for predictions of the WCI-R and PI-R, respectively. The intensified summer WCI-R is preceded by (a) Indian Ocean zonal dipole-like SST tendency (west-warming and east-cooling), (b) tropical Pacific zonal dipole SST tendency (west-warming and east-cooling), (c) central Pacific meridional dipole SST tendency (north-cooling and south-warming), and (d) decreasing SLP tendency over northern Asia in the previous season. The enhanced PI-R was lead by the central-eastern Pacific cooling and 2-m temperature cooling tendency east of Lake Balkhash in the previous seasons. These causative processes linking the predictors and WCI-R and PI-R are supported by ensemble numerical experiments using a coupled climate model. For the period of 1871-2012, the physics-based empirical (P-E) prediction models built on these predictors result in cross-validated forecast temporal correlation coefficient skills of 0.55 and 0.47 for WCI-R and PI-R, respectively. The independent forecast skill is significantly

  6. Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall

    NASA Astrophysics Data System (ADS)

    Lau, William Ka-Ming; Kim, Kyu-Myong

    2017-05-01

    In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950's substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.

  7. Changing character of rainfall in eastern China, 1951-2007.

    PubMed

    Day, Jesse A; Fung, Inez; Liu, Weihan

    2018-02-27

    The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call "frontal rain events." In spring and early summer (known as "Meiyu Season"), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951-2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the "South Flood-North Drought" pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994-2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.

  8. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  9. On the dynamical basis for the Asian summer monsoon rainfall-El Nino relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, S.

    The dynamical basis for the Asian summer monsoon rainfall-El Nino linkage is explored through diagnostic calculations with a linear steady-state multilayer primitive equation model. The contrasting monsoon circulation during recent El Nino (1987) and La Nina (1988) years is first simulated using orography and the residually diagnosed heating (from the thermodynamic equation and the uninitialized, but mass-balanced, ECMWF analysis) as forcings, and then analyzed to provide insight into the importance of various regional forcings, such as the El Nino-related heating anomalies over the tropical Indian and Pacific Oceans. The striking simulation of the June-August (1987-1988) near-surface and upper-air tropical circulationmore » anomalies indicates that tropical anomaly dynamics during northern summer is essentially linear even at the 150-mb level. The vertical structure of the residually diagnosed heating anomaly that contributes to this striking simulation differs significantly from the specified canonical vertical structure (used in generating 3D heating from OLR/precipitation distributions) near the tropical tropopause. The dynamical diagnostic analysis of the anomalous circulation during 1987 and 1988 March-May and June-August periods shows the orographically forced circulation anomaly (due to changes in the zonally averaged basic-state flow) to be quite dominant in modulating the low-level moisture-flux convergence and hence monsoon rainfall over Indochina. The El Nino-related persistent (spring-to-summer) heating anomalies over the tropical Pacific and Indian Ocean basins, on the other hand, mostly regulate the low-level westerly monsoon flow intensity over equatorial Africa and the northern Indian Ocean and, thereby, the large-scale moisture flux into Sahel and Indochina. 38 refs., 12 figs.« less

  10. On the relationship between the Indian summer monsoon rainfall and the EQUINOO in the CFSv2

    NASA Astrophysics Data System (ADS)

    Vishnu, S.; Francis, P. A.; Ramakrishna, S. S. V. S.; Shenoi, S. S. C.

    2018-03-01

    Several recent studies have shown that positive (negative) phase of Equatorial Indian Ocean Oscillation (EQUINOO) is favourable (unfavourable) to the Indian summer monsoon. However, many ocean-atmosphere global coupled models, including the state-of-the-art Climate Forecast System (CFS) version 2 have difficulty in reproducing this link realistically. In this study, we analyze the retrospective forecasts by the CFS model for the period 1982-2010 with an objective to identify the reasons behind the failure of the model to simulate the observed links between Indian summer monsoon and EQUINOO. It is found that, in the model hindcasts, the rainfall in the core monsoon region was mainly due to westward propagating synoptic scale systems, that originated from the vicinity of the tropical convergence zone (TCZ). Our analysis shows that unlike in observations, in the CFS, majority of positive (negative) EQUINOO events are associated with El Niño (La Niña) events in the Pacific. In addition to this, there is a strong link between EQUINOO and Indian Ocean Dipole (IOD) in the model. We show that, during the negative phase of EQUINOO/IOD, northward propagating TCZs remained stationary over the Bay of Bengal for longer period compared to the positive phase of EQUINOO/IOD. As a result, compared to the positive phase of EQUINOO/IOD, during a negative phase of EQUINOO/IOD, more westward propagating synoptic scale systems originated from the vicinity of TCZ and moved on to the core monsoon region, which resulted in higher rainfall over this region in the CFS. We further show that frequent, though short-lived, westward propagating systems, generated near the vicinity of TCZ over the Bay moved onto the mainland were responsible for less number of break monsoon spells during the negative phase of EQUINOO/IOD in the model hindcasts. This study underlines the necessity for improving the skill of the coupled models, particularly CFS model, to simulate the links between EQUINOO/IOD and

  11. Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2007-01-01

    Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the

  12. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria

    NASA Astrophysics Data System (ADS)

    O, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Juergen; Tan, Jackson; Petersen, Walter A.

    2017-12-01

    The Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) products provide quasi-global (60° N-60° S) precipitation estimates, beginning March 2014, from the combined use of passive microwave (PMW) and infrared (IR) satellites comprising the GPM constellation. The IMERG products are available in the form of near-real-time data, i.e., IMERG Early and Late, and in the form of post-real-time research data, i.e., IMERG Final, after monthly rain gauge analysis is received and taken into account. In this study, IMERG version 3 Early, Late, and Final (IMERG-E,IMERG-L, and IMERG-F) half-hourly rainfall estimates are compared with gauge-based gridded rainfall data from the WegenerNet Feldbach region (WEGN) high-density climate station network in southeastern Austria. The comparison is conducted over two IMERG 0.1° × 0.1° grid cells, entirely covered by 40 and 39 WEGN stations each, using data from the extended summer season (April-October) for the first two years of the GPM mission. The entire data are divided into two rainfall intensity ranges (low and high) and two seasons (warm and hot), and we evaluate the performance of IMERG, using both statistical and graphical methods. Results show that IMERG-F rainfall estimates are in the best overall agreement with the WEGN data, followed by IMERG-L and IMERG-E estimates, particularly for the hot season. We also illustrate, through rainfall event cases, how insufficient PMW sources and errors in motion vectors can lead to wide discrepancies in the IMERG estimates. Finally, by applying the method of Villarini and Krajewski (2007), we find that IMERG-F half-hourly rainfall estimates can be regarded as a 25 min gauge accumulation, with an offset of +40 min relative to its nominal time.

  13. TRMM Applications for Rainfall-Induced Landslide Early Warning

    NASA Astrophysics Data System (ADS)

    Dok, A.; Fukuoka, H.; Hong, Y.

    2012-04-01

    Early warning system (EWS) is the most effective method in saving lives and reducing property damages resulted from the catastrophic landslides if properly implemented in populated areas of landslide-prone nations. For predicting the occurrence of landslides, it requires examination of empirical relationship between rainfall characteristics and past landslide occurrence. In developed countries like Japan and the US, precipitation is monitored by rain radars and ground-based rain gauge matrix. However, in developing regions like Southeast Asian countries, very limited number of rain gauges is available, and there is no implemented methodology for issuing effective warming of landslides yet. Correspondingly, satellite precipitation monitoring could be therefore a possible and promising solution for launching landslide quasi-real-time early warning system in those countries. It is due to the fact that TMPA (TRMM Multi-satellite Precipitation Analysis) can provides a globally calibration-based sequential scheme for combining precipitation estimates from multiple satellites, and gauge analyses where feasible, at fine scales (3-hourly with 0.25°x0.25° spatial resolution). It is available both after and in quasi-real time, calibrated by TRMM Combined Instrument and TRMM Microwave Imager precipitation product. However, validation of ground based rain gauge and TRMM satellite data in the vulnerable regions is still not yet operative. Snake-line/Critical-line and Soil Water Index (SWI) are used for issuing warning of landslide occurrence in Japan; whereas, Caine criterion is preferable in Europe and western nations. Herewith, it presents rainfall behavior which took place in Beichuan city (located on the 2008 Chinese Wenchuan earthquake fault), Hofu and Shobara cities in Japan where localized heavy rainfall attacked in 2009 and 2010, respectively, from TRMM 3B42RT correlated with ground based rain gauge data. The 1-day rainfall intensity and 15-day cumulative rainfall

  14. Changing character of rainfall in eastern China, 1951–2007

    NASA Astrophysics Data System (ADS)

    Day, Jesse A.; Fung, Inez; Liu, Weihan

    2018-03-01

    The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.

  15. Spatial variability of summer Florida precipitation and its impact on microwave radiometer rainfall-measurement systems

    NASA Technical Reports Server (NTRS)

    Turner, B. J.; Austin, G. L.

    1993-01-01

    Three-dimensional radar data for three summer Florida storms are used as input to a microwave radiative transfer model. The model simulates microwave brightness observations by a 19-GHz, nadir-pointing, satellite-borne microwave radiometer. The statistical distribution of rainfall rates for the storms studied, and therefore the optimal conversion between microwave brightness temperatures and rainfall rates, was found to be highly sensitive to the spatial resolution at which observations were made. The optimum relation between the two quantities was less sensitive to the details of the vertical profile of precipitation. Rainfall retrievals were made for a range of microwave sensor footprint sizes. From these simulations, spatial sampling-error estimates were made for microwave radiometers over a range of field-of-view sizes. The necessity of matching the spatial resolution of ground truth to radiometer footprint size is emphasized. A strategy for the combined use of raingages, ground-based radar, microwave, and visible-infrared (VIS-IR) satellite sensors is discussed.

  16. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  17. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  18. Ecotypic variation of summer dormancy relaxation associated with rainfall gradient in the geophytic grass Poa bulbosa

    PubMed Central

    Ofir, Micha; Kigel, Jaime

    2010-01-01

    Background and Aims Summer dormancy is an adaptive trait in geophytes inhabiting regions with a Mediterranean climate, allowing their survival through the hot and dry summers. Summer dormancy in Poa bulbosa is induced by increasing day-length and temperature and decreasing water availability during spring. Populations from arid habitats became dormant earlier than those from mesic habitats. Relaxation of dormancy was promoted by the hot, dry summer conditions. Here we test the hypothesis that dormancy relaxation is also delayed in ecotypes of P. bulbosa inhabiting arid regions, as a cautious strategy related to the greater unpredictability of autumn rains associated with decreasing precipitation. Methods Ecotypes collected across a precipitation gradient (100–1200 mm year−1) in the Mediterranean climate region were grown under similar conditions in a net-house in Israel. Differences among ecotypes in dormancy induction and dormancy relaxation were determined by measuring time to dormancy onset in spring, and time to sprouting after the first effective rain in autumn. Seasonal and ecotype variation in dormancy relaxation were assessed by measuring time to sprouting initiation, rate of sprouting and maximal sprouting of resting dry bulbs sampled in the net-house during late spring, and mid- and late summer, and planted in a wet substrate at temperatures promoting (10 °C) or limiting (20 °C) sprouting. Key Results Earlier dormancy in the spring and delayed sprouting in autumn were correlated with decreasing mean annual rainfall at the site of ecotype origin. Seasonal and ecotype differences in dormancy relaxation were expressed in bulbs planted at 20 °C. During the summer, time to sprouting decreased while rate of sprouting and maximal sprouting increased, indicating dormancy relaxation. Ecotypes from more arid sites across the rainfall gradient showed delayed onset of sprouting and lower maximal sprouting, but did not differ in rate of sprouting. Planting at

  19. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area.

    PubMed

    Woodborne, Stephan; Gandiwa, Patience; Hall, Grant; Patrut, Adrian; Finch, Jemma

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa.

  20. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area

    PubMed Central

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa. PMID:27427912

  1. Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?—Role of midlatitude circulation in August

    NASA Astrophysics Data System (ADS)

    Li, Chaofan; Chen, Wei; Hong, Xiaowei; Lu, Riyu

    2017-11-01

    It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of El Niño, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 El Niño having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016—different to the positive anomaly of 1998. Further analysis suggests that the weaker YRV rainfall in August 2016 could be attributable to the distinct circulation anomalies over the midlatitudes. The intensified "Silk Road Pattern" and upper-tropospheric geopotential height over the Urals region, both at their strongest since 1980, resulted in an anticyclonic circulation anomaly over midlatitude East Asia with anomalous easterly flow over the middle-to-lower reaches of the YRV in the lower troposphere. This easterly flow reduced the climatological wind, weakened the water vapor transport, and induced the weaker YRV rainfall in August 2016, as compared to that in 1998. Given the unique sub-seasonal variation of the YRV rainfall in summer 2016, more attention should be paid to midlatitude circulation—besides the signal in the tropics—to further our understanding of the predictability and variation of YRV summer rainfall.

  2. The use of early summer mosquito surveillance to predict late summer West Nile virus activity

    USGS Publications Warehouse

    Ginsberg, Howard S.; Rochlin, Ilia; Campbell, Scott R.

    2010-01-01

    Utility of early-season mosquito surveillance to predict West Nile virus activity in late summer was assessed in Suffolk County, NY. Dry ice-baited CDC miniature light traps paired with gravid traps were set weekly. Maximum-likelihood estimates of WNV positivity, minimum infection rates, and % positive pools were generally well correlated. However, positivity in gravid traps was not correlated with positivity in CDC light traps. The best early-season predictors of WNV activity in late summer (estimated using maximum-likelihood estimates of Culex positivity in August and September) were early date of first positive pool, low numbers of mosquitoes in July, and low numbers of mosquito species in July. These results suggest that early-season entomological samples can be used to predict WNV activity later in the summer, when most human cases are acquired. Additional research is needed to establish which surveillance variables are most predictive and to characterize the reliability of the predictions.

  3. Robust increase in extreme summer rainfall intensity during the past four decades observed in China

    NASA Astrophysics Data System (ADS)

    Xiao, Chan; Wu, Peili; Zhang, Lixia; Song, Lianchun

    2016-12-01

    Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95th percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC’s 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.

  4. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.

    2017-12-01

    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period

  5. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  6. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan

    NASA Astrophysics Data System (ADS)

    Latif, M.; Syed, F. S.; Hannachi, A.

    2017-06-01

    The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.

  7. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    NASA Astrophysics Data System (ADS)

    Prasanna, V.

    2016-06-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  8. Influence of Madden-Julian Oscillation on water budget transported by the Somali low-level jet and the associated Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Ordonez, Paulina; Ribera, Pedro; Gallego, David; Pena-Ortiz, Cristina

    2013-10-01

    Recent studies suggest that there is a strong linkage between the moisture uptake over the equatorial area of the Somali low level jet (SLLJ) and the rainfall variability over most of continental India. Additionally, the Madden-Julian Oscillation (MJO) strongly modulates the intraseasonal variability of the Indian summer monsoon rainfall, since the northward propagation of the boreal summer MJO is closely associated with the active and break phases of monsoon rainfall. But a question remains open: is there a relationship between the moisture transported by the SLLJ and the MJO evolution? In this paper, a Lagrangian approach is used to track the evaporation minus precipitation (E - P) evolution along trajectories of particles initially situated over the equatorial region of SLLJ. The impact of the MJO on the water budget transport of the SLLJ is examined by making composites of the obtained (E-P) fields for the different MJO phases. The spatial structures of the boreal summer intraseasonal oscillation are revealed in our results, which strongly suggest that the main responsible for the rainfall variability associated to the MJO in these regions are the changes in the moisture advected by the SLLJ. In order to assess the MJO-SLLJ interaction, an analysis of the total-column mass and the total-column specific humidity transported by the SLLJ during the MJO life cycle is performed. While a systematic difference between air mass advected to India during active and break phases of MJO is not detected, changes in the moisture of particles are found, with wet (dry) anomalies over enhanced (suppressed) convection region. This result implicitly leads to assume air-sea interaction processes.

  9. Definition of rainfall thresholds for shallow landslide early warning in Italy

    NASA Astrophysics Data System (ADS)

    Cancelliere, A.; Peres, D. J.

    2011-12-01

    Extreme rainfall is the main cause of shallow landslides. For risk mitigation, landslide early warning systems can be implemented, on the basis of rainfall monitoring and forecasting, and the use of a landslide triggering model. Several empirical, also referred to as statistical, rainfall-landslide triggering models have been proposed in the scientific literature, and used for early warning systems activated worldwide. Nonetheless, it is not clear how effective are landslide warning systems, and it is difficult to quantify the induced benefits for the implemented ones. Many rainfall thresholds have been determined through the statistical analysis of the rainfall events that have been the cause of past landslides only, thus neglecting the cases of true negatives and false positives, with negative effects on the robustness of the proposed threshold and, probably, on the effectiveness of the warning system. In the present work we address the issue of establishing warning thresholds, which, although in an approximate way, account for the related benefits. We propose the maximization of an objective function, that measures the trade-off between true and false warning issues. A ratio between the disadvantages of false positive and false negatives, not greater than one, is introduced in the function. The effect of this ratio on the determination of the thresholds is analysed. The proposed method is based on the availability of a continuous rainfall time series. In Italy, continuous rainfall time series are available from the 1920s, but practical difficulties arise for using them, as they are not published in the Hydrological Annual Reports, by the Servizio Idrografico e Mareografico Nazionale (National Hydrologic and Oceanographic Service), the manager of the most important rainfall monitoring network in Italy. However, it is possible to have a good approximation of the most intense rainfall events, in terms total rainfall, by using the data of annual maxima of

  10. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning

    USGS Publications Warehouse

    Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.

    2018-01-01

    Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.

  11. Monsoon Rainfall and Landslides in Nepal

    NASA Astrophysics Data System (ADS)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  12. Impact of low intensity summer rainfall on E. coli-discharge event dynamics with reference to sample acquisition and storage.

    PubMed

    Oliver, David M; Porter, Kenneth D H; Heathwaite, A Louise; Zhang, Ting; Quilliam, Richard S

    2015-07-01

    Understanding the role of different rainfall scenarios on faecal indicator organism (FIO) dynamics under variable field conditions is important to strengthen the evidence base on which regulators and land managers can base informed decisions regarding diffuse microbial pollution risks. We sought to investigate the impact of low intensity summer rainfall on Escherichia coli-discharge (Q) patterns at the headwater catchment scale in order to provide new empirical data on FIO concentrations observed during baseflow conditions. In addition, we evaluated the potential impact of using automatic samplers to collect and store freshwater samples for subsequent microbial analysis during summer storm sampling campaigns. The temporal variation of E. coli concentrations with Q was captured during six events throughout a relatively dry summer in central Scotland. The relationship between E. coli concentration and Q was complex with no discernible patterns of cell emergence with Q that were repeated across all events. On several occasions, an order of magnitude increase in E. coli concentrations occurred even with slight increases in Q, but responses were not consistent and highlighted the challenges of attempting to characterise temporal responses of E. coli concentrations relative to Q during low intensity rainfall. Cross-comparison of E. coli concentrations determined in water samples using simultaneous manual grab and automated sample collection was undertaken with no difference in concentrations observed between methods. However, the duration of sample storage within the autosampler unit was found to be more problematic in terms of impacting on the representativeness of microbial water quality, with unrefrigerated autosamplers exhibiting significantly different concentrations of E. coli relative to initial samples after 12-h storage. The findings from this study provide important empirical contributions to the growing evidence base in the field of catchment microbial

  13. Rainfall threshold calculation for debris flow early warning in areas with scarcity of data

    NASA Astrophysics Data System (ADS)

    Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang

    2018-05-01

    Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other

  14. Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Houssos, E. E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U. C.; Francois, P.; Gautam, R.; Singh, R. P.

    2018-03-01

    This study examines the meteorological feedback on dust aerosols and rainfall over the Arabian Sea and India during the summer monsoon using satellite data, re-analysis and a regional climate model. Based on days with excess aerosol loading over the central Ganges basin during May - September, two distinct atmospheric circulation types (weather clusters) are identified, which are associated with different dust-aerosol and rainfall distributions over south Asia, highlighting the role of meteorology on dust emissions and monsoon rainfall. Each cluster is characterized by different patterns of mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields at 1000 hPa and at 700 hPa, thus modulating changes in dust-aerosol loading over the Arabian Sea. One cluster is associated with deepening of the Indian/Pakistan thermal low leading to (i) increased cyclonicity and thermal convection over northwestern India and Arabian Peninsula, (ii) intensification of the southwest monsoon off the Horn of Africa, iii) increase in dust emissions from Rub-Al-Khali and Somalian deserts, (iv) excess dust accumulation over the Arabian Sea and, (v) strengthening of the convergence of humid air masses and larger precipitation over Indian landmass compared to the other cluster. The RegCM4.4 model simulations for dust-aerosol and precipitation distributions support the meteorological fields and satellite observations, while the precipitation over India is positively correlated with the aerosol loading over the Arabian Sea on daily basis for both weather clusters. This study highlights the key role of meteorology and atmospheric dynamics on dust life cycle and rainfall over the monsoon-influenced south Asia.

  15. Interannual variation of mid-summer heavy rainfall in the eastern edge of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, Xingwen; Li, Yueqing; Yang, Song; Shu, Jianchuan; He, Guangbi

    2015-12-01

    Heavy rainfall (HR) often hits the eastern edge of the Tibetan Plateau (EETP) and causes severe flood and landslide in summer, especially in July. In this study, the authors investigate the interannual variation of July HR events and its possible causes. The maximum number of days with HR in July is located at the EETP in China. It is significantly and negatively correlated with the rainfall in southeastern China. More HR events are accompanied by an anomalous lower-tropospheric anticyclone over southeastern China, a westward movement of the western North Pacific subtropical high, and enhanced rainfall in the Maritime Continent (MC). The MC convection exerts a significant impact on the variation of HR events over EETP. Results from analyses of observations and numerical simulations indicate that the convective heating over the MC induces an anomalous anticyclone over southeastern China and the Ekman pumping effect and circulation-convection feedback play vital roles in the process. The high correlation between the HR events over EETP and the equatorial central Pacific SST depends on the relationship between the MC convection and the equatorial central Pacific SST. The relationship is asymmetric, and only the warm SST anomaly in the equatorial central Pacific is accompanied by fewer HR events over the EETP.

  16. Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; He, Shengping; Wang, Huijun; Hao, Xin

    2017-04-01

    The relationship between the tropical Indian Ocean (TIO) and East Asian summer monsoon/precipitation has been documented in many studies. However, the precursor signals of summer precipitation in the TIO sea surface temperature (SST), which is important for climate prediction, have drawn little attention. This study identified a strong relationship between early-spring TIO SST and subsequent early-summer precipitation in Northeast China (NEC) since the late 1980s. For 1961-1986, the correlations between early-spring TIO SST and early-summer NEC precipitation were statistically insignificant; for 1989-2014, they were positively significant. Since the late 1980s, the early-spring positive TIO SST anomaly was generally followed by a significant anomalous anticyclone over Japan; that facilitated anomalous southerly winds over NEC, conveying more moisture from the North Pacific. Further analysis indicated that an early TIO SST anomaly showed robust persistence into early summer. However, the early-summer TIO SST anomaly displayed a more significant influence on simultaneous atmospheric circulation and further affected NEC precipitation since the late 1980s. In 1989-2014, the early-summer Hadley and Ferrell cell anomalies associated with simultaneous TIO SST anomaly were much more significant and extended further north to mid-latitudes, which provided a dynamic foundation for the TIO-mid-latitude connection. Correspondingly, the TIO SST anomaly could lead to significant divergence anomalies over the Mediterranean. The advections of vorticity by the divergent component of the flow effectively acted as a Rossby wave source. Thus, an apparent Rossby wave originated from the Mediterranean and propagated east to East Asia; that further influenced the NEC precipitation through modulation to the atmospheric circulation (e.g., surface wind, moisture, vertical motion).

  17. Characteristics of occurrence of heavy rainfall events over Odisha during summer monsoon season

    NASA Astrophysics Data System (ADS)

    Swain, Madhusmita; Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    During summer monsoon season heavy to very heavy rainfall events have been occurring over most part of India, routinely result in flooding over Indian Monsoon Region (IMR). It is worthwhile to mention that as per Geological Survey of India, Odisha is one of the most flood prone regions of India. The present study analyses the occurrence of very light (0-2.4 mm/day), light (2.5 - 15.5 mm/day), moderate (15.6 - 64.4 mm/day), heavy (64.5 - 115.4 mm/day), very heavy (115.5 - 204.4 mm/day) and extreme (≥ 204.5 mm/day) rainy days over Odisha during summer monsoon season for a period of 113 years (1901 - 2013) and a detailed study has been done for heavy-to-extreme rainy days. For this purpose, India Meteorological Department (IMD) gridded (0.25° × 0.25° lat/lon) rainfall data and the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) (0.125° × 0.125° lat/lon) datasets are used. The analysis reveals that the frequency of very light, light and moderate rainy days persists with almost constant trend, but the heavy, very heavy and extreme rainy days exhibit an increasing trend during the study period. It may be noted that more than 60% of heavy-to-extreme rainy days are observed in the month of July and August. Furthermore, during the recent period (1980-2013), there are a total of 150 extreme rainy days are observed over Odisha, out of which 47% are associated with monsoon depressions (MDs) and cyclonic storms, 41% are with lows, 2% are due to the presence of middle and upper tropospheric cyclonic circulations, 1% is due to monsoon trough and other 9% of extreme rainy days does not follow any of these synoptic conditions. Since a large (nearly half) percentage of extreme rainy days over Odisha is due to the presence of MDs, a detailed examination of MDs is illustrated in this study. Analysis reveals that there are a total of 91 MDs formed over the Bay of Bengal (BoB) during 1980 - 2013, and out of which 56 (61.5% of total MD) MDs

  18. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  19. Impacts of urbanization on Indian summer monsoon rainfall extremes

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Paul, Supantha; Ghosh, Subimal; Karmakar, Subhankar

    2015-01-01

    areas have different climatology with respect to their rural surroundings. Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where urban areas have experienced an unprecedented rate of growth over the last 30 years. Here we take up an observational study to understand the influence of urbanization on the characteristics of precipitation (specifically extremes) in India. We identify 42 urban regions and compare their extreme rainfall characteristics with those of surrounding rural areas. We observe that, on an overall scale, the urban signatures on extreme rainfall are not prominently and consistently visible, but they are spatially nonuniform. Zonal analysis reveals significant impacts of urbanization on extreme rainfall in central and western regions of India. An additional examination, to understand the influences of urbanization on heavy rainfall climatology, is carried with station level data using a statistical method, quantile regression. This is performed for the most populated city of India, Mumbai, in pair with a nearby nonurban area, Alibaug; both having similar geographic location. The derived extreme rainfall regression quantiles reveal the sensitivity of extreme rainfall events to the increased urbanization. Overall the study identifies the climatological zones in India, where increased urbanization affects regional rainfall pattern and extremes, with a detailed case study of Mumbai. This also calls attention to the need of further experimental investigation, for the identification of the key climatological processes, in different regions of India, affected by increased urbanization.

  20. Validation of Seasonal Forecast of Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Das, Sukanta Kumar; Deb, Sanjib Kumar; Kishtawal, C. M.; Pal, Pradip Kumar

    2015-06-01

    The experimental seasonal forecast of Indian summer monsoon (ISM) rainfall during June through September using Community Atmosphere Model (CAM) version 3 has been carried out at the Space Applications Centre Ahmedabad since 2009. The forecasts, based on a number of ensemble members (ten minimum) of CAM, are generated in several phases and updated on regular basis. On completion of 5 years of experimental seasonal forecasts in operational mode, it is required that the overall validation or correctness of the forecast system is quantified and that the scope is assessed for further improvements of the forecast over time, if any. The ensemble model climatology generated by a set of 20 identical CAM simulations is considered as the model control simulation. The performance of the forecast has been evaluated by assuming the control simulation as the model reference. The forecast improvement factor shows positive improvements, with higher values for the recent forecasted years as compared to the control experiment over the Indian landmass. The Taylor diagram representation of the Pearson correlation coefficient (PCC), standard deviation and centered root mean square difference has been used to demonstrate the best PCC, in the order of 0.74-0.79, recorded for the seasonal forecast made during 2013. Further, the bias score of different phases of experiment revealed the fact that the ISM rainfall forecast is affected by overestimation in predicting the low rain-rate (less than 7 mm/day), but by underestimation in the medium and high rain-rate (higher than 11 mm/day). Overall, the analysis shows significant improvement of the ISM forecast over the last 5 years, viz. 2009-2013, due to several important modifications that have been implemented in the forecast system. The validation exercise has also pointed out a number of shortcomings in the forecast system; these will be addressed in the upcoming years of experiments to improve the quality of the ISM prediction.

  1. Low-altitude outbreaks of human fascioliasis related with summer rainfall in Gilan province, Iran.

    PubMed

    Salahi-Moghaddam, Abdoreza; Habibi-Nokhandam, Majid; Fuentes, Màrius V

    2011-11-01

    Following human fascioliasis outbreaks in 1988 and 1999 in Gilan province, northern Iran, efforts are now made to shed light on the seasonal pattern of fascioliasis transmission in this endemic area, taking into account snail host populations, climatic conditions and human cases. Populations of the intermediate host snail (Lymnaea spp.) peak in May and November, while there is a fourfold increase in the rate of human fascioliasis in February compared to that of September. Transmission is likely to occur mainly in late autumn and sporadically in late spring. Rainfall, seasonally analysed in periods of 3 years, indicates that accumulated summer rainfall may be related with the 1988 and 1999 human fascioliasis outbreaks. Although a more detailed picture, based on the analysis of further abiotic and biotic factors influencing fascioliasis transmission in this area, is required to substantiate this hypothesis, our results serve as the first step of a geographical information system project concerning the epidemiological study of fascioliasis in Iran. This local-scale study concerning the effects of climate change and natural disasters on the spread of fascioliasis aims to facilitate the understanding of what goes on at the regional scale in this respect.

  2. Role of Oceanic and Terrestrial Atmospheric Moisture Sources in Intraseasonal Variability of Indian Summer Monsoon Rainfall.

    PubMed

    Pathak, Amey; Ghosh, Subimal; Kumar, Praveen; Murtugudde, Raghu

    2017-10-06

    Summer Monsoon Rainfall over the Indian subcontinent displays a prominent variability at intraseasonal timescales with 10-60 day periods of high and low rainfall, known as active and break periods, respectively. Here, we study moisture transport from the oceanic and terrestrial sources to the Indian landmass at intraseasonal timescales using a dynamic recycling model, based on a Lagrangian trajectory approach applied to the ECMWF-ERA-interim reanalysis data. Intraseasonal variation of monsoon rainfall is associated with both a north-south pattern from the Indian landmass to the Indian Ocean and an east-west pattern from the Core Monsoon Zone (CMZ) to eastern India. We find that the oceanic sources of moisture, namely western and central Indian Oceans (WIO and CIO) contribute to the former, while the major terrestrial source, Ganga basin (GB) contributes to the latter. The formation of the monsoon trough over Indo-Gangetic plain during the active periods results in a high moisture transport from the Bay of Bengal and GB into the CMZ in addition to the existing southwesterly jet from WIO and CIO. Our results indicate the need for the correct representation of both oceanic and terrestrial sources of moisture in models for simulating the intraseasonal variability of the monsoon.

  3. Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.

    2012-07-01

    We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the drivers of trends in summer rainfall and circulation in the vicinity of northern Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we perform a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). To investigate the roles of different forcing agents, we also perform multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. CSIRO-Mk3.6 simulates a strong summer rainfall decrease over north-western Australia (NWA) in RCP4.5, whereas simulated trends in HIST are weakly positive (but insignificant) during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol-induced increase. Observations show a significant increase of summer rainfall over NWA during the last few decades. The large magnitude of the observed NWA rainfall trend is not captured by 440 unforced 60-yr trends calculated from a 500-yr pre-industrial control run, even though the model's decadal variability appears to be realistic. This suggests that the observed trend includes a forced component, despite the fact that the model does not simulate the magnitude of the observed rainfall increase in response to "all forcings" (HIST). We investigate the mechanism of simulated and observed NWA rainfall changes by exploring changes in circulation over the Indo-Pacific region. The key circulation feature associated with the rainfall increase in reanalyses is a lower-tropospheric cyclonic circulation trend off the

  4. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  5. Causes and Model Skill of the Persistent Intense Rainfall and Flooding in Paraguay during the Austral Summer 2015-2016

    NASA Astrophysics Data System (ADS)

    Doss-Gollin, J.; Munoz, A. G.; Pastén, M.

    2017-12-01

    During the austral summer 2015-16 severe flooding displaced over 150,000 people on the Paraguay River system in Paraguay, Argentina, and Southern Brazil. This flooding was out of phase with the typical seasonal cycle of the Paraguay River, and was driven by repeated intense rainfall events in the Lower Paraguay River basin. Using a weather typing approach within a diagnostic framework, we show that enhanced moisture inflow from the low-level jet and local convergence associated with baroclinic systems favored the development of mesoscale convective activity and enhanced precipitation. The observed circulation patterns were made more likely by the cross-timescale interactions of multiple climate mechanisms including the strong, mature El Niño event and an active Madden-Julien Oscillation in phases four and five. We also perform a comparison of the rainfall predictability using seasonal forecasts from the Latin American Observatory of Climate Events (OLE2) and sub-seasonal forecasts produced by the ECMWF. We find that the model output precipitation field exhibited limited skill at lead times beyond the synoptic timescale, but that a Model Output Statistics (MOS) approach, in which the leading principal components of the observed rainfall field are regressed on the leading principal components of model-simulated rainfall fields, substantially improves spatial representation of rainfall forecasts. Possible implications for flood preparedness are briefly discussed.

  6. Challenges for operational forecasting and early warning of rainfall induced landslides

    NASA Astrophysics Data System (ADS)

    Guzzetti, Fausto

    2017-04-01

    In many areas of the world, landslides occur every year, claiming lives and producing severe economic and environmental damage. Many of the landslides with human or economic consequences are the result of intense or prolonged rainfall. For this reason, in many areas the timely forecast of rainfall-induced landslides is of both scientific interest and social relevance. In the recent years, there has been a mounting interest and an increasing demand for operational landslide forecasting, and for associated landslide early warning systems. Despite the relevance of the problem, and the increasing interest and demand, only a few systems have been designed, and are currently operated. Inspection of the - limited - literature on operational landslide forecasting, and on the associated early warning systems, reveals that common criteria and standards for the design, the implementation, the operation, and the evaluation of the performances of the systems, are lacking. This limits the possibility to compare and to evaluate the systems critically, to identify their inherent strengths and weaknesses, and to improve the performance of the systems. Lack of common criteria and of established standards can also limit the credibility of the systems, and consequently their usefulness and potential practical impact. Landslides are very diversified phenomena, and the information and the modelling tools used to attempt landslide forecasting vary largely, depending on the type and size of the landslides, the extent of the geographical area considered, the timeframe of the forecasts, and the scope of the predictions. Consequently, systems for landslide forecasting and early warning can be designed and implemented at several different geographical scales, from the local (site or slope specific) to the regional, or even national scale. The talk focuses on regional to national scale landslide forecasting systems, and specifically on operational systems based on empirical rainfall threshold

  7. Towards a realistic simulation of boreal summer tropical rainfall climatology in state-of-the-art coupled models: role of the background snow-free land albedo

    NASA Astrophysics Data System (ADS)

    Terray, P.; Sooraj, K. P.; Masson, S.; Krishna, R. P. M.; Samson, G.; Prajeesh, A. G.

    2017-07-01

    State-of-the-art global coupled models used in seasonal prediction systems and climate projections still have important deficiencies in representing the boreal summer tropical rainfall climatology. These errors include prominently a severe dry bias over all the Northern Hemisphere monsoon regions, excessive rainfall over the ocean and an unrealistic double inter-tropical convergence zone (ITCZ) structure in the tropical Pacific. While these systematic errors can be partly reduced by increasing the horizontal atmospheric resolution of the models, they also illustrate our incomplete understanding of the key mechanisms controlling the position of the ITCZ during boreal summer. Using a large collection of coupled models and dedicated coupled experiments, we show that these tropical rainfall errors are partly associated with insufficient surface thermal forcing and incorrect representation of the surface albedo over the Northern Hemisphere continents. Improving the parameterization of the land albedo in two global coupled models leads to a large reduction of these systematic errors and further demonstrates that the Northern Hemisphere subtropical deserts play a seminal role in these improvements through a heat low mechanism.

  8. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK.

    PubMed

    Blenkinsop, Stephen; Lewis, Elizabeth; Chan, Steven C; Fowler, Hayley J

    2017-02-01

    Sub-daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non-operation of gauges. Given the prospect of an intensification of short-duration rainfall in a warming climate, the identification of such errors is essential if sub-daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near-complete hourly records for 1992-2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n-largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north-south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub-daily rainfall, with convection dominating during summer. The resulting quality-controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality-control procedures for sub-daily data, the validation of the new generation of very high

  9. Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK

    PubMed Central

    Lewis, Elizabeth; Chan, Steven C.; Fowler, Hayley J.

    2016-01-01

    ABSTRACT Sub‐daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non‐operation of gauges. Given the prospect of an intensification of short‐duration rainfall in a warming climate, the identification of such errors is essential if sub‐daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near‐complete hourly records for 1992–2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n‐largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north–south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub‐daily rainfall, with convection dominating during summer. The resulting quality‐controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality‐control procedures for sub‐daily data, the validation of the new

  10. Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse.

    PubMed

    Ghosh, Prosenjit; Prasanna, K; Banerjee, Yogaraj; Williams, Ian S; Gagan, Michael K; Chaudhuri, Atanu; Suwas, Satyam

    2018-05-31

    The Cretaceous greenhouse climate was accompanied by major changes in Earth's hydrological cycle, but seasonally resolved hydroclimatic reconstructions for this anomalously warm period are rare. We measured the δ 18 O and CO 2 clumped isotope Δ 47 of the seasonal growth bands in carbonate shells of the mollusc Villorita cyprinoides (Black Clam) growing in the Cochin estuary, in southern India. These tandem records accurately reconstruct seasonal changes in sea surface temperature (SST) and seawater δ 18 O, allowing us to document freshwater discharge into the estuary, and make inferences about rainfall amount. The same analytical approach was applied to well-preserved fossil remains of the Cretaceous (Early Maastrichtian) mollusc Phygraea (Phygraea) vesicularis from the nearby Kallankuruchchi Formation in the Cauvery Basin of southern India. The palaeoenvironmental record shows that, unlike present-day India, where summer rainfall predominates, most rainfall in Cretaceous India occurred in winter. During the Early Maastrichtian, the Indian plate was positioned at ~30°S latitude, where present-day rainfall and storm activity is also concentrated in winter. The good match of the Cretaceous climate and present-day climate at ~30°S suggests that the large-scale atmospheric circulation and seasonal hydroclimate patterns were similar to, although probably more intense than, those at present.

  11. Breeding decisions and output are correlated with both temperature and rainfall in an arid-region passerine, the sociable weaver

    PubMed Central

    Paquet, Matthieu; Spottiswoode, Claire N.; Covas, Rita

    2017-01-01

    Animal reproductive cycles are commonly triggered by environmental cues of favourable breeding conditions. In arid environments, rainfall may be the most conspicuous cue, but the effects on reproduction of the high inter- and intra-annual variation in temperature remain poorly understood, despite being relevant to the current context of global warming. Here, we conducted a multiyear examination of the relationships between a suite of measures of temperature and rainfall, and the onset and length of the breeding season, the probability of breeding and reproductive output in an arid-region passerine, the sociable weaver (Philetairus socius). As expected, reproductive output increased with rainfall, yet specific relationships were conditional on the timing of rainfall: clutch production was correlated with rainfall throughout the season, whereas fledgling production was correlated with early summer rainfall. Moreover, we reveal novel correlations between aspects of breeding and temperature, indicative of earlier laying dates after warmer springs, and longer breeding seasons during cooler summers. These results have implications for understanding population trends under current climate change scenarios and call for more studies on the role of temperature in reproduction beyond those conducted on temperate-region species. PMID:28989782

  12. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa

    USGS Publications Warehouse

    Grover-Kopec, Emily; Kawano, Mika; Klaver, Robert W.; Blumenthal, Benno; Ceccato, Pietro; Connor, Stephen J.

    2005-01-01

    Periodic epidemics of malaria are a major public health problem for many sub-Saharan African countries. Populations in epidemic prone areas have a poorly developed immunity to malaria and the disease remains life threatening to all age groups. The impact of epidemics could be minimized by prediction and improved prevention through timely vector control and deployment of appropriate drugs. Malaria Early Warning Systems are advocated as a means of improving the opportunity for preparedness and timely response.Rainfall is one of the major factors triggering epidemics in warm semi-arid and desert-fringe areas. Explosive epidemics often occur in these regions after excessive rains and, where these follow periods of drought and poor food security, can be especially severe. Consequently, rainfall monitoring forms one of the essential elements for the development of integrated Malaria Early Warning Systems for sub-Saharan Africa, as outlined by the World Health Organization.The Roll Back Malaria Technical Resource Network on Prevention and Control of Epidemics recommended that a simple indicator of changes in epidemic risk in regions of marginal transmission, consisting primarily of rainfall anomaly maps, could provide immediate benefit to early warning efforts. In response to these recommendations, the Famine Early Warning Systems Network produced maps that combine information about dekadal rainfall anomalies, and epidemic malaria risk, available via their Africa Data Dissemination Service. These maps were later made available in a format that is directly compatible with HealthMapper, the mapping and surveillance software developed by the WHO's Communicable Disease Surveillance and Response Department. A new monitoring interface has recently been developed at the International Research Institute for Climate Prediction (IRI) that enables the user to gain a more contextual perspective of the current rainfall estimates by comparing them to previous seasons and climatological

  13. Summer Monsoon, Kalahari Desert, Africa

    NASA Image and Video Library

    1992-11-01

    STS052-152-047 (22 Oct- 1 Nov 1992) --- The Kalahari Desert had not seen any significant rainfall for months before the launch of STS-52. Here, Shuttle astronauts have captured the onset of the (Southern Hemisphere) summer monsoon over the Kalahari Desert, as illustrated by the large thunderstorm towers poking up through the sun's terminator. The summer monsoon, with its associated thunderstorms, generally lasts from November through March. Scientist observers of this area report that the summer monsoon contributes most of the annual rainfall to this environmentally sensitive area. Shuttle nadir position: 28.0 degrees south, 25.1 degrees east. The center of the scene is 22.0 degrees south, 25.0 degrees east, 16:20:04 GMT.

  14. Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime

    NASA Astrophysics Data System (ADS)

    Li, Chun; Ma, Hao

    2011-09-01

    In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.

  15. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Kong, W.; Chiang, J. C. H.

    2015-12-01

    The Holocene East Asian Summer Monsoon (EASM) was characterized by a trend to weaker monsoon intensity paced by orbital insolation. Here, we attribute the stronger EASM intensity in the early-mid Holocene to changes in the timing of the transition between the EASM seasonal stages - Spring, pre Mei- Yu, Mei-Yu, and Summer - during that time. Following the recent 'jet transition hypothesis' (Chiang et al., 2015), we explore the role of north-south displacement of the westerlies relative to the Tibetan Plateau that is hypothesized to control the downstream EASM seasonality changes across the Holocene. To this end, we analyze model simulations of the Holocene EASM, compare the simulated Holocene climate with the paleodata observations, and examine the role of atmospheric circulation and specifically the westerlies in modulating the East Asia summer climate. The PMIP3 climate model simulations suggest that, compared to the pre-industrial, the Mei-Yu onset and the transition from Mei-Yu to Summer rainfall occur earlier in the mid-Holocene. The advanced seasonal rainfall transition is accompanied by the weakened and northward-shifted upstream westerlies. In our atmospheric general circulation model (coupled to a slab ocean) simulations of various time periods across the Holocene (9ka, 6ka, 3ka, and pre-industrial), we quantitatively show that the timing and the length of each rainfall stage are closely related to the jet position over East Asia. We also show that the simulated changes in the maximum annual rainfall band and dust emission over East Asia largely agree with the paleo-proxy observations. In addition, we find that changes to the seasonal rainfall transitions, latitudinal westerly position, and stationary eddy activity over East Asia co-vary across the Holocene. In particular, we argue that the changes in the rainfall seasonal transitions are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road Pattern', riding along the

  16. Diversity of Rainfall Thresholds for early warning of hydro-geological disasters

    NASA Astrophysics Data System (ADS)

    De Luca, Davide L.; Versace, Pasquale

    2017-06-01

    For early warning of disasters induced by precipitation (such as floods and landslides), different kinds of rainfall thresholds are adopted, which vary from each other, on the basis on adopted hypotheses. In some cases, they represent the occurrence probability of an event (landslide or flood), in other cases the exceedance probability of a critical value for an assigned indicator I (a function of rainfall heights), and in further cases they only indicate the exceeding of a prefixed percentage a critical value for I, indicated as Icr. For each scheme, it is usual to define three different criticality levels (ordinary, moderate and severe), which are associated to warning levels, according to emergency plans. This work briefly discusses different schemes of rainfall thresholds, focusing attention on landslide prediction, with some applications to a real case study in Calabria region (southern Italy).

  17. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2017-04-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in JunetJuly (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole (IOD) and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR

  18. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2017-08-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in June-July (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR

  19. Simulation of boreal Summer Monsoon Rainfall using CFSV2_SSiB model: sensitivity to Land Use Land Cover (LULC)

    NASA Astrophysics Data System (ADS)

    Chilukoti, N.; Xue, Y.

    2016-12-01

    The land surface play a vital role in determining the surface energy budget, accurate representation of land use and land cover (LULC) is necessary to improve forecast. In this study, we have investigated the influence of surface vegetation maps with different LULC on simulating the boreal summer monsoon rainfall. Using a National Centres for Environmental Prediction (NCEP) Coupled Forecast System version 2(CFSv2) model coupled with Simplified Simple Biosphere (SSiB) model, two experiments were conducted: one with old vegetation map and one with new vegetation map. The significant differences between new and old vegetation map were in semi-arid and arid areas. For example, in old map Tibetan plateau classified as desert, which is not appropriate, while in new map it was classified as grasslands or shrubs with bare soil. Old map classified the Sahara desert as a bare soil and shrubs with bare soil, whereas in new map it was classified as bare ground. In addition to central Asia and the Sahara desert, in new vegetation map, Europe had more cropped area and India's vegetation cover was changed from crops and forests to wooded grassland and small areas of grassland and shrubs. The simulated surface air temperature with new map shows a significant improvement over Asia, South Africa, and northern America by some 1 to 2ºC and 2 to 3ºC over north east China and these are consistent with the reduced rainfall biases over Africa, near Somali coast, north east India, Bangladesh, east China sea, eastern Pacific and northern USA. Over Indian continent and bay of Bengal dry rainfall anomalies that is the only area showing large dry rainfall bias, however, they were unchanged with new map simulation. Overall the CFSv2(coupled with SSiB) model with new vegetation map show a promising result in improving the monsoon forecast by improving the Land -Atmosphere interactions. To compare with the LULC forcing, experiment was conducted using the Global Forecast System (GFS) simulations

  20. Warm season heavy rainfall events over the Huaihe River Valley and their linkage with wintertime thermal condition of the tropical oceans

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Li, Wenhong; Tang, Qiuhong; Zhang, Pengfei; Liu, Yimin

    2016-01-01

    Warm season heavy rainfall events over the Huaihe River Valley (HRV) of China are amongst the top causes of agriculture and economic loss in this region. Thus, there is a pressing need for accurate seasonal prediction of HRV heavy rainfall events. This study improves the seasonal prediction of HRV heavy rainfall by implementing a novel rainfall framework, which overcomes the limitation of traditional probability models and advances the statistical inference on HRV heavy rainfall events. The framework is built on a three-cluster Normal mixture model, whose distribution parameters are sampled using Bayesian inference and Markov Chain Monte Carlo algorithm. The three rainfall clusters reflect probability behaviors of light, moderate, and heavy rainfall, respectively. Our analysis indicates that heavy rainfall events make the largest contribution to the total amount of seasonal precipitation. Furthermore, the interannual variation of summer precipitation is attributable to the variation of heavy rainfall frequency over the HRV. The heavy rainfall frequency, in turn, is influenced by sea surface temperature anomalies (SSTAs) over the north Indian Ocean, equatorial western Pacific, and the tropical Atlantic. The tropical SSTAs modulate the HRV heavy rainfall events by influencing atmospheric circulation favorable for the onset and maintenance of heavy rainfall events. Occurring 5 months prior to the summer season, these tropical SSTAs provide potential sources of prediction skill for heavy rainfall events over the HRV. Using these preceding SSTA signals, we show that the support vector machine algorithm can predict HRV heavy rainfall satisfactorily. The improved prediction skill has important implication for the nation's disaster early warning system.

  1. Interannual variability of Indian monsoon rainfall

    NASA Technical Reports Server (NTRS)

    Paolino, D. A.; Shukla, J.

