Science.gov

Sample records for early supernovae light-curves

  1. Simulating Supernova Light Curves

    SciTech Connect

    Even, Wesley Paul; Dolence, Joshua C.

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  2. EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT

    SciTech Connect

    Nakar, Ehud; Sari, Re'em

    2010-12-10

    The first light from a supernova (SN) emerges once the SN shock breaks out of the stellar surface. The first light, typically a UV or X-ray flash, is followed by a broken power-law decay of the luminosity generated by radiation that leaks out of the expanding gas sphere. Motivated by recent detection of emission from very early stages of several SNe, we revisit the theory of shock breakout and the following emission, paying special attention to the photon-gas coupling and deviations from thermal equilibrium. We derive simple analytic light curves of SNe from various progenitors at early times. We find that for more compact progenitors, white dwarfs, Wolf-Rayet stars (WRs), and possibly more energetic blue-supergiant explosions, the observed radiation is out of thermal equilibrium at the breakout, during the planar phase (i.e., before the expanding gas doubles its radius), and during the early spherical phase. Therefore, during these phases we predict significantly higher temperatures than previous analysis that assumed equilibrium. When thermal equilibrium prevails, we find the location of the thermalization depth and its temporal evolution. Our results are useful for interpretation of early SN light curves. Some examples are (1) red supergiant SNe have an early bright peak in optical and UV flux, less than an hour after breakout. It is followed by a minimum at the end of the planar phase (about 10 hr), before it peaks again once the temperature drops to the observed frequency range. In contrast, WRs show only the latter peak in optical and UV. (2) Bright X-ray flares are expected from all core-collapse SNe types. (3) The light curve and spectrum of the initial breakout pulse hold information on the explosion geometry and progenitor wind opacity. Its spectrum in more compact progenitors shows a (nonthermal) power law and its light curve may reveal both the breakout diffusion time and the progenitor radius.

  3. SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER

    SciTech Connect

    Garnavich, P. M.; Tucker, B. E.; Rest, A.; Shaya, E. J.; Olling, R. P.; Kasen, D; Villar, A.

    2016-03-20

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R{sub ⊙}) to be significantly smaller than that for KSN2011d (490 ± 20 R{sub ⊙}), but both have similar explosion energies of 2.0 ± 0.3 × 10{sup 51} erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10{sup −4}M{sub ⊙} yr{sup −1} from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P.

  4. Shock Breakout and Early Light Curves of Type II-P Supernovae Observed with Kepler

    NASA Astrophysics Data System (ADS)

    Garnavich, P. M.; Tucker, B. E.; Rest, A.; Shaya, E. J.; Olling, R. P.; Kasen, D.; Villar, A.

    2016-03-01

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R⊙) to be significantly smaller than that for KSN2011d (490 ± 20 R⊙), but both have similar explosion energies of 2.0 ± 0.3 × 1051 erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10-4M⊙ yr-1 from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P.

  5. Exploring the Potential Diversity of Early Type Ia Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2016-07-01

    During the first several days after explosion, Type Ia supernova light curves probe the outer layers of the exploding star, and therefore provide important clues for identifying their progenitors. We investigate how both the shallow 56Ni distribution and the presence of circumstellar material shape these early light curves. This is performed using a series of numerical experiments with parameterized properties for systematic exploration. Although not all of the considered models may be realized in nature (and indeed there are arguments why some of them should not occur), the spirit of this work is to provide a broader exploration of the diversity of possibilities. We find that shallower 56Ni leads to steeper, bluer light curves. Differences in the shape of the rise can introduce errors in estimating the explosion time, and thus impact efforts to infer upper limits on the progenitor or companion radius from a lack of observed shock cooling emission. Circumstellar material can lead to significant luminosity during the first few days, but its presence can be difficult to identify depending on the degree of nickel mixing. In some cases, the hot emission of circumstellar material may even lead to a signature similar to an interaction with a companion, and thus in the future additional diagnostics should be gathered for properly assessing early light curves.

  6. Numerical Modeling of the Early Light Curves of Type IIP Supernovae

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya; Piro, Anthony L.; Renzo, Mathieu; Ott, Christian D.

    2016-10-01

    The early rise of Type IIP supernovae (SN IIP) provides important information for constraining the properties of their progenitors. This can, in turn, be compared to pre-explosion imaging constraints and stellar models to develop a more complete picture of how massive stars evolve and end their lives. Using the SuperNova Explosion Code (SNEC), we model the first 40 days of SNe IIP to better understand what constraints can be derived from their early light curves. We use two sets of red supergiant (RSG) progenitor models with zero-age main sequence masses in the range between 9 {M}⊙ and 20 {M}⊙ . We find that the early properties of the light curve depend most sensitively on the radius of the progenitor, and thus provide a relation between the g-band rise time and the radius at the time of explosion. This relation will be useful for deriving constraints on progenitors from future observations, especially in cases where detailed modeling of the entire rise is not practical. When comparing to observed rise times, the radii we find are a factor of a few larger than previous semi-analytic derivations and are generally in better agreement with what is found with current stellar evolution calculations as well as direct observations of RSGs.

