Sample records for early summer water

  1. The use of early summer mosquito surveillance to predict late summer West Nile virus activity

    USGS Publications Warehouse

    Ginsberg, Howard S.; Rochlin, Ilia; Campbell, Scott R.

    2010-01-01

    Utility of early-season mosquito surveillance to predict West Nile virus activity in late summer was assessed in Suffolk County, NY. Dry ice-baited CDC miniature light traps paired with gravid traps were set weekly. Maximum-likelihood estimates of WNV positivity, minimum infection rates, and % positive pools were generally well correlated. However, positivity in gravid traps was not correlated with positivity in CDC light traps. The best early-season predictors of WNV activity in late summer (estimated using maximum-likelihood estimates of Culex positivity in August and September) were early date of first positive pool, low numbers of mosquitoes in July, and low numbers of mosquito species in July. These results suggest that early-season entomological samples can be used to predict WNV activity later in the summer, when most human cases are acquired. Additional research is needed to establish which surveillance variables are most predictive and to characterize the reliability of the predictions.

  2. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.

    2017-12-01

    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period

  3. Wetting and greening Tibetan Plateau in early summer since the late 1970s due to advanced Asian summer monsoon onset

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Zhou, Tianjun; Zhang, Lixia

    2016-04-01

    Known as the "the world water tower", the Tibetan Plateau (TP) is the origin of the ten largest rivers in Asia, breeding more than 1.4 billion people, and exerts substantial influences on water resources, agriculture, and ecosystems in downstream countries. This region is one of the most susceptible areas around the world to changing climate due to the high elevation. Observed evidence have shown significant climate changes over the TP, including surface air warming and moistening, glaciers shrinking, winds stilling, solar dimming, and atmospheric heat source weakening. However, as an essential part of the hydrological cycle, precipitation changes on the TP remain an ambiguous picture. Changes in precipitation vary largely with different seasons, time periods and climate zones considered. This study shows a robust increase in precipitation amount over the TP in May, when the rainy season starts, over the period 1979-2014 (31% relative to the climatology). The wetting trend is spatially consistent over the south-eastern TP, to which both precipitation frequency and intensity contribute. Circulation trends show that the wetting TP in May is resulted from the advanced onset of Asian summer monsoon, which onsets 1~2 pentads earlier since 1979. It intensified water vapor transport from the Bay of Bengal (BOB) to south of the TP in May and local anomalous convection. This relationship is further validated by the significant correlation coefficient (0.47) between the onset dates of Asian summer monsoon (particularly the BOB summer monsoon, 0.68) and precipitation over the south-eastern TP in May. The wetting TP in May has further exerted profound impacts on the hydrological cycle and ecosystem, such as moistening the soil and animating vegetation activities throughout early summer. Both decadal variations of soil moisture (from May to June) and Normalized Difference Vegetation Index (NDVI) (from May to July) coincide well with that of precipitation over the south

  4. Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; He, Shengping; Wang, Huijun; Hao, Xin

    2017-04-01

    The relationship between the tropical Indian Ocean (TIO) and East Asian summer monsoon/precipitation has been documented in many studies. However, the precursor signals of summer precipitation in the TIO sea surface temperature (SST), which is important for climate prediction, have drawn little attention. This study identified a strong relationship between early-spring TIO SST and subsequent early-summer precipitation in Northeast China (NEC) since the late 1980s. For 1961-1986, the correlations between early-spring TIO SST and early-summer NEC precipitation were statistically insignificant; for 1989-2014, they were positively significant. Since the late 1980s, the early-spring positive TIO SST anomaly was generally followed by a significant anomalous anticyclone over Japan; that facilitated anomalous southerly winds over NEC, conveying more moisture from the North Pacific. Further analysis indicated that an early TIO SST anomaly showed robust persistence into early summer. However, the early-summer TIO SST anomaly displayed a more significant influence on simultaneous atmospheric circulation and further affected NEC precipitation since the late 1980s. In 1989-2014, the early-summer Hadley and Ferrell cell anomalies associated with simultaneous TIO SST anomaly were much more significant and extended further north to mid-latitudes, which provided a dynamic foundation for the TIO-mid-latitude connection. Correspondingly, the TIO SST anomaly could lead to significant divergence anomalies over the Mediterranean. The advections of vorticity by the divergent component of the flow effectively acted as a Rossby wave source. Thus, an apparent Rossby wave originated from the Mediterranean and propagated east to East Asia; that further influenced the NEC precipitation through modulation to the atmospheric circulation (e.g., surface wind, moisture, vertical motion).

  5. The conservative behavior of dissolved organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean, during early summer

    PubMed Central

    Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei

    2016-01-01

    The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444

  6. Online monitoring of water-soluble ionic composition of PM10 during early summer over Lanzhou City.

    PubMed

    Fan, Jin; Yue, Xiaoying; Jing, Yi; Chen, Qiang; Wang, Shigong

    2014-02-01

    Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 microg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.

  7. Early summer southern China rainfall variability and its oceanic drivers

    NASA Astrophysics Data System (ADS)

    Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li

    2018-06-01

    Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.

  8. Early American sunspot drawings from the "year without a summer"

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; McVaugh, M. R.

    2017-07-01

    A set of sunspot drawings from the early nineteenth century were discovered in the journals of the Reverend Jonathan Fisher. These drawings were made during a time when abnormally cold weather caused crops in New England to fail due to intermittent frost throughout the summer months of 1816, normally referred to as the "year without a summer." Global changes in weather patterns were the result of the Mount Tambora volcano eruption. Since this association was unknown at the time, there was speculation that the Sun was the cause inspiring the Reverend Fisher to monitor changes in sunspots during the summer of 1816 and continuing into 1817. These sunspot drawings for the summer of 1816 overlap the solar observations of Sir William Hershel.

  9. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea)

    PubMed Central

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V.

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  10. Summer water use by California coastal prairie grasses: fog, drought, and community composition.

    PubMed

    Corbin, Jeffrey D; Thomsen, Meredith A; Dawson, Todd E; D'Antonio, Carla M

    2005-10-01

    Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species' distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the deltaH versus deltaO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28-66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.

  11. Contrasting Secondary Organic Aerosol Formation in Aerosol Liquid Water During Summer and Winter

    NASA Astrophysics Data System (ADS)

    El-Sayed, M.; Hennigan, C. J.

    2017-12-01

    In this study, we characterize the formation of aqueous secondary organic aerosols (aqSOA) in the eastern United States during summer and winter. The aim was to identify the main factors affecting the reversible and irreversible uptake of water-soluble organic gases to aerosol liquid water under variable influence from biogenic and anthropogenic sources. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was measured in Baltimore, MD using a recently developed on-line method. The formation of aqSOA was observed during the summer and the winter; however, the amount of aqSOA varied significantly between the two seasons, as did the reversible and irreversible nature of the uptake. While the availability of aerosol liquid water (ALW) predominantly controlled aqSOA formation in the summer, wintertime aqSOA formation was limited by precursor VOCs as well. During the summer, aqSOA formation was tightly linked with isoprene oxidation, while the aqSOA formed in the winter was associated with biomass burning. Irreversible aqSOA was formed in both seasons; however, reversible aqSOA was only observed in the summer. Overall, these results demonstrate the importance of multi-phase chemistry in aerosol formation and underscore the significance of soluble organic gases partitioning to aerosol water both reversibly and irreversibly.

  12. Ocean acidification effects in the early life-stages of summer flounder, Paralichthys dentatus

    NASA Astrophysics Data System (ADS)

    Chambers, R. C.; Candelmo, A. C.; Habeck, E. A.; Poach, M. E.; Wieczorek, D.; Cooper, K. R.; Greenfield, C. E.; Phelan, B. A.

    2013-08-01

    The limited available evidence about effects of high CO2 and acidification of our oceans on fish suggests that effects will differ across fish species, be subtle, and interact with other stressors. An experimental framework was implemented that includes the use of (1) multiple marine fish species of relevance to the northeastern USA that differ in their ecologies including spawning season and habitat; (2) a wide yet realistic range of environmental conditions (i.e., concurrent manipulation of CO2 levels and water temperatures), and (3) a diverse set of response variables related to fish sensitivity to elevated CO2 levels, water temperatures, and their interactions. This report is on an array of early life-history responses of summer flounder (Paralichthys dentatus), an ecologically and economically important flatfish of this region, to a wide range of pH and CO2 levels. Survival of summer flounder embryos was reduced by 50% below local ambient conditions (7.8 pH, 775 ppm pCO2) when maintained at the intermediate conditions (7.4 pH, 1860 ppm pCO2), and by 75% below local ambient when maintained at the most acidic conditions tested (7.1 pH, 4715 ppm pCO2). This pattern of reduced survival of embryos at higher CO2 levels was consistent among three females used as sources of embryos. Sizes and shapes of larvae were altered by elevated CO2 levels with longer larvae in more acidic waters. This pattern of longer larvae was evident at hatching (although longer hatchlings had less energy reserves) to midway through the larval period. Larvae from the most acidic conditions initiated metamorphosis at earlier ages and smaller sizes than those from more moderate and ambient conditions. Tissue damage was evident in older larvae (age 14 to 28 d post-hatching) from both elevated CO2 levels. Damage included liver sinusoid dilation, focal hyperplasia on the epithelium, separation of the trunk muscle bundles, and dilation of the liver sinusoids and central veins. Cranial

  13. Wetting and greening Tibetan Plateau in early summer in recent decades

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Zhou, Tianjun; Zhang, Lixia

    2017-06-01

    The Tibetan Plateau (TP) plays an essential role in the global hydrological cycle. Unlike the well-recognized surface warming, changes in precipitation over the TP and the underlying mechanisms remain ambiguous. A significant increase in the amount of precipitation over the southeastern TP in May over 1979-2014 (13.46% decade-1 of the climatology) is identified in this study, based on homogenized daily rain gauge data. Both the increased precipitation frequency and intensity have contributions. The coherent increases in soil moisture content and vegetation activities further confirm the precipitation trend, indicating a wetting and greening TP in the early summer in recent decades. The moisture budget analysis shows that this wetting trend in the past four decades is dominated by the increased water vapor convergence due to circulation changes, while increases in specific humidity play a minor role. The wetting trend over the TP in May results directly from the earlier onset of the South Asian summer monsoon (ASM) since the late 1970s associated with the phase transition of Interdecadal Pacific Oscillation around the late 1990s. The earlier onset of the ASM triggers low-level southwesterly anomalies over the northern Indian Ocean, promoting moisture convergence and increased precipitation over the TP in May. Specifically, the increased amount of precipitation after the onset of the ASM explains 95% of the increase in the total amount of precipitation in May.

  14. Seasonal patterns of growth, dehydrins and water-soluble carbohydrates in genotypes of Dactylis glomerata varying in summer dormancy.

    PubMed

    Volaire, F; Norton, M R; Norton, G M; Lelièvre, F

    2005-05-01

    Summer dormancy in perennial grasses has been studied inadequately, despite its potential to enhance plant survival and persistence in Mediterranean areas. The aim of the present work was to characterize summer dormancy and dehydration tolerance in two cultivars of Dactylis glomerata (dormant 'Kasbah', non-dormant 'Oasis') and their hybrid using physiological indicators associated with these traits. Dehydration tolerance was assessed in a glasshouse experiment, while seasonal metabolic changes which produce putative protectants for drought, such as carbohydrates and dehydrins that might be associated with summer dormancy, were analysed in the field. The genotypes differed in their ability to survive increasing soil water deficit: lethal soil water potential (Psi(s)) was -3.4 MPa for 'Kasbah' (although non-dormant), -1.3 MPa for 'Oasis', and -1.6 MPa for their hybrid. In contrast, lethal water content of apices was similar for all genotypes (approx. 0.45 g H(2)O g d. wt(-1)), and hence the greater survival of 'Kasbah' can be ascribed to better drought avoidance rather than dehydration tolerance. In autumn-sown plants, 'Kasbah' had greatest dormancy, the hybrid was intermediate and 'Oasis' had none. The more dormant the genotype, the lower the metabolic activity during summer, and the earlier the activity declined in spring. Decreased monosaccharide content was an early indicator of dormancy induction. Accumulation of dehydrins did not correlate with stress tolerance, but dehydrin content was a function of the water status of the tissues, irrespective of the soil moisture. A protein of approx. 55 kDa occurred in leaf bases of the most dormant cultivar even in winter. Drought avoidance and summer dormancy are correlated but can be independently expressed. These traits are heritable, allowing selection in breeding programmes.

  15. Impacts of Early Summer Eurasian Snow Cover Change on Atmospheric Circulation in Northern Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Nozawa, T.

    2016-12-01

    Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.

  16. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe

    PubMed Central

    Väliranta, M.; Salonen, J. S.; Heikkilä, M.; Amon, L.; Helmens, K.; Klimaschewski, A.; Kuhry, P.; Kultti, S.; Poska, A.; Shala, S.; Veski, S.; Birks, H. H.

    2015-01-01

    Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 °C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. PMID:25858780

  17. Rearing sunshine bass using diets formulated for summer water temperatures

    USDA-ARS?s Scientific Manuscript database

    Elevated water temperatures are common in hybrid striped bass or Sunshine bass (HSB; Morone chrysops x M. saxatilis) production ponds during summer months in the southern US. Median daily water temperatures often exceed 30 C from June through September. This experiment was conducted to extend and re...

  18. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary

  19. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  20. On the relationship between the early spring Indian Ocean's sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer

    NASA Astrophysics Data System (ADS)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Li, Yu; Jiang, Tingchen; San Liang, X.

    2018-05-01

    In this study, we evaluated the effects of springtime Indian Ocean's sea surface temperature (SST) on the Tibetan Plateau's role as atmospheric heat source (AHS) in summer. The SST data of the National Oceanic and Atmospheric Administration (NOAA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) and the reanalysis data of the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) for 33 years (from 1979 to 2011) were used to analyze the relationship between the Indian Ocean SST and the Tibetan Plateau's AHS in summer, using the approaches that include correlation analysis, and lead-lag analysis. Our results show that some certain strong oceanic SSTs affect the summer plateau heat, specially finding that the early spring SSTs of the Indian Ocean significantly affect the plateau's ability to serve as a heat source in summer. Moreover, the anomalous atmospheric circulation and transport of water vapor are related to the Plateau heat variation.

  1. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Danielson, Seth L.; Eisner, Lisa; Ladd, Carol; Mordy, Calvin; Sousa, Leandra; Weingartner, Thomas J.

    2017-01-01

    Survey data from the northern Bering and Chukchi sea continental shelves in August-September 2012 and 2013 reveal inter-annual differences in the spatial structure of water masses along with statistically significant differences in thermohaline properties, chemical properties, and phytoplankton communities. We provide a set of water mass definitions applicable to the northern Bering and Chukchi continental shelves, and we find that the near-bottom Bering-Chukchi Summer Water (BCSW) was more saline in 2012 and Alaskan Coastal Water (ACW) was warmer in 2013. Both of these water masses carried higher nutrient concentrations in 2012, supporting a larger chlorophyll a biomass that was comprised primarily of small (<10 μm) size class phytoplankton, so the classical relation between higher nutrient loads and larger phytoplankton does not hold for this region in late summer. The distributions of phytoplankton biomass and size structure reveal linkages between the wind fields, seafloor topography, water mass distributions and the pelagic production. The water mass structure, including the strength and location of stratification and fronts, respectively, differed primarily because of the August regional wind field, which was more energetic in 2012 but was more persistent in direction in 2013. High concentrations of ice in winter and early spring in 2012 and 2013 resembled conditions of the 1980s and early 1990s but the regional ice retreat rate has accelerated in the late 1990s and 2000s so the summer and fall ice concentrations more closely resembled those of the last two decades. Our data show that wind forcing can shut down the Alaskan Coastal Current in the NE Chukchi Sea for periods of weeks to months during the ice-covered winter and during the summer when buoyancy forcing is at its annual maximum. We hypothesize that a decrease in salinity and nutrients from 2012 to 2013 was a consequence of a decreased net Bering Strait transport from 2011 to 2012. Biological

  2. Thermal infrared and visual observations of a water ice lag in the Mars southern summer

    USGS Publications Warehouse

    Titus, T.N.

    2005-01-01

    We present thermal infrared and visual evidence for the existence of water ice lags in the early southern summer. The observed H2O-ice lags lay in and near a chasma and appears to survive between 6-8 sols past the sublimation of the CO2. Possible sources of the H2O that compose the lag are (1) atmospheric H2O that is incorporated into the seasonal cap during condensation, (2) cold trapping of atmospheric water vapor onto the surface of the cap in the spring, or (3) a combination of the 2 processes where water is released from the sublimating cap only to be transported back over the cap edge and cold trapped. We refer to this later process as the "Houben" effect which may enrich the amount of water contained in the seasonal cap at 85??S by as much as a factor of 15. This phenomenon, which has already been identified for the northern retreating cap, may present an important water transport mechanism in the Southern Hemisphere.

  3. Experimental research on the poly-aluminum chloride for treating the Pi River water in winter and summer

    NASA Astrophysics Data System (ADS)

    Jia, Rusheng; Bai, Yulin; Yang, Jie

    2018-02-01

    In the beaker experiments that the disposal of low turbidity water, we observed the influence of some factors, such as the dosage of poly-aluminum chloride coagulant, the pH value of raw water, in disposing the high natural organic matters of low turbidity water in winter and summer. we discussed the removal of residual aluminum and UV254 in summer. The experimental results show that when the turbidity is less than 10 NTU, the optimum dosage are 14.4 mg.L-1 and 8.2 mg.L-1 respectively in winter and summer. No matter in winter or summer, the effect of pH value on coagulation treatment is very significant, the best pH value is about 8.1. In summer, with the increase of dosage of poly-aluminum chloride, residual aluminum increased slowly after decrease, turbidity and UV254 after precipitation is similar removal trend. Finally, according to the current market price of poly-aluminum chloride economic analysis, daily differences in pharmaceutical costs about 1600 yuan in summer and winter in the second water plant in Lu’an.

  4. Early Opportunities to Strengthen Academic Readiness: Effects of Summer Learning on Mathematics Achievement

    ERIC Educational Resources Information Center

    Little, Catherine A.; Adelson, Jill L.; Kearney, Kelly L.; Cash, Kathleen; O'Brien, Rebecca

    2018-01-01

    Students who come from low-income backgrounds tend to be underidentified and underserved in gifted education. Early interventions with learners of high potential from underserved groups, including exposure to challenging curriculum and summer opportunities, are important for nurturing these students' talents and preparing them for advanced…

  5. Responses of ecosystem water use efficiency to spring snow and summer water addition with or without nitrogen addition in a temperate steppe

    PubMed Central

    Zhai, Penghui; Huang, Jianhui; Zhao, Xiang; Dong, Kuanhu

    2018-01-01

    Water use efficiency (WUE) is an important indicator of ecosystem functioning but how ecosystem WUE responds to climate change including precipitation and nitrogen (N) deposition increases is still unknown. To investigate such responses, an experiment with a randomized block design with water (spring snowfall or summer water addition) and nitrogen addition was conducted in a temperate steppe of northern China. We investigated net ecosystem CO2 production (NEP), gross ecosystem production (GEP) and evapotranspiration (ET) to calculate ecosystem WUE (WUEnep = NEP/ET or WUEgep = GEP/ET) under spring snow and summer water addition with or without N addition from 2011 to 2013. The results showed that spring snow addition only had significant effect on ecosystem WUE in 2013 and summer water addition showed positive effect on ecosystem WUE in 2011 and 2013, as their effects on NEP and GEP is stronger than ET. N addition increased ecosystem WUE in 2012 and 2013 both in spring snow addition and summer water addition for its increasing effects on NEP and GEP but no effect on ET. Summer water addition had less but N addition had greater increasing effects on ecosystem WUE as natural precipitation increase indicating that natural precipitation regulates ecosystem WUE responses to water and N addition. Moreover, WUE was tightly related with atmospheric vapor-pressure deficit (VPD), photosynthetic active radiation (PAR), precipitation and soil moisture indicating the regulation of climate drivers on ecosystem WUE. In addition, it also was affected by aboveground net primary production (ANPP). The study suggests that ecosystem WUE responses to water and N addition is determined by the change in carbon process rather than that in water process, which are regulated by climate change in the temperate steppe of northern China. PMID:29529082

  6. Responses of ecosystem water use efficiency to spring snow and summer water addition with or without nitrogen addition in a temperate steppe.

    PubMed

    Zhang, Xiaolin; Zhai, Penghui; Huang, Jianhui; Zhao, Xiang; Dong, Kuanhu

    2018-01-01

    Water use efficiency (WUE) is an important indicator of ecosystem functioning but how ecosystem WUE responds to climate change including precipitation and nitrogen (N) deposition increases is still unknown. To investigate such responses, an experiment with a randomized block design with water (spring snowfall or summer water addition) and nitrogen addition was conducted in a temperate steppe of northern China. We investigated net ecosystem CO2 production (NEP), gross ecosystem production (GEP) and evapotranspiration (ET) to calculate ecosystem WUE (WUEnep = NEP/ET or WUEgep = GEP/ET) under spring snow and summer water addition with or without N addition from 2011 to 2013. The results showed that spring snow addition only had significant effect on ecosystem WUE in 2013 and summer water addition showed positive effect on ecosystem WUE in 2011 and 2013, as their effects on NEP and GEP is stronger than ET. N addition increased ecosystem WUE in 2012 and 2013 both in spring snow addition and summer water addition for its increasing effects on NEP and GEP but no effect on ET. Summer water addition had less but N addition had greater increasing effects on ecosystem WUE as natural precipitation increase indicating that natural precipitation regulates ecosystem WUE responses to water and N addition. Moreover, WUE was tightly related with atmospheric vapor-pressure deficit (VPD), photosynthetic active radiation (PAR), precipitation and soil moisture indicating the regulation of climate drivers on ecosystem WUE. In addition, it also was affected by aboveground net primary production (ANPP). The study suggests that ecosystem WUE responses to water and N addition is determined by the change in carbon process rather than that in water process, which are regulated by climate change in the temperate steppe of northern China.

  7. Trends in summer bottom-water temperatures on the northern Gulf of Mexico continental shelf from 1985 to 2015.

    PubMed

    Turner, R Eugene; Rabalais, Nancy N; Justić, Dubravko

    2017-01-01

    We quantified trends in the 1985 to 2015 summer bottom-water temperature on the northern Gulf of Mexico (nGOM) continental shelf for data collected at 88 stations with depths ranging from 3 to 63 m. The analysis was supplemented with monthly data collected from 1963 to 1965 in the same area. The seasonal summer peak in average bottom-water temperature varied concurrently with air temperature, but with a 2- to 5-month lag. The summer bottom-water temperature declined gradually with depth from 30 oC at stations closest to the shore, to 20 oC at the offshore edge of the study area, and increased an average 0.051 oC y-1 between1963 and 2015. The bottom-water warming in summer for all stations was 1.9 times faster compared to the rise in local summer air temperatures, and 6.4 times faster than the concurrent increase in annual global ocean sea surface temperatures. The annual rise in average summer bottom-water temperatures on the subtropical nGOM continental shelf is comparable to the few published temperature trend estimates from colder environments. These recent changes in the heat storage on the nGOM continental shelf will affect oxygen and carbon cycling, spatial distribution of fish and shrimp, and overall species diversity.

  8. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    PubMed

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  9. Quantifying potential yield and water-limited yield of summer maize in the North China Plain

    NASA Astrophysics Data System (ADS)

    Jiang, Mingnuo; Liu, Chaoshun; Chen, Maosi

    2017-09-01

    The North China Plain is a major food producing region in China, and climate change could pose a threat to food production in the region. Based on China Meteorological Forcing Dataset, simulating the growth of summer maize in North China Plain from 1979 to 2015 with the regional implementation of crop growth model WOFOST. The results showed that the model can reflect the potential yield and water-limited yield of Summer Maize in North China Plain through the calibration and validation of WOFOST model. After the regional implementation of model, combined with the reanalysis data, the model can better reproduce the regional history of summer maize yield in the North China Plain. The yield gap in Southeastern Beijing, southern Tianjin, southern Hebei province, Northwestern Shandong province is significant, these means the water condition is the main factor to summer maize yield in these regions.

  10. Fireplace in former summer kitchen from west. The summer kitchen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Fireplace in former summer kitchen from west. The summer kitchen is now attached at the southeast elevation of the main house. - William Carmichael House, 201 East Water Street, Centreville, Queen Anne's County, MD

  11. Supplemental Summer Literacy Instruction: Implications for Preventing Summer Reading Loss

    ERIC Educational Resources Information Center

    McDaniel, Sara C.; McLeod, Ragan; Carter, Coddy L.; Robinson, Cecil

    2017-01-01

    Summer reading loss is a prevalent problem that occurs primarily for students who are not exposed to or encouraged to read at home or in summer programs when school is out. This problem prevails among early readers from low-income backgrounds. This study provided 31 six and seven-year-old children with a structured guided reading program through…

  12. On the nature and origin of water masses in Herald Canyon, Chukchi Sea: Synoptic surveys in summer 2004, 2008, and 2009

    NASA Astrophysics Data System (ADS)

    Linders, Johanna; Pickart, Robert. S.; Björk, Göran; Moore, G. W. K.

    2017-12-01

    Hydrographic and velocity data from three high-resolution shipboard surveys of Herald Canyon in the northwest Chukchi Sea, in 2004, 2008, and 2009, are used to investigate the water masses in the canyon and their possible source regions. Both summer and winter Pacific waters were observed in varying amounts in the different years, although in general the summer waters resided on the eastern side of the canyon while the winter waters were located on the western flank. The predominant summer water was Bering summer water, although some Alaskan coastal water resided in the canyon in the two later years likely due to wind forcing. Both newly ventilated and remnant winter waters were found in the canyon, but the amount lessened in each successive survey. Using mooring data from Bering Strait it is shown that a large amount of Bering summer water in the western channel of the strait follows a relatively direct route into Herald Canyon during the summer months, with an estimated advective speed of 10-20 cm/s. However, while the winter water observed in 2004 was consistent with a Bering Strait source (with a slower advective speed of 5-8 cm/s), the dense water in the canyon during 2008 and 2009 was more in line with a northern source. This is consistent with sections to the west of the canyon and with previously reported measurements implying winter water formation on the East Siberian shelf. Large-scale wind patterns and polynya activity on the shelf are also investigated. It was found that the former appears to impact more strongly the presence of dense water in Herald Canyon.

  13. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    PubMed

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  14. Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia.

    PubMed

    Mitchell, Patrick J; Veneklaas, Erik J; Lambers, Hans; Burgess, Stephen S O

    2008-12-01

    We measured leaf water relations and leaf structural traits of 20 species from three communities growing along a topographical gradient. Our aim was to assess variation in seasonal responses in leaf water status and leaf tissue physiology between sites and among species in response to summer water deficit. Species from a ridge-top heath community showed the greatest reductions in pre-dawn leaf water potentials (Psi(leaf)) and stomatal conductance during summer; species from a valley-floor woodland and a midslope mallee community showed less reductions in these parameters. Heath species also displayed greater seasonal reduction in turgor-loss point (Psi(TLP)) than species from woodland or mallee communities. In general, species that had larger reductions in Psi(leaf) during summer showed significant shifts in either their osmotic potential at full turgor (Psi(pi 100); osmotic adjustment) or in tissue elasticity (epsilon(max)). Psi(pi 100) and epsilon(max) were negatively correlated, during both spring and summer, suggesting a trade-off between these different mechanisms to cope with water stress. Specific leaf area varied greatly among species, and was significantly correlated with seasonal changes in Psi(TLP) and pre-dawn Psi(leaf). These correlations suggest that leaf structure is a prerequisite for cellular mechanisms to be effective in adjusting to water deficit.

  15. Role of soil texture on mesquite water relations and response to summer precipitation

    Treesearch

    Alessandra Fravolini; Kevin R. Hultine; Dan F. Koepke; David G. Williams

    2003-01-01

    In the arid Southwest United States, monsoon precipitation plays a key role in ecosystem water balance and productivity. The sensitivity of deeply rooted plants to pulses of summer precipitation is, in part, controlled by the interaction between soil texture, precipitation intensity, and plant rooting depth and activity. In this study we evaluated the water relations...

  16. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less

  17. Warm spring reduced carbon cycle impact of the 2012 US summer drought.

    PubMed

    Wolf, Sebastian; Keenan, Trevor F; Fisher, Joshua B; Baldocchi, Dennis D; Desai, Ankur R; Richardson, Andrew D; Scott, Russell L; Law, Beverly E; Litvak, Marcy E; Brunsell, Nathaniel A; Peters, Wouter; van der Laan-Luijkx, Ingrid T

    2016-05-24

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.

  18. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    PubMed Central

    Keenan, Trevor F.; Fisher, Joshua B.; Richardson, Andrew D.; Scott, Russell L.; Law, Beverly E.; Litvak, Marcy E.; Brunsell, Nathaniel A.; Peters, Wouter

    2016-01-01

    The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks. PMID:27114518

  19. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    DOE PAGES

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; ...

    2016-04-25

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less

  20. Interannual variability of the early summer circulation around the Balearic Islands: Driving factors and potential effects on the marine ecosystem

    NASA Astrophysics Data System (ADS)

    Balbín, R.; López-Jurado, J. L.; Flexas, M. M.; Reglero, P.; Vélez-Velchí, P.; González-Pola, C.; Rodríguez, J. M.; García, A.; Alemany, F.

    2014-10-01

    Six summer surveys conducted from 2001 to 2005 and in 2012 by the Spanish Institute of Oceanography (IEO) reveal that the hydrographic early summer scenarios around the Balearic Islands are related to the winter atmospheric forcing in the northwestern Mediterranean Sea. The Balearic Islands (western Mediterranean Sea) lie at the transition between the southern, fresher, newly arrived Atlantic Waters (AWs) and the northern, saltier, resident AW. The meridional position of the salinity driven oceanic density front separating the new from the resident AW is determined by the presence/absence of Western Intermediate Water (WIW) in the Mallorca and Ibiza channels. When WIW is present in the channels, the oceanic density front is found either at the south of the islands, or along the Emile Baudot escarpment. In contrast, when WIW is absent, new AW progresses northwards crossing the Ibiza channel and/or the Mallorca channel. In this later scenario, the oceanic density front is closer to the Balearic Islands. A good correspondence exists between standardized winter air temperature anomaly in the Gulf of Lions and the presence of WIW in the channels. We discuss the use of a regional climatic index based on these parameters to forecast in a first-order approach the position of the oceanic front, as it is expected to have high impact on the regional marine ecosystem.

  1. Trimodal distribution of ozone and water vapor in the UT/LS during boreal summer

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.

    2004-12-01

    The relation of ozone and water vapor in the upper troposphere and lower stratosphere (UT/LS) is strongly influenced by the off-equatorial Asian and North American monsoons in boreal summer. Both regions experience hydration, presumably as a result of deep convection. This behavior contrasts sharply with the apparent dehydrating influence of near-equatorial deep convection in boreal winter. There is also a striking difference in ozone between Asia and North America in boreal summer. Over Asia, ozone concentrations are low, evidently a result of ubiquitous deep convection and the vertical transport of ozone-poor air, while over North America, ozone concentrations are much higher. Since deep convection also occurs in the North American monsoon, it appears that the difference in ozone concentration between Asia and North America in boreal summer reflects a differing influence of the large-scale circulation in the two regions: specifically, (i) isolation of the Tibetan anticyclone versus (ii) the intrusion of filaments of ozone-rich air from the stratosphere over North America. During boreal summer, as in winter, near-equatorial concentrations of ozone and water vapor are low near the equator. The result of these geographical variations is a trimodal distribution of ozone and water-vapor correlation. Our talk reviews the observational evidence of this trimodal distribution and possible dynamical and microphysical causes, focusing primarily on the quality and possible sampling bias of satellite and aircraft measurements. A key issue is the ability of HALOE to sample areas of ubiquitous deep convection. Other issues include the vertical structure of tracer anomalies, isentropic stirring in the UT/LS, horizontal transport of biomass burning products lofted by deep convection, and connections to the moist phase of the tropical `tape recorder' signal in water vapor.

  2. Trimodal distribution of ozone and water vapor in the UT/LS during boreal summer

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.

    2004-05-01

    The relation of ozone and water vapor in the upper troposphere and lower stratosphere (UT/LS) is strongly influenced by the off-equatorial Asian and North American monsoons in boreal summer. Both regions experience hydration, presumably as a result of deep convection. This behavior contrasts sharply with the apparent dehydrating influence of near-equatorial deep convection in boreal winter. There is also a striking difference in ozone between Asia and North America in boreal summer. Over Asia, ozone concentrations are low, evidently a result of ubiquitous deep convection and the vertical transport of ozone-poor air, while over North America, ozone concentrations are much higher. Since deep convection also occurs in the North American monsoon, it appears that the difference in ozone concentration between Asia and North America in boreal summer reflects a differing influence of the large-scale circulation in the two regions: specifically, (i) isolation of the Tibetan anticyclone versus (ii) the intrusion of filaments of ozone-rich air from the stratosphere over North America. During boreal summer, as in winter, near-equatorial concentrations of ozone and water vapor are low near the equator. The result of these geographical variations is a trimodal distribution of ozone and water-vapor correlation. Our talk reviews the observational evidence of this trimodal distribution and possible dynamical and microphysical causes, focusing primarily on the quality and possible sampling bias of satellite and aircraft measurements. A key issue is the ability of HALOE to sample areas of ubiquitous deep convection. Other issues include the vertical structure of tracer anomalies, isentropic stirring in the UT/LS, horizontal transport of biomass burning products lofted by deep convection, and connections to the moist phase of the tropical `tape recorder' signal in water vapor.

  3. Rhode Island's Innovative Solutions to Summer Learning Loss

    ERIC Educational Resources Information Center

    Greenman, Adam

    2015-01-01

    Summer learning loss has been documented in the United States since early in the 20th century. These early studies measured differences in test scores at the beginning of the summer and at the end, and discovered that students did not retain information during the summer. Studies conducted throughout the 20th century confirmed this. Later studies…

  4. [Distribution characteristics and correlations of phosphorus in sediment and interstitial water of Nansi Lake, Shandong Province of East China in summer and winter].

    PubMed

    Li, Bao; Wang, Zhi-Qi; Wang, Qian-Suo; Cuan, Jing-Bo

    2013-06-01

    By using cylindrical sediment sampler and Peeper' s interstitial water sampler, the intact sediment and interstitial water were collected from different zones of Nansi Lake in Shandong Province in summer and winter. The distribution characteristics of the sediment phosphorus forms and of the phosphate (PO4(3-)-P) in interstitial water were analyzed, and their correlations were discussed. In the sediments of Nansi Lake, phosphorus was richer, and had a significant spatial differentiation, with an overall decreasing trend from north to south, which was related to the seriously polluted Northern Nansi Lake near Jining City. Among the phosphorous forms, inorganic phosphorus (IP) had the highest concentration, accounting for 52.3%-87.2% and 60.6%-88.3% of the total phosphorus (TP) in summer and winter, respectively. The TP concentrations in 5 cm surface sediment of four sub-lakes were all higher in summer than in winter, which could be related to the human activities such as exuberant aquaculture, more chemical fertilizers application around lake, and frequent tourism activities, etc. in summer. In vertical direction, the PO4(3-)-P concentration in interstitial water decreased after an initial increase in summer and winter, and was obviously higher in summer than in winter, suggesting that the phosphorous in sediment had a higher potential to release to the overlying water in summer. The organic phosphorus (OP) and IP in sediment had a significant correlation in summer but less correlation in winter, indicating that the transformation between sediment IP and OP was more active in summer than in winter. The iron and aluminum bound phosphorus (Fe/Al-P) and IP in sediment were significantly positively correlated with the PO4(3-)-P in interstitial water. In summer and winter, the average PO4(3-)-P concentration in interstitial water collected by Peeper' s interstitial water sampler was about 20%-50% higher than that collected by the conventional centrifugal method

  5. Think Summer: Early Planning, Teacher Support Boost Summer Learning Programs

    ERIC Educational Resources Information Center

    Browne, Daniel

    2013-01-01

    A fundamental problem that continues to plague educators is the achievement gap between low-income and higher-income students. In the ongoing search for solutions, one of the more promising approaches is expanding opportunities for learning, particularly in the summer. This article describes a project funded by The Wallace Foundation that offers…

  6. Controls on summer low flow

    NASA Astrophysics Data System (ADS)

    Graham, C. B.; McNamara, J. P.

    2012-12-01

    Summer low flow has significant impacts on aquatic flora and fauna, municipal water use, and power generation. However, the controls on the minimum annual summer discharge are complex, including a combination of snowmelt dynamics, summer evapotranspiration demand, and spring, summer precipitation patterns and surface - groundwater interactions. This is especially true in the Rocky Mountain West of the United States, where snowpack provides the majority of water available for spring runoff and groundwater replenishment. In this study, we look at summer low flow conditions at four snow dominated catchments (26 km2 - 2200 km2) in South-central Idaho currently feeling the effects of climate change. Measures of snowmelt dynamics, summer evapotranspiration demand and spring and summer precipitation are used to determine the dominant controls on late summer low flow magnitude, timing and duration. These analyses show that the controls vary between watersheds, with significant implications for the impacts of climate change in snow dominated areas of the Rocky Mountain West.

  7. Late Summer Frazil Ice-Associated Algal Blooms around Antarctica

    NASA Astrophysics Data System (ADS)

    DeJong, Hans B.; Dunbar, Robert B.; Lyons, Evan A.

    2018-01-01

    Antarctic continental shelf waters are the most biologically productive in the Southern Ocean. Although satellite-derived algorithms report peak productivity during the austral spring/early summer, recent studies provide evidence for substantial late summer productivity that is associated with green colored frazil ice. Here we analyze daily Moderate Resolution Imaging Spectroradiometer satellite images for February and March from 2003 to 2017 to identify green colored frazil ice hot spots. Green frazil ice is concentrated in 11 of the 13 major sea ice production polynyas, with the greenest frazil ice in the Terra Nova Bay and Cape Darnley polynyas. While there is substantial interannual variability, green frazil ice is present over greater than 300,000 km2 during March. Late summer frazil ice-associated algal productivity may be a major phenomenon around Antarctica that is not considered in regional carbon and ecosystem models.

  8. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River estuary during the summer period.

    PubMed

    Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui

    2018-01-01

    Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Summer spatial patterning of chukars in relation to free water in Western Utah

    USGS Publications Warehouse

    Larsen, R.T.; Bissonette, J.A.; Flinders, J.T.; Hooten, M.B.; Wilson, T.L.

    2010-01-01

    Free water is considered important to wildlife in arid regions. In the western United States, thousands of water developments have been built to benefit wildlife in arid landscapes. Agencies and researchers have yet to clearly demonstrate their effectiveness. We combined a spatial analysis of summer chukar (Alectoris chukar) covey locations with dietary composition analysis in western Utah. Our specific objectives were to determine if chukars showed a spatial pattern that suggested association with free water in four study areas and to document summer dietary moisture content in relation to average distance from water. The observed data for the Cedar Mountains study area fell within the middle of the random mean distance to water distribution suggesting no association with free water. The observed mean distance to water for the other three areas was much closer than expected compared to a random spatial process, suggesting the importance of free water to these populations. Dietary moisture content of chukar food items from the Cedar Mountains (59%) was significantly greater (P < 0.05) than that of birds from Box Elder (44%) and Keg-Dugway (44%). Water developments on the Cedar Mountains are likely ineffective for chukars. Spatial patterns on the other areas, however, suggest association with free water and our results demonstrate the need for site-specific considerations. Researchers should be aware of the potential to satisfy water demand with pre-formed and metabolic water for a variety of species in studies that address the effects of wildlife water developments. We encourage incorporation of spatial structure in model error components in future ecological research. ?? Springer Science+Business Media B.V. 2009.

  10. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow

    USGS Publications Warehouse

    Brown, V.A.; McDonnell, Jeffery J.; Burns, Douglas A.; Kendall, C.

    1999-01-01

    Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the

  11. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, Marc; Seitzler, Matthew

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summermore » space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.« less

  12. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, Marc; Seitzler, Matthew

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summermore » space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.« less

  13. a Process-Based Drought Early Warning Indicator for Supporting State Drought Mitigation Decision

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, D. N.; Pu, B.

    2014-12-01

    Drought prone states such as Texas requires creditable and actionable drought early warning ranging from seasonal to multi-decadal scales. Such information cannot be simply extracted from the available climate prediction and projections because of their large uncertainties at regional scales and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA national multi-models ensemble experiment (NMME) and the IPCC AR5 (CMIP5) models, are much more reliable for winter and spring than for the summer season for the US Southern Plains. They also show little connection between the droughts in winter/spring and those in summer, in contrast to the observed dry memory from spring to summer over that region. To mitigate the weakness of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies. Based on these key processes and related fields, we have developed a multivariate principle component statistical model to provide a probabilistic summer drought early warning indicator, using the observed or predicted climate conditions in winter and spring on seasonal scale and climate projection for the mid-21stcentury. The summer drought early warning indicator is constructed in a similar way to the NOAA probabilistic predictions that are familiar to water resource managers. The indicator skill is assessed using the standard NOAA climate prediction assessment tools, i.e., the two alternative forced choice (2AFC) and the Receiver Operating Characteristic (ROC). Comparison with long-term observations suggest that this summer drought early warning indicator is able to capture nearly all the strong summer droughts and outperform the dynamic prediction in this regard over the US Southern Plains. This early warning indicator has been used by the state water agency in May 2014 in briefing the state

  14. Use of diets formulated for summer water temperatures in pond production of hybrid striped bass

    USDA-ARS?s Scientific Manuscript database

    Elevated water temperatures are common in hybrid striped bass or Sunshine bass (HSB; Morone chrysops x M. saxatilis) production ponds during summer months in the southern US. Median daily water temperatures often exceed 30 C from June through September. This experiment was conducted to extend and re...

  15. Modified water regimes affect photosynthesis, xylem water potential, cambial growth and resistance of juvenile Pinus taeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae)

    Treesearch

    James P. Dunn; Peter L. Jr. Lorio

    1993-01-01

    We modified soil water supply to two groups of juvenile loblolly pines, Pinus taeda L., by sheltering or irrigating root systems in early summer or in later summer and measured oleoresin flow (primary defense), net photosynthesis, xylem water potential, and cambial growth throughout the growing season. When consistent significant differences in...

  16. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    NASA Astrophysics Data System (ADS)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  17. Identifying sources of stream water sulfate after a summer drought in the Sleepers River watershed (Vermont, USA) using hydrological, chemical, and isotopic techniques

    USGS Publications Warehouse

    Mayer, B.; Shanley, J.B.; Bailey, S.W.; Mitchell, M.J.

    2010-01-01

    In many forested headwater catchments, peak SO42 - concentrations in stream water occur in the late summer or fall following drought potentially resulting in episodic stream acidification. The sources of highly elevated stream water SO42 - concentrations were investigated in a first order stream at the Sleepers River watershed (Vermont, USA) after the particularly dry summer of 2001 using a combination of hydrological, chemical and isotopic approaches. Throughout the summer of 2001 SO42 - concentrations in stream water doubled from ???130 to 270 ??eq/L while flows decreased. Simultaneously increasing Na+ and Ca2+ concentrations and ??34S values increasing from +7??? towards those of bedrock S (???+10.5???) indicated that chemical weathering involving hydrolysis of silicates and oxidation of sulfide minerals in schists and phyllites was the cause for the initial increase in SO42 - concentrations. During re-wetting of the watershed in late September and early October of 2001, increasing stream flows were accompanied by decreasing Na+ and Ca2+ concentrations, but SO42 - concentrations continued to increase up to 568 ??eq/L, indicating that a major source of SO42 - in addition to bedrock weathering contributed to peak SO42 - concentrations. The further increase in SO42 - concentrations coincided with an abrupt decrease of ??34S values in stream water SO42 - from maximum values near +10??? to minimum values near -3???. Soil investigations revealed that some C-horizons in the Spodsols of the watershed contained secondary sulfide minerals with ??34S values near -22???. The shift to negative ??34S values of stream water SO42 - indicates that secondary sulfides in C-horizons were oxidized to SO42 - during the particularly dry summer of 2001. The newly formed SO42 - was transported to the streams during re-wetting of the watershed contributing ???60% of the SO42 - during peak concentrations in the stream water. Thereafter, the contribution of SO42 - from oxidation of

  18. Influence of summer water-level variability on St. Lawrence River-wetland fish assemblages

    USGS Publications Warehouse

    McKenna, J.E.; Barkley, J.L.; Johnson, J. H.

    2008-01-01

    Water-level and associated variability are substantial influences on wetland and shallow aquatic communities. The Akwesasne Wetland Complex is an extensive St. Lawrence River system affected by water regulation. The responses of fish assemblages to short-term summer water-level variation were examined throughout this section of the St. Lawrence River and its tributaries. An influence of water-level variability was detected on abundance of three common species [bluntnose minnow (Pimephales notatus), rock bass (Amboplites rupestris), and white sucker (Catastomus commersonii)] and explained 30-44% of variation. This influence has implications for water regulation and natural resource management, and a larger scope evaluation may reveal more extensive effects.

  19. Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Grenfell, T. C.; Matzler, C.; Luther, C. A.; Svendsen, E. A.

    1987-01-01

    Emissivities at frequencies from 5 to 94 GHz and backscatter at frequencies from 1 to 17 GHz were measured from sea ice in Fram Strait during the marginal Ice Zone Experiment in June and July of 1983 and 1984. The ice observed was primarily multiyear; the remainder, first-year ice, was often deformed. Results from this active and passive microwave study include the description of the evolution of the sea ice during early summer and midsummer; the absorption properties of summer snow; the interrelationship between ice thickness and the state and thickness of snow; and the modulation of the microwave signature, especially at the highest frequencies, by the freezing of the upper few centimeters of the ice.

  20. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    PubMed

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil

  1. Prediction of early summer rainfall over South China by a physical-empirical model

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2014-10-01

    In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.

  2. Building America Case Study: Indoor Heat Pump Water Heaters During Summer in a Hot-Dry Climate, Redding, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summermore » space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water heating savings by 5-9%. Given the project schedule for 2014 completion, no heating season impacts were able to be monitored. May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water heating savings by 5-9%. Given the project schedule for 2014 completion, no heating season impacts were able to be monitored.« less

  3. Relative influence of precession and obliquity in the early Holocene: Topographic modulation of subtropical seasonality during the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.

    2018-07-01

    On orbital timescales, higher summer insolation is thought to strengthen the continental monsoon while weakening the maritime monsoon in the Northern hemisphere. Through simulations using the Community Earth System Model, we evaluated the relative influence of perihelion precession and high obliquity in the early Holocene during the Asian summer monsoon. The major finding was that precession dominates the atmospheric heating change over the Tibetan Plateau-Himalayas and Maritime Continent, whereas obliquity is responsible for the heating change over the equatorial Indian Ocean. Thus, precession and obliquity can play contrasting roles in driving the monsoons on orbital timescales. In late spring-early summer, interior Asian continental heating drives the South and East Asian monsoons. The broad-scale monsoonal circulation further expands zonally in July-August, corresponding to the development of summer monsoons in West Africa and the subtropical Western North Pacific (WNP) as well as a sizable increase in convection over the equatorial Indian Ocean. Tropical and oceanic heating becomes crucial in late summer. Over South Asia-Indian Ocean (50°E-110°E), the precession maximum intensifies the monsoonal Hadley cell (heating with an inland/highland origin), which is opposite to the meridional circulation change induced by high obliquity (heating with a tropical origin). The existence of the Tibetan Plateau-Himalayas intensifies the precessional impact. During the late-summer phase of the monsoon season, the effect of obliquity on tropical heating can be substantial. In addition to competing with Asian continental heating, obliquity-enhanced heating over the equatorial Indian Ocean also has a Walker-type circulation impact, resulting in suppression of precession-enhanced heating over the Maritime Continent.

  4. Impact of Intensive Summer Reading Intervention for Children With Reading Disabilities and Difficulties in Early Elementary School.

    PubMed

    Christodoulou, Joanna A; Cyr, Abigail; Murtagh, Jack; Chang, Patricia; Lin, Jiayi; Guarino, Anthony J; Hook, Pamela; Gabrieli, John D E

    Efficacy of an intensive reading intervention implemented during the nonacademic summer was evaluated in children with reading disabilities or difficulties (RD). Students (ages 6-9) were randomly assigned to receive Lindamood-Bell's Seeing Stars program ( n = 23) as an intervention or to a waiting-list control group ( n = 24). Analysis of pre- and posttesting revealed significant interactions in favor of the intervention group for untimed word and pseudoword reading, timed pseudoword reading, oral reading fluency, and symbol imagery. The interactions mostly reflected (a) significant declines in the nonintervention group from pre- to posttesting, and (2) no decline in the intervention group. The current study offers direct evidence for widening differences in reading abilities between students with RD who do and do not receive intensive summer reading instruction. Intervention implications for RD children are discussed, especially in relation to the relevance of summer intervention to prevent further decline in struggling early readers.

  5. Observed Changes in Upper-Tropospheric Water Vapor Transport From Satellite Measurements During the Summers of 1987 and 1988

    NASA Technical Reports Server (NTRS)

    Lerner, Jeffrey A.; Jedlovee, Gary J.; Atkinson, Robert J.

    1998-01-01

    The research described below focuses on the use of satellite measurements to monitor both monthly and interannual changes in UT (upper tropospheric) water vapor transport. The GOES-7 Pathfinder data set is used to estimate both winds and humidity during the summers (JJA) of 1987 and 1988. These two summers are of particular importance to climate variability since they were characterized by a dramatic shift in the Southern Oscillation index (i.e., 1987 as a warm ENSO event and 1988 as a cold La-Nina period) (Arkin, 1988; Ropelewski 1988). The contrasting features of the summers of '87 and '88 are exploited to demonstrate the utility of satellite wind and humidity estimates to analyze the role of water vapor in climate change.

  6. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    USGS Publications Warehouse

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  7. Pacific southwest United States Holocene summer paleoclimate inferred from sediment calcite oxygen isotopes (Lake Elsinore, CA)

    NASA Astrophysics Data System (ADS)

    Kirby, M.; Patterson, W. P.; Lachniet, M. S.; Anderson, M.; Noblet, J. A.

    2017-12-01

    Records of past climate inform on the natural range and mechanisms of climate change. In the arid Pacific southwest United States (pswUS), there exist a variety of Holocene records that infer past winter conditions (moisture and/or temperature). Holocene records of summer climate, however, are rare excepting short-lived (<500-1000 yrs) tree ring PDSIs and some pollen-inferred temperature reconstructions. As climate changes due to anthropogenic forcing, the severity of drought is expected to increase in the already water-stressed pswUS. Hot droughts are of considerable concern as summer temperatures rise. As a result, understanding how summer conditions changed in the past is critical to understanding future predictions under varied climate forcings. Here, we present a 9800 year delta-18O(calcite) record from Lake Elsinore, CA. This isotope record is interpreted to reflect late-spring to summer conditions, especially evaporation. Modern water isotope data support this interpretation. Our results reveal a three-part Holocene consisting of a highly evaporative early Holocene, a cooler mid-Holocene, and evaporative late Holocene. Coupled with an inferred winter wetness (run-off) record from Kirby et al. (2010), we estimate the severity of centennial scale Holocene dryness (i.e. dry winters plus hot summers = severe drought). The most severe droughts occur in the early Holocene, decline in the mid-Holocene, and return in the late Holocene. An independently dated isotope record from Lake Elsinore's littoral zone (Kirby et al. 2004) shows similar changes providing confidence in our longer record. Various forcing mechanisms are examined to explain the Elsinore summer record including insolation, Pacific SSTs, and trace gas radiative forcing.

  8. Midlatitude Summer Drying: An Underestimated Threat in CMIP5 Models?

    NASA Astrophysics Data System (ADS)

    Douville, H.; Plazzotta, M.

    2017-10-01

    Early assessments of the hydrological impacts of global warming suggested both an intensification of the global water cycle and an expansion of dry areas. Yet these alarming conclusions were challenged by a number of latter studies emphasizing the lack of evidence in observations and historical simulations, as well as the large uncertainties in climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Here several aridity indices and a two-tier attribution strategy are used to demonstrate that a summer midlatitude drying has recently emerged over the northern continents, which is mainly attributable to anthropogenic climate change. This emerging signal is shown to be the harbinger of a long-term drying in the CMIP5 projections. Linear trends in the observed aridity indices can therefore be used as observational constraints and suggest that the projected midlatitude summer drying was underestimated by most CMIP5 models. Mitigating global warming therefore remains a priority to avoid dangerous impacts on global water and food security.

  9. Low summer water temperatures influence occurrence of naturalized salmonids across a mountain watershed

    USGS Publications Warehouse

    Mullner, S.A.; Hubert, W.A.