    1984-01-01

    The interannual variability of the Indian summer monsoon and its relationships with other atmospheric fluctuations were studied in hopes of gaining some insight into the predicability of the rainfall. Rainfall data for 31 meteorological subdivisions over India were provided by the India Meteorological Department (IMD). Fifty-three years of seasonal mean anomaly sea-level pressure (SLP) fields were used to determine if any relationships could be detected between fluctuations in Northern Hemisphere surface pressure and Indian monsoon rainfall. Three month running mean sea-level pressure anomalies at Darwin (close to one of the centers of the Southern Oscillation) were compiled for months preceding and following extreme years for rainfall averaged over all of India. Anomalies are small before the monsoon, but are quite large in months following the summer season. However, there is a large decrease in Darwin pressure for months preceding a heavy monsoon, while a deficient monsoon is preceded by a sharp increase in Darwin pressure. If a time series is constructed of the tendency of Darwin SLP between the Northern Hemisphere winter (DJF) and spring (MAM) and a correlation coefficient is computed between it and 81 years of rainfall average over all of India, one gets a C. C. of -.46, which is higher than any other previously computed predictor of the monsoon rainfall. This relationship can also be used to make a qualitative forecast for rainfall over the whole of India by considering the sign of the tendency in extreme monsoon years.

  2. Exploratory Long-Range Models to Estimate Summer Climate Variability over Southern Africa.

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.; Mulenga, Henry M.; Mason, Simon J.

    1999-07-01

    Teleconnection predictors are explored using multivariate regression models in an effort to estimate southern African summer rainfall and climate impacts one season in advance. The preliminary statistical formulations include many variables influenced by the El Niño-Southern Oscillation (ENSO) such as tropical sea surface temperatures (SST) in the Indian and Atlantic Oceans. Atmospheric circulation responses to ENSO include the alternation of tropical zonal winds over Africa and changes in convective activity within oceanic monsoon troughs. Numerous hemispheric-scale datasets are employed to extract predictors and include global indexes (Southern Oscillation index and quasi-biennial oscillation), SST principal component scores for the global oceans, indexes of tropical convection (outgoing longwave radiation), air pressure, and surface and upper winds over the Indian and Atlantic Oceans. Climatic targets include subseasonal, area-averaged rainfall over South Africa and the Zambezi river basin, and South Africa's annual maize yield. Predictors and targets overlap in the years 1971-93, the defined training period. Each target time series is fitted by an optimum group of predictors from the preceding spring, in a linear multivariate formulation. To limit artificial skill, predictors are restricted to three, providing 17 degrees of freedom. Models with colinear predictors are screened out, and persistence of the target time series is considered. The late summer rainfall models achieve a mean r2 fit of 72%, contributed largely through ENSO modulation. Early summer rainfall cross validation correlations are lower (61%). A conceptual understanding of the climate dynamics and ocean-atmosphere coupling processes inherent in the exploratory models is outlined.Seasonal outlooks based on the exploratory models could help mitigate the impacts of southern Africa's fluctuating climate. It is believed that an advance warning of drought risk and seasonal rainfall prospects will

  3. Influence of the Northeast Cold Vortex on Flooding in Northeast China in Summer 2013

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Gao, Hui

    2018-04-01

    Severe flooding occurred in Northeast China (NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to early July and from mid July to early August, respectively. During the summer season of 2013, the western Pacific subtropical high (WPSH) was located farther westward, which strengthened the southerly winds on its west side in the lower troposphere. Under this circulation pattern, more water vapor was transported to North China and NEC. Another moisture transport pathway to NEC was traced to the cross-equatorial flow over the Bay of Bengal. In mid-high latitudes in summer 2013, the Northeast Cold Vortex (NECV) was much stronger and remained stable over NEC. Thus, the cold air flow from its northwest side frequently met with the warm and wet air from the south to form stronger moisture convergence at lower levels in the troposphere, resulting in increased precipitation over the region. Correlation analysis indicated that the NECV played a more direct role than the WPSH. Synoptic analyses of the two heaviest flood cases on 2 and 16 July confirmed this conclusion. The four wettest summers in NEC before 2000 were also analyzed and the results were consistent with the conclusion that both the WPSH and the NECV led to the intense rainfall in NEC, but the NECV had a more direct role.

  4. A distinction between summer rainy season and summer monsoon season over the Central Highlands of Vietnam

    NASA Astrophysics Data System (ADS)

    Ngo-Thanh, Huong; Ngo-Duc, Thanh; Nguyen-Hong, Hanh; Baker, Peter; Phan-Van, Tan

    2018-05-01

    The daily rainfall data at 13 stations over the Central Highlands (CH) Vietnam were collected for the period 1981-2014. Two different sets of criteria using daily observed rainfall and 850 hPa daily reanalysis wind data were applied to determine the onset (retreat) dates of the summer rainy season (RS) and summer monsoon (SM) season, respectively. Over the study period, the mean RS and SM onset dates were April 20 and May 13 with standard deviations of 17.4 and 17.8 days, respectively. The mean RS and SM retreat dates were November 1 and September 30 with standard deviations of 17.9 and 10.2 days, respectively . The year-to-year variations of the onset dates and the rainfall amount within the RS and SM season were closely linked with the preceding winter and spring sea surface temperature in the central-eastern and western Pacific. It was also found that the onset dates were significantly correlated with the RS and SM rainfall amount.

  5. Early American sunspot drawings from the "year without a summer"

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; McVaugh, M. R.

    2017-07-01

    A set of sunspot drawings from the early nineteenth century were discovered in the journals of the Reverend Jonathan Fisher. These drawings were made during a time when abnormally cold weather caused crops in New England to fail due to intermittent frost throughout the summer months of 1816, normally referred to as the "year without a summer." Global changes in weather patterns were the result of the Mount Tambora volcano eruption. Since this association was unknown at the time, there was speculation that the Sun was the cause inspiring the Reverend Fisher to monitor changes in sunspots during the summer of 1816 and continuing into 1817. These sunspot drawings for the summer of 1816 overlap the solar observations of Sir William Hershel.

  6. Investigating the impact of temporal and spatial variation in spring snow melt on summer soil respiration

    NASA Astrophysics Data System (ADS)

    John, G. P.; Papuga, S. A.; Wright, C. L.; Nelson, K.; Barron-Gafford, G. A.

    2010-12-01

    While soil respiration - the flux of carbon dioxide from the soil surface to the atmosphere - is the second largest terrestrial carbon flux, it is the least well constrained component of the terrestrial carbon cycle. This is in part because of its high variability in space and time that can become amplified under certain environmental conditions. Under current climate change scenarios, both summer and winter precipitation are expected to be altered in terrestrial ecosystems of the southwestern US. Precipitation magnitude and intensity influence soil moisture, which is a key control on ecosystem-scale respiration rates. Therefore understanding how changes in snow and rainfall translate to changes in soil moisture is critical to understanding climate change impacts on soil respiration processes. Our study took place within the footprint of a semiarid mixed-conifer flux measurement system on Mount Bigelow just north of Tucson, AZ. We analyzed images from three understory phenology cameras (pheno-cams) to identify areas that represented early and late snowmelt. Within the field of view of each of the three pheno-cams we established three early-melt and three late-melt soil respiration measurement “sites”. To understand the persistence of snowmelt conditions on summer soil respiration, we measured soil respiration, soil moisture, and soil temperature at all six sites on four days representing different summer periods (i.e. pre-monsoon, early monsoon, mid-monsoon, and late monsoon). Throughout the entire study period, at both early- and late-melt sites soil respiration was strongly correlated with amount of soil moisture, and was less responsive to temperature. Soil respiration generally increased throughout the rainy season, peaking by mid-monsoon at both early- and late-melt sites. Interestingly, early-melt sites were wetter than late-melt sites following rainfall occurring in the pre- and early monsoon. However, following rainfall occurring in the mid- to late

  7. Relative roles of aerosols, SST, and snow impurity on snowmelt over the Tibetan Plateau and its their impacts on South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Tsay, S. C.; Lau, W. K. M.; Yasunari, T. J.; Mahanama, S. P. P.; Koster, R. D.; daSilva, A.

    2017-12-01

    We examine the relative roles of atmospheric aerosol radiative forcing, year-to-year SST (sea surface temperature) variability, and surface radiative forcing by snow impurity on snowmelt over the Tibetan Plateau and their impacts on rainfall and circulation of South Asian summer monsoon. Five-member ensemble experiments are conducted with NASA's GEOS-5 (Goddard Earth Observing System model version 5), equipped with a snow darkening module - GOSWIM (GOddard SnoW Impurity Module), on the Water-Year 2008 (October 2007 to September 2008). Asian summer monsoon in 2008 was near normal in terms of monsoon rainfall over India subcontinent. However, rainfall was excessive in the North while the southern India suffered from the rainfall deficit. The 2008 summer monsoon was accompanied with high loading of aerosols in the Arabian Sea and La Niña condition in the tropical Pacific. To examine the roles high aerosol loading and La Niña condition on the north-south dipole in Indian monsoon rainfall, two sets of experiments, in addition to control runs (CNTRL), are conducted without SST anomalies (CSST) and aerosol radiative feedback (NRF), respectively. Results show that increased aerosol loading in early summer is associated with the increased dust transport during La Niña years. Increased aerosols over the northern India induces EHP-like (elevated heat pump) circulation and increases rainfall over the India subcontinent. Aerosol radiative forcing feedback (CNTRL-NRF) strengthens the EHP-like monsoon circulation even more. Results indicate that anomalous circulation associated with La Niña condition increases aerosol loading by enhancing dust transport as well as by increasing aerosol lifetime. Increased aerosols induces EHP-like feedback processes and increases rainfall over the India subcontinent.

  8. A hydro-mechanical framework for early warning of rainfall-induced landslides (Invited)

    NASA Astrophysics Data System (ADS)

    Godt, J.; Lu, N.; Baum, R. L.

    2013-12-01

    Landslide early warning requires an estimate of the location, timing, and magnitude of initial movement, and the change in volume and momentum of material as it travels down a slope or channel. In many locations advance assessment of landslide location, volume, and momentum is possible, but prediction of landslide timing entails understanding the evolution of rainfall and soil-water conditions, and consequent effects on slope stability in real time. Existing schemes for landslide prediction generally rely on empirical relations between landslide occurrence and rainfall amount and duration, however, these relations do not account for temporally variable rainfall nor the variably saturated processes that control the hydro-mechanical response of hillside materials to rainfall. Although limited by the resolution and accuracy of rainfall forecasts and now-casts in complex terrain and by the inherent difficulty in adequately characterizing subsurface materials, physics-based models provide a general means to quantitatively link rainfall and landslide occurrence. To obtain quantitative estimates of landslide potential from physics-based models using observed or forecasted rainfall requires explicit consideration of the changes in effective stress that result from changes in soil moisture and pore-water pressures. The physics that control soil-water conditions are transient, nonlinear, hysteretic, and dependent on material composition and history. In order to examine the physical processes that control infiltration and effective stress in variably saturated materials, we present field and laboratory results describing intrinsic relations among soil water and mechanical properties of hillside materials. At the REV (representative elementary volume) scale, the interaction between pore fluids and solid grains can be effectively described by the relation between soil suction, soil water content, hydraulic conductivity, and suction stress. We show that these relations can be

  9. Underestimated interannual variability of East Asian summer rainfall under climate change

    NASA Astrophysics Data System (ADS)

    Ren, Yongjian; Song, Lianchun; Xiao, Ying; Du, Liangmin

    2018-02-01

    This study evaluates the performance of climate models in simulating the climatological mean and interannual variability of East Asian summer rainfall (EASR) using Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to the observation, the interannual variability of EASR during 1979-2005 is underestimated by the CMIP5 with a range of 0.86 16.08%. Based on bias correction of CMIP5 simulations with historical data, the reliability of future projections will be enhanced. The corrected EASR under representative concentration pathways (RCPs) 4.5 and 8.5 increases by 5.6 and 7.5% during 2081-2100 relative to the baseline of 1986-2005, respectively. After correction, the areas with both negative and positive anomalies decrease, which are mainly located in the South China Sea and central China, and southern China and west of the Philippines, separately. In comparison to the baseline, the interannual variability of EASR increases by 20.8% under RCP4.5 but 26.2% under RCP8.5 in 2006-2100, which is underestimated by 10.7 and 11.1% under both RCPs in the original CMIP5 simulation. Compared with the mean precipitation, the interannual variability of EASR is notably larger under global warming. Thus, the probabilities of floods and droughts may increase in the future.

  10. Mapping monthly rainfall erosivity in Europe.

    PubMed

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  11. Role of the Angola Low in modulating southern African austral summer rainfall and relationships with synoptic and interannual modes of variability

    NASA Astrophysics Data System (ADS)

    Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien

    2017-04-01

    The Angola Low has been suggested in many previous studies to be an important regional feature governing southern African rainfall variability during austral summer, which is, in particular, expressed through modulations of El Niño Southern Oscillation (ENSO) impacts on rainfall at the interannual timescale. Here, we analyse a variety of state-of-the-art reanalyses (NCEP2, ERA-Interim and MERRA2) and rainfall data (in situ rain-gauges and satellite-derived products) for: i) identifying the recurrent regimes of the Angola Low (position and intensity) at the daily timescale; ii) diagnosing how they modulate the spatio-temporal variability of austral summer rainfall; and iii) examining their relationships with synoptic convective regimes and ENSO, both at the interannual timescale. The recurrent regimes of the Angola Low are identified over the 1980-2015 period by applying a cluster analysis to daily 700-hPa wind vorticity anomalies over the Angola sector from November to March. The exact number and morphological properties of vorticity regimes vary significantly among the reanalyses, in particular when using the lowest spatial resolution reanalysis (i.e., NCEP2) that leads to detect less diversity, smoothest patterns and weakest intensity across the recurrent regimes. Despite such uncertainties, the regimes describing active Angola Low are quite robust among the reanalyses. Three preferential locations (locked over eastern Angola, shifted few degrees eastward or south-westward), which significantly impact on the rainfall spatial distribution over tropical and subtropical southern Africa, are identified. Independently from its location, Angola Low favours moisture advection from the southwest Indian Ocean and reduces moisture export towards the southeast Atlantic, hence contributing to increase moisture convergence over the subcontinent. Lead/lag correlations with synoptic convective regimes suggest that Angola Low may be a local precursor of tropical

  12. Rainfall height stochastic modelling as a support tool for landslides early warning

    NASA Astrophysics Data System (ADS)

    Capparelli, G.; Giorgio, M.; Greco, R.; Versace, P.

    2009-04-01

    Occurrence of landslides is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Although heavy landslides frequently occurred in Campania, southern Italy, during the last decade, no complete data sets are available for natural slopes where landslides occurred. As a consequence, landslide risk assessment procedures and early warning systems in Campania still rely on simple empirical models based on correlation between daily rainfall records and observed landslides, like FLAIR model [Versace et al., 2003]. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction. In mountainous areas, rainfall spatial and temporal variability are very pronounced due to orographic effects, making predictions even more complicated. Existing rain gauge networks are not dense enough to resolve the small scale spatial variability, and the same limitation of spatial resolution affects rainfall height maps provided by radar sensors as well as by meteorological physically based models. Therefore, analysis of on-site recorded rainfall height time series still represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR and ARMA [Box and Jenkins, 1976]. Sometimes exogenous information coming from additional series of observations is also taken into account, and the models are called ARX and ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time

  13. Rainfall model investigation and scenario analyses of the effect of government reforestation policy on seasonal rainfalls: A case study from Northern Thailand

    NASA Astrophysics Data System (ADS)

    Duangdai, Eakkapong; Likasiri, Chulin

    2017-03-01

    In this work, 4 models for predicting rainfall amounts are investigated and compared using Northern Thailand's seasonal rainfall data for 1973-2008. Two models, global temperature, forest area and seasonal rainfall (TFR) and modified TFR based on a system of differential equations, give the relationships between global temperature, Northern Thailand's forest cover and seasonal rainfalls in the region. The other two models studied are time series and Autoregressive Moving Average (ARMA) models. All models are validated using the k-fold cross validation method with the resulting errors being 0.971233, 0.740891, 2.376415 and 2.430891 for time series, ARMA, TFR and modified TFR models, respectively. Under Business as Usual (BaU) scenario, seasonal rainfalls in Northern Thailand are projected through the year 2020 using all 4 models. TFR and modified TFR models are also used to further analyze how global temperature rise and government reforestation policy affect seasonal rainfalls in the region. Rainfall projections obtained via the two models are also compared with those from the International Panel on Climate Change (IPCC) under IS92a scenario. Results obtained through a mathematical model for global temperature, forest area and seasonal rainfall show that the higher the forest cover, the less fluctuation there is between rainy-season and summer rainfalls. Moreover, growth in forest cover also correlates with an increase in summer rainfalls. An investigation into the relationship between main crop productions and rainfalls in dry and rainy seasons indicates that if the rainy-season rainfall is high, that year's main-crop rice production will decrease but the second-crop rice, maize, sugarcane and soybean productions will increase in the following year.

  14. Early-Holocene intensified Indian summer monsoon and its impact on vegetation: study based on hydrogen and carbon isotope values in long chain alkane from relict lake sediments in the Central Himalaya

    NASA Astrophysics Data System (ADS)

    Sanyal, P.; Ghosh, S.; Bhushan, R.; Juyal, N.

    2017-12-01

    The early Holocene was characterized by intensified monsoon, however none of the paleoclimatic records showed the magnitude required to shape the observed landform in the Ganges plain and sediment discharge in the Bay of Bengal. The Tropical Rainfall Measurement Mission data suggests that the Central Himalaya ( 2 km altitude) is characterized by high rainfall and hence paleoclimate proxies from this region would provide excellent opportunity to reconstruct the Holocene monsoon. An attempt has been made, for the first time, to reconstruct the Holocene monsoon using n-alkane δDC29 values of lake sediments from Benital area in the Central Himalaya which receives ca. 80% of the mean annual rainfall during summer monsoon. The n-alkane δDC29 values indicated that early Holocene (ca. 9 ka) was characterised by a wet phase with 70% increase in the rainfall followed by the dry middle-late Holocene which is in agreement with existing continental records. However, the change in intensity as inferred in the present study is maximum compared to the existing records. The comparison of δDC29values and the solar insolation data at 30 °N latitude suggested that migration of the Inter Tropical Convergence Zone controlled the variation in monsoonal rainfall. Comparison with the modern plants, the δ13CC29 values indicated that during ca. pre and post 7 ka the lake catchment was dominated by woody and non-woody plants, respectively. The cross plot between δDC29 and δ13CC29 indicated that at higher rainfall, the δ13CC29 values of catchment vegetation were less-responsive.

  15. Evaluating Satellite-based Rainfall Estimates for Basin-scale Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Yilmaz, K. K.; Hogue, T. S.; Hsu, K.; Gupta, H. V.; Mahani, S. E.; Sorooshian, S.

    2003-12-01

    The reliability of any hydrologic simulation and basin outflow prediction effort depends primarily on the rainfall estimates. The problem of estimating rainfall becomes more obvious in basins with scarce or no rain gauges. We present an evaluation of satellite-based rainfall estimates for basin-scale hydrologic modeling with particular interest in ungauged basins. The initial phase of this study focuses on comparison of mean areal rainfall estimates from ground-based rain gauge network, NEXRAD radar Stage-III, and satellite-based PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and their influence on hydrologic model simulations over several basins in the U.S. Six-hourly accumulations of the above competing mean areal rainfall estimates are used as input to the Sacramento Soil Moisture Accounting Model. Preliminary experiments for the Leaf River Basin in Mississippi, for the period of March 2000 - June 2002, reveals that seasonality plays an important role in the comparison. There is an overestimation during the summer and underestimation during the winter in satellite-based rainfall with respect to the competing rainfall estimates. The consequence of this result on the hydrologic model is that simulated discharge underestimates the major observed peak discharges during early spring for the basin under study. Future research will entail developing correction procedures, which depend on different factors such as seasonality, geographic location and basin size, for satellite-based rainfall estimates over basins with dense rain gauge network and/or radar coverage. Extension of these correction procedures to satellite-based rainfall estimates over ungauged basins with similar characteristics has the potential for reducing the input uncertainty in ungauged basin modeling efforts.

  16. Predictable patterns of the May-June rainfall anomaly over East Asia

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin; Yim, So-Young; Ha, Kyung-Ja

    2017-02-01

    During early summer (May-June, MJ), East Asia (EA) subtropical front is a defining feature of Asian monsoon, which produces the most prominent precipitation band in the global subtropics. Here we show that dynamical prediction of early summer EA (20°N-45°N, 100°E-130°E) rainfall made by four coupled climate models' ensemble hindcast (1979-2010) yields only a moderate skill and cannot be used to estimate predictability. The present study uses an alternative, empirical orthogonal function (EOF)-based physical-empirical (P-E) model approach to predict rainfall anomaly pattern and estimate its potential predictability. The first three leading modes are physically meaningful and can be, respectively, attributed to (a) the interaction between the anomalous western North Pacific subtropical high and underlying Indo-Pacific warm ocean, (b) the forcing associated with North Pacific sea surface temperature (SST) anomaly, and (c) the development of equatorial central Pacific SST anomalies. A suite of P-E models is established to forecast the first three leading principal components. All predictors are 0 month ahead of May, so the prediction here is named as a 0 month lead prediction. The cross-validated hindcast results demonstrate that these modes may be predicted with significant temporal correlation skills (0.48-0.72). Using the predicted principal components and the corresponding EOF patterns, the total MJ rainfall anomaly was hindcasted for the period of 1979-2015. The time-mean pattern correlation coefficient (PCC) score reaches 0.38, which is significantly higher than dynamical models' multimodel ensemble skill (0.21). The estimated potential maximum attainable PCC is around 0.65, suggesting that the dynamical prediction models may have large rooms to improve. Limitations and future work are discussed.

  17. Linking the North Atlantic Oscillation to Rainfall Over Northern Lake Malawi

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.; Powers, L. A.; Werne, J. P.; Brown, E. T.; Castaneda, I.; Schouten, S.; Sinninghe-Damste, J.

    2005-12-01

    Piston and multi-cores recovered from the north basin of Lake Malawi in 1998 by the International Decade for the East African Lakes (IDEAL) have provided a rich history of climate variability spanning the past 25,000 years. As we now begin to analyze the cores recovered by the Malawi Drilling Project in early 2005, we are considering the relationships among sedimentary signals of temperature (TEX86), northerly winds associated with a southward excursion of the Inter-Tropical Convergence Zone (per cent biogenic silica), and rainfall (terrigenous mass accumulation rate) in the well dated 1998 cores. A high-resolution record of the past 800 years suggests that rainfall in this region (10 - 12° S, 30 - 35° E) was relatively low during the Little Ice Age, when northerly winds were more prevalent, attributed to a more southerly position of the ITCZ during austral summers. The TEX86 signal of lake (surface?) temperature ranged mostly between 24 and 26°C during this period, with the coldest temperature of about 22°C around AD1680 and the warmest temperature, exceeding 27°C, in the youngest sediment sample. The cooler water temperatures coincide with periods of highest diatom productivity, consistent with the latter being due to relatively intense upwelling associated with the northerly winds. Our observation of low rainfall during periods of more southerly migration of the ITCZ is consistent with the results of McHugh and Rogers (2001), who linked rainfall in southeastern Africa to the North Atlantic Oscillation (NAO). During years of weak NAO, equatorial westerly transport of Atlantic moisture across Africa during austral summer is relatively intense, causing high rainfall in the East African Rift between the equator and 16° S. Conversely, when the NAO is positive, rainfall is higher south of 15° S than north of this latitude, which is consistent with a southward migration of the ITCZ. McHugh, M. J. and J. C. Rogers (2001). "North Atlantic Oscillation influence on

  18. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  19. Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards Early Warning System) for Sicily

    NASA Astrophysics Data System (ADS)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe

    2017-09-01

    The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce

  20. Tropical cyclone influence on the long-term variability of Philippine summer monsoon onset

    NASA Astrophysics Data System (ADS)

    Kubota, Hisayuki; Shirooka, Ryuichi; Matsumoto, Jun; Cayanan, Esperanza O.; Hilario, Flaviana D.

    2017-12-01

    The long-term variability of Philippine summer monsoon onset from 1903 to 2013 was investigated. The onset date is defined by daily rainfall data at eight stations in the northwestern Philippines. Summer monsoons tended to start earlier in May after the mid-1990s. Other early onset periods were found during the 1900s, 1920s, and 1930s, and an interdecadal variability of summer monsoon onset was identified. Independent surface wind data observed by ships in the South China Sea (SCS) revealed prevailing westerly wind in May during the early monsoon onset period. To identify atmospheric structures that trigger Philippine summer monsoon onset, we focused on the year 2013, conducting intensive upper-air observations. Tropical cyclone (TC) Yagi traveled northward in the Philippine Sea (PS) in 2013 and triggered the Philippine monsoon onset by intensifying moist low-level southwesterly wind in the southwestern Philippines and intensifying low-level southerly wind after the monsoon onset in the northwestern Philippines. The influence of TC was analyzed by the probability of the existence of TC in the PS and the SCS since 1951, which was found to be significantly correlated with the Philippine summer monsoon onset date. After the mid-1990s, early monsoon onset was influenced by active TC formation in the PS and the SCS. However, the role of TC activity decreased during the late summer monsoon periods. In general, it was found that TC activity in the PS and the SCS plays a key role in initiating Philippine summer monsoon onset. [Figure not available: see fulltext.

  1. Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects

    NASA Technical Reports Server (NTRS)

    Chen, Ching-Sen; Chen, Wan-Chin; Tao, Wei-Kuo

    2004-01-01

    On the windward side of southwestern Taiwan, about a quarter to a half of all rainfall during mid-July through August from 1994 to 2000 came from convective systems embedded in the southwesterly monsoon flow. k this study, the causes of two heavy rainfall events (daily rainfall exceeding 100 mm day over at least three rainfall stations) observed over the slopes and/or lowlands of southwestern Taiwan were examined. Data from European Center for Medium-Range Weather Forecasts /Tropical Ocean- Global Atmosphere (EC/TOGA) analyses, the rainfall stations of the Automatic Rainfall and Meteorological Telemetry System (ARMTS) and the conventional surface stations over Taiwan, and the simulation results from a regional-scale numerical model were used to accomplish the objectives. In one event (393 mm day on 9 August 1999), heavy rainfall was observed over the windward slopes of southern Taiwan in a potentially unstable environment with very humid air around 850 hPa. The extreme accumulation was simulated and attributed to orographic lifting effects. No preexisting convection drifted in from the Taiwan Strait into western Taiwan.

  2. Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall

    NASA Astrophysics Data System (ADS)

    Young, Giles H. F.; Loader, Neil J.; McCarroll, Danny; Bale, Roderick J.; Demmler, Joanne C.; Miles, Daniel; Nayling, Nigel T.; Rinne, Katja T.; Robertson, Iain; Watts, Camilla; Whitney, Matthew

    2015-12-01

    United Kingdom (UK) summers dominated by anti-cyclonic circulation patterns are characterised by clear skies, warm temperatures, low precipitation totals, low air humidity and more enriched oxygen isotope ratios (δ18O) in precipitation. Such conditions usually result in relatively more positive (enriched) oxygen isotope ratios in tree leaf sugars and ultimately in the tree-ring cellulose formed in that year, the converse being true in cooler, wet summers dominated by westerly air flow and cyclonic conditions. There should therefore be a strong link between tree-ring δ18O and the amount of summer precipitation. Stable oxygen isotope ratios from the latewood cellulose of 40 oak trees sampled at eight locations across Great Britain produce a mean δ18O chronology that correlates strongly and significantly with summer indices of total shear vorticity, surface air pressure, and the amount of summer precipitation across the England and Wales region of the United Kingdom. The isotope-based rainfall signal is stronger and much more stable over time than reconstructions based upon oak ring widths. Using recently developed methods that are precise, efficient and highly cost-effective it is possible to measure both carbon (δ13C) and oxygen (δ18O) isotope ratios simultaneously from the same tree-ring cellulose. In our study region, these two measurements from multiple trees can be used to reconstruct summer temperature (δ13C) and summer precipitation (δ18O) with sufficient independence to allow the evolution of these climate parameters to be reconstructed with high levels of confidence. The existence of long, well-replicated oak tree-ring chronologies across the British Isles mean that it should now be possible to reconstruct both summer temperature and precipitation over many centuries and potentially millennia.

  3. Interdecadal variations of East Asian summer monsoon northward propagation and influences on summer precipitation over East China

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Yang, S.; He, J.; Li, J.; Liang, J.

    2008-08-01

    The interdecadal variation of northward propagation of the East Asian Summer Monsoon (EASM) and summer precipitation in East China have been investigated using daily surface rainfall from a dense rain gauge network in China for 1957 2001, National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, European Center for Medium-Range Weather Forecast (ECMWF) reanalysis, and Global Mean Sea Level Pressure Dataset (GMSLP2) from Climatic Research Unit (CRU). Results in general show a consistent agreement on the interdecadal variability of EASM northward propagations. However, it appears that the interdecadal variation is stronger in NCEP than in ECMWF and CRU datasets. A newly defined normalized precipitation index (NPI), a 5-day running mean rainfall normalized with its standard deviation, clearly depicts the characteristics of summer rainbelt activities in East China in terms of jumps and durations during its northward propagations. The EASM northward propagation shows a prominent interdecadal variation. EASM before late 1970s had a rapid northward advance and a northern edge beyond its normal position. As a result, more summer rainfall occurred for the North China rainy season, Huaihe-River Mei-Yu, and South China Mei-Yu. In contrast, EASM after late 1970s had a slow northward movement and a northern edge located south of its normal position. Less summer precipitation occurred in East China except in Yangtze River basin. The EASM northernmost position (ENP), northernmost intensity (ENI), and EASM have a complex and good relationship at interdecadal timescales. They have significant influences on interdecadal variation of the large-scale precipitation anomalies in East China.

  4. Robust signals of future projections of Indian summer monsoon rainfall by IPCC AR5 climate models: Role of seasonal cycle and interannual variability

    NASA Astrophysics Data System (ADS)

    Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan

    2015-05-01

    Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.

  5. Technical Note: An operational landslide early warning system at regional scale based on space-time-variable rainfall thresholds

    NASA Astrophysics Data System (ADS)

    Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.

    2015-04-01

    We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region

  6. A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes

    NASA Astrophysics Data System (ADS)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe

    2015-04-01

    Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of

  7. Rainfall erosivity factor estimation in Republic of Moldova

    NASA Astrophysics Data System (ADS)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  8. Low Frequency Oscillations in Assimilated Global Datasets Using TRMM Rainfall Observations

    NASA Technical Reports Server (NTRS)

    Tao, Li; Yang, Song; Zhang, Zhan; Hou, Arthur; Olson, William S.

    2004-01-01

    Global datasets for the period May-August 1998 from the Goddard Earth Observing System (GEOS) data assimilation system (DAS) with/without assimilated Tropical Rainfall Measuring Mission (TRMM) precipitation are analyzed against European Center for Medium-Range Weather Forecast (ECMWF) output, NOAA observed outgoing longwave radiation (OLR) data, and TRMM measured rainfall. The purpose of this study is to investigate the representation of the Madden-Julian Oscillation (MJO) in GEOS assimilated global datasets, noting the impact of TRMM observed rainfall on the MJO in GEOS data assimilations. A space-time analysis of the OLR data indicates that the observed OLR exhibits a spectral maximum for eastward-propagating wavenumber 1-3 disturbances with periods of 20-60 days in the 0deg-30degN latitude band. The assimilated OLR has a similar feature but with a smaller magnitude. However, OLR spectra from assimilations including TRMM rainfall data show better agreement with observed OLR spectra than spectra from assimilations without TRMM rainfall. Similar results are found for wavenumber 4-6 disturbances. There is a spectral peak for eastward-propagating wavenumber 4-6 disturbances with periods of 20-40 days near the equator, while for westward-moving disturbances, a spectral peak is noted for periods of 30-50 days near 25degN. To isolate the MJO, a 30-50 day band filter is selected for this study. It was found that the eastward-propagating waves from the band-filtered observed OLR between 10degs- 10degN are located in the eastern hemisphere. Similar patterns are evident in surface rainfall and the 850 hPa wind field. Assimilation of TRMM-observed rainfall reveals more distinct MJO features in the analysis than without rainfall assimilation. Similar analyses are also conducted over the Indian summer monsoon and East Asia summer monsoon regions, where the MJO is strongly related to the summer monsoon active-break patterns.

  9. Role of Ocean Initial Conditions to Diminish Dry Bias in the Seasonal Prediction of Indian Summer Monsoon Rainfall: A Case Study Using Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Koul, Vimal; Parekh, Anant; Srinivas, G.; Kakatkar, Rashmi; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-03-01

    Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012-2014 in which two different OICs are utilized. With respect to first experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean, feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean. These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the coupled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.

  10. Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October-December) season

    NASA Astrophysics Data System (ADS)

    Sadhuram, Y.; Maneesha, K.

    2016-10-01

    In this study, an attempt has been made to examine the relationship between summer monsoon rainfall (June-September) and the total number of depressions, cyclones and severe cyclones (TNDC) over Bay of Bengal during the post-monsoon (October-December) season. The seasonal rainfall of the subdivisions (located in south India) (referred as rainfall index - RI), is positively and significantly correlated ( r=0.59; significant at >99% level) with the TNDC during the period, 1984-2013. By using the first differences (current season minus previous season), the correlations are enhanced and a remarkably high correlation of 0.87 is observed between TNDC and RI for the recent period, 1993-2013. The average seasonal genesis potential parameter (GPP) showed a very high correlation of 0.84 with the TNDC. A very high correlation of 0.83 is observed between GPP and RI for the period, 1993-2013. The relative vorticity and mid-tropospheric relative humidity are found to be the dominant terms in GPP. The GPP was 3.5 times higher in above (below) normal RI in which TNDC was 4 (2). It is inferred that RI is playing a key role in TNDC by modulating the environmental conditions (low level vorticity and relative humidity) over Bay of Bengal during post-monsoon season which could be seen from the very high correlation of 0.87 (which explains 76% variability in TNDC). For the first time, we show that RI is a precursor for the TNDC over Bay of Bengal during post-monsoon season. Strong westerlies after the SW monsoon season transport moisture over the subdivisions towards Bay of Bengal due to cyclonic circulation. This circulation favours upward motion and hence transport moisture vertically to mid-troposphere which causes convective instability and this in turn favour more number of TNDC, under above-normal RI year.

  11. Systematic errors in the simulation of the Asian summer monsoon: the role of rainfall variability on a range of time and space scales

    NASA Astrophysics Data System (ADS)

    Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven

    2015-04-01

    Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large

  12. On Winning the Race for Predicting the Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Goswami, Bhupendra

    2013-03-01

    Skillful prediction of Indian summer monsoon rainfall (ISMR) one season in advance remains a ``grand challenge'' for the climate science community even though such forecasts have tremendous socio-economic implications over the region. Continued poor skill of the ocean-atmosphere coupled models in predicting ISMR is an enigma in the backdrop when these models have high skill in predicting seasonal mean rainfall over the rest of the Tropics. Here, I provide an overview of the fundamental processes responsible for limited skill of climate models and outline a framework for achieving the limit on potential predictability within a reasonable time frame. I also show that monsoon intra-seasonal oscillations (MISO) act as building blocks of the Asian monsoon and provide a bridge between the two problems, the potential predictability limit and the simulation of seasonal mean climate. The correlation between observed ISMR and ensemble mean of predicted ISMR (R) can still be used as a metric for forecast verification. Estimate of potential limit of predictability of Asian monsoon indicates that the highest achievable R is about 0.75. Improvements in climate models and data assimilation over the past one decade has slowly improved R from near zero a decade ago to about 0.4 currently. The race for achieving useful prediction can be won, if we can push this skill up to about 0.7. It requires focused research in improving simulations of MISO, monsoon seasonal cycle and ENSO-monsoon relationship by the climate models. In order to achieve this goal by 2015-16 timeframe, IITM is leading a Program called Monsoon Mission supported by the Ministry of Earth Sciences, Govt. of India (MoES). As improvement in skill of forecasts can come only if R & D is carried out on an operational modeling system, the Climate Forecast System of National Centre for Environmental Prediction (NCEP) of NOAA, U.S.A has been selected as our base system. The Mission envisages building partnership between

  13. Observational evidence of European summer weather patterns predictable from spring

    NASA Astrophysics Data System (ADS)

    Ossó, Albert; Sutton, Rowan; Shaffrey, Len; Dong, Buwen

    2018-01-01

    Forecasts of summer weather patterns months in advance would be of great value for a wide range of applications. However, seasonal dynamical model forecasts for European summers have very little skill, particularly for rainfall. It has not been clear whether this low skill reflects inherent unpredictability of summer weather or, alternatively, is a consequence of weaknesses in current forecast systems. Here we analyze atmosphere and ocean observations and identify evidence that a specific pattern of summertime atmospheric circulation––the summer East Atlantic (SEA) pattern––is predictable from the previous spring. An index of North Atlantic sea-surface temperatures in March–April can predict the SEA pattern in July–August with a cross-validated correlation skill above 0.6. Our analyses show that the sea-surface temperatures influence atmospheric circulation and the position of the jet stream over the North Atlantic. The SEA pattern has a particularly strong influence on rainfall in the British Isles, which we find can also be predicted months ahead with a significant skill of 0.56. Our results have immediate application to empirical forecasts of summer rainfall for the United Kingdom, Ireland, and northern France and also suggest that current dynamical model forecast systems have large potential for improvement.

  14. Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds

    NASA Astrophysics Data System (ADS)

    Peres, David J.; Cancelliere, Antonino; Greco, Roberto; Bogaard, Thom A.

    2018-03-01

    Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide-triggering thresholds. In this paper, we perform a quantitative analysis of the impacts of uncertain knowledge of landslide initiation instants on the assessment of rainfall intensity-duration landslide early warning thresholds. The analysis is based on a synthetic database of rainfall and landslide information, generated by coupling a stochastic rainfall generator and a physically based hydrological and slope stability model, and is therefore error-free in terms of knowledge of triggering instants. This dataset is then perturbed according to hypothetical reporting scenarios that allow simulation of possible errors in landslide-triggering instants as retrieved from historical archives. The impact of these errors is analysed jointly using different criteria to single out rainfall events from a continuous series and two typical temporal aggregations of rainfall (hourly and daily). The analysis shows that the impacts of the above uncertainty sources can be significant, especially when errors exceed 1 day or the actual instants follow the erroneous ones. Errors generally lead to underestimated thresholds, i.e. lower than those that would be obtained from an error-free dataset. Potentially, the amount of the underestimation can be enough to induce an excessive number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge of triggering rainfall limits the possibility to set up links between thresholds and physio-geographical factors.

  15. Intra-Seasonal Rainfall Variations and Linkage with Kharif Crop Production: An Attempt to Evaluate Predictability of Sub-Seasonal Rainfall Events

    NASA Astrophysics Data System (ADS)

    Singh, Ankita; Ghosh, Kripan; Mohanty, U. C.

    2018-03-01

    The sub-seasonal variation of Indian summer monsoon rainfall highly impacts Kharif crop production in comparison with seasonal total rainfall. The rainfall frequency and intensity corresponding to various rainfall events are found to be highly related to crop production and therefore, the predictability of such events are considered to be diagnosed. Daily rainfall predictions are made available by one of the coupled dynamical model National Centers for Environmental Prediction Climate Forecast System (NCEPCFS). A large error in the simulation of daily rainfall sequence influences to take up a bias correction and for that reason, two approaches are used. The bias-corrected GCM is able to capture the inter-annual variability in rainfall events. Maximum prediction skill of frequency of less rainfall (LR) event is observed during the month of September and a similar result is also noticed for moderate rainfall event with maximum skill over the central parts of the country. On the other hand, the impact of rainfall weekly rainfall intensity is evaluated against the Kharif rice production. It is found that weekly rainfall intensity during July is having a significant impact on Kharif rice production, but the corresponding skill was found very low in GCM. The GCM are able to simulate the less and moderate rainfall frequency with significant skill.

  16. Simulation of the Summer Monsoon Rainfall over East Asia using the NCEP GFS Cumulus Parameterization at Different Horizontal Resolutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho

    2014-10-01

    The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less

  17. Factors affecting the inter-annual to centennial timescale variability of Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan

    2017-09-01

    The Modes of Ocean Variability (MOV) namely Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) can have significant impacts on Indian Summer Monsoon Rainfall (ISMR) on different timescales. The timescales at which these MOV interacts with ISMR and the factors which may perturb their relationship with ISMR need to be investigated. We employ De-trended Cross-Correlation Analysis (DCCA), and De-trended Partial-Cross-Correlation Analysis (DPCCA) to study the timescales of interaction of ISMR with AMO, PDO, and ENSO using observational dataset (AD 1854-1999), and atmosphere-ocean-chemistry climate model simulations with SOCOL-MPIOM (AD 1600-1999). Further, this study uses De-trended Semi-Partial Cross-Correlation Analysis (DSPCCA) to address the relation between solar variability and the ISMR. We find statistically significant evidence of intrinsic correlations of ISMR with AMO, PDO, and ENSO on different timescales, consistent between model simulations and observations. However, the model fails to capture modulation in intrinsic relationship between ISRM and MOV due to external signals. Our analysis indicates that AMO is a potential source of non-stationary relationship between ISMR and ENSO. Furthermore, the pattern of correlation between ISMR and Total Solar Irradiance (TSI) is inconsistent between observations and model simulations. The observational dataset indicates statistically insignificant negative intrinsic correlation between ISMR and TSI on decadal-to-centennial timescales. This statistically insignificant negative intrinsic correlation is transformed to statistically significant positive extrinsic by AMO on 61-86-year timescale. We propose a new mechanism for Sun-monsoon connection which operates through AMO by changes in summer (June-September; JJAS) meridional gradient of tropospheric temperatures (ΔTTJJAS). There is a negative (positive) intrinsic correlation between ΔTTJJAS (AMO) and

  18. Factors affecting the inter-annual to centennial timescale variability of Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan

    2018-06-01

    The Modes of Ocean Variability (MOV) namely Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) can have significant impacts on Indian Summer Monsoon Rainfall (ISMR) on different timescales. The timescales at which these MOV interacts with ISMR and the factors which may perturb their relationship with ISMR need to be investigated. We employ De-trended Cross-Correlation Analysis (DCCA), and De-trended Partial-Cross-Correlation Analysis (DPCCA) to study the timescales of interaction of ISMR with AMO, PDO, and ENSO using observational dataset (AD 1854-1999), and atmosphere-ocean-chemistry climate model simulations with SOCOL-MPIOM (AD 1600-1999). Further, this study uses De-trended Semi-Partial Cross-Correlation Analysis (DSPCCA) to address the relation between solar variability and the ISMR. We find statistically significant evidence of intrinsic correlations of ISMR with AMO, PDO, and ENSO on different timescales, consistent between model simulations and observations. However, the model fails to capture modulation in intrinsic relationship between ISRM and MOV due to external signals. Our analysis indicates that AMO is a potential source of non-stationary relationship between ISMR and ENSO. Furthermore, the pattern of correlation between ISMR and Total Solar Irradiance (TSI) is inconsistent between observations and model simulations. The observational dataset indicates statistically insignificant negative intrinsic correlation between ISMR and TSI on decadal-to-centennial timescales. This statistically insignificant negative intrinsic correlation is transformed to statistically significant positive extrinsic by AMO on 61-86-year timescale. We propose a new mechanism for Sun-monsoon connection which operates through AMO by changes in summer (June-September; JJAS) meridional gradient of tropospheric temperatures (ΔTTJJAS). There is a negative (positive) intrinsic correlation between ΔTTJJAS (AMO) and

  19. A 305-year continuous monthly rainfall series for the island of Ireland (1711-2016)

    NASA Astrophysics Data System (ADS)

    Murphy, Conor; Broderick, Ciaran; Burt, Timothy P.; Curley, Mary; Duffy, Catriona; Hall, Julia; Harrigan, Shaun; Matthews, Tom K. R.; Macdonald, Neil; McCarthy, Gerard; McCarthy, Mark P.; Mullan, Donal; Noone, Simon; Osborn, Timothy J.; Ryan, Ciara; Sweeney, John; Thorne, Peter W.; Walsh, Seamus; Wilby, Robert L.

    2018-03-01

    A continuous 305-year (1711-2016) monthly rainfall series (IoI_1711) is created for the Island of Ireland. The post 1850 series draws on an existing quality assured rainfall network for Ireland, while pre-1850 values come from instrumental and documentary series compiled, but not published by the UK Met Office. The series is evaluated by comparison with independent long-term observations and reconstructions of precipitation, temperature and circulation indices from across the British-Irish Isles. Strong decadal consistency of IoI_1711 with other long-term observations is evident throughout the annual, boreal spring and autumn series. Annually, the most recent decade (2006-2015) is found to be the wettest in over 300 years. The winter series is probably too dry between the 1740s and 1780s, but strong consistency with other long-term observations strengthens confidence from 1790 onwards. The IoI_1711 series has remarkably wet winters during the 1730s, concurrent with a period of strong westerly airflow, glacial advance throughout Scandinavia and near unprecedented warmth in the Central England Temperature record - all consistent with a strongly positive phase of the North Atlantic Oscillation. Unusually wet summers occurred in the 1750s, consistent with proxy (tree-ring) reconstructions of summer precipitation in the region. Our analysis shows that inter-decadal variability of precipitation is much larger than previously thought, while relationships with key modes of climate variability are time-variant. The IoI_1711 series reveals statistically significant multi-centennial trends in winter (increasing) and summer (decreasing) seasonal precipitation. However, given uncertainties in the early winter record, the former finding should be regarded as tentative. The derived record, one of the longest continuous series in Europe, offers valuable insights for understanding multi-decadal and centennial rainfall variability in Ireland, and provides a firm basis for

  20. Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s

    NASA Astrophysics Data System (ADS)

    Huang, Yanyan; Wang, Bin; Li, Xiaofan; Wang, Huijun

    2017-10-01

    The Year-to-year variability of the western Pacific subtropical high (WPSH) is primarily controlled by atmosphere-ocean interaction (AOI) between the WPSH and the Indo-Pacific warm pool dipole SST anomalies (AOI mode) and the anomalous SST forcing from the equatorial central Pacific (the CP forcing mode). In this study, we show that the impacts of the WPSH variability on Asian summer monsoon rainfall have changed after the late 1990s. Before the late 1990s (the PRE epoch), the WPSH primarily affects East Asian summer monsoon (EASM) and had little influence on Indian summer monsoon (ISM), whereas after the late 1990s (the POST epoch), the WPSH has strengthened its linkage to the ISM while weakened its relationship with the EASM. This epochal change is associated with a change in the leading circulation mode in the Asia-WP region. During the PRE (POST) epoch the WPSH variation is mainly controlled by the AOI (CP forcing) that mainly affects EASM (ISM). The epochal change of the leading mode may be attributed to the change of the ENSO properties in late 1990s: the CP types of El Nino become a leading ENSO mode in the POST epoch. This work provides a new perspective for understanding decadal changes of the ENSO-monsoon relationship through subtropical dynamics.

  1. Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover

    PubMed Central

    Paul, Supantha; Ghosh, Subimal; Oglesby, Robert; Pathak, Amey; Chandrasekharan, Anita; Ramsankaran, RAAJ

    2016-01-01

    Weakening of Indian summer monsoon rainfall (ISMR) is traditionally linked with large-scale perturbations and circulations. However, the impacts of local changes in land use and land cover (LULC) on ISMR have yet to be explored. Here, we analyzed this topic using the regional Weather Research and Forecasting model with European Center for Medium range Weather Forecast (ECMWF) reanalysis data for the years 2000–2010 as a boundary condition and with LULC data from 1987 and 2005. The differences in LULC between 1987 and 2005 showed deforestation with conversion of forest land to crop land, though the magnitude of such conversion is uncertain because of the coarse resolution of satellite images and use of differential sources and methods for data extraction. We performed a sensitivity analysis to understand the impacts of large-scale deforestation in India on monsoon precipitation and found such impacts are similar to the observed changes in terms of spatial patterns and magnitude. We found that deforestation results in weakening of the ISMR because of the decrease in evapotranspiration and subsequent decrease in the recycled component of precipitation. PMID:27553384

  2. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  3. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  4. Impacts of Early Summer Eurasian Snow Cover Change on Atmospheric Circulation in Northern Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Nozawa, T.

    2016-12-01

    Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.

  5. Relative role of pre-monsoon conditions and intraseasonal oscillations in determining early-vs-late indian monsoon intensity in a GCM

    NASA Astrophysics Data System (ADS)

    Ghosh, Rohit; Chakraborty, Arindam; Nanjundiah, Ravi S.

    2018-01-01

    The aim of this paper is to identify relative roles of different land-atmospheric conditions, apart from sea surface temperature (SST), in determining early vs. late summer monsoon intensity over India in a high resolution general circulation model (GCM). We find that in its early phase (June-July; JJ), pre-monsoon land-atmospheric processes play major role to modulate the precipitation over Indian region. These effects of pre-monsoon conditions decrease substantially during its later phase (August-September; AS) for which the interannual variation is mainly governed by the low frequency northward propagating intraseasonal oscillations. This intraseasonal variability which is related to mean vertical wind shear has a significant role during the early phase of monsoon as well. Further, using multiple linear regression, we show that interannual variation of early and late monsoon rainfall over India is best explained when all these land-atmospheric parameters are taken together. Our study delineates the relative role of different processes affecting early versus later summer monsoon rainfall over India that can be used for determining its subseasonal predictability.