  7. Modeling Type IIn Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie; Roming, Peter; Fryer, Chris

    2016-01-01

    We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.

  8. Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Sollerman, J.; Leloudas, G.; Stritzinger, M. D.; Valenti, S.; Galbany, L.; Kessler, R.; Schneider, D. P.; Wheeler, J. C.

    2015-02-01

    Context. Type Ib/c supernovae (SNe Ib/c) have been investigated in several single-object studies; however, there is still a paucity of works concerning larger, homogeneous samples of these hydrogen-poor transients, in particular regarding the premaximum phase of their light curves. Aims: In this paper we present and analyze the early-time optical light curves (LCs, ugriz) of 20 SNe Ib/c from the Sloan Digital Sky Survey (SDSS) SN survey II, aiming to study their observational and physical properties, as well as to derive their progenitor parameters. Methods: High-cadence, multiband LCs are fitted with a functional model and the best-fit parameters are compared among the SN types. Bolometric LCs (BLCs) are constructed for the entire sample. We also computed the black-body (BB) temperature (TBB) and photospheric radius (Rph) evolution for each SN via BB fits on the spectral energy distributions. In addition, the bolometric properties are compared to both hydrodynamical and analytical model expectations. Results: Complementing our sample with literature data, we find that SNe Ic and Ic-BL (broad-line) have shorter rise times than those of SNe Ib and IIb. The decline rate parameter, Δm15, is similar among the different subtypes. SNe Ic appear brighter and bluer than SNe Ib, but this difference vanishes if we consider host galaxy extinction corrections based on colors. Templates for SN Ib/c LCs are presented. Our SNe have typical TBB of ~10 000 K at the peak and Rph of ~1015 cm. Analysis of the BLCs of SNe Ib and Ic gives typical ejecta masses Mej≈ 3.6-5.7 M⊙, energies EK≈ 1.5-1.7×1051 erg, and M(56Ni) ≈ 0.3 M⊙. Higher values for EK and M(56Ni) are estimated for SNe Ic-BL (Mej≈ 5.4 M⊙, EK≈ 10.7×1051 erg, M(56Ni) ≈ 1.1 M⊙). For the majority of SNe Ic and Ic-BL, we can put strong limits (<2-4 days) on the duration of the expected early-time plateau. Less stringent limits can be placed on the duration of the plateau for the sample of SNe Ib. In the

  9. Light Curves of Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Ford, C. H.; Herbst, W.; Balonek, T. J.; Benson, P. J.; Chromey, F. R.; Ratcliff, S. J.

    1992-05-01

    VRI light curves of five Type Ia supernovae (1991B, 1991N, 1991T, 1991bg, and 1992G) have been obtained with CCDs attached to small telescopes at northeastern sites. The data have been carefully transformed to the standard system using images obtained with the 0.9m telescope at KPNO. The first three supernovae have faded sufficiently that we can carefully correct for the galactic background and, in particular, its effect on the determination of fade rates at late times. SN 1991bg clearly demonstrates that there can be gross differences among Type Ia's in the shape (and maximum brightness) of their light curves (Filippenko et al., preprint). We investigate whether a single "template" can be devised which fits the R and I light curve shapes of the other four supernovae in our sample, and the degree to which each fits the V template of Leibundgut (1988, Ph.D. thesis, U. of Basel). The distinctive secondary maximum seen in I (about 18 days after primary maximum; Balonek et al., preprint) should be useful for distinguishing peculiar Type Ia's like SN 1991bg, and for establishing the time of maximum brightness for supernovae that were discovered up to three weeks afterwards. We thank the W. M. Keck Foundation for their support of the Keck Northeast Astronomy Consortium. This project is an outgrowth of that support.

  10. Infrared Light Curves of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew Samuel

    2012-05-01

    This thesis presents the CfAIR2 data set, which includes over 4000 near-Infrared (NIR) JHK8-band measurements of 104 Type Ia Supernovae (SN Ia) observed from 2005-2011 using PAIRITEL, the 1.3-m Peters Automated InfraRed Imaging TELescope at the Fred Lawrence Whipple Observatory (FLWO) on Mount Hopkins, Arizona. While the discovery of dark energy and most subsequent supernova cosmology has been performed using optical and Ultraviolet wavelength observations of SN Ia, a growing body of evidence suggests that NIR SN Ia observations will be crucial for future cosmological studies. Whereas SN Ia observed at optical wavelengths have been shown to be excellent standardizeable candles, using empirical correlations between luminosity, light curve shape, and color, the CfAIR2 data set strengthens the evidence that SN Ia at NIR wavelengths are essentially standard candles, even without correction for light-curve shape or for reddening. CfAIR2 was obtained as part of the CfA Supernova Program, an ongoing multi-wavelength follow-up effort at FLWO designed to observe high-quality, densely sampled light curves and spectra of hundreds of low-redshift SN Ia. CfAIR2 is the largest homogeneously observed and processed NIR data set of its kind to date, nearly tripling the number of individual JHK8-band observations and nearly doubling the set of SN Ia with published NIR light curves in the literature. Matched only by the recently published Carnegie Supernova Project sample, CfAIR2 complements the large and growing set of low-redshift optical and NIR SN Ia observations obtained by the CfA and other programs, making this data set a unique and particularly valuable local universe anchor for future supernova cosmology.