    2005-01-01

    We investigated relationships between the absence of salmonids and low summer water temperatures across a 150-km2 Rocky Mountain watershed. A model predicting maximum July water temperature (MJT) from measurements of perennial stream length, wetted width, and midrange basin elevation was developed from temperature data obtained at 20 sites across the watershed. The model was used to predict MJT in 75 reaches across the watershed where salmonids were sampled. The lowest predicted MJT in reaches where age-0 and juvenile-adult brook trout Salvelinus fontinalis were observed was 9??C. The lowest predicted MJT in reaches where age-0 progeny of the genus Oncorhynchus spp. (i.e., rainbow trout O. mykiss or cutthroat trout O. clarkii) were observed was 13??C and where Oncorhynchus spp. adults where observed was 12??C. The probability of occurrence of both age-0 and adult brook trout and Oncorhynchus spp. increased as MJT increased above these thresholds. Our results indicate that low MJT in some portions of a mountain watershed can be related to the absence of salmonids. Consequently, data on MJT may provide managers with a means of assessing where summer water temperatures are not suitable for establishment of naturalized salmonid populations. ?? Copyright by the American Fisheries Society 2005.

  10. Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Kwon, MinHo

    2014-03-01

    East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.

  11. Global Distribution of Shallow Water on Mars: Neutron Mapping of Summer-Time Surface by HEND/Odyssey

    NASA Technical Reports Server (NTRS)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Boynton, W.; Hamara, D.; Shinohara, C.; Saunders, R. S.; Drake, D.

    2003-01-01

    Orbital mapping of induced neutrons and gamma-rays by Odyssey has recently successfully proven the applicability of nuclear methods for studying of the elementary composition of Martian upper-most subsurface. In particular, the suite of Gamma-Ray Spectrometer (GRS) has discovered the presence of large water-ice rich regions southward and northward on Mars. The data of neutron mapping of summer-time surface are presented below from the Russian High Energy Neutron Spectrometer (HEND), which is a part of GRS suite. These maps represent the content of water in the soil for summer season at Southern and Northern hemispheres, when the winter deposit of CO2 is absent on the surface. The seasonal evolution of CO2 coverage on Mars is the subject of the complementary paper.

  12. Increasing Fruit, Vegetable and Water Consumption in Summer Day Camps-3-Year Findings of the Healthy Lunchbox Challenge

    ERIC Educational Resources Information Center

    Beets, Michael W.; Tilley, Falon; Weaver, Robert G.; Turner-McGrievy, Gabrielle M.; Moore, Justin B.

    2014-01-01

    The objective of this study was to describe the 3-year outcomes (2011-2013) from the healthy lunchbox challenge (HLC) delivered in the US-based summer day camps (SDC) (8-10 hours day-1, 10-11 weeks summer-1, SDC) to increase children and staff bringing fruit, vegetables and water (FVW) each day. A single group pre- with multiple post-test design…

  13. The extent of ocean acidification on aragonite saturation state along the Washington-Oregon continental shelf margin in late summer 2012

    NASA Astrophysics Data System (ADS)

    Feely, R. A.; Alin, S. R.; Hales, B. R.; Juranek, L.; Greeley, D.

    2012-12-01

    The Washington-Oregon continental shelf region is exposed to conditions of low aragonite saturation state during the late spring/early summer upwelling season. However, the extent of its evolution in late summer/early fall has been largely unknown. Along this continental margin, ocean acidification, upwelling, biological productivity, and respiration processes in subsurface waters are major contributors to the variability in dissolved inorganic carbon (DIC), pH and aragonite saturation state. The persistence of water with aragonite saturation state <1 on the continental shelf off Washington and Oregon has been previously identified and could have profound ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods. In the late summer of 2012 we studied the extent of acidification conditions employing shipboard cruises and profiling gliders. We conducted several large-scale chemical and hydrographic surveys of the region in order to better understand the interrelationships between these natural and human-induced processes and their effects on aragonite saturation. We will compare the results of these new surveys with our previous work in 2011 and 2007.

  14. Can hydraulically redistributed water assist surrounding seedlings during summer drought?

    PubMed

    Muler, A L; van Etten, E J B; Stock, W D; Howard, K; Froend, R H

    2018-05-12

    Plant interaction studies provide a good understanding of the roles of key species, which can assist restoration of natural ecosystems. Among the interactions, facilitation and competition are known to affect ecosystem structure and function. We investigated whether a deep-rooted species could positively affect surrounding seedlings through hydraulic redistribution during dry months. We conducted two experiments in which seedlings from two species were growing together or isolated from source plants (field experiment) and where plants were isolated from source plants that were connected to or separated from a water table (glasshouse experiment). Survival, growth, water relations and soil water content were measured. We also applied δ 2 H enriched water adjacent to, or into, the roots of source plants to track water movement between plants. Soil water content was higher in shallow layers where source plants could interact with seedlings (field) and when accessing water tables (glasshouse). Seedlings from all treatments had an increase in leaf δ 2 H. Seedlings of Banksia attenuata that were isolated from source plants had the highest survival, growth and stomatal conductance rates. Seedlings of Gompholobium tomentosum presented higher stomatal conductance rates when growing with source plants than when isolated from them during the first months, but this relationship reversed towards the end of summer. These results suggest that source plants and seedlings competed, but the influence of facilitation and competition might change during the year, at least for the shallow-rooted species. Therefore, competition for water and/or other limiting factors must be considered when planning ecological restoration in such areas.

  15. Stream shading, summer streamflow and maximum water temperature following intense wildfire in headwater streams

    Treesearch

    Michael Amaranthus; Howard Jubas; David Arthur

    1989-01-01

    Adjacent headwater streams were monitored for postfire shade, summer streamflow and maximum water temperature following the 40,000 ha Silver Complex fire in southern Oregon. Average postfire shade (30 percent) for the three streams was considerably less than prefire shade (est.>90 percent). Dramatic increases in direct solar radiation resulted in large but variable...

  16. Arctic summer school onboard an icebreaker

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  17. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    PubMed

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  18. Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields

    NASA Astrophysics Data System (ADS)

    Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.

    2015-12-01

    STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.

  19. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring.

    PubMed

    Meyer-Jacob, Carsten; Tolu, Julie; Bigler, Christian; Yang, Handong; Bindler, Richard

    2015-05-26

    Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A.D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.

  20. Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2011-06-01

    Using implanted temperature loggers, we measured core body temperature in nine western grey kangaroos every 5 min for 24 to 98 days in spring and summer. Body temperature was highest at night and decreased rapidly early in the morning, reaching a nadir at 10:00 h, after ambient temperature and solar radiation had begun to increase. On hotter days, the minimum morning body temperature was lower than on cooler days, decreasing from a mean of 36.2°C in the spring to 34.0°C in the summer. This effect correlated better with the time of the year than with proximate thermal stressors, suggesting that either season itself or some factor correlated with season, such as food availability, caused the change. Water saving has been proposed as a selective advantage of heterothermy in other large mammals, but in kangaroos the water savings would have been small and not required in a reserve with permanent standing water. We calculate that the lower core temperature could provide energy savings of nearly 7%. It is likely that the heterothermy that we observed on hot days results either from decreased energy intake during the dry season or from a seasonal pattern entrained in the kangaroos that presumably has been selected for because of decreased energy availability during the dry season.

  1. Smart Water Conservation System for Irrigated Landscape

    DTIC Science & Technology

    2016-05-01

    purple pipe indicating reuse water) and properly labeled “not for human consumption”; • Do not connect rainwater overflow discharge to sanitary sewer...Report Smart Water Conservation System 75 May 2016 Condensate Capture If redirecting condensate from sanitary sewer, ensure sewer gases are managed...the spring/early summer to determine optimum irrigation safety factor. Irrigate at night or early morning. Set soak and cycle for clay soils. ET

  2. Source of moist air for the Asian summer monsoon lower stratosphere

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Fu, R.; Wang, T.

    2015-12-01

    The Asian monsoon region is the most prominent moist center of lower stratospheric (LS) water vapor during boreal summer. However, the origin of such moist air is still unclear. Using Aura Microwave Limb Sounder (MLS) satellite observations and a domain-filling forward trajectory model, we show that moist air originates mostly from the western Asian Monsoon region where dehydration temperatures are warmer than those on the eastside of the Asian monsoon region. On seasonal scale, a shift of convective and dehydration center from the eastern to western monsoon region from early to late summer may contribute to the increase of LS water vapor over the Asian monsoon region. An increasing convection over the west side of the monsoon region can significantly moisten the LS. Air detrained from convection ascends with enhanced large-scale rising motion and dehydrate mostly within this region under warmer temperature, thus anomalously higher water vapor concentration. After final dehydration, water vapor anomalies show an upper-eastward propagation across the Asian monsoon region. This is primarily due to that air parcels tend to arise across the tropopause layer over the western region (eastern Iranian Plateau and northwestern India) after final dehydration as simulated by the trajectory model. This work highlights the importance of transport pathway shift, induced by the convective regime shift, on both seasonal and intraseasonal variations of water vapor in the Asian monsoon LS.

  3. Managing Groundwater Recharge and Pumping for Late Summer Streamflow Increases: Quantifying Uncertainty Using Null Space Monte Carlo

    NASA Astrophysics Data System (ADS)

    Tolley, D. G., III; Foglia, L.; Harter, T.

    2017-12-01

    Late summer and early fall streamflow decreases caused by climate change and agricultural pumping contribute to increased water temperatures and result in large disconnected sections during dry years in many semi-arid regions with Mediterranean climate. This negatively impacts aquatic habitat of fish species such as coho and fall-run Chinook salmon. In collaboration with local stakeholders, the Scott Valley Integrated Hydrologic Model (SVIHMv3) was developed to assess future water management scenarios with the goal of improving aquatic species habitat while maintaining agricultural production in the valley. The Null Space Monte Carlo (NSMC) method available in PEST was used to quantify the range of predicted streamflow changes for three conjunctive use scenarios: 1) managed aquifer recharge (MAR), 2) in lieu recharge (ILR, substituting surface-water irrigation for irrigation with groundwater while flows are available), and 3) MAR + ILR. Random parameter sets were generated using the calibrated covariance matrix of the model, which were then recalibrated if the sum of squared residuals was greater than 10% of the original sum of squared weighted residuals. These calibration-constrained stochastic parameter sets were then used to obtain a distribution of streamflow changes resulting from implementing the conjunctive use scenarios. Preliminary results show that while the range of streamflow increases using managed aquifer recharge is much narrower (i.e., greater degree of certainty) than in lieu recharge, there are potentially much greater benefits to streamflow by implementing in lieu recharge (although also greater costs). Combining the two scenarios provides the greatest benefit for increasing late summer and early fall streamflow, as most of the MAR streamflow increases are during the spring and early summer which ILR is able to take advantage of. Incorporation of uncertainty into model predictions is critical for establishing and maintaining stakeholder trust

  4. Methane oxidation in Saanich Inlet during summer stratification

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Wopat, A. E.; Minnich, E. C.; Lidstrom, M. E.

    1989-01-01

    Saanich Inlet, British Columbia, an fjord on the southeast coast of Vancouver Island, typically stratifies in summer, leading to the formation of an oxic-anoxic interface in the water column and accumulation of methane in the deep water. The results of methane concentration measurements in the water column of the inlet at various times throughout the summer months in 1983 are presented. Methane gradients and calculated diffusive fluxes across the oxic-anoxic interface increased as the summer progressed. Methane distribution and consumption in Saanich Inlet were studied in more detail during August 1986. At this time, a typical summer stratification with an oxic-anoxic interface around 140 m was present. At the interface, steep gradients in nutrient concentrations, bacterial abundance and methane concentration were observed. Methane oxidation was detected in the aerobic surface waters and in the anaerobic deep layer, but highest rates occurred in a narrow layer at the oxic-anoxic interface. Estimated methane oxidation rates were suffcient to consume 100 percent of the methane provided by diffusive flux from the anoxic layer. Methane oxidation is thus a mechanism whereby atmospheric flux from anoxic waters is minimized.

  5. Influence of Flow Regulation on Summer Water Temperature: Sauce Grande River, Argentina

    NASA Astrophysics Data System (ADS)

    Casado, A.; Hannah, D. M.; Peiry, J.; Campo, A. M.

    2012-12-01

    This study quantifies the effects of the Paso de las Piedras Dam on the thermal behaviour of the Sauce Grande River, Argentina, during a summer season. A 30-day data set of continuous hourly data was assembled for eight stream temperature gauging sites deployed above and below the impoundment. Time series span the hottest period recorded during summer 2009 to evaluate variations in river water temperature under strong meteorological influence. The methods include: (i) analysis of the time series by inspecting the absolute differences in daily data (magnitude, timing, frequency, duration and rate of change), (ii) classification of diurnal regimes by using a novel regime 'shape' and 'magnitude' classifying method (RSMC), and (ii) quantification of the sensitivity of water temperature regimes to air temperature by computation of a novel sensitivity index (SI). Results showed that fluctuations in daily water temperatures were linked to meteorological drivers; however, spatial variability in the shape and the magnitude of the thermographs revealed the effects of the impoundment in regulating the thermal behaviour of the river downstream. An immediate cooling effect below the dam was evident. Mean daily temperatures were reduced in up to 4 °C, and described a warming trend in the downstream direction over a distance of at least 15 km (up to +2.3 °C). Diurnal cycles were reduced in amplitude and delayed in timing, and revealed a dominance of regime magnitude stability and regime shape climatic insensitivity over a distance of 8 km downstream. These findings provide new information about the water quality of the Sauce Grande River and inform management of flows to maintain the ecological integrity of the river system. Also, they motivate further analysis of potential correlates under varying hydrological and meteorological conditions. The methods presented herein have wider applicability for quantifying river thermal regimes and their sensitivity to climate and other

  6. MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.; Tamppari, Leslie K.; Smith, Michael D.

    2010-11-01

    We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the 'cold' surface areas in the North polar region ( Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO 2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO 2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor

  7. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures

    NASA Astrophysics Data System (ADS)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-02-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P < 0.05) without changing respiratory rate. Heat-conditioned chickens exhibited lower levels of glycemia (P < 0.0001) and higher hematocrit and red blood cell counts (P < 0.05). Furthermore, the greatest effects of VS, alone or associated with ETC, were the lowering of cholesterol and triglyceride blood concentrations. A significant (P < 0.05) effect of ETC, gender, and ETC×gender on T3:T4 ratio was observed. Finally, some beneficial physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  8. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures

    NASA Astrophysics Data System (ADS)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-06-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P < 0.05) without changing respiratory rate. Heat-conditioned chickens exhibited lower levels of glycemia ( P < 0.0001) and higher hematocrit and red blood cell counts ( P < 0.05). Furthermore, the greatest effects of VS, alone or associated with ETC, were the lowering of cholesterol and triglyceride blood concentrations. A significant ( P < 0.05) effect of ETC, gender, and ETC×gender on T3:T4 ratio was observed. Finally, some beneficial physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  9. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures.

    PubMed

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-06-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P < 0.05) without changing respiratory rate. Heat-conditioned chickens exhibited lower levels of glycemia (P < 0.0001) and higher hematocrit and red blood cell counts (P < 0.05). Furthermore, the greatest effects of VS, alone or associated with ETC, were the lowering of cholesterol and triglyceride blood concentrations. A significant (P < 0.05) effect of ETC, gender, and ETC×gender on T3:T4 ratio was observed. Finally, some beneficial physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  10. Microphysical Properties and Water Budget for Summer Convective Clouds over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Guo, X.; Tang, J.; Chang, Y.

    2017-12-01

    During the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the clouds and precipitation processes over the Tibetan Plateau have been intensively investigated. On basis of field campaign, the cloud microphysical structure, water transformation and budget properties for typical convective precipitation processes in the summer season of 2014 over the plateau are studied using mesoscale numerical prediction model (WRF) combined with observational data collected during the experiment. The results indicate that WRF model could reproduce the general characteristics of diurnal variation of clouds and precipitation process over the plateau, however, the temporal and spatial distribution and intensity of cloud bands and precipitation simulated by WRF model still had large differences with those observed. Ice process played a critical role in the development of summer convective clouds and precipitation over the plateau. The surface precipitation was primarily formed by the melting process of graupel particles. Although the warm cloud microphysical process had small direct contribution on the surface precipitation, it had an important contribution in the formation of graupel embryos. High amount of supercooled cloud water content and graupel particles could be found in the clouds. The formation and growth of snow particles relied on the conversion of ice crystal and the aggregation with ice crystal over 12 km (-40°), but the formation of snow particles below 12 km (-40°)was dependent on the conversion of Bergeron process of ice crystals and its growth resulted from riming process with supercooled cloud water. The accretion process of supercooled raindrops by ice crystal and snow particles contributed to the production of graupel embryos and their growth mainly relied on the riming process with supercooled cloud water and aggregation process with snow particles. The mean daily conversion rate from vapor to precipitation was as high as 27.27%, which is

  11. [Effects of water conditions and controlled release urea on yield and leaf senescence physiological characteristics in summer maize.

    PubMed

    Li, Guang Hao; Liu, Ping Ping; Zhao, Bin; Dong, Shu Ting; Liu, Peng; Zhang, Ji Wang; Tian, Cui Xia; He, Zai Ju

    2017-02-01

    In an soil column experiment with Zhengdan 958 (a summer maize cultivar planted widely in China), treatments of three water levels,severe water stress W 1 which the soil moisture kept (35±5)% of the field capacity, mild water stress W 2 which was (55±5)%,normal water W 3 which was (75±5)%, and four levels of controlled release urea fertilizer (N 0 , N 1 was 150 kg N·hm -2 ,N 2 was 225 kg N·hm -2 and N 3 was 300 kg N·hm -2 ) were included to study the interactive effects of water and controlled release urea on yield and leaf senescence characteristics of summer maize. The results showed that the coupling of water and controlled release urea had significant effects on increasing yield, delaying the senescence and keeping the high efficiency of the functional leaves. Under the same nitrogen condition, yield, LAI, chlorophyll content and the activities of SOD, POD, CAT and soluble protein content in summer maize ear leaf were significantly increased with more water supplying, and the content of MDA decreased significantly. Under the condition of the same moisture, these indicators were also significantly increased with the increasing nitrogen application and MDA content was reduced significantly. However, these indicators (except MDA) of W 3 N 3 , W 3 N 2 and W 2 N 3 treatments were maintained at a higher level and the MDA content was lo-wer compared with other treatments despite the fact that there were no significant difference among these three treatments, which indicated that the interactive effects of water and controlled release urea had an important role in maintaining the function of ear leaf, delaying the leaf senescence, and was beneficial to the photosynthates production and obtaining higher yield of summer maize. Integrating the yield, LAI, chlorophyll content, various protective enzymes activity, MDA and soluble protein content, controlled release urea application rate of 225 kg N·hm -2 was the best treatment as the soil moisture content was (75±5

  12. Zooplankton data: Vertical distributions of zooplankton in the Norweigian and Greenland Seas during summer, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, P.V.Z.; Smith, S.L.; Schwarting, E.M.

    1993-08-01

    Recent studies of zooplankton populations in the Greenland Sea have focused on processes at the Marginal Ice Zone (MIZ) and the areas immediately adjacent to it under the ice and in open water. These studies have shown a relatively short period of intense secondary productivity which is closely linked temporally and spatially to phytoplankton blooms occurring near the ice edge in spring and early summer. During the summer of 1989 we participated in a project focusing on benthic and water column processes in the basins of the Norwegian and Greenland Seas. This study allowed us to compare biological processes atmore » the MIZ with those occurring in the open waters of the Greenland Sea, and to compare processes at both of these locations with those in the Norwegian Sea. The data presented in this report are the results of zooplankton net tows covering the upper 1000 meters of the water column over the Norwegian Sea basin and the Greenland Sea basin, and the upper 500 meters of open water adjacent to the MIZ in the Greenland Sea. Sampling was conducted between 12 and 29 July 1989.« less

  13. Observations of the summer Red Sea circulation

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  14. Relations between winter climatic variables and April streamflows in New England and implications for summer streamflows

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2012-01-01

    A period of much below normal streamflow in southern New England during April 2012 raised concerns that a long-term period of drought could evolve through late spring and summer, leading to potential water availability issues. To understand better the relations between winter climatic variables and April streamflows, April streamflows from 31 streamflow gages in New England that drain relatively natural watersheds were tested for year-to-year correlation with winter precipitation and air temperature from nearby meteorological sites. Higher winter (December through March) precipitation is associated with higher April streamflows at many gages in northern and central New England. This implies that snowpack accumulation is an important mechanism for winter water storage and subsequently important for spring streamflows in this area. Higher March air temperatures are associated with lower April streamflows at many gages in central and southern New England, likely because the majority of snowmelt runoff occurs before April in warm years. A warm March 2012 contributed to early snowmelt runoff in New England and to much below normal April streamflows in southern New England. However, no strong relation was found between historical April streamflows and late-spring or summer streamflows in New England. The lack of a strong relation implies that summer precipitation, rather than spring conditions, controls summer streamflows.

  15. North Atlantic early 20th century warming and impact on European summer: Mechanisms and Predictability

    NASA Astrophysics Data System (ADS)

    Müller, Wolfgang

    2017-04-01

    During the last century, substantial climate variations in the North Atlantic have occurred, such as the warmings in the 1920s and 1990s. Such variations are considered to be part of the variability known as the Atlantic Multidecadal Variations (AMV) and have a strong impact on local climates such as European summers. Here a synthesis of previous works is presented which describe the occurrence of the warming in the 1920s in the North Atlantic and its impact on the European summer climate (Müller et al. 2014, 2015). For this the 20th century reanalysis (20CR) and 20CR forced ocean experiments are evaluated. It can be shown that the North Atlantic Current and Sub-Polar Gyre are strengthened as a result of an increased pressure gradient over the North Atlantic. Concurrently, Labrador Sea convection and Atlantic meridional overturning circulation (AMOC) increase. The intensified NAC, SPG, and AMOC redistribute sub-tropical water into the North Atlantic and Nordic Seas, thereby increasing observed and modelled temperature and salinity during the 1920s. Further a mechanism is proposed by which North Atlantic heat fluxes associated with the AMV modulate European decadal summer climate (Ghosh et al. 2016). By using 20CR, it can be shown that multi-decadal variations in the European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. This response induce a sea level pressure structure modulating meridional temperature advection over north-western Europe and Blocking statistics over central Europe. This structure is shown to be the leading mode of variability and is independent of the summer North Atlantic Oscillation. Ghosh, R., W.A. Müller, J. Bader, and J. Baehr, 2016: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Clim. Dyn. doi:10.10007/s00382-016-3283-4 Müller W. A., D. Matei, M. Bersch, J. H. Jungclaus, H. Haak, K

  16. Influence of the Northeast Cold Vortex on Flooding in Northeast China in Summer 2013

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Gao, Hui

    2018-04-01

    Severe flooding occurred in Northeast China (NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to early July and from mid July to early August, respectively. During the summer season of 2013, the western Pacific subtropical high (WPSH) was located farther westward, which strengthened the southerly winds on its west side in the lower troposphere. Under this circulation pattern, more water vapor was transported to North China and NEC. Another moisture transport pathway to NEC was traced to the cross-equatorial flow over the Bay of Bengal. In mid-high latitudes in summer 2013, the Northeast Cold Vortex (NECV) was much stronger and remained stable over NEC. Thus, the cold air flow from its northwest side frequently met with the warm and wet air from the south to form stronger moisture convergence at lower levels in the troposphere, resulting in increased precipitation over the region. Correlation analysis indicated that the NECV played a more direct role than the WPSH. Synoptic analyses of the two heaviest flood cases on 2 and 16 July confirmed this conclusion. The four wettest summers in NEC before 2000 were also analyzed and the results were consistent with the conclusion that both the WPSH and the NECV led to the intense rainfall in NEC, but the NECV had a more direct role.

  17. Summer Youth Forestry Institute

    ERIC Educational Resources Information Center

    Roesch, Gabrielle E.; Neuffer, Tamara; Zobrist, Kevin

    2013-01-01

    The Summer Youth Forestry Institute (SYFI) was developed to inspire youth through experiential learning opportunities and early work experience in the field of natural resources. Declining enrollments in forestry and other natural resource careers has made it necessary to actively engage youth and provide them with exposure to careers in these…

  18. Quantifying the Effects of Vegetation and Water Source on Water Quality in Three Watersheds in Valles Caldera National Preserve, New Mexico.

    NASA Astrophysics Data System (ADS)

    Kostrzewski, J. M.; Brooks, P. D.

    2005-12-01

    We assessed impacts of vegetative cover and water source on water quality in the Valles Caldera National Preserve (VCNP). Within the preserve we selected three montane watersheds due to vegetative and physical characteristics. Redondo Creek with an area of 11.7 mi2 is a higher elevation (7,000 to 11,200 ft) watershed with a vegetation transition from aspen to ponderosa pine to meadow. The La Jara Creek is a bedrock confined watershed with an area of 1.5 mi2, elevation range of 8,500 to 11,200 ft, and predominate vegetative cover of mixed conifer. The Jaramillo Creek is a lower elevation (8,500 to 10,500 ft) alluvial watershed with an area of 4.5 mi2 which is dominated by grassland vegetation. In the spring, early summer, and late summer we preformed stream and tributary synoptic sampling combined with regular fixed point sampling. Our experimental design includes analysis of conservative solutes (F-, Br-, Cl-, SO42-), water isotopes, and biogeochemical nutrients to quantify water sources, age, and biological influence within each catchment. Preliminary analysis of dissolved organic carbon (DOC) data suggests an early flushing of DOC in all three catchments to a reduced concentration in the early summer months. Elevated chloride and sulfate concentrations in Redondo Creek indicate a deeper water source than La Jara Creek. This difference in water source contributes to the higher variation of DOC concentrations in La Jara Creek (x=2.33 mg/L, s.d.=1.22) and a lower variation in Redondo Creek (x=2.72 mg/L, s.d.=0.49). A continuation of conservative solute and isotopic analyses will constrain hydrologic flow paths to evaluate the effects of vegetation and water source on water quality.

  19. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  20. Water Spout

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2013-01-01

    During the AAPT summer meeting at Creighton University in 2011, Vacek Miglus and I took pictures of early apparatus at the Creighton physics department. The apparatus in the left-hand picture, shown with the spigot closed, appeared to be a liquid-level device: the water level was the same in both the narrow tube and the flaring glass vase.…

  1. Impact of Arctic shelf summer stratification on Holocene climate variability

    NASA Astrophysics Data System (ADS)

    Thibodeau, Benoit; Bauch, Henning A.; Knies, Jochen

    2018-07-01

    Understanding the dynamic of freshwater and sea-ice export from the Arctic is crucial to better comprehend the potential near-future climate change consequences. Here, we report nitrogen isotope data of a core from the Laptev Sea to shed light on the impact of the Holocene Siberian transgression on the summer stratification of the Laptev Sea. Our data suggest that the oceanographic setting was less favourable to sea-ice formation in the Laptev Sea during the early to mid-Holocene. It is only after the sea level reached a standstill at around 4 ka that the water column structure in the Laptev Sea became more stable. Modern-day conditions, often described as "sea-ice factory", were reached about 2 ka ago, after the development of a strong summer stratification. These results are consistent with sea-ice reconstruction along the Transpolar Drift, highlighting the potential contribution of the Laptev Sea to the export of freshwater from the Arctic Ocean.

  2. Seasonal to Mesoscale Variability of Water Masses in Barrow Canyon,Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Nobre, C.; Pickart, R. S.; Moore, K.; Ashjian, C. J.; Arrigo, K. R.; Grebmeier, J. M.; Vagle, S.; Itoh, M.; Berchok, C.; Stabeno, P. J.; Kikuchi, T.; Cooper, L. W.; Hartwell, I.; He, J.

    2016-02-01

    Barrow Canyon is one of the primary conduits by which Pacific-origin water exits the Chukchi Sea into the Canada Basin. As such, it is an ideal location to monitor the different water masses through the year. At the same time, the canyon is an energetic environment where mixing and entrainment can occur, modifying the pacific-origin waters. As part of the Distributed Biological Observatory (DBO) program, a transect across the canyon was occupied 24 times between 2010-2013 by international ships of opportunity passing through the region during summer and early-fall. Here we present results from an analysis of these sections to determine the seasonal evolution of the water masses and to investigate the nature of the mesoscale variability. The mean state shows the clear presence of six water masses present at various times through the summer. The seasonal evolution of these summer water masses is characterized both in depth space and in temperature-salinity (T-S) space. Clear patterns emerge, including the arrival of Alaskan coastal water and its modification in early-fall. The primary mesoscale variability is associated with wind-driven upwelling events which occur predominantly in September. The atmospheric forcing of these events is investigated as is the oceanic response.

  3. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms.

    PubMed

    Dreano, Denis; Raitsos, Dionysios E; Gittings, John; Krokos, George; Hoteit, Ibrahim

    2016-01-01

    Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)-the Ocean Color Climate Change Initiative (OC-CCI)-has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin's shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.

  4. THE NATIONAL EPIDEMIOLOGICAL AND ENVIRONMENTAL ASSESSMENT OF RECREATIONAL WATERS: RESULTS FROM THE FIRST SUMMER OF FULL-SCALE STUDIES

    EPA Science Inventory

    The National Epidemiological and Environmental Assessment of Recreational Waters: Results from the first summer of full-scale studies. Timothy J. Wade, Rebecca L. Calderon, Elizabeth Sams, Kristen Brenner, Michael Beach, Ann H. Williams, Al Dufour.

    Abstract

    Introduc...

  5. Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics

    USGS Publications Warehouse

    Milly, P.C.D.

    1997-01-01

    A possible consequence of increased concentrations of greenhouse gases in Earth's atmosphere is "summer dryness," a decrease of summer plant-available soil water in middle latitudes, caused by increased availability of energy to drive evapotranspiration. Results from a numerical climate model indicate that summer dryness and related changes of land-surface water balances are highly sensitive to possible concomitant changes of plant-available water-holding capacity of soil, which depends on plant rooting depth and density. The model suggests that a 14% decrease of the soil volume whose water is accessible to plant roots would generate the same summer dryness, by one measure, as an equilibrium doubling of atmospheric carbon dioxide. Conversely, a 14% increase of that soil volume would be sufficient to offset the summer dryness associated with carbon-dioxide doubling. Global and regional changes in rooting depth and density may result from (1) plant and plant-community responses to greenhouse warming, to carbon-dioxide fertilization, and to associated changes in the water balance and (2) anthropogenic deforestation and desertification. Given their apparently critical role, heretofore ignored, in global hydroclimatic change, such changes of rooting characteristics should be carefully evaluated using ecosystem observations, theory, and models.

  6. Assessing agricultural drought in summer over Oklahoma Mesonet sites using the water-related vegetation index from MODIS.

    PubMed

    Bajgain, Rajen; Xiao, Xiangming; Basara, Jeffrey; Wagle, Pradeep; Zhou, Yuting; Zhang, Yao; Mahan, Hayden

    2017-02-01

    Agricultural drought, a common phenomenon in most parts of the world, is one of the most challenging natural hazards to monitor effectively. Land surface water index (LSWI), calculated as a normalized ratio between near infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and soil water content. This study examined the potential of a LSWI-based, drought-monitoring algorithm to assess summer drought over 113 Oklahoma Mesonet stations comprising various land cover and soil types in Oklahoma. Drought duration in a year was determined by the number of days with LSWI <0 (DNLSWI) during summer months (June-August). Summer rainfall anomalies and LSWI anomalies followed a similar seasonal dynamics and showed strong correlations (r 2  = 0.62-0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of summer rainfall in Oklahoma. Drought intensity increased with increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was more than 48 days. The comparison between LSWI and the US Drought Monitor (USDM) showed a strong linear negative relationship; i.e., higher drought intensity tends to have lower LSWI values and vice versa. However, the agreement between LSWI-based algorithm and USDM indicators varied substantially from 32 % (D 2 class, moderate drought) to 77 % (0 and D 0 class, no drought) for different drought intensity classes and varied from ∼30 % (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be established by counting DNLSWI (in days) and used as a simple complementary tool in several drought applications for semi-arid and semi-humid regions of Oklahoma. However, larger discrepancies between USDM and the LSWI-based algorithm in arid regions of western Oklahoma suggest the requirement of further adjustment in the algorithm for its application in arid regions.

  7. The simulation of stratospheric water vapor in the NH summer monsoon regions in a suite of WACCM models

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wu, Y.; Huang, Y.; Tilmes, S.

    2016-12-01

    Water vapor maxima are found in the upper troposphere lower stratosphere (UTLS) over Asian and North America monsoon regions during Northern Hemisphere (NH) summer months. High concentrations of stratospheric water vapor are associated with the upper-level anticyclonic circulation and they play an important role in the radiative forcing for the climate system. However, discrepancies in the simulation of stratospheric water vapor are found among different models. In this study, we use both observational data: Aura Microwave Limb Sounder satellite observations (MLS), the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) and chemistry climate model outputs: different configurations of the Whole Atmosphere Community Climate Model (WACCM), including standard configuration of WACCM, WACCM L110, specified chemistry (SC) WACCM and specified dynamics (SD) WACCM. We find that WACCM L110 with finer vertical resolution better simulates the stratospheric water vapor maxima over the summer monsoon regions. To better understand the mechanism, we examine the simulated temperature at around 100 hPa since 100 hPa is known to act as a dehydration mechanism, i.e. the warmer the temperature, the wetter the stratospheric water vapor. We find that both WACCM L110 and SD-WACCM better simulate the temperature at 100 hPa as compared to that of MERRA2. This suggests that improving model vertical resolution and dynamical processes in the UTLS is crucial in simulating the stratospheric water vapor concentrations.

  8. Influence of summer marine fog and low cloud stratus on water relations of evergreen woody shrubs (Arctostaphylos: Ericaceae) in the chaparral of central California.

    PubMed

    Vasey, Michael C; Loik, Michael E; Parker, V Thomas

    2012-10-01

    Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.

  9. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  10. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    NASA Technical Reports Server (NTRS)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  11. Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer

    NASA Astrophysics Data System (ADS)

    Guan, W.; Ren, X.; Hu, H.

    2017-12-01

    The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is

  12. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms

    PubMed Central

    Dreano, Denis; Raitsos, Dionysios E.; Gittings, John; Krokos, George; Hoteit, Ibrahim

    2016-01-01

    Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)—the Ocean Color Climate Change Initiative (OC-CCI)—has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin’s shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms. PMID:28006006

  13. Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice-ocean data assimilation system

    NASA Astrophysics Data System (ADS)

    Nakanowatari, Takuya; Inoue, Jun; Sato, Kazutoshi; Bertino, Laurent; Xie, Jiping; Matsueda, Mio; Yamagami, Akio; Sugimura, Takeshi; Yabuki, Hironori; Otsuka, Natsuhiko

    2018-06-01

    Accelerated retreat of Arctic Ocean summertime sea ice has focused attention on the potential use of the Northern Sea Route (NSR), for which sea ice thickness (SIT) information is crucial for safe maritime navigation. This study evaluated the medium-range (lead time below 10 days) forecast of SIT distribution in the East Siberian Sea (ESS) in early summer (June-July) based on the TOPAZ4 ice-ocean data assimilation system. A comparison of the operational model SIT data with reliable SIT estimates (hindcast, satellite and in situ data) showed that the TOPAZ4 reanalysis qualitatively reproduces the tongue-like distribution of SIT in ESS in early summer and the seasonal variations. Pattern correlation analysis of the SIT forecast data over 3 years (2014-2016) reveals that the early summer SIT distribution is accurately predicted for a lead time of up to 3 days, but that the prediction accuracy drops abruptly after the fourth day, which is related to a dynamical process controlled by synoptic-scale atmospheric fluctuations. For longer lead times ( > 4 days), the thermodynamic melting process takes over, which contributes to most of the remaining prediction accuracy. In July 2014, during which an ice-blocking incident occurred, relatively thick SIT ( ˜ 150 cm) was simulated over the ESS, which is consistent with the reduction in vessel speed. These results suggest that TOPAZ4 sea ice information has great potential for practical applications in summertime maritime navigation via the NSR.

  14. 78 FR 39608 - Safety Zone; Summer in the City Water Ski Show; Fox River, Green Bay, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...-AA00 Safety Zone; Summer in the City Water Ski Show; Fox River, Green Bay, WI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the Fox River in Green Bay, WI. This safety zone is intended to restrict vessels from a portion of the Fox River...

  15. Influences of summer water temperatures on the movement, distribution, and resources use of fluvial Westslope Cutthroat Trout in the South Fork Clearwater River basin

    USGS Publications Warehouse

    Dobos, Marika E.; Corsi, Matthew P.; Schill, Daniel J.; DuPont, Joseph M.; Quist, Michael C.

    2016-01-01

    Although many Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations in Idaho are robust and stable, population densities in some systems remain below management objectives. In many of those systems, such as in the South Fork Clearwater River (SFCR) system, environmental conditions (e.g., summer temperatures) are hypothesized to limit populations of Westslope Cutthroat Trout. Radiotelemetry and snorkeling methods were used to describe seasonal movement patterns, distribution, and habitat use of Westslope Cutthroat Trout in the SFCR during the summers of 2013 and 2014. Sixty-six radio transmitters were surgically implanted into Westslope Cutthroat Trout (170–405 mm TL) from May 30–June 25, 2013, and June 20–July 6, 2014. Sedentary and mobile summer movement patterns by Westslope Cutthroat Trout were observed in the SFCR. Westslope Cutthroat Trout were generally absent from the lower SFCR. In the upper region of the SFCR, fish generally moved from the main-stem SFCR into tributaries as water temperatures increased during the summer. Fish remained in the middle region of the SFCR where water temperatures were cooler than in the upper or lower regions of the SFCR. A spatially explicit water temperature model indicated that the upper and lower regions of the SFCR exceeded thermal tolerance levels of Westslope Cutthroat Trout throughout the summer. During snorkeling, 23 Westslope Cutthroat Trout were observed in 13 sites along the SFCR and at low density (mean ± SD, 0.0003 ± 0.0001 fish/m2). The distribution of fish observed during snorkeling was consistent with the distribution of radio-tagged fish in the SFCR during the summer. Anthropogenic activities (i.e., grazing, mining, road construction, and timber harvest) in the SFCR basin likely altered the natural flow dynamics and temperature regime and thereby limited stream habitat in the SFCR system for Westslope Cutthroat Trout.

  16. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    NASA Astrophysics Data System (ADS)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  17. Ground Water Levels for NGEE Areas A, B, C and D, Barrow, Alaska, 2012-2014

    DOE Data Explorer

    Anna Liljedahl; Cathy Wilson

    2015-06-08

    Ice wedge polygonal tundra water levels were measured at a total of 45 locations representing polygon centers and troughs during three summers. Early season water levels, which were still affected by ice and snow, are represented by manual measurements only. Continuous (less than hourly) measurements followed through early fall (around mid-Sep). The data set contains inundation depth (cm), absolute water level and local ground surface elevation (masl).

  18. Summer stream water temperature models for Great Lakes streams: New York

    USGS Publications Warehouse

    Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.

    2010-01-01

    Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.

  19. Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales

    NASA Astrophysics Data System (ADS)

    Wedgbrow, C. S.; Wilby, R. L.; Fox, H. R.; O'Hare, G.

    2002-02-01

    Future climate change scenarios suggest enhanced temporal and spatial gradients in water resources across the UK. Provision of seasonal forecast statistics for surface climate variables could alleviate some negative effects of climate change on water resource infrastructure. This paper presents a preliminary investigation of spatial and temporal relationships between large-scale North Atlantic climatic indices, drought severity and river flow anomalies in England and Wales. Potentially useful predictive relationships are explored between winter indices of the Polar-Eurasian (POL) teleconnection pattern, the North Atlantic oscillation (NAO), North Atlantic sea surface temperature anomalies (SSTAs), and the summer Palmer drought severity index (PDSI) and reconstructed river flows in England and Wales. Correlation analyses, coherence testing and an index of forecast potential, demonstrate that preceding winter values of the POL index, SSTA (and to a lesser extent the NAO), provide indications of summer and early autumn drought severity and river flow anomalies in parts of northwest, southwest and southeast England. Correlation analyses demonstrate that positive winter anomalies of T1, POL index and NAO index are associated with negative PDSI (i.e. drought) across eastern parts of the British Isles in summer (r < 0.51). Coherence tests show that a positive winter SSTA (1871-1995) and POL index (1950-95) have preceded below-average summer river flows in the northwest and southwest of England and Wales in 70 to 100% of summers. The same rivers have also experienced below-average flows during autumn following negative winter phases of the NAO index in 64 to 93% of summers (1865-1995). Possible explanations for the predictor-predictand relationships are considered, including the memory of groundwater, and ocean-atmosphere coupling, and regional manifestations of synoptic rainfall processes. However, further research is necessary to increase the number of years and

  20. Forest Canopy Water Cycling Responses to an Intermediate Disturbance Revealed Through Stable Water Vapor Isotopes

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Rey Sanchez, C.; Fotis, A. T.; Morin, T. H.; Vogel, C. S.; Gough, C. M.; Aron, P.; Bohrer, G.

    2016-12-01

    Forest structure, age, and species composition modulate fluxes of carbon and water between the land surface and the atmosphere. The response of forests to intermediate disturbances such as ecological succession, species-specific insect invasion, or selective logging that disrupt the canopy but do not promote complete stand replacement, shape how these fluxes evolve through time. We investigate the impact of an intermediate disturbance to water cycling processes by comparing vertical profiles of stable water isotopes in two closely located forest canopies in the northern lower peninsula of Michigan using cavity ring-down spectroscopy. In one of the canopies, an intermediate disturbance was prescribed in 2008 by inducing mortality in all canopy-dominant early successional species. Isotopic compositions of atmospheric water vapor are measured at six heights during two time periods (summer and early fall) at two flux towers and compared with local meteorology and calculated atmospheric back-trajectories. Disturbance has little impact on low-frequency changes in isotopic composition (e.g., >1 day); at these timescales, isotopic composition is strongly related to large-scale moisture transport. In contrast, disturbance has substantial impacts on the vertical distribution of water isotopes throughout the canopy when transpiration rates are high during the summer, but impact is muted during early fall. Sub-diurnal differences in canopy water vapor cycling are likely related to differences in species composition and response to disturbance and changes in canopy structure. Predictions of transpiration fluxes by land-surface models that do not account species-specific relationships and canopy structure are unlikely to capture these relationships, but addition of stable isotopes to land surface models may provide a useful parameter to improve these predictions.

  1. Physical mechanisms of the summer precipitation variations in the Taklimakan and Gobi Desert

    NASA Astrophysics Data System (ADS)

    Huang, W.; Feng, S.; Chen, J.; Chen, F.

    2013-12-01

    The Taklimakan and the adjacent Gobi Desert (TD in short) in northwestern China is one of the most arid regions in the middle latitudes, where water is scarce year round. Using observational precipitation and the reanalysis data, this study investigated the variations of summer precipitation in TD and their association with water vapor flux and atmospheric circulation. Though the long-term mean water vapor is mostly comes from the west, the variations of summer precipitation in TD is dominated by the water vapor flux from the south, originated from the Arabian Sea. The anomalous water vapor flux is closely associated with the meridional teleconnection pattern around 50-80°E and the zonal teleconection pattern along the Asian westerly jet in summer. The meridional teleconnection connecting the Central Asia and the tropical Indian Ocean, and the zonal pattern resembles the ';Silk Road pattern'. The two wave trains connected in Central Asia. The anomalous pressure gradient force between negative height anomalies in Central Asia and the positive height anomalies in Arabian Sea/India and North Central China lead to anomalous ascending motion in TD and bring more water vapor from the Arabian Sea to pass over the Tibetan Plateau to fuel the precipitation development in the study region. These mechanisms lead to out-of-phase relationship between TD precipitation and Indian summer monsoon in the instrumental period and the past 2000 years. The vertically integrated summer water vapor flux (arrows) and 300hPa geopotential height (contour) regressed against the summer precipitation in TD during 1960-2010. Shadings (blue arrows) indicate the correlations between the geopotential height (water vapor flux) and the TD precipitation are significant at the 95% confidence level. The Guliya ice core is marked as star and the proxy monsoon records in Arabian Sea (box cores 723A and RC2730) are marked as triangles. Summer climatological water vapor budget and the correaltion between

  2. Summer Moisture Content of Some Northern Lower Michigan Understory Plants

    Treesearch

    Robert M. Loomis; Richard W. Blank

    1981-01-01

    Summer moisture contents and factors for converting fresh plant weights to ovendry weights were determined for selected herbs, ferns, and small shrubs commonly found on upland sites in northern Lower Michigan. Sampling was done weekly from mid-June through early September 1978, following the period of major plant growth. Average summer moisture contents range from...

  3. No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C₃-grasslands in Switzerland.

    PubMed

    Prechsl, Ulrich E; Burri, Susanne; Gilgen, Anna K; Kahmen, Ansgar; Buchmann, Nina

    2015-01-01

    Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43-68%) to rely on water in the topsoil (0-10 cm), whereas control plants relied less on the topsoil (4-37%) and shifted to deeper soil layers (20-35 cm) during the drought period (29-48%). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.

  4. The decadal-scale variation of the South Asian summer monsoon onset and its connection with the PDO

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Yamazaki, K.

    2013-12-01

    The summer Asian monsoon shows the abrupt increase of precipitation on the onset phase. It is an interesting and important problem when the summer monsoon onset occurs because natural resources, such as water and renewable energy agricultural product, are influenced by the variation of the summer Asian monsoon. Some researchers suggested the advance of the Asian summer monsoon onset in recent decades. We investigated the variation of the Asian monsoon onset using the long-term onset data over Kerala, a state in the southwest region of India, for 1948-2011. We discuss three main questions: 1) how is the variation of the monsoon onset date in the long-term period, 2) how the variation of the onset date is related to variations of atmospheric circulation and SST, and 3) what is the mechanism of such variation. Our main method is composite analysis using monthly-mean data. Though the onset date over Kerala shows the trend toward the early onset in recent three decades, such a trend is not observed in the whole period. It is noteworthy that the onset over Kerala shows the interannual variation on a multi-decadal scale. As regards the early onset years of Kerala, the summer monsoon onset is early over the following regions: the region from the southern Arabian Sea to southwestern India, the region from the southern Bay of Bengal to the Indochina Peninsula and the western North Pacific Ocean. On the other hand, the onset is late over southern China, Taiwan and the northern Philippine Sea. In early onset years of Kerala, the sea surface temperature over the northern Pacific Ocean is very similar to the negative PDO. The stationary wave train related with the negative PDO reaches into the Central Asia region, generates warm anomaly there and hence intensifies the land-sea thermal contrast there, which promotes the summer monsoon onset over South and Southeast Asia. Though the correlation between the onset over Kerala and the PDO is weak before 1976, it becomes high after

  5. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    PubMed

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P < 0.05). Water balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  6. Connections of Precipitable Water Vapor and Total Ozone Anomalies over European Russia with the North Atlantic Oscillation: Specific Features of Summer 2010

    NASA Astrophysics Data System (ADS)

    Sitnov, S. A.; Mokhov, I. I.; Bezverkhny, V. A.

    2017-12-01

    Based on the measurements of precipitable water vapor (PWV) and total column ozone (TCO) from the MODIS satellite instruments (Aqua/Terra platforms), the connections between the North Atlantic Oscillation (NAO) and the anomalies in PWV and TCO over European Russia (ER) in summer 2010 are analyzed. It is found that the PWV (TCO) anomalies over the northern ER in summer 2010 positively (negatively) correlated with the NAO, and the local correlations reached 0.68 (-0.55). The physical mechanisms of the correlations are discussed. A comparative analysis of the relationships between the NAO and the regional PWV and TCO anomalies over ER during the summer seasons of 2000-2015 is carried out.

  7. The Effect of Summer on Value-Added Assessments of Teacher and School Performance

    ERIC Educational Resources Information Center

    Palardy, Gregory J.; Peng, Luyao

    2015-01-01

    This study examines the effects of including the summer period on value-added assessments (VAA) of teacher and school performance at the early grades. The results indicate that 40-62% of the variance in VAA estimates originates from the summer period, depending on the outcome (i.e., reading or math achievement gains). Furthermore, when summer is…

  8. Total Water-Vapor Distribution in the Summer Cloudless Atmosphere over the South of Western Siberia

    NASA Astrophysics Data System (ADS)

    Troshkin, D. N.; Bezuglova, N. N.; Kabanov, M. V.; Pavlov, V. E.; Sokolov, K. I.; Sukovatov, K. Yu.

    2017-12-01

    The spatial distribution of the total water vapor in different climatic zones of the south of Western Siberia in summer of 2008-2011 is studied on the basis of Envisat data. The correlation analysis of the water-vapor time series from the Envisat data W and radiosonde observations w for the territory of Omsk aerological station show that the absolute values of W and w are linearly correlated with a coefficient of 0.77 (significance level p < 0.05). The distribution functions of the total water vapor are calculated based on the number of its measurements by Envisat for a cloudless sky of three zones with different physical properties of the underlying surface, in particular, steppes to the south of the Vasyugan Swamp and forests to the northeast of the Swamp. The distribution functions are bimodal; each mode follows the lognormal law. The parameters of these functions are given.

  9. Influence of Pre- and Postharvest Summer Pruning on the Growth, Yield, Fruit Quality, and Carbohydrate Content of Early Season Peach Cultivars

    PubMed Central

    Ikinci, Ali

    2014-01-01

    Winter and summer pruning are widely applied processes in all fruit trees, including in peach orchard management. This study was conducted to determine the effects of summer prunings (SP), as compared to winter pruning (WP), on shoot length, shoot diameter, trunk cross sectional area (TCSA) increment, fruit yield, fruit quality, and carbohydrate content of two early ripening peach cultivars (“Early Red” and “Maycrest”) of six years of age, grown in semiarid climate conditions, in 2008 to 2010. The trees were grafted on GF 677 rootstocks, trained with a central leader system, and spaced 5 × 5 m apart. The SP carried out after harvesting in July and August decreased the shoot length significantly; however, it increased its diameter. Compared to 2009, this effect was more marked in year 2010. In general, control and winter pruned trees of both cultivars had the highest TCSA increment and yield efficiency. The SP increased the average fruit weight and soluble solids contents (SSC) more than both control and WP. The titratable acidity showed no consistent response to pruning time. The carbohydrate accumulation in shoot was higher in WP and in control than in SP trees. SP significantly affected carbohydrate accumulation; postharvest pruning showed higher carbohydrate content than preharvest pruning. PMID:24737954

  10. Tropical cyclone influence on the long-term variability of Philippine summer monsoon onset

    NASA Astrophysics Data System (ADS)

    Kubota, Hisayuki; Shirooka, Ryuichi; Matsumoto, Jun; Cayanan, Esperanza O.; Hilario, Flaviana D.

    2017-12-01

    The long-term variability of Philippine summer monsoon onset from 1903 to 2013 was investigated. The onset date is defined by daily rainfall data at eight stations in the northwestern Philippines. Summer monsoons tended to start earlier in May after the mid-1990s. Other early onset periods were found during the 1900s, 1920s, and 1930s, and an interdecadal variability of summer monsoon onset was identified. Independent surface wind data observed by ships in the South China Sea (SCS) revealed prevailing westerly wind in May during the early monsoon onset period. To identify atmospheric structures that trigger Philippine summer monsoon onset, we focused on the year 2013, conducting intensive upper-air observations. Tropical cyclone (TC) Yagi traveled northward in the Philippine Sea (PS) in 2013 and triggered the Philippine monsoon onset by intensifying moist low-level southwesterly wind in the southwestern Philippines and intensifying low-level southerly wind after the monsoon onset in the northwestern Philippines. The influence of TC was analyzed by the probability of the existence of TC in the PS and the SCS since 1951, which was found to be significantly correlated with the Philippine summer monsoon onset date. After the mid-1990s, early monsoon onset was influenced by active TC formation in the PS and the SCS. However, the role of TC activity decreased during the late summer monsoon periods. In general, it was found that TC activity in the PS and the SCS plays a key role in initiating Philippine summer monsoon onset. [Figure not available: see fulltext.

  11. Relationship between Water and Carbon Utilization under Different Straw Mulching and Plant Density of Summer Maize in North China Plain

    NASA Astrophysics Data System (ADS)

    Liu, Quanru; Du, Shoujian; Yin, Honglian; Wang, Juan

    2018-03-01

    To explore the relationship between water and carbon utilization and key factors to keep high water use efficiency (WUE), a 2-yr experiment was conduct by covering 0 and 0.6 kg m-2 straw to the surface of soil with plant densities of 1.0 × 105, 7.5 × 104, and 5.5 × 104 plants ha-1 in North China Plain during summer maize growing seasons of the 2012 and 2013. Results showed that straw mulching not only increased grain yield (GY), WUE, and carbon efficient ratio (CER) but also inhibited CO2 emission significantly. WUE positively correlated with CER, GY and negative correlated with evapotranspiration (ET) and CO2 emission. CER had the larger direct effect on WUE compared with ET and CO2 emission. The results indicate that straw mulching management in summer maize growing seasons could make sense for inhibiting CO2 emission.

  12. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    NASA Astrophysics Data System (ADS)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  13. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    USGS Publications Warehouse

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  14. South Polar Cap, Summer 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is the south polar cap of Mars as it appeared to the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on April 17, 2000. In winter and early spring, this entire scene would be covered by frost. In summer, the cap shrinks to its minimum size, as shown here. Even though it is summer, observations made by the Viking orbiters in the 1970s showed that the south polar cap remains cold enough that the polar frost (seen here as white) consists of carbon dioxide. Carbon dioxide freezes at temperatures around -125o C (-193o F). Mid-summer afternoon sunlight illuminates this scene from the upper left from about 11.2o above the horizon. Soon the cap will experience sunsets; by June 2000, this pole will be in autumn, and the area covered by frost will begin to grow. Winter will return to the south polar region in December 2000. The polar cap from left to right is about 420 km (260 mi) across.