  6. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  7. Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth

    USGS Publications Warehouse

    Connin, S.L.; Betancourt, J.; Quade, Jay

    1998-01-01

    Patterns of climate and C4 plant abundance in the southwestern United States during the last glaciation were evaluated from isotopic study of herbivore tooth enamel. Enamel ??13C values revealed a substantial eastward increase in C4 plant consumption for Mammuthus spp., Bison spp., Equus spp., and Camelops spp. The ??13C values were greatest in Bison spp. (-6.9 to + 1.7???) and Mammuthus spp. (-9.0 to +0.3???), and in some locales indicated C4-dominated grazing. The ??13C values of Antilocaprids were lowest among taxa (-12.5 to -7.9???) and indicated C3 feeding at all sites. On the basis of modern correlations between climate and C4 grass abundance, the enamel data imply significant summer rain in parts of southern Arizona and New Mexico throughout the last glaciation. Enamel ??18O values range from +19.0 to +31.0??? and generally increase to the east. This pattern could point to a tropical or subtropical source of summer rainfall. At a synoptic scale, the isotope data indicate that interactions of seasonal moisture, temperature, and lowered atmospheric pCO2 determined glacial-age C4 abundance patterns.

  8. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe

    PubMed Central

    Väliranta, M.; Salonen, J. S.; Heikkilä, M.; Amon, L.; Helmens, K.; Klimaschewski, A.; Kuhry, P.; Kultti, S.; Poska, A.; Shala, S.; Veski, S.; Birks, H. H.

    2015-01-01

    Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 °C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. PMID:25858780

  9. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning.

    PubMed

    Parra, Antonio; Ramírez, David A; Resco, Víctor; Velasco, Ángel; Moreno, José M

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  10. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning

    NASA Astrophysics Data System (ADS)

    Parra, Antonio; Ramírez, David A.; Resco, Víctor; Velasco, Ángel; Moreno, José M.

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  11. South China Sea summer monsoon onset in relation to the off-equatorial ITCZ

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Chan, Johnny Chung-Leung; Li, Chongyin

    2005-09-01

    Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.

  12. Reconstruction and analysis of spring rainfall over the southeastern US for the past 1000 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahle, D.W.; Cleaveland, M.K.

    1992-12-01

    Tree-ring chronologies can provide surprisingly accurate estimates of the natural variability of important climate parameters such as precipitation and temperature during the centuries prior to the industrial Revolution. Bald cypress tree-ring chronologies have been used to reconstruct spring rainfall for the past 1000 years in North Carolina, South Carolina, and Georgia. These rainfall reconstructions explain from 54% to 68% of the spring rainfall variance in each state, and are well verified against independent rainfall measurements. In fact, these tree-ring data explain only 6% to 13% less statewide rainfall variance than is explained by the same number of instrumental raingage records.more » The reconstructions indicate that the spring rainfall extremes and decade-long regimes witnessed during the past century of instrumental observation have been a prominent feature of southeastern United States climate over the past millennium. These spring rainfall regimes are linked in part to anomalies in the seasonal expansion and migration of the subtropical anticyclone over the North Atlantic. The western sector of the Bermuda high often ridges strongly westward into the southeastern United States during dry springs, but during wet springs it is usually located east of its mean position and well offshore. Similar anomalies in the western sector of the Bermuda high occurred during multidecadal regimes of spring rainfall over the Southeast. During the relatively dry springs from 1901 to 1939, the high often ridged into the Southeast, but the western periphery of the high was more frequently located offshore during the relatively wet period from 1940 to 1980. Spring and summer rainfall extremes and decade-long regimes over the Southeast are frequently out of phase, and the tendency for wet (dry) springs to be followed by dry (wet) summers also appears to reflect anomalies in the zonal position of the Bermuda high during spring and summer.« less

  13. Factors Affecting the Inter-annual to Centennial Time Scale Variability of All Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan

    2016-04-01

    The All Indian Summer Monsoon Rainfall (AISMR) is highly important for the livelihood of more than 1 billion people living in the Indian sub-continent. The agriculture of this region is heavily dependent on seasonal (JJAS) monsoon rainfall. An early start or a slight delay of monsoon, or an early withdrawal or prolonged monsoon season may upset the farmer's agricultural plans, can cause significant reduction in crop yield, and hence economic loss. Understanding of AISMR is also vital because it is a part of global atmospheric circulation system. Several studies show that AISMR is influenced by internal climate forcings (ICFs) viz. ENSO, AMO, PDO etc. as well as external climate forcings (ECFs) viz. Greenhouse Gases, volcanic eruptions, and Total Solar Irradiance (TSI). We investigate the influence of ICFs and ECFs on AISMR using recently developed statistical technique called De-trended Partial-Cross-Correlation Analysis (DPCCA). DPCCA can analyse a complex system of several interlinked variables. Often, climatic variables, being cross correlated, are simultaneously tele-connected with several other variables and it is not easy to isolate their intrinsic relationship. In the presence of non-stationarities and background signals the calculated correlation coefficients can be overestimated and erroneous. DPCCA method removes the non-stationarities and partials out the influence of background signals from the variables being cross correlated and thus give a robust estimate of correlation. We have performed the analysis using NOAA Reconstructed SSTs and homogenised instrumental AISMR data set from 1854-1999. By employing the DPCCA method we find that there is a statistically insignificant negative intrinsic relation (by excluding the influence of ICFs, and ECFs except TSI) between AISMR and TSI on decadal to centennial time scale. The ICFs considerably modulate the relation between AISMR and solar activity between 50-80 year time scales and transform this relationship

  14. James Madison and a Shift in Precipitation Seasonality

    NASA Astrophysics Data System (ADS)

    Druckenbrod, D. L.; Mann, M. E.; Stahle, D. W.; Cleaveland, M. K.; Therrell, M. D.; Shugart, H. H.

    2001-12-01

    An eighteen-year meteorological diary and tree ring data from James Madison's Montpelier plantation provide a consistent reconstruction of early summer and prior fall rainfall for the 18th Century Virginia piedmont. The Madison meteorological diary suggests a seasonal shift in monthly rainfall towards an earlier wet season relative to 20th Century norms. Furthermore, dendroclimatic reconstructions of early summer and prior fall rainfall reflect this shift in the seasonality of summer rainfall. The most pronounced early summer drought during the Madison diary period is presented as a case study. This 1792 drought occurs during one of the strongest El Niño events on record and is highlighted in the correspondence of James Madison.

  15. A Tibetan lake sediment record of Holocene Indian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Polisar, Pratigya J.; Lei, Yanbin; Thompson, Lonnie G.; Yao, Tandong; Finney, Bruce P.; Bain, Daniel J.; Pompeani, David P.; Steinman, Byron A.

    2014-08-01

    Sedimentological data and hydrogen isotopic measurements of leaf wax long-chain n-alkanes (δDwax) from an alpine lake sediment archive on the southeastern Tibetan Plateau (Paru Co) provide a Holocene perspective of Indian summer monsoon (ISM) activity. The sedimentological data reflect variations in lake level and erosion related to local ISM rainfall over the Paru Co catchment, whereas δDwax reflects integrated, synoptic-scale ISM dynamics. Our results indicate that maximum ISM rainfall occurred between 10.1 and ˜5.2 ka, during which time there were five century-scale high and low lake stands. After 5.2 ka, the ISM trended toward drier conditions to the present, with the exception of a pluvial event centered at 0.9 ka. The Paru Co results share similarities with paleoclimate records from across the Tibetan Plateau, suggesting millennial-scale ISM dynamics were expressed coherently. These millennial variations largely track gradual decreases in orbital insolation, the southward migration of the Intertropical Convergence Zone (ITCZ), decreasing zonal Pacific sea surface temperature (SST) gradients and cooling surface air temperatures on the Tibetan Plateau. Centennial ISM and lake-level variability at Paru Co closely track reconstructed surface air temperatures on the Tibetan Plateau, but may also reflect Indian Ocean Dipole events, particularly during the early Holocene when ENSO variability was attenuated. Variations in the latitude of the ITCZ during the early and late Holocene also appear to have exerted an influence on centennial ISM rainfall.

  16. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China

    NASA Astrophysics Data System (ADS)

    Wen, Ruilin; Xiao, Jule; Fan, Jiawei; Zhang, Shengrui; Yamagata, Hideki

    2017-11-01

    There is a controversy regarding whether the high precipitation delivered by an intensified East Asian summer monsoon occurred during the early Holocene, or during the middle Holocene, especially in the context of the monsoonal margin region. The conflicting views on the subject may be caused by chronological uncertainties and ambiguities in the interpretation of different climate proxies measured in different sedimentary sequences. Here, we present a detailed record of the Holocene evolution of vegetation in northern China based on a high-resolution pollen record from Dali Lake, located near the modern summer monsoon limit. From 12,000-8300 cal BP, the sandy land landscape changed from desert to open elm forest and shrubland, while dry steppe dominated the hilly lands and patches of birch forest developed in the mountains. Between 8300 and 6000 cal BP, elm forest was extensively distributed in the sandy lands, while typical steppe covered the hilly lands and mixed coniferous-broadleaved forests expanded in the mountains. Our pollen evidence contradicts the view that the monsoonal rainfall increased during the early Holocene; rather, it indicates that the East Asian summer monsoon did not become intensified until ∼8000 cal BP in northern China. The low precipitation during the early Holocene can be attributed to the boundary conditions, i.e., to the remnant high-latitude Northern Hemisphere ice sheets and the relatively low global sea level.

  17. Early warning method of Glacial Lake Outburst Floods based on temperature and rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Su, Pengcheng; Cheng, Zunlan

    2017-04-01

    Glacial lake outburst floods (GLOFs) are serious disasters in glacial areas. At present, glaciers are retreating while glacial lake area and the outburst risk increases due to the global warming. Therefore, the research of early warning method of GLOFs is important to prevent and reduce the disasters. This paper provides an early warning method using the temperature and rainfall as indices. The daily growth rate of positive antecedent accumulative temperature and the antecedent thirty days accumulative precipitation are calculated for 21 events of GLOF before 2010, based on data from the 21 meteorological stations nearby. The result shows that all the events are above the curve, TV = -0.0193RDC + 3.0018, which can be taken as the early warning threshold curve. This has been verified by the GLOF events in the Ranzeaco glacial lake on 2013-07-05.

  18. Upper air thermal inversion and their impact on the summer monsoon rainfall over Goa - A case study

    NASA Astrophysics Data System (ADS)

    Swathi, M. S.; Muraleedharan, P. M.; Ramaswamy, V.; Rameshkumar, M. R.; Aswini, Anirudhan

    2018-04-01

    Profiles of periodic GPS Radiosonde ascends collected from a station at the west coast of India (Goa) during summer monsoon months (June to September) of 2009 and 2013 have been used to analyze the thermal inversion statistics at various heights and their repercussions on the regional weather is studied. The interaction of contrasting air masses over the northern Arabian Sea often produces a two layer structure in the lower 5000 m close to the coastal station with warm and dusty air (Summer Shamal) occupying the space above the cool and moist Low Level Jet (LLJ) by virtue of their density differences. The warm air intrusion creates low lapse rate pockets above LLJ and modifies the gravitational stability strong enough to inhibit convection. It is observed that the inversion occurring in the lower 3000 m layer with an optimum layer thickness of 100-200 m has profound influence on the weather beneath it. We demonstrated the validity of the proposed hypothesis by analyzing the collocated data from radiosonde, lidar and the rain gauge during 16th July 2013 as a case study. The lidar depolarization ratio provides evidence to support the two layer structure in the lidar backscatter image. The presence of dust noticed in the two layer interface hints the intrusion of warm air that makes the atmosphere stable enough to suppress convection. The daily rainfall record of 2013 surprisingly coincides with the patterns of a regional break like situation centered at 16th July 2013 in Goa.

  19. Mesoscale features of urban rainfall enhancement

    Treesearch

    F. A. Huff

    1977-01-01

    Analyses of data from the first 4 years of a 5-year research project at St. Louis indicate a substantial enhancement of summer rainfall downwind of the urban-industrial complex. This anomaly appears to be caused primarily by the intensification of naturally occurring storm systems through the addition of heat and raindrop nuclei from the urban area. Most of the...

  20. Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall

    NASA Astrophysics Data System (ADS)

    Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James

    2010-05-01

    The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day

  1. On the Numerical Study of Heavy Rainfall in Taiwan

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chen, Ching-Sen; Chen, Yi-Leng; Jou, Ben Jong-Dao; Lin, Pay-Liam; Starr, David OC. (Technical Monitor)

    2001-01-01

    Heavy rainfall events are frequently observed over the western side of the CMR (central mountain range), which runs through Taiwan in a north-south orientation, in a southwesterly flow regime and over the northeastern side of the CMR in a northeasterly flow regime. Previous studies have revealed the mechanisms by which the heavy rainfall events are formed. Some of them have examined characteristics of the heavy rainfall via numerical simulations. In this paper, some of the previous numerical studies on heavy rainfall events around Taiwan during the Mei-Yu season (May and June), summer (non-typhoon cases) and autumn will be reviewed. Associated mechanisms proposed from observational studies will be reviewed first, and then characteristics of numerically simulated heavy rainfall events will be presented. The formation mechanisms of heavy rainfall from simulated results and from observational analysis are then compared and discussed. Based on these previous modeling studies, we will also discuss what are the major observations and modeling processes which will be needed for understanding the heavy precipitation in the future.

  2. Mountain Heavy Rainfall Measurement Experiments in a Subtropical Monsoon Environment

    NASA Astrophysics Data System (ADS)

    Jong-Dao Jou, Ben; Chi-June Jung, Ultimate; Lai, Hsiao-Wei; Feng, Lei

    2014-05-01

    Quantitative rainfall measurement experiments have been conducted in Taiwan area for the past 5 years (since 2008), especially over the complex terrain region. In this paper, results from these experiments will be analyzed and discussed, especially those associated with heavy rain events in the summer monsoon season. Observations from s-band polarimetric radar (SPOL of NCAR) and also x-band vertically-pointing radar are analyzed to reveal the high resolution temporal and spatial variation of precipitation structure. May and June, the Meiyu season in the area, are months with subtropical frontal rainfall events. Mesoscale convective systems, i.e., pre-frontal squall lines and frontal convective rainbands, are very active and frequently produce heavy rain events over mountain areas. Accurate quantitative precipitation measurements are needed in order to meet the requirement for landslide and flood early warning purpose. Using ground-based disdrometers and vertically-pointing radar, we have been trying to modify the quantitative precipitation estimation in the mountain region by using coastal operational radar. In this paper, the methodology applied will be presented and the potential of its application will be discussed. *corresponding author: Ben Jong-Dao Jou, jouben43@gmail.com

  3. Demographic patterns of a widespread long-lived tree are associated with rainfall and disturbances along rainfall gradients in SE Australia

    PubMed Central

    Cohn, Janet S; Lunt, Ian D; Bradstock, Ross A; Hua, Quan; McDonald, Simon

    2013-01-01

    Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less-disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients. PMID:23919160

  4. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  5. Population dynamics of two species of dragon lizards in arid Australia: the effects of rainfall.

    PubMed

    Dickman, Christopher R; Letnic, Mike; Mahon, Paul S

    1999-05-01

    The population dynamics of two species of agamid (dragon) lizards were studied in the Simpson Desert, central Australia, over a period of 7 years, and modelled in relation to rainfall. Both species have annual life cycles, with adults predominating during the breeding season in spring and summer and juveniles predominating in other seasons. Within years, juvenile abundance in both species in autumn and winter was related most strongly to rainfall in the preceding summer and autumn. This pattern suggests that rainfall enhances survival, growth and possibly clutch size and hatching success. Between years, however, rainfall drove successional change in the dominant plant species in the study area, spinifex Triodia basedowii, causing in turn a shift in the relative abundance of the two species. Thus, the central netted dragon Ctenophorus nuchalis was most numerous in 1990 when vegetation cover was <10%, but declined dramatically in abundance after heavy rainfall at the end of that year. In contrast, the military dragon C. isolepis achieved greatest abundance following heavy rains in the summers of 1990 and 1994, when spinifex cover increased to >20%, and remained numerically dominant for much of the study. We suggest that drought-wet cycles periodically reverse the dominance of the two species of Ctenophorus, and perhaps of other lizard species also, thus enhancing local species diversity over time. Further long-term studies are needed to document the population dynamics of other species, and to identify the factors that influence them.

  6. Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016

    NASA Astrophysics Data System (ADS)

    Rodrigo, F. S.

    2018-02-01

    In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.

  7. Wetting and greening Tibetan Plateau in early summer since the late 1970s due to advanced Asian summer monsoon onset

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Zhou, Tianjun; Zhang, Lixia

    2016-04-01

    Known as the "the world water tower", the Tibetan Plateau (TP) is the origin of the ten largest rivers in Asia, breeding more than 1.4 billion people, and exerts substantial influences on water resources, agriculture, and ecosystems in downstream countries. This region is one of the most susceptible areas around the world to changing climate due to the high elevation. Observed evidence have shown significant climate changes over the TP, including surface air warming and moistening, glaciers shrinking, winds stilling, solar dimming, and atmospheric heat source weakening. However, as an essential part of the hydrological cycle, precipitation changes on the TP remain an ambiguous picture. Changes in precipitation vary largely with different seasons, time periods and climate zones considered. This study shows a robust increase in precipitation amount over the TP in May, when the rainy season starts, over the period 1979-2014 (31% relative to the climatology). The wetting trend is spatially consistent over the south-eastern TP, to which both precipitation frequency and intensity contribute. Circulation trends show that the wetting TP in May is resulted from the advanced onset of Asian summer monsoon, which onsets 1~2 pentads earlier since 1979. It intensified water vapor transport from the Bay of Bengal (BOB) to south of the TP in May and local anomalous convection. This relationship is further validated by the significant correlation coefficient (0.47) between the onset dates of Asian summer monsoon (particularly the BOB summer monsoon, 0.68) and precipitation over the south-eastern TP in May. The wetting TP in May has further exerted profound impacts on the hydrological cycle and ecosystem, such as moistening the soil and animating vegetation activities throughout early summer. Both decadal variations of soil moisture (from May to June) and Normalized Difference Vegetation Index (NDVI) (from May to July) coincide well with that of precipitation over the south

  8. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    NASA Astrophysics Data System (ADS)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  9. Early Opportunities to Strengthen Academic Readiness: Effects of Summer Learning on Mathematics Achievement

    ERIC Educational Resources Information Center

    Little, Catherine A.; Adelson, Jill L.; Kearney, Kelly L.; Cash, Kathleen; O'Brien, Rebecca

    2018-01-01

    Students who come from low-income backgrounds tend to be underidentified and underserved in gifted education. Early interventions with learners of high potential from underserved groups, including exposure to challenging curriculum and summer opportunities, are important for nurturing these students' talents and preparing them for advanced…

  10. Drought Early Warning and Agro-Meteorological Risk Assessment using Earth Observation Rainfall Datasets and Crop Water Budget Modelling

    NASA Astrophysics Data System (ADS)

    Tarnavsky, E.

    2016-12-01

    The water resources satisfaction index (WRSI) model is widely used in drought early warning and food security analyses, as well as in agro-meteorological risk management through weather index-based insurance. Key driving data for the model is provided from satellite-based rainfall estimates such as ARC2 and TAMSAT over Africa and CHIRPS globally. We evaluate the performance of these rainfall datasets for detecting onset and cessation of rainfall and estimating crop production conditions for the WRSI model. We also examine the sensitivity of the WRSI model to different satellite-based rainfall products over maize growing regions in Tanzania. Our study considers planting scenarios for short-, medium-, and long-growing cycle maize, and we apply these for 'regular' and drought-resistant maize, as well as with two different methods for defining the start of season (SOS). Simulated maize production estimates are compared against available reported production figures at the national and sub-national (province) levels. Strengths and weaknesses of the driving rainfall data, insights into the role of the SOS definition method, and phenology-based crop yield coefficient and crop yield reduction functions are discussed in the context of space-time drought characteristics. We propose a way forward for selecting skilled rainfall datasets and discuss their implication for crop production monitoring and the design and structure of weather index-based insurance products as risk transfer mechanisms implemented across scales for smallholder farmers to national programmes.

  11. Stressed Watersheds in a Rainfall-Rich Region

    NASA Astrophysics Data System (ADS)

    Kastrinos, J. R.; Miles, O.; Pickering, N. B.

    2016-12-01

    Southern New England has ample rainfall and, in some years, snowmelt, to sustain reservoirs and aquifers that are used primarily for municipal water supplies and secondarily for industrial and agricultural needs. Despite the humid climate, however, many watersheds are considered stressed, particularly during the summer and early fall growing-season months due to the combined effect of evapotranspiration and increased demand for lawn irrigation and other seasonal, warm-weather uses. While per capita consumption is frequently the focus of water-conservation efforts, most high-stress areas are in population centers where concentrated demand exceeds recharge (to aquifers) or runoff (to surface water supplies) within the region's small watersheds (commonly 200 mi2 or less). The parameter depletion intensity, described by Konikow (2015) in a review of groundwater-depletion trends across the United States, is used to compare seasonal stress and changes in stress level in several watersheds in Massachusetts. Areas of stress follow patterns of high depletion intensity during the summer months when demand is high. This seasonal stress is exacerbated by inter-basin transfer of water or wastewater from a watershed. Examples will be presented of projects where streamflow impacts have been offset using tools including well optimization, water conservation, storm water recharge, and reductions of infiltration/inflow to utilities, pursuant to the state's Sustainable Water Management Initiative.

  12. Technical Note: An operational landslide early warning system at regional scale based on space-time variable rainfall thresholds

    NASA Astrophysics Data System (ADS)

    Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.

    2014-10-01

    We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain-gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult and it provides different outputs. Switching among different views, the system is able to focus both on monitoring of real time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a very straightforward view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain-gauges can be displayed and constantly compared with rainfall thresholds. To better account for the high spatial variability of the physical features, which affects the relationship between rainfall and landslides, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of 332 rain gauges, it allows monitoring each alert zone separately and warnings can be issued independently from an alert zone to another. An important feature of the warning system is the use of thresholds that may vary in time adapting at the conditions of the rainfall path recorded by the rain-gauges. Depending on when the starting time of the rainfall event is set, the comparison with the threshold may produce different outcomes. Therefore, a recursive algorithm was developed to check and compare with the thresholds all possible starting times, highlighting the worst scenario and showing in the WebGIS interface at what time and how much the rainfall path has exceeded or will exceed the most critical threshold. Besides forecasting and monitoring the hazard scenario

  13. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    NASA Astrophysics Data System (ADS)

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing

    2018-01-01

    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  14. Under the Weather: Health, Schooling, and Economic Consequences of Early-Life Rainfall. NBER Working Paper No. 14031

    ERIC Educational Resources Information Center

    Maccini, Sharon L.; Yang, Dean

    2008-01-01

    How sensitive is long-run individual well-being to environmental conditions early in life? This paper examines the effect of weather conditions around the time of birth on the health, education, and socioeconomic outcomes of Indonesian adults born between 1953 and 1974. We link historical rainfall for each individual's birth-year and…

  15. Application of spatial Poisson process models to air mass thunderstorm rainfall

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Fennessy, N. M.; Wang, Qinliang; Rodriguez-Iturbe, I.

    1987-01-01

    Eight years of summer storm rainfall observations from 93 stations in and around the 154 sq km Walnut Gulch catchment of the Agricultural Research Service, U.S. Department of Agriculture, in Arizona are processed to yield the total station depths of 428 storms. Statistical analysis of these random fields yields the first two moments, the spatial correlation and variance functions, and the spatial distribution of total rainfall for each storm. The absolute and relative worth of three Poisson models are evaluated by comparing their prediction of the spatial distribution of storm rainfall with observations from the second half of the sample. The effect of interstorm parameter variation is examined.

  16. Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki

    2017-12-01

    Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.

  17. Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall.

    PubMed

    Dave, Prashant; Bhushan, Mani; Venkataraman, Chandra

    2017-12-11

    Aerosol abundance over South Asia during the summer monsoon season, includes dust and sea-salt, as well as, anthropogenic pollution particles. Using observations during 2000-2009, here we uncover repeated short-term rainfall suppression caused by coincident aerosols, acting through atmospheric stabilization, reduction in convection and increased moisture divergence, leading to the aggravation of monsoon break conditions. In high aerosol-low rainfall regions extending across India, both in deficient and normal monsoon years, enhancements in aerosols levels, estimated as aerosol optical depth and absorbing aerosol index, acted to suppress daily rainfall anomaly, several times in a season, with lags of a few days. A higher frequency of prolonged rainfall breaks, longer than seven days, occurred in these regions. Previous studies point to monsoon rainfall weakening linked to an asymmetric inter-hemispheric energy balance change attributed to aerosols, and short-term rainfall enhancement from radiative effects of aerosols. In contrast, this study uncovers intraseasonal short-term rainfall suppression, from coincident aerosol forcing over the monsoon region, leading to aggravation of monsoon break spells. Prolonged and intense breaks in the monsoon in India are associated with rainfall deficits, which have been linked to reduced food grain production in the latter half of the twentieth century.

  18. Southern Indian Ocean SST as a modulator for the progression of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Shahi, Namendra Kumar; Rai, Shailendra; Mishra, Nishant

    2018-01-01

    This study explores the possibility of southern Indian Ocean (SIO) sea surface temperature (SST) as a modulator for the early phase of Indian summer monsoon and its possible physical mechanism. A dipole-like structure is obtained from the empirical orthogonal function (EOF) analysis which is similar to an Indian Ocean subtropical dipole (IOSD) found earlier. A subtropical dipole index (SDI) is defined based on the SST anomaly over the positive and negative poles. The regression map of rainfall over India in the month of June corresponding to the SDI during 1983-2013 shows negative patterns along the Western Ghats and Central India. However, the regression pattern is insignificant during 1952-1982. The multiple linear regression models and partial correlation analysis also indicate that the SDI acts as a dominant factor to influence the rainfall over India in the month of June during 1983-2013. The similar result is also obtained with the help of composite rainfall over the land points of India in the month of June for positive (negative) SDI events. It is also observed that the positive (negative) SDI delays (early) the onset dates of Indian monsoon over Kerala during the time domain of our study. The study is further extended to identify the physical mechanism of this impact, and it is found that the heating (cooling) in the region covering SDI changes the circulation pattern in the SIO and hence impacts the progression of monsoon in India.

  19. A possible abrupt change in summer precipitation over eastern China around 2009

    NASA Astrophysics Data System (ADS)

    Ren, Yongjian; Song, Lianchun; Wang, Zunya; Xiao, Ying; Zhou, Bing

    2017-04-01

    Historical studies have shown that summer rainfall in eastern China undergoes decadal variations, with three apparent changes in the late 1970s, 1992, and the late 1990s. The present observational study indicates that summer precipitation over eastern China likely underwent a change in the late 2000s, during which the main spatial pattern changed from negative-positive-negative to positive-negative in the meridional direction. This change in summer precipitation over eastern China may have been associated with circulation anomalies in the middle/upper troposphere. A strong trough over Lake Baikal created a southward flow of cold air during 2009-15, compared with 1999-2008, while the westward recession of the western Pacific subtropical high strengthened the moisture transport to the north, creating conditions that were conducive for more rainfall in the north during this period. The phase shift of the Pacific Decadal Oscillation in the late 2000s led to the Pacific-Japan-type teleconnection wave train shifting from negative to positive phases, resulting in varied summer precipitation over eastern China.

  20. Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming

    2015-06-01

    Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.

  1. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall

    PubMed Central

    Preethi, B.; Sabin, T. P.; Adedoyin, J. A.; Ashok, K.

    2015-01-01

    The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa. PMID:26567458

  2. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.

    PubMed

    Preethi, B; Sabin, T P; Adedoyin, J A; Ashok, K

    2015-11-16

    The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa.

  3. A 100 000-year record of annual and seasonal rainfall and temperature for northwestern Australia based on a pollen record obtained offshore

    NASA Astrophysics Data System (ADS)

    van der Kaars, Sander; de Deckker, Patrick; Gingele, Franz X.

    2006-12-01

    Pollen recovered from core tops of deep-sea cores from offshore northwestern Western Australia were used to build climatic transfer functions applied to sediment samples from major rivers bordering the ocean in the same region and a deep-sea core offshore Northwest Cape. Results show for the last 100 000 years, with a gap in the record spanning the 64 000 to 46 000 years interval, that from about 100 000 to 82 000 yr BP, climatic conditions represented by rainfall, temperature and number of humid months, were significantly higher than today's values. For the entire record, the coldest period occurred about 43 000 to 39 000 yr BP but it was wetter than today, whereas the Last Glacial Maximum saw a significant reduction in summer rainfall, interpreted as a result of the absence of monsoonal activity in the region. The Holocene can be divided into two distinct phases: one peaking around 6000 cal. yr BP with highest rainfall and summer temperatures; the second one commencing at 5000 cal. yr BP and showing a progressive decrease in summer rainfall in contrast to an increase in winter rainfall, paralleled by a progressive decrease in temperatures. Copyright

  4. Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem.

    PubMed

    Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A

    2014-12-01

    Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.

  5. Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error

    NASA Astrophysics Data System (ADS)

    Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.

    2016-04-01

    A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project

  6. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    NASA Astrophysics Data System (ADS)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of

  7. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  8. Spatio-Temporal Variability of Summer Precipitation in Mexico under the Influence of the MJO, with Emphasis on the Bimodal Pattern

    NASA Astrophysics Data System (ADS)

    Perdigón, J.; Romero-Centeno, R.; Barrett, B.; Ordoñez-Perez, P.

    2017-12-01

    In many regions of Mexico, precipitation occurs in a very well defined annual cycle with peaks in May-June and September-October and a relative minimum in the middle of the rainy season known as the midsummer drought (MSD). The MJO is the most important mode of intraseasonal variability in the tropics, and, although some studies have shown its evident influence on summer precipitation in Mexico, its role in modulating the bimodal pattern of the summer precipitation cycle is still an open question. The spatio-temporal variability of summer precipitation in Mexico is analyzed through composite analysis according to the phases of the MJO, using the very high resolution CHIRPS precipitation data base and gridded data from the CFSR reanalysis to analyzing the MJO influence on the atmospheric circulation over Mexico and its adjacent basins. In general, during MJO phases 8-2 (4-6) rainfall is above-normal (below-normal), although, in some cases, the summer rainfall patterns during the same phase present considerable differences. The atmospheric circulation shows low (high) troposphere southwesterly (northeasterly) wind anomalies in southern Mexico under wetter conditions compared with climatological patterns, while the inverse pattern is observed under drier conditions. Composite anomalies of several variables also agreed well with those rainfall anomalies. Finally, a MJO complete cycle that reinforces (weakens) the bimodal pattern of summer rainfall in Mexico was found.

  9. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Gouirand, Isabelle; Taylor, Michael

    2016-07-01

    Eight weather types (WTs) are computed over 98.75°W-56.25°W, 8.75°N-31.25°N using cluster analysis of daily low-level (925 hPa) winds and outgoing longwave radiation, without removing the mean annual cycle, by a k-means algorithm from 1979 to 2013. The WTs can be firstly interpreted as snapshots of the annual cycle with a clear distinction between 5 "wintertime" and 3 "summertime" WTs, which account together for 70 % of the total mean annual rainfall across the studied domain. The wintertime WTs occur mostly from late November to late April and are characterized by varying intensity and location of the North Atlantic subtropical high (NASH) and transient synoptic troughs along the northern edge of the domain. Large-scale subsidence dominates the whole basin but rainfall can occur over sections of the basin, especially on the windward shores of the troughs associated with the synoptic waves. The transition between wintertime and summertime WTs is rather abrupt, especially in May. One summertime WT (WT 4) is prevalent in summer, and almost exclusive around late July. It is characterized by strong NASH, fast Caribbean low level jet and rainfall mostly concentrated over the Caribbean Islands, the Florida Peninsula, the whole Central America and the tropical Eastern Pacific. The two remaining summertime WTs display widespread rainfall respectively from Central America to Bermuda (WT 5) and over the Eastern Caribbean (WT 6). Both WTs combine reduced regional scale subsidence and weaker Caribbean low-level jet relatively to WT 4. The relationships between WT frequency and El Niño Southern Oscillation (ENSO) events are broadly linear. Warm central and eastern ENSO events are associated with more WT 4 (less WT 5-6) during boreal summer and autumn (0) while this relationship is reversed during boreal summer (+1) for central events only. In boreal winter, the largest anomalies are observed for two WTs consistent with negative (WT 2) and positive (WT 8) phases of the

  10. A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 1. Evaluation of different paleoclimate archives, rainfall networks, and reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Kiem, Anthony S.; Verdon-Kidd, Danielle C.

    2015-10-01

    From ˜1997 to 2009 the Murray-Darling Basin (MDB), Australia's largest water catchment and reputed "food bowl," experienced a severe drought termed the "Millennium Drought" or "Big Dry" followed by devastating floods in the austral summers of 2010/2011, 2011/2012, and 2012/2013. The magnitude and severity of these extreme events highlight the limitations associated with assessing hydroclimatic risk based on relatively short instrumental records (˜100 years). An option for extending hydroclimatic records is through the use of paleoclimate records. However, there are few in situ proxies of rainfall or streamflow suitable for assessing hydroclimatic risk in Australia and none are available in the MDB. In this paper, available paleoclimate records are reviewed and those of suitable quality for hydroclimatic risk assessments are used to develop preinstrumental information for the MDB. Three different paleoclimate reconstruction techniques are assessed using two instrumental rainfall networks: (1) corresponding to rainfall at locations where rainfall-sensitive Australian paleoclimate archives currently exist and (2) corresponding to rainfall at locations identified as being optimal for explaining MDB rainfall variability. It is shown that the optimized rainfall network results in a more accurate model of MDB rainfall compared to reconstructions based on rainfall at locations where paleoclimate rainfall proxies currently exist. This highlights the importance of first identifying key locations where existing and as yet unrealized paleoclimate records will be most useful in characterizing variability. These results give crucial insight as to where future investment and research into developing paleoclimate proxies for Australia could be most beneficial, with respect to better understanding instrumental, preinstrumental and potential future variability in the MDB.

  11. The PRESSCA operational early warning system for landslide forecasting: the 11-12 November 2013 rainfall event in Central Italy.

    NASA Astrophysics Data System (ADS)

    Ciabatta, Luca; Brocca, Luca; Ponziani, Francesco; Berni, Nicola; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Umbria Region, located in Central Italy, is one of the most landslide risk prone area in Italy, almost yearly affected by landslides events at different spatial scales. For early warning procedures aimed at the assessment of the hydrogeological risk, the rainfall thresholds represent the main tool for the Italian Civil Protection System. As shown in previous studies, soil moisture plays a key-role in landslides triggering. In fact, acting on the pore water pressure, soil moisture influences the rainfall amount needed for activating a landslide. In this work, an operational physically-based early warning system, named PRESSCA, that takes into account soil moisture for the definition of rainfall thresholds is presented. Specifically, the soil moisture conditions are evaluated in PRESSCA by using a distributed soil water balance model that is recently coupled with near real-time satellite soil moisture product obtained from ASCAT (Advanced SCATterometer) and from in-situ monitoring data. The integration of three different sources of soil moisture information allows to estimate the most accurate possible soil moisture condition. Then, both observed and forecasted rainfall data are compared with the soil moisture-based thresholds in order to obtain risk indicators over a grid of ~ 5 km. These indicators are then used for the daily hydrogeological risk evaluation and management by the Civil Protection regional service, through the sharing/delivering of near real-time landslide risk scenarios (also through an open source web platform: www.cfumbria.it). On the 11th-12th November, 2013, Umbria Region was hit by an exceptional rainfall event with up to 430mm/72hours that resulted in significant economic damages, but fortunately no casualties among the population. In this study, the results during the rainfall event of PRESSCA system are described, by underlining the model capability to reproduce, two days in advance, landslide risk scenarios in good spatial and temporal

  12. A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming

    2003-01-01

    This paper presents the development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during summer 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR- based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and t i f m rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.

  13. Landslide early warning system prototype with GIS analysis indicates by soil movement and rainfall

    NASA Astrophysics Data System (ADS)

    Artha, Y.; Julian, E. S.

    2018-01-01

    The aim of this paper is developing and testing of landslide early warning system. The early warning system uses accelerometersas ground movement and tilt-sensing device and a water flow sensor. A microcentroller is used to process the input signal and activate the alarm. An LCD is used to display the acceleration in x,y and z axis. When the soil moved or shifted and rainfall reached 100 mm/day, the alarm rang and signal were sentto the monitoring center via a telemetry system.Data logging information and GIS spatial data can be monitored remotely as tables and graphics as well as in the form of geographical map with the help of web-GIS interface. The system were tested at Kampung Gerendong, Desa Putat Nutug, Kecamatan Ciseeng, Kabupaten Bogor. This area has 3.15 cumulative score, which mean vulnerable to landslide. The results show that the early warning system worked as planned.

  14. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  15. Errors and uncertainties in regional climate simulations of rainfall variability over Tunisia: a multi-model and multi-member approach

    NASA Astrophysics Data System (ADS)

    Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa

    2018-02-01

    Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.

  16. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important

  17. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model

    DOE PAGES

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...

    2016-05-10

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important

  18. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  19. Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM

    NASA Astrophysics Data System (ADS)

    Turner, A. G.; Guo, L.; Highwood, E.

    2016-12-01

    The HadGEM2 AGCM is used to determine the most important anthropogenic aerosols in the Indian monsoon using experiments in which observed trends in individual aerosol species are imposed. Sulphur dioxide (SD) emissions are shown to impact rainfall more strongly than black carbon (BC) aerosols, causing reduced rainfall especially over northern India. Significant perturbations due to BC are not noted until its emissions are scaled up in a sensitivity test, resulting in rainfall increases over northern India due to the Elevated Heat Pump mechanism, enhancing convection during the premonsoon and bringing forward the monsoon onset. Secondly, the impact of anthropogenic aerosols is compared to that of increasing greenhouse-gas concentrations and observed sea-surface temperature (SST) warming. The tropospheric temperature gradient driving the monsoon shows weakening when forced by either SD or imposed SST trends. However the observed SST trend is dominated by warming in the deep tropics; when the component of SST trend related to aerosol emissions is removed, further warming is found in the extratropical northern hemisphere that tends to offset monsoon weakening. This suggests caution is needed when using SST forcing as a proxy for greenhouse warming. Finally, aerosol emissions are decomposed into those from the Indian region and those elsewhere, in pairs of experiments with SD and BC. Both local and remote aerosol emissions are found to lead to rainfall changes over India; for SD, remote aerosols contribute around 75% of the rainfall decrease over India, while for BC the remote forcing is even more dominant.

  20. Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Turner, Andrew; Highwood, Eleanor

    2016-04-01

    The HadGEM2 AGCM is used to determine the most important anthropogenic aerosols in the Indian monsoon using experiments in which observed trends in individual aerosol species are imposed. Sulphur dioxide (SD) emissions are shown to impact rainfall more strongly than black carbon (BC) aerosols, causing reduced rainfall especially over northern India. Significant perturbations due to BC are not noted until its emissions are scaled up in a sensitivity test, in which rainfall increases over northern India as a result of the Elevated Heat Pump mechanism, enhancing convection during the pre-monsoon and bringing forward the monsoon onset. Secondly, the impact of anthropogenic aerosols is compared to that of increasing greenhouse-gas concentrations and observed sea-surface temperature (SST) warming. The tropospheric temperature gradient driving the monsoon shows weakening when forced by either SD or imposed SST trends. However the observed SST trend is dominated by warming in the deep tropics; when the component of SST trend related to aerosol emissions is removed, further warming is found in the extratropical northern hemisphere that tends to offset monsoon weakening. This suggests caution is needed when using SST forcing as a proxy for greenhouse warming. Finally, aerosol emissions are decomposed into those from the Indian region and those elsewhere, in pairs of experiments with SD and BC. Both local and remote aerosol emissions are found to lead to rainfall changes over India; for SD, remote aerosols contribute around 75% of the rainfall decrease over India, while for BC the remote forcing is even more dominant.

  1. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ.

    PubMed

    Vallat, Armelle; Gu, Hainan; Dorn, Silvia

    2005-07-01

    Headspace volatiles from apple-bearing twigs were collected in the field with a Radiello sampler during three different diurnal periods over the complete fruit growing season. Analyses by thermal desorption-GC-MS identified a total of 62 compounds in changing quantities, including the terpenoids alpha-pinene, camphene, beta-pinene, limonene, beta-caryophyllene and (E,E)-alpha-farnesene, the aldehydes (E)-2-hexenal, benzaldehyde and nonanal, and the alcohol (Z)-3-hexen-1-ol. The variations in emission of these plant odours were statistically related to temperature, humidity and rainfall in the field. Remarkably, rainfall had a significant positive influence on changes in volatile release during all three diurnal periods, and further factors of significance were temperature and relative humidity around noon, relative humidity in the late afternoon, and temperature and relative humidity during the night. Rainfall was associated consistently with an increase in the late afternoon in terpene and aldehyde volatiles with a known repellent effect on the codling moth, one of the key pests of apple fruit. During the summer of 2003, a season characterized by below-average rainfall, some postulated effects of drought on trees were tested by establishing correlations with rainfall. Emissions of the wood terpenes alpha-pinene, beta-pinene and limonene were negatively correlated with rainfall. Another monoterpene, camphene, was only detected in this summer but not in the previous years, and its emissions were negatively correlated with rainfall, further supporting the theory that drought can result in higher formation of secondary metabolites. Finally, the two green leaf volatiles (E)-2-hexenal and (Z)-3-hexen-1-ol were negatively correlated with rainfall, coinciding well with the expectation that water deficit stress increases activity of lipoxygenase. To our knowledge, this work represents the first empirical study concerning the influence of abiotic factors on volatile

  2. Where East Africa and the Levant Are Climatically Connected: An Alternative View of the Northward Shifts of Either the ITCZ and/or the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Enzel, Y.; Kushnir, Y.; Quade, J.

    2014-12-01

    Lake levels in basins in areas bordering northern Arabian Sea have been used to reconstruct regional paleohydrological patterns through lake-level statuses. For the early-middle Holocene, dramatic increases in regional rainfall have been proposed. These rainfall changes are commonly thought to be associated with an intensified Indian summer monsoon (ISM) and a large northward shift in the latitude of the boreal summer ITCZ over the Indian Ocean; this shift was proposed to reach latitudes as far north as the Levant. However, the ISM currently forces total summer drought not rains, in the Levant and neighboring deserts, including Arabia. The drought is due to large-scale air subsidence forced by the ISM and dries the region except in southernmost Arabia, where topography lifts air and produces orographic rain. This Arabian summer drought is assisted by increased upwelling that limits rainfall inland. How large the actual changes in paleohydrology were in the Arabian Peninsula? If not the ISM, what are the real causes of these changes? We summarize paleohydrologic information from Arabia and revisit the paleolake status of all lacustrine-like deposits and their basins in Arabia. From reinterpretation of these data and sedimentology and fauna, we conclude that these basins were occupied by shallow marsh environments, not lakes. Consequently, the paleohydrologic changes required to support restricted wetland versus lakes were much smaller. These conclusions are supported by the temporal and spatial distribution of other paleoenvironmental indicators such as pollen and speleothems. They indicate that (a) rainfall changes were very small in the heart of and northern Arabia, and (b) that these changes were only at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula, where it rains at present, mainly due to orographic effects on precipitation in the presence of increased moisture supply. We propose that (a) latitudinal and slight inland impact

  3. Short-term effects of rainfall on CO2 fluxes above rangelands dominated by Artemisia, Bromus tectorum, and Agropyron

    NASA Astrophysics Data System (ADS)

    Ivans, S.; Saliendra, N. Z.; Johnson, D. A.

    2003-04-01

    The short-term effects of rainfall on carbon dioxide (CO_2) fluxes have not been well documented in rangelands of the Intermountain Region of the western USA. We used the Bowen ratio-energy balance technique to continuously measure CO_2 fluxes above three rangeland sites in Idaho and Utah dominated by: 1) Artemisia (sagebrush) near Malta, Idaho; 2) Bromus tectorum (cheatgrass) near Malta, Idaho; and 3) Agropyron (crested wheatgrass) in Rush Valley, Utah. We examined CO_2 fluxes immediately before and after rainfall during periods of 10--19 July 2001 (Summer), 8--17 October 2001 (Autumn), and 16--30 May 2002 (Spring). On sunny days before rainfall during Spring, all three sites were sinks for CO_2. After rainfall in Spring, all three sites became sources of CO_2 for about two days and after that became CO_2 sinks again. During Summer and Autumn when water was limiting, sites were small sources of CO_2 and became larger sources for one day after rainfall. In all three seasons, daytime CO_2 fluxes decreased and nighttime CO_2 fluxes increased after rainfall, suggesting that rainfall stimulated belowground respiration at all three sites. Results from this study indicated that CO_2 fluxes above rangeland sites in the Intermountain West changed markedly after rainfall, especially during Spring when fluxes were highest. KEY WORDS: Bowen ratio-energy balance, Intermountain West, rangelands, sagebrush, cheatgrass, crested wheatgrass

  4. Supplemental Summer Literacy Instruction: Implications for Preventing Summer Reading Loss

    ERIC Educational Resources Information Center

    McDaniel, Sara C.; McLeod, Ragan; Carter, Coddy L.; Robinson, Cecil

    2017-01-01

    Summer reading loss is a prevalent problem that occurs primarily for students who are not exposed to or encouraged to read at home or in summer programs when school is out. This problem prevails among early readers from low-income backgrounds. This study provided 31 six and seven-year-old children with a structured guided reading program through…

  5. Unexpected consequences of a drier world: evidence that delay in late summer rains biases the population sex ratio of an insect.

    PubMed

    Bonal, Raul; Hernández, Marisa; Espelta, Josep M; Muñoz, Alberto; Aparicio, José M

    2015-09-01

    The complexity of animal life histories makes it difficult to predict the consequences of climate change on their populations. In this paper, we show, for the first time, that longer summer drought episodes, such as those predicted for the dry Mediterranean region under climate change, may bias insect population sex ratio. Many Mediterranean organisms, like the weevil Curculio elephas, become active again after summer drought. This insect depends on late summer rainfall to soften the soil and allow adult emergence from their underground refuges. We found that, as in many protandric species, more C. elephas females emerged later in the season. Male emergence timing was on average earlier and also more dependent on the beginning of late summer rainfall. When these rains were delayed, the observed weevil sex ratio was biased towards females. So far, the effects of global warming on animal sex ratios has been reported for temperature-dependent sex determination in reptiles. Our results show that rainfall timing can also bias the sex ratio in an insect, and highlight the need for keeping a phenological perspective to predict the consequences of climate change. We must consider not just the magnitude of the predicted changes in temperature and rainfall but also the effects of their timing.

  6. Unexpected consequences of a drier world: evidence that delay in late summer rains biases the population sex ratio of an insect

    PubMed Central

    Bonal, Raul; Hernández, Marisa; Espelta, Josep M.; Muñoz, Alberto; Aparicio, José M.

    2015-01-01

    The complexity of animal life histories makes it difficult to predict the consequences of climate change on their populations. In this paper, we show, for the first time, that longer summer drought episodes, such as those predicted for the dry Mediterranean region under climate change, may bias insect population sex ratio. Many Mediterranean organisms, like the weevil Curculio elephas, become active again after summer drought. This insect depends on late summer rainfall to soften the soil and allow adult emergence from their underground refuges. We found that, as in many protandric species, more C. elephas females emerged later in the season. Male emergence timing was on average earlier and also more dependent on the beginning of late summer rainfall. When these rains were delayed, the observed weevil sex ratio was biased towards females. So far, the effects of global warming on animal sex ratios has been reported for temperature-dependent sex determination in reptiles. Our results show that rainfall timing can also bias the sex ratio in an insect, and highlight the need for keeping a phenological perspective to predict the consequences of climate change. We must consider not just the magnitude of the predicted changes in temperature and rainfall but also the effects of their timing. PMID:26473046

  7. Asian Summer Monsoon Anomalies Induced by Aerosol Direct Forcing: The Role of the Tibetan Plateau

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, M. K.; Kim, K. M.

    2006-01-01

    In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau (TP). During the premonsoon season of March April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the TP. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the TP relative to the region to the south. In May through early June in a manner akin to an elevated heat pump , the rising hot air forced by the increasing heating in the upper troposphere, draws in warm and moist air over the Indian subcontinent, setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions.

  8. The local and global climate forcings induced inhomogeneity of Indian rainfall.

    PubMed

    Nair, P J; Chakraborty, A; Varikoden, H; Francis, P A; Kuttippurath, J

    2018-04-16

    India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.

  9. Intra-seasonal rainfall characteristics and their importance to the seasonal prediction problem

    NASA Astrophysics Data System (ADS)

    Tennant, Warren J.; Hewitson, Bruce C.