  11. Bolometric and UV light curves of core-collapse supernovae

    SciTech Connect

    Pritchard, T. A.; Roming, P. W. A.; Brown, Peter J.; Bayless, Amanda J.; Frey, Lucille H.

    2014-06-01

    The Swift UV-Optical Telescope (UVOT) has been observing core-collapse supernovae (CCSNe) of all subtypes in the UV and optical since 2005. Here we present 50 CCSNe observed with the Swift UVOT, analyzing their UV properties and behavior. Where we have multiple UV detections in all three UV filters (λ {sub c} = 1928-2600 Å), we generate early time bolometric light curves, analyze the properties of these light curves and the UV contribution to them, and derive empirical corrections for the UV-flux contribution to optical-IR based bolometric light curves.

  12. Thermonuclear supernova light curves: Progenitors and cosmology

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.

    Thermonuclear Supernovae (TN SNe) are an extremely important tool in modern astronomy. In their role as cosmological distance probes, they have revealed the accelerated expansion of the universe and have begun to constrain the nature of the dark energy that may be driving that expansion. The next decade will see a succession of wide-field surveys producing thousands of TNSN detections each year. Traditional methods of SN analysis, rooted in time-intensive spectroscopic follow-up, will become completely impractical. To realize the potential of this coming tide of massive data sets, we will need to extract cosmographic parameters (redshift and luminosity distance) from SN photometry without any spectroscopic support. In this dissertation, I present the Supernova Ontology with Fuzzy Templates (SOFT) method, an innovative new approach to the analysis of SN light curves. SOFT uses the framework of fuzzy set theory to perform direct comparisons of SN candidates against template light curves, simultaneously producing both classifications and cosmological parameter estimates. The SOFT method allows us to shed new light on two rich archival data sets. I revisit the IfA Deep Survey and HST GOODS to extract new and improved measurements of the TNSN rate from z=0.2 out to z=1.6. Our new analysis shows a steady increase in the TNSN rate out to z˜1, and adds support for a decrease in the rate at z=1.5. Comparing these rate measurements to theoretical models, I conclude that the progenitor scenario most favored by the collective observational data is a single degenerate model, regulated by a strong wind from the accreting white dwarf. Using a compilation of SN light curves from five recent surveys, I demonstrate that SOFT is able to derive useful constraints on cosmological models from a data set with no spectroscopic information at all. Looking ahead to the near future, I find that photometric analysis of data sets containing 2,000 SNe will be able to improve our constraints on

  13. Infrared Light Curves of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Kirshner, R. P.; Wood-Vasey, M.; Bloom, J. S.; Mandel, K.; Challis, P.; Hicken, M.; Narayan, G.; Foley, R.; Rest, A.; Modjaz, M.; Starr, D.; Blondin, S.; Blake, C.; CfA Supernova Group; PAIRITEL Collaboration

    2010-01-01

    For my Astronomy Ph.D. thesis at Harvard University, I used the PAIRITEL 1.3m robotic telescope at the Fred Lawrence Whipple Observatory on Mt. Hopkins, Arizona to observe Near-Infrared (NIR) JHKs band light curves of over 100 Type Ia Supernovae (SN Ia) in nearby galaxies, compiling a data set that will more than quintuple the number of NIR SN Ia light curves in the literature. With this data, we confirm and strengthen the claim that SN Ia are more standard in NIR luminosity, less sensitive to dust extinction, and crucial to reducing systematic distance errors due to the degeneracy between intrinsic color variation and reddening of light by dust, arguably the most dominant systematic error in SN Ia cosmology. Uncertainty in our knowledge of the distributions of host galaxy dust properties is a major obstacle to obtaining consistent dark energy constraints with different SN Ia cosmological analysis methods. As such, I develop a color curve model using optical and NIR data to estimate the most probable amount of dust extinction and the properties of the host galaxy dust for each SN Ia. Continuing a comprehensive ground based optical and NIR program to observe low redshift SN Ia is one of the best ways to improve the precision and accuracy of SN Ia as standardizeable candles and cosmological distance indicators moving forward. Such data will critically inform the design of the NASA/DOE Joint Dark Energy Mission, and indeed any future cosmology experiment designed to measure cosmic acceleration and dark energy with a sample of high redshift SN Ia. This work has been supported by an NSF Graduate Research Fellowship and a NASA GSRP Fellowship.