  15. The Role of Late Summer Melt Pond Water Layers in the Ocean Mixed Layer on Enhancing Ice/Ocean Albedo Feedbacks in the Arctic

    NASA Astrophysics Data System (ADS)

    Stanton, T. P.; Shaw, W. J.

    2016-02-01

    Drainage of surface melt pond water into the top of the ocean mixed layer is seen widely in the Arctic ice pack in later summer (for example Gallaher et al 2015). Under calm conditions, this fresh water forms a thin, stratified layer immediately below the ice which is dynamically decoupled from the thicker, underlying seasonal mixed layer by the density difference between the two layers. The ephemeral surface layer is significantly warmer than the underlying ocean water owing to the higher freezing temperature of the fresh melt water. How the presence of this warm ephemeral layer enhances basal melt rate and speeds the destruction of the floes is investigated. High resolution timeseries measurements of T/S profiles in the 2m of the ocean immediately below the ice, and eddy-correlation fluxes of heat, salt and momentum 2.5m below the ice were made from an Autonomous Ocean Flux Buoy over a 2 month interval in later summer of 2015 as a component of the ONR Marginal Ice Zone project. The stratification and turbulent forcing observations are used with a 1 D turbulence closure model to understand how momentum and incoming radiative energy are stored and redistributed within the ephemeral layer. Under low wind forcing conditions both turbulent mixing energy and the water with high departure from freezing are trapped in the ephemeral layer by the strong density gradient at the base of the layer, resulting in rapid basal melting. This case is contrasted with model runs where the ephemeral layer heat is allowed to mix across the seasonal mixed layer, which results in slower basal melt rates. Consequently, the salinity-trapped warm ephemeral layer results in the formation of more open water earlier in the summer season, in turn resulting in increased cumulative heating of the ocean mixed layer, enhancing ice/ocean albedo feedbacks.

  16. Long term trends in sewage abatement and water quality in the Hudson-Raritan Estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.; O`Shea, M.L.

    1995-12-31

    Long-term trends in dissolved oxygen (DO) and coliform bacteria concentrations are used to evaluate the impact of 70 years of sewage abatement and treatment in the Hudson-Raritan Estuary near New York City (NYC). Regional construction of wastewater treatment plants since the 1920`s has reduced discharges of untreated sewage into the estuary from approximately 47 M{sup 3}/S in 1936 to less than 0.1 M{sup 3}/S by 1994. From at least 1922 through the early 1960s, average summer DO percent saturation in the Hudson River varied between 35--50% in surface waters and 25--40% in bottom waters. Beginning in the late 1970s, DOmore » concentrations increased through the 1980s and especially into the 1990s, coinciding with the secondary treatment upgrade of the 7.4 M3/s North River plant in the spring of 1991. Average summer percent saturation in the early 1 990s exceeded 80% in surface waters and 60% in bottom waters. In addition, summer DO minima increased from less than 1.5 mg/L in the early 1970s, to greater than 3.0 mg/L in the 1990s, and the duration of hypoxia during summer months has been reduced. While this general trend has been observed throughout the estuary, some areas have displayed recent declines in DO, possibly due to increasing eutrophication. Total coliforms also display strong decreasing trends from the 1960s into the 1990s, with declines attributed to plant construction and expansion, and improved operation of the sewer system. Metal loadings have also decreased significantly. Signs of improved ecosystem quality include reopened beaches and shellfish beds, re-infestation of woodpilings by marine wood-borers, and the resurgence of wading birds in several areas of the estuary.« less

  17. A strong summer phytoplankton bloom southeast of Vietnam in 2007, a transitional year from El Niño to La Niña

    PubMed Central

    Chen, Fajin; Han, Guoqi

    2018-01-01

    Summer upwelling occurs frequently off the southeast Vietnam coast in the western South China Sea (SCS), where summer phytoplankton blooms generally appear during June-August. In this study, we investigate inter-annual variation of Ekman pumping and offshore transport, and its modulation on summer blooms southeast of Vietnam. The results indicate that there are low intensities of summer blooms in El Niño years, under higher sea surface temperatures (SST) and weaker winds. However, a different pattern of monthly chlorophyll a (Chl-a) blooms occurred in summer of 2007, a transitional stage from El Niño to La Niña, with weak (strong) wind and high (low) SST before (after) early July. There is a weak phytoplankton bloom before July 2007 and a strong phytoplankton bloom after July 2007. The abrupt change in the wind intensity may enhance the upwelling associated with Ekman pumping and offshore Ekman transport, bringing more high-nutrient water into the upper layer from the subsurface, and thus leading to an evident Chl-a bloom in the region. PMID:29342148

  18. A strong summer phytoplankton bloom southeast of Vietnam in 2007, a transitional year from El Niño to La Niña.

    PubMed

    Zhao, Hui; Zhao, Jian; Sun, Xingli; Chen, Fajin; Han, Guoqi

    2018-01-01

    Summer upwelling occurs frequently off the southeast Vietnam coast in the western South China Sea (SCS), where summer phytoplankton blooms generally appear during June-August. In this study, we investigate inter-annual variation of Ekman pumping and offshore transport, and its modulation on summer blooms southeast of Vietnam. The results indicate that there are low intensities of summer blooms in El Niño years, under higher sea surface temperatures (SST) and weaker winds. However, a different pattern of monthly chlorophyll a (Chl-a) blooms occurred in summer of 2007, a transitional stage from El Niño to La Niña, with weak (strong) wind and high (low) SST before (after) early July. There is a weak phytoplankton bloom before July 2007 and a strong phytoplankton bloom after July 2007. The abrupt change in the wind intensity may enhance the upwelling associated with Ekman pumping and offshore Ekman transport, bringing more high-nutrient water into the upper layer from the subsurface, and thus leading to an evident Chl-a bloom in the region.

  19. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  20. Water, plants, and early human habitats in eastern Africa.

    PubMed

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa--Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water-lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C(4)-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm · y(-1) and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change.

  1. Drivers of larval fish assemblage shift during the spring-summer transition in the coastal Mediterranean

    NASA Astrophysics Data System (ADS)

    Álvarez, Itziar; Catalán, Ignacio A.; Jordi, Antoni; Palmer, Miquel; Sabatés, Ana; Basterretxea, Gotzon

    2012-01-01

    The influence of coastal environmental conditions from winter-spring to summer on fish larvae assemblages in a temperate area has suggested a seasonal shift in ecosystem-level variation through which trophic pathways shift from the pelagic to the benthic system. This variation may be related to marked effects in the reproductive strategies in the fishes inhabiting the area and indirectly affect ichthyoplankton assemblages. Larval fish assemblages were sampled fortnightly at three stations located in coastal waters off southern Mallorca (Western Mediterranean) from March to August 2007, covering the main spawning period for the resident coastal fish in this region. The larval fish assemblage showed clear seasonality with higher specific abundance but lower diversity in the spring. Two main assemblages were identified: a spring assemblage, occurring at surface seawater temperatures <20 °C and dominated by species with relatively larger home ranges, such as Boops boops, Sardina pilchardus, Trachurus trachurus, and Spicara smaris, and a summer assemblage characterised by the presence of the benthopelagic Coris julis, Serranus hepatus, Serranus cabrilla and Mullus spp., among others. The shift between these ichthyoplankton communities occurred in early June, coinciding with the onset of summer hydrographical conditions and the local benthic productivity peak.

  2. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying.

    PubMed

    Brinkmann, Nadine; Eugster, Werner; Zweifel, Roman; Buchmann, Nina; Kahmen, Ansgar

    2016-12-01

    Temperate forests are expected to be particularly vulnerable to drought and soil drying because they are not adapted to such conditions and perform best in mesic environments. Here we ask (i) how sensitively four common temperate tree species (Fagus sylvatica, Picea abies, Acer pseudoplatanus and Fraxinus excelsior) respond in their water relations to summer soil drying and seek to determine (ii) if species-specific responses to summer soil drying are related to the onset of declining water status across the four species. Throughout 2012 and 2013 we determined tree water deficit (TWD) as a proxy for tree water status from recorded stem radius changes and monitored sap flow rates with sensors on 16 mature trees studied in the field at Lägeren, Switzerland. All tree species responded equally in their relative maximum TWD to the onset of declining soil moisture. This implies that the water supply of all tree species was affected by declining soil moisture and that none of the four species was able to fully maintain its water status, e.g., by access to alternative water sources in the soil. In contrast we found strong and highly species-specific responses of sap flow to declining soil moisture with the strongest decline in P. abies (92%), followed by F. sylvatica (53%) and A. pseudoplatanus (48%). F. excelsior did not significantly reduce sap flow. We hypothesize the species-specific responses in sap flow to declining soil moisture that occur despite a simultaneous increase in relative TWD in all species reflect how fast these species approach critical levels of their water status, which is most likely influenced by species-specific traits determining the hydraulic properties of the species tree. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Influences of spring-to-summer sea surface temperatures over different Indian Ocean domains on the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Li, Zhenning; Yang, Song

    2017-11-01

    The influences of spring-to-summer sea surface temperature (SST) anomalies in different domains of the Indian Ocean (IO) on the Asian summer monsoon are investigated by conducting a series of numerical experiments using the NCAR CAM4 model. It is found that, to a certain extent, the springtime IO SST anomalies can persist to the summer season. The spring-to-summer IO SST anomalies associated with the IO basin warming mode are strongly linked to the summer climate over Asia, especially the South Asian monsoon (SAM) and the East Asian monsoon. Among this connection, the warming of tropical IO plays the most critical role, and the warming of southern IO is important for monsoon variation and prediction prior to the full development of the monsoon. The atmospheric response to IO basin wide warming is similar with that to tropical IO warming. The influence of northern IO warming on the SAM, however, is opposite to the effect of southern IO warming. Meanwhile, the discrepancies between the results from idealized SST forcing simulations and observations, especially for the southern IO, reveal that the dominant role of air-sea interaction in the monsoon-IO coupled system cannot be ignored. Moreover, the springtime northern IO warming seems to favor an early onset or a stronger persistence of the SAM.

  4. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  5. Global-scale water circulation in the Earth's mantle: Implications for the mantle water budget in the early Earth

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Spiegelman, Marc W.

    2017-04-01

    We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.

  6. Water-quality reconnaissance of the Middle and North Branch Park River watersheds, northeastern North Dakota

    USGS Publications Warehouse

    Ackerman, D.J.

    1980-01-01

    In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.

  7. An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Wen, Zhiping; Wu, Renguang; Li, Xiuzhen; Chen, Ruidan

    2018-05-01

    The East Asian summer monsoon is affected by processes in the mid-high latitudes in addition to various tropical and subtropical systems. The present study investigates the summer sea level pressure (SLP) variability over northern East Asia (NEA) and emphasizes the closed active center over the Mongolian region. It is found that the seasonal mean Mongolian SLP (MSLP) anomaly is closely connected with the variability of summertime regional synoptic extra-tropical cyclones on longer time scales. A significant inter-decadal increase in the MSLP around the early 1990s has been detected, which is accompanied by a weakening in the activity of regional extra-tropical cyclones. Recent warming over NEA may have a contribution to the inter-decadal change, which features evidently meridional inhomogeneity around 45°N. The inhomogeneous air temperature anomaly distribution results in decreased vertical wind shear, reduced atmospheric baroclinicity over the Mongolian region, and thus inactive regional cyclones and increased MSLP in the latter decade. The associated temperature anomaly distribution may be partly attributed to regional inhomogeneity in cloud and radiation anomalies, and it is further maintained by two positive feedback mechanisms associated with atmospheric internal processes: one via adiabatic heating and the other via horizontal temperature advection.

  8. In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Bian, Jianchun; Pan, Laura L.; Paulik, Laura; Vömel, Holger; Chen, Hongbin; Lu, Daren

    2012-10-01

    The Asian summer monsoon (ASM) anticyclone circulation system is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. The observational evidence, however, is largely based on satellite retrievals. We report the first coincident in situ measurements of water vapor and ozone within the ASM anticyclone. The combined water vapor and ozonesondes were launched from Kunming, China in August 2009 and Lhasa, China in August 2010. In total, 11 and 12 sondes were launched in Kunming and Lhasa, respectively. We present the key characteristics of these measurements, and provide a comparison to similar measurements from an equatorial tropical location, during the Tropical Composition, Cloud and Climate Coupling (TC4) campaign in July and August of 2007. Results show that the ASM anticyclone region has higher water vapor and lower ozone concentrations in the upper troposphere and lower stratosphere than the TC4 observations. The results also show that the cold point tropopause in the ASM region has a higher average height and potential temperature. The in situ observations therefore support the satellite-based conclusion that the ASM is an effective transport pathway for water vapor to enter stratosphere.

  9. Primary production processes in ice-free waters of the Ross Sea (Antarctica) during the austral summer 1996

    NASA Astrophysics Data System (ADS)

    Saggiomo, Vincenzo; Catalano, Giulio; Mangoni, Olga; Budillon, Giorgio; Carrada, Gian Carlo

    During austral summer 1996 (January 11-February 10) oceanographic studies were conducted in the ice-free waters of the Ross Sea within the framework of the Italian National Programme for Antarctic Research (PNRA). Thirty-eight hydrological stations within 72.5°-78.0°S and 164.5°E-175.0°W were sampled. Size-fractionated photosynthetic pigments were measured at all stations, primary production was evaluated at 24 stations, and P vs. E measurements were carried out at 3 or 4 depths at 18 stations. In the open Ross Sea, integrated chlorophyll a (Chl a) concentrations were between 15 and 102 mg m -2 in the 0-100 m layer, and primary production was between 124 and 638 mgC m -2 d -1. Offshore waters were completely ice-free and the water column was only slightly stratified. However, phytoplankton biomass and production were relatively high wherever the Upper Mixed Layer (UML) was <30 m deep. Hydrographic characters and phytoplankton distribution varied remarkably along the coastal waters of Terra Nova Bay; during a late summer bloom, integrated primary production ranged between 620 and 2411 mgC m -2 d -1. The dimensional composition of phytoplankton communities and the Redfield ratio indicate that the Ross Sea was dominated by diatoms. The photosynthetic parameters measured suggest the importance of the depth and dynamics of the UML, where the integrated mean irradiance always exceeded the photosaturation index ( Ek). However, occasionally different PmaxB and Ek were recorded even in apparently well-mixed water columns. The presence of turbulent cells in different layers of the photic zone or a weak wind-driven vertical mixing, which might induce different photosynthetic indexes, can thus be hypothesized. Simulated in situ primary production was well correlated with production calculated with the photosynthetic coefficients obtained from the P vs. E experiments. Our data could be used to construct models aimed at assessing primary production in the area studied.

  10. Insights into the Drought and Heat Avoidance Mechanism in Summer-Dormant Mediterranean Tall Fescue

    PubMed Central

    Missaoui, Ali M.; Malinowski, Dariusz P.; Pinchak, William E.; Kigel, Jaime

    2017-01-01

    Summer dormancy is an evolutionary response that some perennial cool-season grasses adopted as an avoidance strategy to escape summer drought and heat. It is correlated with superior survival after severe summer droughts in many perennial grass species originating from Mediterranean environments. Understanding the genetic mechanism and environmental determinants of summer dormancy is important for interpreting the evolutionary history of seasonal dormancy and for the development of genomic tools to improve the efficiency of genetic selection for this important trait. The objectives of this research are to assess morphological and biochemical attributes that seem to be specific for the characterization of summer dormancy in tall fescue, and to validate the hypothesis that genes underlying stem determinacy might be involved in the mechanism of summer dormancy. Our results suggest that vernalization is an important requirement in the onset of summer dormancy in tall fescue. Non-vernalized tall fescue plants do not exhibit summer dormancy as vernalized plants do and behave more like summer-active types. This is manifested by continuation of shoot growth and high root activity in water uptake during summer months. Therefore, summer dormancy in tall fescue should be tested only in plants that underwent vernalization and are not subjected to water deficit during summer months. Total phenolic concentration in tiller bases (antioxidants) does not seem to be related to vernalization. It is most likely an environmental response to protect meristems from oxidative stress. Sequence analysis of the TFL1 homolog CEN gene from tall fescue genotypes belonging to summer-dormant and summer-active tall fescue types showed a unique deletion of three nucleotides specific to the dormant genotypes. Higher tiller bud numbers in dormant plants that were not allowed to flower and complete the reproductive cycle, confirmed that stem determinacy is a major component in the mechanism of summer

  11. Insights into the Drought and Heat Avoidance Mechanism in Summer-Dormant Mediterranean Tall Fescue.

    PubMed

    Missaoui, Ali M; Malinowski, Dariusz P; Pinchak, William E; Kigel, Jaime

    2017-01-01

    Summer dormancy is an evolutionary response that some perennial cool-season grasses adopted as an avoidance strategy to escape summer drought and heat. It is correlated with superior survival after severe summer droughts in many perennial grass species originating from Mediterranean environments. Understanding the genetic mechanism and environmental determinants of summer dormancy is important for interpreting the evolutionary history of seasonal dormancy and for the development of genomic tools to improve the efficiency of genetic selection for this important trait. The objectives of this research are to assess morphological and biochemical attributes that seem to be specific for the characterization of summer dormancy in tall fescue, and to validate the hypothesis that genes underlying stem determinacy might be involved in the mechanism of summer dormancy. Our results suggest that vernalization is an important requirement in the onset of summer dormancy in tall fescue. Non-vernalized tall fescue plants do not exhibit summer dormancy as vernalized plants do and behave more like summer-active types. This is manifested by continuation of shoot growth and high root activity in water uptake during summer months. Therefore, summer dormancy in tall fescue should be tested only in plants that underwent vernalization and are not subjected to water deficit during summer months. Total phenolic concentration in tiller bases (antioxidants) does not seem to be related to vernalization. It is most likely an environmental response to protect meristems from oxidative stress. Sequence analysis of the TFL1 homolog CEN gene from tall fescue genotypes belonging to summer-dormant and summer-active tall fescue types showed a unique deletion of three nucleotides specific to the dormant genotypes. Higher tiller bud numbers in dormant plants that were not allowed to flower and complete the reproductive cycle, confirmed that stem determinacy is a major component in the mechanism of summer

  12. Cuts, Challenges, and Deals: What Did You Do with Your Summer?

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    As a new school year begins across the country, many are looking back on a long, hot summer and wondering where did all that time go? For early childhood public policy, three developments over the summer are likely to shape the field for quite some time. By July, many states had wound up their budgets for the coming year. In addition to cuts to…

  13. Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed

    NASA Astrophysics Data System (ADS)

    Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.

    2015-12-01

    The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.

  14. Skilful Seasonal Predictions of Summer European Rainfall

    NASA Astrophysics Data System (ADS)

    Dunstone, Nick; Smith, Doug; Scaife, Adam; Hermanson, Leon; Fereday, David; O'Reilly, Chris; Stirling, Alison; Eade, Rosie; Gordon, Margaret; MacLachlan, Craig; Woollings, Tim; Sheen, Katy; Belcher, Stephen

    2018-04-01

    Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however, current seasonal forecast systems show no significant forecast skill. Here we show that skillful predictions are possible (r 0.5, p < 0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g., wet summers 2007-2012) and some of the large individual events (e.g., dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapor into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general—although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses), very large ensembles (>80 members) are required for skillful predictions. This work is promising for the development of European summer rainfall climate services.

  15. Secondary formation of water-soluble organic acids and α-dicarbonyls and their contributions to total carbon and water-soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.

    2010-11-01

    Water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C6, C9), and α-dicarbonyls (glyoxal and methylglyoxal) were determined in the Arctic aerosols collected in winter to early summer, as well as aerosol total carbon (TC) and water-soluble organic carbon (WSOC). Concentrations of TC and WSOC gradually decreased from late February to early June with a peak in spring, indicating a photochemical formation of water-soluble organic aerosols at a polar sunrise. We found that total (C2-C11) diacids (7-84 ng m-3) increased at polar sunrise by a factor of 4 and then decreased toward summer. Their contributions to TC (average 4.0%) peaked in early April and mid-May. The contribution of total diacids to WSOC was on average 7.1%. It gradually increased from February (5%) to a maximum in April (12.7%) with a second peak in mid-May (10.4%). Although oxalic acid (C2) is the dominant diacid until April, its predominance was replaced by succinic acid (C4) after polar sunrise. This may indicate that photochemical production of C2 was overwhelmed by its degradation when solar radiation was intensified and the atmospheric transport of its precursors from midlatitudes to the Arctic was ended in May. Interestingly, the contributions of azelaic (C9) and ω-oxobutanoic acids to WSOC increased in early summer possibly due to an enhanced emission of biogenic unsaturated fatty acids from the ocean followed by photochemical oxidation in the atmosphere. An enhanced contribution of diacids to TC and WSOC at polar sunrise may significantly alter the hygroscopic properties of organic aerosols in the Arctic.

  16. EFFECTS OF SUMMER DROUGHT ON THE WATER RELATIONS, PHYSIOLOGY AND GROWTH OF LARGE AND SMALL PLANTS OF PROSOPIS GLANDULOSA AND LARREA TRIDENTATA

    EPA Science Inventory

    Large and small plants of creosotebush and mesquite were subjected to drought during summer 1993. arge and small plants responded to drought with lowered xylem water potential and lowered photosynthetic gas exchange. arge plants appear to maintain a reduced but constant photosynt...

  17. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Watermore » was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.« less

  18. Repeated Summer Drought and Re-watering during the First Growing Year of Oak (Quercus petraea) Delay Autumn Senescence and Bud Burst in the Following Spring

    PubMed Central

    Vander Mijnsbrugge, Kristine; Turcsán, Arion; Maes, Jorne; Duchêne, Nils; Meeus, Steven; Steppe, Kathy; Steenackers, Marijke

    2016-01-01

    Climate change predicts harsher summer droughts for mid-latitudes in Europe. To enhance our understanding of the putative impacts on forest regeneration, we studied the response of oak seedlings (Quercus petraea) to water deficit. Potted seedlings originating from three locally sourced provenances were subjected to two successive drought periods during the first growing season each followed by a plentiful re-watering. Here, we describe survival and phenological responses after the second drought treatment, applying general linear mixed modeling. From the 441 drought treated seedlings 189 subsisted with higher chances of survival among smaller plants and among single plants per pot compared to doubles. Remarkably, survival was independent of the provenance, although relatively more plants had died off in two provenances compared to the third one with mean plant height being higher in one provenance and standard deviation of plant height being higher in the other. Timing of leaf senescence was clearly delayed after the severe drought treatment followed by re-watering, with two seedlings per pot showing a lesser retardation compared to single plants. This delay can be interpreted as a compensation time in which plants recover before entering the subsequent developmental process of leaf senescence, although it renders seedlings more vulnerable to early autumn frosts because of the delayed hardening of the shoots. Onset of bud flush in the subsequent spring still showed a significant but small delay in the drought treated group, independent of the number of seedlings per pot, and can be considered as an after effect of the delayed senescence. In both phenological models significant differences among the three provenances were detected independent from the treatment. The only provenance that is believed to be local of origin, displayed the earliest leaf senescence and the latest flushing, suggesting an adaptation to the local maritime climate. This provenance also

  19. Water, plants, and early human habitats in eastern Africa

    PubMed Central

    Magill, Clayton R.; Ashley, Gail M.; Freeman, Katherine H.

    2013-01-01

    Water and its influence on plants likely exerted strong adaptive pressures in human evolution. Understanding relationships among water, plants, and early humans is limited both by incomplete terrestrial records of environmental change and by indirect proxy data for water availability. Here we present a continuous record of stable hydrogen-isotope compositions (expressed as δD values) for lipid biomarkers preserved in lake sediments from an early Pleistocene archaeological site in eastern Africa—Olduvai Gorge. We convert sedimentary leaf- and algal-lipid δD values into estimates for ancient source-water δD values by accounting for biochemical, physiological, and environmental influences on isotopic fractionation via published water–lipid enrichment factors for living plants, algae, and recent sediments. Reconstructed precipitation and lake-water δD values, respectively, are consistent with modern isotopic hydrology and reveal that dramatic fluctuations in water availability accompanied ecosystem changes. Drier conditions, indicated by less negative δD values, occur in association with stable carbon-isotopic evidence for open, C4-dominated grassland ecosystems. Wetter conditions, indicated by lower δD values, are associated with expanded woody cover across the ancient landscape. Estimates for ancient precipitation amounts, based on reconstructed precipitation δD values, range between approximately 250 and 700 mm·y−1 and are consistent with modern precipitation data for eastern Africa. We conclude that freshwater availability exerted a substantial influence on eastern African ecosystems and, by extension, was central to early human proliferation during periods of rapid climate change. PMID:23267102

  20. Increasing fruit, vegetable and water consumption in summer day camps--3-year findings of the healthy lunchbox challenge.

    PubMed

    Beets, Michael W; Tilley, Falon; Weaver, Robert G; Turner-McGrievy, Gabrielle M; Moore, Justin B

    2014-10-01

    The objective of this study was to describe the 3-year outcomes (2011-2013) from the healthy lunchbox challenge (HLC) delivered in the US-based summer day camps (SDC) (8-10 hours day(-1), 10-11 weeks summer(-1), SDC) to increase children and staff bringing fruit, vegetables and water (FVW) each day. A single group pre- with multiple post-test design was used in four large-scale SDCs serving more than 550 children day(-1) (6-12 years). The percentage of foods/beverages brought by children/staff, staff promotion of healthy eating and children's consumption of FVW was assessed via direct observation over 98 days across three summers. For children (3308 observations), fruit and vegetables (>11-16%) increased; no changes were observed for FVW for staff (398 observations). Reductions in unhealthy foods/beverages (e.g. soda/pop and chips) were observed for both children and staff (minus -10% to 38%). Staff role modeling unhealthy eating/drinking initially decreased but increased by 2013. The majority of children who brought fruit/vegetables consumed them. The HLC can influence the foods/beverages brought to SDCs. Enhancements are required to further increase FVW brought and consumed. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Portland Schools Foundation Ninth Grade Counts: Student Data Report--Outcomes and Participation for Summer 2009 and Participation for Summer 2010

    ERIC Educational Resources Information Center

    Northwest Evaluation Association, 2011

    2011-01-01

    The Portland Schools Foundation's (PSF) Ninth Grade Counts initiative is a network of more than twenty independent summer transition programs targeting Academic Priority (or "at-risk") students. These programs share a common focus on providing academic support, enrichment, and career/college exposure for students who show early warning…

  2. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula

    2017-09-01

    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist

  3. Black plastic mulch combined with summer cover crop increases the yield and water use efficiency of apple tree on the rainfed Loess Plateau

    PubMed Central

    Zheng, Wei; Wen, Meijuan; Zhao, Zhiyuan; Liu, Jie; Wang, Zhaohui; Li, Ziyan

    2017-01-01

    Water deficit significantly limits dryland rainfed fruit production, so increasing water conservation is crucial for improving fruit productivity in arid and semiarid areas. In this study, we tested two treatments in an apple orchard: 1) PC treatment comprising black plastic mulch (BPM) (in-row) with weed control (inter-row); 2) and PGC treatment comprising BPM (in-row) combined with a summer cover crop (inter-row) of rape (Brassica campestris L.), which was sown in mid-June and was living from July to September. Under PGC, the inter-row soil water storage increased by 17.9% and 11.5% compared with PC after the harvest in 2013 and 2014, respectively, but there was no significant increase in 2015. The evapotranspiration (ET) from the inter-row areas during the cover crop period was lower under PGC than PC in 2013 (19.6%), 2014 (11.3%), and 2015 (13.3%). However, the differences in the total ET from the inter-row areas between the two treatments were not obvious, and the total ET from in-row areas was higher under PGC than PC due to the increased water uptake by apple trees under PGC. The apple yield, water use efficiency during the cover crop period (WUEg) and total water use efficiency (WUE) fluctuated during the experimental years. Compared with PC, the apple yield increased by 14.1%, 18.8%, and 26.7% under PGC in 2013, 2014, and 2015, respectively. In addition, the WUEg was 26.4%, 24.7%, and 32.7% higher under PGC compared with PC in 2013, 2014, and 2015, respectively. Thus, the WUE under PGC was 13.8% and 11.7% higher than that under PC in 2013 and 2014, respectively, but the difference was not significant in 2015 (p = 0.0527). Thus, BPM combined with a summer cover crop is recommended for decreasing the summer ET and promoting apple production in rainfed dryland areas where the rainy season is usually the hot season. PMID:28957428

  4. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  5. Special Educators' Perceptions of Summer Employment and Community Participation Opportunities for Youth with Disabilities

    ERIC Educational Resources Information Center

    Trainor, Audrey A.; Carter, Erik W.; Owens, Laura A.; Swedeen, Beth

    2008-01-01

    Although connecting youth with disabilities with early work experiences has emerged as a recommended practice in transition education, little is known about the extent to which the summer months might offer a meaningful context for providing such experiences. To understand the perspectives of special educators regarding promoting summer employment…

  6. The summer hydrographic structure of the Hanna Shoal region on the northeastern Chukchi Sea shelf: 2011-2013

    NASA Astrophysics Data System (ADS)

    Weingartner, Thomas; Fang, Ying-Chih; Winsor, Peter; Dobbins, Elizabeth; Potter, Rachel; Statscewich, Hank; Mudge, Todd; Irving, Brita; Sousa, Leandra; Borg, Keath

    2017-10-01

    We used shipboard and towed CTD, current meter, and satellite-tracked drifter data to examine the hydrographic structure in the northeastern Chukchi Sea in August-September of 2011, 2012, and 2013. In all years the densest winter water was around and east of Hanna Shoal. In 2012 and 2013, a 15 m deep layer of cold, dilute meltwater overlaid the dense water north of the shelf region between 71.2 and 71.5°N. A front extends from the southwest side of Hanna Shoal toward the head of Barrow Canyon, separated meltwaters from warmer, saltier Bering Sea Summer Waters to the south. Stratification was stronger and the surface density variances in the meso- and sub-mesoscale range were higher north of the front than to the south. No meltwater or surface fronts were present in 2011 due to a very early ice retreat. Differences in summer ice cover may be due to differences in the amount of grounded ice atop Hanna Shoal associated with the previous winter's regional ice drift. Along the north side of Hanna Shoal the model-predicted clockwise barotropic flow carrying waters from the western side of the Shoal appears to converge with a counterclockwise, baroclinic flow on the northeast side. The baroclinic tendency is confined to the upper 30 m and can include waters transported from the shelfbreak. The inferred zonal convergence implies that north of the Shoal: a) near-surface waters are a mixture of waters from the western and eastern Chukchi Sea and b) the cross-isobath pressure gradient collapses thereby facilitating leakage of upper layer waters northward across the shelf.

  7. Influence of transport conditions and pre-slaughter water shower spray during summer on protein characteristics and water distribution of broiler breast meat.

    PubMed

    Xing, Tong; Li, Yun Han; Li, Ming; Jiang, Nan Nan; Xu, Xing Lian; Zhou, Guang Hong

    2016-11-01

    This study investigated the effects of pre-slaughter transport during summer and subsequent water shower spray on broiler meat quality and protein characteristics. Arbor Acres broiler chickens (n = 126, 42 days old, mixed sex, 2.5-3 kg) were randomly categorized into three treatments: (i) control group without transport (C); (ii) 30 min transport (T); and (iii) 30 min transport followed by 10 min water shower spray and 20 min lairage (T/W). Each treatment consisted of six replicates with seven birds each. Ambient temperature was 32-35°C during transportation. Results indicated that transport during high ambient temperature denatured myosin and sarcoplasmic proteins, led to decreased protein solubility and resulted in glycogen phosphorylase precipitated to the myofibrillar fraction. Furthermore, meat quality in the transport group showed a pale, soft and exudative (PSE)-like syndrome. Water shower spray during lairage after transport reduced the degree of protein denaturation and lessened the deterioration of meat quality. © 2016 Japanese Society of Animal Science.

  8. Questa baseline and pre-mining ground-water quality investigation 4. Historical surface-water quality for the Red River Valley, New Mexico, 1965 to 2001

    USGS Publications Warehouse

    Maest, Ann S.; Nordstrom, D. Kirk; LoVetere, Sara H.

    2004-01-01

    Historical water-quality samples collected from the Red River over the past 35 years were compiled, reviewed for quality, and evaluated to determine influences on water quality over time. Hydrologic conditions in the Red River were found to have a major effect on water quality. The lowest sulfate concentrations were associated with the highest flow events, especially peak, rising limb, and falling limb conditions. The highest sulfate concentrations were associated with the early part of the rising limb of summer thunderstorm events and early snowmelt runoff, transient events that can be difficult to capture as part of planned sampling programs but were observed in some of the data. The first increase in flows in the spring, or during summer thunderstorm events, causes a flushing of sulfide oxidation products from scars and mine-disturbed areas to the Red River before being diluted by rising river waters. A trend of increasing sulfate concentrations and loads over long time periods also was noted at the Questa Ranger Station gage on the Red River, possibly related to mining activities, because the same trend is not apparent for concentrations upstream. This trend was only apparent when the dynamic events of snowmelt and summer rainstorms were eliminated and only low-flow concentrations were considered. An increase in sulfate concentrations and loads over time was not seen at locations upstream from the Molycorp, Inc., molybdenum mine and downstream from scar areas. Sulfate concentrations and loads and zinc concentrations downstream from the mine were uniformly higher, and alkalinity values were consistently lower, than those upstream from the mine, suggesting that additional sources of sulfate, zinc, and acidity enter the river in the vicinity of the mine. During storm events, alkalinity values decreased both upstream and downstream of the mine, indicating that natural sources, most likely scar areas, can cause short-term changes in the buffering capacity of the Red

  9. Ice versus liquid water saturation in simulations of the indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Glazer, Russell H.; Misra, Vasubandhu

    2018-02-01

    At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between w

  10. POST-DREISSENID INCREASES IN TRANSPARENCY DURING SUMMER STRATIFICATION IN THE OFFSHORE WATERS OF LAKE ONTARIO: IS A REDUCTION IN WHITING EVENTS THE CAUSE?

    EPA Science Inventory

    This recent publication uses data from EPA's long-term Great Lakes monitoring programs and data from Environment Canada to investigate Dreissenid impacts on calcium concentrations and summer water clarity in Lake Ontario. Since the dreissenid invasion of the lower Great Lakes, c...

  11. Influence of summer sowing dates, N fertilization and irrigation on autumn VSP accumulation and dynamics of spring regrowth in alfalfa (Medicago sativa L.).

    PubMed

    Justes, Eric; Thiébeau, Pascal; Avice, Jean-Christophe; Lemaire, Gilles; Volenec, Jeffrey J; Ourry, Alain

    2002-01-01

    Herbage yield of alfalfa (Medicago sativa L.) depends on forage management or environmental conditions that change C and N resource acquisition, and endogenous plants factors such as root organic reserves and number of active meristems. The aim of this work is to study the influence of two sowing dates in summer (12 July or 9 August), N fertilization (0 or 100 kg ha(-1)) and/or irrigation applied during the first year of alfalfa establishment on (i) the accumulation of N organic reserves (soluble proteins and more specifically vegetative storage protein) in taproots during autumn, (ii) the number of crown axillary meristems present at the end of winter and (iii) the dynamics of spring shoot growth. Delaying the sowing date for one month reduced root growth and root N storage, especially vegetative storage proteins (VSP) during autumn. Irrespective of sowing dates, N fertilization did not affect root biomass, number of crown buds, total root N, root soluble protein or VSP concentrations. By contrast, water deficiency during alfalfa establishment in the early summer reduced both root growth and N reserve accumulation. When spring growth resumed, there is a significant linear relationship between leaf area development and soluble protein and VSP concentrations in taproots, and also the number of crown buds. The results showed that an early sowing date and adequate water status during the summer allowed alfalfa plants to accumulate N reserves by increasing taproot mass and soluble protein concentrations, especially VSPs. This resulted in rapid shoot regrowth rates the following spring.

  12. Summer Watering Patterns of Mule Deer in the Great Basin Desert, USA: Implications of Differential Use by Individuals and the Sexes for Management of Water Resources

    PubMed Central

    Shields, Andrew V.; Larsen, Randy T.; Whiting, Jericho C.

    2012-01-01

    Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus) in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs) on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species. PMID:23125557

  13. Summer watering patterns of mule deer in the Great Basin Desert, USA: implications of differential use by individuals and the sexes for management of water resources.

    PubMed

    Shields, Andrew V; Larsen, Randy T; Whiting, Jericho C

    2012-01-01

    Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus) in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs) on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species.

  14. The News, Summer 1999-Summer 2000.

    ERIC Educational Resources Information Center

    Robertson, Trische, Ed.

    2000-01-01

    This document contains five quarterly issues of The News, published Summer 1999 through Summer 2000 by the Community College League of California. The following items are contained in this document: "Grant Writing Success Depends on Resources, Information and Staff,""College Theaters Perform Balancing Act with Community,…

  15. Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching.

    PubMed

    Lavigne, M B; Foster, R J; Goodine, G

    2004-04-01

    Soil respiration (rs), soil temperature (Ts) and volumetric soil water content were measured in a balsam fir (Abies balsamea (L.) Mill.) ecosystem from 1998 to 2001. Seasonal variation in root and microbial respiration, and covariation in abiotic factors confounded interpretation of the effects of Ts and soil water potential (Psis) on rs. To minimize the confounding effect of temperature, we analyzed the effect of Psis on rs during the summers of 1998-2000 when changes in Ts were slight. Soil respiration declined 25-50% in response to modest water stress (minimum Psis of -0.6 to -0.2 MPa), and between years, there was substantial variation in the relationship between rs and Psis. In the summer of 2000, 2-m2 plots were subjected to drought for 1 month and other plots were irrigated. The relationship between summertime rs and Psis in the experimental plots was similar to that estimated from the survey data obtained during the same summer. In late spring and early autumn of 2001, 2-m2 trenched and untrenched plots were subjected to drought or exposed to rainfall. It was dry in the early autumn and there was severe soil drying (Psis of -10 MPa in untrenched plots and -2 MPa in trenched plots). In spring, rs in untrenched plots responded more to modest water stress than rs in trenched plots, indicating that root respiration is more sensitive than microbial respiration to water stress at this time of year. The response to abiotic factors differed significantly between spring and autumn in untrenched plots but not in trenched plots, indicating that root activity was greater in early autumn than in late spring, and that roots acclimated to the sustained, severe water stress experienced before and during the autumn.

  16. Mercury and Other Chemical Constituents in Pacific Marine Fog Water: Results from Two Summers of Sampling in FogNet

    NASA Astrophysics Data System (ADS)

    Sahba, O.; Conrad, W. S.; Moranville, R.; Weiss-Penzias, P. S.; Coale, K. H.; Heim, W. A.; Olson, A.; Chiswell, H.; Fernandez, D.; Oliphant, A. J.; Dodge, C.; Hoskins, D.; Farlin, J. P.

    2015-12-01

    The principle goal of FogNet is to make measurements of monomethylmercury (MMHg), total mercury (HgT) and major ions in Pacific Coast marine fog water samples taken from eight land stations from Big Sur to Trinidad, California in order to calculate the flux of MMHg and HgT to the terrestrial ecosystem, and observe their spatial and temporal patterns and relationships to major ion concentrations in fog water. During the summers of 2014 and 2015, fog water samples were analyzed and mean concentrations and standard deviations were found (number of samples shown in parentheses): MMHg = 1.9 +/- 2.4 ng L-1 (119), HgT = 28.7 +/- 26.8 ng L-1 (86), NH4+ = 2.5 +/- 2.0 mg L-1 (49), Cl- = 7.1 +/- 13.7 mg L-1 (52), SO42- = 15.3 +/- 26.0 mg L-1 (52), NO3- = 5.9 +/- 7.7 mg L-1 (48), and pH = 5.4 +/- 0.8 (38). For comparison, MMHg in rain is ~0.1 ng L-1 from previous studies. A temporal pattern in MMHg concentrations in fog was observed with monthly means of all samples for June, July, August and September 2014 (in ng L-1) of 4.2, 2.4, 1.4, and 0.8, respectively (see figure). No such temporal pattern was observed for HgT concentrations. The coastal site at Humboldt State University Marine Labs had fog water samples with the highest concentrations of MMHg (4.0 +/-4.3), whereas the inland site of Pepperwood had the lowest mean concentration of 0.7 +/- 0.5 ng L-1 among all sites. The temporal and spatial patterns observed in MMHg concentrations in fog water are consistent with a marine source. By combining the measured concentrations of analytes in fog water with an estimate of deposition from collocated 1 m2 passive fog collectors, the fluxes of MMHg and HgT for the summer of 2014 were 0.003-0.14 and 0.04-0.55 mg m-2 y-1, respectively. For MMHg, the mean fog water flux is about 4 times larger than that calculated for rain, and for HgT, the mean fog water flux is about 10% that calculated for rain.

  17. An early warning and control system for urban, drinking water quality protection: China's experience.

    PubMed

    Hou, Dibo; Song, Xiaoxuan; Zhang, Guangxin; Zhang, Hongjian; Loaiciga, Hugo

    2013-07-01

    An event-driven, urban, drinking water quality early warning and control system (DEWS) is proposed to cope with China's urgent need for protecting its urban drinking water. The DEWS has a web service structure and provides users with water quality monitoring functions, water quality early warning functions, and water quality accident decision-making functions. The DEWS functionality is guided by the principles of control theory and risk assessment as applied to the feedback control of urban water supply systems. The DEWS has been deployed in several large Chinese cities and found to perform well insofar as water quality early warning and emergency decision-making is concerned. This paper describes a DEWS for urban water quality protection that has been developed in China.

  18. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  19. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages

    NASA Astrophysics Data System (ADS)

    Samartin, Stéphanie; Heiri, Oliver; Joos, Fortunat; Renssen, Hans; Franke, Jörg; Brönnimann, Stefan; Tinner, Willy

    2017-02-01

    Understanding past climate trends is key for reliable projections of global warming and associated risks and hazards. Uncomfortably large discrepancies between vegetation-based summer temperature reconstructions (mainly based on pollen) and climate model results have been reported for the current interglacial, the Holocene. For the Mediterranean region these reconstructions indicate cooler-than-present mid-Holocene summers, in contrast with expectations based on climate models and long-term changes in summer insolation. We present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region. The Holocene thermal maximum is reconstructed 9,000-5,000 years ago and estimated to have been 1-2 °C warmer in mean July temperature than the recent pre-industrial period, consistent with glacier and marine records, and with transient climate model runs. This combined evidence implies that widely used pollen-based summer temperature reconstructions in the Mediterranean area are significantly biased by precipitation or other forcings such as early land use. Our interpretation can resolve the previous discrepancy between climate models and quantitative palaeotemperature records for millennial-scale Holocene summer temperature trends in the Mediterranean region. It also suggests that pollen-based evidence for cool mid-Holocene summers in other semi-arid to arid regions of the Northern Hemisphere may have to be reconsidered, with potential implications for global-scale reconstructions.

  20. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    NASA Astrophysics Data System (ADS)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  1. Two different sources of water for the early solar nebula.

    PubMed

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  2. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  3. Within-summer variation in out-of-hospital cardiac arrest due to extremely long sunshine duration.

    PubMed

    Onozuka, Daisuke; Hagihara, Akihito

    2017-03-15

    Although several studies have reported the impacts of extremely high temperatures on cardiovascular diseases, no studies have examined whether variation in out-of-hospital cardiac arrest (OHCA) due to extremely long sunshine duration changes during the summer. We obtained daily data on all cases of OHCA and weather variations for all 47 prefectures of Japan during the summer (June to September) between 2005 and 2014. A distributed lag non-linear model combined with a quasi-Poisson regression model was used to estimate within-summer variation in OHCA due to extremely long sunshine duration for each prefecture. Then, multivariate random-effects meta-analysis was performed to derive overall effect estimates of sunshine duration at the national level. A total of 166,496 OHCAs of presumed cardiac origin met the inclusion criteria. The minimum morbidity percentile (MMP) was the 0th percentile of sunshine duration at the national level. The overall cumulative relative risk (RR) at the 99th percentile vs. the MMP was 1.15 (95% CI: 1.05-1.27) during the summer. The effect of extremely long sunshine duration on OHCA in early summer was acute and did not persist, whereas an identical effect was observed in late summer, but it was delayed and lasted for several days. During summer periods, excessive sunshine duration could increase the risk of OHCA. Timely preventive measures to reduce the OHCA risk due to extremely long sunshine duration are important in early summer, whereas these measures could include a wider time window of several days to reduce the risk in late summer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Do summer temperatures trigger spring maturation in pacific lamprey, Entosphenus tridentatus?

    USGS Publications Warehouse

    Clemens, B.J.; Van De Wetering, S.; Kaufman, J.; Holt, R.A.; Schreck, C.B.

    2009-01-01

    Pacific lamprey, Entosphenus tridentatus, return to streams and use somatic energy to fuel maturation. Body size decreases, the lamprey mature, spawn, and then die. We predicted that warm, summer temperatures (>20 ??C) would accentuate shrinkage in body size, and expedite sexual maturation and subsequent death. We compared fish reared in the laboratory at diel fluctuating temperatures of 20-24 ??C (mean = 21.8 ??C) with fish reared at cooler temperatures (13.6 ??C). The results confirmed our predictions. Lamprey from the warm water group showed significantly greater proportional decreases in body weight following the summer temperature treatments than fish from the cool water group. A greater proportion of warm water fish sexually matured (100%) and died (97%) the following spring than cool water fish (53% sexually mature, 61% died). Females tended to mature and die earlier than males, most obviously in the warm water group. ?? 2009 John Wiley & Sons A/S.

  5. Effects of short-term environmental disturbances on living benthic foraminifera during the Pacific oyster summer mortality in the Marennes-Oléron Bay (France).

    PubMed

    Bouchet, Vincent M P; Debenay, Jean-Pierre; Sauriau, Pierre-Guy; Radford-Knoery, Joël; Soletchnik, Patrick

    2007-09-01

    Sediment cores were collected from April to August 2004 on tidal mudflats of the macrotidal Marennes-Oléron Bay (SW France), famous for the cultivation of Pacific oysters (Crassostrea gigas). The response of living (stained) benthic foraminifera to short-term biogeochemical disturbances in the sediment and overlying water, which may be involved in oyster summer mortality, was monitored. Short-term hypoxia occurred in early June, in conjunction with a sudden rise in temperature. In mid-June, the ammonia content of sediment porewater increased, leading to potentially maximal flux towards overlying waters. Foraminiferal assemblages, particularly in the topmost layer, were altered. Ammonia tepida was the most tolerant to temperature increase and hypoxic conditions whereas Brizalina variabilis and Haynesina germanica were sensitive to organic degradation and hypoxia. Cribroelphidium gunteri was the most opportunistic during recolonisation. Benthic foraminifera showed that short-term biochemical changes in the sediment are toxic and may be involved in the summer mortality of Pacific oysters.

  6. Adolescent Summer Care Arrangements and Risk for Obesity the Following School Year

    PubMed Central

    Mahoney, Joseph L.

    2010-01-01

    This longitudinal study identified common summer care arrangements for adolescents and examined whether those arrangements predicted risk for obesity (Body Mass Index (BMI) ≥ 85th percentile for age and gender) the following school year. Participants were a nationally representative sample of 1,766 adolescents ages 10–18 from the Panel Study of Income Dynamics-Child Development Supplement. Results showed that, beyond measures of BMI taken before the summer and several demographic aspects known to predict obesity, youth whose summer arrangements involved regular participation in organized activities (e.g., sports) showed significantly lower risk for obesity than other youth. This was most evident during early adolescence. Youth whose regular summer arrangement was predominated by parent care without organized activity participation showed the greatest risk for obesity. PMID:20863556

  7. Summer Stratification and Fall Overturn--In a Jar.

    ERIC Educational Resources Information Center

    Foley, Arlene F.

    1984-01-01

    Provided are procedures for a demonstration which illustrates the concept of summer stratification of lakes in the temperate zone as maintained by thermal resistance to mixing. The demonstration requires only food coloring, water, and common laboratory equipment. (JN)

  8. Development of Water Resources Drought Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, B. P. T.; Chen, C. H.

    2017-12-01

    Signs of impending drought are often vague and result from hydrologic uncertainty. Because of this, determining the appropriate time to enforce water supply restrictions is difficult. This study proposes a drought early warning index (DEWI) that can help water resource managers to anticipate droughts so that preparations can be made to mitigate the impact of water shortages. This study employs the expected-deficit-rate of normal water supply conditions as the drought early warning index. An annual-use-reservoir-based water supply system in southern Taiwan was selected as the case study. The water supply simulation was based on reservoir storage at the evaluation time and the reservoir inflow series to cope with the actual water supply process until the end of the hydrologic year. A variety of deficits could be realized during different hydrologic years of records and assumptions of initial reservoir storage. These deficits are illustrated using the Average Shortage Rate (ASR) and the value of the ASR, namely the DEWI. The ASR is divided into 5 levels according to 5 deficit-tolerance combinations of each kind of annual demand. A linear regression model and a Neuro-Fuzzy Computing Technique model were employed to estimate the DEWI using selected factors deduced from supply-demand traits and available information, including: rainfall, reservoir inflow and storage data. The chosen methods mentioned above are used to explain a significant index is useful for both model development and decision making. Tests in the Tsengwen-Wushantou reservoir system showed this DEWI to perform very well in adopting the proper mitigation policy at the end of the wet season.

  9. Summer precipitation prediction in the source region of the Yellow River using climate indices

    NASA Astrophysics Data System (ADS)

    Yuan, F.

    2016-12-01

    The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role in meeting downstream water resources requirements. The summer precipitation from June to September in the source region of the Yellow River accounts for about 70% of the annual total, and its decrease would cause further water shortage problems. Consequently, the objectives of this study are to improve the understanding of the linkages between the precipitation in the source region of the Yellow River and global teleconnection patterns, and to predict the summer precipitation based on revealed teleconnections. Spatial variability of precipitation was investigated based on three homogeneous sub-regions. Principal component analysis and singular value decomposition were used to find significant relations between the precipitation in the source region of the Yellow River and global teleconnection patterns using climate indices. A back-propagation neural network was developed to predict the summer precipitation using significantly correlated climate indices. It was found that precipitation in the study area is positively related to North Atlantic Oscillation, West Pacific Pattern and El Nino Southern Oscillation, and inversely related to Polar Eurasian pattern. Summer precipitation was overall well predicted using these significantly correlated climate indices, and the Pearson correlation coefficient between predicted and observed summer precipitation was in general larger than 0.6. The results are useful for integrated water resources management in the Yellow River basin.

  10. Low-oxygen waters limited habitable space for early animals.

    PubMed

    Tostevin, R; Wood, R A; Shields, G A; Poulton, S W; Guilbaud, R; Bowyer, F; Penny, A M; He, T; Curtis, A; Hoffmann, K H; Clarkson, M O

    2016-09-23

    The oceans at the start of the Neoproterozoic Era (1,000-541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (∼550-541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems.

  11. Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.; van Dijken, Gert L.; Alderkamp, Anne-Carlijn; Erickson, Zachary K.; Lewis, Kate M.; Lowry, Kate E.; Joy-Warren, Hannah L.; Middag, Rob; Nash-Arrigo, Janice E.; Selz, Virginia; van de Poll, Willem

    2017-12-01

    The Palmer Long-Term Ecological Research program has sampled waters of the western Antarctic Peninsula (wAP) annually each summer since 1990. However, information about the wAP prior to the peak of the phytoplankton bloom in January is sparse. Here we present results from a spring process cruise that sampled the wAP in the early stages of phytoplankton bloom development in 2014. Sea ice concentrations were high on the shelf relative to nonshelf waters, especially toward the south. Macronutrients were high and nonlimiting to phytoplankton growth in both shelf and nonshelf waters, while dissolved iron concentrations were high only on the shelf. Phytoplankton were in good physiological condition throughout the wAP, although biomass on the shelf was uniformly low, presumably because of heavy sea ice cover. In contrast, an early stage phytoplankton bloom was observed beneath variable sea ice cover just seaward of the shelf break. Chlorophyll a concentrations in the bloom reached 2 mg m-3 within a 100-150 km band between the SBACC and SACCF. The location of the bloom appeared to be controlled by a balance between enhanced vertical mixing at the position of the two fronts and increased stratification due to melting sea ice between them. Unlike summer, when diatoms overwhelmingly dominate the phytoplankton population of the wAP, the haptophyte Phaeocystis antarctica dominated in spring, although diatoms were common. These results suggest that factors controlling phytoplankton abundance and composition change seasonally and may differentially affect phytoplankton populations as environmental conditions within the wAP region continue to change.

  12. Seasonal changes in antifreeze protein gene transcription and water content of beetle Microdera punctipennis (Coleoptera, Tenebrionidae) from Gurbantonggut desert in Central Asia.