    2002-07-01

    Daily station rainfall data in South Africa from 1936 to 1999 are combined into homogeneous rainfall regions using Ward's clustering method. Various rainfall characteristics are calculated for the summer season, defined as December to February. These include seasonal rainfall total, region-average number of station rain days exceeding 1 and 20 mm, region-average of periods between rain days at stations >1 and >20 mm, region-average of wet spell length (sequential days of station rainfall >1 and >20 mm), correlation of daily station rainfall within a region and correlation of seasonal station rainfall anomalies within a region.Rank-ordered rainfall characteristic data generally form an s-shaped curve, and significance testing of discontinuities in these curves suggests that normal rainfall conditions in South Africa consist of a combined middle three quintiles separated from the outer quintiles, rather than the traditional middle tercile.The relationships between the various rainfall characteristics show that seasons with a high total rainfall generally have a higher number of heavy rain days (>20 mm) and not necessarily an increase in light rain days. The length of the period between rain days has a low correlation to season totals, demonstrating that seasons with a high total rainfall may still contain prolonged dry periods. These additional rainfall characteristics are important to end-users, and the analysis undertaken here offers a valuable starting point for seeking physical relationships between rainfall characteristics and the general circulation. Preliminary studies show that the vertical mean wind is related to rainfall characteristics in South Africa. Given that general circulation models capture this part of the circulation adequately, seasonal forecasts of rainfall characteristics become plausible.

  10. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    NASA Technical Reports Server (NTRS)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  11. Regionalization of monthly rainfall erosivity patternsin Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion

  12. Hydro-mechanical mechanism and thresholds of rainfall-induced unsaturated landslides

    NASA Astrophysics Data System (ADS)

    Yang, Zongji; Lei, Xiaoqin; Huang, Dong; Qiao, Jianping

    2017-04-01

    The devastating Ms 8 Wenchuan earthquake in 2008 created the greatest number of co-seismic mountain hazards ever recorded in China. However, the dynamics of rainfall induced mass remobilization and transport deposits after giant earthquake are not fully understood. Moreover, rainfall intensity and duration (I-D) methods are the predominant early warning indicators of rainfall-induced landslides in post-earthquake region, which are a convenient and straight-forward way to predict the hazards. However, the rainfall-based criteria and thresholds are generally empirical and based on statistical analysis,consequently, they ignore the failure mechanisms of the landslides. This study examines the mechanism and hydro-mechanical behavior and thresholds of these unsaturated deposits under the influence of rainfall. To accomplish this, in situ experiments were performed in an instrumented landslide deposit, The field experimental tests were conducted on a natural co-seismic fractured slope to 1) simulate rainfall-induced shallow failures in the depression channels of a debris flow catchment in an earthquake-affected region, 2)explore the mechanisms and transient processes associated with hydro-mechanical parameter variations in response to the infiltration of rainfall, and 3) identify the hydrologic parameter thresholds and critical criteria of gravitational erosion in areas prone to mass remobilization as a source of debris flows. These experiments provided instrumental evidence and directly proved that post-earthquake rainfall-induced mass remobilization occurred under unsaturated conditions in response to transient rainfall infiltration, and revealed the presence of transient processes and the dominance of preferential flow paths during rainfall infiltration. A hydro-mechanical method was adopted for the transient hydrologic process modelling and unsaturated slope stability analysis. and the slope failures during the experimental test were reproduced by the model

  13. Organization of vertical shear of wind and daily variability of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Gouda, K. C.; Goswami, P.

    2016-10-01

    Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.

  14. Analysis of rainfall distribution in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Che Ros, Faizah; Tosaka, Hiroyuki

    2018-03-01

    Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.

  15. Uganda rainfall variability and prediction

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  16. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Huang, Anning; Huang, Danqing; Chen, Fei; Yang, Ben; Zhou, Yang; Fang, Dexian; Zhang, Lujun; Wen, Lijuan

    2017-12-01

    Based on the hourly gauge-satellite merged precipitation product with the horizontal resolution of 0.1° latitude/longitude during 2008-2014, diurnal variations of the summer precipitation amount (PA), frequency (PF), and intensity (PI) with different duration time over the regions east to Tibetan Plateau have been systematically revealed in this study. Results indicate that the eight typical precipitation diurnal patterns identified by the cluster analysis display pronounced regional features among the plateaus, basins, plains, hilly and coastal areas. The precipitation diurnal cycles are significantly affected by the sub-grid terrain fluctuations. The PA, PF and PI of the total rainfall show much more pronounced double diurnal peaks with the sub-grid topography standard deviation (SD) decreased. Meanwhile, the diurnal peaks of PA and PF (PI) strengthen (weaken) with the sub-grid topography SD enhanced. Over the elevated mountain ranges, southeastern hilly and coastal regions, the PA and PF diurnal patterns of the total rainfall generally show predominant late-afternoon peaks, which are closely associated with the short-duration (≤slant 3 h) rainfall. Along the Tibetan Plateau to its downstream, the diurnal peaks of PA, PF and PI for the total rainfall all exhibit obvious eastward phase time delay mainly due to the diurnal evolutions of long-duration (> 6 h) rainfall. However, the 4-6 h rainfall leads to the eastward phase time delay of the total rainfall along the Taihang Mountains to its downstream. Further mechanism analysis suggests that the midnight to morning diurnal evolution of the long-duration rainfall is closely associated with the diurnal variations of the upward branches of thermally driven mountain-plain solenoids and the water vapor transport associated with the accelerated nocturnal southwesterly winds. The late-afternoon peak of the short-duration PA over the southeastern hilly and coastal regions is ascribed to the strong local thermal

  17. Characteristics of Atmospheric Pollutants Distribution and Removal Effect of Rainfall on Atmospheric Pollutants in Mining Cities

    NASA Astrophysics Data System (ADS)

    Wen-feng, Tang; You-biao, Hu

    2018-05-01

    This paper studies the characteristics of atmospheric pollutant (SO2, NO2, PM2.5 and PM10) and the effects of rainfall on the removal of atmospheric pollutants. The results show atmospheric pollutants concentration vary in different seasons and functional area: atmospheric pollutants concentration in summer and autumn is lower than that in winter and spring; the concentration of SO2 and NO2 in coal-chemical industry areas and light industrial areas is higher, the concentration difference of PM2.5 and PM10 in different functional areas is very small, the removal efficiency of rainfall on atmospheric pollutant is gradually improved with the increasing of daily rainfall, rainfall intensity and rainfall duration, the ability of rainfall to remove pollutants tends to be stable after daily rainfall and rainfall intensity exceeds 30mm and 20mm/h respectively, the effect of rainfall on the removal of PM2.5 was slightly worse than the effect of rainfall on other atmospheric pollutants, the rainfall duration should be 60min, 60min and 80min respectively when the effect of rainfall on NO2, PM10 and SO2 tends to be stable.

  18. Impacts of northern Tibetan Plateau on East Asian summer rainfall via modulating midlatitude transient eddies

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Shi, Ning; Zhang, Leying; Ma, Jing

    2017-08-01

    Roles of the Tibetan Plateau (TP) in forming and changing the seasonal Asian climate system have been widely explored. However, little is known about modulation effects of the TP on extratropical transient eddies (TEs) and subsequent synoptic responses of the East Asian rainfall. In this study, the Community Atmosphere Model version 5.1 coupled with a slab ocean model is employed to highlight the important role of the TP in regulating the upper-tropospheric transient wave train. Comparison between sensitivity experiments with and without the TP shows that the northern TP excites a strong anomalous anticyclone, which shifts the upper-level East Asian westerly jet northward and helps transfer barotropic and baroclinic energy from the mean flow to the synoptic TE flow. The transient wave train is primarily shifted northward by northern TP and is forced to propagate southeastward along the eastern flank of the TP until reaching eastern China. Before the strengthening of monsoonal southerlies, the TP-modulated transient wave train cools the troposphere, which decreases the static stability over northern China. Meanwhile, the associated anomalous warm advection induces ascending motion, leading to excessive rainfall by releasing unstable energy as the southerly strengthens. Due to the southeastward propagation of the wave train, anomalous heavy rainfall subsequently appears over eastern China from north to south, which increases day-to-day rainfall variation in this region. Additionally, occurrence of this upper-tropospheric transient wave train associated with low-level southerly peak is substantially increased by northern TP.

  19. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    PubMed

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Rainfall characteristics and thresholds for periglacial debris flows in the Parlung Zangbo Basin, southeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao

    2018-02-01

    The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.

  1. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event.

    PubMed

    Knebl, M R; Yang, Z-L; Hutchison, K; Maidment, D R

    2005-06-01

    This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.

  2. Characterization of intermittency and statistical properties of high-resolution rainfall observations across a topographic transect in Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Mascaro, G.; Vivoni, E. R.; Gochis, D. J.; Watts, C. J.; Rodriguez, J. C.

    2013-12-01

    In northwest Mexico, the statistical properties of rainfall at high temporal resolution (up to 1 min) have been poorly characterized, mainly due to a lack of observations. Under a combined effort of US and Mexican institutions initiated during the North American Monsoon-Soil Moisture Experiment in 2004 (NAME-SMEX04), a network of 8 tipping-bucket rain gauges were installed across a topographic transect in the Sierra Los Locos basin of Sonora, Mexico. The transect spans a distance of ~14 km and an elevation difference of 748 m, thus including valley, mid-elevation and ridge sites where rainfall generation mechanisms in the summer and winter seasons are potentially affected by orography. In this study, we used the data collected during the period of 2007-2010 to characterize the rainfall statistical properties in a wide range of time scales (1 min to ~45 days) and analyzed how these properties change as a function of elevation, the gauge separation distance, and the summer and winter seasons. We found that the total summer (winter) rainfall decreases (increases) with elevation, and that rainfall has a clear diurnal cycle in the summertime, with a peak around 9 pm at all gauges. The correlation structure across the transect indicates that: (i) when times series are aggregated at a resolution greater than 3 hours, the correlation distance is greater than the maximum separation distance (~14 km), while it dramatically decreases for lower time resolutions (e.g., it is ~1.5 km when the resolution is 10 min). Consistent with other semiarid regions, spectral and scale invariance analyses show the presence of different scaling regimes, which are associated to single convective events and larger stratiform systems, with different intermittency properties dependent on the rainfall season. Results of this work are useful for the interpretation of storm generation mechanisms and hydrologic response in the region, as well as for the calibration of high-resolution, stochastic

  3. A Downscaling Analysis of the Urban Influence on Rainfall: TRMM Satellite Component AMS Conference on Satellite Meteorology and Oceanography

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Burian, Steven J.

    2002-01-01

    downwind region"). The mean rainfall rate over the Houston urban center is 30.5% larger than the upwind control region. The mean rainfall rate in the downwind region is 34.4% larger than the upwind region. An analysis of a parameter called the urban rainfall ratio (URR) illustrates that 65% (88%) of the satellite-derived rainfall rates in the downwind (upwind control) region are greater (less) than the mean background rainfall rate of the entire study region. When the data is stratified by summer months from 1998 to 2001 (June-August), even greater influence over and downwind of the urban area is observed in the statistics. This result is consistent with published reports of urban-generated rainfall being more prevalent in the warm season. The research demonstrates that the evolving TRMM satellite climatology is a credible way to detect mesoscale precipitation signatures that may be linked to urbanization. Early results also corroborate recent findings on Houston-induced convection/drainfall anomalies. Burian and Shepherd will report on other aspects of the downscaling analysis in future forums, but early rain gauge results are consistent with the satellite-based observations.

  4. Indian summer monsoon variability forecasts in the North American multimodel ensemble

    NASA Astrophysics Data System (ADS)

    Singh, Bohar; Cash, Ben; Kinter, James L., III

    2018-04-01

    The representation of the seasonal mean and interannual variability of the Indian summer monsoon rainfall (ISMR) in nine global ocean-atmosphere coupled models that participated in the North American Multimodal Ensemble (NMME) phase 1 (NMME:1), and in nine global ocean-atmosphere coupled models participating in the NMME phase 2 (NMME:2) from 1982-2009, is evaluated over the Indo-Pacific domain with May initial conditions. The multi-model ensemble (MME) represents the Indian monsoon rainfall with modest skill and systematic biases. There is no significant improvement in the seasonal forecast skill or interannual variability of ISMR in NMME:2 as compared to NMME:1. The NMME skillfully predicts seasonal mean sea surface temperature (SST) and some of the teleconnections with seasonal mean rainfall. However, the SST-rainfall teleconnections are stronger in the NMME than observed. The NMME is not able to capture the extremes of seasonal mean rainfall and the simulated Indian Ocean-monsoon teleconnections are opposite to what are observed.

  5. Contribution of tropical cyclones to global rainfall

    NASA Astrophysics Data System (ADS)

    Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James

    2016-04-01

    Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar

  6. The Influence of the East Asian Winter Monsoon on Indonesian Rainfall During the Past 60,000 Years

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.

    2013-12-01

    EAWM and D-depleted precipitation. In contrast, wet conditions in Central Sulawesi during Marine Isotope Stage 3 (MIS3) and during the early Holocene occurred when the EAWM was weakened. These findings support previous inferences based on Australian data that glacial boundary conditions modified the relationship between the EAWM and the Australian-Indonesian Summer Monsoon (AISM). However, previously proposed mechanisms for this modified EAWM/AISM relationship are not sufficient to explain our observations in Indonesia, and must be expanded. We propose revisions to these mechanisms in order to explain observations of Indonesian rainfall and δDprecip. Our findings provide important context for the circulation patterns that drove rainfall variations in Central Sulawesi during the past 60 kyr, and help to reconcile some of the disagreements among late Pleistocene records of surface runoff and δ18O/δDprecip from the IPWP region.

  7. Regime shift of Indian summer monsoon rainfall to a persistent arid state: external forcing versus internal variability

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankur; Pradhan, Maheswar; Goswami, B. N.; Rao, Suryachandra A.

    2017-11-01

    The high propensity of deficient monsoon rainfall over the Indian sub-continent in the recent 3 decades (seven deficient monsoons against 3 excess monsoon years) compared to the prior 3 decades has serious implications on the food and water resources in the country. Motivated by the need to understand the high occurrence of deficient monsoon during this period, we examine the change in predictability of the Indian summer monsoon (ISM) and its teleconnections with Indo-Pacific sea surface temperatures between the two periods. The shift in the tropical climate in the late 1970s appears to be one of the major reasons behind this. We find an increased predictability of the ISM in the recent 3 decades owing to reduced `internal' interannual variability (IAV) due to the high-frequency modes, while the `external' IAV arising from the low-frequency modes has remained largely the same. The Indian Ocean Dipole-ISM teleconnection has become positive during the monsoon season in the recent period thereby compensating for the weakened ENSO-ISM teleconnection. The central Pacific El-Niño and the Indian Ocean (IO) warming during the recent 3 decades are working together to realise enhanced ascending motion in the equatorial IO between 70°E and 100°E, preconditioning the Indian monsoon system prone to a deficient state.

  8. Extreme Monsoon Rainfall Signatures Preserved in the Invasive Terrestrial Gastropod Lissachatina fulica

    NASA Astrophysics Data System (ADS)

    Ghosh, Prosenjit; Rangarajan, Ravi; Thirumalai, Kaustubh; Naggs, Fred

    2017-11-01

    Indian summer monsoon (ISM) rainfall lasts for a period of 4 months with large variations recorded in terms of rainfall intensity during its period between June and September. Proxy reconstructions of past ISM rainfall variability are required due to the paucity of long instrumental records. However, reconstructing subseasonal rainfall is extremely difficult using conventional hydroclimate proxies due to inadequate sample resolution. Here, we demonstrate the utility of the stable oxygen isotope composition of gastropod shells in reconstructing past rainfall on subseasonal timescales. We present a comparative isotopic study on present day rainwater and stable isotope ratios of precipitate found in the incremental growth bands of giant African land snail Lissachatina fulica (Bowdich) from modern day (2009) and in the historical past (1918). Isotopic signatures present in the growth bands allowed for the identification of ISM rainfall variability in terms of its active and dry spells in the modern as well as past gastropod record. Our results demonstrate the utility of gastropod growth band stable isotope ratios in semiquantitative reconstructions of seasonal rainfall patterns. High resolution climate records extracted from gastropod growth band stable isotopes (museum and archived specimens) can expand the scope for understanding past subseasonal-to-seasonal climate variability.

  9. Rhode Island's Innovative Solutions to Summer Learning Loss

    ERIC Educational Resources Information Center

    Greenman, Adam

    2015-01-01

    Summer learning loss has been documented in the United States since early in the 20th century. These early studies measured differences in test scores at the beginning of the summer and at the end, and discovered that students did not retain information during the summer. Studies conducted throughout the 20th century confirmed this. Later studies…

  10. Think Summer: Early Planning, Teacher Support Boost Summer Learning Programs

    ERIC Educational Resources Information Center

    Browne, Daniel

    2013-01-01

    A fundamental problem that continues to plague educators is the achievement gap between low-income and higher-income students. In the ongoing search for solutions, one of the more promising approaches is expanding opportunities for learning, particularly in the summer. This article describes a project funded by The Wallace Foundation that offers…

  11. How certain is desiccation in west African Sahel rainfall (1930-1990)?

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Agnew, Clive T.

    2008-04-01

    Hypotheses for the late 1960s to 1990 period of desiccation (secular decrease in rainfall) in the west African Sahel (WAS) are typically tested by comparing empirical evidence or model predictions against "observations" of Sahelian rainfall. The outcomes of those comparisons can have considerable influence on the understanding of regional and global environmental systems. Inverse-distance squared area-weighted (IDW) estimates of WAS rainfall observations are commonly aggregated over space to provide temporal patterns without uncertainty. Spatial uncertainty of WAS rainfall was determined using the median approximation sequential indicator simulation. Every year (1930-1990) 300 equally probable realizations of annual summer rainfall were produced to honor station observations, match percentiles of the observed cumulative distributions and indicator variograms and perform adequately during cross validation. More than 49% of the IDW mean annual rainfall fell outside the 5th and 95th percentiles for annual rainfall realization means. The IDW means represented an extreme realization. Uncertainty in desiccation was determined by repeatedly (100,000) sampling the annual distribution of rainfall realization means and by applying Mann-Kendall nonparametric slope detection and significance testing. All of the negative gradients for the entire period were statistically significant. None of the negative gradients for the expected desiccation period were statistically significant. The results support the presence of a long-term decline in annual rainfall but demonstrate that short-term desiccation (1965-1990) cannot be detected. Estimates of uncertainty for precipitation and other climate variables in this or other regions, or across the globe, are essential for the rigorous detection of spatial patterns and time series trends.

  12. Assessing Australian Rainfall Projections in Two Model Resolutions

    NASA Astrophysics Data System (ADS)

    Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.

    2016-02-01

    Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.

  13. Propagating convective system as a rainfall connection between southwestern Tibetan Plateau and Indian continent

    NASA Astrophysics Data System (ADS)

    Dong, W.; Lin, Y.; Xie, Y.

    2014-12-01

    The Tibetan Plateau (TP) is called "Asia's Water Tower" because it is the headwaters of many major rivers in Asia, upon which the production and living of nearly 1/6 world population strongly depends. Precipitation and its future change over the TP pose a large socio-economic impact on the surrounding nations. Using multiple precipitation datasets and CMIP5 model simulations, summer (June to September) precipitation over the TP and Indian continent is investigated. We note a close linkage of rainfall over the southwestern Tibetan Plateau (SWTP) and central-eastern India. Such a linkage is maintained by frequent propagation of convective systems from northern Indian lower lands over the high mountain range into SWTP. An objective propagation identification method suggests such propagation contributes nearly half of the total summer rainfall in SWTP. The propagation is prominent from late June to mid-September. Its occurrence is rather stable and appears not to be strongly modulated by Indian monsoon strength. The propagation also modifies the rainfall diurnal cycle with a second peak near midnight in addition to the late afternoon peak induced by localized convective systems. Favorable environmental conditions for propagations are also explored.

  14. Trend Analysis of Annual and Seasonal Rainfall in Kansas

    NASA Astrophysics Data System (ADS)

    Rahmani, V.; Hutchinson, S. L.; Hutchinson, J.; Anandhi, A.

    2012-12-01

    Precipitation has direct impacts on agricultural production, water resources management, and recreational activities, all of which have significant economic impacts. Thus developing a solid understanding of rainfall patterns and trends is important, and is particularly vital for regions with high climate variability like Kansas. In this study, the annual and seasonal rainfall trends were analyzed using daily precipitation data for four consecutive periods (1891-1920, 1921-1950, 1951-1980, and 1981-2010) and an overall data range of 1890 through 2011 from 23 stations in Kansas. The overall analysis showed that on average Kansas receives 714 mm of rain annually with a strong gradient from west (425 mm, Tribune) to east (1069 mm, Columbus). Due to this gradient, western and central Kansas require more irrigation water than eastern Kansas during the summer growing season to reach the plant water requirements and optimize yield. In addition, a gradual increase in total annual rainfall was found for 21 of 23 stations with a greater increase for recent years (1956 through 2011) and eastern part. The average trend slope for the state is 0.7 mm/yr with a minimum value of -0.8 mm/yr for Saint Francis in Northwest and a maximum value of 2 mm/yr for Independence in Southeast. Seasonal analysis showed that all stations received the most rain during the summer season (June, July, Aug) followed by Spring, Fall and Winter respectively. Investigating the number of dry days (days with rain less than or equal to 2.5 mm) showed that 17 of 23 had a decreasing trend from west to east and across time with the greatest decrease of -0.07 days/yr for Winfield in South and the greatest increase of 0.05 days/yr for Elkhart in Southwest. When assessing the number of dry days between rainfall events, it was found that the majority of the stations had a decreasing trend for most of the months from west to east and across time. These results indicate that Kansas is experiencing fewer dry days and

  15. Influence of rainfall microstructure on rainfall interception

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2016-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The process is influenced by various meteorological and vegetation parameters. Often neglected meteorological parameter influencing rainfall interception is also rainfall microstructure. Rain is a discrete process consisting of various numbers of individual raindrops with different sizes and velocities. This properties describe rainfall microstructure which is often neglected in hydrological analysis and replaced with rainfall intensity. Throughfall, stemflow and rainfall microstructure have been measured since the beginning of the year 2014 under two tree species (Betula pendula and Pinus nigra) on a study plot in Ljubljana, Slovenia. The preliminary analysis of the influence of rainfall microstructure on rainfall interception has been conducted using three events with different characteristics measured in May 2014. Event A is quite short with low rainfall amount and moderate rainfall intensity, whereas events B and C have similar length but low and high intensities, respectively. Event A was observed on the 1st of May 2014. It was 22 minutes long and delivered 1.2 mm of rainfall. The average rainfall intensity was equal to 3.27 mm/h. The event consisted of 1,350 rain drops with average diameter of 1.517 mm and average velocity of 5.110 m/s. Both Betula pendula and Pinus nigra intercepted similar amount of rainfall, 68 % and 69 %, respectively. Event B was observed in the night from the 7th to 8th of May 2014, it was 16 hours and 18 minutes long, and delivered 4.2 mm of rainfall with average intensity of 0.97 mm/h. There were 39,108 raindrops detected with average diameter of 0.858 mm and average velocity of 3.855 m/s. Betula pendula

  16. Interannual Variability of the Bimodal Distribution of Summertime Rainfall Over Central America and Tropical Storm Activity in the Far-Eastern Pacific

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Starr, David OC. (Technical Monitor)

    2002-01-01

    The summer climate of southern Mexico and Central America is characterized by a mid summer drought (MSD), where rainfall is reduced by 40% in July as compared to June and September. A mid-summer reduction in the climatological number of eastern Pacific tropical cyclones has also been noted. Little is understood about the climatology and interannual variability of these minima. The present study uses a novel approach to quantify the bimodal distribution of summertime rainfall for the globe and finds that this feature of the annual cycle is most extreme over Pan America and adjacent oceans. One dominant interannual signal in this region occurs the summer before a strong winter El Nino/Southern Oscillation ENSO. Before El Nino events the region is dry, the MSD is strong and centered over the ocean, and the mid-summer minimum in tropical cyclone frequency is most pronounced. This is significantly different from Neutral cases (non-El Nino and non-La Nina) when the MSD is weak and positioned over the land bridge. The MSD is highly variable for La Nina years, and there is not an obvious mid-summer minimum in the number of tropical cyclones.

  17. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  18. Effect of intense short rainfall events on coastal water quality parameters from remote sensing data

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Lassini, Fabio; Mancini, Marco

    2016-07-01

    Strong rainfall events, especially during summer, in small river basins cause spills in the sea that often compromise the quality of coastal waters. The goal of this paper is then to study the changes of coastal waters quality as a result of intense rainfall events during the bathing season through the use of remote sensing data. These analyses are performed at the outlets of small watersheds which are not usually affected by high sediment transport as in the case of large basins which are persistently affected by intense solid transport which does not allow retrieving a reliable correlation between rainfall events and water quality parameters. Four small watersheds in different Italian regions on the Mediterranean Sea are selected for this study. The remotely sensed parameters of turbidity, total suspend solids and secchi disk depth, are retrieved from MODIS data. Secchi disk depths are also compared to available ground data during the summer seasons between 2003 and 2006 showing good correlations. Then the spatial and temporal changes of these parameters are analyzed after intense short storm events. Increases of turbidity and total suspend solids are found to be around 35 NTU and 20 mg L-1 respectively depending on the intensity of the rainfall event and on the distance from the shoreline. Moreover the recovery of water quality after the rain event is reached after two or three days.

  19. Feasibility of Using Elastic Wave Velocity Monitoring for Early Warning of Rainfall-Induced Slope Failure.

    PubMed

    Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke

    2018-03-27

    Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.

  20. Runoff and soil loss under different land management practices in vineyards: grass cover treatments and traditional tillage. Results from simulated rainfall.

    NASA Astrophysics Data System (ADS)

    Ruiz-Colmenero, Marta; Bienes, Ramon; Marques, Maria-Jose

    2010-05-01

    Land degradation control is crucial in croplands located in semiarid lands, due to its low soil formation rate, above all in slope fields. This study is located in the South East of Madrid (Spain), in a vineyard at 800 masl under Mediterranean semiarid climatic conditions, with an average slope of 14%. We studied the impact of traditional tillage measuring runoff and soil loss in plots in two critical moments of the vineyard crop: summer with dry soil, and fall when tillage is done in order to facilitate the infiltration of winter rainfalĺs water. Three treatments were tested in nine erosion plots (4m x 0,5m): traditional tillage ("till"); Brachypodium distachyon (L.) ("bra") allowing self-sowing; Secale cereale ("sec"), mown in early spring. Short (15 minutes) but intense (2,16 mm/min) simulated rainfalls were carried out at each plot: The simulated rainfalls made in summer over the vineyard tilled in spring ("till") produced little runoff (41 ml min-1; erosion rate of 0.24 g m-2) and it lasted 6 min from the start of the shower, it was due to the roughness and because the soil was near its wilting point. The low erosion rate is attributable to the sealing of soil after the rains occurred in spring. In treatments with plant cover runoff began earlier, at the 3rd minute. The average runoff was 516 and 730 ml min-1 and erosion rates were 3.04 g m-2 and 1.41 g m-2 in "bra" and "sec" respectively. There were significant differences (F = 31.6, P <0.001) in runoff coefficient between the three treatments with the highest ratio shown in "sec". The average runoff coefficients obtained were 16% in "sec", 13% in "bra" and 1.4% in "till". Moreover two simulated rainfalls were carried out in autumn in order to test the effect of the autumnal traditional tillage. The plant cover treatments were efficient controlling the erosion (sediment yield were in "till"; "sec" and "bra" respectively 2.66, 0. 29, 0. 11 g m-2 in the first simulation, and 11.67, 0.66, 0.14 g m-2 in the

  1. Sensitivity of CONUS Summer Rainfall to the Selection of Cumulus Parameterization Schemes in NU-WRF Seasonal Simulations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Tao, Wei-Kuo; Wu, Di; Peters-Lidard, Christa; Santanello, Joseph A.; Kemp, Eric; Tian, Yudong; Case, Jonathan; Wang, Weile; Ferraro, Robert; hide

    2017-01-01

    This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.

  2. The Climatic Characteristics of Summer Convection over the Tibetan Plateau and Adjcent Areas Revealed by Geostationary Satellite

    NASA Astrophysics Data System (ADS)

    Li, B.; Tang, S.

    2016-12-01

    Convective activities in the Tibetan Plateau have obvious seasonal and sub-seasonal change, as well as regional characteristics. Although a variety of precipitation datasets can commonly reveal the southeast-northwest decreasing summer rainfall in the Tibetan Plateau, the amount of rainfall, the rainfall frequency, and the number of precipitation days among multiple precipitation datasets have great diversions. So we try to understand the convection characteristics of Tibetan Plateau from the view of brightness temperature of black body (hereafter TBB) of FY-2. In May, the mainly convection belt is along the eastern part of the plateau due to the westerly belt. In June, as the eruption of the summer monsoon and the strengthening of the southwesterly, the strongest convection occurs on the southeast side of the Tibetan Plateau. In late summer, with the strengthening of the East Asian summer monsoon, the strong southwest wind bring abundant moisture to the central plateau, thus a convective activity belt is formed over the Tibetan Plateau, within which there are two convection centers, and the strength of the central southern center is stronger than that of the southeastern one. In the west part of the plateau, convective activities come alive and gradually move northward after about 40th pentad. In the central part of the plateau, the live time of convections is 2 pentads earlier than that of the western part, and the convections have experienced three times of northward process in later time. In the eastern part of the plateau, convections is relatively active throughout the summer, and the northward stretching time is slightly later than that in the central part of the plateau. Two high intra-seasonal variability centers are located in the middle branch of the Brahmaputra and the southeastern part of the plateau. Summer convective activities are very uneven in these regions and prone to occur drought and flood disasters.

  3. Teleconnection, Regime Shift, and Predictability of Climate Extremes: A Case Study for the Russian Heat Wave and Pakistan Flood in Summer 2010

    NASA Technical Reports Server (NTRS)

    Lau, W. K.; Reale, O.; Kim, K.

    2011-01-01

    In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.

  4. Projected changes in rainfall and temperature over homogeneous regions of India

    NASA Astrophysics Data System (ADS)

    Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara

    2018-01-01

    The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.

  5. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall

    PubMed Central

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-01-01

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400–5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world’s highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants. PMID:26856260

  6. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    NASA Astrophysics Data System (ADS)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  7. Spatial Dependence of the Relationship between Rainfall and Outgoing Longwave Radiation in the Tropical Atlantic.

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Moon; Carton, James A.

    1988-10-01

    We develop a Spatially dependent formula to estimate rainfall from satellite-derived outgoing longwave radiation (OLR) data and the height of the base of the trade-wind inversion. This formula has been constructed by comparing rainfall records from twelve islands in the tropical Atlantic with 11 years of OLR data. Zonal asymmetries due to the differing cloud types in the eastern and western Atlantic and the presence of Saharan sand in the cast are included.The climatological winter and summer rainfall derived from the above formula concurs with ship observations described by Dorman and Bourke. However, during the spring and fall, OLR-derived rainfall is higher than observations by 2-4 mm day1 in the intertropical convergence zone. The largest discrepancy occurs during the fall in the region west of 28°W. Interannual anomalies of rainfall computed using this technique are large enough to cause potentially important changes in ocean surface salinity.

  8. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  9. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  10. Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Grenfell, T. C.; Matzler, C.; Luther, C. A.; Svendsen, E. A.

    1987-01-01

    Emissivities at frequencies from 5 to 94 GHz and backscatter at frequencies from 1 to 17 GHz were measured from sea ice in Fram Strait during the marginal Ice Zone Experiment in June and July of 1983 and 1984. The ice observed was primarily multiyear; the remainder, first-year ice, was often deformed. Results from this active and passive microwave study include the description of the evolution of the sea ice during early summer and midsummer; the absorption properties of summer snow; the interrelationship between ice thickness and the state and thickness of snow; and the modulation of the microwave signature, especially at the highest frequencies, by the freezing of the upper few centimeters of the ice.

  11. Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain

    NASA Astrophysics Data System (ADS)

    Pattnayak, K. C.; Panda, S. K.; Saraswat, Vaishali; Dash, S. K.

    2018-04-01

    This study assess the performance of two versions of Regional Climate Model (RegCM) in simulating the Indian summer monsoon over South Asia for the period 1998 to 2003 with an aim of conducting future climate change simulations. Two sets of experiments were carried out with two different versions of RegCM (viz. RegCM4.2 and RegCM4.3) with the lateral boundary forcings provided from European Center for Medium Range Weather Forecast Reanalysis (ERA-interim) at 50 km horizontal resolution. The major updates in RegCM4.3 in comparison to the older version RegCM4.2 are the inclusion of measured solar irradiance in place of hardcoded solar constant and additional layers in the stratosphere. The analysis shows that the Indian summer monsoon rainfall, moisture flux and surface net downward shortwave flux are better represented in RegCM4.3 than that in the RegCM4.2 simulations. Excessive moisture flux in the RegCM4.2 simulation over the northern Arabian Sea and Peninsular India resulted in an overestimation of rainfall over the Western Ghats, Peninsular region as a result of which the all India rainfall has been overestimated. RegCM4.3 has performed well over India as a whole as well as its four rainfall homogenous zones in reproducing the mean monsoon rainfall and inter-annual variation of rainfall. Further, the monsoon onset, low-level Somali Jet and the upper level tropical easterly jet are better represented in the RegCM4.3 than RegCM4.2. Thus, RegCM4.3 has performed better in simulating the mean summer monsoon circulation over the South Asia. Hence, RegCM4.3 may be used to study the future climate change over the South Asia.

  12. A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Ting, M.

    2017-12-01

    The Tibetan Plateau (TP) has long been regarded as a key driver for the formation and variations of the Indian summer monsoon (ISM). Recent studies, however, indicated that the ISM also exerts a considerable impact on rainfall variations in the TP, suggesting that the ISM and the TP should be considered as an interactive system. From this perspective, we investigate the co-variability of the July-August mean rainfall across the Indian subcontinent (IS) and the TP. We found that the interannual variation of IS and TP rainfall exhibits a dipole pattern in which rainfall in the central and northern IS tends to be out of phase with that in the southeastern TP. This dipole pattern is associated with significant anomalies in rainfall, atmospheric circulation, and water vapor transport over the Asian continent and nearby oceans. Rainfall anomalies and the associated latent heating in the central and northern IS tend to induce changes in regional circulation -that suppress rainfall in the southeastern TP and vice versa. Furthermore, the sea surface temperature anomalies in the tropical southeastern Indian Ocean can trigger the dipole rainfall pattern by suppressing convection over the central IS and the northern Bay of Bengal, which further induces anomalous anticyclonic circulation to the south of TP that favors more rainfall in the southeastern TP by transporting more water vapor to the region. The dipole pattern is also linked to the Silk-Road wave train due to its link to rainfall over the northwestern IS.

  13. Feasibility of Using Elastic Wave Velocity Monitoring for Early Warning of Rainfall-Induced Slope Failure

    PubMed Central

    Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke

    2018-01-01

    Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate. PMID:29584699

  14. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    NASA Astrophysics Data System (ADS)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    , the critical rainfall threshold of the slope can be obtained by the coupled analysis of rainfall, infiltration, seepage, and slope stability. Taking the slope located at 50k+650 on Tainan county road No 174 as an example, it located at Zeng-Wun river watershed in the southern Taiwan, is an active landslide due to typhoon events. Coordinates for the case study site are 194925, 2567208 (TWD97). The site was selected as the results of previous reports and geological survey. According to the Central Weather Bureau, the annual precipitation is about 2,450 mm, the highest monthly value is in August with 630 mm, and the lowest value is in November with 13 mm. The results show that the critical rainfall threshold of the study case is around 640 mm. It means that there should be alarmed when the accumulated rainfall over 640 mm. Our preliminary results appear to be useful for rainfall-induced landslide hazard assessments. The findings are also a good reference to establish an early warning system of landslides and develop strategies to prevent so much misfortune from happening in the future.

  15. Tree ring reconstructed rainfall over the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lopez, Lidio; Stahle, David; Villalba, Ricardo; Torbenson, Max; Feng, Song; Cook, Edward

    2017-07-01

    Moisture sensitive tree ring chronologies of Centrolobium microchaete have been developed from seasonally dry forests in the southern Amazon Basin and used to reconstruct wet season rainfall totals from 1799 to 2012, adding over 150 years of rainfall estimates to the short instrumental record for the region. The reconstruction is correlated with the same atmospheric variables that influence the instrumental measurements of wet season rainfall. Anticyclonic circulation over midlatitude South America promotes equatorward surges of cold and relatively dry extratropical air that converge with warm moist air to form deep convection and heavy rainfall over this sector of the southern Amazon Basin. Interesting droughts and pluvials are reconstructed during the preinstrumental nineteenth and early twentieth centuries, but the tree ring reconstruction suggests that the strong multidecadal variability in instrumental and reconstructed wet season rainfall after 1950 may have been unmatched since 1799.

  16. The Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steven J.; Christian, Hugh; hide

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  17. Relative influence of precession and obliquity in the early Holocene: Topographic modulation of subtropical seasonality during the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.

    2018-07-01

    On orbital timescales, higher summer insolation is thought to strengthen the continental monsoon while weakening the maritime monsoon in the Northern hemisphere. Through simulations using the Community Earth System Model, we evaluated the relative influence of perihelion precession and high obliquity in the early Holocene during the Asian summer monsoon. The major finding was that precession dominates the atmospheric heating change over the Tibetan Plateau-Himalayas and Maritime Continent, whereas obliquity is responsible for the heating change over the equatorial Indian Ocean. Thus, precession and obliquity can play contrasting roles in driving the monsoons on orbital timescales. In late spring-early summer, interior Asian continental heating drives the South and East Asian monsoons. The broad-scale monsoonal circulation further expands zonally in July-August, corresponding to the development of summer monsoons in West Africa and the subtropical Western North Pacific (WNP) as well as a sizable increase in convection over the equatorial Indian Ocean. Tropical and oceanic heating becomes crucial in late summer. Over South Asia-Indian Ocean (50°E-110°E), the precession maximum intensifies the monsoonal Hadley cell (heating with an inland/highland origin), which is opposite to the meridional circulation change induced by high obliquity (heating with a tropical origin). The existence of the Tibetan Plateau-Himalayas intensifies the precessional impact. During the late-summer phase of the monsoon season, the effect of obliquity on tropical heating can be substantial. In addition to competing with Asian continental heating, obliquity-enhanced heating over the equatorial Indian Ocean also has a Walker-type circulation impact, resulting in suppression of precession-enhanced heating over the Maritime Continent.

  18. Impact of Intensive Summer Reading Intervention for Children With Reading Disabilities and Difficulties in Early Elementary School.

    PubMed

    Christodoulou, Joanna A; Cyr, Abigail; Murtagh, Jack; Chang, Patricia; Lin, Jiayi; Guarino, Anthony J; Hook, Pamela; Gabrieli, John D E

    Efficacy of an intensive reading intervention implemented during the nonacademic summer was evaluated in children with reading disabilities or difficulties (RD). Students (ages 6-9) were randomly assigned to receive Lindamood-Bell's Seeing Stars program ( n = 23) as an intervention or to a waiting-list control group ( n = 24). Analysis of pre- and posttesting revealed significant interactions in favor of the intervention group for untimed word and pseudoword reading, timed pseudoword reading, oral reading fluency, and symbol imagery. The interactions mostly reflected (a) significant declines in the nonintervention group from pre- to posttesting, and (2) no decline in the intervention group. The current study offers direct evidence for widening differences in reading abilities between students with RD who do and do not receive intensive summer reading instruction. Intervention implications for RD children are discussed, especially in relation to the relevance of summer intervention to prevent further decline in struggling early readers.

  19. Documentary reconstruction of monsoon rainfall variability over western India, 1781-1860

    NASA Astrophysics Data System (ADS)

    Adamson, George C. D.; Nash, David J.

    2014-02-01

    Investigations into the climatic forcings that affect the long-term variability of the Indian summer monsoon are constrained by a lack of reliable rainfall data prior to the late nineteenth century. Extensive qualitative and quantitative meteorological information for the pre-instrumental period exists within historical documents, although these materials have been largely unexplored. This paper presents the first reconstruction of monsoon variability using documentary sources, focussing on western India for the period 1781-1860. Three separate reconstructions are generated, for (1) Mumbai, (2) Pune and (3) the area of Gujarat bordering the Gulf of Khambat. A composite chronology is then produced from the three reconstructions, termed the Western India Monsoon Rainfall reconstruction (WIMR). The WIMR exhibits four periods of generally deficient monsoon rainfall (1780-1785, 1799-1806, 1830-1838 and 1845-1857) and three of above-normal rainfall (1788-1794, 1813-1828 and 1839-1844). The WIMR shows good correspondence with a dendroclimatic drought reconstruction for Kerala, although agreement with the western Indian portion of the tree-ring derived Monsoon Asia Drought Atlas is less strong. The reconstruction is used to examine the long-term relationship between the El Nino-Southern Oscillation (ENSO) and monsoon rainfall over western India. This exhibits peaks and troughs in correlation over time, suggesting a regular long-term fluctuation. This may be an internal oscillation in the ENSO-monsoon system or may be related to volcanic aerosol forcings. Further reconstructions of monsoon rainfall are necessary to validate this. The study highlights uncertainties in existing published rainfall records for 1817-1846 for western India.

  20. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    USGS Publications Warehouse

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  1. Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates

    NASA Astrophysics Data System (ADS)

    Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.

    2017-12-01

    Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and rank StorAge Selection (rSAS) transit time model were calibrated to extensive hydrometric and environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.

  2. Intrinsic Coupled Ocean-Atmosphere Modes of the Asian Summer Monsoon: A Re-assessment of Monsoon-ENSO Relationships

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Wu, H. T.

    2000-01-01

    Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a

  3. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always

  4. Wetting and greening Tibetan Plateau in early summer in recent decades

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Zhou, Tianjun; Zhang, Lixia

    2017-06-01

    The Tibetan Plateau (TP) plays an essential role in the global hydrological cycle. Unlike the well-recognized surface warming, changes in precipitation over the TP and the underlying mechanisms remain ambiguous. A significant increase in the amount of precipitation over the southeastern TP in May over 1979-2014 (13.46% decade-1 of the climatology) is identified in this study, based on homogenized daily rain gauge data. Both the increased precipitation frequency and intensity have contributions. The coherent increases in soil moisture content and vegetation activities further confirm the precipitation trend, indicating a wetting and greening TP in the early summer in recent decades. The moisture budget analysis shows that this wetting trend in the past four decades is dominated by the increased water vapor convergence due to circulation changes, while increases in specific humidity play a minor role. The wetting trend over the TP in May results directly from the earlier onset of the South Asian summer monsoon (ASM) since the late 1970s associated with the phase transition of Interdecadal Pacific Oscillation around the late 1990s. The earlier onset of the ASM triggers low-level southwesterly anomalies over the northern Indian Ocean, promoting moisture convergence and increased precipitation over the TP in May. Specifically, the increased amount of precipitation after the onset of the ASM explains 95% of the increase in the total amount of precipitation in May.

  5. Regional rainfall thresholds for landslide occurrence using a centenary database

    NASA Astrophysics Data System (ADS)

    Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Garcia, Ricardo A. C.; Quaresma, Ivânia

    2018-04-01

    This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using a centenary landslide database associated with a single centenary daily rainfall data set. The method is applied to the Lisbon region and includes the rainfall return period analysis that was used to identify the critical rainfall combination (cumulated rainfall duration) related to each landslide event. The spatial representativeness of the reference rain gauge is evaluated and the rainfall thresholds are assessed and calibrated using the receiver operating characteristic (ROC) metrics. Results show that landslide events located up to 10 km from the rain gauge can be used to calculate the rainfall thresholds in the study area; however, these thresholds may be used with acceptable confidence up to 50 km from the rain gauge. The rainfall thresholds obtained using linear and potential regression perform well in ROC metrics. However, the intermediate thresholds based on the probability of landslide events established in the zone between the lower-limit threshold and the upper-limit threshold are much more informative as they indicate the probability of landslide event occurrence given rainfall exceeding the threshold. This information can be easily included in landslide early warning systems, especially when combined with the probability of rainfall above each threshold.

  6. Amplification of ENSO Effects on Indian Summer Monsoon by Absorbing Aerosols

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Sang, Jeong; Kim, Yeon-Hee; Lee, Woo-Seop

    2015-01-01

    In this study, we present observational evidence, based on satellite aerosol measurements and MERRA reanalysis data for the period 1979-2011, indicating that absorbing aerosols can have strong influence on seasonal-to-interannual variability of the Indian summer monsoon rainfall, including amplification of ENSO effects. We find a significant correlation between ENSO (El Nino Southern Oscillation) and aerosol loading in April-May, with La Nina (El Nino) conditions favoring increased (decreased) aerosol accumulation over northern India, with maximum aerosol optical depth (AOD) over the Arabian Sea and Northwestern India, indicative of strong concentration of dust aerosols transported from West Asia and Middle East deserts. Composite analyses based on a normalized aerosol index (NAI) show that high concentration of aerosol over northern India in April-May is associated with increased moisture transport, enhanced dynamically induced warming of the upper troposphere over the Tibetan Plateau, and enhanced rainfall over northern India and the Himalayan foothills during May-June, followed by a subsequent suppressed monsoon rainfall over all India,consistent with the Elevated Heat Pump (EHP) hypothesis (Lau et al. 2006). Further analyses from sub-sampling of ENSO years, with normal (less than 1 sigma), and abnormal (greater than 1 sigma)) NAI over northern India respectively show that the EHP may lead to an amplification of the Indian summer monsoon response to ENSO forcing, particularly with respect to the increased rainfall over the Himalayan foothills, and the warming of the upper troposphere over the Tibetan Plateau. Our results suggest that absorbing aerosol, particular desert dusts can strongly modulate ENSO influence, and possibly play important roles as a feedback agent in climate change in Asian monsoon regions.

  7. Characterization of 2014 summer drought over Henan province using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Jia, Li; Zhou, Jie

    2015-12-01

    An exceptional drought struck Henan province during the summer of 2014. It caused directly the financial loss reaching to hundreds of billion Yuan (RMB), and brought the adverse influence for people's life, agricultural production as well as the ecosystem. The study in this paper characterized the Henan 2014 summer drought event through analyzing the spatial distribution of drought severity using precipitation data from Tropical Rainfall Measuring Mission (TRMM) sensor and Normalized difference vegetation index (NDVI) and land surface temperature (LST) products from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The trend analysis of the annual precipitation from 2003 to 2014 showed that the region over Henan province is becoming dry. Especially in the east of Henan province, the decrease of precipitation is more obvious with the maximum change rate of ~48 mm/year. The rainfall in summer (from June to August) of 2014 was the largest negtive anomaly in contrast with the same period of historical years, which was 43% lower than the average of the past ten years. Drought severity derived from Standardized Precipitation Index (SPI) indicated that all areas of Henan province experienced drought in summer of 2014 with different severity levels. The extreme drought, accounting for about 22.7 % of Henan total area, mainly occurred in Luohe, Xuchang, and Pingdingshan regions, and partly in Nanyang, Zhengzhou, and Jiaozuo. This is consistent with the statistics from local municipalities. The Normalized Drought Index Anomaly (NDAI), calculated from MODIS NDVI and LST products, can capture the evolution of the Henan 2014 summer drought effectively. Drought severity classified by NDAI also agreed well with the result from the SPI.

  8. Characterizing meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey

    USGS Publications Warehouse

    Ashland, Francis; Fiore, Alex R.; Reilly, Pamela A.; De Graff, Jerome V.; Shakoor, Abdul

    2017-01-01

    Meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey remain undocumented despite a history of damaging slope movement extending back to at least 1903. This study applies an empirical approach to quantify the rainfall conditions leading to shallow landsliding based on analysis of overlapping historical precipitation data and records of landslide occurrence, and uses continuous monitoring to quantify antecedent soil moisture and hydrologic response to rainfall events at two failure-prone hillslopes. Analysis of historical rainfall data reveals that both extended duration and cumulative rainfall amounts are critical characteristics of many landslide-inducing storms, and is consistent with current monitoring results that show notable increases in shallow soil moisture and pore-water pressure in continuous rainfall periods. Monitoring results show that shallow groundwater levels and soil moisture increase from annual lows in late summer-early fall to annual highs in late winter-early spring, and historical data indicate that shallow landslides occur most commonly from tropical cyclones in late summer through fall and nor’easters in spring. Based on this seasonality, we derived two provisional rainfall thresholds using a limited dataset of documented landslides and rainfall conditions for each season and storm type. A lower threshold for landslide initiation in spring corresponds with high antecedent moisture conditions, and higher rainfall amounts are required to induce shallow landslides during the drier soil moisture conditions in late summer-early fall.

  9. Probabilistic clustering of rainfall condition for landslide triggering

    NASA Astrophysics Data System (ADS)

    Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto

    2013-04-01

    one (i) largely reduces the subjectivity in the choice of the threshold model and in how it is calculated, and (ii) it can be easier set-up in other study areas. The proposed approach can be conveniently integrated in existing early-warning system to improve the accuracy of the estimation of the real landslide occurrence probability associated to rainfall events and its uncertainty.