  14. Bumpy light curves of interacting supernovae

    NASA Astrophysics Data System (ADS)

    Nyholm, Anders

    2017-04-01

    A supernova (SN) is the explosive destruction of a star. Via a luminous outpouring of radiation, the SN can rival the brightness of its SN host galaxy for months or years. In the past decade, astronomical surveys regularly observing the sky to deep limiting magnitudes have revealed that core collapse SNe (the demises of massive stars) are sometimes preceded by eruptive episodes by the progenitor stars during the years before the eventual SN explosion. Such SNe tend to show strong signatures of interaction between the SN ejecta and the circumstellar medium (CSM) deposited by the star before the SN explosion, likely by mass-loss episodes like the ones we have started to observe regularly. The complex CSM resolved around certain giant stars in our own galaxy and the eruptions of giant stars like Eta Carinae in the 19th century can be seen in this context. As the SN ejecta of an interacting SN sweep up the CSM of the progenitor, radiation from this process offers observers opportunity to scan the late mass loss history of the progenitor. In this thesis, interacting SNe and eruptive mass loss of their progenitors is discussed. The SN iPTF13z (discovered by the intermediate Palomar Transient Factory, iPTF) is presented. This transient was followed with optical photometry and spectroscopy during 1000 days and displayed a light curve with several conspicuous re-brigthenings ("bumps"), likely arising from SN ejecta interacting with denser regions in the CSM. Around 200 days before discovery, in archival data we found a clear precursor outburst lasting ∼50 days. A well-observed (but not necessarily well understood) event like SN 2009ip, which showed both precursor outbursts and a light curve bump, makes an interesting comparison object. The embedding of the (possible) SN in a CSM makes it hard to tell if a destructive SN explosion actually happened. In this respect, iPTF13z is compared to e.g. SN 2009ip but also to long-lived interacting SNe like SN 1988Z. Some suggestions

  15. Light Curve Modeling of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi; Blinnikov, Sergei I.; Tominaga, Nozomu; Yoshida, Naoki; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2014-01-01

    Origins of superluminous supernovae (SLSNe) discovered by recent SN surveys are still not known well. One idea to explain the huge luminosity is the collision of dense CSM and SN ejecta. If SN ejecta is surrounded by dense CSM, the kinetic energy of SN ejecta is efficiently converted to radiation energy, making them very bright. To see how well this idea works quantitatively, we performed numerical simulations of collisions of SN ejecta and dense CSM by using one-dimensional radiation hydrodynamics code STELLA and obtained light curves (LCs) resulting from the collision. First, we show the results of our LC modeling of SLSN 2006gy. We find that physical parameters of dense CSM estimated by using the idea of shock breakout in dense CSM (e.g., Chevalier & Irwin 2011, Moriya & Tominaga 2012) can explain the LC properties of SN 2006gy well. The dense CSM's radius is about 1016 cm and its mass about 15 M ⊙. It should be ejected within a few decades before the explosion of the progenitor. We also discuss how LCs change with different CSM and SN ejecta properties and origins of the diversity of H-rich SLSNe. This can potentially be a probe to see diversities in mass-loss properties of the progenitors. Finally, we also discuss a possible signature of SN ejecta-CSM interaction which can be found in H-poor SLSN.

  16. Understanding how Supernova Light Curves are Affected by the Density Profiles of Extended Material

    NASA Astrophysics Data System (ADS)

    Mühleisen, Marc; Piro, Anthony

    2017-01-01

    The light curve of a supernova can provide important clues about the structure of the exploding progenitor. When extended material is present, shock cooling of this material can lead to a prominent early peak distinct from the main radioactive nickel peak, as seen in some Type IIb supernovae. We explore whether the density profile of the extended material plays a role in shaping these light curves. We perform a series of numerical supernova simulations with a range of extended mass configurations. We find that steeper density profiles for the extended material shrink the width and decrease the luminosity of the early peak of the light curve. We conclude that light curves with a distinct, early peak do not imply a particular structure, but rather may arise from several distinct mass configurations. This places limits on how much can be inferred about the progenitor's structure from its light curve.

  17. Light curve of type I Supernovae

    SciTech Connect

    Colgate, S.A.; Petschek, A.G.; Kriese, J.T.

    1980-11-01

    Calculations of the intermediate and late time luminosity of type I supernovae based on 100% efficiency for optical emission of energy deposited by the Ni/sup 56/ decay chain give good agreement with observations provided M/sub ej/v/sup -2/2.2=(plus-or-minus0.5) x 10/sup 17/ M/sub sun/ s/sup 2/ cm/sup -2/ where M/sub ej/ is the ejected mass and v is the expansion velocity. Account must be taken of the escape of both gamma rays and positrons. These two escape processes as well as the early luminosity peak, as calculated by Colgate and McKee, are all consistent with the same value of M/sub ej//v/sup 2/.

  18. Light curve of type I supernovae

    SciTech Connect

    Colgate, S.A.; Petschek, A.G.; Kriese, J.T.

    1980-01-01

    Calculations of the intermediate and late time luminosity of type I supernovae based on 100% efficiency for optical emission of energy deposited by the Ni/sup 56/ decay chain give good agreement with observations provided M/sub ej/ v/sup -2/ = (2.2 +- 0.5) x 10/sup 17/ M. s/sup 2/ cm/sup -2/ where M/sub ej/ is the ejected mass an v is the expansion velocity. Account must be taken of the escape of both gamma rays and positrons. These two escape processes as well as the early luminosity peak as calculated by Colgate and McKee are all consistent with the same value of M/sub ej//v/sup 2/.