    PubMed

    Hou, F; Ma, J; Liu, X; Wang, Y; Liu, X N; Zhang, F C

    2010-01-01

    Desert beetle Microdera punctipennis (Coleoptera: Tenebriondae) is a special species in Gurbantonggut Desert in Central Asia. To investigate the possible strategy it employs for cold survival, seasonal changes in supercooling point (SCP), body water content, haemolymph osmolality and antifreeze protein gene (Mpafp) expression were measured over 13 months. Our results show SCPs in M. punctipennis adults changed from -8.0°C in summer to -18.7°C in winter. During winter, adults endured modest water loss; total water decreased from 65.4 percent in summer to 55.9% in winter. Mpafp mRNAs level increased by 13.1 fold from summer to early winter, and haemolymph osmolality increased accordingly from 550 mOsm to 1486 mOsm. Correlation coefficient of Mpafp mRNAs level and SCP indicates that Mpafp mRNA explained 65.3 percent of the variation in SCPs. The correlation between Mpafp mRNA level and total water reflected an indirect influence of antifreeze protein on water content via reducing SCP.

  13. Tracing the spatial and temporal variability of different water sources in a glacierized Alpine catchment (Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Comiti, Francesco; Vignoli, Gianluca; Simoni, Silvia; Dinale, Roberto

    2016-04-01

    during winter baseflow. The tracer-based comparison of stream locations in both sub-catchments showed similar isotopic and EC dynamics during summer, highlighting that meltwater dynamics may hide the hydrochemical impact of different geology in both sub-catchments. However, EC dynamics in the left sub-catchment during winter indicated a spatial gradient of increasing solute concentrations along the stream. In contrast, an inverse spatial gradient of solute concentrations was found in the right sub-catchment, revealing a different geological setting and highlighting the impact of intensive subglacial weathering. At the outlet, EC and isotopic composition could identify clear seasonal melt water dynamics with periods of pronounced snowmelt contributions in early summer followed by dominant glacier melt contributions. Rainfall events seemed to play a major role on stream water composition in autumn. Also the impact of early snowfall and its melting in autumn 2015 could be traced and well distinguished from early summer snowmelt water. Turbidity showed strong oscillations at the daily scale during summer melt periods and markedly responded to rainfall events, which could be attributed to rapid mobilization of fine sediments and suspended sediment transport in the study catchment.

  14. Early successional forest habitats and water resources

    Treesearch

    James Vose; Chelcy Ford

    2011-01-01

    Tree harvests that create early successional habitats have direct and indirect impacts on water resources in forests of the Central Hardwood Region. Streamflow increases substantially immediately after timber harvest, but increases decline as leaf area recovers and biomass aggrades. Post-harvest increases in stormflow of 10–20%, generally do not contribute to...

  15. The analytical framework of water and armed conflict: a focus on the 2006 Summer War between Israel and Lebanon.

    PubMed

    Zeitoun, Mark; Eid-Sabbagh, Karim; Loveless, Jeremy

    2014-01-01

    This paper develops an analytical framework to investigate the relationship between water and armed conflict, and applies it to the 'Summer War' of 2006 between Israel and Lebanon (Hezbollah). The framework broadens and deepens existing classifications by assessing the impact of acts of war as indiscriminate or targeted, and evaluating them in terms of international norms and law, in particular International Humanitarian Law (IHL). In the case at hand, the relationship is characterised by extensive damage in Lebanon to drinking water infrastructure and resources. This is seen as a clear violation of the letter and the spirit of IHL, while the partial destruction of more than 50 public water towers compromises water rights and national development goals. The absence of pre-war environmental baselines makes it difficult to gauge the impact on water resources, suggesting a role for those with first-hand knowledge of the hostilities to develop a more effective response before, during, and after armed conflict. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  16. Seasonal carbon storage and growth in Mediterranean tree seedlings under different water conditions.

    PubMed

    Sanz-Pérez, Virginia; Castro-Díez, Pilar; Joffre, Richard

    2009-09-01

    In all Mediterranean-type ecosystems, evergreen and deciduous trees differing in wood anatomy, growth pattern and leaf habit coexist, suggesting distinct adaptative responses to environmental constraints. This study examined the effects of summer water stress on carbon (C) storage and growth in seedlings of three coexisting Mediterranean trees that differed in phenology and wood anatomy characteristics: Quercus ilex subsp. ballota (Desf.) Samp., Quercus faginea Lam. and Pinus halepensis L. Seedlings were subjected to two levels of watering during two consecutive summers and achieved a minimum of -0.5 and -2.5 MPa of predawn water potential in the control and water stress treatment, respectively. Both Quercus species concentrated their growth in the early growing season, demanding higher C in early spring but replenishing C-stores in autumn. These species allocated more biomass to roots, having larger belowground starch and lipid reserves. Quercus species differed in seasonal storage dynamics from P. halepensis. This species allocated most of its C to aboveground growth, which occurred gradually during the growing season, leading to fewer C-reserves. Soluble sugar and starch concentrations sharply declined in August in P. halepensis, probably because reserves support respiration demands as this species closed stomata earlier under water stress. Drought reduced growth of the three species, mainly in Q. faginea and P. halepensis, but not C-reserves, suggesting that growth under water stress conditions is not limited by C-availability.

  17. Thermal characteristics of soil and water during summer at King Sejong Station, King George Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Lee, J. Y.; Yoon, H.

    2016-12-01

    Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.

  18. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil

    USGS Publications Warehouse

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.

    2006-01-01

    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate

  19. Phytoplankton Functional Diversity and New Production during Spring and Summer Blooms in the Subarctic Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Van Oostende, N.; Fawcett, S. E.; Ji, Q.; Marconi, D.; Lueders-Dumont, J.; Sigman, D. M.; Ward, B. B.

    2016-02-01

    In the subarctic Atlantic Ocean, strong seasonal cycles in heat flux drive water column stratification, which governs the supply of nutrients to the euphotic zone that fuels the biological pump. The export efficiency of this pump is largely determined by the degree of phytoplankton nitrate (NO3-) assimilation and phytoplankton community size structure. We investigated nitrogen assimilation and phytoplankton community diversity and size structure on spring and summer cruises to 50-60°N, by using a combination of stable isotope tracer incubations, flow cytometry, microscopy, size-fractionated algal pigments, and nitrogen stable isotope measurements. As expected in springtime, the phytoplankton community was dominated by large (>20 µm) cells while in late summer these constituted only a minor fraction of the assemblage. The weaker density stratification of the water column in the spring compared to the summer allowed for surface nutrient concentrations that were not limiting phytoplankton growth (e.g., [NO3-] >5 µM). Despite stronger water column stratification in the summer, partial consumption of subsurface NO3-, which had recently been supplied to surface waters, allowed for total chlorophyll and particulate nitrogen (PN) to attain similar levels during both seasons. High 15N/14N of NO3- and PN in surface waters is consistent with NO3- utilization. In springtime, however, the phytoplankton community consumed NO3- at PN-normalized rates up to fivefold higher than in summer, despite having comparable uptake rates for ammonium and inorganic carbon. This observation implies that the large phytoplankton species that are abundant in spring, mostly diatoms, contribute disproportionally more to new production than summer phytoplankton communities that are devoid of these large species.

  20. Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas; Liniger, Mark

    2016-04-01

    Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.

  1. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  2. "Cottage Cheese" Texture on the Martian North Polar Cap in Summer

    NASA Image and Video Library

    2000-04-24

    This image is illuminated by sunlight from the upper left. Martian Dairy Products? If parts of the south polar cap can look like swiss cheese (see "Martian "Swiss Cheese""), then parts of the north polar cap might as well look like some kind of cheese, too. This picture shows a cottage cheese-like texture on the surface of a part of the residual--summertime--north polar cap. The north polar cap surface is mostly covered by pits, cracks, small bumps and knobs. In this image, the cap surface appears bright and the floors of pits look dark. Based upon observations made by the Mariner 9 and Viking orbiters in the 1970s, the north polar residual cap is thought to contain mostly water ice because its summertime temperature is usually near the freezing point of water and water vapor was observed by the Vikings to be coming off the cap during summer. The south residual cap is different--its temperatures in summer remain cold enough to freeze carbon dioxide, and very little to no water vapor has been observed to come off the south cap in summer. The pits that have developed on the north polar cap surface are closely-spaced relative to the very different depressions in the south polar cap. The pits are estimated from the length of shadows cast in them to be less than about 2 meters (5.5 feet) deep. These pits probably develop slowly over thousands of years of successive spring and summer seasons. This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during northern summer on April 5, 1999. The picture is located near 82.1°N, 329.6°W and covers an area 1.5 km wide by 3 km long (0.9 x 1.8 miles) at a resolution of 3 meters (10 ft) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA02369

  3. Spring and Summer Proliferation of Floating Macroalgae in a Mediterranean Coastal Lagoon (Tancada Lagoon, Ebro Delta, NE Spain)

    NASA Astrophysics Data System (ADS)

    Menéndez, M.; Comín, F. A.

    2000-08-01

    During the last 10 years, a drastic change in the structure of the community of primary producers has been observed in Tancada Lagoon (Ebro Delta, NE Spain). This consisted of a decrease in the abundance of submerged rooted macrophyte cover and a spring and summer increase in floating macroalgae. Two spatial patterns have been observed. In the west part of the lagoon, Chaetomorpha linum Kützing, dominated during winter and decreased progressively in spring when Cladophora sp. reached its maximum development. In the east part of the lagoon, higher macroalgal diversity was observed, together with lower cover in winter and early spring. Cladophora sp., Gracilaria verrucosa Papenfuss and Chondria tenuissima Agardh, increased cover and biomass in summer. Maximum photosynthetic production was observed in spring for G. verrucosa (10·9 mg O 2 g -1 DW h -1) and C. tenuissima (19·0 mg O 2 g -1 DW h -1) in contrast with Cladophora sp. (15·9 mg O 2 g -1 DW h -1) and Chaetomorpha linum (7·2 mg O 2 g -1 DW h -1) which reached maximum production in summer. Increased conductivity from reduced freshwater inflow, and higher water temperatures during periods of lagoon isolation, mainly in summer, were the main physical factors associated with an increase in floating macroalgal biomass across the lagoon. Reduced nitrogen availability and temperature-related changes in carbon availability during summer were related to a decrease in abundance of C. linum and increases in G. verrucosa and Cladophora sp.

  4. Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes

    NASA Astrophysics Data System (ADS)

    Bel Hassen, M.; Drira, Z.; Hamza, A.; Ayadi, H.; Akrout, F.; Issaoui, H.

    2008-05-01

    Variations in phytoplankton pigments and community composition were examined in the Gulf of Gabes in relationship to water mass properties, characterised by the influence of the Modified Atlantic Water and by the thermal stratification. Data were collected on board the R/V Hannibal during July 2005. Distinct water masses were identified using cluster analysis of temperature-salinity ( T- S) characteristics. Three major clusters appeared based on the combined effects of temperature and salinity. The first cluster was identified as the cool and less salty bottom Modified Atlantic Water (MAW). The warmer and saltier Mediterranean Mixed Water (MMW) represented the second cluster. The third cluster was the Transition Water (TW) separating the two previous clusters. The pigment and taxonomic composition of these water masses were examined. Chlorophyll a was rather low (<200 ng l -1). Chlorophyll b was generally the most abundant accessory pigment and fucoxanthin dominated the accessory pigments in the MAW. Proportions of chlorophyll a associated with different phytoplankton classes were estimated using CHEMTAX software, and did not present significant variations among water groups. The results pointed out variations in the relative contribution of each phytoplankton taxa in each station group. Chlorophytes and prasinophytes accounted for 65% of chlorophyll a in the MMW. Diatoms and chlorophytes were relatively abundant in the MAW contributing to almost 63% of chlorophyll a. An unstructured community, slightly dominated by prasinophytes, chlorophytes and cryptophytes, characterised the TW. Different trophic statuses were observed in these water masses, the MMW and the MAW being characterised by mesotrophy, while an oligotrophy was observed in the TW. Nutrient availability, particularly the P-limitation supported by the summer stratification, as revealed by the high N:P ratio (greater than 20), seems to enhance the development of small-sized phytoplankton, thereby

  5. Cosmological Simulations with Molecular Astrochemistry: Water in the Early Universe

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon K.; Smidt, Joseph

    2018-01-01

    Water is required for the rise of life as we know it throughout the universe, but its origin and the circumstances of its first appearance remain a mystery. The abundance of deuterated water in solar system bodies cannot be explained if all the water in the solar system were created in the protoplanetary disk (Cleeves et al. 2014), suggesting that as much of half of Earth’s water predates the Sun. Water has been observed as early as one sixth the current universe’s age in MG J0414+0534 (Imprellizzeri et al. 2008). It was recently shown that water could, in principle, appear in hot halos barely enriched with heavy elements such as oxygen and carbon (Bialy et al. 2015). So far, no self-consistent calculation of cosmology physics carried out in line with a large chemical reaction network has been carried out to study the first sites of water formation in the universe. We present initial results the first such series of cosmological calculations with a 26 species low metallicity molecular chemical reaction network with Enzo (Bryan et al. 2014) to understand the role of hydrodynamics and radiative feedback on molecule formation in the early universe and to shed light on the cosmological history of this life-giving substance.

  6. The Energy - Water Connection: Can We Sustain Critical Resources and Make them Reliable, Affordable, and Environmentally Sound?(LBNL Summer Lecture Series)

    ScienceCinema

    McMahon, Jim

    2018-05-16

    Summer Lecture Series 2006: Jim McMahon of Berkeley Lab's Environmental Energy Technologies Division (EETD) is head of the Energy Analysis Department in EETD, which provides technical analysis to the Department of Energy on things like energy efficiency appliance standards. McMahon and his colleagues helped the nation save tens of billions of dollars in energy costs since the standards program began. Now his Water-Energy Technology Team (WETT) is applying its expertise to the linked problem of energy and water. Each of us requires more than 500 gallons per person per day for food production, plus an additional 465 gallons to produce household electricity. WETT hopes to mine some of the numerous opportunities to save energy and water by applying new technologies.

  7. Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.

    2009-12-01

    The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.

  8. Circulation and physical processes within the San Gabriel River Estuary during summer 2005

    USGS Publications Warehouse

    Rosenberger, Kurt J.; Xu, Jingping; Stein, Eric D.; Noble, Marlene A.; Gartner, Anne L.

    2007-01-01

    The Southern California Coastal Water Research Project (SCCWRP) is developing a hydrodynamic model of the SGR estuary, which is part of the comprehensive water-quality model of the SGR estuary and watershed investigated by SCCWRP and other local agencies. The hydrodynamic model will help understanding of 1) the exchange processes between the estuary and coastal ocean; 2) the circulation patterns in the estuary; 3) upstream natural runoff and the cooling discharge from PGS. Like all models, the SGR hydrodynamic model is only useful after it is fully calibrated and validated. In May 2005, SCCWRP requested the assistance of the U.S. geological Survey (USGS) Coastal and Marine Geology team (CMG) in collecting data on the hydrodynamic conditions in the estuary during the summer dry season. The summer was chosen for field data collection as this was assumed to be the season with the greatest potential for chronic degraded water quality due to low river flow and high thermal stratification within the estuary (due to both higher average air temperature and PGS output). Water quality can be degraded in winter as well, when higher river discharge events bring large volumes of water from the Los Angeles basin into the estuary. The objectives of this project were to 1) collect hydrodynamic data along the SGR estuary; 2) study exchange processes within the estuary through analysis of the hydrodynamic data; and 3) provide field data for model calibration and validation. As the data only exist for the summer season, the results herein only apply to summer conditions.

  9. Making Summer Count: How Summer Programs Can Boost Children's Learning

    ERIC Educational Resources Information Center

    McCombs, Jennifer Sloan; Augustine, Catherine; Schwartz, Heather; Bodilly, Susan; McInnis, Brian; Lichter, Dahlia; Cross, Amanda Brown

    2012-01-01

    During summer vacation, many students lose knowledge and skills. By the end of summer, students perform, on average, one month behind where they left off in the spring. Participation in summer learning programs should mitigate learning loss and could even produce achievement gains. Indeed, educators and policymakers increasingly promote summer…

  10. Thermally stratified acid water in late winter - a key factor inducing self-accelerating processes which increase acidification

    Treesearch

    Hans Hultberg

    1976-01-01

    Ion separation of acid air pollutants out of snow causes-sudden, deep pH-drops in lakes and running waters at an early stage of snowmelting. These pH-drops have drastic effects on fish populations and are suggested to be the main cause of Sphagnum invasion and changes in the microflora already at an early stage of acidification, i.e. when summer pH-...

  11. Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Imanishi, Katsuya; Boreddy, S. K. R.; Nojiri, Yukihiro

    2015-05-01

    In order to assess the seasonal variability of atmospheric abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific and Sea of Japan, aerosol samples were collected along the longitudinal transacts during six cruises between Canada and Japan. The back trajectory analyses indicate that aerosol samples collected in winter and spring are influenced by the East Asian outflow, whereas summer and fall samples are associated with the pristine maritime air masses. Molecular distributions of water-soluble organics in winter and spring samples show the predominance of oxalic acid (C2) followed by succinic (C4) and malonic acids (C3). In contrast, summer and fall marine aerosols are characterized by the predominance of C3 over C4. Concentrations of dicarboxylic acids were higher over the Sea of Japan than the North Pacific. With a lack of continental outflow, higher concentrations during early summer are ascribed to atmospheric oxidation of organic precursors associated with high biological activity in the North Pacific. This interpretation is further supported by the high abundances of azelaic acid, which is a photochemical oxidation product of biogenic unsaturated fatty acids, over the Bering Sea in early summer when surface waters are characterized by high biological productivity. We found higher ratios of oxalic acid to pyruvic and glyoxylic acids (C2/Pyr and C2/ωC2) and glyoxal and methylglyoxal (C2/Gly and C2/MeGly) in summer and fall than in winter and spring, suggesting a production of C2 from the aqueous-phase oxidation of oceanic isoprene. In this study, dicarboxylic acids account for 0.7-38% of water-soluble organic carbon.

  12. Molecular detection of bioluminescent dinoflagellates in surface waters of the Patagonian shelf during early austral summer 2008.

    PubMed

    Valiadi, Martha; Painter, Stuart C; Allen, John T; Balch, William M; Iglesias-Rodriguez, M Debora

    2014-01-01

    We investigated the distribution of bioluminescent dinoflagellates in the Patagonian Shelf region using "universal" PCR primers for the dinoflagellate luciferase gene. Luciferase gene sequences and single cell PCR tests, in conjunction with taxonomic identification by microscopy, allowed us to identify and quantify bioluminescent dinoflagellates. We compared these data to coincidental discrete optical measurements of stimulable bioluminescence intensity. Molecular detection of the luciferase gene showed that bioluminescent dinoflagellates were widespread across the majority of the Patagonian Shelf region. Their presence was comparatively underestimated by optical bioluminescence measurements, whose magnitude was affected by interspecific differences in bioluminescence intensity and by the presence of other bioluminescent organisms. Molecular and microscopy data showed that the complex hydrography of the area played an important role in determining the distribution and composition of dinoflagellate populations. Dinoflagellates were absent south of the Falkland Islands where the cold, nutrient-rich, and well-mixed waters of the Falklands Current favoured diatoms instead. Diverse populations of dinoflagellates were present in the warmer, more stratified waters of the Patagonian Shelf and Falklands Current as it warmed northwards. Here, the dinoflagellate population composition could be related to distinct water masses. Our results provide new insight into the prevalence of bioluminescent dinoflagellates in Patagonian Shelf waters and demonstrate that a molecular approach to the detection of bioluminescent dinoflagellates in natural waters is a promising tool for ecological studies of these organisms.

  13. Molecular Detection of Bioluminescent Dinoflagellates in Surface Waters of the Patagonian Shelf during Early Austral Summer 2008

    PubMed Central

    Valiadi, Martha; Painter, Stuart C.; Allen, John T.; Balch, William M.; Iglesias-Rodriguez, M. Debora

    2014-01-01

    We investigated the distribution of bioluminescent dinoflagellates in the Patagonian Shelf region using “universal” PCR primers for the dinoflagellate luciferase gene. Luciferase gene sequences and single cell PCR tests, in conjunction with taxonomic identification by microscopy, allowed us to identify and quantify bioluminescent dinoflagellates. We compared these data to coincidental discrete optical measurements of stimulable bioluminescence intensity. Molecular detection of the luciferase gene showed that bioluminescent dinoflagellates were widespread across the majority of the Patagonian Shelf region. Their presence was comparatively underestimated by optical bioluminescence measurements, whose magnitude was affected by interspecific differences in bioluminescence intensity and by the presence of other bioluminescent organisms. Molecular and microscopy data showed that the complex hydrography of the area played an important role in determining the distribution and composition of dinoflagellate populations. Dinoflagellates were absent south of the Falkland Islands where the cold, nutrient-rich, and well-mixed waters of the Falklands Current favoured diatoms instead. Diverse populations of dinoflagellates were present in the warmer, more stratified waters of the Patagonian Shelf and Falklands Current as it warmed northwards. Here, the dinoflagellate population composition could be related to distinct water masses. Our results provide new insight into the prevalence of bioluminescent dinoflagellates in Patagonian Shelf waters and demonstrate that a molecular approach to the detection of bioluminescent dinoflagellates in natural waters is a promising tool for ecological studies of these organisms. PMID:24918444

  14. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses

    PubMed Central

    Balachowski, Jennifer A.; Bristiel, Pauline M.; Volaire, Florence A.

    2016-01-01

    Background and Aims Evidence suggests drought severity is increasing due to climate change, but strategies promoting severe drought survival in perennial grasses have been seldom explored. This is particularly true of summer dormancy, an adaptation common in summer-dry Mediterranean-type climates. In addition, though theory predicts superior drought survival results in lower potential productivity, studies rarely measure both drought survival and growth under optimal conditions. Methods Physiological and functional ecological approaches were integrated to quantify interspecific variation in foliar and root traits in a suite of eight California perennial grass species. In a glasshouse experiment, summer dormancy, foliar functional trait variation, and seasonal growth and phenology under non-limiting water conditions and dehydration tolerance under progressive drought were quantified. In a second glasshouse study, root functional traits were quantified under non-limiting water conditions in rhizotrons. Key Results Summer dormancy was associated with higher dehydration tolerance, and negatively associated with traits conferring dehydration avoidance. Species with greater summer dormancy were characterized by greater springtime productivity, earlier reproduction, and a shallow and fine root system, which are indicative of dehydration escape. Summer dormancy was associated with an acquisitive, competitive functional strategy in spring, and a conservative strategy in summer. Conclusions Both the escape and acquisitive springtime strategies observed in summer dormant perennial taxa are typically associated with annual grasses. California grasslands were once dominated by perennial species, but have been overtaken by non-native Mediterranean annual grasses, which are expected to be further favoured by climate change. Owing to functional similarity with these exotic annuals, it is suggested that native summer dormant taxa may play an important ecological role in the future

  15. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses.

    PubMed

    Balachowski, Jennifer A; Bristiel, Pauline M; Volaire, Florence A

    2016-08-01

    Evidence suggests drought severity is increasing due to climate change, but strategies promoting severe drought survival in perennial grasses have been seldom explored. This is particularly true of summer dormancy, an adaptation common in summer-dry Mediterranean-type climates. In addition, though theory predicts superior drought survival results in lower potential productivity, studies rarely measure both drought survival and growth under optimal conditions. Physiological and functional ecological approaches were integrated to quantify interspecific variation in foliar and root traits in a suite of eight California perennial grass species. In a glasshouse experiment, summer dormancy, foliar functional trait variation, and seasonal growth and phenology under non-limiting water conditions and dehydration tolerance under progressive drought were quantified. In a second glasshouse study, root functional traits were quantified under non-limiting water conditions in rhizotrons. Summer dormancy was associated with higher dehydration tolerance, and negatively associated with traits conferring dehydration avoidance. Species with greater summer dormancy were characterized by greater springtime productivity, earlier reproduction, and a shallow and fine root system, which are indicative of dehydration escape. Summer dormancy was associated with an acquisitive, competitive functional strategy in spring, and a conservative strategy in summer. Both the escape and acquisitive springtime strategies observed in summer dormant perennial taxa are typically associated with annual grasses. California grasslands were once dominated by perennial species, but have been overtaken by non-native Mediterranean annual grasses, which are expected to be further favoured by climate change. Owing to functional similarity with these exotic annuals, it is suggested that native summer dormant taxa may play an important ecological role in the future of both natural and restored California grasslands

  16. What Do Children Eat in the Summer? A Direct Observation of Summer Day Camps That Serve Meals.

    PubMed

    Kenney, Erica L; Lee, Rebekka M; Brooks, Carolyn J; Cradock, Angie L; Gortmaker, Steven L

    2017-07-01

    More than 14 million children in the United States attend summer camp annually, yet little is known about the food environment in day camps. Our aim was to describe the nutritional quality of meals served to, brought by, and consumed by children attending summer day camps serving meals and snacks, and to describe camp water access. We conducted a cross-sectional study. Participants were 149 children attending five summer camps in Boston, MA, in 2013. Foods and beverages served were observed for 5 consecutive days. For 2 days, children's dietary intake was directly observed using a validated protocol. Outcome measures included total energy (kilocalories) and servings of different types of foods and beverages served and consumed during breakfast, lunch, and snack. Mean total energy, trans fats, sodium, sugar, and fiber served per meal were calculated across the camps, as were mean weekly frequencies of serving fruits, vegetables, meat/meat alternates, grains, milk, 100% juice, sugar-sweetened beverages, whole grains, red/highly processed meats, grain-based desserts, and salty snacks. Mean consumption was calculated per camper per day. Camps served a mean (standard deviation) of 647.7 (134.3) kcal for lunch, 401.8 (149.6) kcal for breakfast, and 266.4 (150.8) kcal for snack. Most camps served red/highly processed meats, salty snacks, and grain-based desserts frequently, and rarely served vegetables or water. Children consumed little (eg, at lunch, 36.5% of fruit portions, 35.0% of meat/meat alternative portions, and 37.6% of milk portions served) except for salty snacks (66.9% of portions) and grain-based desserts (64.1% of portions). Sugar-sweetened beverages and salty snacks were frequently brought to camp. One-quarter of campers drank nothing throughout the entire camp day. The nutritional quality of foods and beverages served at summer day camps could be improved. Future studies should assess barriers to consumption of healthy foods and beverages in these

  17. Water levels and water quality in the Sparta-Memphis aquifer (middle Claiborne aquifer) in Arkansas, spring-summer 2011

    USGS Publications Warehouse

    Schrader, T.P.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey, has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as “the Sparta Sand” and “the Memphis Sand,” respectively) since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as “the Sparta-Memphis aquifer” throughout Arkansas. During the spring of 2011, 291 water levels were measured in wells completed in the Sparta-Memphis aquifer and used to produce a regional potentiometric-surface map. During the summer of 2011, groundwater-quality samples were collected and measured from 61 wells for specific conductance, pH, and temperature.In the northern half of Arkansas, the regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast and flows east and south in the southern half of Arkansas. The groundwater in the southern half of Arkansas flows away from the outcrop area except where affected by large depressions in the potentiometric surface. The highest and lowest water-level altitudes measured in the Sparta-Memphis aquifer were 326 feet above and 120 feet below National Geodetic Vertical Datum of 1929 (NGVD 29), respectively.Five depressions are located in the following counties: Arkansas, Cleveland, Jefferson, Lincoln, and Prairie; Union; Cross, Poinsett, St. Francis, and Woodruff; Columbia; and Bradley. Two large depressions, centered in Jefferson and Union Counties, are the result of large withdrawals for industrial, irrigation, or public supply. The depression centered in Jefferson County has expanded in recent years into Arkansas and Prairie Counties as a result of large withdrawals for irrigation and public supply. The lowest water-level altitude measured in this depression is

  18. Identification of Summer School Effects by Comparing the In- and Out-of-School Growth Rates of Struggling Early Readers

    ERIC Educational Resources Information Center

    Zvoch, Keith; Stevens, Joseph J.

    2015-01-01

    A one-group repeated-treatment design was used to examine the academic year and summer oral reading fluency outcomes for students attending a district-sponsored summer literacy program (N = 250). Piecewise growth models applied to longitudinal data obtained during the first and second grade and over the course of the intervening summer revealed…

  19. The summer flow and water yield response to timber harvest

    Treesearch

    Elizabeth T. Keppeler

    1998-01-01

    Continuous measurement of streamflow at the Caspar Creek watersheds has led to several analyses of the effects of two harvest methods (selection and clearcut) on summer flows and annual yield. Although all Caspar Creek analyses have indicated an increase in runoff after timber removal, the magnitude and duration of the response depend on the nature and extent of the...

  20. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam Turbines, Early Spring 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Royer, Ida M.

    2012-02-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam turbines during early spring 2011. The study was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE) to investigate whether adult steelhead are passing through turbines during early spring before annual sluiceway operations typically begin. The sluiceway surface flow outlet is the optimal non-turbine route for adult steelhead, although operating the sluiceway reduces hydropower production. This is a follow-up study to similar studies of adult steelheadmore » passage at the sluiceway and turbines we conducted in the fall/winter 2008, early spring 2009, fall/winter 2009, and early spring 2010. The goal of the 2011 study was to characterize adult steelhead passage rates at the turbines while the sluiceway was closed so fisheries managers would have additional information to use in decision-making relative to sluiceway operations. Sluiceway operations were not scheduled to begin until April 10, 2011. However, based on a management decision in late February, sluiceway operations commenced on March 1, 2011. Therefore, this study provided estimates of fish passage rates through the turbines, and not the sluiceway, while the sluiceway was open. The study period was March 1 through April 10, 2011 (41 days total). The study objective was to estimate the number and distribution of adult steelhead and kelt-sized targets passing into turbine units. We obtained fish passage data using fixed-location hydroacoustics with transducers deployed at all 22 main turbine units at The Dalles Dam. Adult steelhead passage through the turbines occurred on 9 days during the study (March 9, 12, 30, and 31 and April 2, 3, 5, 7, and 9). We estimated a total of 215 {+-} 98 (95% confidence interval) adult steelhead targets passed through

  1. Sea ice radar signatures from ERS-1 SAR during late Summer and Fall in the Beaufort and Chukchi Seas

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin; Cunningham, Glenn; Kwok, Ron

    1993-01-01

    A study which examines ERS-1 C band SAR (Synthetic Aperture Radar) imagery of sea ice obtained in the Beaufort and Chukchi Seas from mid Summer through Fall freeze up and early Winter in 1991 is presented. Radar backscatter statistics of sea ice were obtained from the imagery, using common floes tracked through consecutive repeat images whenever possible. During the Summer months, strong fluctuations in ice signatures of several dB are observed over 2 to 3 day periods, which are found to be closely related to air temperature excursions above and below freezing that alters the phase of the ice surface. As air temperatures drop steadily below freezing in the Fall, the signatures of the pack ice increase in brightness and become more stable with time. Multiyear ice is distinguished from rough and smooth first year ice. There are also variations in the multiyear signatures with latitude. Large variations are seen in new ice and open water contained within leads which results in ambiguous classification.

  2. Influences of climate change on water resources availability in Jinjiang Basin, China.

    PubMed

    Sun, Wenchao; Wang, Jie; Li, Zhanjie; Yao, Xiaolei; Yu, Jingshan

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer.

  3. Influences of Climate Change on Water Resources Availability in Jinjiang Basin, China

    PubMed Central

    Wang, Jie; Li, Zhanjie; Yao, Xiaolei

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer. PMID:24701192

  4. Using Summer Faculty-Student Consultant Teams to Solve Industrial Problems

    ERIC Educational Resources Information Center

    Michelsen, Donald L.; And Others

    1977-01-01

    Describes a three-week, faculty-student summer project involving the study of waste-water treatment of refinery effluents. Discusses the use of such projects to aid industry in analyzing their problems. (MLH)

  5. Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Mangoni, O.; Modigh, M.; Conversano, F.; Carrada, G. C.; Saggiomo, V.

    2004-11-01

    An oceanographic cruise was conducted in the Ross Sea (Antarctica) during summer 2001 as part of the Italian National Program for Antarctic Research (PNRA). Extensive areas of pack ice occurred over the Ross Sea, atypical for summer when offshore waters are normally free of ice. The present study focuses on the effects of increased ice coverage on phytoplankton assemblages. Water samples collected at various depths at 72 hydrographical stations in offshore and coastal waters were used to determine size-fractionated phytoplankton biomass as chlorophyll a (chla) concentrations, and HPLC photosynthetic pigments. For the offshore waters, the average chla concentration was 57.8 mg m-2, approximately three times the values recorded under ice-free conditions during summer 1996. In coastal waters, the average chla concentrations were 102 and 206 mg m-2 during January and February, respectively, i.e., up to 2.5 times those of 1996. Micro- and nano-phytoplankton size fractions made up about 90% of the phytoplankton biomass over the entire study area and were composed primarily of diatoms with a pico-phytoplankton fraction dominated by prymnesiophyceans. The broken pack and melting ice was strongly coloured by an extensive algal biomass suggesting that the phytoplankton was a result of seeding from ice algal communities. The Ross Sea considered to be one of the most productive areas of the Southern Ocean, had primary production values about four-fold those of other areas. The lengthening of the ice season observed in the Western Ross Sea, associated with a considerable increase in phytoplankton biomass as observed in summer 2001, would have a major impact on the trophic structure of the entire ecosystem, and presumably, also on carbon export.

  6. Is an Early Start the Best Start?: Evaluating the Effectiveness of a Political Science Summer Bridge Program

    ERIC Educational Resources Information Center

    Woodall, Gina Serignese; Herrera, Richard; Thompson, Joshua R.; Ortega, Jorge Coss

    2017-01-01

    Summer bridge programs are supposed to connect a graduating high school senior's summer to their first semester in college, easing the transition away from home and into a university setting. Although research is plentiful on the programs, assessments regarding the overall effectiveness of such programs have been mixed (e.g., Cabrera, Miner, and…

  7. Traversing a boreal forest landscape: Summer movements of Tule Greater White-fronted Geese

    USGS Publications Warehouse

    Ely, Craig R.; Bollinger, K.S.; Hupp, Jerry W.; Derksen, D.V.; Terenzi, J.; Takekawa, John Y.; Orthmeyer, D.L.; Rothe, T.C.; Petrula, M.J.; Yparraguirre, D.R.

    2006-01-01

    We monitored the movement, distribution and site affinities of radio-marked Tule Greater White-fronted Geese (Anser albifrons elgasi) during spring and summer in Alaska, 1994-1997 and 2004. Our assessment of summer movements was comprehensive, as locations were obtained during prenesting, nesting, and molt for over 90% of geese with active radios captured during winter or the previous summer in Alaska. Geese arrived to coastal and interior marshes in the Cook Inlet Basin (CIB) from mid April to early May, after which they moved to nesting areas in the upper CIB. Nesting birds used coastal staging areas in close proximity to eventual nest site location. Molting sites included a sub-glacial lake system in the upper CIB, although up to 50% of geese underwent a molt migration to wetlands across the Alaska Range, 400-600 km west of the CIB. Geese that molted at distant sites returned to the CIB before autumn migration. Length of stay in the CIB varied among years from 108-119 days, and averaged 116 days. Summer home-range sizes, exclusive of molting areas, averaged >273,000 ha, and were substantially larger than reported for other northern-nesting waterfowl. No radio-marked geese were found nesting in the vicinity of Redoubt Bay on the west side of Cook Inlet, and few nested near the Susitna Flats, the only other previously known nesting areas. The absence of nesting geese from Redoubt Bay corroborates aerial survey data showing a precipitous decline in the use of the west side of Cook Inlet between the early 1980s and early 1990s. The change in distribution of geese is likely related to a major eruption of Redoubt Volcano in 1989 that significantly altered landscapes used by nesting, brood rearing, and molting geese in the vicinity of Redoubt Bay. High inter-site movements of Greater White-fronted Geese throughout summer in south central Alaska likely increases exposure to predation, but also promotes social interactions and facilitates pioneering of distant, and

  8. Summer Splash. 1988 Wisconsin Summer Library Program Manual. Bulletin No. 8230.

    ERIC Educational Resources Information Center

    Lamb, Donald K.; And Others

    A compilation of materials contributed by and developed with the cooperation of Wisconsin librarians and Ohio's 1987 summer reading program, this planning manual provides guidelines for planning and promoting summer programs for young people by librarians in the state of Wisconsin. The theme of the program, "Summer Splash," is intended…

  9. Tsunami Summer! 2003 Young Adult Summer Library Program.

    ERIC Educational Resources Information Center

    Alabama Public Library Service, Montgomery.

    This manual is designed to assist public libraries in Alabama with setting up "Tsunami Summer!," a summer program for young adults, i.e., students in grades 6 through 12. The manual contains the following sections: (1) Publicity and Promotion; (2) Working with Schools; (3) Involving the Students, including teen volunteers, teen advisory…

  10. Gradients in seasonality and seawater oxygen isotopic composition along the early Permian Gondwanan coast, SE Australia

    NASA Astrophysics Data System (ADS)

    Beard, J. Andrew; Ivany, Linda C.; Runnegar, Bruce

    2015-09-01

    Oxygen isotope compositions of marine carbonates are commonly employed for understanding ancient temperatures, but this approach is complicated in the very distant past due to uncertainties about the effects of diagenesis and the isotopic composition of seawater, both locally and globally. Microsampled accretionary calcite from two species of the fossil bivalve Eurydesma Sowerby and Morris 1845 collected from sediments of Cisuralian age in high latitude marine sediments along the SE coast of Australia records cyclic seasonal fluctuations in shell δ18O values during growth, demonstrating the primary nature of the isotope signal and thus allowing investigation of early Permian seawater isotopic composition and water temperature in the high southern latitudes. The mean and seasonal range of δ18Ocarb decreases poleward across about 10° of paleolatitude (∼67°S-77°S). The presence of co-occurring dropstones and stratigraphically associated glendonites constrains winter temperatures across the region to near-freezing, thus permitting calculation of realistic estimates of water composition and summer temperatures. Summer δ18Ocarb values indicate water temperatures between 5 °C and 12 °C, with warmer values at lower latitudes. The decrease in both mean sea surface temperature and seasonal amplitude with increasing latitude on the Gondwanan coast is much like that observed along high-latitude coastlines today. Calculated δ18Owater decreases toward the pole, likely associated with an increasing contribution of isotopically light fresh water derived from summer snow-melt. The gradient in δ18Owater is similar to that documented over a similar span of latitude on the modern SE Greenland coast. We infer the presence of a north-flowing coastal current of cold, O18-depleted water that entrains progressively greater amounts of more typical seawater as it moves away from the pole. δ18O values in SE Australia, however, are about 3‰ lower than those off Greenland

  11. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris).

    PubMed

    Rosa, Rui; Trübenbach, Katja; Pimentel, Marta S; Boavida-Portugal, Joana; Faleiro, Filipa; Baptista, Miguel; Dionísio, Gisela; Calado, Ricardo; Pörtner, Hans O; Repolho, Tiago

    2014-02-15

    Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13-17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P<0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P<0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P<0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P<0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P<0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P<0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryo's capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such

  12. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960-2008 and 1968-2008

    NASA Astrophysics Data System (ADS)

    Tivy, Adrienne; Howell, Stephen E. L.; Alt, Bea; McCourt, Steve; Chagnon, Richard; Crocker, Greg; Carrieres, Tom; Yackel, John J.

    2011-03-01

    The Canadian Ice Service Digital Archive (CISDA) is a compilation of weekly ice charts covering Canadian waters from the early 1960s to present. The main sources of uncertainty in the database are reviewed and the data are validated for use in climate studies before trends and variability in summer averaged sea ice cover are investigated. These data revealed that between 1968 and 2008, summer sea ice cover has decreased by 11.3% ± 2.6% decade-1 in Hudson Bay, 2.9% ± 1.2% decade-1 in the Canadian Arctic Archipelago (CAA), 8.9% ± 3.1% decade-1 in Baffin Bay, and 5.2% ± 2.4% decade-1 in the Beaufort Sea with no significant reductions in multiyear ice. Reductions in sea ice cover are linked to increases in early summer surface air temperature (SAT); significant increases in SAT were observed in every season and they are consistently greater than the pan-Arctic change by up to ˜0.2°C decade-1. Within the CAA and Baffin Bay, the El Niño-Southern Oscillation index correlates well with multiyear ice coverage (positive) and first-year ice coverage (negative) suggesting that El Niño episodes precede summers with more multiyear ice and less first-year ice. Extending the trend calculations back to 1960 along the major shipping routes revealed significant decreases in summer sea ice coverage ranging between 11% and 15% decade-1 along the route through Hudson Bay and 6% and 10% decade-1 along the southern route of the Northwest Passage, the latter is linked to increases in SAT. Between 1960 and 2008, no significant trends were found along the northern western Parry Channel route of the Northwest Passage.

  13. Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach

    NASA Astrophysics Data System (ADS)

    Ruehr, N. K.; Law, B. E.; Quandt, D.; Williams, M.

    2014-01-01

    Increasing summer temperatures and a reduction in precipitation will enhance drought stress in Mediterranean and semi-arid ecosystems. Predicting the net effects on forests' carbon and water balance will depend on our ability to disentangle the sensitivity of component fluxes responding to increasing soil and atmospheric drought. Here we studied carbon and water dynamics in a semi-arid regenerating ponderosa pine forest using field observations and process based modeling. Field observations of two summer dry seasons were used to calibrate a soil-plant-atmosphere (SPA) model. In addition, the ecosystem's response to reduced soil drought was quantified based on a field watering experiment and evaluated with the model. Further, the SPA model was used to estimate the relative effects of increasing soil and atmospheric drought over time, by simulating temperature and precipitation scenarios for 2040 and 2080. The seasonality and drought response of ecosystem fluxes was well captured by the calibrated SPA model. Dramatic increases in summer water availability during seasonal drought had a small effect on pine physiology in both the watering experiment and the model. This clearly demonstrates that atmospheric drought induced a strong limitation on carbon uptake in young ponderosa pine due to tight regulation of stomatal conductance. Moreover, simulations showed that net ecosystem exchange (NEE) and gross primary productivity (GPP) were about three times more affected by summer heat and increased evaporative demand than by reductions in summer precipitation. Annual NEE decreased by 38% in response to extreme summer conditions as predicted to occur in 2080 (June-August: +4.5 °C), because of a strong decline in GPP (-17%) while heterotrophic respiration was relatively unaffected (-1%). Considering warming trends across all seasons (September-May: +3 °C and June-August: +4.5 °C), the negative drought effects were largely compensated by an earlier initiation of favorable

  14. Slithering into Summer

    ERIC Educational Resources Information Center

    Scott, Catherine; Matthews, Catherine

    2012-01-01

    The summer provides a unique opportunity for children to further their interests in science, especially science in the out-of-doors. Once school is out for the summer, there is seemingly unlimited time, with no strict curriculum guidelines to follow. For students with a passion for the out-of-doors, summer science camps and school-based summer…

  15. NASA's Observes Effects of Summer Melt on Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Early forecasting of Indian Summer Monsoon: case study 2016

    NASA Astrophysics Data System (ADS)

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen

    2017-04-01

    The prior knowledge of dates of onset and withdrawal of monsoon is of vital importance for the population of the Indian subcontinent. In May 2016 before monsoon season, India recorded its highest-ever temperature of 51C. Hot waves have decimated crops, killed livestock and left 330 million people without enough water. At the end of monsoon season the floods in Indian this year have also broken previous records. Severe and devastating rainfall poured down, triggering dams spilling and floods. Such extreme conditions pose the vital questions such as: When will the monsoon come? When will the monsoon withdraw? More lead time in monsoon forecast warning is crucial for taking appropriate decisions at various levels - from the farmer's field (e.g. plowing day, seeding) to the central government (e.g. managing water and energy resources, food procurement policies). The Indian Meteorological Department issues forecasts of onset of monsoon for Kerala state in South India on May 15-th. It does not give such predictions for the other 28 states of the country. Our study concerns the central part of India. We made the monsoon forecast using our recently developed method which focuses on Tipping elements of the Indian monsoon [1]. Our prediction relies on observations of near-surface air temperature and relative humidity from both the ERA-40 and NCEP/NCAR reanalyses. We performed both of our forecasts for the onset and withdrawal of monsoon for the central part of India, the Eastern Ghats (20N,80E). We predicted the monsoon arrival to the Eastern Ghats (20N,80E) on the 13th of June with a deviation of +/-4 days. The prediction was made on May 6-th, 2016 [2], that is 40 days in advance of the date of the forecast. The actual monsoon arrival was June 17-th. In this day near-surface air temperature and relative humidity overcame the critical values and the monsoon season started, that was confirmed by observations of meteorological stations located around the EG-region. We

  17. Emotional Self-Regulation, Peer Rejection, and Antisocial Behavior: Developmental Associations from Early Childhood to Early Adolescence

    ERIC Educational Resources Information Center

    Trentacosta, Christopher J.; Shaw, Daniel S.

    2009-01-01

    This study examined relations among emotional self-regulation, peer rejection, and antisocial behavior in a sample of 122 boys from low-income families who participated in a summer camp and were followed longitudinally from early childhood to early adolescence. Emotional self-regulation strategies were coded in early childhood from a waiting task,…

  18. Summer monsoon response of the Northern Somali Current, 1995

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Fischer, Jürgen; Garternicht, Ulf; Quadfasel, Detlef

    Preliminary results on the development of the northern Somali Current regime and Great Whirl during the summer monsoon of 1995 are reported. They are based on the water mass and current profiling observations from three shipboard surveys of R/V Meteor and on the time series from a moored current-meter and ADCP array. The monsoon response of the GW was deep-reaching, to more than 1000m. involving large deep transports. The northern Somali Current was found to be disconnected from the interior Arabian Sea in latitude range 4°N-12°N in both, water mass properties and current fields. Instead, communication dominantly occurs through the passages between Socotra and the African continent. From moored stations in the main passage a northward throughflow from the Somali Current to the Gulf of Aden of about 5 Sv was determined for the summer monsoon of 1995.

  19. Epipodial Tentacle Gene Expression and Predetermined Resilience to Summer Mortality in the Commercially Important Greenlip Abalone, Haliotis laevigata.

    PubMed

    Shiel, Brett P; Hall, Nathan E; Cooke, Ira R; Robinson, Nicholas A; Strugnell, Jan M

    2017-04-01

    "Summer mortality" is a phenomenon that occurs during warm water temperature spikes that results in the mass mortality of many ecologically and economically important mollusks such as abalone. This study aimed to determine whether the baseline gene expression of abalone before a laboratory-induced summer mortality event was associated with resilience to summer mortality. Tentacle transcriptomes of 35 greenlip abalone (Haliotis laevigata) were sequenced prior to the animals being exposed to an increase in water temperature-simulating conditions which have previously resulted in summer mortality. Abalone derived from three source locations with different environmental conditions were categorized as susceptible or resistant to summer mortality depending on whether they died or survived after the water temperature was increased. We detected two genes showing significantly higher expression in resilient abalone relative to susceptible abalone prior to the laboratory-induced summer mortality event. One of these genes was annotated through the NCBI non-redundant protein database using BLASTX to an anemone (Exaiptasia pallida) Transposon Ty3-G Gag Pol polyprotein. Distinct gene expression signatures were also found between resilient and susceptible abalone depending on the population origin, which may suggest divergence in local adaptation mechanisms for resilience. Many of these genes have been suggested to be involved in antioxidant and immune-related functions. The identification of these genes and their functional roles have enhanced our understanding of processes that may contribute to summer mortality in abalone. Our study supports the hypothesis that prestress gene expression signatures are indicative of the likelihood of summer mortality.

  20. Summer Doldrums.

    ERIC Educational Resources Information Center

    Muchnick, Bruce

    2002-01-01

    For camp staff, factors that contribute to the summer doldrums are weather, level of general fatigue, unsatisfied expectations, sensory overload, accumulation of negative "self-talk," and an underlying sense of hurry. Strategies for overcoming summer doldrums involve novelty and stress management, and include promoting health, challenging…

  1. Long-Term Neurotoxic Effects of Early Life Exposure to Tetrachloroethylene-contaminated Drinking Water

    PubMed Central

    Aschengrau, Ann; Janulewicz, Patricia A.; White, Roberta F.; Vieira, Veronica M.; Gallagher, Lisa G.; Getz, Kelly D.; Webster, Thomas F.; Ozonoff, David M.

    2016-01-01

    Background Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983 widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. Objectives A retrospective cohort study (“the Cape Cod Health Study”) was undertaken to examine possible health consequences of early life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the impact of prenatal and childhood exposure on neurological outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiological research in this unique setting. Methods Subjects were identified by cross-matching birth certificate and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (N= 1,689), neuropsychological tests (N=63), vision exam (N=63), and magnetic resonance imaging (N=42). Early life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among subjects with prenatal and early childhood PCE exposure to unexposed subjects while considering the impact of confounding variables. Results The study found evidence that early life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from

  2. An underestimated role of precipitation frequency in regulating summer soil moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka

    2012-04-26

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less

  3. Klamath River Water Quality Data from Link River Dam to Keno Dam, Oregon, 2008

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Vaughn, Jennifer

    2009-01-01

    This report documents sampling and analytical methods and presents field data from a second year of an ongoing study on the Klamath River from Link River Dam to Keno Dam in south central Oregon; this dataset will form the basis of a hydrodynamic and water quality model. Water quality was sampled weekly at six mainstem and two tributary sites from early April through early November, 2008. Constituents reported herein include field-measured water-column parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; total iron; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, and iron; specific UV absorbance at 254 nanometers; chlorophyll a; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. Sampling program results indicated: *Most nutrient and carbon concentrations were lowest in spring, increased starting in mid-June, remained elevated in the summer, and decreased in fall. Dissolved nitrite plus nitrate had a different seasonal cycle and was below detection or at low concentration in summer. *Although total nitrogen and total phosphorus concentrations did not show large differences from upstream to downstream, filtered ammonia and orthophosphate concentrations increased in the downstream direction and particulate carbon and particulate nitrogen generally decreased in the downstream direction. *Large bacterial cells made up most of the bacteria biovolume, though cocci were the most numerous bacteria type. Cocci, with diameters of 0.1 to 0.2 micrometers, were smaller than the filter pore sizes used to separate dissolved from particulate matter. *Phytoplankton biovolumes were dominated by diatoms in spring and by the blue-green alga Aphanizomenon flos-aquae after mid-June. Another blue-green, Anabaena flos-aquae, was noted in samples from late May to late June. Phytoplankton

  4. Summer Matters: Advocating for Summer Learning That Can Weather Political Seasons

    ERIC Educational Resources Information Center

    McQuade, Aaron

    2015-01-01

    Research has shown that an idle summer is not just boring; it can cost a student as much as two to three months of educational progress. Summer is critical to each child's development, both mind and body. Any meaningful attempts to get at America's equity divide and the consequent gap in opportunities for kids must include summer education as a…

  5. Status of water levels and selected water-quality conditions in the Sparta-Memphis aquifer in Arkansas, Spring-Summer 2003

    USGS Publications Warehouse

    Schrader, T.P.

    2006-01-01

    During the spring of 2003, water levels were measured in 341 wells in the Sparta-Memphis aquifer in Arkansas. Waterquality samples were collected for temperature and specificconductance measurements during the spring-summer of 2003 from 70 wells in Arkansas in the Sparta-Memphis aquifer. Maps of areal distribution of potentiometric surface, change in waterlevel measurements from 1999 to 2003, and specific-conductance data reveal spatial trends across the study area. The highest water-level altitude measured in Arkansas was 328 feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929) in Craighead County; the lowest water-level altitude was 199 feet below NGVD of 1929 in Union County. Three large cones of depression are shown in the 2003 potentiometric surface map, centered in Columbia, Jefferson, and Union Counties in Arkansas as a result of large withdrawals for industrial and public supplies. A broad depression exists in western Poinsett County in Arkansas. The potentiometric surface indicates that large withdrawals have altered or reversed the natural direction of flow in most areas. In the northern third of the study area the flow is from the east, west, and north towards the broad depression in Poinsett County. In the central third of the study area the flow is dominated by the cone of depression centered in Jefferson County. In the southern third of the study area the flow is dominated by the two cones of depression in Union and Columbia Counties. A map of water-level changes from 1999 to 2003 was constructed using water-level measurements from 281 wells. The largest rise in water level measured was about 57.8 feet in Columbia County. The largest decline in water level measured was about -71.6 feet in Columbia County. Areas with a general rise are shown in Arkansas, Bradley, Calhoun, Cleveland, Columbia, Ouachita, and Union Counties. Areas with a general decline are shown in Craighead, Crittenden, Cross, Desha, Drew, Jefferson, Lonoke, Phillips

  6. Methylmercury and other chemical constituents in Pacific coastal fog water from seven sites in Central/Northern California (FogNet) during the summer of 2014

    NASA Astrophysics Data System (ADS)

    Weiss-Penzias, P. S.; Heim, W. A.; Fernandez, D.; Coale, K. H.; Oliphant, A. J.; Dann, D.; Porter, M.; Hoskins, D.; Dodge, C.