  10. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    NASA Astrophysics Data System (ADS)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  11. Potential predictability and actual skill of Boreal Summer Tropical SST and Indian summer monsoon rainfall in CFSv2-T382: Role of initial SST and teleconnections

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Rao, Suryachandra A.; Das, Renu S.; Salunke, Kiran; Dhakate, Ashish

    2017-10-01

    The present study assess the potential predictability of boreal summer (June through September, JJAS) tropical sea surface temperature (SST) and Indian summer monsoon rainfall (ISMR) using high resolution climate forecast system (CFSv2-T382) hindcasts. Potential predictability is computed using relative entropy (RE), which is the combined effect of signal strength and model spread, while the correlation between ensemble mean and observations represents the actual skill. Both actual and potential skills increase as lead time decreases for Niño3 index and equatorial East Indian Ocean (EEIO) SST anomaly and both the skills are close to each other for May IC hindcasts at zero lead. At the same time the actual skill of ISMR and El Niño Modoki index (EMI) are close to potential skill for Feb IC hindcasts (3 month lead). It is interesting to note that, both actual and potential skills are nearly equal, when RE has maximum contribution to individual year's prediction skill and its relationship with absolute error is insignificant or out of phase. The major contribution to potential predictability is from ensemble mean and the role of ensemble spread is limited for Pacific SST and ISMR hindcasts. RE values are able to capture the predictability contribution from both initial SST and simultaneous boundary forcing better than ensemble mean, resulting in higher potential skill compared to actual skill for all ICs. For Feb IC hindcasts at 3 month lead time, initial month SST (Feb SST) has important predictive component for El Niño Modoki and ISMR leading to higher value of actual skill which is close to potential skill. This study points out that even though the simultaneous relationship between ensemble mean ISMR and global SST is similar for all ICs, the predictive component from initial SST anomalies are captured well by Feb IC (3 month lead) hindcasts only. This resulted in better skill of ISMR for Feb IC (3 month lead) hindcasts compared to May IC (0 month lead

  12. An application of hybrid downscaling model to forecast summer precipitation at stations in China

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Fan, Ke

    2014-06-01

    A pattern prediction hybrid downscaling method was applied to predict summer (June-July-August) precipitation at China 160 stations. The predicted precipitation from the downscaling scheme is available one month before. Four predictors were chosen to establish the hybrid downscaling scheme. The 500-hPa geopotential height (GH5) and 850-hPa specific humidity (q85) were from the skillful predicted output of three DEMETER (Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction) general circulation models (GCMs). The 700-hPa geopotential height (GH7) and sea level pressure (SLP) were from reanalysis datasets. The hybrid downscaling scheme (HD-4P) has better prediction skill than a conventional statistical downscaling model (SD-2P) which contains two predictors derived from the output of GCMs, although two downscaling schemes were performed to improve the seasonal prediction of summer rainfall in comparison with the original output of the DEMETER GCMs. In particular, HD-4P downscaling predictions showed lower root mean square errors than those based on the SD-2P model. Furthermore, the HD-4P downscaling model reproduced the China summer precipitation anomaly centers more accurately than the scenario of the SD-2P model in 1998. A hybrid downscaling prediction should be effective to improve the prediction skill of summer rainfall at stations in China.

  13. A Comparison Study of Summer Season Raindrop Size Distribution Between Palau and Taiwan, Two Islands in Western Pacific

    NASA Astrophysics Data System (ADS)

    Seela, Balaji Kumar; Janapati, Jayalakshmi; Lin, Pay-Liam; Reddy, K. Krishna; Shirooka, Ryuichi; Wang, Pao K.

    2017-11-01

    Raindrop size distribution (RSD) characteristics in summer season rainfall of two observational sites (Taiwan (24°58'N, 121°10'E) and Palau (7°20'N, 134°28'E)) in western Pacific are studied by using five years of impact type disdrometer data. In addition to disdrometer data, Tropical Rainfall Measuring Mission, Moderate Resolution Imaging Spectroradiometer, and ERA-Interim data sets are used to illustrate the dynamical and microphysical characteristics associated with summer season rainfall of Taiwan and Palau. Taiwan and Palau's raindrop spectra showed a significant difference, with a higher concentration of middle and large drops in Taiwan than Palau rainfall. RSD stratified on the basis of rain rate showed a higher mass-weighted mean diameter (Dm) and a lower normalized intercept parameter (log10Nw) in Taiwan than Palau rainfall. Precipitation classification into stratiform and convective regimes showed higher Dm values in Taiwan than Palau. Furthermore, for both the locations, the convective precipitation has a higher Dm value than stratiform precipitation. The radar reflectivity-rain rate relations (Z = A*Rb) of Taiwan and Palau showed a clear variation in the coefficient and a less variation in exponent values. Terrain-influenced clouds extended to higher altitudes over Taiwan resulted with higher Dm and lower log10Nw values as compared to Palau.

  14. Early summer precipitation in the lower Yangtze River basin for AD 1845-2011 based on tree-ring cellulose oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Shi, Jiangfeng; Zhao, Yesi; Nakatsuka, Takeshi; Sano, Masaki; Shi, Shiyuan; Guo, Zhengtang

    2018-04-01

    Precipitation from June to August is generally used to reflect the East Asian summer monsoon (EASM) variability. However, the principal modes of the EASM rainfall are different between May-June (MJ) and July-August due to the seasonal march of East Asian subtropical front. Therefore, it is necessary to study them separately. In this study, we reconstruct a 167-year MJ precipitation time series using tree-ring cellulose δ18O that explains 46.9% of the variance in the lower Yangtze River basin, Southeast China, that extends the meteorological data back more than 100 years and makes the precipitation study at decadal scales possible. The decades with 5 or more anomalously dry or wet years are the 1880s, 1890s, and 1910s, and the 1980s and 2000s have only one anomalous year per decade. MJ precipitation shows a significantly negative relationship with absolute Niño 3.4 sea surface temperature, especially during the developing phases of El Niño-Southern Oscillation, indicating that there is less rainfall during El Niño events. However, the relationship is not uniform throughout the period. Further analyses show that it is stronger when the Pacific Decadal Oscillation is in its positive phases.

  15. Nitrogen transformations in response to temperature and rainfall manipulation in oak savanna: A global change experiment

    NASA Astrophysics Data System (ADS)

    Wellman, R. L.; Boutton, T. W.; Tjoelker, M. G.; Volder, A.; Briske, D. D.

    2013-12-01

    Increasing concentrations of greenhouse gases are projected to elevate global surface air temperatures by 1.1 to 6.4°C by the end of the century, and potentially magnify the intensity and variability of seasonal precipitation distribution. The mid-latitude grasslands of North America are predicted to experience substantial modification in precipitation regimes, with a shift towards drier summers and wetter spring and fall seasons. Despite these predictions, little is known concerning the effects of these global climate change drivers or their potential interactive effects on nitrogen (N) cycling processes. The purpose of this study is to quantify seasonal variation in rates of N-mineralization, nitrification, and N-losses via leaching in soil subjected to experimental warming and rainfall manipulation. Research was conducted at the Texas A&M Warming and Rainfall Manipulation (WaRM) Site in College Station where eight 9x18m rainout shelters and two unsheltered controls were established in post oak savanna in 2003. Replicate annual rainfall redistribution treatments (n = 4) are applied at the shelter level (long term mean vs. 40% of summer redistributed to fall and spring with same annual total). Warming treatments (ambient vs. 24-hr IR canopy warming of 1-3°C) were applied to planted monocultures of juniper and little bluestem, and a juniper-grass combination. Both juniper and little bluestem are key species within the post oak savanna region. Plots were sampled from the full factorial design during years six and seven of the WaRM experiment. Soil N-mineralization, nitrification, and N-losses via leaching were assessed quarterly for two years using the resin core incubation method. Rainfall, species composition, and time interacted significantly to influence both ammonification and nitrification. Highest rates of ammonification (0.115 mg NH4+ -N/ kg soil/day) occurred in grass monocultures during summer in the control rainfall plots, whereas highest rates of

  16. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.

    2015-07-01

    Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.

  17. Changes in South Pacific rainfall bands in a warming climate

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; Stein, K.; McGregor, S.; Schneider, N.; England, M. H.; Lengaigne, M.; Cai, W.

    2012-12-01

    The South Pacific Convergence Zone (SPCZ) is the largest rainband in the Southern Hemisphere and provides most of the rainfall to Southwest Pacific island nations. In spite of various modeling efforts, it remains uncertain how the SPCZ will respond to greenhouse warming. A multi-model ensemble average of 21st century climate change projections from the current-generation of Coupled General Circulation Models (CGCMs) suggests a slightly wetter Southwest Pacific; however, inter-model uncertainty is greater than projected rainfall changes in the SPCZ region. Using a hierarchy of climate models we show that the uncertainty of SPCZ rainfall projections in the Southwest Pacific can be explained as a result of two competing mechanisms. Higher tropical sea surface temperatures (SST) lead to an overall increase of atmospheric moisture and rainfall while weaker SST gradients dynamically shift the SPCZ northeastward (see illustration) and promote summer drying in areas of the Southwest Pacific, similar to the response to strong El Niño events. Based on a multi-model ensemble of 55 greenhouse warming experiments and for moderate tropical warming of 2-3°C we estimate a 5% decrease of SPCZ rainfall, although uncertainty exceeds ±30% among CGCMs. For stronger tropical warming, a tendency for a wetter SPCZ region is identified.; Illustration of the "warmest gets wetter" response to projected 21st century greenhouse warming. Green shading depicts observed (1982-2009) rainfall during DJF (contour interval: 2 mm/day; starting at 1 mm/day). Blue (red) contours depict warming less (more) than the tropical mean (42.5°N/S) 21st century multi-model trend (contour interval: 0.2°C; starting at ±0.1°C).

  18. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  19. The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia

    PubMed Central

    Cook, Benjamin I; Palmer, Jonathan G; Cook, Edward R; Turney, Chris S M; Allen, Kathryn; Fenwick, Pavla; O’Donnell, Alison; Lough, Janice M; Grierson, Pauline F; Ho, Michelle; Baker, Patrick J

    2018-01-01

    Eastern Australia recently experienced an intense drought (Millennium Drought, 2003–2009) and record-breaking rainfall and flooding (austral summer 2010–2011). There is some limited evidence for a climate change contribution to these events, but such analyses are hampered by the paucity of information on long-term natural variability. Analyzing a new reconstruction of summer (December–January–February) Palmer Drought Severity Index (the Australia–New Zealand Drought Atlas; ANZDA, 1500–2012 CE), we find moisture deficits during the Millennium Drought fall within the range of the last 500 years of natural hydroclimate variability. This variability includes periods of multi-decadal drought in the 1500s more persistent than any event in the historical record. However, the severity of the Millennium Drought, which was caused by autumn (March–April–May) precipitation declines, may be underestimated in the ANZDA because the reconstruction is biased towards summer and antecedent spring (September-October-November) precipitation. The pluvial in 2011, however, which was characterized by extreme summer rainfall faithfully captured by the ANZDA, is likely the wettest year in the reconstruction for Coastal Queensland. Climate projections (RCP 8.5 scenario) suggest that eastern Australia will experience long-term drying during the 21st century. While the contribution of anthropogenic forcing to recent extremes remains an open question, these projections indicate an amplified risk of multi-year drought anomalies matching or exceeding the intensity of the Millennium Drought. PMID:29780675

  20. The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia.

    PubMed

    Cook, Benjamin I; Palmer, Jonathan G; Cook, Edward R; Turney, Chris S M; Allen, Kathryn; Fenwick, Pavla; O'Donnell, Alison; Lough, Janice M; Grierson, Pauline F; Ho, Michelle; Baker, Patrick J

    2016-11-16

    Eastern Australia recently experienced an intense drought (Millennium Drought, 2003-2009) and record-breaking rainfall and flooding (austral summer 2010-2011). There is some limited evidence for a climate change contribution to these events, but such analyses are hampered by the paucity of information on long-term natural variability. Analyzing a new reconstruction of summer (December-January-February) Palmer Drought Severity Index (the Australia-New Zealand Drought Atlas; ANZDA, 1500-2012 CE), we find moisture deficits during the Millennium Drought fall within the range of the last 500 years of natural hydroclimate variability. This variability includes periods of multi-decadal drought in the 1500s more persistent than any event in the historical record. However, the severity of the Millennium Drought, which was caused by autumn (March-April-May) precipitation declines, may be underestimated in the ANZDA because the reconstruction is biased towards summer and antecedent spring (September-October-November) precipitation. The pluvial in 2011, however, which was characterized by extreme summer rainfall faithfully captured by the ANZDA, is likely the wettest year in the reconstruction for Coastal Queensland. Climate projections (RCP 8.5 scenario) suggest that eastern Australia will experience long-term drying during the 21 st century. While the contribution of anthropogenic forcing to recent extremes remains an open question, these projections indicate an amplified risk of multi-year drought anomalies matching or exceeding the intensity of the Millennium Drought.

  1. Forecasting Andean rainfall and crop yield from the influence of El Nino on Pleiades visibility

    PubMed

    Orlove; Chiang; Cane

    2000-01-06

    Farmers in drought-prone regions of Andean South America have historically made observations of changes in the apparent brightness of stars in the Pleiades around the time of the southern winter solstice in order to forecast interannual variations in summer rainfall and in autumn harvests. They moderate the effect of reduced rainfall by adjusting the planting dates of potatoes, their most important crop. Here we use data on cloud cover and water vapour from satellite imagery, agronomic data from the Andean altiplano and an index of El Nino variability to analyse this forecasting method. We find that poor visibility of the Pleiades in June-caused by an increase in subvisual high cirrus clouds-is indicative of an El Nino year, which is usually linked to reduced rainfall during the growing season several months later. Our results suggest that this centuries-old method of seasonal rainfall forecasting may be based on a simple indicator of El Nino variability.

  2. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)

    USGS Publications Warehouse

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.

    2016-01-01

    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall

  3. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a

  4. Coherent response of the Indo-African boreal summer monsoon to Pacific SST captured in Ethiopian rain δ18O

    NASA Astrophysics Data System (ADS)

    Madhavan, M.; Palliyil, L. R.; Ramesh, R.

    2017-12-01

    Pacific Sea Surface Temperature (SST) plays an important role in the inter-annual to inter-decadal variability of boreal monsoons. We identified a common mode of inter annual variability in the Indian and African boreal summer monsoon (June to September) rainfalls, which is linked to Pacific SSTs, using Empirical Orthogonal Function (EOF) analysis. Temporal coefficients (Principle component: PC1) of the leading mode of variability (EOF-1) is well correlated with the Indian summer monsoon rainfall and Sahel rainfall. About forty year long monthly observations of δ18O (and δD) at Addis Ababa, Ethiopia show a strong association with PC1 (r=0.69 for δ18O and r=0.75 for δD). Analysis of SST, sea level pressure and lower tropospheric winds suggest that 18O depletion in Ethiopian rainfall (and wet phases of PC1) is associated with cooler eastern tropical Pacific and warmer western Pacific and strengthening of Pacific subtropical high in both the hemispheres. Associated changes in the trade winds cause enhanced westerly moisture transport into the Indian subcontinent and northern Africa and cause enhanced rainfall. The intrusion of Atlantic westerly component of moisture transport at Addis Ababa during wet phases of PC1 is clearly recorded in δ18O of rain. We also observe the same common mode of variability (EOF1) of Indo-African boreal summer monsoon rain on decadal time scales. A 100 year long δ18O record of actively growing speleothem from the Mechara cave, Ethiopia, matches very well with the PC1 on the decadal time scale. This highlights the potential of speleothem δ18O and leaf wax δD from Ethiopia to investigate the natural variability and teleconnections of Indo-African boreal monsoon.

  5. Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2014-10-01

    The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.

  6. See-saw relationship of the Holocene East Asian-Australian summer monsoon.

    PubMed

    Eroglu, Deniz; McRobie, Fiona H; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F M; Marwan, Norbert; Kurths, Jürgen

    2016-09-26

    The East Asian-Indonesian-Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian-Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could 'lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see-saw relationship over the last 9,000 years-with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime.

  7. See–saw relationship of the Holocene East Asian–Australian summer monsoon

    PubMed Central

    Eroglu, Deniz; McRobie, Fiona H.; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F. M.; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    The East Asian–Indonesian–Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian–Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could ‘lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see–saw relationship over the last 9,000 years—with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime. PMID:27666662

  8. Southern Hemisphere rainfall variability over the past 200 years

    NASA Astrophysics Data System (ADS)

    Gergis, Joëlle; Henley, Benjamin J.

    2017-04-01

    This study presents an analysis of three palaeoclimate rainfall reconstructions from the Southern Hemisphere regions of south-eastern Australia (SEA), southern South Africa (SAF) and southern South America (SSA). We provide a first comparison of rainfall variations in these three regions over the past two centuries, with a focus on identifying synchronous wet and dry periods. Despite the uncertainties associated with the spatial and temporal limitations of the rainfall reconstructions, we find evidence of dynamically-forced climate influences. An investigation of the twentieth century relationship between regional rainfall and the large-scale climate circulation features of the Pacific, Indian and Southern Ocean regions revealed that Indo-Pacific variations of the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole dominate rainfall variability in SEA and SAF, while the higher latitude Southern Annular Mode (SAM) exerts a greater influence in SSA. An assessment of the stability of the regional rainfall-climate circulation modes over the past two centuries revealed a number of non-stationarities, the most notable of which occurs during the early nineteenth century around 1820. This corresponds to a time when the influence of ENSO on SEA, SAF and SSA rainfall weakens and there is a strengthening of the influence of SAM. We conclude by advocating the use of long-term palaeoclimate data to estimate decadal rainfall variability for future water resource management.

  9. Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales

    NASA Astrophysics Data System (ADS)

    Wedgbrow, C. S.; Wilby, R. L.; Fox, H. R.; O'Hare, G.

    2002-02-01

    Future climate change scenarios suggest enhanced temporal and spatial gradients in water resources across the UK. Provision of seasonal forecast statistics for surface climate variables could alleviate some negative effects of climate change on water resource infrastructure. This paper presents a preliminary investigation of spatial and temporal relationships between large-scale North Atlantic climatic indices, drought severity and river flow anomalies in England and Wales. Potentially useful predictive relationships are explored between winter indices of the Polar-Eurasian (POL) teleconnection pattern, the North Atlantic oscillation (NAO), North Atlantic sea surface temperature anomalies (SSTAs), and the summer Palmer drought severity index (PDSI) and reconstructed river flows in England and Wales. Correlation analyses, coherence testing and an index of forecast potential, demonstrate that preceding winter values of the POL index, SSTA (and to a lesser extent the NAO), provide indications of summer and early autumn drought severity and river flow anomalies in parts of northwest, southwest and southeast England. Correlation analyses demonstrate that positive winter anomalies of T1, POL index and NAO index are associated with negative PDSI (i.e. drought) across eastern parts of the British Isles in summer (r < 0.51). Coherence tests show that a positive winter SSTA (1871-1995) and POL index (1950-95) have preceded below-average summer river flows in the northwest and southwest of England and Wales in 70 to 100% of summers. The same rivers have also experienced below-average flows during autumn following negative winter phases of the NAO index in 64 to 93% of summers (1865-1995). Possible explanations for the predictor-predictand relationships are considered, including the memory of groundwater, and ocean-atmosphere coupling, and regional manifestations of synoptic rainfall processes. However, further research is necessary to increase the number of years and

  10. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    PubMed

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  11. Response mechanism of post-earthquake slopes under heavy rainfall

    NASA Astrophysics Data System (ADS)

    Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang

    2017-07-01

    This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.

  12. Evaluation of precipitation forecasts from 3D-Var and hybrid GSI-based system during Indian summer monsoon 2015

    NASA Astrophysics Data System (ADS)

    Singh, Sanjeev Kumar; Prasad, V. S.

    2018-02-01

    This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.

  13. Prototyping an Early-warning System for Rainfall-triggered Landslides on a Regional Scale Using a Physically-based Model and Remote Sensing Datasets

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.; Sassa, K.; Karnawati, D.; Fathani, F.

    2010-12-01

    Recent advancements in the availability of remotely sensed datasets provide an opportunity to advance the predictability of rainfall-triggered landslides at larger spatial scales. An early-warning system based on a physical landslide model and remote sensing information is used to simulate the dynamical response of the soil water content to the spatiotemporal variability of rainfall in complex terrain. The system utilizes geomorphologic datasets including a 30-meter ASTER DEM, a 1-km downscaled FAO soil map, and satellite-based Tropical Rainfall Measuring Mission (TRMM) precipitation. The applied physical model SLIDE (SLope-Infiltration-Distributed Equilibrium) defines a direct relationship between a factor of safety and the rainfall depth on an infinite slope. This prototype model is applied to a case study in Honduras during Hurricane Mitch in 1998 and a secondary case of typhoon-induced shallow landslides over Java Island, Indonesia. In Honduras, two study areas were selected which cover approximately 1,200 square kilometers and where a high density of shallow landslides occurred. The results were quantitatively evaluated using landslide inventory data compiled by the United States Geological Survey (USGS) following Hurricane Mitch, and show a good agreement between the modeling results and observations. The success rate for accurately estimating slope failure locations reached as high as 78% and 75%, while the error indices were 35% and 49%, respectively for each of the two selected study areas. Advantages and limitations of this application are discussed with respect to future assessment and challenges of performing a slope-stability estimation using coarse data at 1200 square kilometers. In Indonesia, the system has been applied over the whole Java Island. The prototyped early-warning system has been enhanced by integration of a susceptibility mapping and a precipitation forecasting model (i.e. Weather Research Forecast). The performance has been evaluated

  14. Weekend Effect" in Summertime U.S. Rainfall: Evidence for Midweek Intensification of Storms by Pollution

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Hahnenberger, Maura

    2006-01-01

    Persistent and strong dependence of rain rate on the day of the week has been found in Tropical Rainfall Measuring Mission (TRMM) satellite estimates of summer afternoon rainfall over the southeast U.S. and the nearby Atlantic from 1998 to 2005. Midweek (Tue-Thu) rain rates and rain area appear to increase over land, and this increase is accompanied by a corresponding diminution of rainfall over nearby waters. Reanalysis data from atmospheric models, suggest that there is a corresponding weekly variation in atmospheric winds consistent with the changes in rainfall. These variations are almost certainly caused by weekly variations in human activity. The most likely cause of the observed changes in rainfall is the well documented weekly variation in atmospheric pollution. Particulate pollution is highest in the middle of the week. Considerable observational and modeling evidence has accumulated concerning the effects of aerosols on precipitation. Most of this evidence relates to the suppression of precipitation by aerosols, but it has been argued that storms in highly unstable moist environments can be invigorated by aerosols, and some modeling studies seem to confirm this. The strong weekly cycle in rainfall observed over the southeast U.S. along with what appears to be dynamical suppression of rainfall over the nearby Atlantic, and the lack of an observable cycle over the southwest U.S., are consistent with this theory.

  15. Changing On Diurnal Cycle Of Rainfall In Northern Coastal Of West Java

    NASA Astrophysics Data System (ADS)

    Yulihastin, E.; Hadi, T. W.; Ningsih, N. S.

    2017-12-01

    The floods event in the north of Java was largely due to persistent of rainfall that occurred in the morning which indicated of deviation of diurnal pattern of rainfall. The shift of the phase of diurnal rainfall cycle using TRMM satellite hourly data of 3B41RT on the rainy period of 2000-2016 exhibits over land from Late Afternoon-Early Midnight (LA-EM) to morning. The peak of the cycle changes from diurnal to semidiurnal with a peak occurring in LA-EM and morning. Location of rainfall which usually occurs in the oceans shifted into near coastal area. The classification of diurnal rainfall cycles based on composite analysis shows four types: Normal (N) Type (45.6%) with one peak rainfall occurring in the afternoon until night, Diurnal (D) Type (26%) with one peak and phase opposite to normal type, Semidiurnal (SD) Type (6.5 %) with two peaks and the main peak occurring in the afternoon until night, Third Diurnal (TD) Type (21.7%) with three peaks and the main peak occurs in the morning. The classification was confirmed using the objective method of Empirical Mode Decomposition (EMD) and obtained three IMFs representing three diurnal cycle modes of Type TD (67.8%) with the main rain peak taking place in the afternoon, Type D with rain peak occurring in the early hours (18.9%), and SD type (9.9%) with the first peak occurred in the afternoon. For D Type, the results also prove that the diurnal cycle with significant deviations in amplitude occurred in February 2002, 2004, 2008, 2014, wich is the maximum rainfall occurs in the EM. It also seems that in those years, rainfall intensity is concentrated on the northern coast of West Java while in the Java Sea rainfall was minimum.

  16. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    NASA Astrophysics Data System (ADS)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  17. Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Asthana, AKL; Priyanka, Rao Singh; Jayangondaperumal, R.; Gupta, Anil K.; Bhakuni, SS

    2017-05-01

    In the Indian Himalayan region (IHR), landslide-driven hazards have intensified over the past several decades primarily caused by the occurrence of heavy and extreme rainfall. However, little attention has been given to determining the cause of events triggered during pre- and post-Indian Summer Monsoon (ISM) seasons. In the present research, detailed geological, meteorological, and remote sensing investigations have been carried out on an extreme rainfall landslide event that occurred in Sadal village, Udhampur district, Jammu and Kashmir Himalaya, during September 2014. Toward the receding phase of the ISM (i.e., in the month of September 2014), an unusual rainfall event of 488.2 mm rainfall in 24 h took place in Jammu and Kashmir Himalaya in contrast to the normal rainfall occurrence. Geological investigations suggest that a planar weakness in the affected region is caused by bedding planes that consist of an alternate sequence of hard, compact sandstone and weak claystone. During this extreme rainfall event, the Sadal village was completely buried under the rock slides, as failure occurred along the planar weakness that dips toward the valley slope. Rainfall data analysis from the Tropical Rainfall Measuring Mission (TRMM) for the preceding years homogeneous time series (July-September) indicates that the years 2005, 2009, 2011, 2012, and 2014 (i.e., closely spaced and clustering heavy rainfall events) received heavy rainfalls during the withdrawal of the ISM; whereas the heaviest rainfall was received in the years 2003 and 2013 at the onset of the ISM in the study region. This suggests that no characteristic cyclicity exists for extreme rainfall events. However, we observe that either toward the onset of the ISM or its retreat, the extreme rainfall facilitates landslides, rockfall, and slope failures in northwestern Himalaya. The spatiotemporal distribution of landslides caused by extreme rainfall events suggests its confinement toward the windward side of the

  18. Disparity in rainfall trend and patterns among different regions: analysis of 158 years' time series of rainfall dataset across India

    NASA Astrophysics Data System (ADS)

    Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.

    2017-10-01

    Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.

  19. Stochastic modeling of hourly rainfall times series in Campania (Italy)

    NASA Astrophysics Data System (ADS)

    Giorgio, M.; Greco, R.

    2009-04-01

    Occurrence of flowslides and floods in small catchments is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Consequently, landslide risk assessment procedures and early warning systems still rely on simple empirical models based on correlation between recorded rainfall data and observed landslides and/or river discharges. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction, which can allow gaining larger lead-times. Analysis of on-site recorded rainfall height time series represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR, ARMA, ARX, ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time intervals. More useful for this issue are the so-called DRIP (Disaggregated Rectangular Intensity Pulse) and NSRP (Neymann-Scott Rectangular Pulse) model [Heneker et al., 2001; Cowpertwait et al., 2002], usually adopted to generate synthetic point rainfall series. In this paper, the DRIP model approach is adopted, in which the sequence of rain storms and dry intervals constituting the structure of rainfall time series is modeled as an alternating renewal process. Final aim of the study is to provide a useful tool to implement an early warning system for hydrogeological risk management. Model calibration has been carried out with hourly rainfall hieght data provided by the rain gauges of Campania Region civil

  20. Characterizing land surface phenology and responses to rainfall in the Sahara desert

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.

    2016-08-01

    Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.

  1. Assessment of summer rainfall forecast skill in the Intra-Americas in GFDL high and low-resolution models

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong

    2018-05-01

    The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications

  2. Improved Rainfall Estimates and Predictions for 21st Century Drought Early Warning

    NASA Technical Reports Server (NTRS)

    Funk, Chris; Peterson, Pete; Shukla, Shraddhanand; Husak, Gregory; Landsfeld, Marty; Hoell, Andrew; Pedreros, Diego; Roberts, J. B.; Robertson, F. R.; Tadesse, Tsegae; hide

    2015-01-01

    As temperatures increase, the onset and severity of droughts is likely to become more intense. Improved tools for understanding, monitoring and predicting droughts will be a key component of 21st century climate adaption. The best drought monitoring systems will bring together accurate precipitation estimates with skillful climate and weather forecasts. Such systems combine the predictive power inherent in the current land surface state with the predictive power inherent in low frequency ocean-atmosphere dynamics. To this end, researchers at the Climate Hazards Group (CHG), in collaboration with partners at the USGS and NASA, have developed i) a long (1981-present) quasi-global (50degS-50degN, 180degW-180degE) high resolution (0.05deg) homogenous precipitation data set designed specifically for drought monitoring, ii) tools for understanding and predicting East African boreal spring droughts, and iii) an integrated land surface modeling (LSM) system that combines rainfall observations and predictions to provide effective drought early warning. This talk briefly describes these three components. Component 1: CHIRPS The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), blends station data with geostationary satellite observations to provide global near real time daily, pentadal and monthly precipitation estimates. We describe the CHIRPS algorithm and compare CHIRPS and other estimates to validation data. The CHIRPS is shown to have high correlation, low systematic errors (bias) and low mean absolute errors. Component 2: Hybrid statistical-dynamic forecast strategies East African droughts have increased in frequency, but become more predictable as Indo- Pacific SST gradients and Walker circulation disruptions intensify. We describe hybrid statistical-dynamic forecast strategies that are far superior to the raw output of coupled forecast models. These forecasts can be translated into probabilities that can be used to generate bootstrapped ensembles

  3. Diagnosing the Atmospheric/Oceanic Phenomena Associated with the Onset, Demise and Mid-Summer Drought of the Rainy Season in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Groenen, D.; Bourassa, M. A.

    2017-12-01

    The rainfall in Mesoamerica (Mexico and Central America) has influences from two bodies of water, interesting topography, and complex wind patterns, which complicates weather forecasting. Knowing the approximate onset and demise of the rainy season is critical for the optimal growth and development of key crops in this region such as coffee, bananas, rice, and maize. This study compares three methods to calculate the onset/demise dates of the individual years' rainy season, using area-averaged rainfall data (7-28 °N/77-109 °W) from two datasets. After these onset/demise dates are obtained using rainfall data, the atmospheric and oceanic phenomena associated with the timing is analyzed using MERRA-2 reanalysis data. The objective is to link the large-scale phenomena to the individual years' onset/demise dates, as well as link the weather phenomena to the interannual variability of the onset/demise dates. In addition, the broad scale rainy season will be connected with regional onset/demise dates on the scale of 400km. Linking the broad scale rainfall regimes to the regional regimes will allow a more cohesive view of the dynamics related to rainfall variability in the Mesoamerican region. A smoothing method will be used to analyze the timing and intensity of the mid-summer drought (MSD), a minimum in rainfall typically occurring during July and August. The goal of this research is to link the physical and dynamical mechanisms that cause the Mesoamerican rainy season and mid-summer drought (MSD) in order to better understand the predictability of Mesoamerican rainfall and ensure the health and safety of key crops.

  4. Relationships between Tropical Rainfall Events and Regional Annual Rainfall Anomalies

    NASA Astrophysics Data System (ADS)

    Painter, C.; Varble, A.; Zipser, E. J.

    2016-12-01

    Regional annual precipitation anomalies strongly impact the health of regional ecosystems, water resources, agriculture, and the probability of flood and drought conditions. Individual event characteristics, including rain rate, areal coverage, and stratiform fraction are also crucial in considering large-scale impacts on these resources. Therefore, forecasting individual event characteristics is important and could potentially be improved through correlation with longer and better predicted timescale environmental variables such as annual rainfall. This study examines twelve years of retrieved rainfall characteristics from the Tropical Rainfall Measuring Mission (TRMM) satellite at a 5° x 5° resolution between 35°N and 35°S, as a function of annual rainfall anomaly derived from Global Precipitation Climatology Project data. Rainfall event characteristics are derived at a system scale from the University of Utah TRMM Precipitation Features database and at a 5-km pixel scale from TRMM 2A25 products. For each 5° x 5° grid box and year, relationships between these characteristics and annual rainfall anomaly are derived. Additionally, years are separated into wet and dry groups for each grid box and are compared versus one another. Convective and stratiform rain rates, along with system area and volumetric rainfall, generally increase during wetter years, and this increase is most prominent over oceans. This is in agreement with recent studies suggesting that convective systems become larger and rainier when regional annual rainfall increases or when the climate warms. Over some land regions, on the other hand, system rain rate, volumetric rainfall, and area actually decrease as annual rainfall increases. Therefore, land and ocean regions generally exhibit different relationships. In agreement with recent studies of extreme rainfall in a changing climate, the largest and rainiest systems increase in relative size and intensity compared to average systems, and do

  5. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Chiang, J. C. H.; Kong, W.; Swenson, L. M.

    2016-12-01

    The Holocene East Asian Summer Monsoon (EASM) evolution was previously characterized as a trend towards weaker monsoon intensity paced by orbital insolation. We argue that this evolution is more accurately characterized as changes in the transition timing and duration of the EASM seasonal stages (Spring, pre Mei-Yu, Mei-Yu, Midsummer), and tied to the north-south displacement of the westerlies relative to Tibet. To this end, we employ atmospheric general circulation model time-slice simulations across the Holocene, and objectively identify the transition timing and duration of the EASM seasonal stages. Compared to the late Holocene, we find an earlier onset of Mei-Yu and an earlier transition from Mei-Yu to Summer in the early-mid Holocene, resulting in a shortened Mei-Yu and prolonged Summer stage. These changes are accompanied by an earlier northward positioning of the westerlies relative to Tibet. Our hypothesis provides a more satisfactory explanation for two key observations of Holocene East Asian climate: the `asynchronous Holocene optimum', and changes to East Asian dustiness. Our results highlight a key difference in the way that the East Asian monsoon dynamically responds to precessional insolation changes compared to the other monsoons. For other monsoon systems, changes to the land-ocean contrast drive changes to monsoon intensity. While this also occurs for the East Asian monsoon, more importantly changes to the meridional position of the westerlies relative to the Tibetan Plateau determine the timing of seasonal transitions; a northward shift triggers earlier seasonal rainfall transitions and in particular a shorter Mei-Yu and longer Midsummer stage. By similar reasoning, changes to obliquity also strongly affect East Asian summer monsoon seasonality, with a larger tilt resulting in earlier northward shift of the westerlies.

  6. The unusual wet summer (July) of 2014 in Southern Europe

    NASA Astrophysics Data System (ADS)

    Ratna, Satyaban B.; Ratnam, J. V.; Behera, Swadhin K.; Cherchi, Annalisa; Wang, Wanqiu; Yamagata, Toshio

    2017-06-01

    Southern Europe (Italy and the surrounding countries) experienced an unusual wet summer in 2014. The monthly rainfall in July 2014 was 84% above (more than three standard deviation) normal with respect to the 1982-2013 July climatology. The heavy rainfall damaged agriculture, and affected tourism and overall economy of the region. In this study, we tried to understand the physical mechanisms responsible for such abnormal weather by using model and observed datasets. The anomalously high precipitation over Italy is found to be associated with the positive sea surface temperature (SST) and convective anomalies in the tropical Pacific through the atmospheric teleconnection. Rossby wave activity flux at upper levels shows an anomalous tropospheric quasi-stationary Rossby wave from the Pacific with an anomalous cyclonic phase over southern Europe. This anomalous cyclonic circulation is barotropic in nature and seen extending to lower atmospheric levels, weakening the seasonal high and causing heavy precipitation over the Southern Europe. The hypothesis is verified using the National Centers for Environmental Prediction (NCEP) coupled forecast system model (CFSv2) seasonal forecasts. It is found that two-month lead forecast of CFSv2 was able to capture the wet summer event of 2014 over Southern Europe. The teleconnection pattern from Pacific to Southern Europe was also forecasted realistically by the CFSv2 system.

  7. Rainfall Threshold for Flash Flood Early Warning Based on Rational Equation: A Case Study of Zuojiao Watershed in Yunnan Province

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wang, Y. L.; Li, H. C.; Zhang, M.; Li, C. Z.; Chen, X.

    2017-12-01

    Rainfall threshold plays an important role in flash flood warning. A simple and easy method, using Rational Equation to calculate rainfall threshold, was proposed in this study. The critical rainfall equation was deduced from the Rational Equation. On the basis of the Manning equation and the results of Chinese Flash Flood Survey and Evaluation (CFFSE) Project, the critical flow was obtained, and the net rainfall was calculated. Three aspects of the rainfall losses, i.e. depression storage, vegetation interception, and soil infiltration were considered. The critical rainfall was the sum of the net rainfall and the rainfall losses. Rainfall threshold was estimated after considering the watershed soil moisture using the critical rainfall. In order to demonstrate this method, Zuojiao watershed in Yunnan Province was chosen as study area. The results showed the rainfall thresholds calculated by the Rational Equation method were approximated to the rainfall thresholds obtained from CFFSE, and were in accordance with the observed rainfall during flash flood events. Thus the calculated results are reasonable and the method is effective. This study provided a quick and convenient way to calculated rainfall threshold of flash flood warning for the grass root staffs and offered technical support for estimating rainfall threshold.

  8. A space-time multifractal analysis on radar rainfall sequences from central Poland

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; Deidda, Roberto

    2014-05-01

    Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal

  9. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability

    NASA Astrophysics Data System (ADS)

    Mascaro, Giuseppe

    2018-04-01

    This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.

  10. Observational evidence for the relationship between spring soil moisture and June rainfall over the Indian region

    NASA Astrophysics Data System (ADS)

    KanthaRao, B.; Rakesh, V.

    2018-05-01

    Understanding the relationship between gradually varying soil moisture (SM) conditions and monsoon rainfall anomalies is crucial for seasonal prediction. Though it is an important issue, very few studies in the past attempted to diagnose the linkages between the antecedent SM and Indian summer monsoon rainfall. This study examined the relationship between spring (April-May) SM and June rainfall using observed data during the period 1979-2010. The Empirical Orthogonal Function (EOF) analyses showed that the spring SM plays a significant role in June rainfall over the Central India (CI), South India (SI), and North East India (NEI) regions. The composite anomaly of the spring SM and June rainfall showed that excess (deficit) June rainfall over the CI was preceded by wet (dry) spring SM. The anomalies in surface-specific humidity, air temperature, and surface radiation fluxes also supported the existence of a positive SM-precipitation feedback over the CI. On the contrary, excess (deficit) June rainfall over the SI and NEI region were preceded by dry (wet) spring SM. The abnormal wet (dry) SM over the SI and NEI decreased (increased) the 2-m air temperature and increased (decreased) the surface pressure compared to the surrounding oceans which resulted in less (more) moisture transport from oceans to land (negative SM-precipitation feedback over the Indian monsoon region).

  11. The "Weekend Effect" in Summertime U.S. Rainfall: Evidence for Midweek Intensification of Storms by Pollution

    NASA Astrophysics Data System (ADS)

    Bell, T. L.; Rosenfeld, D.; Kim, K.; Hahnenberger, M.

    2006-05-01

    Persistent and strong dependence of rain rate on the day of the week has been found in Tropical Rainfall Measuring Mission (TRMM) satellite estimates of summer afternoon rainfall over the southeast U.S. and the nearby Atlantic from 1998 to 2005. Midweek (Tue--Thu) rain rates and rain area appear to increase over land, and this increase is accompanied by a corresponding diminution of rainfall over nearby waters. Reanalysis data from atmospheric models suggest that there is a corresponding weekly variation in atmospheric winds consistent with the changes in rainfall. These variations are almost certainly caused by weekly variations in human activity. The most likely cause of the observed changes in rainfall is the well documented weekly variation in atmospheric pollution. Particulate pollution is highest in the middle of the week. Considerable observational and modeling evidence has accumulated concerning the effects of aerosols on precipitation. Most of this evidence relates to the suppression of precipitation by aerosols, but it has been argued that storms in highly unstable moist environments can be invigorated by aerosols, and some modeling studies seem to confirm this. The strong weekly cycle in rainfall observed over the southeast U.S. along with what appears to be dynamical suppression of rainfall over the nearby Atlantic, and the lack of an observable cycle over the southwest U.S., are consistent with this theory.

  12. The Tropical Rainfall Measuring Mission (TRMM) Progress Report

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Meneghini, Robert; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steve

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate 3) Improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37'N to 37'S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  13. The role of snowpack, rainfall, and reservoirs in buffering California against drought effects

    USGS Publications Warehouse

    Johannis, Mary; Flint, Lorraine E.; Dettinger, Michael; Flint, Alan L.; Ochoa, Regina

    2016-08-29

    California’s vast reservoir system, fed by annual snow-and rainfall, plays an important part in providing water to the State’s human and wildlife population. There are almost 1,300 reservoirs throughout the State, but only approximately 200 of them are considered storage reservoirs, and many of the larger ones are critical components of the Federal Central Valley Project and California State Water Project. Storage reservoirs, such as the ones shown in figure 1, capture winter precipitation for use in California’s dry summer months. In addition to engineered reservoir storage, California also depends on water “stored” in the statewide snowpack, which slowly melts during the course of the summer, to augment the State’s water supply.

  14. Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields

    NASA Astrophysics Data System (ADS)

    Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.

    2015-12-01

    STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.

  15. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records

    NASA Astrophysics Data System (ADS)

    Liu, Jianbao; Chen, Jianhui; Zhang, Xiaojian; Chen, Fahu

    2016-04-01

    Monsoon precipitation over China exhibits large spatial differences. It has been found that a significantly enhanced East Asian summer monsoon (EASM) is characterized by increased rainfall in northern China and by reduced rainfall in southern China, and this relationship occurs on different time scales during the Holocene. This study presents results from a diverse range of proxy paleoclimatic records from northern China where precipitation variability is traditionally considered as an EASM proxy. Our aim is to evaluate the evolution of the EASM during the Holocene and to compare it with all of the published stalagmite δ18O records from the Asian Monsoon region in order to explore the potential mechanism(s) controlling the Chinese stalagmite δ18O. We found that the intensity of the EASM during the Holocene recorded by the traditional EASM proxy of moisture (or precipitation) records from northern China are significantly different from the Chinese stalagmite δ18O records. The EASM maximum occurred during the mid-Holocene, challenging the prevailing view of an early Holocene EASM maximum mainly inferred from stalagmite δ18O records in eastern China. In addition, all of the well-dated Holocene stalagmite δ18O records, covering a broad geographical region, exhibit a remarkably similar trend of variation and are statistically well-correlated on different time scales, thus indicating a common signal. However, in contrast with the clear consistency in the δ18O values in all of the cave records, both instrumental and paleoclimatic records exhibit significant spatial variations in rainfall on decadal-to- centennial time scales over eastern China. In addition, both paleoclimatic records and modeling results suggest that Holocene East Asian summer monsoon precipitation reached a maximum at different periods in different regions of China. Thus the stalagmite δ18O records from the EASM region should not be regarded as a reliable indicator of the strength of the East

  16. Spatial structure of monthly rainfall measurements average over 25 years and trends of the hourly variability of a current rainy day in Rwanda.

    NASA Astrophysics Data System (ADS)

    Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel

    2013-04-01

    Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical

  17. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    NASA Astrophysics Data System (ADS)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  18. Interannual rainfall variability and SOM-based circulation classification

    NASA Astrophysics Data System (ADS)

    Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher

    2018-01-01

    Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained

  19. The Summer Monsoon of 1987.

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Bedi, H. S.; Subramaniam, M.

    1989-04-01

    In this paper we have examined the evolution of a number of parameters we believe were important for our understanding of the drought over India during the summer of 1987. The list of parameters includes monthly means or anomalies of the following fields: sea surface temperatures, divergent circulations, outgoing longwave radiation, streamfunction of the lower and upper troposphere, and monthly precipitation (expressed as a percentage departure from a long-term mean). The El Niño related warm sea surface temperature anomaly and a weaker warm sea surface temperature anomaly over the equatorial Indian Ocean provide sustained convection, as reflected by the negative values of the outgoing longwave radiation. With the seasonal heating, a pronounced planetary-scale divergent circulation evolved with a center along the western Pacific Ocean. The monsoonal divergent circulation merged with that related to the El Niño, maintaining most of the heavy rainfall activity between the equatorial Pacific Ocean and east Asia. Persistent convective activity continued south of India during the entire monsoon season. Strong Hadley type overturnings with rising motions over these warm SST anomaly regions and descent roughly near 20° to 25°S was evident as early as April 1987. The subtropical high pressure areas near 20° to 25°S showed stronger than normal circulations. This was revealed by the presence of a counterclockwise streamfunction anomaly at 850 mb during April 1987. With the seasonal heating, this anomaly moved northwards and was located over the Arabian Sea and India. This countermonsoon circulation anomaly at the low levels was associated with a weaker than normal Somali jet and Arabian Sea circulation throughout this summer. The monsoon remained active along northeast India, Bangladesh, northern lndochina, and central China during the summer monsoon season. This was related to the eastward shift of the divergent circulation. An eastward shift of the upper tropospheric

  20. A monsoon-like Southwest Australian circulation and its relation with rainfall in Southwest Western Australia

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Li, Yun

    2010-05-01

    Using the NCEP/NCAR, ERA-40 reanalysis, and precipitation data from CMAP and Australian Bureau of Meteorology, the variability and circulation features influencing the southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is termed as the southwest Australian circulation (SWAC) for its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land-sea thermal contrast. The seasonal march of the SWAC in extended winter (May to October) is demonstrated by pentad data. An index based on the dynamics normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May to July) and late (August to October) winter. In weaker winter SWAC years there is an anti-cyclonic anomaly over southern Indian Ocean resulting in weaker westerlies and northerlies which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter, but also the long term drying trend over SWWA in early winter. The well-coupled SWAC-SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the Southern Hemisphere Annular Mode (SAM), El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA.

  1. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Min, Seung-Ki; Fischer, Erich; Shiogama, Hideo; Bethke, Ingo; Lierhammer, Ludwig; Scinocca, John F.

    2018-04-01

    This study investigates the impacts of global warming of 1.5 °C and 2.0 °C above pre-industrial conditions (Paris Agreement target temperatures) on the South Asian and East Asian monsoon rainfall using five atmospheric global climate models participating in the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project. Mean and extreme precipitation is projected to increase under warming over the two monsoon regions, more strongly in the 2.0 °C warmer world. Moisture budget analysis shows that increases in evaporation and atmospheric moisture lead to the additional increases in mean precipitation with good inter-model agreement. Analysis of daily precipitation characteristics reveals that more-extreme precipitation will have larger increase in intensity and frequency responding to the half a degree additional warming, which is more clearly seen over the South Asian monsoon region, indicating non-linear scaling of precipitation extremes with temperature. Strong inter-model relationship between temperature and precipitation intensity further demonstrates that the increased moisture with warming (Clausius-Clapeyron relation) plays a critical role in the stronger intensification of more-extreme rainfall with warming. Results from CMIP5 coupled global climate models under a transient warming scenario confirm that half a degree additional warming would bring more frequent and stronger heavy precipitation events, exerting devastating impacts on the human and natural system over the Asian monsoon region.

  2. Return period curves for extreme 5-min rainfall amounts at the Barcelona urban network

    NASA Astrophysics Data System (ADS)

    Lana, X.; Casas-Castillo, M. C.; Serra, C.; Rodríguez-Solà, R.; Redaño, A.; Burgueño, A.; Martínez, M. D.

    2018-03-01

    Heavy rainfall episodes are relatively common in the conurbation of Barcelona and neighbouring cities (NE Spain), usually due to storms generated by convective phenomena in summer and eastern and south-eastern advections in autumn. Prevention of local flood episodes and right design of urban drainage have to take into account the rainfall intensity spread instead of a simple evaluation of daily rainfall amounts. The database comes from 5-min rain amounts recorded by tipping buckets in the Barcelona urban network along the years 1994-2009. From these data, extreme 5-min rain amounts are selected applying the peaks-over-threshold method for thresholds derived from both 95% percentile and the mean excess plot. The return period curves are derived from their statistical distribution for every gauge, describing with detail expected extreme 5-min rain amounts across the urban network. These curves are compared with those derived from annual extreme time series. In this way, areas in Barcelona submitted to different levels of flood risk from the point of view of rainfall intensity are detected. Additionally, global time trends on extreme 5-min rain amounts are quantified for the whole network and found as not statistically significant.

  3. Extreme rainfall-induced landslide changes based on landslide susceptibility in China, 1998-2015

    NASA Astrophysics Data System (ADS)

    Li, Weiyue; Liu, Chun; Hong, Yang

    2017-04-01

    Nowadays, landslide has been one of the most frequent and seriously widespread natural hazards all over the world. Rainfall, especially heavy rainfall is a trigger to cause the landslide occurrence, by increasing soil pore water pressures. In China, rainfall-induced landslides have risen up over to 90% of the total number. Rainfall events sometimes generate a trend of extremelization named rainfall extremes that induce the slope failure suddenly and severely. This study shows a method to simulate the rainfall-induced landslide spatio-temporal distribution on the basis of the landslide susceptibility index. First, the study on landslide susceptibility in China is introduced. We set the values of the index to the range between 0 and 1. Second, we collected TRMM 3B42 precipitation products spanning the years 1998-2015 and extracted the daily rainfall events greater than 50mm/day as extreme rainfall. Most of the rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate extreme rainfall-induced landslide distribution and illustrate the changes in 17 years. This study shows a useful tool to be part of rainfall-induced landslide simulation methodology for landslide early warning.