  19. Simulated Radio Images and Light Curves of Young Supernovae

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Mioduszewski, A. J.; Ball, L.

    2002-12-01

    We present calculations of the radio emission from supernovae based on high-resolution simulations of the hydrodynamics and radiation transfer, using simple energy density relations which link the properties of the radiating electrons and the magnetic field to the hydrodynamics. As a specific example we model the emission from SN1993J, which cannot be adequately fitted with the often-used analytic mini-shell model, and present a good fit to the radio evolution at a single frequency. Both free-free absorption and synchrotron self-absorption are needed to fit the light curve at early times and a circumstellar density profile of ρ ~ r -1.7 provides the best fit to the later data. We discuss the use of high-resolution radio images of supernovae to distinguish between different absorption mechanisms and determine the origin of specific light curve features. Comparisons of VLBI images of SN1993J with synthetic model images suggest that internal free-free absorption completely obscures emission at 8.4 GHz passing through the center of the supernova for the first few tens of years after explosion. We predict that at 8.4 GHz the internal free-free absorption is currently declining, and that over the next ~ 40 years the surface brightness of the center of the source should increase relative to the bright ring of emission seen in VLBI images. Similar absorption in a nearby supernova would make the detection of a radio pulsar at 1 GHz impossible for ~ 150 years after explosion. VVD is supported by the US. Department of Energy under grant number B341495 to the ASCI Flash Center at the University of Chicago.

  20. Bolometric Light Curves of Peculiar Type II-P Supernovae

    NASA Astrophysics Data System (ADS)

    Lusk, Jeremy A.; Baron, E.

    2017-04-01

    We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ∼5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.

  1. Model light curves of linear Type II supernovae

    SciTech Connect

    Swartz, D.A.; Wheeler, J.C.; Harkness, R.P. )

    1991-06-01

    Light curves computed from hydrodynamic models of supernova are compared graphically with the average observed B and V-band light curves of linear Type II supernovae. Models are based on the following explosion scenarios: carbon deflagration within a C + O core near the Chandrasekhar mass, electron-capture-induced core collapse of an O-Ne-Mg core of the Chandrasekhar mass, and collapse of an Fe core in a massive star. A range of envelope mass, initial radius, and composition is investigated. Only a narrow range of values of these parameters are consistent with observations. Within this narrow range, most of the observed light curve properties can be obtained in part, but none of the models can reproduce the entire light curve shape and absolute magnitude over the full 200 day comparison period. The observed lack of a plateau phase is explained in terms of a combination of small envelope mass and envelope helium enhancement. The final cobalt tail phase of the light curve can be reproduced only if the mass of explosively synthesized radioactive Ni-56 is small. The results presented here, in conjunction with the observed homogeneity among individual members of the supernova subclass, argue favorably for the O-Ne-Mg core collapse mechanism as an explanation for linear Type II supernovae. The Crab Nebula may arisen from such an explosion. Carbon deflagrations may lead to brighter events like SN 1979C. 62 refs.

  2. Observable fractions of core-collapse supernova light curves brightened by binary companions

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Liu, Zheng-Wei; Izzard, Robert G.

    2015-07-01

    Many core-collapse supernova progenitors are presumed to be in binary systems. If a star explodes in a binary system, the early supernova light curve can be brightened by the collision of the supernova ejecta with the companion star. The early brightening can be observed when the observer is in the direction of the hole created by the collision. Based on a population synthesis model, we estimate the fractions of core-collapse supernovae in which the light-curve brightening by the collision can be observed. We find that 0.19 per cent of core-collapse supernova light curves can be observed with the collisional brightening. Type Ibc supernova light curves are more likely to be brightened by the collision (0.53 per cent) because of the high fraction of the progenitors being in binary systems and their proximity to the companion stars. Type II and IIb supernova light curves are less affected (˜10-3 and ˜10-2 per cent, respectively). Although the early, slow light-curve declines of some Type IIb and Ibc supernovae are argued to be caused by the collision with the companion star (e.g. SN 2008D), the small expected fraction, as well as the unrealistically small separation required, disfavour the argument. The future transient survey by the Large Synoptic Survey Telescope is expected to detect ˜10 Type Ibc supernovae with the early collisional brightening per year, and they will be able to provide information on supernova progenitors in binary systems.