    2014-12-01

    This project investigates the mercury content in summertime Pacific coastal fog in California and whether fog could be an important vector for ocean emissions of mercury to be deposited via fog drip to upland coastal ecosystems. Efforts began in early 2014 with the building of 7 active-strand fog collectors based on the Colorado State University Caltech CASCC design. The new UCSC CASCC includes doors sealing the collector which open under microcomputer control based on environmental sensing (relative humidity). Seven sites spanning from Trinidad in the north to Marina in the south have collected samples June-August 2014 under a project called FogNet. Fog conditions were favorable for collecting large water volumes (> 250 mL) at many sites. Fog samplers were cleaned with soap and deionized water daily and field blanks taken immediately following cleaning. Fog water samples were collected overnight, split into an aliquot for anion and DOC/DIC analysis and the remaining sample was acidified. Monomethyl mercury (MMHg) concentrations in samples and field blanks for 3 sites in FogNet are shown in the accompanying figure. The range of MMHg concentrations from 10 fog water samples > 100 mL in volume was 0.9-9.3 ng/L (4.5-46.4 pM). Elevated MMHg concentrations (> 5 ng/L, 25 pM) were observed at 2 sites: UC Santa Cruz and Bodega Bay. The field blanks produced MMHg concentrations of 0.08-0.4 ng/L (0.4-2.0 pM), which was on average < 10% of the sample concentration and suggests the artifact due to sampling was small. The observed MMHg concentrations in fog water observed is this study are 1-2 orders of magnitude greater than MMHg concentrations seen previously in rain water samples from the California coast suggesting an additional source of MMHg to fog. Shipboard measurements of dimethyl mercury (DMHg) in coastal California seawater during the time period of FogNet operations (summer 2014) reveal surface waters that were supersaturated in DMHg which represents a potential

  7. Personal Reflection: Rough Seas to Calmer Waters: The Journey of an Early Career Academic

    ERIC Educational Resources Information Center

    Kruger, Mellissa L.

    2012-01-01

    As an early career academic I have had the opportunity to reflect on my early experiences in academia. This paper is a reflection on my journey through rough seas to calmer waters. This paper describes an uneasy voyage of experience, from confident practitioner to uncertain academic. Helping to steer me through uncharted waters on the high seas of…

  8. Summer learning and its implications: insights from the Beginning School Study.

    PubMed

    Alexander, Karl L; Entwisle, Doris R; Olson, Linda Steffel

    2007-01-01

    There is perhaps no more pressing issue in school policy today than the achievement gap across social lines. Achievement differences between well-to-do children and poor children and between disadvantaged racial and ethnic minorities and majority whites are large when children first begin school, and they increase over time. Despite years of study and an abundance of good intentions, these patterned achievement differences persist, but who is responsible, and how are schools implicated? The increasing gap seems to suggest that schools are unable to equalize educational opportunity or, worse still, that they actively handicap disadvantaged children. But a seasonal perspective on learning yields a rather different impression. Comparing achievement gains separately over the school year and the summer months reveals that much of the achievement gap originates over the summer period, when children are not in school. The authors review Beginning School Study research on differential summer learning across social lines (that is, by family socioeconomic level) and its implications for later schooling outcomes, including high school curriculum placements, high school dropout, and college attendance. These studies document the extent to which these large summer learning differences impede the later educational progress of children of low socioeconomic status. Practical implications are discussed, including the need for early and sustained interventions to prevent the achievement gap from opening wide in the first place and for high-quality summer programming focused on preventing differential summer learning loss.

  9. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China

    NASA Astrophysics Data System (ADS)

    Wen, Ruilin; Xiao, Jule; Fan, Jiawei; Zhang, Shengrui; Yamagata, Hideki

    2017-11-01

    There is a controversy regarding whether the high precipitation delivered by an intensified East Asian summer monsoon occurred during the early Holocene, or during the middle Holocene, especially in the context of the monsoonal margin region. The conflicting views on the subject may be caused by chronological uncertainties and ambiguities in the interpretation of different climate proxies measured in different sedimentary sequences. Here, we present a detailed record of the Holocene evolution of vegetation in northern China based on a high-resolution pollen record from Dali Lake, located near the modern summer monsoon limit. From 12,000-8300 cal BP, the sandy land landscape changed from desert to open elm forest and shrubland, while dry steppe dominated the hilly lands and patches of birch forest developed in the mountains. Between 8300 and 6000 cal BP, elm forest was extensively distributed in the sandy lands, while typical steppe covered the hilly lands and mixed coniferous-broadleaved forests expanded in the mountains. Our pollen evidence contradicts the view that the monsoonal rainfall increased during the early Holocene; rather, it indicates that the East Asian summer monsoon did not become intensified until ∼8000 cal BP in northern China. The low precipitation during the early Holocene can be attributed to the boundary conditions, i.e., to the remnant high-latitude Northern Hemisphere ice sheets and the relatively low global sea level.

  10. Water temperatures in select nearshore environments of the Colorado River in Grand Canyon, Arizona, during the Low Steady Summer Flow experiment of 2000

    USGS Publications Warehouse

    Vernieu, William S.; Anderson, Craig R.

    2013-01-01

    Water releases from Glen Canyon Dam, Arizona, are the primary determinant of streamflow, sediment transport, water quality, and aquatic and riparian habitat availability in the Colorado River downstream of the dam in Grand Canyon. The presence and operation of the dam have transformed the seasonally warm Colorado River into a consistently cold river because of hypolimnetic, or deep-water, releases from the penstock withdrawal structures on the dam. These releases have substantially altered the thermal regime of the downstream riverine environment. This, in turn, has affected the biota of the river corridor, particularly native and nonnative fish communities and the aquatic food web. In the spring and summer of 2000, a Low Steady Summer Flow experiment was conducted by the U.S. Geological Survey and the Bureau of Reclamation to evaluate the effects of the experimental flow on physical and biological resources of the Colorado River ecosystem downstream from Glen Canyon Dam to Lake Mead on the Arizona-Nevada border. This report describes the water temperatures collected during the experimental flow from 14 nearshore sites in the river corridor in Grand Canyon to assess the effects of steady releases on the thermal dynamics of nearshore environments. These nearshore areas are characterized by low-velocity flows with some degree of isolation from the higher velocity flows in the main channel and are hypothesized to be important rearing environments for young native fish. Water-temperature measurements were made at 14 sites, ranging from backwater to open-channel environments. Warming during daylight hours, relative to main-channel temperatures, was measured at all sites in relation to the amount of isolation from the main-channel current. Boat traffic, amount of direct solar radiation, and degree of isolation from the main-channel current appear to be the primary factors affecting the differential warming of the nearshore environment.

  11. Intercomparison of Total Atmospheric Precipitable Water Vapor Retrieval Products during the 2009 and 2010 CAPABLE Summer Intensives

    NASA Astrophysics Data System (ADS)

    Pippin, M. R.; Knepp, T. N.; Bedka, S.; Cowen, L.; Murray, J.; Deslover, D.; Feltz, W.; Yesalusky, M. A.; Smith, W.; Cede, A.; Abuhassan, N.; Herman, J. R.; Szykamn, J.

    2011-12-01

    In support of NASA's GEO-CAPE mission and Air Quality Applied Sciences, the Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site at NASA Langley Research Center has been established in coordination with Environmental Protection Agency (EPA) and Virginia Department of Environmental Quality (VA DEQ) to assess the relationship between high temporal resolution measurements from space and continuous in situ surface observations. During the 2009 and 2010 CAPABLE summer intensives, three methods for determining total atmospheric precipitable water vapor were utilized. Continuous total column measurements of water vapor were provided using a Pandora spectrometer, the DOE/NSTec Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) operated by the Hampton University and the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI). Continuous meteorological parameters were measured on a 5m tower and rawinsondes were launched intermittently throughout both measurement periods. We present preliminary results of the intercomparison of total precipitable water vapor from the three instrumental methods and compare with estimated values from dew point temperature and satellite overpass data. Results from this study will have applications to satellite validation and Pandora retrieval algorithm development. Disclaimer: Although this work was reviewed by the U.S. Environmental Protection Agency and National Aeronautics and Space Administration, and approved for publication, it may not necessarily reflect official Agency policy.

  12. Surface Water pCO2 Variations and Sea-Air CO2 Fluxes During Summer in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Burgers, T. M.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T.

    2017-12-01

    Based on a 2 year data set, the eastern Canadian Arctic Archipelago and Baffin Bay appear to be a modest summertime sink of atmospheric CO2. We measured surface water CO2 partial pressure (pCO2), salinity, and temperature throughout northern Baffin Bay, Nares Strait, and Lancaster Sound from the CCGS Amundsen during its 2013 and 2014 summer cruises. Surface water pCO2 displayed considerable variability (144-364 μatm) but never exceeded atmospheric concentrations, and average calculated CO2 fluxes in 2013 and 2014 were -12 and -3 mmol C m-2 d-1 (into the ocean), respectively. Ancillary measurements of chlorophyll a reveal low summertime productivity in surface waters. Based on total alkalinity and stable oxygen isotopes (δ18O) data, a strong riverine signal in northern Nares Strait coincided with relatively high surface pCO2, whereas areas of sea-ice melt occur with low surface pCO2. Further assessments, extending the seasonal observation period, are needed to properly constrain both seasonal and annual CO2 fluxes in this region.

  13. Copepod community succession during warm season in Lagoon Notoro-ko, northeastern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshizumi; Ichikawa, Hideaki; Kitamura, Mitsuaki; Nishino, Yasuto; Taniguchi, Akira

    2015-06-01

    Lagoon Notoro-ko, located on the northeastern coast of Hokkaido, Japan, and connected to the Okhotsk Sea by a human-made channel, is strongly influenced by local hydrography, as water masses in the lagoon are seasonally influenced by the Soya Warm Current and the East Sakhalin Current. We here report on the succession of copepod communities during the warm season in relation to water mass exchange. Copepods were categorized into four seasonal communities (spring/early-summer, mid-summer, late-summer/fall, and early-winter) via a cluster analysis based on Bray-Curtis similarities. Spring/early-summer and early-winter communities were characterized by the temperate-boreal calanoid Pseudocalanus newmani, comprising 34.9%-77.6% of the total abundance of copepods during times of low temperature/salinity, as influenced by the prevailing East Sakhalin Current. Late-summer/fall communities were characterized by the neritic warm-water calanoid Paracalanus parvus s.l., comprising 63.9%-96.3% of the total abundance, as influenced by the Soya Warm Current. Mid-summer communities comprised approximately equal abundances of P. parvus, Eurytemora herdmani, Scolecithricella minor, and Centropages abdominalis (12.8%-28.2%); this community is transitional between those of the spring/early-summer and late-summer/fall. Copepod community succession in Lagoon Notoro-ko can be largely explained by seasonal changes in water masses.

  14. Habitat use and movement patterns by adult saugers from fall to summer in an unimpounded small-river system

    USGS Publications Warehouse

    Kuhn, K.M.; Hubert, W.A.; Johnson, K.; Oberlie, D.; Dufek, D.

    2008-01-01

    The Little Wind River drainage in Wyoming is a relatively small unimpounded river system inhabited by native saugers Sander canadensis. Radio telemetry was used to assess habitat use and movement patterns by adult saugers in the river system from fall through early summer. Fifty-four adult saugers were captured during fall 2004, surgically implanted with radio transmitters, and tracked through mid-July 2005. Tagged saugers selected large and deep pools. Such pools were abundant throughout the Little Wind River system and led to saugers being widely dispersed from fall to early spring. During fall, winter, and early spring, tagged saugers remained sedentary and moved short distances among pools in close proximity to each other. Longer movements by tagged saugers occurred from mid-spring to early summer, and were associated with both upstream and downstream movements to and from two river segments believed to be used for spawning. During early summer, most saugers returned to locations where they had been tagged the previous fall and had spent the winter. Our results provide evidence that preservation of the sauger fishery in the Wind River system will depend on maintaining fish passage throughout the portion of the watershed inhabited by saugers and preserving natural fluvial processes that maintain large and deep pools. ?? Copyright by the American Fisheries Society 2008.

  15. Multi-scale heterogeneity in the temporal origin of water taken up by trees water uptake inferred using stable isotopes

    NASA Astrophysics Data System (ADS)

    Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.

    2017-12-01

    Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.

  16. Subsurface water and clay mineral formation during the early history of Mars.

    PubMed

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  17. Exploratory Long-Range Models to Estimate Summer Climate Variability over Southern Africa.

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.; Mulenga, Henry M.; Mason, Simon J.

    1999-07-01

    Teleconnection predictors are explored using multivariate regression models in an effort to estimate southern African summer rainfall and climate impacts one season in advance. The preliminary statistical formulations include many variables influenced by the El Niño-Southern Oscillation (ENSO) such as tropical sea surface temperatures (SST) in the Indian and Atlantic Oceans. Atmospheric circulation responses to ENSO include the alternation of tropical zonal winds over Africa and changes in convective activity within oceanic monsoon troughs. Numerous hemispheric-scale datasets are employed to extract predictors and include global indexes (Southern Oscillation index and quasi-biennial oscillation), SST principal component scores for the global oceans, indexes of tropical convection (outgoing longwave radiation), air pressure, and surface and upper winds over the Indian and Atlantic Oceans. Climatic targets include subseasonal, area-averaged rainfall over South Africa and the Zambezi river basin, and South Africa's annual maize yield. Predictors and targets overlap in the years 1971-93, the defined training period. Each target time series is fitted by an optimum group of predictors from the preceding spring, in a linear multivariate formulation. To limit artificial skill, predictors are restricted to three, providing 17 degrees of freedom. Models with colinear predictors are screened out, and persistence of the target time series is considered. The late summer rainfall models achieve a mean r2 fit of 72%, contributed largely through ENSO modulation. Early summer rainfall cross validation correlations are lower (61%). A conceptual understanding of the climate dynamics and ocean-atmosphere coupling processes inherent in the exploratory models is outlined.Seasonal outlooks based on the exploratory models could help mitigate the impacts of southern Africa's fluctuating climate. It is believed that an advance warning of drought risk and seasonal rainfall prospects will

  18. Imaging the Voices of the Past: Using Physics to Restore Early Sound Recordings (LBNL Summer Lecture Series)

    ScienceCinema

    Haber, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-01-23

    Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"

  19. Water management by early people in the Yucatan, Mexico

    USGS Publications Warehouse

    Back, W.

    1995-01-01

    The Yucatan Peninsula is a coastal plain underlain by permeable limestone and receives abundant rainfall. Such hydrogeologic conditions should provide major supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that limits the amount of fresh water available. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed on extensive use of groundwater. The religion was water oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management, primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supply by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution. A historical perspective of a paper such as this provides insight into the attitudes concerning water of early people and perhaps provides insight into current attitudes concerning water. Hydrogeologists possess the expertise to generate relevant information required by water managers to arrive at management programs to achieve sustainable development. ?? 1995 Springer-Verlag.

  20. Water management by early people in the Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Back, W.

    1995-06-01

    The Yucatan Peninsula is a coastal plain underlain by permeable limestone and receives abundant rainfall. Such hydrogeologic conditions should provide major supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that limits the amount of fresh water available. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed on extensive use of groundwater. The religion was water oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management, primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supply by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution. A historical perspective of a paper such as this provides insight into the attitudes concerning water of early people and perhaps provides insight into current attitudes concerning water. Hydrogeologists possess the expertise to generate relevant information required by water managers to arrive at management programs to achieve sustainable development.

  1. Summer Opportunity To Accelerate Reading (S.O.A.R.) Evaluation, 2001.

    ERIC Educational Resources Information Center

    Cury, Janice

    A study examined a program entitled "Summer Opportunity to Accelerate Reading" (S.O.A.R.), which provided early intervention to accelerate literacy learning for at-risk students completing kindergarten through grade 2 in 2000-01. Subjects were 2188 students enrolled in 12 S.O.A.R. campuses. Ethnicity was diverse with 58% Hispanic…

  2. Summer Astronomy

    ERIC Educational Resources Information Center

    Riddle, Bob

    2004-01-01

    This brief article describes what can be expected of the skies in the summer of 2004 with quite a few celestial thrills to anticipate. In addition to the planet viewing opportunities, there is a very rare Venus transit of the Sun and the annual Perseid meteor shower. The 2004 summer also marks both an end and beginning for the Cassini/Huygens…

  3. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.

    PubMed

    Stadler, H; Klock, E; Skritek, P; Mach, R L; Zerobin, W; Farnleitner, A H

    2010-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n>800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated.

  4. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.

    PubMed

    Angert, A; Biraud, S; Bonfils, C; Henning, C C; Buermann, W; Pinzon, J; Tucker, C J; Fung, I

    2005-08-02

    An increase in photosynthetic activity of the northern hemisphere terrestrial vegetation, as derived from satellite observations, has been reported in previous studies. The amplitude of the seasonal cycle of the annually detrended atmospheric CO(2) in the northern hemisphere (an indicator of biospheric activity) also increased during that period. We found, by analyzing the annually detrended CO(2) record by season, that early summer (June) CO(2) concentrations indeed decreased from 1985 to 1991, and they have continued to decrease from 1994 up to 2002. This decrease indicates accelerating springtime net CO(2) uptake. However, the CO(2) minimum concentration in late summer (an indicator of net growing-season uptake) showed no positive trend since 1994, indicating that lower net CO(2) uptake during summer cancelled out the enhanced uptake during spring. Using a recent satellite normalized difference vegetation index data set and climate data, we show that this lower summer uptake is probably the result of hotter and drier summers in both mid and high latitudes, demonstrating that a warming climate does not necessarily lead to higher CO(2) growing-season uptake, even in high-latitude ecosystems that are considered to be temperature limited.

  5. Los Alamos Space Weather Summer School: Institutional Computing 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowee, Misa

    During the summer school, students carry out independent research projects on a range of topics related to space weather. In 2016, one student used the LANL Institutional Computing resources. Results of this project were the first to demonstrate that the magnitude of radial diffusion is found to agree well with the early observations of the Earth's radiation belts, indicating this effect should be included in community models of the radiation belts.

  6. 78 FR 38584 - Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... 1625-AA00 Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA AGENCY... on the navigable waters of San Diego Bay in support of the San Diego Symphony Summer POPS Fireworks... Diego, Coast Guard; telephone 619-278-7656, email [email protected] . If you have...

  7. Post-wildfire summer greening depends on winter snowpack

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Nolin, A. W.

    2017-12-01

    Forested, mountain landscapes in the Pacific Northwest (PNW) are changing at an unprecedented rate, largely due to shifts in the regional climate regime. Documented climatic trends include increasing wildfire frequency and intensity and an increasingly ephemeral snowpack, especially at moderate elevations. One relationship that has yet to be studied thoroughly is the dependence of post-wildfire forest recovery on winter snowpack. This study will correlate winter snowpack with summer greenness in the context of 15 recent severe wildfires across the PNW. Winter snow water equivalent will be estimated using a new Snow Cover Frequency (SCF) metric derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover product. Summer forest greenness will be assessed using the Enhanced Vegetation Index (EVI), also derived from daily MODIS reflectance data. Regression tree analysis will be employed to characterize the relative importance of snowpack, elevation, slope, aspect, soil texture, and summer precipitation to summer greenness. Using findings from the regression tree analysis, the most critical physiographic factors will frame a multivariate time series spanning the 5 years pre-wildfire and 5 years post-wildfire in an effort to illustrate how the snowpack-revegetation relationship persists over time. As northwestern mountainous forests become more vulnerable to wildfire activity, it will be vital to continue deepening our understanding of how snowpack matters to post-wildfire forest recovery.

  8. Off-axis Integrated Cavity Output Spectrometer measurements of HDO/H2O ratio for understanding water transport in the Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Clouser, B.; Moyer, E. J.; Sarkozy, L.

    2016-12-01

    The Asian monsoon is one of the main pathways by which water vapor enters the stratosphere. However, the pathways by which water is carried to the upper troposphere/lower stratosphere (UTLS) region and the monsoon contributions to the total stratospheric water budget are not well constrained. We describe here a new instrument for measuring the isotopic composition of water vapor in this region, a useful tracer of the convective and microphysical history of air parcels, and show preliminary results from studies of monsoon outflow in summer 2016. The Chicago Water Isotope Spectrometer (Chi-WIS) is an absorption spectroscopy instrument for measurements of HDO and H2O at 2.65 microns by integrated cavity output spectroscopy (ICOS), designed to sample the 14-21 km range from the M55 Geophysica aircraft. The instrument is rebuilt specifically for the StratoClim campaign to study the Asian monsoon effect on the UTLS region in 2016-2017. We discuss steps taken to maximize signal in this extremely cold and dry environment, explore the instrument's sensitivity limits, and discuss data from test flights sampling monsoon outflow.

  9. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    NASA Astrophysics Data System (ADS)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  10. Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin; Yim, So-Young

    2016-07-01

    The interannual variation of East Asia summer monsoon (EASM) rainfall exhibits considerable differences between early summer [May-June (MJ)] and peak summer [July-August (JA)]. The present study focuses on peak summer. During JA, the mean ridge line of the western Pacific subtropical High (WPSH) divides EASM domain into two sub-domains: the tropical EA (5°N-26.5°N) and subtropical-extratropical EA (26.5°N-50°N). Since the major variability patterns in the two sub-domains and their origins are substantially different, the Part I of this study concentrates on the tropical EA or Southeast Asia (SEA). We apply the predictable mode analysis approach to explore the predictability and prediction of the SEA peak summer rainfall. Four principal modes of interannual rainfall variability during 1979-2013 are identified by EOF analysis: (1) the WPSH-dipole sea surface temperature (SST) feedback mode in the Northern Indo-western Pacific warm pool associated with the decay of eastern Pacific El Niño/Southern Oscillation (ENSO), (2) the central Pacific-ENSO mode, (3) the Maritime continent SST-Australian High coupled mode, which is sustained by a positive feedback between anomalous Australian high and sea surface temperature anomalies (SSTA) over Indian Ocean, and (4) the ENSO developing mode. Based on understanding of the sources of the predictability for each mode, a set of physics-based empirical (P-E) models is established for prediction of the first four leading principal components (PCs). All predictors are selected from either persistent atmospheric lower boundary anomalies from March to June or the tendency from spring to early summer. We show that these four modes can be predicted reasonably well by the P-E models, thus they are identified as the predictable modes. Using the predicted PCs and the corresponding observed spatial patterns, we have made a 35-year cross-validated hindcast, setting up a bench mark for dynamic models' predictions. The P-E hindcast

  11. Booktalking: Avoiding Summer Drift

    ERIC Educational Resources Information Center

    Whittingham, Jeff; Rickman, Wendy A.

    2015-01-01

    Summer drift, otherwise known as loss of reading comprehension skills or reading achievement, has been a well-known and well-documented phenomenon of public education for decades. Studies from the late twentieth century to the present have demonstrated a slowdown in summer drift attributed to specific summer reading programs addressing motivation…

  12. Long-term Neurotoxic Effects of Early-life Exposure to Tetrachloroethylene-contaminated Drinking Water.

    PubMed

    Aschengrau, Ann; Janulewicz, Patricia A; White, Roberta F; Vieira, Veronica M; Gallagher, Lisa G; Getz, Kelly D; Webster, Thomas F; Ozonoff, David M

    2016-01-01

    Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983, widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. A retrospective cohort study (the Cape Cod Health Study) was undertaken to examine possible health consequences of early-life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the effects of prenatal and childhood exposure on neurologic outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiologic research in this unique setting. Participants were identified by cross-matching birth certificates and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (n = 1689), neuropsychological tests (n = 63), vision examinations (n = 63), and magnetic resonance imaging (n = 42). Early-life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among individuals with prenatal and early childhood PCE exposure to unexposed individuals while considering the effect of confounding variables. The study found evidence that early-life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from the historical

  13. 33 CFR 100.35T09-0327 - Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone. 100.35T09-0327 Section 100.35T09-0327 Navigation... OF LIFE ON NAVIGABLE WATERS § 100.35T09-0327 Special Regulated Areas for summer events; Captain of...

  14. Effect of water level changes in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites

    NASA Astrophysics Data System (ADS)

    Lv, Haibo; Zhang, Hong

    2018-04-01

    The purpose of this study was to investigate the effect of water level changes (WLC) in the middle reaches of the Yellow River in summer on CO2 emissions from wetlands dominated by Phragmites. The rate of CO2 emissions (RCE) from soil was measured in some Phragmites wetlands selected along the Yumenkou-Tongguan section in this river's middle reaches. An artificial recharge experiment was conducted and the data about this section's water levels for the past 15 years was analyzed. This study found that the water level of this river section changed frequently in the last 11 summers. The effect of WLC depended on air temperature. At low temperatures of between 18.0 and 28.0 °C, WLC contributed to a RCE change from 10.19 mmol.m-2.h-1 to 13.43 mmol.m-2.h-1. When the temperature fell within the normal range of 29.0-35.0 °C, the corresponding changes were from 4.07 mmol.m-2.h-1 to 7.35 mmol.m-2.h-1. When the temperature was higher than 35.0 °C, the corresponding changes increased slightly from 6.47 mmol.m-2.h-1 to 12.41 mmol.m-2.h-1. These suggest that WLC had a considerable effect on CO2 emissions at high and low temperatures. As the water level rose, the RCE increased and then decreased in both types of wetlands. At low temperatures, the most favorable water levels for CO2 emissions were -10 cm and 0 cm. At normal temperatures, the RCE from the two types of wetlands decreased with rising water level. At high temperatures, the most favorable water level was -60 cm for Phragmites wetlands. These results demonstrate that frequent WLC can slow CO2 release from Phragmites wetlands along the middle reaches of the Yellow River. Therefore, research on the effect of WLC on CO2 emissions has practical significance.

  15. Summer Employment and Community Experiences of Transition-Age Youth with Severe Disabilities

    ERIC Educational Resources Information Center

    Carter, Erik W.; Ditchman, Nicole; Sun, Ye; Trainor, Audrey A.; Swedeen, Beth; Owens, Laura

    2010-01-01

    Although early work experiences during high school represent one of the most consistent predictors of postschool employment for young adults with disabilities, little is known about how these adolescents might access these valuable transition experiences. This study examined the summer employment and community activities of 136 high school…

  16. Evaluation of a nutritional strategy to increase ovulation rate in merino ewes mated in late spring-early summer.

    PubMed

    Nottle, M B; Kleemann, D O; Grosser, T I; Seamark, R F

    1997-07-01

    A nutritional strategy for increasing ovulation rate in Merino ewes mated in late spring-early summer was evaluated on two commercial farms. The strategy used the 'ram effect' to induce oestrus in seasonally anoestrus ewes and supplementary feeding of lupin grain six days prior to oestrus to increase ovulation rate. Ewes that had been isolated from rams for 6 weeks were exposed to vasectomised rams for 2 weeks and then mated to fertile rams for 6 weeks. Feeding 500 g lupins/head/day for 14 days commencing 12 days after the introduction of vasectomised rams, increased the number of ovulations from 126 to 146 per 100 ewes exposed to rams (P < 0.05). This increase was reflected in an improvement in fecundity (lambs born per ewe lambing; P < 0.05) but not fertility (ewes lambing per ewe mated to rams). Net reproductive performance (the product of fertility, fecundity and lamb survival) was increased by 11 lambs weaned per 100 ewes exposed to rams due to lupin supplementation at mating.

  17. Efforts to understand stock structure of summer flounder ( Paralichthys dentatus) in North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Burke, J. S.; Monaghan, J. P.; Yokoyama, S.

    2000-10-01

    Understanding the stock structure of the summer flounder is critical to attempts to manage this species. Currently such research is particularly urgent due to increased interest in commercial culture and stock enhancement of summer flounder as this creates pressure to transplant fish among geographic areas. Studies of summer flounder in the coastal waters of North Carolina are of particular relevance to the stock structure due to the existence of a zoogeographic boundary at Cape Hatteras, NC. The importance of this boundary is being investigated through mark-recapture studies of adults, field sampling of larvae and laboratory experiments on larvae and juveniles originating from different brood stocks. Twenty-three thousand summer flounder were marked in coastal waters and movement of recaptured animals relative to season and the zoogeographic boundary analysed. Seasonal occurrence of larvae relative to this boundary was compared and animals were characterised in terms of fin ray numbers and size and developmental stage at arrival at the coast. In the laboratory we reared larvae from two brood stocks; one originating from the northern portion of the summer flounders range, and the other from North Carolina. These animals were used to determine the importance of temperature to fin ray formation and to compare growth of the two groups of larvae relative to temperature. Additional laboratory experiments include comparisons of salinity tolerance of larvae during the settlement period. Our results support the existence of different groups relative to this zoogeographic barrier and suggest that extensive movement of summer flounder from one region to another for stock enhancement or culture should be prohibited.

  18. Summer syncope syndrome.

    PubMed

    Huang, Jennifer Juxiang; Sharda, Natasha; Riaz, Irbaz Bin; Alpert, Joseph S

    2014-08-01

    Antihypertensive therapy is associated with significant relative risk reductions in the incidence of heart failure, myocardial infarction, and stroke. However, a common adverse reaction to antihypertensive therapy is orthostatic hypotension, dehydration, and syncope. We propose that continued use of antihypertensive medications at the same dosage during the dry summer months in patients living in the Sonoran desert leads to an increase in syncopal episodes. All hypertensive patients who were treated with medications and admitted with International Classification of Diseases, 9th Revision code diagnosis of syncope were included. They were defined as "cases" if they presented during the summer months (May to September 2012) and "controls" if they presented during the winter months (November 2012 to March 2013). The primary outcome measure was the presence of clinical dehydration. The statistical significance was determined using the 2-sided Fisher exact test. A total of 496 patients with an International Classification of Diseases, 9th Revision code diagnosis of syncope were screened, and 179 patients were included in the final analysis. In patients taking antihypertensive medications, there were a significantly higher number of cases of syncope secondary to dehydration or orthostatic hypotension during the summer months (45%) compared with the winter months (26%) (P = .01). The incidence of syncope was significantly higher in older patients (63%) compared with younger individuals (37%) during the summer months. The incidence of syncope increases during the summer months among people who reside in a dry desert climate and who are taking antihypertensive medications. On the basis of our findings, we describe an easily preventable condition that we define as the "Summer Syncope Syndrome." We recommend judicious reduction of antihypertensive therapy in patients residing in a hot and dry climate, particularly during the summer months. Copyright © 2014 Elsevier Inc. All

  19. Impact of Tropospheric Ozone on Summer Climate in China

    NASA Astrophysics Data System (ADS)

    Li, Shu; Wang, Tijian; Zanis, Prodromos; Melas, Dimitris; Zhuang, Bingliang

    2018-04-01

    The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m-2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day-1 over eastern China during summer. In addition, tropospheric ozone increased the land-sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.

  20. Summer Opportunity To Accelerate Reading (S.O.A.R.) Evaluation, 1998.

    ERIC Educational Resources Information Center

    Curry, Janice; Zyskowski, Gloria

    A study examined the "Summer Opportunity to Accelerate Reading" (S.O.A.R.) program, which provided early intervention to accelerate literacy learning for at-risk students entering grades 1-3 in the fall of 1998. Subjects were 388 students enrolled in 3 S.O.A.R. campuses from 37 Austin Independent School District (AISD) elementary schools…

  1. Climatic context and ecological implications of summer fog decline in the coast redwood region.

    PubMed

    Johnstone, James A; Dawson, Todd E

    2010-03-09

    Biogeographical, physiological, and paleoecological evidence suggests that the coast redwood [Sequoia sempervirens (D. Don) Endl.] is closely associated with the presence of summer marine fog along the Pacific coast of California. Here we present a novel record of summer fog frequency in the coast redwood region upon the basis of direct hourly measurements of cloud ceiling heights from 1951 to 2008. Our analysis shows that coastal summer fog frequency is a remarkably integrative measure of United States Pacific coastal climate, with strong statistical connections to the wind-driven upwelling system of the California Current and the broad ocean temperature pattern known as the Pacific Decadal Oscillation. By using a long-term index of daily maximum land temperatures, we infer a 33% reduction in fog frequency since the early 20th century. We present tree physiological data suggesting that coast redwood and other ecosystems along the United States west coast may be increasingly drought stressed under a summer climate of reduced fog frequency and greater evaporative demand.

  2. A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene.

    PubMed

    Ramisch, Arne; Lockot, Gregori; Haberzettl, Torsten; Hartmann, Kai; Kuhn, Gerhard; Lehmkuhl, Frank; Schimpf, Stefan; Schulte, Philipp; Stauch, Georg; Wang, Rong; Wünnemann, Bernd; Yan, Dada; Zhang, Yongzhan; Diekmann, Bernhard

    2016-05-13

    Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [~36°N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.

  3. Summertime, Summer Teens: Summer School Enrollment and the Youth Labor Force.

    ERIC Educational Resources Information Center

    Stringer, Tiffany

    2003-01-01

    Describes changes in how teenagers spend their summers and at the trends in summer school enrollment. Discusses teens' labor force participation and includes information about types of jobs, hours they work, wages, and teenage workers' rights. (JOW)

  4. Evaluation of a Summer Reading Program to Reduce Summer Setback

    ERIC Educational Resources Information Center

    Johnston, Jessica; Riley, Jessica; Ryan, Carey; Kelly-Vance, Lisa

    2015-01-01

    Summer setback, which is defined as a decline in academic achievement over the summer months, occurs in many academic areas but seems especially problematic in reading. We assessed students from a midwestern parochial school serving predominantly students from a low--socioeconomic status background for their reading achievement before they left…

  5. The Summer Slide: What We Know and Can Do about Summer Learning Loss

    ERIC Educational Resources Information Center

    Alexander, Karl, Ed.; Pitcock, Sarah, Ed.; Boulay, Matthew C., Ed.

    2016-01-01

    This book is an authoritative examination of summer learning loss, featuring original contributions by scholars and practitioners at the forefront of the movement to understand--and stem--the "summer slide." The contributors provide an up-to-date account of what research has to say about summer learning loss, the conditions in low-income…

  6. 75 FR 19248 - Subject: Safety Zone; Sea World Summer Nights Fireworks, Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ...-AA00 Subject: Safety Zone; Sea World Summer Nights Fireworks, Mission Bay, San Diego, CA AGENCY: Coast... navigable waters of Mission Bay in support of the Sea World Summer Nights Fireworks. This safety zone is... through, or anchoring within this safety zone unless authorized by the Captain of the Port, or his...

  7. Size-dependent survival of brook trout Salvelinus fontinalis in summer: effects of water temperature and stream flow.

    PubMed

    Xu, C L; Letcher, B H; Nislow, K H

    2010-06-01

    A 5 year individual-based data set was used to estimate size-specific survival rates in a wild brook trout Salvelinus fontinalis population in a stream network encompassing a mainstem and three tributaries (1.5-6 m wetted width), western Massachusetts, U.S.A. The relationships between survival in summer and temperature and flow metrics derived from continuous monitoring data were then tested. Increased summer temperatures significantly reduced summer survival rates for S. fontinalis in almost all size classes in all four sites throughout the network. In contrast, extreme low summer flows reduced survival of large fish, but only in small tributaries, and had no significant effects on fish in smaller size classes in any location. These results provide direct evidence of a link between season-specific survival and environmental factors likely to be affected by climate change and have important consequences for the management of both habitats and populations.

  8. Summer library reading programs.

    PubMed

    Fiore, Carole D

    2007-01-01

    Virtually all public libraries in the United States provide some type of summer library reading program during the traditional summer vacation period. Summer library reading programs provide opportunities for students of many ages and abilities to practice their reading skills and maintain skills that are developed during the school year. Fiore summarizes some of the research in the field and relates it to library programs and usage by students. Several traditional and innovative programs from U.S. and Canadian libraries are described. She concludes with a call for further research related to summer library reading programs.

  9. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  10. Stormwater quality of spring-summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement.

    PubMed

    Drake, Jennifer; Bradford, Andrea; Van Seters, Tim

    2014-06-15

    This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Water levels and water quality in the Sparta-Memphis aquifer (middle Claiborne aquifer) in Arkansas, spring-summer 2009

    USGS Publications Warehouse

    Schrader, T.P.

    2013-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively) since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2009, 324 water levels were measured in wells completed in the Sparta-Memphis aquifer and used to produce a regional potentiometric-surface map. During the summer of 2009, 64 water-quality samples were collected and measured for specific conductance, temperature, and pH from wells completed in the Sparta-Memphis aquifer. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large groundwater withdrawals. The highest and lowest water-level altitudes measured in the Sparta-Memphis aquifer were 325 feet above and 157 feet below National Geodetic Vertical Datum of 1929, respectively. Eight depressions (generally represented by closed contours) are located in the following counties: Bradley; Ashley; Calhoun; Cleveland; Columbia; Arkansas, Jefferson, Lincoln, and Prairie; Cross and Poinsett; and Union. Two large depressions shown on the 2009 potentiometric-surface map, centered in Jefferson and Union Counties, are the result of large withdrawals for industrial, irrigation, or public supply. The depression centered in Jefferson County deepened and expanded in recent years into Arkansas and Prairie Counties. The area enclosed within the 40-foot contour on the 2009 potentiometric-surface map has expanded south to the Drew

  12. [Effects of soil water status on gas exchange of peanut and early rice leaves].

    PubMed

    Chen, Jiazhou; Lü, Guoan; He, Yuanqiu

    2005-01-01

    The gas exchange characteristics of peanut and early rice leaves were investigated in experimental plots under different soil water conditions over a long growth period. The results showed that at the branching stage of peanut, the stomatal conductance (Gs) and transpiration rate (Tr) decreased slightly under mild and moderate soil water stress, while the net photosynthetic rate (Pn) and leaf water use efficiency (WUE) increased. The Gs/Tr ratio also increased under mild water stress, but decreased under moderate water stress. At podding stage, the Gs, Tr, Gs/Tr ratio and Pn decreased, while WUE increased significantly under mild and moderate water stress. The peanut was suffered from water stress at its pod setting stage. At the grain filling stage of early rice, the Gs, Tr and Gs/Tr ratio fluctuated insignificantly under mild and moderate water stress, while Pn and WUE increased significantly, with an increase in grain yield under mild water stress. It's suggested that the combination of Gs and Gs/Tr ratio could be a reference index for crop water stress, namely, crops could be hazarded by water stress when Gs and Gs/Tr decreased synchronously.

  13. Comparison of aerosol effects on simulated spring and summer hailstorm clouds

    NASA Astrophysics Data System (ADS)

    Yang, Huiling; Xiao, Hui; Guo, Chunwei; Wen, Guang; Tang, Qi; Sun, Yue

    2017-07-01

    Numerical simulations are carried out to investigate the effect of cloud condensation nuclei (CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are simulated, a spring case and a summer case, in a semiarid region of northern China, with the Regional Atmospheric Modeling System. The results are used to investigate the differences and similarities of the CCN effects between spring and summer hailstorms. The similarities are: (1) The total hydrometeor mixing ratio decreases, while the total ice-phase mixing ratio enhances, with increasing CCN concentration; (2) Enhancement of the CCN concentration results in the production of a greater amount of small-sized hydrometeor particles, but a lessening of large-sized hydrometeor particles; (3) As the CCN concentration increases, the supercooled cloud water and rainwater make a lesser contribution to hail, while the ice-phase hydrometeors take on active roles in the growth of hail; (4) When the CCN concentration increases, the amount of total precipitation lessens, while the role played by liquid-phase rainfall in the amount of total precipitation reduces, relatively, compared to that of ice-phase precipitation. The differences between the two storms include: (1) An increase in the CCN concentration tends to reduce pristine ice mixing ratios in the spring case but enhance them in the summer case; (2) Ice-phase hydrometeor particles contribute more to hail growth in the spring case, while liquid water contributes more in the summer case; (3) An increase in the CCN concentration has different effects on surface hail precipitation in different seasons.

  14. Biological and chemical redox transformations of mercury in fresh and salt waters of the high arctic during spring and summer.

    PubMed

    Poulain, Alexandre J; Garcia, Edenise; Amyot, Marc; Campbell, Peter G C; Raofie, Farhad; Ariya, Parisa A

    2007-03-15

    It is well-established that atmospheric deposition transports Hg to Arctic regions, but the postdepositional dynamics of Hg that can alter its impact on Arctic food chains are less understood. Through a series of in situ experiments, we investigated the redox transformations of Hg in coastal and inland aquatic systems. During spring and summer, Hg reduction in streams and pond waters decreased across a 4-fold increase in salinity. This alteration of Hg reduction due to chloride was counterbalanced by the presence of particles, which favored the conversion of oxidized Hg to its elemental form. In saline waters, biogenic organic materials, produced by algae, were able to promote oxidation of Hg(O) even under dark conditions. Overall these results point to the vulnerability of marine/ coastal Arctic systems to Hg, compared to inland systems, with oxidation processes enhancing Hg residence times and thus increasing its potential to enter the food chain.

  15. PROPOSED WATER QUALITY SURVEILLANCE NETWORK USING PHYSICAL, CHEMICAL AND BIOLOGICAL EARLY WARNING SYSTEMS (CBEWS)

    EPA Science Inventory

    The Homeland Protection Act of 2002 specifically calls for the investigation and use of Early Warning Systems (EWS) for water security reasons. The EWS is a screening tool for detecting changes in source water and distribution system water quality. A suite of time-relevant biol...

  16. PROPOSED WATER QUALITY SURVEILLANCE NETWORK USING PHYSICAL, CHEMICAL AND BIOLOGICAL EARLY WARNING SYSTEMS (BEWS)

    EPA Science Inventory

    The Homeland Protection Act of 2002 specifically calls for the investigation and use of Early Warning Systems (EWS) for water security reasons. The EWS is a screening tool for detecting changes in source water and distribution system water quality. A suite of time-relevant biol...

  17. Climate Drivers of Alaska Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.

    2016-12-01

    The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.

  18. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa.

    PubMed

    Roden, John S; Ehleringer, James R

    2007-04-01

    The carbon and oxygen isotopic composition of tree-ring cellulose was examined in ponderosa pine (Pinus ponderosa Dougl.) trees in the western USA to study seasonal patterns of precipitation inputs. Two sites (California and Oregon) had minimal summer rainfall inputs, whereas a third site (Arizona) received as much as 70% of its annual precipitation during the summer months (North American monsoon). For the Arizona site, both the delta(18)O and delta(13)C values of latewood cellulose increased as the fraction of annual precipitation occurring in the summer (July through September) increased. There were no trends in latewood cellulose delta(18)O with the absolute amount of summer rain at any site. The delta(13)C composition of latewood cellulose declined with increasing total water year precipitation for all sites. Years with below-average total precipitation tended to have a higher proportion of their annual water inputs during the summer months. Relative humidity was negatively correlated with latewood cellulose delta(13)C at all sites. Trees at the Arizona site produced latewood cellulose that was significantly more enriched in (18)O compared with trees at the Oregon or California site, implying a greater reliance on an (18)O-enriched water source. Thus, tree-ring records of cellulose delta(18)O and delta(13)C may provide useful proxy information about seasonal precipitation inputs and the variability and intensity of the North American monsoon.

  19. Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon.

    PubMed

    He, Bian; Wu, Guoxiong; Liu, Yimin; Bao, Qing

    2015-12-01

    The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based on astronomical radiation analysis and numerical modeling, here we show that in winter the plateaus cannot block such a northerly intrusion; while in summer the daily solar radiation at the top of the atmosphere and at the surface, and the surface potential temperature to the north of the Tibetan Plateau, are higher than their counterparts to its south, and such plateau shielding is not needed. By virtue of hydrological analysis, we show that the high energy near the surface required for continental monsoon development is maintained mainly by high water vapor content. Results based on potential vorticity-potential temperature diagnosis further demonstrate that it is the pumping of water vapor from sea to land due to the thermal effects of the plateaus that breeds the Asian continental monsoon.

  20. Summer diapause induced by high temperatures in the oriental tobacco budworm: ecological adaptation to hot summers.

    PubMed

    Liu, Zhudong; Xin, Yucui; Zhang, Yanan; Fan, Jianting; Sun, Jianghua

    2016-06-07

    Summer diapause in Helicoverpa assulta (Hübner), which prolongs the pupal stage, particularly in males, is induced by high temperatures. In the laboratory, 3(rd)-, 4(th)-, 6(th)-instar and prepupal larvae were exposed to high temperatures - 33 and 35 °C with a photoperiod of LD16:8 - until pupation to induce summer diapause. The results showed that the incidence of summer diapause was influenced by temperature, stage exposed, and sex. The higher the temperature, the more often summer diapause was attained. Sixth-instar and prepupal larvae were the sensitive stages for summer diapause induction. H. assulta summer-diapausing pupae needed diapause development to resume development when temperatures became favorable. Furthermore, both body mass and energy storage capacity (lipid and glycogen) were significantly affected by diapause rather than sex, and were significantly higher in summer-diapausing pupae than in non-diapausing pupae. In addition, the body mass loss and respiration rate showed that the rate of metabolism in the summer-diapausing pupae was consistently lower than in non-diapausing pupae, which were significantly affected by diapause and pupal age. We conclude that summer diapause in H. assulta is a true diapause, and H. assulta has evolved mechanisms to accumulate energy storage and to lower its metabolism to adapt to hot summers.

  1. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest.

    PubMed

    Baguskas, Sara A; Still, Christopher J; Fischer, Douglas T; D'Antonio, Carla M; King, Jennifer Y

    2016-05-01

    Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future.

  2. Interannual variability of Danube waters propagation in summer period of 1992-2015 and its influence on the Black Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Kubryakov, A. A.; Stanichny, S. V.; Zatsepin, A. G.

    2018-03-01

    The propagation of the Danube River plume has strong interannual variability that impacts the local balance of nutrients and the thermohaline structure in the western Black Sea. In the present study, we use a particle-tracking model based on satellite altimetry measurements and wind reanalysis data, as well as satellite measurements (SeaWiFS, MODIS), to investigate the interannual variability in the Danube plume pathways during the summer from 1993 to 2015. The wind conditions largely define the variability in the Danube water propagation. Relatively low-frequency variability (on periods of a week to months) in the wind stress curl modulates the intensity of the geostrophic Rim Current and related mesoscale eddy dynamics. High-frequency offshore wind-drift currents transport the plume across isobaths and provide an important transport link between shelf and offshore circulation. Inherent plume dynamics play an additional role in the near-mouth transport of the plume and its connection with offshore circulation. During the years with prevailing northeast winds ( 30% of studied cases), which are usually accompanied by increased wind curl over the Black Sea and higher Danube discharge, an alongshore southward current at the NorthWestern Shelf (NWS) is formed near the western Black Sea coast. Advected southward, the Danube waters are entrained in the Rim Current jet, which transports them along the west coast of the basin. The strong Rim Current, fewer eddies and downwelling winds substantially decrease the cross-shelf exchange of nutrients. During the years with prevailing southeastern winds ( 40%), the Rim Current is less intense. Mesoscale eddies effectively trap the Danube waters, transporting them to the deep western part of the basin. The low- and high-frequency southeastern wind-drift currents contribute significantly to cross-isobath plume transport and its connection with offshore circulation. During several years ( 15%), the Danube waters moved eastward to

  3. Sedimentology, petrography and early diagenesis of a travertine-colluvium succession from Chusang (southern Tibet)

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Meyer, Michael C.; Hoffmann, Dirk L.

    2016-08-01

    The Chusang travertine is situated in southern Tibet at an altitude of ~ 4200 m asl. in a cold-arid, periglacial environment and is characterized by interbedding of hydrothermal carbonate with colluvium. Here we present sedimentological and petrographical data to elucidate the depositional environment and sedimentary processes responsible for hydrothermal carbonate precipitation and early diagenetic alteration as well as clastic sediment accumulation and provide initial 230Th/U ages to constrain the time-depth of this travertine-colluvium succession. Three main travertine lithofacies have been identified: 1) a dense laminated lithofacies, 2) a porous layered lithofacies and 3) an intraclastic lithofacies that results from erosion of pre-existing hot spring carbonate. The colluvium is composed of cohesive debris flow layers that derived from mass-wasting events from the adjacent hillslopes. Micro-fabric analyses suggest that dense laminated travertine forms via rapid calcite precipitation from hot spring water seasonally subjected to severe winter cooling, while porous layered travertine results from seasonal dilution of hot spring water with rain water during the summer monsoon months, which in turn stimulates biological productivity and gives rise to a porous summer layer. Early diagenesis in the form of recrystallization and extensive formation of pore cements is common in the Chusang travertine, but never eradicates the original crystal fabrics completely. The sedimentary architecture of the deposit is conditioned by (i) the gently dipping (~ 10°) pre-existing terrain on which hot spring water is discharged from multiple travertine mounds causing laterally extensive travertine sheets to precipitate, and (ii) the adjacent much steeper (up to 30°) periglacial hillslopes that are the source area of repeated debris flows that accumulate on the travertine surface. The resulting travertine-colluvium succession has a total thickness of ~ 24 m and 230Th/U dating

  4. Early warning of changing drinking water quality by trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.

  5. Mercury accumulation and the mercury-PCB-sex interaction in summer flounder

    USGS Publications Warehouse

    Madenjian, Charles P.; Jensen, Olaf P.; Krabbenhoft, David P.; DeWild, John F.; Ogorek, Jacob M.; Vastano, Anthony R.

    2016-01-01

    Patterns in the relative differences in contaminant concentrations between the sexes of mature fish may reveal important behavioral and physiological differences between the sexes. We determined whole-fish total mercury (Hg) concentrations in 23 female summer flounder (Paralichthys dentatus) and 27 male summer flounder from New Jersey coastal waters. To estimate the change in Hg concentration due to release of eggs at spawning, Hg concentration in the somatic tissue and ovaries of 5 of the 23 female summer flounder were also determined. To ascertain whether most of the Hg in the summer flounder was methylmercury (MeHg), whole-fish MeHg concentrations were determined in all 50 summer flounder. Whole-fish Hg concentrations averaged 113 ng/g for females and 111 ng/g for males. Thus, females were 2% higher in Hg concentration than males, on average, but the difference was not statistically significant. Based on Hg determinations in the somatic tissue and ovaries, we predicted that Hg concentration of females would increase by 3.6%, on average, immediately after spawning due to release of eggs. On average, 92% of the Hg in the summer flounder was MeHg. To determine whether the effect of sex on Hg concentration was significantly different from the effect of sex on polychlorinated biphenyl (PCB) concentration, we paired our Hg determinations with PCB determinations from a previous study, and applied regression analysis. Sex significantly interacted with contaminant type (Hg or PCBs), as males were 43% higher in PCB concentration than females, whereas females were 2% higher in Hg concentration than males. Males eliminating Hg from their bodies at a faster rate than females was a likely explanation for this discrepancy between the two contaminant types. Overall, the Hg and PCB concentrations in the summer flounder were relatively low, and therefore our findings also had implications for continued operation of the summer flounder fishery.

  6. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused bymore » the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years

  7. Comparison of total energy expenditure between school and summer months.

    PubMed

    Zinkel, S R J; Moe, M; Stern, E A; Hubbard, V S; Yanovski, S Z; Yanovski, J A; Schoeller, D A

    2013-10-01

    Childhood obesity has increased 3 to 4 fold. Some children gain excess weight in summer. Total energy expenditure increases almost linearly with fat-free mass. A lower total energy expenditure was not detected in summer. Recent data report that the youth experience greater weight gain during summer than during school months. We tested the hypothesis that a difference in total energy expenditure (TEE) between school and summer months exists and may contribute to summer weight gain. A secondary analysis was performed on cross-sectional TEE data from school-age, sedentary African-American and Caucasian youth based in or near the District of Columbia who were at-risk for adult obesity because they had body mass index (BMI) ≥ 85th percentile or had overweight parents. TEE was estimated from 18-O and deuterium measurements during 1-week intervals using urine samples collected after ingestion of doubly labelled water. Differences in summer- and school-time TEE were assessed using analysis of covariance. The data were adjusted for fat-free mass (FFM) as determined by deuterium dilution to adjust for the effect of body size on TEE. Data were collected from 162 youth (average age 10 ± 2 years, BMI 28 ± 8 kg m(-2) and BMI z-score 1.96 + 0.96). Of these, 96 youth had TEE measured during the school year (September-June); 66 different youths had TEE measured during summer months (June-August). After adjustment for FFM, average summertime TEE was 2450 ± 270 kcal d(-1) and average school-time TEE was 2510 ± 350 kcal d(-1) (P = 0.26). No difference in TEE was detected between the school year and the summer months. These data suggest that seasonal differences in youth weight gain are not necessarily due to differences in energy expenditures. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  8. [Characteristics of mass size distributions of water-soluble, inorganic ions during summer and winter haze days of Beijing].