  4. Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations

    NASA Astrophysics Data System (ADS)

    Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll

    2017-08-01

    The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.

  5. TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization

    NASA Astrophysics Data System (ADS)

    Schiavo Bernardi, E.; Allasia, D.; Basso, R.; Freitas Ferreira, P.; Tassi, R.

    2015-06-01

    The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998-2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5-10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10-35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.

  6. Influence of Superparameterization and a Higher-Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5: How Parameterization Changes Rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Fu, Rong; Shaikh, Muhammad J.

    We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with furthermore » reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.« less

  7. The Southern Oscillation and Prediction of `Der' Season Rainfall in Somalia.

    NASA Astrophysics Data System (ADS)

    Hutchinson, P.

    1992-05-01

    Somalia survives in semiarid to arid conditions, with annual rainfall totals rarely exceeding 700 mm, which are divided between two seasons. Many areas are arid, with negligible precipitation. Seasonal totals are highly variable. Thus, any seasonal rainfall forecast would be of significant importance to both the agricultural and animal husbandry communities. An investigation was carried out to determine whether there is a relationship between the Southern Oscillation and seasonal rainfall. No relationship exists between the Southern Oscillation and rainfall during the midyear `Gu' season, but it is shown that the year-end `Der' season precipitation is attected by the Southern Oscillation in southern and central areas of Somalia. Three techniques were used: correlation, regression, and simple contingency tables. Correlations between the SOI (Southern Oscillation index) and seasonal rainfall vary from zero up to about 0.8, with higher correlations in the south, both for individual stations and for area-averaged rainfall. Regression provides some predictive capacity, but the `explanation' of the variation in rainfall is not particularly high. The contingency tables revealed that there were very few occasions of both high SOI and high seasonal rainfall, although there was a wide scatter of seasonal rainfall associated with a low SOI.It is concluded that the SOI would be useful for planners, governments, and agencies as one tool in food/famine early warning but that the relationships are not strong enough for the average farmer to place much reliance on forecasts produced solely using the SOI.

  8. Identification of anomalous motion of thunderstorms using daily rainfall fields

    NASA Astrophysics Data System (ADS)

    del Moral, Anna; Llasat, Maria Carmen; Rigo, Tomeu

    2016-04-01

    Adverse weather phenomena in Catalonia (NE of the Iberian Peninsula) is commonly associated to heavy rains, large hail, strong winds, and/or tornados, all of them caused by thunderstorms. In most of the cases with adverse weather, thunderstorms vary sharply their trajectories in a concrete moment, changing completely the motion directions that have previously followed. Furthermore, it is possible that a breaking into several cells may be produced, or, in the opposite, it can be observed a joining of different thunderstorms into a bigger system. In order to identify the main features of the developing process of thunderstorms and the anomalous motions that these may follow in some cases, this contribution presents a classification of the events using daily rainfall fields, with the purpose of distinguishing quickly anomalous motion of thunderstorms. The methodology implemented allows classifying the daily rainfall fields in three categories by applying some thresholds related with the daily precipitation accumulated values and their extension: days with "no rain", days with "potentially convective" rain and days with "non-potentially convective" rain. Finally, for those "potentially convective" daily rainfall charts, it also allows a geometrical identification and classification of all the convective structures into "ellipse" and "non-ellipse", obtaining then the structures with "normal" or "anomalous" motion pattern, respectively. The work is focused on the period 2008-2015, and presents some characteristics of the rainfall behaviour in terms of the seasonal distribution of convective rainfall or the geographic variability. It shows that convective structures are mainly found during late spring and summer, even though they can be recorded in any time of the year. Consequently, the maximum number of convective structures with anomalous motion is recorded between July and November. Furthermore, the contribution shows the role of the orography of Catalonia in the

  9. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    PubMed

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  10. On the dust load and rainfall relationship in South Asia: an analysis from CMIP5

    NASA Astrophysics Data System (ADS)

    Singh, Charu; Ganguly, Dilip; Dash, S. K.

    2018-01-01

    This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951-2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead-lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.

  11. North Pacific Westerly Jet Influence of the Winter Hawaii Rainfall in the last 21,000 years

    NASA Astrophysics Data System (ADS)

    Li, S.; Elison Timm, O.

    2017-12-01

    Hawaii rainfall has a strong seasonality which has more rainfall during the winter than summer. Part of the winter rainfall is from extratropical weather disturbances. Kona lows (KL) are important contributors to the annual rainfall budget of the Hawaiian Islands. KL activity is found to have a strong relationship with the North Pacific climate variability. The goal of the research is to test the hypothesis that changes in the strength and position of the upper level zonal wind jet is a key driver for regional rainfall changes. The main objectives are (1) to identify the relationship between North Pacific westerly jet strength and KL activity in present day climate, (2) to test the stability of this relationship under past climatic conditions, and (3) to explore the teleconnection between Hawaii and North America. For the present-day analysis of the westerly jet, the zonal wind at 250hPa is used from ERA-interim data from 1979-2014. The potential vorticity is used as a measure of extratropical synoptic activity. The Hawaii Rainfall Index is from the Rainfall Atlas of Hawaii (seasonal means, 1920-2012). For the paleoclimatic study, the transient TraCE-21ka simulation is used for the zonal wind - Hawaii rainfall analysis. The results of present-day analysis show that when the jet extends farther into the eastern Pacific sector the Kona Low activity is reduced, less winter rainfall is observed over Hawaii and more rainfall over the California region. The jet position-rainfall relationship was investigated within the TrACE-21 simulation. For the TraCE-21ka dataset, there is an increasing rainfall trend from 21kBP to 14kBP; this period coincides with a gradual decrease in the strength of the westerly wind jet. The results show that the westerly jet strength has a strong influence of the Kona Low activity and the rainfall over Hawaii both in the present and the past.

  12. Atmospheric circulation feedback on west Asian dust and Indian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, Dimitris; Houssos, Elias; Gautam, Ritesh; Singh, Ramesh; Rashki, Alireza; Dumka, Umesh

    2016-04-01

    Classification of the atmospheric circulation patterns associated with high aerosol loading events over the Ganges valley, via the synergy of Factor and Cluster analysis techniques, has indicated six different synoptic weather patterns, two of which mostly occur during late pre-monsoon and monsoon seasons (May to September). The current study focuses on examining these two specific clusters that are associated with different mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields that seem to affect the aerosol (mostly dust) emissions and precipitation distribution over the Indian sub-continent. Furthermore, the study reveals that enhanced aerosol presence over the Arabian Sea is positively associated with increased rainfall over the Indian landmass. The increased dust over the Arabian Sea and rainfall over India are associated with deepening of the northwestern Indian and Arabian lows that increase thermal convection and convergence of humid air masses into Indian landmass, resulting in larger monsoon precipitation. For this cluster, negative MSLP and Z700 anomalies are observed over the Arabian Peninsula that enhance the dust outflow from Arabia and, concurrently, the southwesterly air flow resulting in increase in monsoon precipitation over India. The daily precipitation over India is found to be positively correlated with the aerosol loading over the Arabian Sea for both weather clusters, thus verifying recent results from satellite observations and model simulations concerning the modulation of the Indian summer monsoon rainfall by the Arabian dust. The present work reveals that in addition to the radiative impacts of dust on modulating the monsoon rainfall, differing weather patterns favor changes in dust emissions, accumulation as well as rainfall distribution over south Asia.

  13. Role of Atmospheric Circulation and Westerly Jet Changes in the mid-Holocene East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Kong, W.; Chiang, J. C. H.

    2014-12-01

    The East Asian Summer Monsoon (EASM) varies on inter-decadal to interglacial-glacial timescales. The EASM is stronger in the mid-Holocene than today, and these changes can be readily explained by orbitally-driven insolation increase during the boreal summer. However, a detailed understanding of the altered seasonal evolution of the EASM during this time is still lacking. In particular, previous work has suggested a close link between seasonal migration of the EASM and that of the mid-latitude westerlies impinging on the Tibetan Plateau. In this study, we explore, this problem in PMIP3 climate model simulations of the mid-Holocene, focusing on the role of atmospheric circulation and in particular how the westerly jet modulates the East Asia summer climate on paleoclimate timescales. Analysis of the model simulations suggests that, compared to the preindustrial simulations, the transition from Mei-Yu to deep summer rainfall occurs earlier in the mid-Holocene. This is accompanied by an earlier weakening and northward shift of westerly jet away from the Tibetan Plateau. The variation in the strength and the 3-D structure of the westerly jet in the mid-Holocene is summarized. We find that changes to the monsoonal rainfall, westerly jet and meridional circulation covary on paleoclimate timescales. Meridional wind changes in particular are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road' teleconnection pattern, riding along the westerly jet. Diagnostic analysis also reveals changes in moist static energy and eddy energy fluxes associated with the earlier seasonal transition of the EASM. Our analyses suggest that the westerly jet is critical to the altered dynamics of the East Asian summer monsoon during the mid-Holocene.

  14. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components:more » a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.« less

  15. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    NASA Astrophysics Data System (ADS)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the

  16. A 305 year monthly rainfall series for the Island of Ireland (1711-2016)

    NASA Astrophysics Data System (ADS)

    Murphy, Conor; Burt, Tim P.; Broderick, Ciaran; Duffy, Catriona; Macdonald, Neil; Matthews, Tom; McCarthy, Mark P.; Mullan, Donal; Noone, Simon; Ryan, Ciara; Thorne, Peter; Walsh, Seamus; Wilby, Robert L.

    2017-04-01

    This paper derives a continuous 305-year monthly rainfall series for the Island of Ireland (IoI) for the period 1711-2016. Two key data sources are employed: i) a previously unpublished UK Met Office Note which compiled annual rainfall anomalies and corresponding monthly per mille amounts from weather diaries and early observational records for the period 1711-1977; and ii) a long-term, homogenised monthly IoI rainfall series for the period 1850-2016. Using estimates of long-term average precipitation sampled from the quality assured series, the full record is reconstituted and insights drawn regarding notable periods and the range of climate variability and change experienced. Consistency with other long records for the region is examined, including: the England and Wales Precipitation series (EWP; 1766-2016); the early EWP Glasspoole series (1716-1765) and the Central England Temperature series (CET; 1711-2016). Strong correspondence between all records is noted from 1780 onwards. While disparities are evident between the early EWP and Ireland series, the latter shows strong decadal consistency with CET throughout the record. In addition, independent, early observations from Cork and Dublin, along with available documentary sources, corroborate the derived series and add confidence to our reconstruction. The new IoI rainfall record reveals that the wettest decades occurred in the early 18th Century, despite the fact that IoI has experienced a long-term winter wetting trend consistent with climate model projections. These exceptionally wet winters of the 1720s and 1730s were concurrent with almost unprecedented warmth in the CET, glacial advance throughout Scandinavia, and glacial retreat in West Greenland, consistent with a wintertime NAO-type forcing. Our study therefore demonstrates the value of long-term observational records for providing insight to the natural climate variability of the North Atlantic region.

  17. Twentieth Century Regional Climate Change During the Summer in the Central United States Attributed to Agricultural Intensification

    NASA Astrophysics Data System (ADS)

    Alter, Ross E.; Douglas, Hunter C.; Winter, Jonathan M.; Eltahir, Elfatih A. B.

    2018-02-01

    Both land use changes and greenhouse gas (GHG) emissions have significantly modified regional climate over the last century. In the central United States, for example, observational data indicate that rainfall increased, surface air temperature decreased, and surface humidity increased during the summer over the course of the twentieth century concurrently with increases in both agricultural production and global GHG emissions. However, the relative contributions of each of these forcings to the observed regional changes remain unclear. Results of both regional climate model simulations and observational analyses suggest that much of the observed rainfall increase—as well as the decrease in temperature and increase in humidity—is attributable to agricultural intensification in the central United States, with natural variability and GHG emissions playing secondary roles. Thus, we conclude that twentieth century land use changes contributed more to forcing observed regional climate change during the summer in the central United States than increasing GHG emissions.

  18. Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Lima, Kellen Carla; Satyamurty, Prakki; Fernández, Júlio Pablo Reyes

    2010-07-01

    Heavy rainfall events in austral summer are responsible for almost all the natural disasters in Southeast Brazil. They are mostly associated with two types of atmospheric perturbations: Cold Front (53%) and the South Atlantic Convergence Zone (47%). The important question of what synoptic characteristics distinguish a heavy rainfall event (HRE) from a normal rainfall event (NRE) is addressed in this study. Here, the evolutions of such characteristics are identified through the anomalies with respect to climatology of the composite fields of atmospheric variables. The anomalies associated with HRE are significantly more intense than those associated with NRE in all fundamental atmospheric variables such as outgoing long-wave radiation, sea-level pressure, 500-hPa geopotential, lower and upper tropospheric winds. The moisture flux convergence over Southeast Brazil in the HRE composites is 60% larger than in the NRE composites. The energetics calculations for the HRE that occurred in the beginning of February 1988 strongly suggest that the barotropic instability played an important role in the intensification of the perturbation. These results, especially the intensities of the wind, pressure anomalies, and the moisture convergence are useful for the meteorologists of the Southeast Brazil for forecasting heavy precipitation.

  19. Global rainfall erosivity assessment based on high-temporal resolution rainfall records.

    PubMed

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano

    2017-06-23

    The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha -1 h -1 yr -1 , with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.

  20. Evaluating Satellite Rainfall Estimates for Agro-hydrological Applications in Africa

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Verdin, J. P.; Korecha, D.; Asfaw, A.

    2004-12-01

    Regional water balance techniques are used to monitor and forecast crop performance and flooding potentials around the world. In the last few years, satellite rainfall estimates (RFE) have become available at continental scales, which made it possible to develop operational regional water balance models for the monitoring of crops performance and flooding potentials in Africa and other regions of the world as part of an environmental early warning system . The accuracy of RFE in absolute terms and importantly as it relates to agricultural and hydrological applications have not been evaluated systematically. This study evaluated a subset of the Africa-wide RFE product by comparing station-rainfall data and RFE from 1996 to 2002 using over 100 rain-gauge stations from Ethiopia at a dekadal (~10-day) time step. The results showed a general under-estimation of RFE compared to station rainfall values. The correlation between station rainfall data and RFE varied highly from place to place and between seasons. On the other hand, the correlation improved significantly when comparison was made between RFE-derived crop water satisfaction index (WRSI) and station-rainfall-derived WRSI, indicating the usefulness of the RFE for agro-hydrological applications.

  1. A TRMM-Calibrated Infrared Rainfall Algorithm Applied Over Brazil

    NASA Technical Reports Server (NTRS)

    Negri, A. J.; Xu, L.; Adler, R. F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The development of a satellite infrared technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall in Amazonia are presented. The Convective-Stratiform. Technique, calibrated by coincident, physically retrieved rain rates from the Tropical Rain Measuring Mission (TRMM) Microwave Imager (TMI), is applied during January to April 1999 over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. Results compare well (a one-hour lag) with the diurnal cycle derived from Tropical Ocean-Global Atmosphere (TOGA) radar-estimated rainfall in Rondonia. The satellite estimates reveal that the convective rain constitutes, in the mean, 24% of the rain area while accounting for 67% of the rain volume. The effects of geography (rivers, lakes, coasts) and topography on the diurnal cycle of convection are examined. In particular, the Amazon River, downstream of Manaus, is shown to both enhance early morning rainfall and inhibit afternoon convection. Monthly estimates from this technique, dubbed CST/TMI, are verified over a dense rain gage network in the state of Ceara, in northeast Brazil. The CST/TMI showed a high bias equal to +33% of the gage mean, indicating that possibly the TMI estimates alone are also high. The root mean square difference (after removal of the bias) equaled 36.6% of the gage mean. The correlation coefficient was 0.77 based on 72 station-months.

  2. Effects of Cumulus Parameterization on the U.S. Summer Precipitation Prediction by the Regional Climate-Weather Research and Forecasting Model (CWRF)

    NASA Astrophysics Data System (ADS)

    Qiao, F.; Liang, X.

    2011-12-01

    Accurate prediction of U.S. summer precipitation, including its geographic distribution, the occurrence frequency and intensity, and diurnal cycle, has been a long-standing problem for most climate and weather models. This study employs the Climate-Weather Research and Forecasting model (CWRF) to investigate the effects of cumulus parameterization on prediction of these key precipitation features during the summers of 1993 and 2008 when severe floods occurred over the U.S. Midwest. Among the 12 widely-used cumulus schemes incorporated in the CWRF, the Ensemble Cumulus Parameterization modified from G3 (ECP) scheme and the Zhang-McFarland cumulus scheme modified by Liang (ZML) well reproduce the geographic distributions of observed 1993 and 2008 floods, albeit both slightly underestimating the maximum amount. However, the ZML scheme greatly overestimates the rainfall amount over the North American Monsoon region and Southeast U.S. while the ECP scheme has a better performance over the entire U.S. Compared to global general circulations models that tend to produce too frequent rainy events at reduced intensity, the CWRF better captures both frequency and intensity of extreme events (heavy rainfall and dry bells). However, most existing cumulus schemes in the CWRF are likely to convert atmospheric moisture into rainfall too fast, leading to less rainy days and stronger heavy rainfall events. A few cumulus schemes can depict the diurnal characteristics in certain but not all the regions over the U.S. For example, the Grell scheme shows its superiority in reproducing the eastward diurnal phase transition and the nocturnal peaks over the Great Plains, whereas the other schemes all fail in capturing this feature. By investigating the critical trigger function(s) that enable these cumulus schemes to capture the observed features, it provides opportunity to better understand the underlying mechanisms that drive the diurnal variation, and thus significantly improves the U

  3. Relationships between Rwandan seasonal rainfall anomalies and ENSO events

    NASA Astrophysics Data System (ADS)

    Muhire, I.; Ahmed, F.; Abutaleb, K.

    2015-10-01

    This study aims primarily at investigating the relationships between Rwandan seasonal rainfall anomalies and El Niño-South Oscillation phenomenon (ENSO) events. The study is useful for early warning of negative effects associated with extreme rainfall anomalies across the country. It covers the period 1935-1992, using long and short rains data from 28 weather stations in Rwanda and ENSO events resourced from Glantz (2001). The mean standardized anomaly indices were calculated to investigate their associations with ENSO events. One-way analysis of variance was applied on the mean standardized anomaly index values per ENSO event to explore the spatial correlation of rainfall anomalies per ENSO event. A geographical information system was used to present spatially the variations in mean standardized anomaly indices per ENSO event. The results showed approximately three climatic periods, namely, dry period (1935-1960), semi-humid period (1961-1976) and wet period (1977-1992). Though positive and negative correlations were detected between extreme short rains anomalies and El Niño events, La Niña events were mostly linked to negative rainfall anomalies while El Niño events were associated with positive rainfall anomalies. The occurrence of El Niño and La Niña in the same year does not show any clear association with rainfall anomalies. However, the phenomenon was more linked with positive long rains anomalies and negative short rains anomalies. The normal years were largely linked with negative long rains anomalies and positive short rains anomalies, which is a pointer to the influence of other factors other than ENSO events. This makes projection of seasonal rainfall anomalies in the country by merely predicting ENSO events difficult.

  4. Using CHIRPS Rainfall Dataset to detect rainfall trends in West Africa

    NASA Astrophysics Data System (ADS)

    Blakeley, S. L.; Husak, G. J.

    2016-12-01

    In West Africa, agriculture is often rain-fed, subjecting agricultural productivity and food availability to climate variability. Agricultural conditions will change as warming temperatures increase evaporative demand, and with a growing population dependent on the food supply, farmers will become more reliant on improved adaptation strategies. Development of such adaptation strategies will need to consider West African rainfall trends to remain relevant in a changing climate. Here, using the CHIRPS rainfall product (provided by the Climate Hazards Group at UC Santa Barbara), I examine trends in West African rainfall variability. My analysis will focus on seasonal rainfall totals, the structure of the rainy season, and the distribution of rainfall. I then use farmer-identified drought years to take an in-depth analysis of intra-seasonal rainfall irregularities. I will also examine other datasets such as potential evapotranspiration (PET) data, other remotely sensed rainfall data, rain gauge data in specific locations, and remotely sensed vegetation data. Farmer bad year data will also be used to isolate "bad" year markers in these additional datasets to provide benchmarks for identification in the future of problematic rainy seasons.

  5. A 1000-Year Carbon Isotope Rainfall Proxy Record from South African Baobab Trees (Adansonia digitata L.)

    PubMed Central

    2015-01-01

    A proxy rainfall record for northeastern South Africa based on carbon isotope analysis of four baobab (Adansonia digitata L.) trees shows centennial and decadal scale variability over the last 1,000 years. The record is in good agreement with a 200-year tree ring record from Zimbabwe, and it indicates the existence of a rainfall dipole between the summer and winter rainfall areas of South Africa. The wettest period was c. AD 1075 in the Medieval Warm Period, and the driest periods were c. AD 1635, c. AD 1695 and c. AD1805 during the Little Ice Age. Decadal-scale variability suggests that the rainfall forcing mechanisms are a complex interaction between proximal and distal factors. Periods of higher rainfall are significantly associated with lower sea-surface temperatures in the Agulhas Current core region and a negative Dipole Moment Index in the Indian Ocean. The correlation between rainfall and the El Niño/Southern Oscillation Index is non-static. Wetter conditions are associated with predominantly El Niño conditions over most of the record, but since about AD 1970 this relationship inverted and wet conditions are currently associated with la Nina conditions. The effect of both proximal and distal oceanic influences are insufficient to explain the rainfall regime shift between the Medieval Warm Period and the Little Ice Age, and the evidence suggests that this was the result of a northward shift of the subtropical westerlies rather than a southward shift of the Intertropical Convergence Zone. PMID:25970402

  6. A 1000-Year Carbon Isotope Rainfall Proxy Record from South African Baobab Trees (Adansonia digitata L.).

    PubMed

    Woodborne, Stephan; Hall, Grant; Robertson, Iain; Patrut, Adrian; Rouault, Mathieu; Loader, Neil J; Hofmeyr, Michele

    2015-01-01

    A proxy rainfall record for northeastern South Africa based on carbon isotope analysis of four baobab (Adansonia digitata L.) trees shows centennial and decadal scale variability over the last 1,000 years. The record is in good agreement with a 200-year tree ring record from Zimbabwe, and it indicates the existence of a rainfall dipole between the summer and winter rainfall areas of South Africa. The wettest period was c. AD 1075 in the Medieval Warm Period, and the driest periods were c. AD 1635, c. AD 1695 and c. AD1805 during the Little Ice Age. Decadal-scale variability suggests that the rainfall forcing mechanisms are a complex interaction between proximal and distal factors. Periods of higher rainfall are significantly associated with lower sea-surface temperatures in the Agulhas Current core region and a negative Dipole Moment Index in the Indian Ocean. The correlation between rainfall and the El Niño/Southern Oscillation Index is non-static. Wetter conditions are associated with predominantly El Niño conditions over most of the record, but since about AD 1970 this relationship inverted and wet conditions are currently associated with la Nina conditions. The effect of both proximal and distal oceanic influences are insufficient to explain the rainfall regime shift between the Medieval Warm Period and the Little Ice Age, and the evidence suggests that this was the result of a northward shift of the subtropical westerlies rather than a southward shift of the Intertropical Convergence Zone.

  7. Mathematical model of sediment and solute transport along slope land in different rainfall pattern conditions

    PubMed Central

    Tao, Wanghai; Wu, Junhu; Wang, Quanjiu

    2017-01-01

    Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431

  8. Rainfall simulation in education

    NASA Astrophysics Data System (ADS)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  9. On the relationship between the early spring Indian Ocean's sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer

    NASA Astrophysics Data System (ADS)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Li, Yu; Jiang, Tingchen; San Liang, X.

    2018-05-01

    In this study, we evaluated the effects of springtime Indian Ocean's sea surface temperature (SST) on the Tibetan Plateau's role as atmospheric heat source (AHS) in summer. The SST data of the National Oceanic and Atmospheric Administration (NOAA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) and the reanalysis data of the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) for 33 years (from 1979 to 2011) were used to analyze the relationship between the Indian Ocean SST and the Tibetan Plateau's AHS in summer, using the approaches that include correlation analysis, and lead-lag analysis. Our results show that some certain strong oceanic SSTs affect the summer plateau heat, specially finding that the early spring SSTs of the Indian Ocean significantly affect the plateau's ability to serve as a heat source in summer. Moreover, the anomalous atmospheric circulation and transport of water vapor are related to the Plateau heat variation.

  10. Summer Youth Forestry Institute

    ERIC Educational Resources Information Center

    Roesch, Gabrielle E.; Neuffer, Tamara; Zobrist, Kevin

    2013-01-01

    The Summer Youth Forestry Institute (SYFI) was developed to inspire youth through experiential learning opportunities and early work experience in the field of natural resources. Declining enrollments in forestry and other natural resource careers has made it necessary to actively engage youth and provide them with exposure to careers in these…

  11. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    NASA Astrophysics Data System (ADS)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  12. Could Malaria Control Programmes be Timed to Coincide with Onset of Rainfall?

    PubMed

    Komen, Kibii

    2017-06-01

    Malaria cases in South Africa's Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (-0.02, -0.01, -0.02, -0.00) and temperature (-46.61, -47.46, -48.14, -36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a 'malaria season'. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.

  13. Rainfall: State of the Science

    NASA Astrophysics Data System (ADS)

    Testik, Firat Y.; Gebremichael, Mekonnen

    Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.

  14. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  15. Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.

    NASA Astrophysics Data System (ADS)

    Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.

    2015-12-01

    Severe wildfire has been shown to increase the magnitude and advance the timing of rainfall-generated stormflows across a range of hydro-climate regions. Loss of canopy and forest floor interception results in increased net precipitation which, along with the removal of forest organic layers and increased shorter-term water repellency, can result in strongly increased surface flow pathways and efficient routing of precipitation to streams. These abrupt changes have the potential to exacerbate flood impacts and alter the timing of runoff delivery to streams. However, while these effects are well documented in drier temperate mountain regions, changes in post-fire rainfall-runoff processes are less well understood in colder, more northern, snowfall dominated regimes. The objectives of this study are to explore longer term precipitation and runoff dynamics of burned and unburned (reference) watersheds from the Southern Rockies Watershed Project (SRWP) after the 2003 Lost Creek wildfire in the front-range Rocky Mountains of southwestern Alberta, Canada. Streamflow and precipitation were measured in 5 watersheds (3.7 - 10.4 km2) for 10 years following the wildfire (2005-2014). Measurements were collected from a dense network of meteorological and hydrometric stations. Stormflow volume, peak flow, time to peak flow, and total annual streamflow were compared between burned and reference streams. Event-based data were separated into 3 post-fire periods to detect changes in rainfall-runoff dynamics as vegetation regenerated. Despite large increases in post-fire snowpacks and net summer rainfall, rainfall-generated runoff from fire-affected watersheds was not large in comparison to that reported from more temperate snowfall-dominated Rocky Mountain hydrologic settings. High proportions of groundwater contribution to annual runoff regimes (as opposed to surface flow pathways) and groundwater storage were likely contributors to greater watershed resistance to wildfire effects

  16. Prediction of onset and cessation of austral summer rainfall and dry spell frequency analysis in semiarid Botswana

    NASA Astrophysics Data System (ADS)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-01-01

    Uncertainties in rainfall have increased in the recent past exacerbating climate risks which are projected to be higher in semiarid environments. This study investigates the associated features of rainfall such as rain onset, cessation, length of the rain season (LRS), and dry spell frequency (DSF) as part of climate risk management in Botswana. Their trends were analysed using Mann-Kendall test statistic and Sen's Slope estimator. The rainfall-evapotranspiration relationships were used in formulating the rain onset and cessation criteria. To understand some of the complexities arising from such uncertainties, artificial neural network (ANN) is used to predict onset and cessation of rain. Results reveal higher coefficients of variation in onset dates as compared to cessation of rain. Pandamatenga experiences the earliest onset on 28th of November while Tsabong the latest on 14th of January. Likewise, earliest cessation is observed at Tshane on 22nd of February and the latest on 30th of March at Shakawe. The shortest LRS of 45 days is registered at Tsabong whereas the northern locations show LRS greater than 100 days. Stations across the country experience strong negative correlation between onset and LRS of - 0.9. DSF shows increasing trends in 50% of the stations but only significant at Mahalapye, Pandamatenga, and Shakawe. Combining the LRS criteria and DSF, Kasane, Pandamatenga, and Shakawe were identified to be suitable for rainfed agriculture in Botswana especially for short to medium maturing cereal varieties. Predictions of onset and cessation indicate the possibility of delayed onset by 2-5 weeks in the next 5 years. Information generated from this study could help Botswana in climate risk management in the context of rainfed farming.

  17. Rainfall Data Simulation

    Treesearch

    T.L. Rogerson

    1980-01-01

    A simple simulation model to predict rainfall for individual storms in central Arkansas is described. Output includes frequency distribution tables for days between storms and for storm size classes; a storm summary by day number (January 1 = 1 and December 31 = 365) and rainfall amount; and an annual storm summary that includes monthly values for rainfall and number...

  18. Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM

    NASA Technical Reports Server (NTRS)

    Yang, Song; Smith, Eric A.

    2004-01-01

    The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.

  19. Ocean acidification effects in the early life-stages of summer flounder, Paralichthys dentatus

    NASA Astrophysics Data System (ADS)

    Chambers, R. C.; Candelmo, A. C.; Habeck, E. A.; Poach, M. E.; Wieczorek, D.; Cooper, K. R.; Greenfield, C. E.; Phelan, B. A.

    2013-08-01

    The limited available evidence about effects of high CO2 and acidification of our oceans on fish suggests that effects will differ across fish species, be subtle, and interact with other stressors. An experimental framework was implemented that includes the use of (1) multiple marine fish species of relevance to the northeastern USA that differ in their ecologies including spawning season and habitat; (2) a wide yet realistic range of environmental conditions (i.e., concurrent manipulation of CO2 levels and water temperatures), and (3) a diverse set of response variables related to fish sensitivity to elevated CO2 levels, water temperatures, and their interactions. This report is on an array of early life-history responses of summer flounder (Paralichthys dentatus), an ecologically and economically important flatfish of this region, to a wide range of pH and CO2 levels. Survival of summer flounder embryos was reduced by 50% below local ambient conditions (7.8 pH, 775 ppm pCO2) when maintained at the intermediate conditions (7.4 pH, 1860 ppm pCO2), and by 75% below local ambient when maintained at the most acidic conditions tested (7.1 pH, 4715 ppm pCO2). This pattern of reduced survival of embryos at higher CO2 levels was consistent among three females used as sources of embryos. Sizes and shapes of larvae were altered by elevated CO2 levels with longer larvae in more acidic waters. This pattern of longer larvae was evident at hatching (although longer hatchlings had less energy reserves) to midway through the larval period. Larvae from the most acidic conditions initiated metamorphosis at earlier ages and smaller sizes than those from more moderate and ambient conditions. Tissue damage was evident in older larvae (age 14 to 28 d post-hatching) from both elevated CO2 levels. Damage included liver sinusoid dilation, focal hyperplasia on the epithelium, separation of the trunk muscle bundles, and dilation of the liver sinusoids and central veins. Cranial

  20. Monsoon rainfall over India in June and link with northwest tropical pacific - June ISMR and link with northwest tropical pacific

    NASA Astrophysics Data System (ADS)

    Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio

    2018-03-01

    Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.

  1. Post-processing of global model output to forecast point rainfall

    NASA Astrophysics Data System (ADS)

    Hewson, Tim; Pillosu, Fatima

    2016-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts) has recently embarked upon a new project to post-process gridbox rainfall forecasts from its ensemble prediction system, to provide probabilistic forecasts of point rainfall. The new post-processing strategy relies on understanding how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. We use a number of simple global model parameters, such as the convective rainfall fraction, to anticipate the sub-grid variability, and then post-process each ensemble forecast into a pdf (probability density function) for a point-rainfall total. The final forecast will comprise the sum of the different pdfs from all ensemble members. The post-processing is essentially a re-calibration exercise, which needs only rainfall totals from standard global reporting stations (and forecasts) to train it. High density observations are not needed. This presentation will describe results from the initial 'proof of concept' study, which has been remarkably successful. Reference will also be made to other useful outcomes of the work, such as gaining insights into systematic model biases in different synoptic settings. The special case of orographic rainfall will also be discussed. Work ongoing this year will also be described. This involves further investigations of which model parameters can provide predictive skill, and will then move on to development of an operational system for predicting point rainfall across the globe. The main practical benefit of this system will be a greatly improved capacity to predict extreme point rainfall, and thereby provide early warnings, for the whole world, of flash flood potential for lead times that extend beyond day 5. This will be incorporated into the suite of products output by GLOFAS (the GLObal Flood Awareness System) which is hosted at ECMWF. As such this work offers a very cost-effective approach to satisfying user needs right

  2. Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming

    PubMed Central

    Azad, Sarita; Rajeevan, M.

    2016-01-01

    EI Nino-Southern Oscillation (ENSO) and Indian monsoon rainfall are known to have an inverse relationship, which we have observed in the rainfall spectrum exhibiting a spectral dip in 3–5 y period band. It is well documented that El Nino events are known to be associated with deficit rainfall. Our analysis reveals that this spectral dip (3–5 y) is likely to shift to shorter periods (2.5–3 y) in future, suggesting a possible shift in the relationship between ENSO and monsoon rainfall. Spectral analysis of future climate projections by 20 Coupled Model Intercomparison project 5 (CMIP5) models are employed in order to corroborate our findings. Change in spectral dip speculates early occurrence of drought events in future due to multiple factors of global warming. PMID:26837459

  3. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    PubMed

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  4. Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng

    2017-04-01

    Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.

  5. High temporal resolution of extreme rainfall rate variability and the acoustic classification of rainfall

    NASA Astrophysics Data System (ADS)

    Nystuen, Jeffrey A.; Amitai, Eyal

    2003-04-01

    The underwater sound generated by raindrop splashes on a water surface is loud and unique allowing detection, classification and quantification of rainfall. One of the advantages of the acoustic measurement is that the listening area, an effective catchment area, is proportional to the depth of the hydrophone and can be orders of magnitude greater than other in situ rain gauges. This feature allows high temporal resolution of the rainfall measurement. A series of rain events with extremely high rainfall rates, over 100 mm/hr, is examined acoustically. Rapid onset and cessation of rainfall intensity are detected within the convective cells of these storms with maximum 5-s resolution values exceeding 1000 mm/hr. The probability distribution functions (pdf) for rainfall rate occurrence and water volume using the longer temporal resolutions typical of other instruments do not include these extreme values. The variance of sound intensity within different acoustic frequency bands can be used as an aid to classify rainfall type. Objective acoustic classification algorithms are proposed. Within each rainfall classification the relationship between sound intensity and rainfall rate is nearly linear. The reflectivity factor, Z, also has a linear relationship with rainfall rate, R, for each rainfall classification.

  6. Darfur: rainfall and conflict

    NASA Astrophysics Data System (ADS)

    Kevane, Michael; Gray, Leslie

    2008-07-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972 2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa.

  7. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  8. Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts

    NASA Astrophysics Data System (ADS)

    Dhekale, B. S.; Nageswararao, M. M.; Nair, Archana; Mohanty, U. C.; Swain, D. K.; Singh, K. K.; Arunbabu, T.

    2017-08-01

    The Extended Range Forecasts System (ERFS) has been generating monthly and seasonal forecasts on real-time basis throughout the year over India since 2009. India is one of the major rice producer and consumer in South Asia; more than 50% of the Indian population depends on rice as staple food. Rice is mainly grown in kharif season, which contributed 84% of the total annual rice production of the country. Rice cultivation in India is rainfed, which depends largely on rains, so reliability of the rainfall forecast plays a crucial role for planning the kharif rice crop. In the present study, an attempt has been made to test the reliability of seasonal and sub-seasonal ERFS summer monsoon rainfall forecasts for kharif rice yield predictions at Kharagpur, West Bengal by using CERES-Rice (DSSATv4.5) model. These ERFS forecasts are produced as monthly and seasonal mean values and are converted into daily sequences with stochastic weather generators for use with crop growth models. The daily sequences are generated from ERFS seasonal (June-September) and sub-seasonal (July-September, August-September, and September) summer monsoon (June to September) rainfall forecasts which are considered as input in CERES-rice crop simulation model for the crop yield prediction for hindcast (1985-2008) and real-time mode (2009-2015). The yield simulated using India Meteorological Department (IMD) observed daily rainfall data is considered as baseline yield for evaluating the performance of predicted yields using the ERFS forecasts. The findings revealed that the stochastic disaggregation can be used to disaggregate the monthly/seasonal ERFS forecasts into daily sequences. The year to year variability in rice yield at Kharagpur is efficiently predicted by using the ERFS forecast products in hindcast as well as real time, and significant enhancement in the prediction skill is noticed with advancement in the season due to incorporation of observed weather data which reduces uncertainty of

  9. Analysis of the interdecadal variability of summer precipitation in central Japan using a reconstructed 106 year long oxygen isotope record from tree ring cellulose

    NASA Astrophysics Data System (ADS)

    Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi

    2016-10-01

    We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.

  10. Analysis of extreme rainfall events using attributes control charts in temporal rainfall processes

    NASA Astrophysics Data System (ADS)

    Villeta, María; Valencia, Jose Luis; Saá-Requejo, Antonio; María Tarquis, Ana

    2015-04-01

    The impacts of most intense rainfall events on agriculture and insurance industry can be very severe. This research focuses in the analysis of extreme rainfall events throughout the use of attributes control charts, which constitutes a usual tool in Statistical Process Control (SPC) but unusual in climate studios. Here, series of daily precipitations for the years 1931-2009 within a Spanish region are analyzed, based on a new type of attributes control chart that takes into account the autocorrelation between the extreme rainfall events. The aim is to conclude if there exist or not evidence of a change in the extreme rainfall model of the considered series. After adjusting seasonally the precipitation series and considering the data of the first 30 years, a frequency-based criterion allowed fixing specification limits in order to discriminate between extreme observed rainfall days and normal observed rainfall days. The autocorrelation amongst maximum precipitation is taken into account by a New Binomial Markov Extended Process obtained for each rainfall series. These modelling of the extreme rainfall processes provide a way to generate the attributes control charts for the annual fraction of rainfall extreme days. The extreme rainfall processes along the rest of the years under study can then be monitored by such attributes control charts. The results of the application of this methodology show evidence of change in the model of extreme rainfall events in some of the analyzed precipitation series. This suggests that the attributes control charts proposed for the analysis of the most intense precipitation events will be of practical interest to agriculture and insurance sectors in next future.

  11. [Simulation of rainfall and snowmelt runoff reduction in a northern city based on combination of green ecological strategies.

    PubMed

    Han, Jin Feng; Liu, Shuo; Dai, Jun; Qiu, Hao

    2018-02-01

    With the aim to control and reduce rainfall and snowmelt runoff in northern cities in China, the summer runoff and spring snowmelt runoff in the studied area were simulated with the establishment of storm water management model (SWMM). According to the climate characteristics and the situation of the studied area, the low impact development (LID) green ecological strategies suitable for the studied area were established. There were three kinds of management strategies being used, including extended green roof, snow and rainwater harvesting devices, and grass-swales or trenches. We examined the impacts of those integrated green ecological measures on the summer rainfall and spring snowmelt runoff and their mitigation effects on the drainage network pressure. The results showed that the maximum flow rates of the measured rainfall in May 24th, June 10th and July 18th 2016 were 2.7, 6.2 and 7.4 m 3 ·s -1 respectively. The peak flow rates at different return periods of 1, 2, 5, 10 years were 2.39, 3.91, 6.24 and 7.85 m 3 ·s -1 , respectively. In the snowmelt period, the peak flow appeared at the beginning of March. The LID measures had positive effect on peak flow reduction, and thus delayed peak time and relieved drainage pressure. The flow reduction rate was as high as 70%. Moreover, the snow harvesting devices played a positive role in controlling snowmelt runoff in spring.

  12. Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States

    USGS Publications Warehouse

    Staley, Dennis M.; Negri, Jacquelyn; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2017-01-01

    Early warning of post-fire debris-flow occurrence during intense rainfall has traditionally relied upon a library of regionally specific empirical rainfall intensity–duration thresholds. Development of this library and the calculation of rainfall intensity-duration thresholds often require several years of monitoring local rainfall and hydrologic response to rainstorms, a time-consuming approach where results are often only applicable to the specific region where data were collected. Here, we present a new, fully predictive approach that utilizes rainfall, hydrologic response, and readily available geospatial data to predict rainfall intensity–duration thresholds for debris-flow generation in recently burned locations in the western United States. Unlike the traditional approach to defining regional thresholds from historical data, the proposed methodology permits the direct calculation of rainfall intensity–duration thresholds for areas where no such data exist. The thresholds calculated by this method are demonstrated to provide predictions that are of similar accuracy, and in some cases outperform, previously published regional intensity–duration thresholds. The method also provides improved predictions of debris-flow likelihood, which can be incorporated into existing approaches for post-fire debris-flow hazard assessment. Our results also provide guidance for the operational expansion of post-fire debris-flow early warning systems in areas where empirically defined regional rainfall intensity–duration thresholds do not currently exist.

  13. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States

    NASA Astrophysics Data System (ADS)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2017-02-01

    Early warning of post-fire debris-flow occurrence during intense rainfall has traditionally relied upon a library of regionally specific empirical rainfall intensity-duration thresholds. Development of this library and the calculation of rainfall intensity-duration thresholds often require several years of monitoring local rainfall and hydrologic response to rainstorms, a time-consuming approach where results are often only applicable to the specific region where data were collected. Here, we present a new, fully predictive approach that utilizes rainfall, hydrologic response, and readily available geospatial data to predict rainfall intensity-duration thresholds for debris-flow generation in recently burned locations in the western United States. Unlike the traditional approach to defining regional thresholds from historical data, the proposed methodology permits the direct calculation of rainfall intensity-duration thresholds for areas where no such data exist. The thresholds calculated by this method are demonstrated to provide predictions that are of similar accuracy, and in some cases outperform, previously published regional intensity-duration thresholds. The method also provides improved predictions of debris-flow likelihood, which can be incorporated into existing approaches for post-fire debris-flow hazard assessment. Our results also provide guidance for the operational expansion of post-fire debris-flow early warning systems in areas where empirically defined regional rainfall intensity-duration thresholds do not currently exist.

  14. Orographic control of the Bay of Bengal cold pool rainfall

    NASA Astrophysics Data System (ADS)

    Arushi, P. V.; Chakraborty, Arindam; Nanjundiah, Ravi S.

    2017-12-01

    In boreal summer (June-September), most of the Indian land and its surroundings experience rainrates exceeding 6 mm day^{-1} with considerable spatial variability. Over southern Bay of Bengal (BoB) along the east coast of the Indian peninsula (henceforth referred to as the Bay of Bengal cold pool or BoB-CP), the rain intensity is significantly lower (<2 mm day^{-1}) than its surroundings. This low rainfall occurs despite the fact that the sea surface temperature in this region is well above the threshold for convection and the mean vorticity of the boundary layer is cyclonic with a magnitude comparable to that over the central Indian monsoon trough where the rainrate is about 10 mm day^{-1}. It is also noteworthy that the seasonal cycle of convection over the BoB-CP shows a primary peak in November and a secondary peak in May. This is in contrast to the peak in June-July over most of the oceanic locations surrounding the BoB-CP. In this study, we investigate the role of the Western Ghat (WG) mountains in an Atmospheric General Circulation Model (AGCM) to understand this paradox. Decade-long simulations of the AGCM were carried out with varying (from 0 to 2 times the present) heights of the WG. We find that the lee waves generated by the strong westerlies in the lower troposphere in the presence of the WG mountains cause descent over the BoB-CP. Thus, an increase in the height of the WG strengthens the lee waves and reduces rainfall over the BoB-CP. More interestingly in the absence of WG mountains, the BoB-CP shows a rainfall maxima in the boreal summer similar to that over its surrounding oceans. The WG also impacts the climate over the middle and high latitude regions by modifying the upper tropospheric circulation. The results of this study underline the importance of narrow mountains like the WG in the tropics in determining the global climate and possibly calls for a better representation of such mountains in climate models.

  15. Physically based approaches incorporating evaporation for early warning predictions of rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Reder, Alfredo; Rianna, Guido; Pagano, Luca

    2018-02-01

    In the field of rainfall-induced landslides on sloping covers, models for early warning predictions require an adequate trade-off between two aspects: prediction accuracy and timeliness. When a cover's initial hydrological state is a determining factor in triggering landslides, taking evaporative losses into account (or not) could significantly affect both aspects. This study evaluates the performance of three physically based predictive models, converting precipitation and evaporative fluxes into hydrological variables useful in assessing slope safety conditions. Two of the models incorporate evaporation, with one representing evaporation as both a boundary and internal phenomenon, and the other only a boundary phenomenon. The third model totally disregards evaporation. Model performances are assessed by analysing a well-documented case study involving a 2 m thick sloping volcanic cover. The large amount of monitoring data collected for the soil involved in the case study, reconstituted in a suitably equipped lysimeter, makes it possible to propose procedures for calibrating and validating the parameters of the models. All predictions indicate a hydrological singularity at the landslide time (alarm). A comparison of the models' predictions also indicates that the greater the complexity and completeness of the model, the lower the number of predicted hydrological singularities when no landslides occur (false alarms).

  16. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  17. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a

  18. Convection index as a tool for trend analysis of intense summer storms in Switzerland

    NASA Astrophysics Data System (ADS)

    Gaal, Ladislav; Molnar, Peter; Szolgay, Jan

    2013-04-01

    Convective summer thunderstorms are generally responsible for the most devastating floods in urban and small natural catchments. In this study we focus on the identification of the nature and magnitude of changes in the properties of intense summer storms of convective character in Switzerland in the last three decades. The study is based on precipitation records from the SwissMetNet (MeteoSwiss) network at 63 stations that cover altitudes ranging from 200 up to 3300 m a.s.l. over the period 1981-2012 (32 years). Additionally, the same stations also measure the number of lightning strikes within a range of 30 km from each station. In an accompanying contribution we describe the method how intensive summer storms can be reliably selected out of all storms in long and high resolution precipitation time series. On the basis of the statistical distributions and dependence among key storm characteristics at the event scale (total rainfall depth R, storm duration D, and peak intensity I) and using high resolution lightning data as a surrogate we defined a threshold intensity I* that differentiates between the events accompanied with lightning with an acceptably small probability of misclassification. This allowed us to identify intense summer events with convective character as those where I > I* regardless of their duration or total rainfall depth. The current study makes use of the threshold intensity I* for the definition of a seasonal convection index at each station (Llasat, 2001). This index gives us a measure of 'convectiveness', i.e. the total precipitation depth coming from convective storms relative to the total precipitation depth of all summer storms. We computed the convection index at all 63 stations and analyzed the series for trends. We found that the seasonal convection index increases at most of the stations in Switzerland and in approximately 20% of the cases this increase is statistically significant. This is likely a consequence of the fact that the

  19. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and maximum 30 minute intensity of individual events. However, these data are often unavailable in many areas of the worl...

  20. Characteristics and Preliminary Causes of Tropical Cyclone Extreme Rainfall Events over Hainan Island

    NASA Astrophysics Data System (ADS)

    Jiang, Xianling; Ren, Fumin; Li, Yunjie; Qiu, Wenyu; Ma, Zhuguo; Cai, Qinbo

    2018-05-01

    The characteristics of tropical cyclone (TC) extreme rainfall events over Hainan Island from 1969 to 2014 are analyzed from the viewpoint of the TC maximum daily rainfall (TMDR) using daily station precipitation data from the Meteorological Information Center of the China Meteorological Administration, TC best-track data from the Shanghai Typhoon Institute, and NCEP/NCAR reanalysis data. The frequencies of the TMDR reaching 50, 100 and 250 mm show a decreasing trend [-0.7 (10 yr)-1], a weak decreasing trend [-0.2 (10 yr)-1] and a weak increasing trend [0.1 (10 yr)-1], respectively. For seasonal variations, the TMDR of all intensity grades mainly occurs from July to October, with the frequencies of TMDR - 50 mm and - 100 mm peaking in September and the frequency of TMDR - 250 mm [TC extreme rainstorm (TCER) events] peaking in August and September. The western region (Changjiang) of the Island is always the rainfall center, independent of the intensity or frequencies of different intensity grades. The causes of TCERs are also explored and the results show that topography plays a key role in the characteristics of the rainfall events. TCERs are easily induced on the windward slopes of Wuzhi Mountain, with the coordination of TC tracks and TC wind structure. A slower speed of movement, a stronger TC intensity and a farther westward track are all conducive to extreme rainfall events. A weaker northwestern Pacific subtropical high is likely to make the 500-hPa steering flow weaker and results in slower TC movement, whereas a stronger South China Sea summer monsoon can carry a higher moisture flux. These two environmental factors are both favorable for TCERs.