  3. Adaptively Stretched Templates for Normal Type Ia Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    Strovink, Mark

    2007-12-01

    Individual BVRI light-curve templates have been determined for 22 unusually well-observed literature Type Ia supernovae by the newly developed template builder AQUAA. This tool uses light-curve functions that are smooth, flexible, and free of potential bias from externally derived templates and other prior assumptions. In the B filter, to high accuracy 19 of these light curves may be represented by a single master template that is stretched adaptively along the time axis. The usual parameter describing average linear stretch is supplemented by two new nonlinear parameters that characterize transitions between regions of different time dilation. The distribution of these parameter values is related to the observed diversity of supernova rise times (Strovink, M., ApJ in press, astro-ph/07050726). Major portions of the VRI light curves, including the pre-maximum and peak regions, may be represented by corresponding master templates that similarly are stretched. When the dependence of absolute supernova luminosity on the limited number of stretch parameters is established, the use of Type Ia supernovae as cosmological distance indicators will be simplified and may be sharpened. This work is supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. THE LOS ALAMOS SUPERNOVA LIGHT-CURVE PROJECT: COMPUTATIONAL METHODS

    SciTech Connect

    Frey, Lucille H.; Even, Wesley; Hungerford, Aimee L.; Whalen, Daniel J.; Fryer, Chris L.; Fontes, Christopher J.; Colgan, James

    2013-02-15

    We have entered the era of explosive transient astronomy, in which current and upcoming real-time surveys such as the Large Synoptic Survey Telescope, the Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System will detect supernovae in unprecedented numbers. Future telescopes such as the James Webb Space Telescope may discover supernovae from the earliest stars in the universe and reveal their masses. The observational signatures of these astrophysical transients are the key to unveiling their central engines, the environments in which they occur, and to what precision they will pinpoint cosmic acceleration and the nature of dark energy. We present a new method for modeling supernova light curves and spectra with the radiation hydrodynamics code RAGE coupled with detailed monochromatic opacities in the SPECTRUM code. We include a suite of tests that demonstrate how the improved physics and opacities are indispensable to modeling shock breakout and light curves when radiation and matter are tightly coupled.

  5. Type II Supernovae: Model Light Curves and Standard Candle Relationships

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude—from 0.5 to 4.0 × 1051 ergs, with a typical value of ~0.9 × 1051 ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to ~20% using only photometric data.

  6. TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS

    SciTech Connect

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude-from 0.5 to 4.0 x 10{sup 51} ergs, with a typical value of approx0.9 x 10{sup 51} ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to approx20% using only photometric data.

  7. UBVRIz Light Curves of 51 Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Galbany, Lluís; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, José; de Jaeger, Thomas; Moraga, Tania; González-Gaitán, Santiago; Krisciunas, Kevin; Morrell, Nidia I.; Thomas-Osip, Joanna; Krzeminski, Wojtek; González, Luis; Antezana, Roberto; Wishnjewski, Marina; McCarthy, Patrick; Anderson, Joseph P.; Gutiérrez, Claudia P.; Stritzinger, Maximilian; Folatelli, Gastón; Anguita, Claudio; Galaz, Gaspar; Green, Elisabeth M.; Impey, Chris; Kim, Yong-Cheol; Kirhakos, Sofia; Malkan, Mathew A.; Mulchaey, John S.; Phillips, Andrew C.; Pizzella, Alessandro; Prosser, Charles F.; Schmidt, Brian P.; Schommer, Robert A.; Sherry, William; Strolger, Louis-Gregory; Wells, Lisa A.; Williger, Gerard M.

    2016-02-01

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986-2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  8. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    SciTech Connect

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P.; Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna; Suntzeff, Nicholas B.; Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina; Krisciunas, Kevin; Krzeminski, Wojtek; McCarthy, Patrick; Anderson, Joseph P.; Stritzinger, Maximilian; Folatelli, Gastón; and others

    2016-02-15

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  9. PAIR INSTABILITY SUPERNOVAE: LIGHT CURVES, SPECTRA, AND SHOCK BREAKOUT

    SciTech Connect

    Kasen, Daniel; Woosley, S. E.; Heger, Alexander

    2011-06-20

    For the initial mass range (140 M{sub sun} < M < 260 M{sub sun}) stars die in a thermonuclear runaway triggered by the pair-production instability. The supernovae they make can be remarkably energetic (up to {approx}10{sup 53} erg) and synthesize considerable amounts of radioactive isotopes. Here we model the evolution, explosion, and observational signatures of representative pair instability supernovae (PI SNe) spanning a range of initial masses and envelope structures. The predicted light curves last for hundreds of days and range in luminosity from very dim to extremely bright (L {approx} 10{sup 44} erg s{sup -1}). The most massive events are bright enough to be seen at high redshift, but the extended light curve duration ({approx}1 yr)-prolonged by cosmological time-dilation-may make it difficult to detect them as transients. A more promising approach may be to search for the brief and luminous outbreak occurring when the explosion shock wave first reaches the stellar surface. Using a multi-wavelength radiation-hydrodynamics code we calculate that, in the rest frame, the shock breakout transients of PI SNe reach luminosities of 10{sup 45}-10{sup 46} erg s{sup -1}, peak at wavelengths {approx}30-170 A, and last for several hours. We discuss how observations of the light curves, spectra, and breakout emission can be used to constrain the mass, radius, and metallicity of the progenitor.