    PubMed

    Huang, Yi-Min; Liu, Zi-Rui; Chen, Hong; Wang, Yue-Si

    2013-04-01

    To investigate the size distribution characteristics of water soluble inorganic ions in haze days, the particle samples were collected by two Andersen cascade impactors in Beijing during summer and winter time and each sampling period lasted two weeks. Online measurement of PM10 and PM2.5 using TEOM were also conducted at the same time. Sources and formation mechanism of water soluble inorganic ions were analyzed based on their size distributions. The results showed that average concentrations of PM10 and PM 2.5 were (245.5 +/- 8.4) microg x m(-3) and (120.2 +/- 2.0) microg x m(-3) during summer haze days (SHD), and were (384.2 +/- 30.2) microg x m(-3) and (252.7 +/- 47.1) microg x m(-3) during winter haze days (WHD), which suggested fine particles predominated haze pollution episode in both seasons. Total water-soluble inorganic ions concentrations were higher in haze days than those in non-haze days, especially in fine particles. Furthermore, concentrations of secondary inorganic ions (SO4(2-), NO3(-) and NH4(+)) increased quicker than other inorganic ions in fine particles during haze days, indicating secondary inorganic ions played an important role in the formation of haze pollution. Similar size distributions were found for all Sinorganic water soluble ions except for NO3(-), during SHD and WHD. SO4(2-) and NH4(+) dominated in the fine mode (PM1.0) while Mg2+ and Ca2+ accumulated in coarse fraction, Na+, Cl- and K+ showed a bimodal distribution. For NO3(-), however, it showed a bimodal distribution during SHD and a unimodal distribution dominated in the fine fraction was found during WHD. The average mass median aerodynamic diameter (MMAD) of SO4(2-) was 0.64 microm in SHD, which suggested the formation of SO4(2-) was mainly attributed to in-cloud processes. Furthermore, a higher apparent conversion rate of sulfur dioxide (SOR) was found in SHD, indicating more fine particles were produced by photochemical reaction in haze days than that in non-haze days. The

  9. Martian North Polar Water-Ice Clouds During the Viking Era

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  10. Characterising Atlantic deep waters during the extreme warmth of the early Eocene 'greenhouse'.

    NASA Astrophysics Data System (ADS)

    Cameron, A.; Sexton, P. F.; Anand, P.; Huck, C. E.; Fehr, M.; Dickson, A.; Scher, H. D.; van de Flierdt, T.; Westerhold, T.; Roehl, U.

    2014-12-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow that is of direct importance to the climate system because it transports heat, salt and nutrients to high latitudes and regulates the exchange of CO2 with the atmosphere. The Atlantic Ocean plays a strong role in the modern day MOC however, it is unclear what role it may have played during extreme climate conditions such as those found in the early Eocene 'greenhouse'. In order to resolve the Atlantic's role in the MOC during the early/middle Eocene, we present a multi-proxy approach to investigate changes in ocean circulation, water mass geometry, sediment supply to the deep oceans and the physical strength of deep waters from four different IODP drill sites. Neodymium isotopes (ɛNd), REE profiles and cerium anomalies measured in fossilised fish teeth help to characterise geochemical changes to water masses throughout the Atlantic whilst bulk sediment ɛNd and XRF-core scan data documents changes in sediment supply to the region. Sortable silt data provides a physical constraint on the strength of deep-water movements during the extreme climatic conditions of the early Eocene. We utilise expanded and continuous sequences from two sites in the North west Atlantic spanning the early to middle Eocene recently recovered on IODP Exp. 342 (1403, 1409) that are located on the Newfoundland Ridge, directly in the flow path of today's Deep Western Boundary Current. We also present data from equatorial Demerara Rise (IODP site 1258) and from further north at the mouth of the Labrador Sea (ODP Site 647).

  11. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is

  12. Par Pond vegetation status Summer 1995 -- Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar tomore » the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  13. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  14. Summer diapause induced by high temperatures in the oriental tobacco budworm: ecological adaptation to hot summers

    PubMed Central

    Liu, Zhudong; Xin, Yucui; Zhang, Yanan; Fan, Jianting; Sun, Jianghua

    2016-01-01

    Summer diapause in Helicoverpa assulta (Hübner), which prolongs the pupal stage, particularly in males, is induced by high temperatures. In the laboratory, 3rd-, 4th-, 6th-instar and prepupal larvae were exposed to high temperatures – 33 and 35 °C with a photoperiod of LD16:8 – until pupation to induce summer diapause. The results showed that the incidence of summer diapause was influenced by temperature, stage exposed, and sex. The higher the temperature, the more often summer diapause was attained. Sixth-instar and prepupal larvae were the sensitive stages for summer diapause induction. H. assulta summer-diapausing pupae needed diapause development to resume development when temperatures became favorable. Furthermore, both body mass and energy storage capacity (lipid and glycogen) were significantly affected by diapause rather than sex, and were significantly higher in summer-diapausing pupae than in non-diapausing pupae. In addition, the body mass loss and respiration rate showed that the rate of metabolism in the summer-diapausing pupae was consistently lower than in non-diapausing pupae, which were significantly affected by diapause and pupal age. We conclude that summer diapause in H. assulta is a true diapause, and H. assulta has evolved mechanisms to accumulate energy storage and to lower its metabolism to adapt to hot summers. PMID:27271223

  15. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    NASA Astrophysics Data System (ADS)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial

  16. 33 CFR 165.T08-0240 - Safety Zone; Kemah Boardwalk Summer Season Fireworks, Galveston Bay, Kemah, TX.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone; Kemah Boardwalk Summer Season Fireworks, Galveston Bay, Kemah, TX. 165.T08-0240 Section 165.T08-0240 Navigation and... Areas Eighth Coast Guard District § 165.T08-0240 Safety Zone; Kemah Boardwalk Summer Season Fireworks...

  17. Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer

    2008-01-01

    In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and

  18. Aerosol forcing of extreme summer drought over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2017-12-01

    The frequency of extreme summer drought has been increasing in North China during the past sixty years, which has caused serious water shortages. It remains unclear whether anthropogenic forcing has contributed to the increasing extreme droughts. Using the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) re-analysis data and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations with various combinations of historical forcings, the authors investigated the driving mechanism behind the observed changes. Metrological drought is usually measured by precipitation anomalies, which show lower fidelity in current climate models compared to largescale circulation patterns. Based on NCEP/NCAR re-analysis, a linear relationship is firstly established between the weakest regional average 850 hPa southerly winds and extreme summer drought. This meridional winds index (MWI) is then used as a proxy for attribution of extreme North China drought using CMIP5 outputs. Examination of the CMIP5 simulations reveals that the probability of the extreme summer droughts with the first percentile of MWI for 1850-2004 under anthropogenic forcing has increased by 100%, on average, relative to a pre-industrial control run. The more frequent occurrence of extremely weak MWIs or drought over North China is ascribed from weakened climate and East Asian summer monsoon (EASM) circulation due to the direct cooling effect from increased aerosol.

  19. Water Emission from Early Universe

    NASA Astrophysics Data System (ADS)

    Jarugula, Sreevani; Vieira, Joaquin

    2017-06-01

    The study of dusty star forming galaxies (DSFGs) is important to understand galaxy assembly in early universe. A bulk of star formation at z ˜ 2-3 takes place in DSFGs but are obscured by dust in optical/UV. However, they are extremely bright in far infrared (FIR) and submillimeter with infrared luminosities of 10^{11} - 10^{13} L_{⊙}. ALMA, with its high spatial and spectral resolution, has opened up a new window to study molecular lines, which are vital to our understanding of the excitation and physical processes in the galaxy. Carbon monoxide (CO) being the second most abundant and bright molecule after hydrogen (H_{2}), is an important tracer of star forming potential. Besides CO, water (H_{2}O) is also abundant and it's line strength is comparable to high-J CO lines in high redshift Ultra Luminous Infrared Galaxies (ULIRGs). Studies have shown H_{2}O to directly trace the FIR field and hence the star forming regions. Moreover, L_{H_{2}O}/L_{IR} ratio is nearly constant for five of the most important water lines and does not depend on the presence of AGN implying that H_{2}O is one of the best tracers of star forming regions (SFRs). This incredible correlation holds for nearly five orders of magnitude in luminosity and observed in both local and high redshift luminous infrared galaxies. In this talk, I will discuss the importance of H_{2}O in tracing FIR field and show the preliminary results of resolved water emission from three high-redshift gravitationally lensed South Pole Telescope (SPT) sources obtained from ALMA cycle 3 and cycle 4. These sources are among the first H_{2}O observations with resolved spatial scales ˜ 1 kpc and will prove to be important for ALMA and galaxy evolution studies.

  20. Physical and biological characteristics of the winter-summer transition in the Central Red Sea

    NASA Astrophysics Data System (ADS)

    Zarokanellos, Nikolaos D.; Papadopoulos, Vassilis P.; Sofianos, Sarantis. S.; Jones, Burton H.

    2017-08-01

    The Central Red Sea (CRS) lies between two distinct hydrographic and atmospheric regimes. In the southern Red Sea, seasonal monsoon reversal regulates the exchange of water between the Red Sea and the Indian Ocean. In the northern Red Sea, intermediate and occasionally deep water are formed during winter to sustain the basin's overturning circulation. Highly variable mesoscale eddies and the northward flowing eastern boundary current (EBC) determine the physical and biogeochemical characteristics of the CRS. Ship-based and glider observations in the CRS between March and June 2013 capture key features of the transition from winter to summer and depict the impact of the eddy activity on the EBC flow. Less saline and relatively warmer water of Indian Ocean origin reaches the CRS via the EBC. Initially, an anticyclonic eddy with diameter of 140 km penetrating to 150m depth with maximum velocities up to 30-35 cm s-1 prevails in the CRS. This anticyclonic eddy appears to block or at least redirect the northward flow of the EBC. Dissipation of the eddy permits the near-coastal, northward flow of the EBC and gives place to a smaller cyclonic eddy with a diameter of about 50 km penetrating to 200 m depth. By the end of May, as the northerly winds become stronger and persistent throughout the basin, characteristic of the summer southwest monsoon wind regime, the EBC, and its associated lower salinity water became less evident, replaced by the saltier surface water that characterizes the onset of the summer stratification in the CRS.

  1. Comparison of total energy expenditure between school- and summer-months

    PubMed Central

    Zinkel, Sarah R. J.; Moe, Martin; Stern, Elizabeth A.; Hubbard, Van S.; Yanovski, Susan Z.; Yanovski, Jack A.; Schoeller, Dale A.

    2012-01-01

    Objective Recent data reports that youth experience greater weight gain during summer than during school months. We tested the hypothesis that a difference in total energy expenditure (TEE) between school and summer months exists and may contribute to summer weight gain. Subjects and Methods A secondary analysis was performed on cross-sectional TEE data from school-age, sedentary African American and Caucasian youth based in or near the District of Columbia who were at-risk for adult obesity because they had BMI≥85th percentile or had overweight parents. TEE was estimated from 18-O and deuterium measurements during 1-week intervals using urine samples collected after ingestion of doubly-labeled water. Differences in summer and school time TEE were assessed using ANCOVA. The data were adjusted for fat-free mass as determined by deuterium dilution to adjust for the effect of body size on TEE. Results Data were collected from 162 youth (average age 10±2 years, BMI 28±8 kg/m2, and BMI z-score 1.96+0.96). Of these, 96 youth had TEE measured during the school year (September – June); 66 different youths had TEE measured during summer months (June – August). After adjustment for fat-free mass, average summertime TEE was 2450±270 kcal/day and average school-time TEE was 2510±350 kcal/day (p=0.26). Conclusion No difference in TEE was detected between the school year and the summer months. These data suggest that seasonal differences in youth weight gain are not necessarily due to differences in energy expenditures. PMID:23637099

  2. Consequences of seasonal variation in reservoir water level for predatory fishes: linking visual foraging and prey densities

    USGS Publications Warehouse

    Klobucar, Stephen L.; Budy, Phaedra

    2016-01-01

    In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.

  3. Summer roosting by adult male seminole bats in the Ouachita Mountains, Arkansas

    Treesearch

    Roger W. Perry; Ronald E. Thill

    2007-01-01

    We used radiotelemetry to locate 51 diurnal roosts for 17 male Seminole bats (Lasiurus seminolus) during late spring and early summer, 2000–2005. We quantified characteristics of roost trees and sites surrounding roosts and compared those measurements with random trees and random locations. All but two roosts were located in the foliage of large...

  4. Bioengineering and Bioinformatics Summer Institutes: Meeting Modern Challenges in Undergraduate Summer Research

    PubMed Central

    Dong, Cheng; Snyder, Alan J.; Jones, A. Daniel; Sheets, Erin D.

    2008-01-01

    Summer undergraduate research programs in science and engineering facilitate research progress for faculty and provide a close-ended research experience for students, which can prepare them for careers in industry, medicine, and academia. However, ensuring these outcomes is a challenge when the students arrive ill-prepared for substantive research or if projects are ill-defined or impractical for a typical 10-wk summer. We describe how the new Bioengineering and Bioinformatics Summer Institutes (BBSI), developed in response to a call for proposals by the National Institutes of Health (NIH) and the National Science Foundation (NSF), provide an impetus for the enhancement of traditional undergraduate research experiences with intense didactic training in particular skills and technologies. Such didactic components provide highly focused and qualified students for summer research with the goal of ensuring increased student satisfaction with research and mentor satisfaction with student productivity. As an example, we focus on our experiences with the Penn State Biomaterials and Bionanotechnology Summer Institute (PSU-BBSI), which trains undergraduates in core technologies in surface characterization, computational modeling, cell biology, and fabrication to prepare them for student-centered research projects in the role of materials in guiding cell biology. PMID:18316807

  5. Summer trapping method for mule deer. [Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, K.R.

    1979-07-01

    A summer mule deer trapping method which uses modified Clover traps in a circular corral with water as a bait is described. Drug restraint was used to facilitate safe handling of mule deer by the investigator. Fifteen mule deer were safely captured and outfitted with radio transmitters, ear tags, and reflective markers, and their movements monitored to determine migration patterns.

  6. Summer syncope syndrome redux.

    PubMed

    Huang, Jennifer Juxiang; Desai, Chirag; Singh, Nirmal; Sharda, Natasha; Fernandes, Aaron; Riaz, Irbaz Bin; Alpert, Joseph S

    2015-10-01

    While antihypertensive therapy is known to reduce the risk for heart failure, myocardial infarction, and stroke, it can often cause orthostatic hypotension and syncope, especially in the setting of polypharmacy and possibly, a hot and dry climate. The objective of the present study was to investigate whether the results of our prior study involving continued use of antihypertensive drugs at the same dosage in the summer as in the winter months for patients living in the Sonoran desert resulted in an increase in syncopal episodes during the hot summer months. All hypertensive patients who were treated with medications and admitted with International Classification of Diseases, 9th Revision code diagnosis of syncope were included. This is a 3-year retrospective chart review study. They were defined as "cases" if they presented during the summer months (May to September) and "controls" if they presented during the winter months (November to March). The primary outcome measure was the presence of clinical dehydration. The statistical significance was determined using the 2-sided Fisher's exact test. A total of 834 patients with an International Classification of Diseases, 9th Revision code diagnosis of syncope were screened: 477 in the summer months and 357 in the winter months. In patients taking antihypertensive medications, there was a significantly higher number of cases of syncope secondary to dehydration during the summer months (40.5%) compared with the winter months (29%) (P = .04). No difference was observed in the type of antihypertensive medication used and syncope rate. The number of antihypertensives used did not increase the cases of syncope in either summer or winter. An increased number of syncope events was observed in the summer months among people who reside in a dry desert climate and who are taking antihypertensive medications. The data confirm our earlier observations that demonstrated a greater number of cases of syncope among people who reside

  7. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing

    2018-03-01

    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing

  8. EARLY SENESCENCE1 Encodes a SCAR-LIKE PROTEIN2 That Affects Water Loss in Rice1[OPEN

    PubMed Central

    Rao, Yuchun; Yang, Yaolong; Xu, Jie; Li, Xiaojing; Leng, Yujia; Dai, Liping; Huang, Lichao; Shao, Guosheng; Ren, Deyong; Hu, Jiang; Guo, Longbiao; Pan, Jianwei; Zeng, Dali

    2015-01-01

    The global problem of drought threatens agricultural production and constrains the development of sustainable agricultural practices. In plants, excessive water loss causes drought stress and induces early senescence. In this study, we isolated a rice (Oryza sativa) mutant, designated as early senescence1 (es1), which exhibits early leaf senescence. The es1-1 leaves undergo water loss at the seedling stage (as reflected by whitening of the leaf margin and wilting) and display early senescence at the three-leaf stage. We used map-based cloning to identify ES1, which encodes a SCAR-LIKE PROTEIN2, a component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous complex involved in actin polymerization and function. The es1-1 mutants exhibited significantly higher stomatal density. This resulted in excessive water loss and accelerated water flow in es1-1, also enhancing the water absorption capacity of the roots and the water transport capacity of the stems as well as promoting the in vivo enrichment of metal ions cotransported with water. The expression of ES1 is higher in the leaves and leaf sheaths than in other tissues, consistent with its role in controlling water loss from leaves. GREEN FLUORESCENT PROTEIN-ES1 fusion proteins were ubiquitously distributed in the cytoplasm of plant cells. Collectively, our data suggest that ES1 is important for regulating water loss in rice. PMID:26243619

  9. Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations.

    PubMed

    Vajed Samiei, Jahangir; Saleh, Abolfazl; Mehdinia, Ali; Shirvani, Arash; Kayal, Mohsen

    2015-01-01

    With on-going climate change, coral susceptibility to thermal stress constitutes a central concern in reefconservation. In the Persian Gulf, coral reefs are confronted with a high seasonal variability in water temperature, and both hot and cold extremes have been associated with episodes of coral bleaching and mortality. Using physiological performance as a measure of coral health, we investigated the thermal susceptibility of the common acroporid, Acropora downingi, near Hengam Island where the temperature oscillates seasonally in the range 20.2-34.2 °C. In a series of two short-term experiments comparing coral response in summer versus winter conditions, we exposed corals during each season (1) to the corresponding seasonal average and extreme temperature levels in a static thermal environment, and (2) to a progressive temperature deviation from the annual mean toward the corresponding extreme seasonal value and beyond in a dynamic thermal environment. We monitored four indictors of coral physiological performance: net photosynthesis (Pn), dark respiration (R), autotrophic capability (Pn/R), and survival. Corals exposed to warming during summer showed a decrease in net photosynthesis and ultimately died, while corals exposed to cooling during winter were not affected in their photosynthetic performance and survival. Coral autotrophic capability Pn/R was lower at the warmer thermal level within eachseason, and during summer compared to winter. Corals exposed to the maximum temperature of summer displayed Pn/R < 1, inferring that photosynthetic performance could not support basal metabolic needs under this environment. Our results suggest that the autotrophic performance of the Persian Gulf A. downingi is sensitive to the extreme temperatures endured in summer, and therefore its populations may be impacted by future increases in water temperature.

  10. Climatic context and ecological implications of summer fog decline in the coast redwood region

    PubMed Central

    Johnstone, James A.; Dawson, Todd E.

    2010-01-01

    Biogeographical, physiological, and paleoecological evidence suggests that the coast redwood [Sequoia sempervirens (D. Don) Endl.] is closely associated with the presence of summer marine fog along the Pacific coast of California. Here we present a novel record of summer fog frequency in the coast redwood region upon the basis of direct hourly measurements of cloud ceiling heights from 1951 to 2008. Our analysis shows that coastal summer fog frequency is a remarkably integrative measure of United States Pacific coastal climate, with strong statistical connections to the wind-driven upwelling system of the California Current and the broad ocean temperature pattern known as the Pacific Decadal Oscillation. By using a long-term index of daily maximum land temperatures, we infer a 33% reduction in fog frequency since the early 20th century. We present tree physiological data suggesting that coast redwood and other ecosystems along the United States west coast may be increasingly drought stressed under a summer climate of reduced fog frequency and greater evaporative demand. PMID:20160112

  11. Multiproxy summer precipitation reconstructions for Asia during the past 530 years

    NASA Astrophysics Data System (ADS)

    Feng, S.; Hu, Q. S.; Wu, Q.

    2011-12-01

    The Asian summer monsoons and the monsoon circulation affect the weather and climate in most of the tropics and extra-tropics of the Eastern Hemisphere, where more than 60% of the earth's population live. Thus it is of paramount importance to understand variations of the Asian summer monsoons from a long-term perspective. This study reconstructed a 0.5°×0.5° gridded summer (June-August) precipitation in Asia (5°-55°N, 60°-135°E) during the past 530 years based on annually resolved predictors from natural and human archives. There are 221 proxy records with temporally stable and significant correlations with the summer precipitation in the study region. Most of the proxy records only cover the last 300-400 years, and a few proxy records were available before 1470AD. The missing values in the proxy data were infilled using analogue techniques. Then the regularized expectation maximization method is used to reconstruct the summer precipitation back to 1470AD. The reduction of error (RE) between the reconstructed values and observations suggests that the reconstructions are reliable, with RE>0.0 on all grid points for the study region. The reconstruction skill is very high (RE>0.4) over regions with denser proxy records (e.g. East China, Mongolia and Central Asia), and slightly lower in northeastern and southeastern Asia with RE usually less than 0.2. The reconstructed gridded summer precipitation data allow us to identify and analyze the regional variations of drought and flood during the last 530 years. These analysis results show that the severe droughts that affected China during the Little Ice Age (e.g. the mega-drought during the late 1630s to early 1640s that triggered the collapse of the Ming Dynasty) shared a similar spatial extent with the modern droughts in northern and central China.

  12. Under Summer Skies

    ERIC Educational Resources Information Center

    Texley, Juliana

    2009-01-01

    There's no better way to celebrate 2009, the International Year of Astronomy, than by curling up with a good book under summer skies. To every civilization, in every age, the skies inspired imagination and scientific inquiry. There's no better place to start your summer reading than under their influence. Here are a few selections identified by…

  13. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  14. Investigating the impact of temporal and spatial variation in spring snow melt on summer soil respiration

    NASA Astrophysics Data System (ADS)

    John, G. P.; Papuga, S. A.; Wright, C. L.; Nelson, K.; Barron-Gafford, G. A.

    2010-12-01

    While soil respiration - the flux of carbon dioxide from the soil surface to the atmosphere - is the second largest terrestrial carbon flux, it is the least well constrained component of the terrestrial carbon cycle. This is in part because of its high variability in space and time that can become amplified under certain environmental conditions. Under current climate change scenarios, both summer and winter precipitation are expected to be altered in terrestrial ecosystems of the southwestern US. Precipitation magnitude and intensity influence soil moisture, which is a key control on ecosystem-scale respiration rates. Therefore understanding how changes in snow and rainfall translate to changes in soil moisture is critical to understanding climate change impacts on soil respiration processes. Our study took place within the footprint of a semiarid mixed-conifer flux measurement system on Mount Bigelow just north of Tucson, AZ. We analyzed images from three understory phenology cameras (pheno-cams) to identify areas that represented early and late snowmelt. Within the field of view of each of the three pheno-cams we established three early-melt and three late-melt soil respiration measurement “sites”. To understand the persistence of snowmelt conditions on summer soil respiration, we measured soil respiration, soil moisture, and soil temperature at all six sites on four days representing different summer periods (i.e. pre-monsoon, early monsoon, mid-monsoon, and late monsoon). Throughout the entire study period, at both early- and late-melt sites soil respiration was strongly correlated with amount of soil moisture, and was less responsive to temperature. Soil respiration generally increased throughout the rainy season, peaking by mid-monsoon at both early- and late-melt sites. Interestingly, early-melt sites were wetter than late-melt sites following rainfall occurring in the pre- and early monsoon. However, following rainfall occurring in the mid- to late

  15. Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer (Middle Claiborne Aquifer) in Arkansas, Spring-Summer 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered

  16. Effects of physical constraints on the lability of POM during summer in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Misic, Cristina; Covazzi Harriague, Anabella; Mangoni, Olga; Aulicino, Giuseppe; Castagno, Pasquale; Cotroneo, Yuri

    2017-02-01

    The 0-200 m surface layer of the Ross Sea was studied during summer 2014 to investigate the lability of the particulate organic matter (POM) in response to physical parameters. With the use of satellite information, we selected three zones, characterised by different physical setting: a northern offshore area, crossing the summer-polynya area of the Ross Sea (hereafter called ROME 1), a more coastal area next to the Terra Nova Bay polynya (ROME 2); a southern offshore area, towards the Ross Ice Shelf (ROME 3). Ice-maps showed that the seasonal ice retreat had already occurred in early December for most of the stations. Statistical analysis of the quantitative and qualitative characteristics of the POM pointed to significant differences between the stations, especially in the upper mixed layer (UML). A comparison with previous studies showed that the localised pulses of POM accumulation in the UML were similar to those recorded at the highly productive marginal ice zones, providing notable trophic support to the ecosystem. The UML, although rather thin and easily subjected to alterations, confirmed its pivotal role in the ecosystem dynamics. A POM quality favourable to consumers was highlighted at several stations in ROME 1 and ROME 3. Reduced trophic support was, instead, found in ROME 2. Limited POM consumption where deep-water formation takes place would increase the POM role in the transfer of C to the depths.

  17. The crystallization water of gypsum rocks is a relevant water source for plants.

    PubMed

    Palacio, Sara; Azorín, José; Montserrat-Martí, Gabriel; Ferrio, Juan Pedro

    2014-08-18

    Some minerals, like gypsum, hold water in their crystalline structure. Although still unexplored, the use of such crystallization water by organisms would point to a completely new water source for life, critical under dry conditions. Here we use the fact that the isotopic composition of free water differs from gypsum crystallization water to show that plants can use crystallization water from the gypsum structure. The composition of the xylem sap of gypsum plants during summer shows closer values to gypsum crystallization water than to free soil water. Crystallization water represents a significant water source for organisms growing on gypsum, especially during summer, when it accounts for 70-90% of the water used by shallow-rooted plants. Given the widespread occurrence of gypsum in dry lands throughout the Earth and in Mars, these results may have important implications for arid land reclamation and exobiology.

  18. 2010 Summer Transportation Institute

    DOT National Transportation Integrated Search

    2012-09-01

    The Summer Transportation Institute (STI) hosted by the Western Transportation Institute at Montana : State University serves to attract high school students to participate in an innovative summer : educational program in transportation. The STI aims...

  19. 2010 Summer Transportation Institute

    DOT National Transportation Integrated Search

    2010-09-01

    The Summer Transportation Institute (STI) hosted by the Western Transportation Institute at Montana : State University serves to attract high school students to participate in an innovative summer : educational program in transportation. The STI aims...

  20. Measurements of Water Vapor Profiles with Compact DIAL in the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Abo, Makoto; Sakai, Tetsu; Le Hoai, Phong Pham; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    In recent years, the frequency of occurrence of locally heavy rainfall that can cause extensive damages, has been increasing in Japan. For early prediction of heavy rainfall, it is useful to measure the water vapor vertical distribution upwind cumulus convection beforehand. For that purpose, we have been developing compact water vapor differential absorption lidar (DIAL). We show the results of the measurements with lidar in summer when the local heavy rainfall frequently occurs in Japan. We also show the preliminary result of the assimilation of the lidar data to the numerical model and impact on the heavy rainfall prediction.

  1. Modification of land-atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude

    NASA Astrophysics Data System (ADS)

    Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone

    2016-10-01

    Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.

  2. Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains

    DOE PAGES

    Raz-Yaseef, Naama; Billesbach, Dave P.; Fischer, Marc L.; ...

    2015-08-31

    The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10 years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grassesmore » (prairie and switchgrass) needed at least 350 mm of precipitation during the growing season to become net carbon sinks, while crops needed only 100 mm. In summer, high temperatures enhanced evaporation and led to higher likelihood of dry soil conditions. Therefore, summer-growing native prairie species and switchgrass experienced more seasonal droughts than spring-growing crops. For wheat, the net reduction in carbon uptake resulted mostly from a decrease in gross primary production rather than an increase in respiration. Flux measurements suggested that management practices for crops were effective in suppressing evapotranspiration and decomposition (by harvesting and removing secondary growth), and in increasing carbon uptake (by fertilizing and conserving summer soil water). In light of future projections for wetter springs and drier and warmer summers in the Southern Great Plains, our study indicates an increased vulnerability in native ecosystems and summer crops over time.« less

  3. The response of inorganic carbon distributions and dynamics to upwelling-favorable winds on the northern Gulf of Mexico during summer

    NASA Astrophysics Data System (ADS)

    Huang, W.-J.; Cai, W.-J.; Wang, Y.; Hu, X.; Chen, B.; Lohrenz, S. E.; Chakraborty, S.; He, R.; Brandes, J.; Hopkinson, C. S.

    2015-12-01

    Upwelling-favorable winds and an offshore-distributed Mississippi and Atchafalaya River plume trajectory were observed in summer 2009 in contrast to the mean conditions from 2002 to 2010 (upwelling-unfavorable winds and an alongshore river plume trajectory), a set of conditions which was also observed in summer 2007. The responses of dissolved inorganic carbon (DIC) distributions and dynamics to upwelling-favorable winds are studied by comparing the contrasting conditions between summer 2009 and summer 2007 on the northern Gulf of Mexico. Patterns of surface water partial pressure of CO2 (pCO2), DIC, δ13C in DIC, and total alkalinity (TA) determined in July 2009 and August 2007 were strongly related to river plume trajectories, and differed between the two summers. The slope of the relationship between dissolved oxygen (DO) and DIC in summer 2007 was comparable to the Redfield O/C ratio of 1.3, which was attributed to respiration of organic matter in the bottom water. The slope of the DO and DIC relationship and δ13CDIC values in bottom waters during July 2009 were clearly affected by mixing since their salinities were <35. A three end-member mixing model was used to remove mixing effects in (1) δ13CDIC, to estimate the organic source of respiration, and (2) in DIC concentrations, to calculate DIC removal and release. δ13CDIC results in both summers were consistent with an apparent release of DIC in hypoxic waters (DO less than 2 mg L-1) associated with respiration of surface organic matter. The area-weighted surface DIC removal (i.e., biological production) was lower in 2009 than in 2007 on the shelf, as the plume was distributed offshore. The release of DIC in bottom waters was higher over the shelf in 2009 and was surmised to be related to stronger mixing, which was favorable for the DO supply for respiration. Overall, surface waters on the continental shelf in the region of study in July 2009 acted as a weak CO2 source to the atmosphere, but a weak CO2 sink

  4. Development of communication networks and water quality early warning detection systems at drinking water utilities in the Ohio River Valley Basin.

    PubMed

    Schulte, J G; Vicory, A H

    2005-01-01

    Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.

  5. Influence of the Summer NAO on the Spring-NAO-Based Predictability of the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Zheng, Fei

    2017-04-01

    The dominant mode of atmospheric circulation over the North Atlantic region is the North Atlantic Oscillation (NAO). The boreal spring NAO may imprint its signal on contemporaneous sea surface temperature (SST), leading to a North Atlantic SST tripolar pattern (NAST). This pattern persists into the following summer and modulates the East Asian summer monsoon (EASM). Previous studies have shown that the summer NAST is caused mainly by the preceding spring NAO, whereas the contemporaneous summer NAO plays a secondary role. The results of this study illustrate that, even if the summer NAO plays a secondary role, it may also perturb summer SST anomalies caused by the spring NAO. There are two types of perturbation caused by the summer NAO. If the spring and summer NAO patterns have the same (opposite) polarities, the summer NAST tends to be enhanced (reduced) by the summer NAO, and the correlation between the spring NAO and EASM is usually stronger (weaker). In the former (latter) case, the spring-NAO-based prediction of the EASM tends to have better (limited) skill. These results indicate that it is important to consider the evolution of the NAO when forecasting the EASM, particular when there is a clear reversal in the polarity of the NAO, because it may impair the spring-NAO-based EASM prediction.

  6. A survey of the summer coccolithophore community in the western Barents Sea

    NASA Astrophysics Data System (ADS)

    Giraudeau, Jacques; Hulot, Vivien; Hanquiez, Vincent; Devaux, Ludovic; Howa, Hélène; Garlan, Thierry

    2016-06-01

    The Barents Sea is particularly vulnerable to large-scale hydro-climatic changes associated with the polar amplification of climate change. Key oceanographical variables in this region are the seasonal development of sea-ice and the location and strength of physico-chemical gradients in the surface and subsurface water layers induced by the convergence of Arctic- and Atlantic-derived water masses. Remote sensing imagery have highlighted the increasing success of calcifying haptophytes (coccolithophores) in the summer phytoplankton production of the Barents Sea over the last 20 years, as a response to an overall larger contribution of Atlantic waters to surface and sub-surface waters, as well as to enhanced sea-ice melt-induced summer stratification of the photic layer. The present study provides a first thorough description of coccolithophore standing stocks and diversity over the shelf and slope of the western Barents Sea from two sets of surface and water column samples collected during August-September 2014 from northern Norway to southern Svalbard. The abundance and composition of coccolithophore cells and skeletal remains (coccoliths) are discussed in view of the physical-chemical-biological status of the surface waters and water column based on in-situ (temperature, salinity, fluorescence) and shore-based (microscope enumerations, chemotaxonomy) measurements, as well as satellite-derived data (Chl a and particulate inorganic carbon contents). The coccolithophore population is characterized by a low species diversity and the overwhelming dominance of Emiliania huxleyi. Coccolithophores are abundant both within the well stratified, Norwegian coastal water - influenced shallow mixed layer off northern Norway, as well as within well-mixed cool Atlantic water in close vicinity of the Polar Front. Bloom concentrations with standing stocks larger than 4 million cells/l are recorded in the latter area north of 75°N. Our limited set of chemotaxonomic data suggests

  7. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    DTIC Science & Technology

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  8. Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki

    2017-12-01

    Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.

  9. Seasonal trend of photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, L; Baldocchi, DD

    2003-09-01

    OAK-B135 Understanding seasonal changes in photosynthetic parameters and stomatal conductance is crucial for modeling long-term carbon uptake and energy fluxes of ecosystems. Gas exchange measurements of CO{sub 2} and light response curves on blue oak leaves (Quercus douglasii H. & A.) were conducted weekly throughout the growing season to study the seasonality of photosynthetic capacity (V{sub cmax}) and Ball-Berry slope (m) under prolonged summer drought and high temperature. A leaf photosynthetic model was used to determine V{sub cmax}. There was a pronounced seasonal pattern in V{sub cmax}. The maximum value of V{sub cmax}, 127 {micro}molm{sup -2} s{sup -1},was reached shortlymore » after leaf expansion in early summer, when air temperature was moderate and soil water availability was high. Thereafter, V{sub cmax} declined as the soil water profile became depleted and the trees experienced extreme air temperatures, exceeding 40 C. The decline in V{sub cmax} was gradual in midsummer, however, despite extremely low predawn leaf water potentials ({Psi}{sub pd}, {approx} -4.0 MPa). Overall, temporal changes in V{sub cmax} were well correlated with changes in leaf nitrogen content. During spring leaf development, high rates of leaf dark respiration (R{sub d}, 5-6 {micro}mol m{sup -2} s{sup -1}) were observed. Once a leaf reached maturity, R{sub d} remained low, around 0.5 {micro}mol m{sup -2} s{sup -1}. In contrast to the strong seasonality of V{sub cmax}, m and marginal water cost per unit carbon gain ({partial_derivative}E/{partial_derivative}A) were relatively constant over the season, even when leaf {Psi}{sub pd} dropped to -6.8 MPa. The constancy of {partial_derivative}E/{partial_derivative}A suggests that stomata behaved optimally under severe water-stress conditions. We discuss the implications of our findings in the context of modeling carbon and water vapor exchange between ecosystems and the atmosphere.« less

  10. Cosmic Chemistry: A Proactive Approach to Summer Science for High School Students

    ERIC Educational Resources Information Center

    Parsley, Danette; Ristvey, John

    2014-01-01

    Though school is out for the summer, ninth- and tenth-grade students at Union Intermediate High School are burning off energy playing a game of tag on the soccer field. But that is not all they are doing. They are also synthesizing and applying key chemistry concepts they have just learned related to the conditions of the early solar system. They…

  11. A Sustainable Early Warning System for Climate Change Impacts on Water Quality Management

    NASA Astrophysics Data System (ADS)

    Lee, T.; Tung, C.; Chung, N.

    2007-12-01

    In this era of rapid social and technological change leading to interesting life complexity and environmental displacement, both positive and negative effects among ecosystems call for a balance in which there are impacts by climate changes. Early warning systems for climate change impacts are necessary in order to allow society as a whole to properly and usefully assimilate the masses of new information and knowledge. Therefore, our research addresses to build up a sustainable early warning mechanism. The main goal is to mitigate the cumulative impacts on the environment of climate change and enhance adaptive capacities. An effective early warning system has been proven for protection. However, there is a problem that estimate future climate changes would be faced with high uncertainty. In general, take estimations for climate change impacts would use the data from General Circulation Models and take the analysis as the Intergovernmental Panel on Climate Change declared. We follow the course of the method for analyzing climate change impacts and attempt to accomplish the sustainable early warning system for water quality management. Climate changes impact not only on individual situation but on short-term variation and long-term gradually changes. This kind characteristic should adopt the suitable warning system for long-term formulation and short- term operation. To continue the on-going research of the long-term early warning system for climate change impacts on water quality management, the short-term early warning system is established by using local observation data for reappraising the warning issue. The combination of long-term and short-term system can provide more circumstantial details. In Taiwan, a number of studies have revealed that climate change impacts on water quality, especially in arid period, the concentration of biological oxygen demand may turn into worse. Rapid population growth would also inflict injury on its assimilative capacity to

  12. Detection of dual effects of degradation of perennial snow and ice covers on the hydrologic regime of a Himalayan river basin by stream water availability modeling

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Biswajit

    2012-01-01

    SummaryIn river basins where melt water from snow and ice constitutes a dominant component of stream discharge during summer, degradation or reduction of perennial snow and ice covered areas ( SCA P) has a profound effect on stream water availability in those basins. Degradation of SCA P that includes glaciers is a globally widespread phenomenon observed in the recently past decades; its cause has been attributed to global warming and its consequence is expected to dramatically alter the flow regimes of the rivers draining the terrains. The predicted change in flow regime is an initial increase in summer flows in the early decades of 21st century followed by sharp decline of the same during the later parts of the century. Estimation of SCA P within the Upper Indus Basin (UIB), straddling the western ranges of the Greater Himalayas, Karakoram Mountains, and the eastern mountain ranges of the Hindu Kush, shows that from 1992 to 2010 there has been about 2.15% reduction in SCA P. A spatially distributed basin-scale stream water availability model is presented to calculate monthly river discharges at critical hydrologic junctions within UIB. Model calculations for the years 1992, 2000, and 2008, show that due to the degradation of the SCA P within the basin, there has been significant decrease in summer discharges at various hydrologic junctions. The percentage decline in flows varies from 10% to 22%, depending on the locations of the junctions within the basin. The space-dependence of these variations reflects differential degradation of SCA P in various parts of the basin. Furthermore, the time of peak discharge at all of the hydrological junctions has shifted from middle/late summer to late spring/early summer as another outcome of SCA P reduction. Such temporal shifting of nival regimes to early part of warmer season has also been predicted by global warming models. However, the case study presented here for a major Himalayan river basin demonstrates that such

  13. Coccolithophore assemblage response to Black Sea Water inflow into the North Aegean Sea (NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Karatsolis, B.-Th.; Triantaphyllou, M. V.; Dimiza, M. D.; Malinverno, E.; Lagaria, A.; Mara, P.; Archontikis, O.; Psarra, S.

    2017-10-01

    This study aims to presents the species composition of living coccolithophore communities in the NE Aegean Sea, investigating their spatial and temporal variations along a north-south transect in the area receiving the inflowing surface Black Sea Water (BSW) over the deeper Levantine Water (LW) layer. Coccolithophores in the area were relatively diverse and a total of 95 species over 3 sampling periods studied were recognized using Scanning Electron Microscope (SEM) techniques. R-mode hierarchical cluster analysis distinguished two coccolithophore Groups (I, IIa, IIb, IIc) with different ecological preferences. Emiliania huxleyi was the most abundant species of Group I, whereas Syracosphaera spp., Rhabdosphaera spp. and holococcolithophores were prevailing in the highly diversified Group II assemblages. Biometric analysis conducted on E. huxleyi coccoliths from Aegean water column and Black Sea sediment trap samples, indicated that during autumn, NE Aegean specimens in samples under BSW influence were featured by unimodal distribution concerning the coccolith relative tube width, with values similar to those provided by the Black Sea specimens. In early spring, coccoliths in the stations with increased BSW influx displayed a bimodal pattern of relative tube width with smaller values found mostly in the surface layers, while the distribution became again unimodal and dominated by larger values within the deeper LW layers. In the summer period, the typical LW holococcolithophore species (Group II) presented low cell numbers in the surface layer (<20 m), which is their usual ecological niche in the Aegean Sea, compared to greater depths, therefore marking LW mass flowing beneath the less saline BSW surface lid. In contrast to Black Sea early summer bloom conditions, E. huxleyi was almost absent in the NE Aegean during the summer sampling period.

  14. Summer Learning: Accelerating Student Success

    ERIC Educational Resources Information Center

    Pitcock, Sarah; Seidel, Bob

    2015-01-01

    As numerous studies from 1906 on have confirmed, children lose ground in learning if they lack opportunities for building skills over the summer. Nonetheless, summer learning loss comes up but rarely in the national discussion of education reform. By the end of summer, students perform on average one month behind where they left off in the spring.…

  15. Numerical experiments on the impact of spring north pacific SSTA on NPO and unusually cool summers in Northeast China

    NASA Astrophysics Data System (ADS)

    Lian, Yi; Zhao, Bin; Shen, Baizhu; Li, Shangfeng; Liu, Gang

    2014-11-01

    A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Niño (La Niña) phases in the Niño4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer. In spring, the central equatorial Pacific El Niño phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves, inducing elliptic low-frequency anomalies of tropical air flows. This would enhance the anomalous cyclone-anticyclone-cyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes, constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes. The central equatorial Pacific La Niña forcing in the spring would, on the one hand, induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer, and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.

  16. Effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness during summer break.

    PubMed

    Park, Kyung-Shin; Lee, Man-Gyoon

    2015-06-01

    Evidence suggests that adolescents gain more weight during the summer break than they do during the school year, and that participation in the summer school program is beneficial in maintaining their healthy lifestyle. It is known that obesity and physical fitness in adolescents can be affected by their socio-economic and psychological status, especially during a long school break. The purpose of this study was to examine the effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness in underprivileged adolescents during the summer break. Body composition and physical fitness in 138 underprivileged adolescents were measured at the beginning and end of the summer break. A survey on socio-economic and psychological status was conducted at the beginning of the summer break. Two-way repeated measures ANOVA and Tukey post hoc tests were used for data analysis. Pearson correlation analysis was performed to establish a relation between psychological outcomes and changes in body composition and physical fitness during the summer break. Significant increases in body weight (p = .003) and % body fat (p = .014) as well as a decrease in VO2max (p = .018) were found in summer school non-attendants during the summer whereas no significant changes were found in summer school attendants. Summer school non-attendants with lower psychosocial outcomes had a greater decline in physical fitness and weight gain; however, summer school attendants were not affected by psychosocial outcomes. The summer school program effectively prevented summer weight gain among underprivileged adolescents due to the structured environment, restricted food access, and scheduled time for exercise in addition to minimizing the effects of their psychosocial outcomes. Results indicated that summer school non-attendants may require comprehensive intervention for psychosocial outcomes and nutritional education to maintain body weight and physical fitness

  17. Effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness during summer break

    PubMed Central

    Park, Kyung-Shin; Lee, Man-Gyoon

    2015-01-01

    [Purpose] Evidence suggests that adolescents gain more weight during the summer break than they do during the school year, and that participation in the summer school program is beneficial in maintaining their healthy lifestyle. It is known that obesity and physical fitness in adolescents can be affected by their socio-economic and psychological status, especially during a long school break. The purpose of this study was to examine the effects of summer school participation and psychosocial outcomes on changes in body composition and physical fitness in underprivileged adolescents during the summer break. [Methods] Body composition and physical fitness in 138 underprivileged adolescents were measured at the beginning and end of the summer break. A survey on socio-economic and psychological status was conducted at the beginning of the summer break. Two-way repeated measures ANOVA and Tukey post hoc tests were used for data analysis. Pearson correlation analysis was performed to establish a relation between psychological outcomes and changes in body composition and physical fitness during the summer break. [Results] Significant increases in body weight (p = .003) and % body fat (p = .014) as well as a decrease in VO2max (p = .018) were found in summer school non-attendants during the summer whereas no significant changes were found in summer school attendants. Summer school non-attendants with lower psychosocial outcomes had a greater decline in physical fitness and weight gain; however, summer school attendants were not affected by psychosocial outcomes. The summer school program effectively prevented summer weight gain among underprivileged adolescents due to the structured environment, restricted food access, and scheduled time for exercise in addition to minimizing the effects of their psychosocial outcomes. [Conclusion] Results indicated that summer school non-attendants may require comprehensive intervention for psychosocial outcomes and nutritional education

  18. Timely Healthcare Checkup Catches Melanoma Early

    MedlinePlus

    ... please turn Javascript on. Feature: Skin Cancer Timely Healthcare Checkup Catches Melanoma Early Past Issues / Summer 2013 ... left the Congress and starting working as a healthcare consultant, when I finally decided to have a ...

  19. A physical framework for evaluating net effects of wet meadow restoration on late summer streamflow

    NASA Astrophysics Data System (ADS)

    Grant, G.; Nash, C.; Selker, J. S.; Lewis, S.; Noël, P.

    2017-12-01

    Restoration of degraded wet meadows that develop on upland valley floors is intended to achieve a range of ecological benefits. A widely cited benefit is the potential for meadow restoration to augment late-season streamflow; however, there has been little field data demonstrating increased summer flows following restoration. Instead, the hydrologic consequences of restoration have typically been explored using coupled groundwater and surface water flow models at instrumented sites. The expected magnitude and direction of change provided by models has, however, been inconclusive. Here, we assess the streamflow benefit that can be obtained by wet meadow restoration using a parsimonious, physically-based approach. We use a one-dimensional linearized Boussinesq equation with a superimposed solution for changes in storage due to groundwater upwelling and and explicitly calculate evapotranspiration using the White Method. The model accurately predicts water table elevations from field data in the Middle Fork John Day watershed in Oregon, USA. The full solution shows that while raising channel beds can increase total water storage via increases in water table elevation in upland valley bottoms, the contributions of both lateral and longitudinal drainage from restored floodplains to late summer streamflow are undetectably small, while losses in streamflow due to greater transpiration, lower hydraulic gradients, and less drainable pore volume are substantial. Although late-summer streamflow increases should not be expected as a direct result of wet meadow restoration, these approaches offer benefits for improving the quality and health of riparian and meadow vegetation that would warrant considering such measures, even at the cost of increased water demand and reduced streamflow.

  20. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation

    USGS Publications Warehouse

    Kurpius, M.R.; Panek, J.A.; Nikolov, N.T.; McKay, M.; Goldstein, Allen H.

    2003-01-01

    The weather patterns of the west side of the Sierra Nevada Mountains (cold, wet winters and hot, dry summers) strongly influence how water is partitioned between transpiration and evaporation and result in a specific strategy of water use by ponderosa pine trees (Pinus ponderosa) in this region. To investigate how year-round water fluxes were partitioned in a young ponderosa pine ecosystem in the Sierra Nevada Mountains, water fluxes were continually measured from June 2000 to May 2001 using a combination of sap flow and eddy covariance techniques (above- and below-canopy). Water fluxes were modeled at our study site using a biophysical model, FORFLUX. During summer and fall water fluxes were equally partitioned between transpiration and soil evaporation while transpiration dominated the water fluxes in winter and spring. The trees had high rates of canopy conductance and transpiration in the early morning and mid-late afternoon and a mid-day depression during the dry season. We used a diurnal centroid analysis to show that the timing of high canopy conductance and transpiration relative to high vapor pressure deficit (D) shifted with soil moisture: during periods of low soil moisture canopy conductance and transpiration peaked early in the day when D was low. Conversely, during periods of high soil moisture canopy conductance and transpiration peaked at the same time or later in the day than D. Our observations suggest a general strategy by the pine trees in which they maximize stomatal conductance, and therefore carbon fixation, throughout the day on warm sunny days with high soil moisture (i.e. warm periods in winter and late spring) and maximize stomatal conductance and carbon fixation in the morning through the dry periods. FORFLUX model estimates of evaporation and transpiration were close to measured/calculated values during the dry period, including the drought, but underestimated transpiration and overestimated evaporation during the wet period. ?? 2003

  1. Teacher Attendance at a Summer Institute and High School Student Achievement

    ERIC Educational Resources Information Center

    Thelen, L. J.; Litsky, Warren

    1972-01-01

    Students of teachers who had attended a summer institute on water pollution control performed better on an achievement test at the end of the following school year than classes of teachers with equivalent qualifications who were not selected for the institute. Other control groups of students were also used. (AL)

  2. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    PubMed

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  3. Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations

    PubMed Central

    Saleh, Abolfazl; Mehdinia, Ali; Shirvani, Arash; Kayal, Mohsen

    2015-01-01

    With on-going climate change, coral susceptibility to thermal stress constitutes a central concern in reefconservation. In the Persian Gulf, coral reefs are confronted with a high seasonal variability in water temperature, and both hot and cold extremes have been associated with episodes of coral bleaching and mortality. Using physiological performance as a measure of coral health, we investigated the thermal susceptibility of the common acroporid, Acropora downingi, near Hengam Island where the temperature oscillates seasonally in the range 20.2–34.2 °C. In a series of two short-term experiments comparing coral response in summer versus winter conditions, we exposed corals during each season (1) to the corresponding seasonal average and extreme temperature levels in a static thermal environment, and (2) to a progressive temperature deviation from the annual mean toward the corresponding extreme seasonal value and beyond in a dynamic thermal environment. We monitored four indictors of coral physiological performance: net photosynthesis (Pn), dark respiration (R), autotrophic capability (Pn/R), and survival. Corals exposed to warming during summer showed a decrease in net photosynthesis and ultimately died, while corals exposed to cooling during winter were not affected in their photosynthetic performance and survival. Coral autotrophic capability Pn/R was lower at the warmer thermal level within eachseason, and during summer compared to winter. Corals exposed to the maximum temperature of summer displayed Pn/R < 1, inferring that photosynthetic performance could not support basal metabolic needs under this environment. Our results suggest that the autotrophic performance of the Persian Gulf A. downingi is sensitive to the extreme temperatures endured in summer, and therefore its populations may be impacted by future increases in water temperature. PMID:26157627

  4. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua

    2018-03-01

    The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.

  5. Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study.

    PubMed

    Robinson, Michelle D; Mishra, Ina; Deodhar, Sneha; Patel, Vipulkumar; Gordon, Katrina V; Vintimilla, Raul; Brown, Kim; Johnson, Leigh; O'Bryant, Sid; Cistola, David P

    2017-12-19

    Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that characterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial characterization of an atypical new biomarker that detects these early conditions with just one measurement. Water T 2 , measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exquisitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic human subjects, the association of plasma and serum water T 2 values with over 130 blood biomarkers was analyzed using bivariate, multivariate and logistic regression. Plasma and serum water T 2 exhibited strong bivariate correlations with markers of insulin, lipids, inflammation, coagulation and electrolyte balance. After correcting for confounders, low water T 2 values were independently and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T 2 exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study population) were identified by low water T 2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T 2 values were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and

  6. Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Kawamura, Kimitaka; Sawano, Maki

    2010-12-01

    Size-segregated aerosol samples were collected over the western North Pacific in summer 2008 to investigate marine biological contribution to organic aerosols. The samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), and water-soluble organic compounds including diacids (C2-C9), ω-oxocarboxylic acids, and α-dicarbonyls as well as methanesulfonic acid (MSA). The average concentrations of OC and oxalic acid (C2) were approximately two to three times larger in marine biologically more influenced aerosols, defined by the concentrations of MSA and azelaic acid (C9), than in less influenced aerosols. WSOC, which showed a statistically significant correlation with MSA, accounted for 15-21% of total mass of the components determined in the submicrometer range of biologically more influenced aerosols. These values are comparable to those of water-insoluble organic carbon (WIOC) (˜14-23%), suggesting that organic aerosols in this region are enriched in secondary organic aerosols (SOA) linked to oceanic biological activity. In these aerosols, substantial fractions of C2-C4 diacids were found in the submicrometer size range. Positive correlations of oxalic acid with C3-C5 diacids and glyoxylic acid suggest that secondary production of oxalic acid occurs possibly in the aqueous aerosol phase via the oxidation of longer-chain diacids and glyoxylic acid in the oceanic region with higher biological productivity. We found similar concentration levels and size distributions of methylglyoxal between the two types of aerosols, suggesting that formation of oxalic acid via the oxidation of methylglyoxal from marine isoprene is insignificant in the study region.

  7. Teaching safety at a summer camp: evaluation of a water safety curriculum in an urban community setting.

    PubMed

    Lawson, Karla A; Duzinski, Sarah V; Wheeler, Tareka; Yuma-Guerrero, Paula J; Johnson, Kelly M K; Maxson, R Todd; Schlechter, Robert

    2012-11-01

    The purpose of this project was to evaluate a water safety curriculum in a low-income, minority-focused, urban youth summer camp. The curriculum is available to Safe Kids Coalitions across the country; however, it has not previously been evaluated. Participants were pre-K to third-grade students (n = 166). Children watched a video and received the curriculum in a classroom setting. Each child was given a pre-, post-, and 3-week retention exam to assess knowledge change. Mean test scores and number of safety rules participants could list were analyzed using paired Student's t tests. Parents were given a baseline survey at the beginning (n = 140) and end of the weeklong curriculum (n = 118). The participants were 50% male, 27.5% Hispanic, 68.7% African American, and 3.8% biracial. Children were divided into three groups: pre-K/kindergarten, first and second grade, and third grade. Children in each of the groups received higher knowledge scores at the posttest (p = .0097, p < .0001, and p < .0001, respectively), with little decline in scores at the 3-week retention exam. Similar results were seen for the ability to list safety rules, though the number fell slightly between the posttest and retention test. The study demonstrates that children possessed more knowledge of water safety after receiving this curriculum. This knowledge increase was maintained through the 3-week retention exam. Further evaluation of the curriculum's content and its impact on water safety beliefs, attitudes, and behaviors are needed, as well as evaluation of additional settings, risk areas, and the role of parental involvement.