  1. Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.

    PubMed

    Li, Fang; Zhao, Wenzhi; Liu, Hu

    2015-03-01

    The influences of previous-year precipitation and episodic rainfall events on dryland plants and communities are poorly quantified in the temperate desert region of Northwest China. To evaluate the thresholds and lags in the response of aboveground net primary productivity (ANPP) to variability in rainfall pulses and seasonal precipitation along the precipitation-productivity gradient in three desert ecosystems with different precipitation regimes, we collected precipitation data from 2000 to 2012 in Shandan (SD), Linze (LZ) and Jiuquan (JQ) in northwestern China. Further, we extracted the corresponding MODIS Normalized Difference Vegetation Index (NDVI, a proxy for ANPP) datasets at 250 m spatial resolution. We then evaluated different desert ecosystems responses using statistical analysis, and a threshold-delay model (TDM). TDM is an integrative framework for analysis of plant growth, precipitation thresholds, and plant functional type strategies that capture the nonlinear nature of plant responses to rainfall pulses. Our results showed that: (1) the growing season NDVIINT (INT stands for time-integrated) was largely correlated with the warm season (spring/summer) at our mildly-arid desert ecosystem (SD). The arid ecosystem (LZ) exhibited a different response, and the growing season NDVIINT depended highly on the previous year's fall/winter precipitation and ANPP. At the extremely arid site (JQ), the variability of growing season NDVIINT was equally correlated with the cool- and warm-season precipitation; (2) some parameters of threshold-delay differed among the three sites: while the response of NDVI to rainfall pulses began at about 5 mm for all the sites, the maximum thresholds in SD, LZ, and JQ were about 55, 35 and 30 mm respectively, increasing with an increase in mean annual precipitation. By and large, more previous year's fall/winter precipitation, and large rainfall events, significantly enhanced the growth of desert vegetation, and desert ecosystems

  2. North Indian heavy rainfall event during June 2013: diagnostics and extended range prediction

    NASA Astrophysics Data System (ADS)

    Joseph, Susmitha; Sahai, A. K.; Sharmila, S.; Abhilash, S.; Borah, N.; Chattopadhyay, R.; Pillai, P. A.; Rajeevan, M.; Kumar, Arun

    2015-04-01

    The Indian summer monsoon of 2013 covered the entire country by 16 June, one month earlier than its normal date. Around that period, heavy rainfall was experienced in the north Indian state of Uttarakhand, which is situated on the southern slope of Himalayan Ranges. The heavy rainfall and associated landslides caused serious damages and claimed many lives. This study investigates the scientific rationale behind the incidence of the extreme rainfall event in the backdrop of large scale monsoon environment. It is found that a monsoonal low pressure system that provided increased low level convergence and abundant moisture, and a midlatitude westerly trough that generated strong upper level divergence, interacted with each other and helped monsoon to cover the entire country and facilitated the occurrence of the heavy rainfall event in the orographic region. The study also examines the skill of an ensemble prediction system (EPS) in predicting the Uttarakhand event on extended range time scale. The EPS is implemented on both high (T382) and low (T126) resolution versions of the coupled general circulation model CFSv2. Although the models predicted the event 10-12 days in advance, they failed to predict the midlatitude influence on the event. Possible reasons for the same are also discussed. In both resolutions of the model, the event was triggered by the generation and northwestward movement of a low pressure system developed over the Bay of Bengal. The study advocates the usefulness of high resolution models in predicting extreme events.

  3. SUB-PIXEL RAINFALL VARIABILITY AND THE IMPLICATIONS FOR UNCERTAINTIES IN RADAR RAINFALL ESTIMATES

    EPA Science Inventory

    Radar estimates of rainfall are subject to significant measurement uncertainty. Typically, uncertainties are measured by the discrepancies between real rainfall estimates based on radar reflectivity and point rainfall records of rain gauges. This study investigates how the disc...

  4. Rainfall variability over South-east Asia - connections with Indian monsoon and ENSO extremes: new perspectives

    NASA Astrophysics Data System (ADS)

    Kripalani, R. H.; Kulkarni, Ashwini

    1997-09-01

    Seasonal and annual rainfall data for 135 stations for periods varying from 25 to 125 years are utilized to investigate and understand the interannual and short-term (decadal) climate variability over the South-east Asian domain. Contemporaneous relations during the summer monsoon period (June to September) reveal that the rainfall variations over central India, north China, northern parts of Thailand, central parts of Brunei and Borneo and the Indonesian region east of 120°E vary in phase. However, the rainfall variations over the regions surrounding the South China Sea, in particular the north-west Philippines, vary in the opposite phase. Possible dynamic causes for the spatial correlation structure obtained are discussed.Based on the instrumental data available and on an objective criteria, regional rainfall anomaly time series for contiguous regions over Thailand, Malaysia, Singapore, Brunei, Indonesia and Philippines are prepared. Results reveal that although there are year-to-year random fluctuations, there are certain epochs of the above- and below-normal rainfall over each region. These epochs are not forced by the El Niño/La Nina frequencies. Near the equatorial regions the epochs tend to last for about a decade, whereas over the tropical regions, away from the Equator, epochs last for about three decades. There is no systematic climate change or trend in any of the series. Further, the impact of El Niño (La Nina) on the rainfall regimes is more severe during the below (above) normal epochs than during the above (below) normal epochs. Extreme drought/flood situations tend to occur when the epochal behaviour and the El Niño/La Nina events are phase-locked.

  5. Characteristics and seasonal variation of hydrochemistry in the Tangra Yumco basin, central Tibetan Plateau, and its response to Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wang, Junbo; Qiao, Baojin; Huang, Lei; Zhu, Liping

    2016-04-01

    water and river water is much higher during Indian summer monsoon (ISM) period than the pre-monsoon period. The TDS concentration of lake water shows a rapid increase from early August and reaches 2.5 times of pre-monsoon period within one month indicating that due to the rise of temperature and increase of rainfall, rock weathering is enhanced, thus the runoff could take much more chemical composition into the river and the lake. During the post-monsoon period, the TDS of lake water is still keeping in a high level as in monsoon period, probably resulting from the balance between concentration of ions due to lake water loss and decrease of terrestrial ion input. K+ and Cl- of rainfall may originate from evaporation of lake water and mineral aerosols, and the dissolved carbonates are responsible for the chemical composition of rainfall water.

  6. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability

    PubMed Central

    Gaxiola, Aurora; Armesto, Juan J.

    2015-01-01

    Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15–240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems. PMID:25852705

  7. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability.

    PubMed

    Gaxiola, Aurora; Armesto, Juan J

    2015-01-01

    Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15-240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.

  8. Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer

    NASA Astrophysics Data System (ADS)

    Guan, W.; Ren, X.; Hu, H.

    2017-12-01

    The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is

  9. [Change characteristics of soil moisture and nutrients in rain-fed winter wheat field under different fertilization modes in Southern Shanxi of China during summer fallow period].

    PubMed

    Li, Ting-Liang; Xie, Ying-He; Hong, Jian-Ping; Feng, Qian; Sun, Cheng-Hong; Wang, Zhi-Wei

    2013-06-01

    In 2009-2011, a field experiment was conducted in a rain-fed winter wheat field in Southern Shanxi of China to study the effects of different fertilization modes on the change characteristics of soil moisture and nitrate-N contents in 0-200 cm layer and of soil available phosphorus (Oslen-P) and potassium contents in 0-40 cm layer during summer fallow period (from June to September). Three fertilization modes were installed, i. e., conventional fertilization (CF), recommended fertilization (RF), and ridge film furrow planting (RFFP) combined with straw mulch. The results showed that the rainfall in summer fallow period could complement the consumed water in 0-200 cm soil layer in dryland wheat field throughout the growth season, and more than 94% of the water storage was in 0-140 cm soil layer, with the fallow efficiency ranged from 6% to 27%. The rainfall in summer fallow period caused the soil nitrate-N moving downward. 357-400 mm rainfall could make the soil nitrate-N leaching down to 100 cm soil layer, with the peak in 20-40 cm soil layer. Straw mulching or plastic film with straw mulch in summer fallow period could effectively increase the Oslen-P and available K contents in 0-40 cm soil layer, and the accumulative increment in three summer fallow periods was 16-45% and 36-49%, respectively. Among the three modes, the binary coverage mode of RFFP plus furrow straw mulching had the best effect in maintaining soil water and fertility. The accumulative water storage and mineral N in 0-200 cm soil layer in three summer fallow periods were up to 215 mm and 90 kg x hm(-2), and the accumulative Oslen-P and available K contents in plough layer were increased by 2.7 mg x kg(-1) and 83 mg x kg(-1), respectively, being significantly higher than those in treatments CF and RF. There were no significant differences in the change characteristics in the soil moisture and nutrients between treatments CF and RF.

  10. Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice-ocean data assimilation system

    NASA Astrophysics Data System (ADS)

    Nakanowatari, Takuya; Inoue, Jun; Sato, Kazutoshi; Bertino, Laurent; Xie, Jiping; Matsueda, Mio; Yamagami, Akio; Sugimura, Takeshi; Yabuki, Hironori; Otsuka, Natsuhiko

    2018-06-01

    Accelerated retreat of Arctic Ocean summertime sea ice has focused attention on the potential use of the Northern Sea Route (NSR), for which sea ice thickness (SIT) information is crucial for safe maritime navigation. This study evaluated the medium-range (lead time below 10 days) forecast of SIT distribution in the East Siberian Sea (ESS) in early summer (June-July) based on the TOPAZ4 ice-ocean data assimilation system. A comparison of the operational model SIT data with reliable SIT estimates (hindcast, satellite and in situ data) showed that the TOPAZ4 reanalysis qualitatively reproduces the tongue-like distribution of SIT in ESS in early summer and the seasonal variations. Pattern correlation analysis of the SIT forecast data over 3 years (2014-2016) reveals that the early summer SIT distribution is accurately predicted for a lead time of up to 3 days, but that the prediction accuracy drops abruptly after the fourth day, which is related to a dynamical process controlled by synoptic-scale atmospheric fluctuations. For longer lead times ( > 4 days), the thermodynamic melting process takes over, which contributes to most of the remaining prediction accuracy. In July 2014, during which an ice-blocking incident occurred, relatively thick SIT ( ˜ 150 cm) was simulated over the ESS, which is consistent with the reduction in vessel speed. These results suggest that TOPAZ4 sea ice information has great potential for practical applications in summertime maritime navigation via the NSR.

  11. Rainfall erosivity: An historical review

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity is the capability of rainfall to cause soil loss from hillslopes by water. Modern definitions of rainfall erosivity began with the development of the Universal Soil Loss Equation (USLE), where rainfall characteristics were statistically related to soil loss from thousands of plot...

  12. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  13. Evaluation of atmospheric thermodynamics and dynamics during heavy-rainfall and no-rainfall events in the metropolitan area of Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Fabricio Polifke; Rotunno Filho, Otto Corrêa; Sampaio, Rafael João; Dragaud, Ian Cunha D'amato Viana; de Araújo, Afonso Augusto Magalhães; Justi da Silva, Maria Gertrudes Alvarez; Pires, Gisele Dornelles

    2017-12-01

    Local prediction of thunderstorms is one of the most challenging tasks in weather forecasting due to their high spatiotemporal variability. An improved understanding of such meteorological phenomena, therefore, requires high-frequency measurements along the vertical profile of the atmosphere of interest. In this context, the evaluation of thermodynamic and dynamic parameters obtained from radiosondes to identify atmospheric conditions favorable to thunderstorm and heavy-rainfall development emerges as a valuable tool for investigations of thunderstorms. In this context, four radiosondes were launched to collect a data set for the area of interest at the sub-daily scale (12 UTC, 16 UTC, 18 UTC, and 00 UTC). The collection period encompassed two dates—November 29 and December 12, 2016—chosen specifically due to the existence of heavy-rainfall warnings in the forecast for the Metropolitan Area of Rio de Janeiro, Brazil ("MARJ") for those days. However, heavy rainfall was registered only for December 12 and not for November 29 (which led us to explore this contrast with the announced rainfall forecasts). Sub-daily radiosonde data showed a clear decrease in atmospheric instability in the early afternoon on November 29. On the other hand, an opposite scenario occurred on December 12, which saw an expressive increase in thermodynamic instability during the day. The meteorological modeling approach used also revealed that the vertical coupling of low-level moisture flux convergence centers and upper-level mass flux divergence centers worked as a dynamic trigger for the thunderstorm and heavy-rainfall developments that took place on December 12, 2016.

  14. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results

  15. Critical rainfall conditions for the initiation of torrential flows. Results from the Rebaixader catchment (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Abancó, Clàudia; Hürlimann, Marcel; Moya, José; Berenguer, Marc

    2016-10-01

    , and mean intensity, Imean, of the rainfall event, and (ii) using floating durations, D, and intensities, Ifl, based on the maximum values over floating periods of different duration. The resulting thresholds are considerably different (Imean = 6.20 Dtot-0.36 and Ifl_90% = 5.49 D-0.75, respectively) showing a strong dependence on the applied methodology. On the other hand, the definition of the thresholds is affected by several types of uncertainties. Data from both rain gauges and weather radar were used to analyze the uncertainty associated with the spatial variability of the triggering rainfalls. The analysis indicates that the precipitation recorded by the nearby rain gauges can introduce major uncertainties, especially for convective summer storms. Thus, incorporating radar rainfall can significantly improve the accuracy of the measured triggering rainfall. Finally, thresholds were also derived according to three different criteria for the definition of the duration of the triggering rainfall: (i) the duration until the peak intensity, (ii) the duration until the end of the rainfall; and, (iii) the duration until the trigger of the torrential flow. An important contribution of this work is the assessment of the threshold relationships obtained using the third definition of duration. Moreover, important differences are observed in the obtained thresholds, showing that ID relationships are significantly dependent on the applied methodology.

  16. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  17. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  18. Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data

    NASA Astrophysics Data System (ADS)

    Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2017-04-01

    This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.

  19. Projected rainfall and temperature changes over Malaysia at the end of the 21st century based on PRECIS modelling system

    NASA Astrophysics Data System (ADS)

    Loh, Jui Le; Tangang, Fredolin; Juneng, Liew; Hein, David; Lee, Dong-In

    2016-05-01

    This study investigates projected changes in rainfall and temperature over Malaysia by the end of the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2, A1B and B2 emission scenarios using the Providing Regional Climates for Impacts Studies (PRECIS). The PRECIS regional climate model (HadRM3P) is configured in 0.22° × 0.22° horizontal grid resolution and is forced at the lateral boundaries by the UKMO-HadAM3P and UKMOHadCM3Q0 global models. The model performance in simulating the present-day climate was assessed by comparing the modelsimulated results to the Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset. Generally, the HadAM3P/PRECIS and HadCM3Q0/PRECIS simulated the spatio-temporal variability structure of both temperature and rainfall reasonably well, albeit with the presence of cold biases. The cold biases appear to be associated with the systematic error in the HadRM3P. The future projection of temperature indicates widespread warming over the entire country by the end of the 21st century. The projected temperature increment ranges from 2.5 to 3.9°C, 2.7 to 4.2°C and 1.7 to 3.1°C for A2, A1B and B2 scenarios, respectively. However, the projection of rainfall at the end of the 21st century indicates substantial spatio-temporal variation with a tendency for drier condition in boreal winter and spring seasons while wetter condition in summer and fall seasons. During the months of December to May, ~20-40% decrease of rainfall is projected over Peninsular Malaysia and Borneo, particularly for the A2 and B2 emission scenarios. During the summer months, rainfall is projected to increase by ~20-40% across most regions in Malaysia, especially for A2 and A1B scenarios. The spatio-temporal variations in the projected rainfall can be related to the changes in the weakening monsoon circulations, which in turn alter the patterns of

  20. WegenerNet 1km-scale sub-daily rainfall data and their application: a hydrological modeling study on the sensitivity of small-catchment runoff to spatial rainfall variability

    NASA Astrophysics Data System (ADS)

    Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried

    2017-04-01

    WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2

  1. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith

    2017-07-01

    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  2. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States

    NASA Astrophysics Data System (ADS)

    Staley, Dennis; Negri, Jacquelyn; Kean, Jason

    2016-04-01

    Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently

  3. Urban flood early warning systems: approaches to hydrometeorological forecasting and communicating risk

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter

    2015-04-01

    One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B

  4. Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales

    NASA Technical Reports Server (NTRS)

    Jin, Menglin; King, Michael D.

    2005-01-01

    How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.

  5. Understanding extreme rainfall events in Australia through historical data

    NASA Astrophysics Data System (ADS)

    Ashcroft, Linden; Karoly, David John

    2016-04-01

    Historical climate data recovery is still an emerging field in the Australian region. The majority of Australia's instrumental climate analyses begin in 1900 for rainfall and 1910 for temperature, particularly those focussed on extreme event analysis. This data sparsity for the past in turn limits our understanding of long-term climate variability, constraining efforts to predict the impact of future climate change. To address this need for improved historical data in Australia, a new network of recovered climate observations has recently been developed, centred on the highly populated southeastern Australian region (Ashcroft et al., 2014a, 2014b). The dataset includes observations from more than 39 published and unpublished sources and extends from British settlement in 1788 to the formation of the Australian Bureau of Meteorology in 1908. Many of these historical sources provide daily temperature and rainfall information, providing an opportunity to improve understanding of the multidecadal variability of Australia's extreme events. In this study we combine the historical data for three major Australian cities - Melbourne, Sydney and Adelaide - with modern observations to examine extreme rainfall variability over the past 174 years (1839-2013). We first explore two case studies, combining instrumental and documentary evidence to support the occurrence of severe storms in Sydney in 1841 and 1844. These events appear to be at least as extreme as Sydney's modern 24-hour rainfall record. Next we use a suite of rainfall indices to assess the long-term variability of rainfall in southeastern Australia. In particular, we focus on the stationarity of the teleconnection between the El Niño-Southern Oscillation (ENSO) phenomenon and extreme rainfall events. Using ENSO reconstructions derived from both palaeoclimatic and documentary sources, we determine the historical relationship between extreme rainfall in southeastern Australia and ENSO, and examine whether or not this

  6. Rainfall statistics changes in Sicily

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Pumo, D.; Viola, F.; Noto, L. V.; La Loggia, G.

    2013-07-01

    Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann-Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall duration. Conversely

  7. Predicting summer monsoon of Bhutan based on SST and teleconnection indices

    NASA Astrophysics Data System (ADS)

    Dorji, Singay; Herath, Srikantha; Mishra, Binaya Kumar; Chophel, Ugyen

    2018-02-01

    The paper uses a statistical method of predicting summer monsoon over Bhutan using the ocean-atmospheric circulation variables of sea surface temperature (SST), mean sea-level pressure (MSLP), and selected teleconnection indices. The predictors are selected based on the correlation. They are the SST and MSLP of the Bay of Bengal and the Arabian Sea and the MSLP of Bangladesh and northeast India. The Northern Hemisphere teleconnections of East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern, and East Atlantic/West Russia Pattern (EA/WR). The rainfall station data are grouped into two regions with principal components analysis and Ward's hierarchical clustering algorithm. A support vector machine for regression model is proposed to predict the monsoon. The model shows improved skills over traditional linear regression. The model was able to predict the summer monsoon for the test data from 2011 to 2015 with a total monthly root mean squared error of 112 mm for region A and 33 mm for region B. Model could also forecast the 2016 monsoon of the South Asia Monsoon Outlook of World Meteorological Organization (WMO) for Bhutan. The reliance on agriculture and hydropower economy makes the prediction of summer monsoon highly valuable information for farmers and various other sectors. The proposed method can predict summer monsoon for operational forecasting.

  8. Modelled rainfall skill assessment against a 1000-year time/space isotope dendro-climatology for southern Africa

    NASA Astrophysics Data System (ADS)

    Woodborne, Stephan; Hall, Grant; Zhang, Qiong

    2016-04-01

    Palaeoclimate reconstruction using isotopic analysis of tree growth increments has yielded a 1000-year record of rainfall variability in southern Africa. Isotope dendro-climatology reconstructions from baobab trees (Adansonia digitata) provide evidence for rainfall variability from the arid Namib Desert and the Limpopo River Valley. Isotopic analysis of a museum specimen of a yellowwood tree (Podocarps falcatus) yields another record from the southwestern part of the subcontinent. Combined with the limited classic denro-climatologies available in the region these records yield palaeo-rainfall variability in the summer and winter rainfall zones as well as the hyper-arid zone over the last 1000 years. Coherent shifts in all of the records indicate synoptic changes in the westerlies, the inter-tropical convergence zone, and the Congo air boundary. The most substantial rainfall shift takes place at about 1600 CE at the onset of the Little Ice Age. Another distinctive feature of the record is a widespread phenomenon that occurs shortly after 1810 CE that in southern Africa corresponds with a widespread social upheaval known as the Difequane or Mfekane. Large scale forcing of the system includes sea-surface temperatures in the Agulhas Current, the El Nino Southern Oscillation and the Southern Annular Mode. The Little Ice Age and Mfekane climate shifts result from different forcing mechanisms, and the rainfall response in the different regions at these times do not have a fixed phase relationship. This complexity provides a good scenario to test climate models. A first order (wetter versus drier) comparison between each of the tree records and a 1000-year palaeoclimate model simulation for the Little Ice Age and Mfekane transitions demonstrates a generally good correspondence.

  9. Lightning activity with rainfall during El Nino and La Nina events over India

    NASA Astrophysics Data System (ADS)

    Tinmaker, M. I. R.; Aslam, M. Y.; Ghude, Sachin D.; Chate, D. M.

    2017-10-01

    This paper appraises the association of lightning flash count (FC) with rainfall using the satellite-borne Lightning Imaging Sensor's (LIS) data along with gridded rainfall data (0.5o × 0.5o) for Indian summer monsoon seasons over 10 years (2001-2010). During strong El Nino years, 2002 and 2009, FCs were greater in magnitude by about 26.5 % and 37 %, than the long-term average, respectively, while during weak El Nino year (2004), it was more by 8 %. During the same years, the rainfall was deficient by about 10 % than the long-term average. Similarly, a rise in aerosol optical depth (AOD) over its average value (by about 15 % and 20 %) reduces the ratio of rainfall to FC (RLR) by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and for weak El Nino year (2004), a 6.5 % rise in AOD lowers the RLR by 20 %. Bowen ratio more by 11 % and 17 % of its average value reduces the RLR by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and, also, Bowen ratio higher by 8 % for 2004 declines RLR by 20 %. On the other hand, Bowen ratio less by 9 % and 6 % raises the RLR by 19 % and 56 % for moderate La Nina year (2007) and strong La Nina year (2010), respectively. Results for the daily rainfall, AOD and Bowen ratio over Indian regions, are discussed for strong El Nino and La Nina years. Correlations of FC with AOD and Bowen ratio of 0.66 and 0.71, respectively, while, that of FC with ONI of 0.56 indicates numerous (fewer) break days during El Nino (La Nina) years.

  10. Spatial averaging of oceanic rainfall variability using underwater sound: Ionian Sea rainfall experiment 2004.

    PubMed

    Nystuen, Jeffrey A; Amitai, Eyal; Anagnostou, Emmanuel N; Anagnostou, Marios N

    2008-04-01

    An experiment to evaluate the inherent spatial averaging of the underwater acoustic signal from rainfall was conducted in the winter of 2004 in the Ionian Sea southwest of Greece. A mooring with four passive aquatic listeners (PALs) at 60, 200, 1000, and 2000 m was deployed at 36.85 degrees N, 21.52 degrees E, 17 km west of a dual-polarization X-band coastal radar at Methoni, Greece. The acoustic signal is classified into wind, rain, shipping, and whale categories. It is similar at all depths and rainfall is detected at all depths. A signal that is consistent with the clicking of deep-diving beaked whales is present 2% of the time, although there was no visual confirmation of whale presence. Co-detection of rainfall with the radar verifies that the acoustic detection of rainfall is excellent. Once detection is made, the correlation between acoustic and radar rainfall rates is high. Spatial averaging of the radar rainfall rates in concentric circles over the mooring verifies the larger inherent spatial averaging of the rainfall signal with recording depth. For the PAL at 2000 m, the maximum correlation was at 3-4 km, suggesting a listening area for the acoustic rainfall measurement of roughly 30-50 km(2).

  11. Early Holocene to present landscape dynamics of the tectonic lakes of west-central Mexico

    NASA Astrophysics Data System (ADS)

    Castillo, Miguel; Muñoz-Salinas, Esperanza; Arce, José Luis; Roy, Priyadarsi

    2017-12-01

    Paleoclimatic reconstructions from lake sediments of central Mexico indicate that the environmental conditions in the Holocene have oscillated from cool-dry to warm-wet, thus, landscape erosion rates have been modified accordingly. The Cenozoic tectonics and volcanic activity of west-central Mexico have produced a set of lakes in warmer and drier conditions compared to lakes of central Mexico. Nevertheless, the Holocene landscape dynamics for this area remains understudied. Using age-depth models, OSL and multi-element chemistry analysis of sediments in the lakes of San Marcos and Sayula we explore the landscape dynamics from early Holocene present of west-central Mexico. Our results indicate that the sedimentation rates in San Marcos Lake notably increased from 240 yr BP to the present. Since AD 1950 the sedimentation rate in Sayula Lake rose fourfold the rates of the last 2000 years. Analysis of OSL and chemistry of major elements of sediments indicates that IRSL/BLSL strongly correlates with Ti/Al (R2 = 0.93) and with the mean monthly rainfall (R2 = 0.70). We propose that the IRSL/BLSL can be used as a proxy to infer past changes in landscape dynamics. Analysis of climatic data from the 1950s to present indicates that rainfall, and consequently water runoff, is enhanced in summers free of ENSO conditions. Extreme one-day rainfall can, however, exceed mean seasonal rainfall and occur in all phases of ENSO. Droughts are particularly severe in the phase of La Niña. Our results indicate that the erosion rate in San Marcos Lake was high from ∼8000 to ∼7000 yr BP in a period coinciding with the advance and recession of glaciers in Central Mexico, however, the erosion rates in the last 165 years have surpassed the rates of the early to mid-Holocene. By constraining the age of sediment and using environmental proxies such as the Ti/Al and IRSL/BLSL from lake sediments of Sayula and San Marcos we present the first model of landscape dynamics of this part of Mexico

  12. Evaluating interannual variability in speleothem records of North American monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Truebe, S. A.; Cole, J. E.; Ault, T. R.; Kimbrough, A.; Henderson, G. M.; Barmett, H.; Hlohowskyj, S.

    2013-12-01

    Speleothems can produce long, high resolution, absolutely-dated records of past climate. They are especially useful for past climate reconstruction in areas such as the southwestern United States, where traditional sources of past climate information (corals, lake or ocean sediments, ice cores) are absent. Here we present two records of Holocene rainfall variability from two Arizona caves less than 40km apart: Cave of the Bells (COB) and Fort Huachuca Cave (FHC), spanning 7000 and 4000 years respectively. Both records show a trend towards more negative oxygen isotope values into the modern era. Extensive monthly monitoring suggests that speleothem oxygen isotope composition is an average of the oxygen isotope composition of the summer North American monsoon (NAM) and winter frontal storms, with a bias towards winter likely due to lack of infiltration of intense monsoon rainfall. This bias is stronger in COB than in FHC. Winter rainfall has had an increasing influence at both sites from the mid-Holocene until the present; in other words, the NAM has been weakening over the past few thousand years, in step with changes in other monsoon systems and Northern Hemisphere insolation. Although the records are similar in overall trend, short-term variability is inconsistent. When providing information to water managers about future rainfall availability in the Southwest, having only millennial-scale information does not help much! To investigate the differences between the two records, we use a combination of approaches, including assessing age model uncertainty and modern climate heterogeneity, and monitoring cave-specific processes that may be overprinting the climate signal. We assess age model uncertainty using a statistical age-modeling program, which allows us to develop many physically plausible time series for the same age-depth data. With this age modeling tool, we critically assess whether particular isotope excursions correspond between speleothems and if they

  13. Summer Moisture Content of Some Northern Lower Michigan Understory Plants

    Treesearch

    Robert M. Loomis; Richard W. Blank

    1981-01-01

    Summer moisture contents and factors for converting fresh plant weights to ovendry weights were determined for selected herbs, ferns, and small shrubs commonly found on upland sites in northern Lower Michigan. Sampling was done weekly from mid-June through early September 1978, following the period of major plant growth. Average summer moisture contents range from...

  14. On the dynamics of an extreme rainfall event in northern India in 2013

    NASA Astrophysics Data System (ADS)

    Xavier, Anu; Manoj, M. G.; Mohankumar, K.

    2018-03-01

    India experienced a heavy rainfall event in the year 2013 over Uttarakhand and its adjoining areas, which was exceptional as it witnessed the fastest monsoon progression. This study aims to explore the causative factors of this heavy rainfall event leading to flood and landslides which claimed huge loss of lives and property. The catastrophic event occurred from 14th to 17th June, 2013 during which the state received 375% more rainfall than the highest rainfall recorded during a normal monsoon season. Using the high resolution precipitation data and complementary parameters, we found that the mid-latitude westerlies shifted southward from its normal position during the intense flooding event. The southward extension of subtropical jet (STJ) over the northern part of India was observed only during the event days and its intensity was found to be increasing from 14th to 16th June. The classical theory of westward tilt of mid-latitude trough with height, which acts to intensify the system through the transfer of potential energy of the mean flow, is evident from analysis of relative vorticity at multiple pressure levels. On analysing the North Atlantic Oscillation (NAO), negative values were observed during the event days. Thus, the decrease in pressure gradient resulted in decrease of the intensity of westerlies which caused the cold air to move southward. During the event, as the cold air moved south, it pushed the mid-latitude westerlies south of its normal position during summer monsoon and created a conducive atmosphere for the intensification of the system.

  15. Performance of ICTP's RegCM4 in Simulating the Rainfall Characteristics over the CORDEX-SEA Domain

    NASA Astrophysics Data System (ADS)

    Neng Liew, Ju; Tangang, Fredolin; Tieh Ngai, Sheau; Chung, Jing Xiang; Narisma, Gemma; Cruz, Faye Abigail; Phan Tan, Van; Thanh, Ngo-Duc; Santisirisomboon, Jerasron; Milindalekha, Jaruthat; Singhruck, Patama; Gunawan, Dodo; Satyaningsih, Ratna; Aldrian, Edvin

    2015-04-01

    The performance of the RegCM4 in simulating rainfall variations over the Southeast Asia regions was examined. Different combinations of six deep convective parameterization schemes, namely i) Grell scheme with Arakawa-Schubert closure assumption, ii) Grell scheme with Fritch-Chappel closure assumption, iii) Emanuel MIT scheme, iv) mixed scheme with Emanuel MIT scheme over the Ocean and the Grell scheme over the land, v) mixed scheme with Grell scheme over the land and Emanuel MIT scheme over the ocean and (vi) Kuo scheme, and three ocean flux treatments were tested. In order to account for uncertainties among the observation products, four different gridded rainfall products were used for comparison. The simulated climate is generally drier over the equatorial regions and slightly wetter over the mainland Indo-China compare to the observation. However, simulation with MIT cumulus scheme used over the land area consistently produces large amplitude of positive rainfall biases, although it simulates more realistic annual rainfall variations. The simulations are found less sensitive to treatment of ocean fluxes. Although the simulations produced the rainfall climatology well, all of them simulated much stronger interannual variability compare to that of the observed. Nevertheless, the time evolution of the inter-annual variations was well reproduced particularly over the eastern part of maritime continent. Over the mainland Southeast Asia (SEA), unrealistic rainfall anomalies processes were simulated. The lacking of summer season air-sea interaction results in strong oceanic forcings over the regions, leading to positive rainfall anomalies during years with warm ocean temperature anomalies. This incurs much stronger atmospheric forcings on the land surface processes compare to that of the observed. A score ranking system was designed to rank the simulations according to their performance in reproducing different aspects of rainfall characteristics. The result suggests

  16. A scattering-based over-land rainfall retrieval algorithm for South Korea using GCOM-W1/AMSR-2 data

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Joo; Shin, Hayan; Ban, Hyunju; Lee, Yang-Won; Park, Kyung-Ae; Cho, Jaeil; Park, No-Wook; Hong, Sungwook

    2017-08-01

    Heavy summer rainfall is a primary natural disaster affecting lives and properties in the Korean Peninsula. This study presents a satellite-based rainfall rate retrieval algorithm for the South Korea combining polarization-corrected temperature ( PCT) and scattering index ( SI) data from the 36.5 and 89.0 GHz channels of the Advanced microwave Scanning Radiometer 2 (AMSR-2) onboard the Global Change Observation Mission (GCOM)-W1 satellite. The coefficients for the algorithm were obtained from spatial and temporal collocation data from the AMSR-2 and groundbased automatic weather station rain gauges from 1 July - 30 August during the years, 2012-2015. There were time delays of about 25 minutes between the AMSR-2 observations and the ground raingauge measurements. A new linearly-combined rainfall retrieval algorithm focused on heavy rain for the PCT and SI was validated using ground-based rainfall observations for the South Korea from 1 July - 30 August, 2016. The validation presented PCT and SI methods showed slightly improved results for rainfall > 5 mm h-1 compared to the current ASMR-2 level 2 data. The best bias and root mean square error (RMSE) for the PCT method at AMSR-2 36.5 GHz were 2.09 mm h-1 and 7.29 mm h-1, respectively, while the current official AMSR-2 rainfall rates show a larger bias and RMSE (4.80 mm h-1 and 9.35 mm h-1, respectively). This study provides a scatteringbased over-land rainfall retrieval algorithm for South Korea affected by stationary front rain and typhoons with the advantages of the previous PCT and SI methods to be applied to a variety of spaceborne passive microwave radiometers.

  17. Prediction of Rainfall-Induced Landslides

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Sandersen, F.

    2009-12-01

    -mum intensity of rain within a short period of time (1-3 hours) during a storm is most critical for triggering of debris flows. Therefore empirical methods developed for prediction of initiation of debris flows include both long-duration and short-duration rain-fall. More recent research has focused on the spatial distribution of unstable areas and on better spatial resolution of the occurrence of landslide-triggering precipitation events. Spatial distribution can be assessed by analyzing the stability conditions for shallow landslides if reasonable estimates of strength parameters are available. In general, two different approaches may be adopted for the assessment of threshold values for rainfall-induced landslides: empirical methods that are based on past observations and statistical analyses, and numerical analyses that are based on geo-mechanical modelling. The former approach together with very short-term weather forecasting (now-casting) are commonly used in the design of early warning systems for debris flows.

  18. The Tropical Rainfall Measuring Mission and Vern Suomi 's Vital Role

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Kummerow, Christian

    1999-01-01

    The Tropical Rainfall Measuring Mission was a new concept of measuring rainfall over the global tropics using a combination of instruments, including the first weather radar to be flown in space. An important objective of the mission was to obtain profiles of latent heat in order to initialize large-scale circulation models and to understand the relationship between short-term climate changes in relation to rainfall variability. The idea originated in the early 1980's from scientists at the Goddard Space Flight Center/NASA who had been involved with attempts to measure rain with a passive microwave instrument on Nimbus 5 and had compared its results with rain falling in the area covered by the GATE1 radar ships. Using an imaginary satellite flying over the GATE ships, scientists showed that a satellite with an inclined orbit of 30-35 degrees could obtain monthly rainfalls with a sampling error of less than 10 percent over 5 degree by 5 degree areas. The Japanese proposed that they could build a nadir-scanning rain radar for the satellite. Vern Suomi was excited by this mission from the outset, since he recognized the great importance of adequate rainfall measurements over the tropical oceans. He was a charter member of the Science Steering Team and prepared a large part of the Report. While the mission attracted strong support in the science community, it was opposed by some of the high-level NASA management who feared its competition for funds with some much larger Earth Science satellites. Vern was able to overcome this opposition and to generate Congressional support, so that the Project finally got underway on both sides of the Pacific in 1991. The paper will discuss the design of the satellite, its data system and ground validation program. TP.NM was successfully launched in late 1997. Early results will be described. 1 GATE stands for GARP Atlantic Tropical Experiment and GARP stands for Global Atmospheric Research Program.

  19. Markov chain decomposition of monthly rainfall into daily rainfall: Evaluation of climate change impact

    DOE PAGES

    Yoo, Chulsang; Lee, Jinwook; Ro, Yonghun

    2016-01-01

    This paper evaluates the effect of climate change on daily rainfall, especially on the mean number of wet days and the mean rainfall intensity. Assuming that the mechanism of daily rainfall occurrences follows the first-order Markov chain model, the possible changes in the transition probabilities are estimated by considering the climate change scenarios. Also, the change of the stationary probabilities of wet and dry day occurrences and finally the change in the number of wet days are derived for the comparison of current (1x CO 2) and 2x CO 2conditions. As a result of this study, the increase or decreasemore » in the mean number of wet days was found to be not enough to explain all of the change in monthly rainfall amounts, so rainfall intensity should also be modified. The application to the Seoul weather station in Korea shows that about 30% of the total change in monthly rainfall amount can be explained by the change in the number of wet days and the remaining 70% by the change in the rainfall intensity. That is, as an effect of climate change, the increase in the rainfall intensity could be more significant than the increase in the wet days and, thus, the risk of flood will be much highly increased.« less

  20. Responses of summer Asian-Pacific zonal thermal contrast and associated evolutions of atmospheric circulation to transient orbital change during the Holocene

    NASA Astrophysics Data System (ADS)

    Xiao, D.; Zhao, P.

    2016-12-01

    This study investigates the response of large-scale atmospheric circulation over the Asian-Pacific sector and precipitation over eastern China to the transient orbital changes during the Holocene summer. Corresponding to a variation of the incoming solar radiation, eddy sea level pressure (SLP) presented an out-of-phase relationship between the North Pacific and the Eurasian landmass, which is similar to the present-day Asia-Pacific Oscillation (APO) pattern and defined as the paleo-APO. Its index presented an increasing trend, which implies an enhancement of the zonal thermal contrast between Asia and North Pacific. Associated with the strengthening of thermal contrast was the westward shift of North Pacific high pressure. Accordingly, there were less summer precipitation over both the middle reach of the Yangtze River and Southwest China and more precipitation over North China during. The high-resolution stalagmite δ18O records further support this decrease in the simulated precipitation. From the negative phase of paleo-APO during the early Holocene to the recent positive phase, the eddy SLP anomalies show a decreasing/increasing trend over the Eurasian landmass/the North Pacific, with a phase change around 4.5 ka BP, and they both move westward. Meanwhile, less rainfall belt over East China shows a northward propagation from southern China.

  1. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  2. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2017-09-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all-India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using the NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: (1) control with no aerosol, (2) aerosol radiative effect only and (3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol-monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large-scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. in Clim Dyn 26(7-8):855-864, 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India/northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into meso-scale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be

  3. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  4. The Effect of Summer on Value-Added Assessments of Teacher and School Performance

    ERIC Educational Resources Information Center

    Palardy, Gregory J.; Peng, Luyao

    2015-01-01

    This study examines the effects of including the summer period on value-added assessments (VAA) of teacher and school performance at the early grades. The results indicate that 40-62% of the variance in VAA estimates originates from the summer period, depending on the outcome (i.e., reading or math achievement gains). Furthermore, when summer is…

  5. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall

  6. Influence of Pre- and Postharvest Summer Pruning on the Growth, Yield, Fruit Quality, and Carbohydrate Content of Early Season Peach Cultivars

    PubMed Central

    Ikinci, Ali

    2014-01-01

    Winter and summer pruning are widely applied processes in all fruit trees, including in peach orchard management. This study was conducted to determine the effects of summer prunings (SP), as compared to winter pruning (WP), on shoot length, shoot diameter, trunk cross sectional area (TCSA) increment, fruit yield, fruit quality, and carbohydrate content of two early ripening peach cultivars (“Early Red” and “Maycrest”) of six years of age, grown in semiarid climate conditions, in 2008 to 2010. The trees were grafted on GF 677 rootstocks, trained with a central leader system, and spaced 5 × 5 m apart. The SP carried out after harvesting in July and August decreased the shoot length significantly; however, it increased its diameter. Compared to 2009, this effect was more marked in year 2010. In general, control and winter pruned trees of both cultivars had the highest TCSA increment and yield efficiency. The SP increased the average fruit weight and soluble solids contents (SSC) more than both control and WP. The titratable acidity showed no consistent response to pruning time. The carbohydrate accumulation in shoot was higher in WP and in control than in SP trees. SP significantly affected carbohydrate accumulation; postharvest pruning showed higher carbohydrate content than preharvest pruning. PMID:24737954

  7. Modeling the roles of damage accumulation and mechanical healing on rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2014-05-01

    The abrupt release of rainfall-induced shallow landslides is preceded by local failures that may abruptly coalesce and form a continuous failure plane within a hillslope. The mechanical status of hillslopes reflects a competition between the extent of severity of accumulated local damage during prior rainfall events and the rates of mechanically healing (i.e. regaining of strength) by closure of micro-cracks, regrowth of roots, etc. The interplay of these processes affects the initial conditions for landslide modeling and shapes potential failure patterns during future rainfall events. We incorporated these competing mechanical processes in a hydro-mechanical landslide triggering model subjected to a sequence of rainfall scenarios. The model employs the Fiber Bundle Model (FBM) with bonds (fiber bundle) with prescribed threshold linking adjacent soil columns and soil to bedrock. Prior damage was represented by a fraction of broken fibers during previous rainfall events, and the healing of broken fibers was described by strength regaining models for soil and roots at different characteristic time scales. Results show that prior damage and healing introduce highly nonlinear response to landslide triggering. For small prior damage, mechanical bonds at soil-bedrock interface may fail early in next rainfall event but lead to small perturbations onto lateral bonds without triggering a landslide. For more severe damage weakening lateral bonds, excess load due to failure at soil-bedrock interface accumulates at downslope soil columns resulting in early soil failure with patterns strongly correlated with prior damage distribution. Increasing prior damage over the hillslope decreases the volume of first landslide and prolongs the time needed to trigger the second landslide due to mechanical relaxation of the system. The mechanical healing of fibers diminishes effects of prior damage on the time of failure, and shortens waiting time between the first and second landslides

  8. Use of large-scale atmospheric energetics for understanding the dynamics of contrasting Indian summer monsoon rainfall in different years

    NASA Astrophysics Data System (ADS)

    Dutta, Somenath; Narkhedkar, Sanjay G.; Mukhopadhyay, Parthasarathi; Yadav, Mamta; Sunitha Devi

    2018-06-01

    An attempt has been made to understand the dynamics of contrasting Indian summer monsoon rainfall (ISMR) in different years during 1979-2017, from large-scale atmospheric energetics aspects. Daily values of eddy and zonal available potential energy (APE), their generation, eddy and zonal kinetic energy (KE), conversions of zonal KE and eddy APE to eddy KE, and conversions of zonal APE to zonal KE and eddy APE were computed over the region bounded by 65°E-95°E and 5°N-35°N during the period 1 May to 30 September for 39 years (1979-2017), using daily ECMWF reanalyzed atmospheric data at 0.125° × 0.125° resolution (3 components of wind and temperature). ISMR was classified into three categories, viz., deficient and below normal, normal and above normal and excess. The daily anomaly of these energetics parameters in each of these years was computed using jackknife method and then the composite of the daily anomalies of these parameters constructed for the years with the above-mentioned three categories of ISMR. The following salient features emerge from this study: Analysis of composite anomaly shows that in case of excess and above normal (below normal and deficient) ISMR, C(A Z , K Z) was less (more) than normal. In case of excess and above normal (below normal and deficient) ISMR, C(A E , K E) was more (less) than normal. Broadly, C(A Z , A E) was more than normal in the years with deficient and below normal ISMR, whereas it was less than normal for years with excess and above normal ISMR. Broadly, G(A Z) was below normal for the years with above normal and excess ISMR, whereas it was above normal for the years with below normal and deficient ISMR. Total kinetic energy and total conversion to eddy kinetic energy was above normal for the years with above normal and excess ISMR.

  9. Using damage data to estimate the risk from summer convective precipitation extremes

    NASA Astrophysics Data System (ADS)

    Schroeer, Katharina; Tye, Mari

    2017-04-01

    model to test whether the relationship between extreme rainfall events and damages is robust enough to estimate a potential underrepresentation of high intensity rainfall events in ungauged areas. Risk-relevant factors of socio-economic vulnerability, land cover, streamflow data, and weather type information are included to improve and sharpen the analysis. Within this study, we first aim to identify which rainfall events are most damaging and which factors affect the damages - seen as a proxy for the vulnerability - related to summer convective rainfall extremes in different catchment types. Secondly, we aim to detect potentially unreported damaging rainfall events and estimate the likelihood of such cases. We anticipate this damage perspective on summertime extreme convective precipitation to be beneficial for risk assessment, uncertainty management, and decision making with respect to weather and climate extremes on the regional-to-local level.

  10. Observed variability of summer precipitation pattern and extreme events in East China associated with variations of the East Asian summer monsoon: VARIABILITY OF SUMMER PRECIPITATION AND EXTREME EVENT IN EAST CHINA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Qian, Yun; Zhang, Yaocun

    This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation,more » the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.« less

  11. The UAE Rainfall Enhancement Assessment Program: Implications of Thermodynamic Profiles on the Development of Precipitation in Convective Clouds over the Oman Mountains

    NASA Astrophysics Data System (ADS)

    Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.

    2005-12-01

    During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct

  12. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  13. The effect of rainfall measurement uncertainties on rainfall-runoff processes modelling.

    PubMed

    Stransky, D; Bares, V; Fatka, P

    2007-01-01

    Rainfall data are a crucial input for various tasks concerning the wet weather period. Nevertheless, their measurement is affected by random and systematic errors that cause an underestimation of the rainfall volume. Therefore, the general objective of the presented work was to assess the credibility of measured rainfall data and to evaluate the effect of measurement errors on urban drainage modelling tasks. Within the project, the methodology of the tipping bucket rain gauge (TBR) was defined and assessed in terms of uncertainty analysis. A set of 18 TBRs was calibrated and the results were compared to the previous calibration. This enables us to evaluate the ageing of TBRs. A propagation of calibration and other systematic errors through the rainfall-runoff model was performed on experimental catchment. It was found that the TBR calibration is important mainly for tasks connected with the assessment of peak values and high flow durations. The omission of calibration leads to up to 30% underestimation and the effect of other systematic errors can add a further 15%. The TBR calibration should be done every two years in order to catch up the ageing of TBR mechanics. Further, the authors recommend to adjust the dynamic test duration proportionally to generated rainfall intensity.

  14. Automatic Extraction of High-Resolution Rainfall Series from Rainfall Strip Charts

    NASA Astrophysics Data System (ADS)

    Saa-Requejo, Antonio; Valencia, Jose Luis; Garrido, Alberto; Tarquis, Ana M.

    2015-04-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on a host of factors, including climate, soil, topography, cropping and land management practices among others. Most models for soil erosion or hydrological processes need an accurate storm characterization. However, this data are not always available and in some cases indirect models are generated to fill this gap. In Spain, the rain intensity data known for time periods less than 24 hours back to 1924 and many studies are limited by it. In many cases this data is stored in rainfall strip charts in the meteorological stations but haven't been transfer in a numerical form. To overcome this deficiency in the raw data a process of information extraction from large amounts of rainfall strip charts is implemented by means of computer software. The method has been developed that largely automates the intensive-labour extraction work based on van Piggelen et al. (2011). The method consists of the following five basic steps: 1) scanning the charts to high-resolution digital images, 2) manually and visually registering relevant meta information from charts and pre-processing, 3) applying automatic curve extraction software in a batch process to determine the coordinates of cumulative rainfall lines on the images (main step), 4) post processing the curves that were not correctly determined in step 3, and 5) aggregating the cumulative rainfall in pixel coordinates to the desired time resolution. A colour detection procedure is introduced that automatically separates the background of the charts and rolls from the grid and subsequently the rainfall curve. The rainfall curve is detected by minimization of a cost function. Some utilities have been added to improve the previous work and automates some auxiliary processes: readjust the bands properly, merge bands when

  15. Validation and evaluation of epistemic uncertainty in rainfall thresholds for regional scale landslide forecasting

    NASA Astrophysics Data System (ADS)

    Gariano, Stefano Luigi; Brunetti, Maria Teresa; Iovine, Giulio; Melillo, Massimo; Peruccacci, Silvia; Terranova, Oreste Giuseppe; Vennari, Carmela; Guzzetti, Fausto

    2015-04-01

    Prediction of rainfall-induced landslides can rely on empirical rainfall thresholds. These are obtained from the analysis of past rainfall events that have (or have not) resulted in slope failures. Accurate prediction requires reliable thresholds, which need to be validated before their use in operational landslide warning systems. Despite the clear relevance of validation, only a few studies have addressed the problem, and have proposed and tested robust validation procedures. We propose a validation procedure that allows for the definition of optimal thresholds for early warning purposes. The validation is based on contingency table, skill scores, and receiver operating characteristic (ROC) analysis. To establish the optimal threshold, which maximizes the correct landslide predictions and minimizes the incorrect predictions, we propose an index that results from the linear combination of three weighted skill scores. Selection of the optimal threshold depends on the scope and the operational characteristics of the early warning system. The choice is made by selecting appropriately the weights, and by searching for the optimal (maximum) value of the index. We discuss weakness in the validation procedure caused by the inherent lack of information (epistemic uncertainty) on landslide occurrence typical of large study areas. When working at the regional scale, landslides may have occurred and may have not been reported. This results in biases and variations in the contingencies and the skill scores. We introduce two parameters to represent the unknown proportion of rainfall events (above and below the threshold) for which landslides occurred and went unreported. We show that even a very small underestimation in the number of landslides can result in a significant decrease in the performance of a threshold measured by the skill scores. We show that the variations in the skill scores are different for different uncertainty of events above or below the threshold. This

  16. Relevance of Indian Summer Monsoon and its Tropical Indo-Pacific Climate Drivers for the Kharif Crop Production

    NASA Astrophysics Data System (ADS)

    Amat, Hemadri Bhusan; Karumuri, Ashok

    2017-12-01

    While the Indian agriculture has earlier been dependent on the Indian summer monsoon rainfall (ISMR), a multifold increase in irrigation and storage facilities raise a question whether the ISMR is still as relevant. We revisit this question using the latest observational climate datasets as well as the crop production data and find that the ISMR is still relevant for the Kharif crop production (KCP). In addition, in the recent changes in the tropical Indo-Pacific driver evolutions and frequency, particularly more frequent occurrence of the ENSO Modokis in place of the canonical ENSOs, we carry out a correlation analysis to estimate the impact of the various Indo-Pacific climate drivers on the rainfall of individual Indian states for the period 1998-2013, for which crop production data for the most productive Indian states, namely West Bengal, Odisha, United Andhra Pradesh (UAP), Haryana, Punjab, Karnataka, Kerala, Madhya Pradesh, Bihar and Uttar Pradesh are available. The results suggest that the KCP of the respective states are significantly correlated with the summer monsoon rainfall at the 95-99% confidence levels. Importantly, we find that the NINO 3.4 and ENSO Modoki indices have a statistically significant correlation with the KCP of most of the Indian states, particularly in states such as UAP and Karnataka, through induction of anomalous local convergence/divergence, well beyond the equatorial Indian Ocean. The KCP of districts in UAP also has a significant response to all the climate drivers, having implication for prediction of local crop yield.