  10. Light-curve modelling of superluminous supernova 2006gy: collision between supernova ejecta and a dense circumstellar medium

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Blinnikov, Sergei I.; Tominaga, Nozomu; Yoshida, Naoki; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2013-01-01

    We show model light curves of superluminous supernova 2006gy on the assumption that the supernova is powered by the collision of supernova ejecta and a dense circumstellar medium. The initial conditions are constructed based on the shock breakout condition, assuming that the circumstellar medium is dense enough to cause a shock breakout within it. We perform a set of numerical light-curve calculations using the one-dimensional multigroup radiation hydrodynamics code stella. We succeed in reproducing the overall features of the early light curve of SN 2006gy with a circumstellar medium of mass about 15 M⊙ (the average mass-loss rate is ˜0.1 M⊙ yr-1). Thus, the progenitor of SN 2006gy is likely a very massive star. The density profile of the circumstellar medium is not well constrained by light-curve modelling alone, but our modelling disfavours a circumstellar medium formed by steady mass loss. The ejecta mass is estimated to be comparable to or less than 15 M⊙ and the explosion energy is expected to be more than 4 × 1051 erg. No 56Ni is required to explain the early light curve. We find that multidimensional effects, e.g. Rayleigh-Taylor instability, which is expected to take place in the cool dense shell between the supernova ejecta and the dense circumstellar medium, are important in understanding supernovae powered by shock interaction. We also show the evolution of optical and near-infrared model light curves of high-redshift superluminous supernovae. They can potentially be used to identify SN 2006gy-like superluminous supernovae in future optical and near-infrared transient surveys.

  11. Unsupervised Clustering of Type II Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    Rubin, Adam; Gal-Yam, Avishay

    2016-09-01

    As new facilities come online, the astronomical community will be provided with extremely large data sets of well-sampled light curves (LCs) of transients. This motivates systematic studies of the LCs of supernovae (SNe) of all types, including the early rising phase. We performed unsupervised k-means clustering on a sample of 59 R-band SN II LCs and find that the rise to peak plays an important role in classifying LCs. Our sample can be divided into three classes: slowly rising (II-S), fast rise/slow decline (II-FS), and fast rise/fast decline (II-FF). We also identify three outliers based on the algorithm. The II-FF and II-FS classes are disjoint in their decline rates, while the II-S class is intermediate and “bridges the gap.” This may explain recent conflicting results regarding II-P/II-L populations. The II-FS class is also significantly less luminous than the other two classes. Performing clustering on the first two principal component analysis components gives equivalent results to using the full LC morphologies. This indicates that Type II LCs could possibly be reduced to two parameters. We present several important caveats to the technique, and find that the division into these classes is not fully robust. Moreover, these classes have some overlap, and are defined in the R band only. It is currently unclear if they represent distinct physical classes, and more data is needed to study these issues. However, we show that the outliers are actually composed of slowly evolving SN IIb, demonstrating the potential of such methods. The slowly evolving SNe IIb may arise from single massive progenitors.

  12. SUPERLUMINOUS LIGHT CURVES FROM SUPERNOVAE EXPLODING IN A DENSE WIND

    SciTech Connect

    Ginzburg, Sivan; Balberg, Shmuel

    2012-10-01

    Observations from the last decade have indicated the existence of a general class of superluminous supernovae (SLSNe), in which the peak luminosity exceeds 10{sup 44} erg s{sup -1}. Here we focus on a subclass of these events, where the light curve is also tens of days wide, so the total radiated energy is of order 10{sup 51} erg. If the origin of these SLSNe is a core-collapse-driven explosion of a massive star, then the mechanism that converts the explosion energy into radiation must be very efficient (much more than in typical core-collapse SNe, where this efficiency is of order 1%). We examine the scenario where the radiated luminosity is due to efficient conversion of kinetic energy of the ejected stellar envelope into radiation by interaction with an optically thick, pre-existing circumstellar material, presumably the product of a steady wind from the progenitor. We base the analysis on analytical derivations of various limits, and on a simple, numerically solved, hydrodynamic diffusion model, which allows us to explore the regime of interest, which does not correspond to the analytical limits. In our results, we identify the qualitative behavior of the observable light curves, and relate them to the parameters of the wind. We specifically show that a wide and superluminous supernova requires the mass of the relevant wind material to be comparable to that of the ejected material from the exploding progenitor. We find the wind parameters that explain the peak luminosity and width of the bolometric light curves of three particular SLSNe, namely, SN 2005ap, SN 2006gy, and SN 2010gx, and show that they are best fitted with a wind that extends to a radius of order 10{sup 15} cm. These results serve as an additional indication that at least some SLSNe may be powered by interaction of the ejected material with a steady wind of similar mass.

  13. Unifying Type II Supernova Light Curves with Dense Circumstellar Material

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano

    2017-03-01

    A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here, using one-dimensional radiation-hydrodynamic SN models, we show that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of ∼ 10{--}100 {km} {{{s}}}-1, suggests enhanced activity by these stars during the last ~months to ∼years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that, even for more plateau-like SNe, dense CSM provides a better fit to the first ∼ 20 days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model the CSM with a wind-like density profile, but it is unclear whether this just generally represents some other mass distribution, such as a recent mass ejection, thick disk, or even inflated envelope material. Better understanding the exact geometry and density distribution of this material will be an important question for future studies.