  8. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam 2008-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2009-09-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2008 and early spring 2009, respectively. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). Operating the sluiceway reduces the potential for hydropower production. However, this surface flow outlet may be the optimal non-turbine route for fallbacks in late fall after the sluiceway is typically closed for juvenile fish passage and for overwintering summer steelhead andmore » kelt passage in the early spring before the start of the voluntary spill season. The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines, and their movements in front of the sluiceway at TDA to inform fisheries managers’ and engineers’ decision-making relative to sluiceway operations. The study periods were from November 1 to December 15, 2008 (45 days) and from March 1 to April 9, 2009 (40 days). The study objectives were to 1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA during the two study periods, respectively, and 2) assess the behavior of these fish in front of sluice entrances. We obtained fish passage data using fixed-location hydroacoustics and fish behavior data using acoustic imaging. For the overwintering summer steelhead, fallback occurred throughout the 45-day study period. We estimated that a total of 1790 ± 250 (95% confidence interval) summer steelhead targets passed through the powerhouse intakes and operating sluices during November 1 to December 15, 2008. Ninety five percent of these fish passed through the sluiceway. Therefore, without the

  9. Comprehensive analysis of the origin of giant jellyfish near Qinhuangdao in summer

    NASA Astrophysics Data System (ADS)

    Wu, Lingjuan; Wu, Xiaofen; Bai, Tao

    2017-09-01

    A massive bloom of the giant jellyfish Nemopilema nomurai occurred in waters offQinhuangdao, a port city in Hebei Province, in July 2013. However, jellyfish larvae were not found in this location during the previous winter and spring. To determine the possible origin of the giant jellyfish medusa in the Bohai Sea, we developed a backward particle-tracking model and a series of numerical simulations were conducted by using the hydrodynamic, three-dimensional Regional Ocean Modeling System (ROMS) results. The simulated results showed that passive particles, representing jellyfish medusae, released in surface waters at different dates during the summer had consistent trajectories. Particles released at the sea surface on August 1 and 15 could be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and the new Huanghe (Yellow) River estuary. Particles released on July 1 and 15 could also be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and only to Zhuangxi tide station. However, none of the particles released in the middle and bottom water layers could be traced back to those areas. Based on the results of the numerical simulations, the distribution characteristics of seafloor sediments, and observational data for giant jellyfish in the region, we suggest that waters between Feiyan Shoal and the new Huanghe River estuary are the likely origin of giant jellyfish observed near Qinhuangdao in summer.

  10. 2009 summer transportation institute.

    DOT National Transportation Integrated Search

    2010-01-01

    Missouri LTAP at Missouri S&T has hosted a USDOT Summer Transportation Institute (STI) for the past several years. The program : has been very successful and was again offered in Summer 2009. The STI is a 2-week intensive learning experience held dur...

  11. Comparison of the global gene expression profiles in the bovine endometrium between summer and autumn

    PubMed Central

    SAKUMOTO, Ryosuke; HAYASHI, Ken-Go; SAITO, Shiori; KANAHARA, Hiroko; KIZAKI, Keiichiro; IGA, Kosuke

    2015-01-01

    Heat stress compromises fertility during summer in dairy and beef cows by causing nutritional, physiological and reproductive damages. To examine the difference in endometrial conditions in cows between summer and autumn, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. The trial was conducted in the summer (early in September) and autumn (mid-November) seasons of two consecutive years (2013–2014) in Morioka, Japan. Endometrial samples were collected from the cows using a biopsy technique. The expressions of 268 genes were significantly higher in the endometrium collected in summer than those collected in autumn, whereas the expressions of 369 genes were lower (P<0.05 or lower). Messenger RNA expressions of glycoprotein 2 (GP2), neurotensin (NTS),E-cadherin (CDH1) and heat shock 105kDa/110kDa protein 1 (HSPH1) were validated by quantitative real-time PCR. Transcripts of GP2 and NTS were more abundant in the endometrium from summer than in the endometrium from autumn (P < 0.05). In contrast, the mRNA expressions of CDH1 were lower (P < 0.05) and those of HSPH1 tended to be low (P = 0.09) in the endometrium from summer. Immunohistochemical staining showed that GP2, NTS and HSPH1 were expressed in the endometrial epithelial or glandular epithelial cells. The serum concentrations of NTS collected from the cows in summer were higher than those collected from cows in autumn (P < 0.05). Collectively, the different gene expression profiles may contribute to functional differences in the endometrium between summer and autumn, and the increases in GP2 and NTS may have a relationship with the endometrial deficiency that causes infertility of cows in summer. PMID:25994242

  12. Comparison of the global gene expression profiles in the bovine endometrium between summer and autumn.

    PubMed

    Sakumoto, Ryosuke; Hayashi, Ken-Go; Saito, Shiori; Kanahara, Hiroko; Kizaki, Keiichiro; Iga, Kosuke

    2015-01-01

    Heat stress compromises fertility during summer in dairy and beef cows by causing nutritional, physiological and reproductive damages. To examine the difference in endometrial conditions in cows between summer and autumn, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. The trial was conducted in the summer (early in September) and autumn (mid-November) seasons of two consecutive years (2013-2014) in Morioka, Japan. Endometrial samples were collected from the cows using a biopsy technique. The expressions of 268 genes were significantly higher in the endometrium collected in summer than those collected in autumn, whereas the expressions of 369 genes were lower (P<0.05 or lower). Messenger RNA expressions of glycoprotein 2 (GP2), neurotensin (NTS),E-cadherin (CDH1) and heat shock 105kDa/110kDa protein 1 (HSPH1) were validated by quantitative real-time PCR. Transcripts of GP2 and NTS were more abundant in the endometrium from summer than in the endometrium from autumn (P < 0.05). In contrast, the mRNA expressions of CDH1 were lower (P < 0.05) and those of HSPH1 tended to be low (P = 0.09) in the endometrium from summer. Immunohistochemical staining showed that GP2, NTS and HSPH1 were expressed in the endometrial epithelial or glandular epithelial cells. The serum concentrations of NTS collected from the cows in summer were higher than those collected from cows in autumn (P < 0.05). Collectively, the different gene expression profiles may contribute to functional differences in the endometrium between summer and autumn, and the increases in GP2 and NTS may have a relationship with the endometrial deficiency that causes infertility of cows in summer.

  13. Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Divya, David T.; Krishnan, K. P.

    2017-03-01

    The present study reports high inter-annual variability in the water masses and in the intrusion of Atlantic origin waters in Kongsfjorden from 2000 to 2013 using both the historical (2000-2010 summers) and recent CTD measurements (2011-2013 summer/fall). An earlier intrusion of Atlantic Water (AW) into Kongsfjorden was observed in the contemporary years. An overall summertime subsurface warming is evident from the maximum September AW temperature in 2011 (4.8 °C), 2012 (5.8 °C) and 2013 (7 °C). The combination of a compensating surface flow to the subsurface intrusion of AW and the strong southeasterly surface winds during the peak summer, resulted in a corresponding net outflow of the surface fresh water layer from Kongsfjorden. This led to the decreased freshwater volume inside the fjord during 2013 (1 km3) compared to 2011 (3.1 km3) and 2012 (2.3 km3).

  14. Summer Boost: Challenges and Opportunities in Summer Programs for Rising Kindergarten Students

    ERIC Educational Resources Information Center

    Condliffe, Barbara; Foster, Anna; Jacob, Robin

    2017-01-01

    There is a growing belief that access to academic opportunities during the summer can help close the achievement gap between low-income students and their higher-income peers. But while significant research is emerging on summer programs for school-age children, information on the preschool period is limited. The Expanding Children's Early…

  15. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens

    PubMed Central

    Mettrop, Ivan S.; Cusell, Casper; Kooijman, Annemieke M.; Lamers, Leon P. M.

    2015-01-01

    In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3 - concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3 - and NH4 + dynamics showed no considerable changes either. In conclusion, short-term summer

  16. An Adaptive Management Approach for Summer Water Level Reductions on the Upper Mississippi River System

    USGS Publications Warehouse

    Johnson, B.L.; Barko, J.W.; Clevenstine, R.; Davis, M.; Galat, D.L.; Lubinski, S.J.; Nestler, J.M.

    2010-01-01

    The primary purpose of this report is to provide an adaptive management approach for learning more about summer water level reductions (drawdowns) as a management tool, including where and how drawdowns can be applied most effectively within the Upper Mississippi River System. The report reviews previous drawdowns conducted within the system and provides specific recommendations for learning more about the lesser known effects of drawdowns and how the outcomes can be influenced by different implementation strategies and local conditions. The knowledge gained can be used by managers to determine how best to implement drawdowns in different parts of the UMRS to help achieve management goals. The information and recommendations contained in the report are derived from results of previous drawdown projects, insights from regional disciplinary experts, and the experience of the authors in experimental design, modeling, and monitoring. Modeling is a critical part of adaptive management and can involve conceptual models, simulation models, and empirical models. In this report we present conceptual models that express current understanding regarding functioning of the UMRS as related to drawdowns and highlight interactions among key ecological components of the system. The models were developed within the constraints of drawdown timing, magnitude (depth), and spatial differences in effects (longitudinal and lateral) with attention to ecological processes affected by drawdowns. With input from regional experts we focused on the responses of vegetation, fish, mussels, other invertebrates, and birds. The conceptual models reflect current understanding about relations and interactions among system components, the expected strength of those interactions, potential responses of system components to drawdowns, likelihood of the response occurring, and key uncertainties that limit our ability to make accurate predictions of effects (Table 1, Fig. 4-10). Based on this current

  17. Water consumption in Iron Age, Roman, and Early Medieval Croatia.

    PubMed

    Lightfoot, E; Slaus, M; O'Connell, T C

    2014-08-01

    Patterns of water consumption by past human populations are rarely considered, yet drinking behavior is socially mediated and access to water sources is often socially controlled. Oxygen isotope analysis of archeological human remains is commonly used to identify migrants in the archeological record, but it can also be used to consider water itself, as this technique documents water consumption rather than migration directly. Here, we report an oxygen isotope study of humans and animals from coastal regions of Croatia in the Iron Age, Roman, and Early Medieval periods. The results show that while faunal values have little diachronic variation, the human data vary through time, and there are wide ranges of values within each period. Our interpretation is that this is not solely a result of mobility, but that human behavior can and did lead to human oxygen isotope ratios that are different from that expected from consumption of local precipitation. © 2014 Wiley Periodicals, Inc.

  18. Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter.

    PubMed

    Sartori, R; Sartor-Bergfelt, R; Mertens, S A; Guenther, J N; Parrish, J J; Wiltbank, M C

    2002-11-01

    Two experiments in two seasons evaluated fertilization rate and embryonic development in dairy cattle. Experiment 1 (summer) compared lactating Holstein cows (n = 27; 97.3 +/- 4.1 d postpartum [dppl; 40.0 +/- 1.5 kg milk/d) to nulliparous heifers (n = 28; 11 to 17 mo old). Experiment 2 (winter) compared lactating cows (n = 27; 46.4 +/- 1.6 dpp; 45.9 +/- 1.4 kg milk/d) to dry cows (n = 26). Inseminations based on estrus included combined semen from four high-fertility bulls. Embryos and oocytes recovered 5 d after ovulation were evaluated for fertilization, embryo quality (1 = excellent to 5 = degenerate), nuclei/embryo, and accessory sperm. In experiment 1, 21 embryos and 17 unfertilized oocytes (UFO) were recovered from lactating cows versus 32 embryos and no UFO from heifers (55% vs. 100% fertilization). Embryos from lactating cows had inferior quality scores (3.8 +/- 0.4 vs. 2.2 +/- 0.3), fewer nuclei/embryo (19.3 +/- 3.7 vs. 36.8 +/- 3.0) but more accessory sperm (37.3 +/- 5.8 vs. 22.4 +/- 5.5/embryo) than embryos from heifers. Sperm were attached to 80% of UFO (17.8 +/- 12.1 sperm/UFO). In experiment 2, lactating cows yielded 36 embryos and 5 UFO versus 34 embryos and 4 UFO from dry cows (87.8 vs. 89.5% fertilization). Embryo quality from lactating cows was inferior to dry cows (3.1 +/- 0.3 vs. 2.2 +/- 0.3), but embryos had similar numbers of nuclei (27.2 +/- 2.7 vs. 30.6 +/- 2.1) and accessory sperm (42.0 +/- 9.4 vs. 36.5 +/- 6.3). From 53% of the flushings from lactating cows and 28% from dry cows, only nonviable embryos were collected. Thus, embryos of lactating dairy cows were detectably inferior to embryos from nonlactating females as early as 5 d after ovulation, with a surprisingly high percentage of nonviable embryos. In addition, fertilization rate was reduced only in summer, apparently due to an effect of heat stress on the oocyte.

  19. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Yao, Peng; Bianchi, Thomas S.; Xu, Yahong; Liu, Hui; Mi, Tiezhu; Zhang, Xiao-Hua; Liu, Jiwen; Yu, Zhigang

    2017-08-01

    Large-river delta-front estuaries (LDEs) and their adjacent shelf margins are sites of dynamic diagenetic processes that play a significant role in coastal biogeochemical cycling. In this study, we used dissolved inorganic carbon (DIC), redox sensitive elements (Fe2 + and Mn2 +), dissolved inorganic nitrogen (DIN) nutrients (NH4+, NO3-, and NO2-), major cations and anions (K+, Ca2 +, Mg2 +, SO42 -, and Cl-) in bottom-water and sediment pore-waters, to investigate the early chemical diagenesis and authigenic mineral formation in mobile-mud deposits of the Changjiang Estuary and adjacent inner shelf of the East China Sea (ECS). Vertical profiles of DIC and NH4+ in pore-waters had similar trends at most sites, showing a significant increase with depth near the Changjiang Estuary and being relatively constant at offshore sites. Higher pore-water DIC and NH4+ concentrations were observed in nearshore sites in winter, which were likely attributed to exposure of deeper deposits by winter coastal erosion. Nitrification was observed at most sites, and AOB (ammonia-oxidizing bacteria) played a leading role in ammonia oxidation in the study areas. The nitrification-denitrification was likely important in contributing to the loss of DIN in offshore sites during summer. Large inputs of organic carbon (OC) and terrestrial materials from Changjiang River resulted in intense sulfate reduction and Fe and Mn reduction in nearshore sites. Lower C/N and C/S ratios coupled with an apparent decrease in pore-water Ca2 + and Mg2+ concentrations with depth near the Changjiang Estuary, which indicated that authigenic carbonate formation occurs in these sediments. Decreases in K+ and Mg2 + with depth reflected that reverse weathering was an important process of authigenic mineral formation in these sediments. We conclude that adsorption process, seasonal erosion-redeposition, and summer hypoxic conditions of bottom-waters may play an important role in early diagenesis processes and

  20. Diversity of Salmonella serovars in feedyard and nonfeedyard playas of the Southern High Plains in the summer and winter.

    PubMed

    Purdy, Charles W; Straus, David C; Clark, R Nolan

    2004-01-01

    To compare Salmonella isolates cultured from feedyard and nonfeedyard (control) playas (ie, temporary shallow lakes) of the Southern High Plains. Water and muck (sediment) samples were obtained from 7 feedyard playas and 3 nonfeedyard playas in the winter and summer. Each water and muck sample was enriched with sulfur-brilliant-green broth and incubated in a shaker at 37 degrees C for 24 hours. A sample (100 mL) of the incubated bacterial-enriched broth was then mixed with 100 mL of fresh sulfur-brilliant-green enrichment broth and incubated in a shaker at 37 degrees C for 24 hours. After the second incubation, a swab sample was streaked on differential media. Suspect Salmonella isolates were further identified by use of biochemical tests, and Salmonella isolates were confirmed and serovar determinations made. Salmonella isolates were not recovered from the 3 control playas. Seven Salmonella enterica serovars were isolated from 5 of 7 feedyard playas in the summer, and 13 S. enterica serovars were isolated from 7 of 7 feedyard playas in the winter. In the summer, 296 isolates were cultured, and 47 were Salmonella organisms. In the winter, 288 isolates were cultured, and 171 were Salmonella organisms. Results indicated that feedyard playas are frequently contaminated with many Salmonella serovars. These pathogens should be considered whenever feedyard managers contemplate the use of water from these playas. Water from feedyard playas should not be used to cool cattle in the summer or for dust abatement.

  1. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    NASA Astrophysics Data System (ADS)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  2. Early water intake restriction to prevent inappropriate antidiuretic hormone secretion following transsphenoidal surgery: low BMI predicts postoperative SIADH.

    PubMed

    Matsuyama, Junko; Ikeda, Hidetoshi; Sato, Shunsuke; Yamamoto, Koh; Ohashi, Genichiro; Watanabe, Kazuo

    2014-12-01

    The goals of this study were to assess the incidence of and risk factors for the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in patients following transsphenoidal surgery (TSS), and to validate the effectiveness of early prophylactic restriction of water intake. Retrospective analysis was performed for 207 patients who had undergone TSS, including 156 patients not placed on early prophylactic water restriction. Sixty-four patients received treatment for SIADH. We compared the incidence of SIADH between patients with and without early water intake restriction, and analyzed various risk factors for SIADH using statistical analyses. BMI was significantly lower for patients with SIADH than for those patients without SIADH. Statistical analysis revealed that the threshold BMI predicting SIADH was 26. Serum sodium levels on postoperative days 5-10 and daily urine volumes on postoperative days 5-10 were significantly lower in patients with SIADH than in those without SIADH. Postoperative body weight loss on days 6, 8, 10, and 11 was significantly higher in patients with SIADH. The incidence of SIADH after starting prophylactic water intake restriction (14%) was significantly lower than the rate before early water restriction (38%; P<0.05). SIADH is relatively common after TSS, and serum sodium concentrations and daily urine volumes should be carefully monitored. Patients with low preoperative BMI should be closely observed, as this represented a significant preoperative risk factor for SIADH. Early prophylactic water intake restriction appears effective at preventing postoperative SIADH. © 2014 European Society of Endocrinology.

  3. Water chemistry of tundra lakes in the periglacial zone of the Bellsund Fiord (Svalbard) in the summer of 2013.

    PubMed

    Szumińska, Danuta; Szopińska, Małgorzata; Lehmann-Konera, Sara; Franczak, Łukasz; Kociuba, Waldemar; Chmiel, Stanisław; Kalinowski, Paweł; Polkowska, Żaneta

    2018-05-15

    Climate changes observed in the Arctic (e.g. permafrost degradation, glacier retreat) may have significant influence on sensitive polar wetlands. The main objectives of this paper are defining chemical features of water within six small arctic lakes located in Bellsund (Svalbard) in the area of continuous permafrost occurrence. The unique environmental conditions of the study area offer an opportunity to observe phenomena influencing water chemistry, such as: chemical weathering, permafrost thawing, marine aerosols, atmospheric deposition and biological inputs. In the water samples collected during the summer 2013, detailed tundra lake water chemistry characteristics regarding ions, trace elements, pH and specific electrolytic conductivity (SEC 25 ) analysis were determined. Moreover, water chemistry of the studied lakes was compared to the water samples from the Tyvjobekken Creek and precipitation water samples. As a final step of data analysis, Principal Component Analysis (PCA) was performed. Detailed chemical analysis allowed us to conclude what follows: (1) Ca 2+ , Mg 2+ , SO 4 2- , Sr are of geogenic origin, (2) NO 3 - present in tundra lakes and the Tyvjobekken Creek water samples (ranging from 0.31 to 1.69mgL - 1 and from 0.25 to 1.58mgL - 1 respectively) may be of mixed origin, i.e. from biological processes and permafrost thawing, (3) high contribution of non-sea-salt SO 4 2- >80% in majority of studied samples indicate considerable inflow of sulphate-rich air to the study area, (4) high content of chlorides in tundra lakes (range: 25.6-32.0% meqL - 1 ) indicates marine aerosol influence, (5) PCA result shows that atmospheric transport may constitute a source of Mn, Co, Ni, Cu, Ga, Ba and Cd. However, further detailed inter-season and multi-seasonal study of tundra lakes in the Arctic are recommended. Especially in terms of detailed differentiation of sources influence (atmospheric transport vs. permafrost degradation). Copyright © 2017 Elsevier B.V. All

  4. Ecological effects of spring and late summer applications of lambda-cyhalothrin on freshwater microcosms.

    PubMed

    Van Wijngaarden, R P A; Brock, T C M; van den Brink, P J; Gylstra, R; Maund, S J

    2006-02-01

    The aim of the study was to compare the effects of the pyrethroid insecticide lambda-cyhalothrin (treated at 10, 25, 50, 100, 250 ng active ingredient a.i./L) on a drainage ditch ecosystem in spring and late summer. Microcosms (water volume approximately 430 L) were established using enclosures in a 50-cm-deep experimental ditch system containing communities typical of macrophyte-dominated freshwater ecosystems. Effects on macroinvertebrates, zooplankton, phytoplankton, macrophytes, and community metabolism were assessed and evaluated using univariate and multivariate statistical techniques. The macroinvertebrate community responded most clearly to treatment and, as anticipated, insects and crustaceans were among the most sensitive organisms. Statistical analysis showed that the underlying community structure was significantly different between the spring and summer experiments. However, the most sensitive species (Chaoborus obscuripes and Gammarus pulex) were abundant in spring as well as in late summer. In spring and late summer, only slight and transient effects were observed at the community level in the 10-ng/L treatment. Overall, the study did not show substantial differences in the responses of sensitive taxa between spring and late summer treatments, and effects thresholds were similar irrespective of season of treatment.

  5. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch.

    PubMed

    Lévesque, Mathieu; Saurer, Matthias; Siegwolf, Rolf; Eilmann, Britta; Brang, Peter; Bugmann, Harald; Rigling, Andreas

    2013-10-01

    The ability of tree species to cope with anticipated decrease in water availability is still poorly understood. We evaluated the potential of Norway spruce, Scots pine, European larch, black pine, and Douglas-fir to withstand drought in a drier future climate by analyzing their past growth and physiological responses at a xeric and a mesic site in Central Europe using dendroecological methods. Earlywood, latewood, and total ring width, as well as the δ(13) C and δ(18) O in early- and latewood were measured and statistically related to a multiscalar soil water deficit index from 1961 to 2009. At the xeric site, δ(13) C values of all species were strongly linked to water deficits that lasted longer than 11 months, indicating a long-term cumulative effect on the carbon pool. Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and early spring. The native species European larch and Norway spruce, growing close to their dry distribution limit at the xeric site, were found to be the most vulnerable species to soil water deficits. At the mesic site, summer water availability was critical for all species, whereas water availability prior to the growing season was less important. Trees at the mesic were more vulnerable to water deficits of shorter duration than the xeric site. We conclude that if summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services. However, the magnitude of these changes will be mediated strongly by soil water recharge in winter and thus water availability at the beginning of the growing season. © 2013 John Wiley & Sons Ltd.

  6. Development of a consortium for water security and safety: Planning for an early warning system

    USGS Publications Warehouse

    Clark, R.M.; Adam, N.R.; Atluri, V.; Halem, M.; Vowinkel, E.F.; ,

    2004-01-01

    The events of September 11, 2001 have raised concerns over the safety and security of the Nation's critical infrastructure including water and waste water systems. In June 2002, the U.S. EPA's Region II Office (New York City), in response to concerns over water security, in collaboration with Rutgers University agreed to establish a Regional Drinking Water Security and Safety Consortium (RDWSSC). Members of the consortium include: Rutgers University's Center for Information Management, Integration and Connectivity (CIMIC), American Water (AW), the Passaic Valley Water Commission (PVWC), the North Jersey District Water Supply Commission (NJDWSC), the N.J. Department of Environmental Protection, the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agencies, Region II Office. In December of 2002 the consortium members signed a memorandum of understanding (MOU) to pursue activities to enhance regional water security. Development of an early warning system for source and distributed water was identified as being of primary importance by the consortium. In this context, an early warning system (EWS) is an integrated system of monitoring stations located at strategic points in a water utilities source waters or in its distribution system, designed to warn against contaminants that might threaten the health and welfare of drinking water consumers. This paper will discuss the consortium's progress in achieving these important objectives.

  7. Influence of Madden-Julian Oscillation on water budget transported by the Somali low-level jet and the associated Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Ordonez, Paulina; Ribera, Pedro; Gallego, David; Pena-Ortiz, Cristina

    2013-10-01

    Recent studies suggest that there is a strong linkage between the moisture uptake over the equatorial area of the Somali low level jet (SLLJ) and the rainfall variability over most of continental India. Additionally, the Madden-Julian Oscillation (MJO) strongly modulates the intraseasonal variability of the Indian summer monsoon rainfall, since the northward propagation of the boreal summer MJO is closely associated with the active and break phases of monsoon rainfall. But a question remains open: is there a relationship between the moisture transported by the SLLJ and the MJO evolution? In this paper, a Lagrangian approach is used to track the evaporation minus precipitation (E - P) evolution along trajectories of particles initially situated over the equatorial region of SLLJ. The impact of the MJO on the water budget transport of the SLLJ is examined by making composites of the obtained (E-P) fields for the different MJO phases. The spatial structures of the boreal summer intraseasonal oscillation are revealed in our results, which strongly suggest that the main responsible for the rainfall variability associated to the MJO in these regions are the changes in the moisture advected by the SLLJ. In order to assess the MJO-SLLJ interaction, an analysis of the total-column mass and the total-column specific humidity transported by the SLLJ during the MJO life cycle is performed. While a systematic difference between air mass advected to India during active and break phases of MJO is not detected, changes in the moisture of particles are found, with wet (dry) anomalies over enhanced (suppressed) convection region. This result implicitly leads to assume air-sea interaction processes.

  8. Sustained delivery of exogenous melatonin influences biomarkers of oxidative stress and total antioxidant capacity in summer-stressed anestrous water buffalo (Bubalus bubalis).

    PubMed

    Kumar, Ashok; Mehrotra, S; Singh, G; Narayanan, K; Das, G K; Soni, Y K; Singh, Mahak; Mahla, A S; Srivastava, N; Verma, M R

    2015-06-01

    High ambient temperature during summer in tropical and subtropical countries predisposes water buffaloes (Bubalus bubalis) to develop oxidative stress having antigonadotropic and antisteroidogenic actions. Melatonin is a regulator of seasonal reproduction in photoperiodic species and highly effective antioxidant and free radical scavenger. Therefore, a study was designed to evaluate the effect of sustained-release melatonin on biomarkers of oxidative stress i.e., the serum malondialdehyde (MDA) and nitric oxide (NO), and the total antioxidant capacity (TAC). For the study, postpartum buffaloes diagnosed as summer anestrus (absence of overt signs of estrus, concurrent rectal examination, and RIA for serum progesterone) were grouped as treated (single subcutaneous injection of melatonin at 18 mg/50 kg body weight dissolved in sterilized corn oil as vehicle, n = 20) and untreated (subcutaneous sterilized corn oil, n = 8). Blood sampling for estimation of serum TAC and MDA (mmol/L) and NO (μmol/L) was carried out at 4 days of interval from 8 days before treatment till 28 days after treatment or for the ensuing entire cycle length. Results showed serum TAC concentration was higher in the treatment group with a significant (P < 0.05) increasing trend, whereas MDA and NO revealed a significant (P < 0.05) decline. Serum MDA and NO were higher in control compared with those of treatment group. Moreover, buffaloes in the treatment group showed 90% estrus induction with 18.06 ± 1.57 days mean interval from treatment to the onset of estrus. These results report that melatonin has a protective effect by elevating antioxidant status and reducing oxidative stress resulting in the induction of cyclicity in summer-stressed anestrous buffaloes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Water on the Early M Supergiant Stars α Orionis and μ Cephei

    NASA Astrophysics Data System (ADS)

    Tsuji, T.

    2000-08-01

    We reanalyze the spectra of α Ori (M2 Iab) and μ Cep (M2 Ia) observed with the balloon-borne telescope Stratoscope II more than 35 years ago, and we confirm the presence of water in these early M supergiant stars. This identification was first proposed by the Stratoscope observers themselves (Woolf, Schwarzschild, and Rose in 1964; and Danielson, Woolf, and Gaustad in 1965), but this important discovery was overlooked for a long time without any follow-up observation. Consequently, this finding has so far had little influence on the theory of the atmosphere of red supergiant stars. A reason for this may be due to an early criticism by Wing and Spinrad, who suggested CN instead of H2O for the spectral features observed by Stratoscope II. This alternative proposition has more easily been accepted since CN has widely been observed from the Sun to red supergiants, while H2O has been observed only in very cool stars such as Mira variables. In fact, we confirm that the self-consistent photospheric model of the early M supergiants shows CN bands but no H2O band in the near-infrared. Nevertheless, we find that the contribution of CN is only minor and that H2O should be the dominant absorber for the 1.4 and 1.9 μm features on the Stratoscope spectra of α Ori and μ Cep, a conclusion opposite to that of Wing and Spinrad. The observed spectra can best be interpreted by the water gas with the column density of the order of 1020 cm-2 and temperature about 1500+/-500 K, but they cannot be originating in the photosphere. We suggest a possible presence of a gaseous component not as hot as the chromosphere but warmer than the cool expanding envelope. On the other hand, we notice that the mid-infrared pure-rotation lines of H2O recently discovered on Betelgeuse (α Ori) and Antares (α Sco) by Jennings and Sada may partly be originating in the photosphere, even though the larger part should again be nonphotospheric in origin. Thus, the presence of water possibly originating in

  10. 33 CFR 165.T11-568 - Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone; San Diego Symphony Summer POPS Fireworks 2013 Season, San Diego, CA. 165.T11-568 Section 165.T11-568 Navigation and... Areas Eleventh Coast Guard District § 165.T11-568 Safety Zone; San Diego Symphony Summer POPS Fireworks...

  11. Evaluation of the Nursing Program at Caldwell Community College and Technical Institute--Summer, 1983.

    ERIC Educational Resources Information Center

    Pipes, V. David

    In summer 1983, an evaluation of the nursing program at Caldwell Community College and Technical Institute was conducted to determine whether program objectives were being met, to measure program success, and to identify areas needing improvement. Surveys were sent to 19 early (pre-1978) and 47 recent Licensed Practical Nurse (LPN) graduates; 17…

  12. Interactive effects of water and controlled release urea on nitrogen metabolism, accumulation, translocation, and yield in summer maize

    NASA Astrophysics Data System (ADS)

    Li, Guanghao; Zhao, Bin; Dong, Shuting; Zhang, Jiwang; Liu, Peng; Vyn, Tony J.

    2017-10-01

    To investigate the interactive effects of water and N from controlled release urea (CRU) on N metabolism, accumulation, translocation, and yield in Zhengdan958 (a summer maize cultivar planted widely in China), three water levels (adequate water W3, mild water stress W2, severe water stress W1) and four amounts of CRU (N) (N0, N1, N2, and N3 were 0, 105, 210, and 315 kg N ha-1, respectively) were carried out under the waterproof shed and soil column conditions. The results showed that yield, N metabolism, accumulation, and translocation were significantly affected by water, CRU, and their interactions after tasseling. Yields showed an increasing trend in response to N rates from 100.2 to 128.8 g plant-1 under severe water stress (W1), from 124.7 to 174.6 g plant-1 under mild water stress (W2), and from 143.7 to 177.0 g plant-1 under adequate water conditions (W3). There was an associated optimum amount of N for each water level. Under W1 and W2, N3 treatments showed significant advantages in three N metabolism enzymes' activities and the N accumulations, and yield and its components were highest. But the nitrogen harvest index (NHI) of N3 had no significant difference with other nitrogen treatments. Under W3, the N translocation efficiency (NTE) and N translocation conversion rate (NTCR) of N2 in stem and leaf were higher than those of N3, but the N metabolism enzymes' activities and yields of N2 and N3 had no significant difference, which indicated that N2 was superior to N3. The N3 treatment under W2 and N2 under W3 increased the N accumulation capacity in maize grain as well as the N translocation to grain that contributed to the increase of 1000-gain weight and grains per ear after tasseling. Under this experimental condition, a CRU rate of 225 kg ha-1 was the best treatment when the soil moisture content was 75 ± 5% of field capacity, but an N rate of 300 kg ha-1 was superior when soil moisture content was maintained at 55 ± 5% of field capacity during the

  13. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    NASA Astrophysics Data System (ADS)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  14. Machine vision extracted plant movement for early detection of plant water stress.

    PubMed

    Kacira, M; Ling, P P; Short, T H

    2002-01-01

    A methodology was established for early, non-contact, and quantitative detection of plant water stress with machine vision extracted plant features. Top-projected canopy area (TPCA) of the plants was extracted from plant images using image-processing techniques. Water stress induced plant movement was decoupled from plant diurnal movement and plant growth using coefficient of relative variation of TPCA (CRV[TPCA)] and was found to be an effective marker for water stress detection. Threshold value of CRV(TPCA) as an indicator of water stress was determined by a parametric approach. The effectiveness of the sensing technique was evaluated against the timing of stress detection by an operator. Results of this study suggested that plant water stress detection using projected canopy area based features of the plants was feasible.

  15. Effects of spring post-planting flooding on early soybean production systems in Mississippi

    USDA-ARS?s Scientific Manuscript database

    April planting of early-maturing soybean to avoid late-summer drought and to allow early harvest has become a common management practice in Mississippi. However, most of the early-planted soybeans on Sharkey clay soils in Mississippi are often exposed to waterlogged conditions during the early sprin...

  16. The State of the Summer: a Review of Child Summer Weight Gain and Efforts to Prevent It.

    PubMed

    Tanskey, Lindsay A; Goldberg, Jeanne; Chui, Kenneth; Must, Aviva; Sacheck, Jennifer

    2018-06-01

    Accumulating evidence shows that children in the USA gain weight more rapidly during the summer, when school is not in session. This narrative review spanning 2007 to 2017 summarizes efforts to characterize the problem, identify key determinants, and intervene to prevent excess summer weight gain. Summer weight gain remains a concern for elementary-age youth. Few studies have examined its determinants, but unfavorable summertime shifts in diet, physical activity, sedentary time, screen media use, and sleep have been reported. Increased structure is thought to protect against summer weight gain. Interventions to support physical activity and nutrition during the summer show promise, though large-scale impact on weight outcomes remains to be seen. Supporting health behaviors during the summer remains a priority for obesity prevention researchers, practitioners, and policymakers. Strategies to expand access to structured programs and reach beyond such programs to improve behaviors at home are of particular importance.

  17. Your Best Summer Ever

    ERIC Educational Resources Information Center

    Cleaver, Samantha

    2012-01-01

    "It must be nice to have summers off." Only other teachers know just how short summer is, with much of August devoted to planning for the new school year. This article offers 17 fresh ideas for exploring, making money, and preparing for next year. Plus, a reading list that hits all the marks!

  18. Electrical properties of toad sartorius muscle fibres in summer and winter.

    PubMed

    Dulhunty, A F; Gage, P W

    1973-05-01

    1. The area and circumference of surface fibres of sartorius muscles were measured from photomicrographs of frozen sections of whole muscles, and compared with the values obtained assuming a circular cross-section. The latter assumption gave an over-estimate of the mean area of 28%, but only a 2% over-estimate of the circumference. In isolated, single fibres, the assumption gave over-estimates of 25 and 6%, of area and circumference respectively.2. The passive electrical properties of fibres were different in summer and winter. The mean internal resistivity, membrane resistance and membrane capacitance were 147 Omega.cm, 7.6 kOmega.cm(2) and 4 muF/cm(2) in summer, and 194 Omega.cm, 3.9 kOmega.cm(2) and 6.7 muF/cm(2) in winter, in fibres of comparable diameters in situ. In single fibres in summer, the mean values were 120 Omega.cm, 8.6 kOmega.cm(2) and 3.6 muF/cm(2).3. In glycerol-treated fibres the mean specific membrane capacitance was 1.0 muF/cm(2) in summer and 2.0 muF/cm(2) in winter. The internal resistivity and specific membrane resistance were 167 Omega.cm and 8.9 kOmega.cm(2) in summer, and 232 Omega.cm and 3.9 kOmega.cm(2) in winter.4. Early after-depolarizations were recorded in glycerol-treated fibres which had a low membrane capacitance, did not twitch and showed little ;creep'. Electron micrographs of glycerol-treated fibres showed disruption of the transverse tubular system and sarcoplasmic reticulum.5. After exposure of muscles to 400 mM urea or acetamide for 1 hr, muscle fibres did not twitch and had a reduced membrane capacitance in Ringer solution.

  19. Early Mars was wet but not warm: Erosion, fluvial features, liquid water habitats, and life below freezing

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Davis, W. L.

    1993-01-01

    There is considerable evidence that Mars had liquid water early in its history and possibly at recurrent interval. It has generally been assumed that this implied that the climate was warmer as a result of a thicker CO2 atmosphere than at the present. However, recent models suggest that Mars may have had a thick atmosphere but may not have experienced mean annual temperatures above freezing. In this paper we report on models of liquid water formation and maintenance under temperatures well below freezing. Our studies are based on work in the north and south polar regions of Earth. Our results suggest that early Mars did have a thick atmosphere but precipitation and hence erosion was rare. Transient liquid water, formed under temperature extremes and maintained under thick ice covers, could account for the observed fluvial features. The main difference between the present climate and the early climate was that the total surface pressure was well above the triple point of water.

  20. OCO-2 chlorophyll fluorescence tracks late-summer photosynthesis decrease due to water stress at Missouri Ozark site

    NASA Astrophysics Data System (ADS)

    He, L.; Frankenberg, C.; Wood, J. D.; Sun, Y.

    2017-12-01

    Accurate estimate of the photosynthetic uptake of CO2, denoted gross primary productivity (GPP), is important to understand and quantify the carbon cycles at regional to global scales, and has implications in crop and forest management. Solar-induced chlorophyll fluorescence (SIF) retrieved from space was found to be strongly correlated with GPP and is now being used as a potential new technique to estimate photosynthetic rates at large scale. We selected the Missouri Ozark Site as a test bed, a well-characterized Eddy Covariance site in deciduous broadleaf forests, to explore the relationships of vegetation indices (VIs) and SIF with GPP and their response to environmental conditions. We find that both GPP fluxes and OCO-2 SIF decreased in late summer at the Ozark Site, directly related to water stress, evidenced by a progressive decrease in soil moisture and concomitant changer in leaf water potential. However, VIs (both NDVI and EVI) stayed stable during the same period. With a focus on this wet-dry transition period, we analyze driving factors of changes in GPP and SIF, which appear to be linearly related even in this period with little reflectance changes. We also used the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model to compare observations of SIF and GPP against measurement. The primary motivation is not only to quantify the expected correlations between the GPP and SIF but also to validate performance of SCOPE in reproducing such correlations, which have not been tested against independent observations. This study clearly underlines the potential of SIF measurements to study moderate water stress and its impact on photosynthesis.

  1. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water

  2. In-stream production of methylmercury in a northern California river during summer baseflow

    NASA Astrophysics Data System (ADS)

    Tsui, M. T.; Finlay, J. C.; Nollet, Y. H.; Balogh, S. J.

    2009-12-01

    In stream ecosystems, it is well established that terrestrial landscape features such as wetlands are important in determining the aqueous concentration and flux of methylmercury. In contrast, our understanding of in-stream production of methylmercury is inadequate, especially on an ecosystem scale. In this study, we examined the relationship between the net production of dissolved methylmercury and algal metabolism in an 8-km reach of a third order stream (South Fork Eel River) in northern California. The stream has a forested watershed with no wetlands and has a long period of baseflow that typically extends from late May to early October. There was an intense rainfall in early May, 2009, but no major precipitation was recorded afterward, as is typical of Mediterranean climate of the study site. We collected surface water samples along the main channel and four major tributaries to the study stream reach. Temporal patterns of algal metabolism were inferred from net changes in total dissolved phosphorus and silica uptake and algal abundance. There was essentially no net production of methylmercury within the study reach (~ 0 µg Hg/km/d) in mid-May but net production of methylmercury occurred afterward when discharge declined exponentially, water temperature increased and algal metabolism increased (i.e. phosphorus and silica were taken up biologically). Net production of dissolved methylmercury peaked in mid-June (100 µg Hg/km/d) and then declined in mid-July (58 µg Hg/km/d) and mid-August (45 µg Hg/km/d) within the 8-km reach. The absence of surface runoff during the summer (e.g. June through September) indicates that the observed net production of methylmercury occurred within the channel and algal metabolism is coupled to the mercury methylation process. In summary, our study suggests that, in addition to watershed features, in-stream production of methylmercury should be considered as an important factor mediating mercury bioavailability in flowing waters

  3. A Comparison Between Late Summer 2012 and 2013 Water Masses, Macronutrients, and Phytoplankton Standing Crops in the Northern Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Danielson, S. L.; Eisner, L. B.; Ladd, C. A.; Mordy, C. W.; Sousa, L.; Weingartner, T.

    2016-02-01

    Survey data from the northern Bering and Chukchi sea continental shelves in August-September 2012 and 2013 reveal interannual differences in the spatial structure of water masses along with statistically significant differences in thermohaline and chemical properties and phytoplankton communities. We find that the near-bottom Bering-Chukchi Summer Water (BCSW) was more saline in 2012 and Alaskan Coastal Waters (ACW) were warmer in 2013. Both carried higher nutrient concentrations in 2012, supporting a larger chlorophyll a standing crop biomass that was comprised primarily of small (<10 μm) size class phytoplankton. The location of phytoplankton biomass concentrations and their size compositions reveal linkages between the wind fields, seafloor topography, water masses, and the pelagic production. The horizontal structure of the shelf water masses differed in part because of the August regional wind field, which was more energetic in 2012 but was more persistent in direction in 2013. ACW were found all along the coast from Nunivak Island to Point Barrow in 2012, but in response to the persistent wind of 2013 ACW was not found north of Ledyard Bay. Instead, the 2013 NE Chukchi shelf was flooded with cold and fresh waters derived from ice melt waters (MW) that resided above cold and salty Bering-Chukchi Winter Waters (BCWW). Similarly, in the northern Bering Sea, low-salinity coastal waters from western Alaska were driven offshore to a greater extent in 2013, while in 2012 they were found more confined to shore and more prominently extended northward through Bering Strait. The water mass distributions together with the winds and limited surface current data suggest that the NE Chukchi Alaskan Coastal Current (ACC) was shut down for a time in August and September 2013. Our results have implications for the fate of fresh water, heat, and pelagic production on the Bering-Chukchi shelves.

  4. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  5. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Treesearch

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  6. Comparative evaluation of thermal stress of fish in a small pond with a fish shelter

    NASA Astrophysics Data System (ADS)

    Ahn, Chang Hyuk; Song, Ho Myeon; Park, Jae Ro; Park, Joon-Ha; Jo, Gyu-Hong; Park, Jum-Ok

    2018-06-01

    This study analyzed the water quality parameters in a fish shelter, which is an artificial structure built in a shallow pond, during early summer. The results of the water quality parameter analyses measured at St. 1 (open water space) and St. 2 (fish shelter) indicated that the fish shelter provides a stable space for fish, with lower water temperatures and less daily water quality variations in the early summer season than the open water space. Due to the temperature reduction and stable effects of these fish shelters, in this study, we found that there was an effect of reducing thermal stress for the Acheilognathinae during early summer. As such, if the fish shelter is introduced into the small pond applied to the urban area, it can be effective for reducing the thermal stress of the Acheilognathinae. In the future, we will need to carry out more detailed research based on this data.

  7. Book Your Summer Vacation

    ERIC Educational Resources Information Center

    Texley, Juliana

    2012-01-01

    Summer's the time for teachers to travel, not only physically from the confines of the classroom to exotic places, but vicariously, through the magic of books. Summer adventures help teachers expand their experience and enrich their store of context so that they can offer their students more when school resumes in the fall. That's why each year…

  8. School Construction Summer Slam

    ERIC Educational Resources Information Center

    Jensen, Richard F.

    2012-01-01

    Every school has a list of renovations, upgrades and repairs that need attention, but many are too distracting and disruptive to carry out during the school year. Often, the best time to address these nagging construction projects is during the summer when students are on break and the campus is quieter. Although these "summer slammers" often are…

  9. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    USGS Publications Warehouse

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  10. Emergency Immigration Education Act Programs. Summer ESL Welcome Program for Students of Limited English Proficiency, Summer Bilingual Program, Projects Omega, Wise, and Bell. Summer 1994. OER Report.

    ERIC Educational Resources Information Center

    Roman, Elliott M.

    The Emergency Immigration Education Act supported three distinct programs in New York City in the summer of 1994: (1) the Summer English as a Second Language (ESL) Welcome Program for Students of Limited English Proficiency; (2) the Summer Bilingual Program; and (3) Projects Omega, Wise, and Bell. The projects served 3,443 students in all. The…

  11. Ocean Acidification Effects on the Early Life-Stages of Commercially Important Flatfish of the Northeast USA

    NASA Astrophysics Data System (ADS)

    Chambers, R. C.; Habeck, E. A.; Candelmo, A. C.; Poach, M.; Wieczorek, D.; Phelan, B.; Caldarone, E.; Cooper, K. R.

    2012-12-01

    The limited available evidence about effects on finfish of high CO2 levels and acidification of our oceans suggests that effects will differ across fish species, be subtle, and interact with other stressors. A carefully planned, experimental framework was developed to cast an extensive yet strategic inferential net. Three key elements of our approach are the use of 1) multiple marine finfish species of relevance to the northeastern USA that differ in their ecologies including spawning season and habitat of early life-stages; 2) a wide yet realistic range of environmental conditions (i.e., concurrent manipulation of CO2 levels and water temperatures), and 3) a diverse set of response variables related to fish sensitivity to elevated CO2 levels, water temperatures, and their interactions. The response variable set reflects fish condition, fitness, and likelihood of recruitment, and includes measures of viability, physiology, histopathology, growth, development, and behavior expressed during fish early life-stages (i.e., gametes, embryos, and larvae). Early life-stages were chosen due to the anticipation of their vulnerability to acid-base challenges in their environment. To date, factorial experiments have been implemented on summer flounder (Paralichthys dentatus) and winter flounder (Pseudopleuronectes americanus). Initial results reveal survival of summer flounder embryos is compromised by pH < 7.7 (CO2 > 790 ppm). These results were similar across offspring groups (i.e., embryos from different parents). Winter flounder are larger at hatching when exposed to high CO2 levels in the coolest environment implemented in our experiments (range 4 to 10 ○C). Further responses of advanced larvae of both flounder species are currently being assessed for evidence of other whole body, component organ, and biochemical impairment. This study will aid researchers and resource managers in identifying species types, life-stages, and biotic responses that are most sensitive to

  12. Center for Adaptive Optics | AO Summer School

    Science.gov Websites

    School on Adaptive Optics Sponsored by: Center for Adaptive Optics The AO Summer School instruction is Adaptive Optics and their implementation. Our Summer School is intended to facilitate and encourage previous summer school web pages. Please contact us, if you would like more information on AO Summer School

  13. Start a Summer Arts Program.

    ERIC Educational Resources Information Center

    Pedersen, Kirie

    1984-01-01

    Tips on organizing a creative teaching experience for summer vacation time are offered. Program organization, student selection, course content, publicity, and funding are aspects to be considered when planning a summer arts program. (DF)

  14. 2010 Montana Summer Transportation Institute.

    DOT National Transportation Integrated Search

    2010-09-01

    The Summer Transportation Institute (STI) hosted by the Western Transportation Institute at Montana : State University serves to attract high school students to participate in an innovative summer : educational program in transportation. The STI aims...

  15. Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783

    NASA Astrophysics Data System (ADS)

    St. George, Scott; Meko, David M.; Evans, Michael N.

    2008-09-01

    A network of 54 ring-width chronologies is used to estimate changes in summer climate within the Winnipeg River basin, Canada, since AD 1783. The basin drains parts of northwestern Ontario, northern Minnesota and southeastern Manitoba, and is a key area for hydroelectric power production. Most chronologies were developed from Pinus resinosa and P. strobus, with a limited number of Thuja occidentalis, Picea glauca and Pinus banksiana. The dominant pattern of regional tree growth can be recovered using only the nine longest chronologies, and is not affected by the method used to remove variability related to age or stand dynamics from individual trees. Tree growth is significantly, but weakly, correlated with both temperature (negatively) and precipitation (positively) during summer. Simulated ring-width chronologies produced by a process model of tree-ring growth exhibit similar relationships with summer climate. High and low growth across the region is associated with cool/wet and warm/dry summers, respectively; this relationship is supported by comparisons with archival records from early 19th century fur-trading posts. The tree-ring record indicates that summer droughts were more persistent in the 19th and late 18th century, but there is no evidence that drought was more extreme prior to the onset of direct monitoring.

  16. 2011 Montana Summer Transportation Institute.

    DOT National Transportation Integrated Search

    2011-09-01

    The Summer Transportation Institute (STI) hosted by the Western Transportation Institute at Montana State University serves to attract high school students to participate in an innovative summer educational program in transportation. The STI aims to ...

  17. 46 CFR 45.53 - Summer freeboard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Summer freeboard. 45.53 Section 45.53 Shipping COAST... Summer freeboard. (a) Except as required in paragraph (c) of this section, the minimum freeboard in summer for a type A vessel is F in the following formula modified by the corrections in this subpart: F...

  18. 46 CFR 45.53 - Summer freeboard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Summer freeboard. 45.53 Section 45.53 Shipping COAST... Summer freeboard. (a) Except as required in paragraph (c) of this section, the minimum freeboard in summer for a type A vessel is F in the following formula modified by the corrections in this subpart: F...

  19. Summer Reading Lists: Research and Recommendations

    ERIC Educational Resources Information Center

    Lindley, Sarah; Giles, Rebecca M.; Tunks, Karyn

    2016-01-01

    Decades of research have focused on the impact of summer learning loss and effective tools in stemming the flow of knowledge lost during summer break. While reading lists have become a standard practice for addressing students' needs to maintain learning levels over the summer months, very little research has been conducted on the book lists…

  20. 46 CFR 45.53 - Summer freeboard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Summer freeboard. 45.53 Section 45.53 Shipping COAST... Summer freeboard. (a) Except as required in paragraph (c) of this section, the minimum freeboard in summer for a type A vessel is F in the following formula modified by the corrections in this subpart: F...

  1. Evidence of increased toxic Alexandrium tamarense dinoflagellate blooms in the eastern Bering Sea in the summers of 2004 and 2005.

    PubMed

    Natsuike, Masafumi; Saito, Rui; Fujiwara, Amane; Matsuno, Kohei; Yamaguchi, Atsushi; Shiga, Naonobu; Hirawake, Toru; Kikuchi, Takashi; Nishino, Shigeto; Imai, Ichiro

    2017-01-01

    The eastern Bering Sea has a vast continental shelf, which contains various endangered marine mammals and large fishery resources. Recently, high numbers of toxic A. tamarense resting cysts were found in the bottom sediment surface of the eastern Bering Sea shelf, suggesting that the blooms have recently occurred. However, little is known about the presence of A. tamarense vegetative cells in the eastern Bering Sea. This study's goals were to detect the occurrence of A. tamarense vegetative cells on the eastern Bering Sea shelf and to find a relationship between environmental factors and their presence. Inter-annual field surveys were conducted to detect A. tamarense cells and environmental factors, such as nutrients, salinity, chlorophyll a, and water temperature, along a transect line on the eastern Bering Sea shelf during the summers of 2004, 2005, 2006, 2009, 2012, and 2013. A. tamarense vegetative cells were detected during every sampling year, and their quantities varied greatly from year to year. The maximum cell densities of A. tamarense observed during the summers of 2004 and 2005 were much higher than the Paralytic shellfish poisoning warning levels, which are greater than 100-1,000 cells L-1, in other subarctic areas. Lower quantities of the species occurred during the summers of 2009, 2012, and 2013. A significant positive correlation between A. tamarense quantity and water temperature and significant negative correlations between A. tamarense quantity and nutrient concentrations (of phosphate, silicate, and nitrite and nitrate) were detected in every sampling period. The surface- and bottom-water temperatures varied significantly from year to year, suggesting that water temperatures, which have been known to affect the cell growth and cyst germination of A. tamarense, might have affected the cells' quantities in the eastern Bering Sea each summer. Thus, an increase in the Bering Sea shelf's water temperature during the summer will increase the

  2. 46 CFR 42.30-25 - Summer Zones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...

  3. 46 CFR 42.30-25 - Summer Zones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...

  4. 46 CFR 42.30-25 - Summer Zones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...

  5. 46 CFR 42.30-25 - Summer Zones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...

  6. 46 CFR 42.30-25 - Summer Zones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...

  7. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.