  17. Assessing agricultural drought in summer over Oklahoma Mesonet sites using the water-related vegetation index from MODIS.

    PubMed

    Bajgain, Rajen; Xiao, Xiangming; Basara, Jeffrey; Wagle, Pradeep; Zhou, Yuting; Zhang, Yao; Mahan, Hayden

    2017-02-01

    Agricultural drought, a common phenomenon in most parts of the world, is one of the most challenging natural hazards to monitor effectively. Land surface water index (LSWI), calculated as a normalized ratio between near infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and soil water content. This study examined the potential of a LSWI-based, drought-monitoring algorithm to assess summer drought over 113 Oklahoma Mesonet stations comprising various land cover and soil types in Oklahoma. Drought duration in a year was determined by the number of days with LSWI <0 (DNLSWI) during summer months (June-August). Summer rainfall anomalies and LSWI anomalies followed a similar seasonal dynamics and showed strong correlations (r 2  = 0.62-0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of summer rainfall in Oklahoma. Drought intensity increased with increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was more than 48 days. The comparison between LSWI and the US Drought Monitor (USDM) showed a strong linear negative relationship; i.e., higher drought intensity tends to have lower LSWI values and vice versa. However, the agreement between LSWI-based algorithm and USDM indicators varied substantially from 32 % (D 2 class, moderate drought) to 77 % (0 and D 0 class, no drought) for different drought intensity classes and varied from ∼30 % (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be established by counting DNLSWI (in days) and used as a simple complementary tool in several drought applications for semi-arid and semi-humid regions of Oklahoma. However, larger discrepancies between USDM and the LSWI-based algorithm in arid regions of western Oklahoma suggest the requirement of further adjustment in the algorithm for its application in arid regions.

  18. On the shortening of Indian summer monsoon season in a warming scenario

    NASA Astrophysics Data System (ADS)

    Sabeerali, C. T.; Ajayamohan, R. S.

    2018-03-01

    Assessing the future projections of the length of rainy season (LRS) has paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Here, we explored the projections of LRS using both historical and Representative Concentration Pathways 8.5 (RCP8.5) simulations of the Coupled Model Intercomparison Project Phase5 (CMIP5). RCP8.5 simulations project shortening of the LRS of Indian summer monsoon by altering the timing of onset and withdrawal dates. Most CMIP5 RCP8.5 model simulations indicate a faster warming rate over the western tropical Indian Ocean compared to other regions of the Indian Ocean. It is found that the pronounced western Indian Ocean warming and associated increase in convection results in warmer upper troposphere over the Indian Ocean compared to the Indian subcontinent, reducing the meridional gradient in upper tropospheric temperature (UTT) over the Asian summer monsoon (ASM) domain. The weakening of the meridional gradient in UTT induces weakening of easterly vertical wind shear over the ASM domain during first and last phase of monsoon, facilitate delayed (advanced) monsoon onset (withdrawal) dates, ensues the shortening of LRS of the Indian summer monsoon in a warming scenario.

  19. Rainfall prediction with backpropagation method

    NASA Astrophysics Data System (ADS)

    Wahyuni, E. G.; Fauzan, L. M. F.; Abriyani, F.; Muchlis, N. F.; Ulfa, M.

    2018-03-01

    Rainfall is an important factor in many fields, such as aviation and agriculture. Although it has been assisted by technology but the accuracy can not reach 100% and there is still the possibility of error. Though current rainfall prediction information is needed in various fields, such as agriculture and aviation fields. In the field of agriculture, to obtain abundant and quality yields, farmers are very dependent on weather conditions, especially rainfall. Rainfall is one of the factors that affect the safety of aircraft. To overcome the problems above, then it’s required a system that can accurately predict rainfall. In predicting rainfall, artificial neural network modeling is applied in this research. The method used in modeling this artificial neural network is backpropagation method. Backpropagation methods can result in better performance in repetitive exercises. This means that the weight of the ANN interconnection can approach the weight it should be. Another advantage of this method is the ability in the learning process adaptively and multilayer owned on this method there is a process of weight changes so as to minimize error (fault tolerance). Therefore, this method can guarantee good system resilience and consistently work well. The network is designed using 4 input variables, namely air temperature, air humidity, wind speed, and sunshine duration and 3 output variables ie low rainfall, medium rainfall, and high rainfall. Based on the research that has been done, the network can be used properly, as evidenced by the results of the prediction of the system precipitation is the same as the results of manual calculations.

  20. Global rainfall erosivity assessment based on high-temporal resolution rainfall records

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity quantifies the climatic effect on water erosion. In the framework of the Universal Soil Loss Equation, rainfall erosivity, also known as the R-factor, is defined as the mean annual sum of event erosivity values. For a new global soil erosion assessment, also in the broad context...

  1. Changes in the Indian summer monsoon intensity in Sri Lanka during the last 30 ky - A multiproxy record from a marine sediment core.

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Nanayakkara, N. U.; Kodithuwakku, S.; Siriwardana, S.; Luo, C.; Fenghua, Z.

    2016-12-01

    Indian monsoon plays a vital role in determining climate events happening in the Asian region. There is no sufficient work in Sri Lanka to fully understand how the summer monsoonal variability affected Sri Lanka during the quaternary. Sri Lanka is situated at an ideal location with a unique geography to isolate Indian summer monsoon record from iris counterpart, Indian winter monsoon. Therefore, this study was carried out to investigate its variability and understand the forcing factors. For this purpose a 1.82 m long gravity core, extracted from western continental shelf off Colombo, Sri Lanka by Shiyan 1 research vessel, was used. Particle size, chemical composition and colour reflectance were measured using laser particle size analyzer at 2 cm resolution, X-Ray Fluorescence spectrometer (XRF) at 2 cm resolution, and color spectrophotometer at 1 cm resolution respectively. Radio carbon dating of foraminifera tests by gas bench technique yielded the sediment age. Finally, principal component analysis (PCA) of XRF and color reflectance (DSR) data was performed to identify groups of correlating elements and mineralogical composition of sediments. Particle size results indicate that Increasing temperature and strengthening monsoonal rainfall after around 18000 yrs BP, at the end of last glacial period, enhanced chemical weathering over physical weathering. Proxies for terrestrial influx (XRF PC1, DSR PC1) and upwelling and nutrient supply driven marine productivity (XRF PC3 and DSR PC2) indicate that strengthening of summer monsoon started around 15000 yrs BP and maximized around 8000-10000 yrs BP after a short period of weakening during Younger Dryas (around 11000 yrs BP). The 8.2 cold event was recorded as a period of low terrestrial influx indicating weakening of rainfall. After that terrestrial input was low till around 2000 yrs BP indicating decrease in rainfall. However, marine productivity remained increasing throughout the Holocene indicating an increase in

  2. The Effects of Rainfall Inhomogeneity on Climate Variability of Rainfall Estimated from Passive Microwave Sensors

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Poyner, Philip; Berg, Wesley; Thomas-Stahle, Jody

    2007-01-01

    Passive microwave rainfall estimates that exploit the emission signal of raindrops in the atmosphere are sensitive to the inhomogeneity of rainfall within the satellite field of view (FOV). In particular, the concave nature of the brightness temperature (T(sub b)) versus rainfall relations at frequencies capable of detecting the blackbody emission of raindrops cause retrieval algorithms to systematically underestimate precipitation unless the rainfall is homogeneous within a radiometer FOV, or the inhomogeneity is accounted for explicitly. This problem has a long history in the passive microwave community and has been termed the beam-filling error. While not a true error, correcting for it requires a priori knowledge about the actual distribution of the rainfall within the satellite FOV, or at least a statistical representation of this inhomogeneity. This study first examines the magnitude of this beam-filling correction when slant-path radiative transfer calculations are used to account for the oblique incidence of current radiometers. Because of the horizontal averaging that occurs away from the nadir direction, the beam-filling error is found to be only a fraction of what has been reported previously in the literature based upon plane-parallel calculations. For a FOV representative of the 19-GHz radiometer channel (18 km X 28 km) aboard the Tropical Rainfall Measuring Mission (TRMM), the mean beam-filling correction computed in this study for tropical atmospheres is 1.26 instead of 1.52 computed from plane-parallel techniques. The slant-path solution is also less sensitive to finescale rainfall inhomogeneity and is, thus, able to make use of 4-km radar data from the TRMM Precipitation Radar (PR) in order to map regional and seasonal distributions of observed rainfall inhomogeneity in the Tropics. The data are examined to assess the expected errors introduced into climate rainfall records by unresolved changes in rainfall inhomogeneity. Results show that global

  3. Detecting Climate Variability in Tropical Rainfall

    NASA Astrophysics Data System (ADS)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to

  4. Comparing Approaches to Deal With Non-Gaussianity of Rainfall Data in Kriging-Based Radar-Gauge Rainfall Merging

    NASA Astrophysics Data System (ADS)

    Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.

    2017-11-01

    Merging radar and rain gauge rainfall data is a technique used to improve the quality of spatial rainfall estimates and in particular the use of Kriging with External Drift (KED) is a very effective radar-rain gauge rainfall merging technique. However, kriging interpolations assume Gaussianity of the process. Rainfall has a strongly skewed, positive, probability distribution, characterized by a discontinuity due to intermittency. In KED rainfall residuals are used, implicitly calculated as the difference between rain gauge data and a linear function of the radar estimates. Rainfall residuals are non-Gaussian as well. The aim of this work is to evaluate the impact of applying KED to non-Gaussian rainfall residuals, and to assess the best techniques to improve Gaussianity. We compare Box-Cox transformations with λ parameters equal to 0.5, 0.25, and 0.1, Box-Cox with time-variant optimization of λ, normal score transformation, and a singularity analysis technique. The results suggest that Box-Cox with λ = 0.1 and the singularity analysis is not suitable for KED. Normal score transformation and Box-Cox with optimized λ, or λ = 0.25 produce satisfactory results in terms of Gaussianity of the residuals, probability distribution of the merged rainfall products, and rainfall estimate quality, when validated through cross-validation. However, it is observed that Box-Cox transformations are strongly dependent on the temporal and spatial variability of rainfall and on the units used for the rainfall intensity. Overall, applying transformations results in a quantitative improvement of the rainfall estimates only if the correct transformations for the specific data set are used.

  5. The issues of current rainfall estimation techniques in mountain natural multi-hazard investigation

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei; Chen, Ningsheng; Wang, Tao

    2017-04-01

    Mountain hazards (e.g., landslides, debris flows, and floods) induced by rainfall are complex phenomena that require good knowledge of rainfall representation at different spatiotemporal scales. This study reveals rainfall estimation from gauges is rather unrepresentative over a large spatial area in mountain regions. As a result, the conventional practice of adopting the triggering threshold for hazard early warning purposes is insufficient. The main reason is because of the huge orographic influence on rainfall distribution. Modern rainfall estimation methods such as numerical weather prediction modelling and remote sensing utilising radar from the space or on land are able to provide spatially more representative rainfall information in mountain areas. But unlike rain gauges, they only indirectly provide rainfall measurements. Remote sensing suffers from many sources of errors such as weather conditions, attenuation and sampling methods, while numerical weather prediction models suffer from spatiotemporal and amplitude errors depending on the model physics, dynamics, and model configuration. A case study based on Sichuan, China is used to illustrate the significant difference among the three aforementioned rainfall estimation methods. We argue none of those methods can be relied on individually, and the challenge is on how to make the full utilisation of the three methods conjunctively because each of them only provides partial information. We propose that a data fusion approach should be adopted based on the Bayesian inference method. However such an approach requires the uncertainty information from all those estimation techniques which still need extensive research. We hope this study will raise the awareness of this important issue and highlight the knowledge gap that should be filled in so that such a challenging problem could be tackled collectively by the community.

  6. South Polar Cap, Summer 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is the south polar cap of Mars as it appeared to the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on April 17, 2000. In winter and early spring, this entire scene would be covered by frost. In summer, the cap shrinks to its minimum size, as shown here. Even though it is summer, observations made by the Viking orbiters in the 1970s showed that the south polar cap remains cold enough that the polar frost (seen here as white) consists of carbon dioxide. Carbon dioxide freezes at temperatures around -125o C (-193o F). Mid-summer afternoon sunlight illuminates this scene from the upper left from about 11.2o above the horizon. Soon the cap will experience sunsets; by June 2000, this pole will be in autumn, and the area covered by frost will begin to grow. Winter will return to the south polar region in December 2000. The polar cap from left to right is about 420 km (260 mi) across.

  7. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy

    NASA Astrophysics Data System (ADS)

    Gariano, S. L.; Brunetti, M. T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F.

    2015-01-01

    Empirical rainfall thresholds are tools to forecast the possible occurrence of rainfall-induced shallow landslides. Accurate prediction of landslide occurrence requires reliable thresholds, which need to be properly validated before their use in operational warning systems. We exploited a catalogue of 200 rainfall conditions that have resulted in at least 223 shallow landslides in Sicily, southern Italy, in the 11-year period 2002-2011, to determine regional event duration-cumulated event rainfall (ED) thresholds for shallow landslide occurrence. We computed ED thresholds for different exceedance probability levels and determined the uncertainty associated to the thresholds using a consolidated bootstrap nonparametric technique. We further determined subregional thresholds, and we studied the role of lithology and seasonal periods in the initiation of shallow landslides in Sicily. Next, we validated the regional rainfall thresholds using 29 rainfall conditions that have resulted in 42 shallow landslides in Sicily in 2012. We based the validation on contingency tables, skill scores, and a receiver operating characteristic (ROC) analysis for thresholds at different exceedance probability levels, from 1% to 50%. Validation of rainfall thresholds is hampered by lack of information on landslide occurrence. Therefore, we considered the effects of variations in the contingencies and the skill scores caused by lack of information. Based on the results obtained, we propose a general methodology for the objective identification of a threshold that provides an optimal balance between maximization of correct predictions and minimization of incorrect predictions, including missed and false alarms. We expect that the methodology will increase the reliability of rainfall thresholds, fostering the operational use of validated rainfall thresholds in operational early warning system for regional shallow landslide forecasting.

  8. Rainfall prediction methodology with binary multilayer perceptron neural networks

    NASA Astrophysics Data System (ADS)

    Esteves, João Trevizoli; de Souza Rolim, Glauco; Ferraudo, Antonio Sergio

    2018-05-01

    Precipitation, in short periods of time, is a phenomenon associated with high levels of uncertainty and variability. Given its nature, traditional forecasting techniques are expensive and computationally demanding. This paper presents a soft computing technique to forecast the occurrence of rainfall in short ranges of time by artificial neural networks (ANNs) in accumulated periods from 3 to 7 days for each climatic season, mitigating the necessity of predicting its amount. With this premise it is intended to reduce the variance, rise the bias of data and lower the responsibility of the model acting as a filter for quantitative models by removing subsequent occurrences of zeros values of rainfall which leads to bias the and reduces its performance. The model were developed with time series from ten agriculturally relevant regions in Brazil, these places are the ones with the longest available weather time series and and more deficient in accurate climate predictions, it was available 60 years of daily mean air temperature and accumulated precipitation which were used to estimate the potential evapotranspiration and water balance; these were the variables used as inputs for the ANNs models. The mean accuracy of the model for all the accumulated periods were 78% on summer, 71% on winter 62% on spring and 56% on autumn, it was identified that the effect of continentality, the effect of altitude and the volume of normal precipitation, have an direct impact on the accuracy of the ANNs. The models have peak performance in well defined seasons, but looses its accuracy in transitional seasons and places under influence of macro-climatic and mesoclimatic effects, which indicates that this technique can be used to indicate the eminence of rainfall with some limitations.

  9. Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer

    NASA Astrophysics Data System (ADS)

    Jiang, Leishan; Li, Tim

    2017-11-01

    Why rainfall response to El Niño is uniform and stronger over the Maritime Continent (MC) during El Niño developing summer and fall but is weaker and non-uniform during El Niño mature winter is investigated through the diagnosis of anomalous large-scale circulation patterns and a local moisture budget analysis. It is found that when anomalous Walker cells across the equatorial Pacific and Indian Ocean are strengthened toward El Niño mature winter, a low-level ascending motion anomaly starts to develop over western MC in northern fall due to topographic lifting (near Sumatra) and anomalous wind convergence (near west Kalimantan). Easterly anomalies, as a part of an anomalous anticyclone in South China Sea (SCS) that is developed during El Niño and a part of the south-easterly from Java Sea associated with anomalous Walker Circulation, bump into the mountain ridge of Sumatra and induce ascending motion anomalies near Sumatra. Meanwhile, the anomalous north-easterly in the southern flank of the anomalous anticyclone over SCS and south-easterly over Java Sea converge into west Kalimantan, leading to ascending motion there. The anomalous ascending motion tend to advect mean moisture upward to moisten lower troposphere in situ. This low-level moistening eventually sets up a convectively unstable stratification and induces a positive precipitation anomaly in the western MC. How the mechanism discussed here is relevant to previous hypotheses and how processes during El Niño might differ during La Niña are discussed.

  10. Analysis of the influence of rainfall variables on urban effluents concentrations and fluxes in wet weather

    NASA Astrophysics Data System (ADS)

    Gooré Bi, Eustache; Monette, Frédéric; Gasperi, Johnny

    2015-04-01

    Urban rainfall runoff has been a topic of increasing importance over the past years, a result of both the increase in impervious land area arising from constant urban growth and the effects of climate change on urban drainage. The main goal of the present study is to assess and analyze the correlations between rainfall variables and common indicators of urban water quality, namely event mean concentrations (EMCs) and event fluxes (EFs), in order to identify and explain the impacts of each of the main rainfall variables on the generation process of urban pollutants during wet periods. To perform this analysis, runoff from eight summer rainfall events that resulted in combined sewer overflow (CSO) was sampled simultaneously from two distinct catchment areas in order to quantify discharges at the respective outfalls. Pearson statistical analysis of total suspended solids (TSS), chemical oxygen demand (COD), carbonaceous biochemical oxygen demand at 5 days (CBOD5), total phosphorus (Ptot) and total kedjal nitrogen (N-TKN) showed significant correlations (ρ = 0.05) between dry antecedent time (DAT) and EMCs on one hand, and between total rainfall (TR) and the volume discharged (VD) during EFs, on the other. These results show that individual rainfall variables strongly affect either EMCs or EFs and are good predictors to consider when selecting variables for statistical modeling of urban runoff quality. The results also show that in a combined sewer network, there is a linear relationship between TSS event fluxes and COD, CBOD5, Ptot, and N-TKN event fluxes; this explains 97% of the variability of these pollutants which adsorb onto TSS during wet weather, which therefore act as tracers. Consequently, the technological solution selected for TSS removal will also lead to a reduction of these pollutants. Given the huge volumes involved, urban runoffs contribute substantially to pollutant levels in receiving water bodies, a situation which, in a climate change context, may

  11. Record dry summer in 2015 challenges precipitation projections in Central Europe.

    PubMed

    Orth, René; Zscheischler, Jakob; Seneviratne, Sonia I

    2016-06-21

    Central Europe was characterized by a humid-temperate climate in the 20(th) century. Climate change projections suggest that climate in this area will shift towards warmer temperatures by the end of the 21(st) century, while projected precipitation changes are highly uncertain. Here we show that the 2015 summer rainfall was the lowest on record since 1901 in Central Europe, and that climate models that perform best in the three driest years of the historical time period 1901-2015 project stronger drying trends in the 21(st) century than models that perform best in the remaining years. Analyses of precipitation and derived soil moisture reveal that the 2015 event was drier than both the recent 2003 or 2010 extreme summers in Central Europe. Additionally there are large anomalies in satellite-derived vegetation greenness. In terms of precipitation and temperature anomalies, the 2015 summer in Central Europe is found to lie between historical climate in the region and that characteristic of the Mediterranean area. Even though the models best capturing past droughts are not necessarily generally more reliable in the future, the 2015 drought event illustrates that potential future drying trends have severe implications and could be stronger than commonly assumed from the entire IPCC AR5 model ensemble.

  12. Validation of Satellite-based Rainfall Estimates for Severe Storms (Hurricanes & Tornados)

    NASA Astrophysics Data System (ADS)

    Nourozi, N.; Mahani, S.; Khanbilvardi, R.

    2005-12-01

    Severe storms such as hurricanes and tornadoes cause devastating damages, almost every year, over a large section of the United States. More accurate forecasting intensity and track of a heavy storm can help to reduce if not to prevent its damages to lives, infrastructure, and economy. Estimating accurate high resolution quantitative precipitation (QPE) from a hurricane, required to improve the forecasting and warning capabilities, is still a challenging problem because of physical characteristics of the hurricane even when it is still over the ocean. Satellite imagery seems to be a valuable source of information for estimating and forecasting heavy precipitation and also flash floods, particularly for over the oceans where the traditional ground-based gauge and radar sources cannot provide any information. To improve the capability of a rainfall retrieval algorithm for estimating QPE of severe storms, its product is evaluated in this study. High (hourly 4km x 4km) resolutions satellite infrared-based rainfall products, from the NESDIS Hydro-Estimator (HE) and also PERSIANN (Precipitation Estimation from Remotely Sensed Information using an Artificial Neural Networks) algorithms, have been tested against NEXRAD stage-IV and rain gauge observations in this project. Three strong hurricanes: Charley (category 4), Jeanne (category 3), and Ivan (category 3) that caused devastating damages over Florida in the summer 2004, have been considered to be investigated. Preliminary results demonstrate that HE tends to underestimate rain rates when NEXRAD shows heavy storm (rain rates greater than 25 mm/hr) and to overestimate when NEXRAD gives low rainfall amounts, but PERSIANN tends to underestimate rain rates, in general.

  13. Spatial dependence of extreme rainfall

    NASA Astrophysics Data System (ADS)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  14. Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the Western USA

    USGS Publications Warehouse

    Moody, J.A.; Martin, D.A.

    2001-01-01

    Wildfire alters the hydrologic response of watersheds, including the peak discharges resulting from subsequent rainfall. Improving predictions of the magnitude of flooding that follows wildfire is needed because of the increase in human population at risk in the wildland-urban interface. Because this wildland-urban interface is typically in mountainous terrain, we investigated rainfall-runoff relations by measuring the maximum 30 min rainfall intensity and the unit-area peak discharge (peak discharge divided by the area burned) in three mountainous watersheds (17-26.8 km2) after a wildfire. We found rainfall-runoff relations that relate the unit-area peak discharges to the maximum 30 min rainfall intensities by a power law. These rainfall-runoff relations appear to have a threshold value for the maximum 30 min rainfall intensity (around 10 mm h-1) such that, above this threshold, the magnitude of the flood peaks increases more rapidly with increases in intensity. This rainfall intensity could be used to set threshold limits in rain gauges that are part of an early-warning flood system after wildfire. The maximum unit-area peak discharges from these three burned watersheds ranged from 3.2 to 50 m3 s-1 km-2. These values could provide initial estimates of the upper limits of runoff that can be used to predict floods after wildfires in mountainous terrain. Published in 2001 by John Wiley and Sons, Ltd.

  15. Landslide susceptibility and early warning model for shallow landslide in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Ming; Wei, Lun-Wei; Chi, Chun-Chi; Chang, Kan-Tsun; Lee, Chyi-Tyi

    2017-04-01

    This study aims to development a regional susceptibility model and warning threshold as well as the establishment of early warning system in order to prevent and reduce the losses caused by rainfall-induced shallow landslides in Taiwan. For the purpose of practical application, Taiwan is divided into nearly 185,000 slope units. The susceptibility and warning threshold of each slope unit were analyzed as basic information for disaster prevention. The geological characteristics, mechanism and the occurrence time of landslides were recorded for more than 900 cases through field investigation and interview of residents in order to discuss the relationship between landslides and rainfall. Logistic regression analysis was performed to evaluate the landslide susceptibility and an I3-R24 rainfall threshold model was proposed for the early warning of landslides. The validations of recent landslide cases show that the model was suitable for the warning of regional shallow landslide and most of the cases can be warned 3 to 6 hours in advanced. We also propose a slope unit area weighted method to establish local rainfall threshold on landslide for vulnerable villages in order to improve the practical application. Validations of the local rainfall threshold also show a good agreement to the occurrence time reported by newspapers. Finally, a web based "Rainfall-induced Landslide Early Warning System" is built and connected to real-time radar rainfall data so that landslide real-time warning can be achieved. Keywords: landslide, susceptibility analysis, rainfall threshold

  16. Rainfall erosivity in Europe.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  17. The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.

    PubMed

    Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian

    2018-01-21

    Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. South American Summer Monsoon of 1997/1998 and 1998/1999

    NASA Technical Reports Server (NTRS)

    Lau, William K.-M.; Zhou, Jiayu

    2000-01-01

    It is well known that during El Nino years severe drought occurs in the area of Amazon and northeastern Brazil. According to the linear model result the reduced latent heating over the Amazon may lead to a weaker than normal upper tropospheric Bolivian high. As a result, some studies have suggested a weaker South American summer monsoon (SASM) during El Nino years. Using re-analysis. Zhou and Lau data found a statistically significant positive correlation between the tropical eastern Pacific sea surface temperature (SST) and the strength of low-level jet (LLJ) along the eastern foothills of the tropical-subtropical Andes. Douglas also showed a strong LLJ at Santa Cruz, Bolivia during a special pilot balloon observation period in 1997/98 El Nino austral summer. Since this LLJ is an integral part of the monsoon system in the summertime, these results indicated that SASM could be stronger than normal in El Nino years. To clarify this issue, we conducted an investigation on SASM anomaly in the recent ENSO event of 1997/98 El Nino and 1998/99 La Nina In the following we first give a brief review on SASM and the interannual variability of summer rainfall over South America. Then, the impact of 1997-99 ENSO on the South American regional thermal structure and its dynamical consequences to SASM will be discussed.

  19. Analytical flow duration curves for summer streamflow in Switzerland

    NASA Astrophysics Data System (ADS)

    Santos, Ana Clara; Portela, Maria Manuela; Rinaldo, Andrea; Schaefli, Bettina

    2018-04-01

    This paper proposes a systematic assessment of the performance of an analytical modeling framework for streamflow probability distributions for a set of 25 Swiss catchments. These catchments show a wide range of hydroclimatic regimes, including namely snow-influenced streamflows. The model parameters are calculated from a spatially averaged gridded daily precipitation data set and from observed daily discharge time series, both in a forward estimation mode (direct parameter calculation from observed data) and in an inverse estimation mode (maximum likelihood estimation). The performance of the linear and the nonlinear model versions is assessed in terms of reproducing observed flow duration curves and their natural variability. Overall, the nonlinear model version outperforms the linear model for all regimes, but the linear model shows a notable performance increase with catchment elevation. More importantly, the obtained results demonstrate that the analytical model performs well for summer discharge for all analyzed streamflow regimes, ranging from rainfall-driven regimes with summer low flow to snow and glacier regimes with summer high flow. These results suggest that the model's encoding of discharge-generating events based on stochastic soil moisture dynamics is more flexible than previously thought. As shown in this paper, the presence of snowmelt or ice melt is accommodated by a relative increase in the discharge-generating frequency, a key parameter of the model. Explicit quantification of this frequency increase as a function of mean catchment meteorological conditions is left for future research.

  20. Estimating root-zone soil moisture in the West Africa Sahel using remotely sensed rainfall and vegetation

    NASA Astrophysics Data System (ADS)

    McNally, Amy L.

    Agricultural drought is characterized by shortages in precipitation, large differences between actual and potential evapotranspiration, and soil water deficits that impact crop growth and pasture productivity. Rainfall and other agrometeorological gauge networks in Sub-Saharan Africa are inadequate for drought early warning systems and hence, satellite-based estimates of rainfall and vegetation greenness provide the main sources of information. While a number of studies have described the empirical relationship between rainfall and vegetation greenness, these studies lack a process based approach that includes soil moisture storage. In Chapters I and II, I modeled soil moisture using satellite rainfall inputs and developed a new method for estimating soil moisture with NDVI calibrated to in situ and microwave soil moisture observations. By transforming both NDVI and rainfall into estimates of soil moisture I was able to easily compare these two datasets in a physically meaningful way. In Chapter II, I also show how the new NDVI derived soil moisture can be assimilated into a water balance model that calculates an index of crop water stress. Compared to the analogous rainfall derived estimates of soil moisture and crop stress the NDVI derived estimates were better correlated with millet yields. In Chapter III, I developed a metric for defining growing season drought events that negatively impact millet yields. This metric is based on the data and models used in the Chapters I and II. I then use this metric to evaluate the ability of a sophisticated land surface model to detect drought events. The analysis showed that this particular land surface model's soil moisture estimates do have the potential to benefit the food security and drought early warning communities. With a focus on soil moisture, this dissertation introduced new methods that utilized a variety of data and models for agricultural drought monitoring applications. These new methods facilitate a more

  1. The Age of Terrestrial Carbon Export and Rainfall Intensity in a Temperate River Headwater System

    NASA Astrophysics Data System (ADS)

    Tittel, J.; Büttner, O.; Freier, K.; Heiser, A.; Sudbrack, R.; Ollesch, G.

    2013-12-01

    Riverine dissolved organic carbon (DOC) supports the production of estuaries and coastal ecosystems, constituting one of the most actively recycled pools of the global carbon cycle. A substantial proportion of DOC entering oceans is highly aged, but its origins remain unclear. Significant fluxes of old DOC have never been observed in temperate headwaters where terrestrial imports take place. Here, we studied the radiocarbon age of DOC in three streams draining forested headwater catchments of the river Mulde (Ore Mountains, Germany). We found modern DOC at moderately dry and moderately wet conditions as well as at high discharges during snowmelt. Old groundwater carbon contributed to stream DOC during the summer drought, although the yield was negligible. However, in a four-week summer precipitation event DOC aged at between 160 and 270 years was delivered into the watershed. In one stream, the DOC was modern but depleted in radiocarbon compared to other hydrological conditions. The yield was substantial and corresponded to 20 to 52% of the annual DOC yields in wet and dry years, respectively. Time-integrating samples of a downstream reservoir also revealed modern DOC ages under moderate conditions and old DOC from the rainfall event. Earlier studies suggested that increasing precipitation escalates the contribution of modern DOC from topsoil layers to surface runoff. Our results demonstrate a step change occurring if rainfall intensities increase and become extreme; then the consequences lead to the mobilization of old carbon in exceptionally high concentrations. The runoff/precipitation ratios of rainfall events indicated that during extreme events upland areas of the catchments were hydrologically connected to the stream and upland DOC was activated. Furthermore, the analysis of long-term data suggested that the DOC export in extreme precipitation events added to the annual yield and was not compensated for by lower exports in remaining periods. We conclude that

  2. Rainfall-Runoff Parameters Uncertainity

    NASA Astrophysics Data System (ADS)

    Heidari, A.; Saghafian, B.; Maknoon, R.

    2003-04-01

    Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.

  3. Meteorological factors affecting scrub typhus occurrence: a retrospective study of Yamagata Prefecture, Japan, 1984-2014.

    PubMed

    Seto, J; Suzuki, Y; Nakao, R; Otani, K; Yahagi, K; Mizuta, K

    2017-02-01

    Climate change, by its influence on the ecology of vectors might affect the occurrence of vector-borne diseases. This study examines the effects of meteorological factors in Japan on the occurrence of scrub typhus, a mite-borne zoonosis caused by Orientia tsutsugamushi. Using negative binomial regression, we analysed the relationships between meteorological factors (including temperature, rainfall, snowfall) and spring-early summer cases of scrub typhus in Yamagata Prefecture, Japan, during 1984-2014. The average temperature in July and August of the previous year, cumulative rainfall in September of the previous year, snowfall throughout the winter, and maximum depth of snow cover in January and February were positively correlated with the number of scrub typhus cases. By contrast, cumulative rainfall in July of the previous year showed a negative relationship to the number of cases. These associations can be explained by the life-cycle of Leptotrombidium pallidum, a predominant vector of spring-early summer cases of scrub typhus in northern Japan. Our findings show that several meteorological factors are useful to estimate the number of scrub typhus cases before the endemic period. They are applicable to establish an early warning system for scrub typhus in northern Japan.

  4. Progress Towards Achieving the Challenge of Indian Summer Monsoon Climate Simulation in a Coupled Ocean-Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.

    2017-10-01

    Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.

  5. Evaluation of NCMRWF unified model vertical cloud structure with CloudSat over the Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.

    2016-05-01

    Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.

  6. Exploring the utility of real-time hydrologic data for landslide early warning

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Smith, J. B.; Becker, R.; Baum, R. L.; Koss, E.

    2017-12-01

    Early warning systems can provide critical information for operations managers, emergency planners, and the public to help reduce fatalities, injuries, and economic losses due to landsliding. For shallow, rainfall-triggered landslides early warning systems typically use empirical rainfall thresholds, whereas the actual triggering mechanism involves the non-linear hydrological processes of infiltration, evapotranspiration, and hillslope drainage that are more difficult to quantify. Because hydrologic monitoring has demonstrated that shallow landslides are often preceded by a rise in soil moisture and pore-water pressures, some researchers have developed early warning criteria that attempt to account for these antecedent wetness conditions through relatively simplistic storage metrics or soil-water balance modeling. Here we explore the potential for directly incorporating antecedent wetness into landslide early warning criteria using recent landslide inventories and in-situ hydrologic monitoring near Seattle, WA, and Portland, OR. We use continuous, near-real-time telemetered soil moisture and pore-water pressure data measured within a few landslide-prone hillslopes in combination with measured and forecasted rainfall totals to inform easy-to-interpret landslide initiation thresholds. Objective evaluation using somewhat limited landslide inventories suggests that our new thresholds based on subsurface hydrologic monitoring and rainfall data compare favorably to the capabilities of existing rainfall-only thresholds for the Seattle area, whereas there are no established rainfall thresholds for the Portland area. This preliminary investigation provides a proof-of-concept for the utility of developing landslide early warning criteria in two different geologic settings using real-time subsurface hydrologic measurements from in-situ instrumentation.

  7. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea)

    PubMed Central

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V.

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  8. Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model

    NASA Astrophysics Data System (ADS)

    Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.

    2017-12-01

    This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.

  9. Increase of Coastal Cliff Rockfall Trigerred By Rainfall On The Chalk Coast of NW France During The Year 2001

    NASA Astrophysics Data System (ADS)

    Duperret, A.; Genter, A.; Daigneault, M.; Mortimore, R. N.

    Coastal chalk cliffs exposed on each part of the English Channel suffer numerous collapses, with mean volumes varying between 10 000 and 100 000 cubic meters. Between October 1998 and October 2001, a minimum of 52 collapses have been ob- served along 120 km of the French chalk coastline located in Upper-Normandy and Picardy. The chalk coastline has evidenced 4 collapses in 1999 and 6 collapses in 2000 (winter and spring), whereas 28 collapses with volume greater than 1000 m3 was recorded in 2001 (winter, spring and summer). The increase of large-scale collapses during 2001 is interpreted as an excess of rainfalls recorded previously. Most of these collapses extend all over the vertical cliff height and are mainly controlled by ground- water infiltration. The modality of water circulation through the chalk rock depends on the chalk lithology and the hydrogeological properties of pre-existing fractures. In the framework of the European scientific project named ROCC (Risk of Cliff Col- lapse), the chalk lithology and the pre-existing fracture pattern have been investigated in order to determine the response of the rock mass to subaerial and marine solicita- tions, including rainfall conditions. Such data have been reported in a GIS system in order to determine the degree of cliff sensibility to collapses. Some rainfall-triggered collapses will be presented to illustrate the diversity of the rock mass response to rain- fall excess, in terms of rock mass characteristics and time delay: (1) a collapse was witnessed at Puys, the 17th May 2000, after two periods of intense rainfall inducing floods, during the two previous months. The occurrence of impervious marl seams levels within the chalk and its low fracture content may have generated water over- pressure and consequently stress concentration on the marl seams, which conduct to the rupture. The delay between rainfall and the rupture may be explained by the low velocity of groundwater through a poorly fractured porous

  10. Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.

    2017-12-01

    The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western

  11. A northern Australian coral record of seasonal rainfall and terrestrial runoff (1775-1986)

    NASA Astrophysics Data System (ADS)

    Patterson, E. W.; Cole, J. E.; Vetter, L.; Lough, J.

    2017-12-01

    Northern Australia is a climatically dynamic region influenced by both the El Niño-Southern Oscillation (ENSO) and the Australian monsoon. However, this region is largely devoid of long climate records with sub-annual resolution. Understanding long-term climate variations is essential to assess how the storm-prone coasts and rainfall-reliant rangelands of northern Australia have been impacted in the past and may be in the future. In this study, we present a continuous multicentury (1775-1986) coral reconstruction of rainfall and hydroclimate in northern Australia, developed from a Porites spp. coral core collected off the coast of Darwin, Northern Territory, Australia. We combined Ba/Ca measurements with luminescence data as tracers of terrestrial erosion and river discharge respectively. Our results show a strong seasonal cycle in Ba/Ca linked to wet austral summers driven by the Australian monsoon. The Ba/Ca record is corroborated by oxygen isotope data from the same coral and indices of regional river discharge and rainfall. Consistently high levels of Ba measured throughout the record further attest to the importance of river influence on this coral. Our record also shows changes in variability and the baseline level of Ba in coastal waters through time, which may be driven in part by historical land-use change, such as damming or agricultural practices. We will additionally use these records to examine decadal to centennial-scale variability in monsoonal precipitation and regional ENSO signals.

  12. Synthetic generation of spatially high resolution extreme rainfall in Japan using Monte Carlo simulation with AMeDAS analyzed rainfall data sets

    NASA Astrophysics Data System (ADS)

    Haruki, W.; Iseri, Y.; Takegawa, S.; Sasaki, O.; Yoshikawa, S.; Kanae, S.

    2016-12-01

    Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River

  13. Hydrology of a zero-order Southern Piedmont watershed through 45 years of changing agricultural land use. Part 1. Monthly and seasonal rainfall-runoff relationships

    NASA Astrophysics Data System (ADS)

    Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.

    2006-01-01

    Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.

  14. Multiscale characterization and prediction of monsoon rainfall in India using Hilbert-Huang transform and time-dependent intrinsic correlation analysis

    NASA Astrophysics Data System (ADS)

    Adarsh, S.; Reddy, M. Janga

    2017-07-01

    In this paper, the Hilbert-Huang transform (HHT) approach is used for the multiscale characterization of All India Summer Monsoon Rainfall (AISMR) time series and monsoon rainfall time series from five homogeneous regions in India. The study employs the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for multiscale decomposition of monsoon rainfall in India and uses the Normalized Hilbert Transform and Direct Quadrature (NHT-DQ) scheme for the time-frequency characterization. The cross-correlation analysis between orthogonal modes of All India monthly monsoon rainfall time series and that of five climate indices such as Quasi Biennial Oscillation (QBO), El Niño Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multi Decadal Oscillation (AMO), and Equatorial Indian Ocean Oscillation (EQUINOO) in the time domain showed that the links of different climate indices with monsoon rainfall are expressed well only for few low-frequency modes and for the trend component. Furthermore, this paper investigated the hydro-climatic teleconnection of ISMR in multiple time scales using the HHT-based running correlation analysis technique called time-dependent intrinsic correlation (TDIC). The results showed that both the strength and nature of association between different climate indices and ISMR vary with time scale. Stemming from this finding, a methodology employing Multivariate extension of EMD and Stepwise Linear Regression (MEMD-SLR) is proposed for prediction of monsoon rainfall in India. The proposed MEMD-SLR method clearly exhibited superior performance over the IMD operational forecast, M5 Model Tree (MT), and multiple linear regression methods in ISMR predictions and displayed excellent predictive skill during 1989-2012 including the four extreme events that have occurred during this period.

  15. South Asian summer monsoon breaks: Process-based diagnostics in HIRHAM5

    NASA Astrophysics Data System (ADS)

    Hanf, Franziska S.; Annamalai, H.; Rinke, Annette; Dethloff, Klaus

    2017-05-01

    This study assesses the ability of a high-resolution downscaling simulation with the regional climate model (RCM) HIRHAM5 in capturing the monsoon basic state and boreal summer intraseasonal variability (BSISV) over South Asia with focus on moist and radiative processes during 1979-2012. A process-based vertically integrated moist static energy (MSE) budget is performed to understand the model's fidelity in representing leading processes that govern the monsoon breaks over continental India. In the climatology (June-September) HIRHAM5 simulates a dry bias over central India in association with descent throughout the free troposphere. Sources of dry bias are interpreted as (i) near-equatorial Rossby wave response forced by excess rainfall over the southern Bay of Bengal promotes anomalous descent to its northwest and (ii) excessive rainfall over near-equatorial Arabian Sea and Bay of Bengal anchor a "local Hadley-type" circulation with descent anomalies over continental India. Compared with observations HIRHAM5 captures the leading processes that account for breaks, although with generally reduced amplitudes over central India. In the model too, anomalous dry advection and net radiative cooling are responsible for the initiation and maintenance of breaks, respectively. However, weaker contributions of all adiabatic MSE budget terms, and an inconsistent relationship between negative rainfall anomalies and radiative cooling reveals shortcomings in HIRHAM5's moisture-radiation interaction. Our study directly implies that process-based budget diagnostics are necessary, apart from just checking the northward propagation feature to examine RCM's fidelity to simulate BSISV.

  16. Influences of spring-to-summer sea surface temperatures over different Indian Ocean domains on the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Li, Zhenning; Yang, Song

    2017-11-01

    The influences of spring-to-summer sea surface temperature (SST) anomalies in different domains of the Indian Ocean (IO) on the Asian summer monsoon are investigated by conducting a series of numerical experiments using the NCAR CAM4 model. It is found that, to a certain extent, the springtime IO SST anomalies can persist to the summer season. The spring-to-summer IO SST anomalies associated with the IO basin warming mode are strongly linked to the summer climate over Asia, especially the South Asian monsoon (SAM) and the East Asian monsoon. Among this connection, the warming of tropical IO plays the most critical role, and the warming of southern IO is important for monsoon variation and prediction prior to the full development of the monsoon. The atmospheric response to IO basin wide warming is similar with that to tropical IO warming. The influence of northern IO warming on the SAM, however, is opposite to the effect of southern IO warming. Meanwhile, the discrepancies between the results from idealized SST forcing simulations and observations, especially for the southern IO, reveal that the dominant role of air-sea interaction in the monsoon-IO coupled system cannot be ignored. Moreover, the springtime northern IO warming seems to favor an early onset or a stronger persistence of the SAM.

  17. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records

    NASA Astrophysics Data System (ADS)

    Hu, Chaoyong; Henderson, Gideon M.; Huang, Junhua; Xie, Shucheng; Sun, Ying; Johnson, Kathleen R.

    2008-02-01

    A reconstruction of Holocene rainfall is presented for southwest China — an area prone to drought and flooding due to variability in the East Asian monsoon. The reconstruction is derived by comparing a new high-resolution stalagmite δ18O record with an existing record from the same moisture transport pathway. The new record is from Heshang Cave (30°27'N, 110°25'E; 294 m) and shows no sign of kinetic or evaporative effects so can be reliably interpreted as a record of local rainfall composition and temperature. Heshang lies 600 km downwind from Dongge Cave which has a published high-resolution δ18O record (Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854-857). By differencing co-eval δ18O values for the two caves, secondary controls on δ18O (e.g. moisture source, moisture transport, non-local rainfall, temperature) are circumvented and the resulting Δ δ18O signal is controlled directly by the amount of rain falling between the two sites. This is confirmed by comparison with rainfall data from the instrumental record, which also allows a calibration of the Δ δ18O proxy. The calibrated Δ δ18O record provides a quantitative history of rainfall in southwest China which demonstrates that rainfall was 8% higher than today during the Holocene climatic optimum (≈ 6 ka), but only 3% higher during the early Holocene. Significant multi-centennial variability also occurred, with notable dry periods at 8.2 ka, 4.8-4.1 ka, 3.7-3.1 ka, 1.4-1.0 ka and during the Little Ice Age. This Holocene rainfall record provides a good target with which to test climate models. The approach used here, of combining stalagmite records from more than one location, will also allow quantification of rainfall patterns for past times in other regions.

  18. The physics of rainclouds, what is behind rainfall trends?

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang; Hacker, Jorg

    2017-04-01

    experiments in search for physical reasons for a regional scale rainfall decline observed along the Australian coastline. Here the historical database including an airborne survey in the early 70's allows to reconstruct a 'laboratory' notebook an aerosol trends. This makes the area a perfect 'natural laboratory' for such studies on the physical background for climate change trends and to disentangle different climate / hydrological cycle relevant physical processes.

  19. Convective and nonconvective rainfall partitioning over a mixed Sudanian Savanna Agriculture Catchment: Use of a distributed sensor network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Repetti, A.; Yacouba, H.; Tyler, S. W.; Parlange, M. B.

    2011-12-01

    A hydro-meteorological field campaign (joint EPFL-2iE) in a mixed agricultural and forest region in the southern Burkina Faso Savanna aims to identify and understand convective rainfall processes and the link to soil moisture. A simple slab Mixed Layer and Lifting Condensation Level model is implemented to separate convective and nonconvective rainfall. Data for this research were acquired during the 2010 rainy season using an array of wireless weather stations (SensorScope) as well as surface energy balance stations that based upon eddy correlation heat flux measurements. The precipitation was found to be variable over the basin with some 200 mm of difference in total seasonal rainfall between agricultural fields and savanna forest. Convective rainfall represents more than 30% of the total rainfall. The convective rainfall events are short (less than hour), intense (greater than 3 mm/minute) and occur both in the early morning and in the afternoons. These events can have an important impact on soil erosion, which we discuss in more detail along with seasonal stream-aquifer interactions.

  20. Comparison of aerosol effects on simulated spring and summer hailstorm clouds

    NASA Astrophysics Data System (ADS)

    Yang, Huiling; Xiao, Hui; Guo, Chunwei; Wen, Guang; Tang, Qi; Sun, Yue

    2017-07-01

    Numerical simulations are carried out to investigate the effect of cloud condensation nuclei (CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are simulated, a spring case and a summer case, in a semiarid region of northern China, with the Regional Atmospheric Modeling System. The results are used to investigate the differences and similarities of the CCN effects between spring and summer hailstorms. The similarities are: (1) The total hydrometeor mixing ratio decreases, while the total ice-phase mixing ratio enhances, with increasing CCN concentration; (2) Enhancement of the CCN concentration results in the production of a greater amount of small-sized hydrometeor particles, but a lessening of large-sized hydrometeor particles; (3) As the CCN concentration increases, the supercooled cloud water and rainwater make a lesser contribution to hail, while the ice-phase hydrometeors take on active roles in the growth of hail; (4) When the CCN concentration increases, the amount of total precipitation lessens, while the role played by liquid-phase rainfall in the amount of total precipitation reduces, relatively, compared to that of ice-phase precipitation. The differences between the two storms include: (1) An increase in the CCN concentration tends to reduce pristine ice mixing ratios in the spring case but enhance them in the summer case; (2) Ice-phase hydrometeor particles contribute more to hail growth in the spring case, while liquid water contributes more in the summer case; (3) An increase in the CCN concentration has different effects on surface hail precipitation in different seasons.