    PubMed

    Wilson, J P; Fischer, W W

    2011-03-01

    The core of plant physiology is a set of functional solutions to a tradeoff between CO(2) acquisition and water loss. To provide an important evolutionary perspective on how the earliest land plants met this tradeoff, we constructed a mathematical model (constrained geometrically with measurements of fossils) of the hydraulic resistance of Asteroxylon, an Early Devonian plant. The model results illuminate the water transport physiology of one of the earliest vascular plants. Results show that Asteroxylon's vascular system contains cells with low hydraulic resistances; these resistances are low because cells were covered by scalariform pits, elliptical structures that permit individual cells to have large areas for water to pass from one cell to another. Asteroxylon could move a large amount of water quickly given its large pit areas; however, this would have left these plants particularly vulnerable to damage from excessive evapotranspiration. These results highlight a repeated pattern in plant evolution, wherein the evolution of highly conductive vascular tissue precedes the appearance of adaptations to increase water transport safety. Quantitative insight into the vascular transport of Asteroxylon also allows us to reflect on the quality of CO(2) proxy estimates based on early land plant fossils. Because Asteroxylon's vascular tissue lacked any safety features to prevent permanent damage, it probably used stomatal abundance and behavior to prevent desiccation. If correct, low stomatal frequencies in Asteroxylon reflect the need to limit evapotranspiration, rather than adaptation to high CO(2) concentrations in the atmosphere. More broadly, methods to reveal and understand water transport in extinct plants have a clear use in testing and bolstering fossil plant-based paleoclimate proxies. © 2011 Blackwell Publishing Ltd.

  8. Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis

    PubMed Central

    Anderson, James G.; Weisenstein, Debra K.; Bowman, Kenneth P.; Homeyer, Cameron R.; Smith, Jessica B.; Wilmouth, David M.; Sayres, David S.; Klobas, J. Eric; Dykema, John A.; Wofsy, Steven C.

    2017-01-01

    We present observations defining (i) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; (ii) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; (iii) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and (iv) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of ∼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate−water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO2 and CH4. PMID:28584119

  9. Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis.

    PubMed

    Anderson, James G; Weisenstein, Debra K; Bowman, Kenneth P; Homeyer, Cameron R; Smith, Jessica B; Wilmouth, David M; Sayres, David S; Klobas, J Eric; Leroy, Stephen S; Dykema, John A; Wofsy, Steven C

    2017-06-20

    We present observations defining ( i ) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; ( ii ) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; ( iii ) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and ( iv ) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of ∼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate-water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO 2 and CH 4 .

  10. Celebrate Summer with Reading

    ERIC Educational Resources Information Center

    Texley, Juliana

    2007-01-01

    School is out and the summer is full of both official and unofficial holidays that prompt us to enjoy science and the profession of sharing it. As in past years, the reviewers and editors of "NSTA Recommends"--ready and willing to share their enthusiasm for reading with you--have been gathering suggestions for the summer. So along with your beach…

  11. Relative roles of aerosols, SST, and snow impurity on snowmelt over the Tibetan Plateau and its their impacts on South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Tsay, S. C.; Lau, W. K. M.; Yasunari, T. J.; Mahanama, S. P. P.; Koster, R. D.; daSilva, A.

    2017-12-01

    We examine the relative roles of atmospheric aerosol radiative forcing, year-to-year SST (sea surface temperature) variability, and surface radiative forcing by snow impurity on snowmelt over the Tibetan Plateau and their impacts on rainfall and circulation of South Asian summer monsoon. Five-member ensemble experiments are conducted with NASA's GEOS-5 (Goddard Earth Observing System model version 5), equipped with a snow darkening module - GOSWIM (GOddard SnoW Impurity Module), on the Water-Year 2008 (October 2007 to September 2008). Asian summer monsoon in 2008 was near normal in terms of monsoon rainfall over India subcontinent. However, rainfall was excessive in the North while the southern India suffered from the rainfall deficit. The 2008 summer monsoon was accompanied with high loading of aerosols in the Arabian Sea and La Niña condition in the tropical Pacific. To examine the roles high aerosol loading and La Niña condition on the north-south dipole in Indian monsoon rainfall, two sets of experiments, in addition to control runs (CNTRL), are conducted without SST anomalies (CSST) and aerosol radiative feedback (NRF), respectively. Results show that increased aerosol loading in early summer is associated with the increased dust transport during La Niña years. Increased aerosols over the northern India induces EHP-like (elevated heat pump) circulation and increases rainfall over the India subcontinent. Aerosol radiative forcing feedback (CNTRL-NRF) strengthens the EHP-like monsoon circulation even more. Results indicate that anomalous circulation associated with La Niña condition increases aerosol loading by enhancing dust transport as well as by increasing aerosol lifetime. Increased aerosols induces EHP-like feedback processes and increases rainfall over the India subcontinent.

  12. Concentrations and cycling of DMS, DMSP, and DMSO in coastal and offshore waters of the Subarctic Pacific during summer, 2010-2011

    NASA Astrophysics Data System (ADS)

    Asher, Elizabeth; Dacey, John W.; Ianson, Debby; Peña, Angelica; Tortell, Philippe D.

    2017-04-01

    Concentrations of dimethylsulfide (DMS), measured in the Subarctic Pacific during summer 2010 and 2011, ranged from ˜1 to 40 nM, while dissolved dimethylsulfoxide (DMSO) concentrations (range 13-23 nM) exceeded those of dissolved dimethyl sulfoniopropionate (DMSP) (range 1.3-8.8 nM). Particulate DMSP dominated the reduced sulfur pool, reaching maximum concentrations of 100 nM. Coastal and off shore waters exhibited similar overall DMS concentration ranges, but sea-air DMS fluxes were lower in the oceanic waters due to lower wind speeds. Surface DMS concentrations showed statistically significant correlations with various hydrographic variables including the upwelling intensity (r2 = 0.52, p < 0.001) and the Chlorophyll a/mixed layer depth ratio (r2 = 0.52, p < 0.001), but these relationships provided little predictive power at small scales. Stable isotope tracer experiments indicated that the DMSP cleavage pathway always exceeded the DMSO reduction pathway as a DMS source, leading to at least 85% more DMS production in each experiment. Gross DMS production rates were positively correlated with the upwelling intensity, while net rates of DMS production were significantly correlated to surface water DMS concentrations. This latter result suggests that our measurements captured dominant processes driving surface DMS accumulation across a coastal-oceanic gradient.

  13. Early Neolithic water wells reveal the world's oldest wood architecture.

    PubMed

    Tegel, Willy; Elburg, Rengert; Hakelberg, Dietrich; Stäuble, Harald; Büntgen, Ulf

    2012-01-01

    The European Neolithization ~6000-4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ~7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters.

  14. Early Neolithic Water Wells Reveal the World's Oldest Wood Architecture

    PubMed Central

    Tegel, Willy; Elburg, Rengert; Hakelberg, Dietrich; Stäuble, Harald; Büntgen, Ulf

    2012-01-01

    The European Neolithization ∼6000−4000 BC represents a pivotal change in human history when farming spread and the mobile style of life of the hunter-foragers was superseded by the agrarian culture. Permanent settlement structures and agricultural production systems required fundamental innovations in technology, subsistence, and resource utilization. Motivation, course, and timing of this transformation, however, remain debatable. Here we present annually resolved and absolutely dated dendroarchaeological information from four wooden water wells of the early Neolithic period that were excavated in Eastern Germany. A total of 151 oak timbers preserved in a waterlogged environment were dated between 5469 and 5098 BC and reveal unexpectedly refined carpentry skills. The recently discovered water wells enable for the first time a detailed insight into the earliest wood architecture and display the technological capabilities of humans ∼7000 years ago. The timbered well constructions made of old oak trees feature an unopened tree-ring archive from which annually resolved and absolutely dated environmental data can be culled. Our results question the principle of continuous evolutionary development in prehistoric technology, and contradict the common belief that metal was necessary for complex timber constructions. Early Neolithic craftsmanship now suggests that the first farmers were also the first carpenters. PMID:23284685

  15. Colorectal Cancer: The Importance of Early Detection

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Colorectal Cancer The Importance of Early Detection Past Issues / Summer ... Cancer of the colon or rectum is called colorectal cancer. The colon and the rectum are part of ...

  16. [Influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield.

    PubMed

    Zhang, Ming Zhi; Niu, Wen Quan; Xu, Jian; Li, Yuan

    2016-06-01

    In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.

  17. Arctic Climate during Eocene Hyperthermals: Wet Summers on Ellesmere Island?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; West, C. K.; Basinger, J. F.

    2012-12-01

    Previous work has shown that during the late Paleocene to middle Eocene, mesothermal conditions (i.e., MAT ~12-15° C) and high precipitation (MAP > 150cm/yr) characterized Arctic climates - an Arctic rain forest. Recent analyses of Arctic Eocene wood stable isotope chemistry are consistent with the annual and seasonal temperature estimates from leaf physiognomy and nearest living relative analogy from fossil plants, including the lack of freezing winters, but is interpreted as showing that there was a summer peak in precipitation - modern analogs are best sought on the summer-wet east coasts (e.g., China, Japan, South Korea) not the winter-wet west coasts of present-day northern temperate continents (e.g., Pacific northwest of North America). Highly seasonal 'monsoon-type' summer-wet precipitation regimes (i.e., summer precip./winter precip. > 3.0) seem to characterize Eocene hyperthermal conditions in several regions of the earth, including the Arctic and Antarctic, based on both climate model sensitivity experiments and the paleoclimate proxy evidence. The leaf physiognomy proxy previously applied to estimate Arctic Paleogene precipitation was leaf area analysis (LAA), a correlation between mean leaf size in woody dicot vegetation and annual precipitation. New data from modern monsoonal sites, however demonstrates that for deciduous-dicot dominated vegetation, summer precipitation determines mean leaf size, not annual totals, and therefore that under markedly seasonal precipitation and/or light regimes that summer precipitation is being estimated using LAA. Presented here is a new analysis of a leaf macrofloras from 3 separate florules of the Margaret Formation (Split Lake, Stenkul Fiord and Strathcona Fiord) from Ellesmere Island that are placed stratigraphically as early Eocene, and likely fall within Eocene thermal maximum 1 (ETM1; = the 'PETM') or ETM2. These floras are each characterized by a mix of large-leafed and small-leafed dicot taxa, with overall

  18. Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata.

    PubMed

    Franco, A C; de Soyza, A G; Virginia, R A; Reynolds, J F; Whitford, W G

    1994-03-01

    Larrea tridentata is a xerophytic evergreen shrub, dominant in the arid regions of the southwestern United States. We examined relationships between gasexchange characteristics, plant and soil water relations, and growth responses of large versus small shrubs of L. tridentata over the course of a summer growing season in the Chihuahuan Desert of southern New Mexico, USA. The soil wetting front did not reach 0.6 m, and soils at depths of 0.6 and 0.9 m remained dry throughout the summer, suggesting that L. tridentata extracts water largely from soil near the surface. Surface soil layers (<0.3 m) were drier under large plants, but predawn xylem water potentials were similar for both plant sizes suggesting some access to deeper soil moisture reserves by large plants. Stem elongation rates were about 40% less in large, reproductively active shrubs than in small, reproductively inactive shrubs. Maximal net photosynthetic rates (P max ) occurred in early summer (21.3 μ mol m -2 s -1 ), when pre-dawn xylem water potential (XWP) reached ca. -1 MPa. Although both shrub sizes exhibited similar responses to environmental factors, small shrubs recovered faster from short-term drought, when pre-dawn XWP reached about -4.5 MPa and P max decreased to only ca. 20% of unstressed levels. Gas exchange measurements yielded a strong relationship between stomatal conductance and photosynthesis, and the relationship between leaf-to-air vapor pressure deficit and stomatal conductance was found to be influenced by pre-dawn XWP. Our results indicate that stomatal responses to water stress and vapor pressure deficit are important in determining rates of carbon gain and water loss in L. tridentata.

  19. Stratospheric Ozone Loss Over the US in Summer: Recent Advances in Observations of Temperatures, Convective Injection of Condensed Phase Water, and Analyses of Volcanic Injections That are Used to Inform Model Calculations of Catalytic Mechanisms that Control the Response of O3.

    NASA Astrophysics Data System (ADS)

    Anderson, J. G.

    2016-12-01

    In the context of changes to the structure of the Earth's climate, consequences to stratospheric ozone over the US in summer are considered. Key advances in observations directly related to the catalytic loss of ozone in the lower stratosphere include: Analysis of high resolution temperature observations over the central US in July and August from both SEAC4RS in situ observations and radio occultation (RO) observations, Inclusion of gravity wave observations from both SEAC4RS and RO measurements, Climatology of NEXRAD weather radar mapping of the 3D convective injection of condensed phase water over the central US in summer, Analysis of the impact on ozone in the lower stratosphere over the US in summer using the AER 2D model calculations of the key rate limiting radicals and rate limiting catalytic loss rates as a function of water vapor, temperature and sulfate loading in the lower stratosphere, Analysis of the impact on ozone in summer over the US under conditions of volcanic injection, overt sulfate addition for solar radiation management, and/or convective injection of water vapor, Emphasis in the analysis is placed specifically on the geographic region over the Great Plains of the US in summer because of the confluence of temperatures and water vapor concentrations that initiate the heterogeneous catalytic conversion of inorganic chlorine, primarily HCl and ClONO2, to free radical form, ClO. The ClO radical in turn engages gas phase catalytic cycles that remove ozone via the photochemical reaction mechanisms virtually identical to the catalytic photochemical processes that remove ozone over the Arctic each year in late spring. In situ observations, in the lower stratosphere of the Arctic, of the principal reaction networks that establish the relationship between observed ozone loss and the threshold in temperature, water vapor and sulfate loading is used to establish the photochemical coordinate system required to analyze ozone loss in the lower stratosphere

  20. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  1. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    approximately 14% of these fish leaving as early migrants. Juvenile spring chinook salmon PIT-tagged at trap sites in the fall and in upper rearing areas during winter were used to compare migration timing and survival to Lower Granite Dam of the early and late migrant groups. Juvenile spring chinook tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 May to 20 May 2001, with a median passage date of 17 May. Too few fish were collected and tagged to conduct detection rate and survival comparisons between migrant groups. PIT-tagged salmon from Catherine Creek trap were detected at Lower Granite Dam from 27 April to 13 July 2001. Early migrants were detected significantly earlier (median = 10 May) than late migrants (median = 1 June). Also, early migrants from Catherine Creek were detected at a significantly higher rate than fish tagged in upper rearing areas in the winter, suggesting better survival for fish that migrated out of upper rearing areas in the fall. Juvenile spring chinook salmon from the Lostine River were detected at Lower Granite Dam from 2 April through 4 July 2001. Early migrants were detected significantly earlier (median = 27 April) than late migrants (median = 14 May). However, there was no difference in detection rates between early and late migrants. Survival probabilities showed similar patterns as dam detection rates. Juvenile spring chinook salmon from the Minam River were detected at Lower Granite Dam from 8 April through 18 August 2001. Early migrants were detected significantly earlier (median = 28 April) than late migrants (median = 14 May). Late migrants from the Minam River were tagged at the trap in the spring. Spring chinook salmon parr PIT-tagged in summer 2000 on Catherine Creek and the Imnaha, Lostine, and Minam rivers were detected at Lower Granite Dam over an 87 d period from 8 April to 3 July 2001. The migratory period of individual populations ranged from 51 d (Imnaha River) to 67 d (Catherine Creek) in length

  2. Summer Session: A Time for Innovation

    ERIC Educational Resources Information Center

    Mola, Monty

    2013-01-01

    Summer is almost here (at least for those of us who teach semesters). Many of us are taking a well-deserved break to spend time with our families, conduct research, travel, and myriad other activities. Some of us, however, will be teaching summer school. For those of us lucky enough to be teaching this summer, we have one suggestion: Be bold!…

  3. Molecular screening of blue mussels indicated high mid-summer prevalence of human genogroup II Noroviruses, including the pandemic "GII.4 2012" variants in UK coastal waters during 2013.

    PubMed

    Biswas, Subhajit; Jackson, Philippa; Shannon, Rebecca; Dulwich, Katherine; Sukla, Soumi; Dixon, Ronald A

    This molecular study is the first report, to the best of our knowledge, on identification of norovirus, NoV GII.4 Sydney 2012 variants, from blue mussels collected from UK coastal waters. Blue mussels (three pooled samples from twelve mussels) collected during the 2013 summer months from UK coastal sites were screened by RT-PCR assays. PCR products of RdRP gene for noroviruses were purified, sequenced and subjected to phylogenetic analysis. All the samples tested positive for NoVs. Sequencing revealed that the NoV partial RdRP gene sequences from two pooled samples clustered with the pandemic "GII.4 Sydney variants" whilst the other pooled sample clustered with the NoV GII.2 variants. This molecular study indicated mussel contamination with pathogenic NoVs even during mid-summer in UK coastal waters which posed potential risk of NoV outbreaks irrespective of season. As the detection of Sydney 2012 NoV from our preliminary study of natural coastal mussels interestingly corroborated with NoV outbreaks in nearby areas during the same period, it emphasizes the importance of environmental surveillance work for forecast of high risk zones of NoV outbreaks. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. 2016 Summer Olympic Games Site

    Atmospheric Science Data Center

    2016-12-30

    article title:  Site of the 2016 Summer Olympic Games viewed by NASA's MISR     ... 2, 2016, just prior to the opening of the Summer Olympic Games. On the left is an image from MISR's nadir (downward-looking) camera; the ...

  5. Study of Water Pollution Early Warning Framework Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.

    2016-06-01

    In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.

  6. Summer Reading

    NASA Astrophysics Data System (ADS)

    Pagni, Dick; Frech, Cheryl; Coppola, Brian; Kovac, Jeffrey; Harris, Hal

    2007-06-01

    Summer, a great time for leisure reading, a great time to try something different! Dick Pagni, Cheryl Frech, Brian Coppola, Jeffrey Kovac, and Hal Harris provide plenty of suggestions to keep you reading!

  7. Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer

    NASA Astrophysics Data System (ADS)

    Tripathy, S. C.; Patra, Sivaji; Vishnu Vardhan, K.; Sarkar, A.; Mishra, R. K.; Anilkumar, N.

    2018-03-01

    This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3 - and SiO4 4-) concentrations increased southward from STF to PF; while ammonium (NH4 +), nitrite (NO2 -) and phosphate (PO4 3-) remained comparatively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4 + and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high average f-ratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the "solubility pump".

  8. Evaluation of Drinks Contribution to Energy Intake in Summer and Winter

    PubMed Central

    Malisova, Olga; Bountziouka, Vassiliki; Zampelas, Antonis; Kapsokefalou, Maria

    2015-01-01

    All drinks hydrate and most also provide nutrients and energy. Our objective was to evaluate the contribution of drinks to total energy intake in summer and winter. Data were obtained using the Water Balance Questionnaire (WBQ) from a sample of the general population in Athens, Greece (n = 984), 473 individuals (42 ± 18 years) in summer and 511 individuals (38 ± 20 years) in winter stratified by sex and age. The WBQ embeds a semi-quantitative food frequency questionnaire of 58 foods and the Short International Physical Activity Questionnaire. Data were analyzed for the contribution of drinks to total energy intake. In winter, total energy intake was 2082 ± 892 kcal/day; energy intake from drinks was 479 ± 286 kcal/day and energy expenditure 1860 ± 390 kcal/day. In summer, total energy intake was 1890 ± 894 kcal/day, energy intake from drinks 492 ± 499 kcal/day and energy expenditure 1830 ± 491 kcal/day. Energy intake from drinks in summer was higher than in winter (p < 0.001) and in men higher than in women in both seasons (p < 0.001 in summer, p = 0.02 in winter). Coffee, coffee drinks, milk, chocolate milk and alcoholic drinks contributed approximately 75% of energy from drinks. Fruit juice and sugar-sweetened drinks, including soft drinks and fruit juice based drinks, were consumed less frequently contributing up to 25% of drink energy intake. Drinks contribute approximately 1/4 of total energy intake depending on the energy content of the drink and frequency of consumption. Coffee, dairy and alcoholic drinks were the main energy contributors. PMID:25988765

  9. Evaluation of drinks contribution to energy intake in summer and winter.

    PubMed

    Malisova, Olga; Bountziouka, Vassiliki; Zampelas, Antonis; Kapsokefalou, Maria

    2015-05-15

    All drinks hydrate and most also provide nutrients and energy. Our objective was to evaluate the contribution of drinks to total energy intake in summer and winter. Data were obtained using the Water Balance Questionnaire (WBQ) from a sample of the general population in Athens, Greece (n = 984), 473 individuals (42 ± 18 years) in summer and 511 individuals (38 ± 20 years) in winter stratified by sex and age. The WBQ embeds a semi-quantitative food frequency questionnaire of 58 foods and the Short International Physical Activity Questionnaire. Data were analyzed for the contribution of drinks to total energy intake. In winter, total energy intake was 2082 ± 892 kcal/day; energy intake from drinks was 479 ± 286 kcal/day and energy expenditure 1860 ± 390 kcal/day. In summer, total energy intake was 1890 ± 894 kcal/day, energy intake from drinks 492 ± 499 kcal/day and energy expenditure 1830 ± 491 kcal/day. Energy intake from drinks in summer was higher than in winter (p < 0.001) and in men higher than in women in both seasons (p < 0.001 in summer, p = 0.02 in winter). Coffee, coffee drinks, milk, chocolate milk and alcoholic drinks contributed approximately 75% of energy from drinks. Fruit juice and sugar-sweetened drinks, including soft drinks and fruit juice based drinks, were consumed less frequently contributing up to 25% of drink energy intake. Drinks contribute approximately 1/4 of total energy intake depending on the energy content of the drink and frequency of consumption. Coffee, dairy and alcoholic drinks were the main energy contributors.

  10. Everyone into the Water!

    ERIC Educational Resources Information Center

    Hennessey, Christina L.

    2007-01-01

    As the days grow longer and warmer with the approach of summer, everyone's thoughts turn to the outdoors and the clear blue of water sports. While recreational choices range from in-the-water activities like water polo to under-the-water sports like free diving, and on-the-water diversions like water skiing, this article focuses on print, video,…

  11. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  12. Application of the Risk-Based Early Warning Method in a Fracture-Karst Water Source, North China.

    PubMed

    Guo, Yongli; Wu, Qing; Li, Changsuo; Zhao, Zhenhua; Sun, Bin; He, Shiyi; Jiang, Guanghui; Zhai, Yuanzheng; Guo, Fang

    2018-03-01

      The paper proposes a risk-based early warning considering characteristics of fracture-karst aquifer in North China and applied it in a super-large fracture-karst water source. Groundwater vulnerability, types of land use, water abundance, transmissivity and spatial temporal variation of groundwater quality were chosen as indexes of the method. Weights of factors were obtained by using AHP method based on relative importance of factors, maps of factors were zoned by GIS, early warning map was conducted based on extension theory with the help of GIS, ENVI+IDL. The early warning map fused five factors very well, serious and tremendous warning areas are mainly located in northwest and east with high or relatively high transmissivity and groundwater pollutant loading, and obviously deteriorated or deteriorated trend of petroleum. The early warning map warns people where more attention should be paid, and the paper guides decision making to take appropriate protection actions in different warning levels areas.

  13. Future dryness in the southwest US and the hydrology of the early 21st century drought

    PubMed Central

    Cayan, Daniel R.; Das, Tapash; Pierce, David W.; Barnett, Tim P.; Tyree, Mary; Gershunov, Alexander

    2010-01-01

    Recently the Southwest has experienced a spate of dryness, which presents a challenge to the sustainability of current water use by human and natural systems in the region. In the Colorado River Basin, the early 21st century drought has been the most extreme in over a century of Colorado River flows, and might occur in any given century with probability of only 60%. However, hydrological model runs from downscaled Intergovernmental Panel on Climate Change Fourth Assessment climate change simulations suggest that the region is likely to become drier and experience more severe droughts than this. In the latter half of the 21st century the models produced considerably greater drought activity, particularly in the Colorado River Basin, as judged from soil moisture anomalies and other hydrological measures. As in the historical record, most of the simulated extreme droughts build up and persist over many years. Durations of depleted soil moisture over the historical record ranged from 4 to 10 years, but in the 21st century simulations, some of the dry events persisted for 12 years or more. Summers during the observed early 21st century drought were remarkably warm, a feature also evident in many simulated droughts of the 21st century. These severe future droughts are aggravated by enhanced, globally warmed temperatures that reduce spring snowpack and late spring and summer soil moisture. As the climate continues to warm and soil moisture deficits accumulate beyond historical levels, the model simulations suggest that sustaining water supplies in parts of the Southwest will be a challenge. PMID:21149687

  14. Future dryness in the Southwest US and the hydrology of the early 21st century drought

    USGS Publications Warehouse

    Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, Mary; Gershunova, A.

    2010-01-01

    Recently the Southwest has experienced a spate of dryness, which presents a challenge to the sustainability of current water use by human and natural systems in the region. In the Colorado River Basin, the early 21st century drought has been the most extreme in over a century of Colorado River flows, and might occur in any given century with probability of only 60%. However, hydrological model runs from downscaled Intergovernmental Panel on Climate Change Fourth Assessment climate change simulations suggest that the region is likely to become drier and experience more severe droughts than this. In the latter half of the 21st century the models produced considerably greater drought activity, particularly in the Colorado River Basin, as judged from soil moisture anomalies and other hydrological measures. As in the historical record, most of the simulated extreme droughts build up and persist over many years. Durations of depleted soil moisture over the historical record ranged from 4 to 10 years, but in the 21st century simulations, some of the dry events persisted for 12 years or more. Summers during the observed early 21st century drought were remarkably warm, a feature also evident in many simulated droughts of the 21st century. These severe future droughts are aggravated by enhanced, globally warmed temperatures that reduce spring snowpack and late spring and summer soil moisture. As the climate continues to warm and soil moisture deficits accumulate beyond historical levels, the model simulations suggest that sustaining water supplies in parts of the Southwest will be a challenge.

  15. Summer Training and Education Program (STEP): Report on the 1985 Summer Experience. Executive Summary.

    ERIC Educational Resources Information Center

    Branch, Alvia Y.

    The Summer Training and Education Program (STEP) provides 14 and 15 year olds with a paid summer experience that combines work, remediation in reading and math, and life skills instruction. This national, federally funded program is a response to data which show that poor academic performance and teenage pregnancy are important contributors to…

  16. Development in Mexico and Central America. Fulbright-Hays Summer Seminars Abroad Program. Summer 1991.

    ERIC Educational Resources Information Center

    Institute of International Education, New York, NY.

    This document features writings and curriculum projects by teachers who traveled to Mexico and Central America in the summer of 1991 as members of a Fulbright-Hays Summer Seminar. The following items are among the 20 included: Curriculum Project: "'Escritoras Mexicanas Contemporaneas': A Survey of Mexican Women Fiction Writers" (Laura J.…

  17. Variations in the Summer Phytoplankton Community Structure in Atlantic sub-Arctic and Arctic Waters

    NASA Astrophysics Data System (ADS)

    Small, A.; Hughes, C.; Bouman, H. A.

    2016-02-01

    Shifts in phytoplankton community structure serve not only as indicators of environmental change but also have implications for food-web interactions and biogeochemical cycles. The community structure of marine phytoplankton in sub-Arctic and Arctic waters was examined using 159 samples collected in the summer of 2013 along a latitudinal gradient spanning from 61.1 to 83.1 degrees N along the east coast of Greenland. Accessory pigment concentrations were used to infer information about the phytoplankton taxa present using CHEMTAX (CHEMical TAXonomy), an iterative MATLAB subroutine. The main algal classes found within the study region were diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes and prasinophytes. Diatoms were present at nearly all stations and depths and were large contributors to the total pigment biomass for both ice and open water stations. Deeper samples were mainly dominated by diatoms and haptophytes. Surface sample communities were characterised by mixed assemblages, including dinoflagellates and chlorophytes although diatoms and haptophytes still comprised a significant portion of the pigment biomass. The differences in community structure were investigated in relation to the environmental conditions through multivariate statistical analysis (cluster and principle component analyses) in order to understand the factors influencing the spatial distribution of the various algal classes. Diagnostic pigment indices were also used to calculate the concentration of Chl-a attributed to three size classes (picophytoplankton 0.2-2µm, nanophytoplankton 2-20µm and microphytoplankton >20µm). These data were compared to a similar dataset from the same cruise where size fractionated Chl-a was separated by sequential filtration and quantified by fluorometric analysis. Size-fractionated Chl-a as measured directly by sequential filtration suggested a primarily mixed community across the study region. In contrast pigment based analysis suggested a

  18. Goodbye to Summer Vacation? The Effects of Summer Enrollment on College and Employment Outcomes. A CAPSEE Working Paper

    ERIC Educational Resources Information Center

    Liu, Vivian Yuen Ting

    2016-01-01

    Despite rich evidence on the benefit of summer enrollment at the K-12 level, the college completion literature has so far focused on college readiness, remediation, and financial aid, and has largely overlooked the potential benefits of taking summer courses among college students. Academic momentum theory suggests that summer enrollment may…

  19. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    NASA Astrophysics Data System (ADS)

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing

    2018-01-01

    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  20. Summer Reading

    NASA Astrophysics Data System (ADS)

    Harris, Harold H.; Pagni, Richard M.; Kovac, Jeffrey; Coppola, Brian P.

    2003-06-01

    Summer, a great time for leisure reading! Try to set aside some time and find a quiet spot, because Hal Harris, Dick Pagni, Jeff Kovac, and Brian Coppola have a variety of interesting suggestions for you.

  1. Summer Reading

    NASA Astrophysics Data System (ADS)

    Pagni, Richard M.; Baldwin Frech, Cheryl; Coppola, Brian P.; Harris, Harold H.; Kovac, Jeffrey

    2005-06-01

    Summer, a great time for leisure reading, a great time to try something different! Cheryl Baldwin Frech joins regulars Dick Pagni, Brian Coppola, Hal Harris, and Jeff Kovac in providing plenty of suggestions to tempt you.

  2. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.

    PubMed

    Leight, A K; Hood, R; Wood, R; Brohawn, K

    2016-02-01

    Coastal states of the United States (US) routinely monitor shellfish harvest waters for types of bacteria that indicate the potential presence of fecal pollution. The densities of these indicator bacteria in natural waters may be related to climate in several ways, including through runoff from precipitation and survival related to water temperatures. The relationship between interannual precipitation and air temperature patterns and the densities of fecal indicator bacteria in shellfish harvest waters in Maryland's portion of the Chesapeake Bay was quantified using 34 years of data (1979-2013). Annual and seasonal precipitation totals had a strong positive relationship with average fecal coliform levels (R(2) = 0.69) and the proportion of samples with bacterial densities above the FDA regulatory criteria (R(2) = 0.77). Fecal coliform levels were also significantly and negatively related to average annual air temperature (R(2) = -0.43) and the average air temperature of the warmest month (R(2) = -0.57), while average seasonal air temperature was only significantly related to fecal coliform levels in the summer. River and regional fecal coliform levels displayed a wide range of relationships with precipitation and air temperature patterns, with stronger relationships in rural areas and mainstem Bay stations. Fecal coliform levels tended to be higher in years when the bulk of precipitation occurred throughout the summer and/or fall (August to September). Fecal coliform levels often peaked in late fall and winter, with precipitation peaking in summer and early fall. Continental-scale sea level pressure (SLP) analysis revealed an association between atmospheric patterns that influence both extratropical and tropical storm tracks and very high fecal coliform years, while regional precipitation was found to be significantly correlated with the Atlantic Multidecadal Oscillation and the Pacific North American Pattern. These findings indicate that management of

  3. Potential forcings of summer temperature variability of the southeastern Tibetan Plateau in the past 12 ka

    NASA Astrophysics Data System (ADS)

    Zhang, Enlou; Chang, Jie; Sun, Weiwei; Cao, Yanmin; Langdon, Peter; Cheng, Jun

    2018-06-01

    Investigating potential forcing mechanisms of terrestrial summer temperature changes from the Asian summer monsoon influenced area is of importance to better understand the climate variability in these densely populated regions. The results of spectral and wavelet analyses of the published chironomid reconstructed mean July temperature data from Tiancai Lake on the SE Tibetan Plateau are presented. The evidence of solar forcing of the summer temperature variability from the site on centennial timescales where key solar periodicities (at 855 ± 40, 465 ± 40, 315 ± 40 and 165 ± 40 year) are revealed. By using a band-pass filter, coherent fluctuations were found in the strength of Asian summer monsoon, Northern Hemisphere high latitude climate and high elevation mid-latitude (26°N) terrestrial temperatures with solar sunspot cycles since about 7.6 ka. The two abrupt cooling events detected from the Tiancai Lake record, centered at ∼9.7 and 3.5 ka were examined respectively. Coupled with the paleoclimate modeling results, the early Holocene event (9.7 ka) is possibly linked to an ocean-atmospheric feedback mechanism whereas the latter event (3.5 ka) may be more directly related to external forcing.

  4. Getting Ready for College: An Implementation and Early Impacts Study of Eight Texas Developmental Summer Bridge Programs

    ERIC Educational Resources Information Center

    Wathington, Heather D.; Barnett, Elisabeth A.; Weissman, Evan; Teres, Jedediah; Pretlow, Joshua; Nakanishi, Aki

    2011-01-01

    In 2007, the Texas Higher Education Coordinating Board (THECB) funded 22 colleges to establish developmental summer bridge programs. Aimed at providing an alternative to traditional developmental education, these programs involve intensive remedial instruction in math, reading, and/or writing and college preparation content for students entering…

  5. Urban flood early warning systems: approaches to hydrometeorological forecasting and communicating risk

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter

    2015-04-01

    One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B

  6. Peterson's Summer Study Abroad: A Guide to Summer Academic and Language Programs. First Edition.

    ERIC Educational Resources Information Center

    Peterson's Guides, Inc., Princeton, NJ.

    This guide provides descriptions of over 900 summer academic and language study-abroad programs in 80 countries that range from 1-week language study courses to full-summer university programs. An introductory section provides general information on study abroad programs and the use of the guide. The bulk of the guide consists of individual…

  7. The Martian North Polar Cap in Summer - One Year Later

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In the middle of January 2001, Mars Global Surveyor (MGS) completed one Mars year in its 380 km-high (236 mi) mapping orbit. The mapping orbit was originally achieved in late February 1999. In March of that year, MGS conducted a series of operations in preparation for full-up mapping, first calibrating its scientific instruments and then operating in a mode in which the high gain antenna was held fixed against the body of the spacecraft. During this Fixed High Gain Antenna period, 'contingency science' observations were made in case the high gain antenna failed to properly deploy. The wide angle view of the martian north polar cap shown on the left was acquired on March 13, 1999, during early northern summer. The image on the right was acquired almost exactly one Mars year later, on January 26, 2001. The light-toned surfaces are residual water ice that remains through the summer season. The nearly circular band of dark material surrounding the cap consists mainly of sand dunes formed and shaped by wind. The north polar cap is roughly 1100 kilometers (680 miles) across. Close inspection will show that there are differences in the frost cover between the two images (for example, in the upper center of each image, and on the left edge center). Although these changes appear small, they are in fact quite large--the change in frost covering is equivalent to the amount of frost that would be evaporated (in the case of areas that are darker) or deposited (in areas where frost is still on the ground) in almost 5 months. What gives rise to such large changes in the heat budget for the polar caps from one year to the next is not known. Changes in the coloration and brightness of the polar cap suggest dust, deposited perhaps by dust storms during critical periods of the year, may play an important role.

  8. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway.

    PubMed

    Bell, David B; Jung, Simon J A; Kroon, Dick; Hodell, David A; Lourens, Lucas J; Raymo, Maureen E

    2015-07-20

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate.

  9. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway

    PubMed Central

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ13C and δ18O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  10. 50 CFR 648.106 - Summer flounder possession restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Summer flounder possession restrictions... Management Measures for the Summer Flounder Fisheries § 648.106 Summer flounder possession restrictions. (a... person shall possess more than four summer flounder in, or harvested from, the EEZ, unless that person is...

  11. 50 CFR 648.106 - Summer flounder possession restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Summer flounder possession restrictions... Management Measures for the Summer Flounder Fisheries § 648.106 Summer flounder possession restrictions. (a... person shall possess more than four summer flounder in, or harvested from, the EEZ, unless that person is...

  12. 50 CFR 648.106 - Summer flounder possession restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Summer flounder possession restrictions... Management Measures for the Summer Flounder Fisheries § 648.106 Summer flounder possession restrictions. (a... person shall possess more than two summer flounder in, or harvested from, the EEZ, unless that person is...

  13. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    PubMed

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  14. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of 2,240... summer load waterline. (b) When the displacement at the summer load waterline cannot be certified, the...

  15. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of 2,240... summer load waterline. (b) When the displacement at the summer load waterline cannot be certified, the...

  16. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of 2,240... summer load waterline. (b) When the displacement at the summer load waterline cannot be certified, the...

  17. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of 2,240... summer load waterline. (b) When the displacement at the summer load waterline cannot be certified, the...

  18. 46 CFR 45.77 - Salt water freeboard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of 2,240... summer load waterline. (b) When the displacement at the summer load waterline cannot be certified, the...

  19. Summer Reading

    NASA Astrophysics Data System (ADS)

    Harris, Harold H.; Kovac, Jeffrey; Pagni, Richard M.; Coppola, Brian P.

    2004-06-01

    Summer, a great time for leisure reading! Try to set aside some time and find a quiet spot, because once again Hal Harris, Dick Pagni, Jeff Kovac, and Brian Coppola have a variety of interesting suggestions for you.

  20. Zooplankton species composition, abundance and biomass on the eastern Bering Sea shelf during summer: The potential role of water-column stability and nutrients in structuring the zooplankton community

    NASA Astrophysics Data System (ADS)

    Coyle, Kenneth O.; Pinchuk, Alexei I.; Eisner, Lisa B.; Napp, Jeffrey M.

    2008-08-01

    The southeastern Bering Sea sustains one of the largest fisheries in the United States, as well as wildlife resources that support valuable tourist and subsistence economies. The fish and wildlife populations in turn are sustained by a food web linking primary producers to apex predators through the zooplankton community. Recent shifts in climate toward warmer conditions may threaten these resources by altering productivity and trophic relationships in the ecosystem on the southeastern Bering Sea shelf. We examined the zooplankton community near the Pribilof Islands and on the middle shelf of the southeastern Bering Sea in summer of 1999 and 2004 to document differences and similarities in species composition, abundance and biomass by region and year. Between August 1999 and August 2004, the summer zooplankton community of the middle shelf shifted from large to small species. Significant declines were observed in the biomass of large scyphozoans ( Chrysaora melanaster), large copepods ( Calanus marshallae), arrow worms ( Sagitta elegans) and euphausiids ( Thysanoessa raschii, T. inermis) between 1999 and 2004. In contrast, significantly higher densities of the small copepods ( Pseudocalanus spp., Oithona similis) and small hydromedusae ( Euphysa flammea) were observed in 2004 relative to 1999. Stomach analyses of young-of-the-year (age 0) pollock ( Theragra chalcogramma) from the middle shelf indicated a dietary shift from large to small copepods in 2004 relative to 1999. The shift in the zooplankton community was accompanied by a 3-fold increase in water-column stability in 2004 relative to 1999, primarily due to warmer water above the thermocline, with a mean temperature of 7.3 °C in 1999 and 12.6 °C in 2004. The elevated water-column stability and warmer conditions may have influenced the zooplankton composition by lowering summer primary production and selecting for species more tolerant of a warm, oligotrophic environment. A time series of temperature from

  1. 50 CFR 648.108 - Summer flounder gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Summer flounder gear restrictions. 648... Measures for the Summer Flounder Fisheries § 648.108 Summer flounder gear restrictions. (a) General. (1) Otter trawlers whose owners are issued a summer flounder permit and that land or possess 100 lb (45.4 kg...

  2. 50 CFR 648.108 - Summer flounder gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Summer flounder gear restrictions. 648... Measures for the Summer Flounder Fisheries § 648.108 Summer flounder gear restrictions. (a) General. (1) Otter trawlers whose owners are issued a summer flounder permit and that land or possess 100 lb (45.4 kg...

  3. 50 CFR 648.108 - Summer flounder gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Summer flounder gear restrictions. 648... Measures for the Summer Flounder Fisheries § 648.108 Summer flounder gear restrictions. (a) General. (1) Otter trawlers whose owners are issued a summer flounder permit and that land or possess 100 lb (45.4 kg...

  4. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    PubMed

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  5. 22 CFR 62.32 - Summer work travel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Summer work travel. 62.32 Section 62.32 Foreign... Provisions § 62.32 Summer work travel. (a) Introduction. These regulations govern program participation in summer work travel programs conducted by Department of State-designated sponsors pursuant to the...

  6. 22 CFR 62.32 - Summer work travel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Summer work travel. 62.32 Section 62.32 Foreign... Provisions § 62.32 Summer work travel. (a) Introduction. These regulations govern program participation in summer work travel programs conducted by Department of State-designated sponsors pursuant to the...

  7. Layered ejecta craters and the early water/ice aquifer on Mars

    NASA Astrophysics Data System (ADS)

    Oberbeck, V. R.

    2009-03-01

    A model for emplacement of deposits of impact craters is presented that explains the size range of Martian layered ejecta craters between 5 km and 60 km in diameter in the low and middle latitudes. The impact model provides estimates of the water content of crater deposits relative to volatile content in the aquifer of Mars. These estimates together with the amount of water required to initiate fluid flow in terrestrial debris flows provide an estimate of 21% by volume (7.6 × 107 km3) of water/ice that was stored between 0.27 and 2.5 km depth in the crust of Mars during Hesperian and Amazonian time. This would have been sufficient to supply the water for an ocean in the northern lowlands of Mars. The existence of fluidized craters smaller than 5 km diameter in some places on Mars suggests that volatiles were present locally at depths less than 0.27 km. Deposits of Martian craters may be ideal sites for searches for fossils of early organisms that may have existed in the water table if life originated on Mars.

  8. Impact of Intensive Summer Reading Intervention for Children with Reading Disabilities and Difficulties in Early Elementary School

    ERIC Educational Resources Information Center

    Christodoulou, Joanna A.; Cyr, Abigail; Murtagh, Jack; Chang, Patricia; Lin, Jiayi; Guarino, Anthony J.; Hook, Pamela; Gabrieli, John D. E.

    2017-01-01

    Efficacy of an intensive reading intervention implemented during the nonacademic summer was evaluated in children with reading disabilities or difficulties (RD). Students (ages 6-9) were randomly assigned to receive Lindamood-Bell's "Seeing Stars" program (n = 23) as an intervention or to a waiting-list control group (n = 24). Analysis…

  9. Seasonal change of phytoplankton (spring vs. summer) in the southern Patagonian shelf

    NASA Astrophysics Data System (ADS)

    Gonçalves-Araujo, Rafael; de Souza, Márcio Silva; Mendes, Carlos Rafael Borges; Tavano, Virginia Maria; Garcia, Carlos A. E.

    2016-08-01

    As part of the Patagonian Experiment (PATEX) project two sequential seasons (spring/summer 2007-2008) were sampled in the southern Patagonian shelf, when physical-chemical-biological (phytoplankton) data were collected. Phytoplankton biomass and community composition were assessed through both microscopic and high-performance liquid chromatography/chemical taxonomy (HPLC/CHEMTAX) techniques and related to both in situ and satellite data at spatial and seasonal scales. Phytoplankton seasonal variation was clearly modulated by water column thermohaline structure and nutrient dynamics [mainly dissolved inorganic nitrogen (DIN) and silicate]. The spring phytoplankton community showed elevated biomass and was dominated by diatoms [mainly Corethron pennatum and small (<20 μm) cells of Thalassiosira spp.], associated with a deeper and more weakly stratified upper mixed layer depth (UMLD) and relatively low nutrient concentrations, which were probably a result of consumption by the diatom bloom. In contrast, the phytoplankton community in summer presented lower biomass and was mainly dominated by haptophytes (primarily Emiliania huxleyi and Phaeocystis antarctica) and dinoflagellates, associated with shallower and well-stratified upper mixed layers with higher nutrient concentrations, likely due to lateral advection of nutrient-rich waters from the Malvinas Current. The gradual establishment of a strongly stratified and shallow UMLD as season progressed, was an important factor leading to the replacement of the spring diatom community by a dominance of calcifying organisms, as shown in remote sensing imagery and confirmed by microscopic examination. Furthermore, in spring, phaeopigments a (degradation products of chlorophyll a) relative to chlorophyll a, were twice that of summer, indicating the diatom bloom was under higher grazing pressure.

  10. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong

    2016-12-01

    Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the

  11. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer.

    PubMed

    Zhang, Hui-Hui; Li, Zheng; Liu, Yu; Xinag, Ping; Cui, Xin-Yi; Ye, Hui; Hu, Bao-Lan; Lou, Li-Ping

    With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM 2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM 2.5 in these weather conditions. In this test, PM 2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM 2.5 were analyzed, the toxicity of PM 2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM 2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM 2.5 samples were water-soluble ions, particularly SO 4 2- , NO 3 - , and NH 4 + , followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM 2.5 , the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM 2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM 2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.

  12. Summer Session Organizational Models at Canadian Universities

    ERIC Educational Resources Information Center

    Kops, Bill

    2010-01-01

    The issue of summer session organizational models continues to be of interest to summer session deans/directors and university administrators. The University of Victoria surveyed Canadian universities on this issue in 1994. Based on a similar survey done in 2009, this paper updates the status of Canadian university summer session organizational…

  13. Finding Funds to Move Summer Learning Forward

    ERIC Educational Resources Information Center

    Seidel, Bob

    2015-01-01

    Summer learning loss creates a permanent drag on the US education system. With the generous support of the Charles Stewart Mott Foundation, the National Summer Learning Association (NSLA) developed "Moving Summer Learning Forward: A Strategic Roadmap for Funding in Tough Times" to provide out-of-school time programs, school districts,…

  14. Education in Summer: 100 Years at UW-Madison.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison.

    College summer sessions, and specifically the summer program at the University of Wisconsin-Madison between 1885-1985 are discussed in two papers and a conference summary. In "History of Summer School at the University of Wisconsin," John W. Jenkins and Barry J. Teicher examine the emergence and nature of summer programs in the context of the…

  15. The fate of early Mars' lost water: The role of serpentinization

    NASA Astrophysics Data System (ADS)

    ChassefièRe, Eric; Langlais, Benoit; Quesnel, Yoann; Leblanc, FrançOis

    2013-05-01

    The fate of water which was present on early Mars remains enigmatic. We propose a simple model based on serpentinization, a hydrothermal alteration process which may produce magnetite and store water. Our model invokes serpentinization during about 500 to 800 Myr, while a dynamo is active, which may have continued after the formation of the crustal dichotomy. We show that the present magnetic field measured by Mars Global Surveyor in the southern hemisphere is consistent with a ~500 m thick Global Equivalent Layer (GEL) of water trapped in serpentine. Serpentinization results in the release of H2. The released H atoms are lost to space through thermal escape, increasing the D/H ratio in water reservoirs exchanging with atmosphere. We show that the value of the D/H ratio in the present atmosphere (~5) is also consistent with the serpentinization of a ~500 m thick water GEL. We reassess the role of nonthermal escape in removing water from the planet. By considering an updated solar wind-ionosphere interaction representation, we show that the contribution of oxygen escape to H isotopic fractionation is negligible. Our results suggest that significant amounts of water (up to a ~330-1030 m thick GEL) present at the surface during the Noachian, similar to the quantity inferred from the morphological analysis of valley networks, could be stored today in subsurface serpentine.

  16. Trends in timing, magnitude, and duration of summer and fall/winter streamflows for unregulated coastal river basins in Maine during the 20th century

    USGS Publications Warehouse

    Dudley, Robert W.; Hodgkins, Glenn A.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Maine Atlantic Salmon Commission (ASC), began a study in 2003 to examine the timing, magnitude, and duration of summer (June through October) and fall/early winter (September through January) seasonal streamflows of unregulated coastal river basins in Maine and to correlate them to meteorological variables and winter/spring (January through May) seasonal streamflows. This study overlapped the summer seasonal window with the fall/early winter seasonal window to completely bracket the low-streamflow period during July, August, and September between periods of high streamflows in June and October. The ASC is concerned with the impacts of potentially changing meteorological and hydrologic conditions on Atlantic salmon survival. Because winter/spring high streamflows appear to have trended toward earlier dates over the 20th century in coastal Maine, it was hypothesized that the spring/summer recession to low streamflows could have a similar trend toward earlier, and possibly lower, longer lasting, late summer/early fall low streamflows during the 20th century. There were few statistically significant trends in the timing, magnitude, or duration of summer low streamflows for coastal river basins in Maine during the 20th century. The hypothesis that earlier winter/spring high streamflows may result in earlier or lower low streamflows is not supported by the data. No statistically significant trends in the magnitude of total runoff volume during the low-streamflow months of August and September were observed. The magnitude and timing of summer low streamflows correlated with the timing of fall/winter high streamflows and the amount of summer precipitation. The magnitude and timing of summer low streamflows did not correlate with the timing of spring snowmelt runoff. There were few correlations between the magnitude and timing of summer low streamflows and monthly mean surface air temperatures. There were few

  17. The response of aboveground plant productivity to earlier snowmelt and summer warming in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Darrouzet-Nardi, A.; Sullivan, P.; Wallenstein, M. D.; Weintraub, M. N.

    2012-12-01

    Plant communities in the Arctic are undergoing changes in structure and function due to shifts in seasonality from changing winters and summer warming. These changes will impact biogeochemical cycling, surface energy balance, and functioning of vertebrate and invertebrate communities. To examine seasonal controls on aboveground net primary production (ANPP) in a moist acidic tundra ecosystem in northern Alaska, we shifted the growing season by accelerating snowmelt (using radiation absorbing shadecloth) and warming air and soil temperature (using 1 m2 open-top chambers), individually and in combination. After three years, we measured ANPP by harvesting up to 16 individual ramets, tillers and rhizomes for each of 7 plant species, including two deciduous shrubs, two graminoids, two evergreen shrubs and one forb during peak season. Our results show that ANPP per stem summed across the 7 species increased when snow melt occurred earlier. However, standing biomass, excluding current year growth, was also greater. The ratio of ANPP/standing biomass decreased in all treatments compared to the control. ANPP per unit standing biomass summed for the four shrub species decreases due to summer warming alone or in combination with early snowmelt; however early snowmelt alone did not lead to lower ANPP for the shrubs. ANPP per tiller or rhizome summed for the three herbaceous species increased in response to summer warming. Understanding the differential response of plants to changing seasonality will inform predictions of future Arctic plant community structure and function.

  18. The Summer Monsoon of 1987.

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Bedi, H. S.; Subramaniam, M.

    1989-04-01

    In this paper we have examined the evolution of a number of parameters we believe were important for our understanding of the drought over India during the summer of 1987. The list of parameters includes monthly means or anomalies of the following fields: sea surface temperatures, divergent circulations, outgoing longwave radiation, streamfunction of the lower and upper troposphere, and monthly precipitation (expressed as a percentage departure from a long-term mean). The El Niño related warm sea surface temperature anomaly and a weaker warm sea surface temperature anomaly over the equatorial Indian Ocean provide sustained convection, as reflected by the negative values of the outgoing longwave radiation. With the seasonal heating, a pronounced planetary-scale divergent circulation evolved with a center along the western Pacific Ocean. The monsoonal divergent circulation merged with that related to the El Niño, maintaining most of the heavy rainfall activity between the equatorial Pacific Ocean and east Asia. Persistent convective activity continued south of India during the entire monsoon season. Strong Hadley type overturnings with rising motions over these warm SST anomaly regions and descent roughly near 20° to 25°S was evident as early as April 1987. The subtropical high pressure areas near 20° to 25°S showed stronger than normal circulations. This was revealed by the presence of a counterclockwise streamfunction anomaly at 850 mb during April 1987. With the seasonal heating, this anomaly moved northwards and was located over the Arabian Sea and India. This countermonsoon circulation anomaly at the low levels was associated with a weaker than normal Somali jet and Arabian Sea circulation throughout this summer. The monsoon remained active along northeast India, Bangladesh, northern lndochina, and central China during the summer monsoon season. This was related to the eastward shift of the divergent circulation. An eastward shift of the upper tropospheric

  19. Summer Reading

    NASA Astrophysics Data System (ADS)

    Kovac, Jeffrey; Pagni, Richard M.; Harris, Harold H.; Coppola, Brian P.

    2002-06-01

    Ah, summer approaches! Perhaps you will find some time for leisure reading. With this hope in mind, here are a few suggestions that Jeff Kovac, our Book & Media Reviews Editor, has assembled with the help of Dick Pagni, Hal Harris, and Brian Coppola.

  20. Summer Reading

    NASA Astrophysics Data System (ADS)

    Kovac, Jeffrey; Pagni, Richard; Harris, Harold H.; Coppola, Brian P.

    2001-06-01

    Ah, summer approaches! Perhaps you will find some time for leisure reading. With this hope in mind, here are a few suggestions that Jeff Kovac, our Book & Media Reviews Editor, has assembled with the help of Dick Pagni, Hal Harris, and Brian Coppola.