  14. Light curves from supernova shock breakout through an extended wind

    SciTech Connect

    Ginzburg, Sivan; Balberg, Shmuel

    2014-01-01

    Recent observations suggest that some supernovae may be the result of an explosion into an optically thick circumstellar material, the product of pre-explosion mass loss (wind) by the progenitor star. This scenario has been studied previously both analytically and numerically. However, many previous studies base their analysis on the diffusion approximation for radiation transfer, which is inappropriate in the optically thin outer layers of the wind. Here we study the deviations from diffusion and calculate light curves more accurately using a Monte Carlo approach to photon transfer. We distinguish between 'compact' winds, for which the diffusion approximation is appropriate, and 'extended' winds, which require a more delicate treatment of the radiation. We show that this effect is more significant than that of the light-travel time difference to a distant observer, which has a secondary influence on the light curves of extended-wind systems. We also comment on the applicability of the widely used flux-limited diffusion approximation in this context: we find that it generally does not reproduce the Monte Carlo results. The flux-limited diffusion approximation leads to results that are not only quantitatively but also qualitatively wrong in the extended-wind regime.

  15. CfA Nearby Supernova Ia Light Curves

    NASA Astrophysics Data System (ADS)

    Hicken, Malcolm; Berlind, P.; Blondin, S.; Calkins, M.; Challis, P.; Esquerdo, G.; Everett, M.; Fernandez, J.; Jha, S.; Kirshner, R. P.; Latham, D.; Modjaz, M.; Rest, A.; Wood-Vasey, M.

    2007-12-01

    Type Ia supernovae (SN Ia) are central in measuring the accelerated expansion of the Universe and the properties of the underlying dark energy. Nearby SN Ia are compared with distant ones to establish the history of cosmic expansion. In fact, current efforts in SN Ia cosmology are constrained by the limited number of well-observed nearby SN Ia. A significantly improved sample of nearby SN Ia, fully covering the space of Ia properties, is needed to maximize the utility of high-redshift SN Ia. Our ongoing project at the CfA has collected such a set of 170 SN Ia. We have used the FLWO 1.2m telescope. About half of our objects were observed in UBVRI with the 4Shooter camera and have an average of 10 epochs each while the other half was taken in UBVr'i' with the Keplercam instrument and have an average of 17 epochs each. We have now reduced this sample of over 25000 images and present calibrated light curves of these SN Ia along with an analysis of their properties. The CfA Supernova program is supported in part by the National Science Foundation through grant AST-0606772 to Harvard University.

  16. Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop★

    NASA Astrophysics Data System (ADS)

    Valenti, S.; Sand, D.; Stritzinger, M.; Howell, D. A.; Arcavi, I.; McCully, C.; Childress, M. J.; Hsiao, E. Y.; Contreras, C.; Morrell, N.; Phillips, M. M.; Gromadzki, M.; Kirshner, R. P.; Marion, G. H.

    2015-04-01

    We present multiband ultraviolet and optical light curves, as well as visual-wavelength and near-infrared spectroscopy of the Type II linear (IIL) supernova (SN) 2013by. We show that SN 2013by and other SNe IIL in the literature, after their linear decline phase that start after maximum, have a sharp light-curve decline similar to that seen in SNe IIP. This light-curve feature has rarely been observed in other SNe IIL due to their relative rarity and the intrinsic faintness of this particular phase of the light curve. We suggest that the presence of this drop could be used as a physical parameter to distinguish between subclasses of SNe II, rather than their light-curve decline rate shortly after peak. Close inspection of the spectra of SN 2013by indicate asymmetric line profiles and signatures of high-velocity hydrogen. Late (˜90 d after explosion) near-infrared spectra of SN 2013by exhibit oxygen lines, indicating significant mixing within the ejecta. From the late-time light curve, we estimate that 0.029 M⊙ of 56Ni was synthesized during the explosion. It is also shown that the V-band light-curve slope is responsible for part of the scatter in the luminosity (V magnitude 50 d after explosion) versus 56Ni relation. Our observations of SN 2013by and other SNe IIL through the onset of the nebular phase indicate that their progenitors are similar to those of SNe IIP.

  17. RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.

    2012-11-10

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first Almost-Equal-To 0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X {sub 56} Almost-Equal-To (4-6) Multiplication-Sign 10{sup -2} of {sup 56}Ni distributed between a depth of Almost-Equal-To 10{sup -2} and 0.3 M {sub Sun} below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  18. Modeling Type IIn Supernovae: Understanding How Shock Development Effects Light Curves Properties

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie

    2016-06-01

    Type IIn supernovae are produced when massive stars experience dramatic mass loss phases caused by opacity edges or violent explosions. Violent mass ejections occur quite often just prior to the collapse of the star. If the final episode happens just before collapse, the outward ejecta is sufficiently dense to alter the supernova light-curve, both by absorbing the initial supernova light and producing emission when the supernova shock hits the ejecta. Initially, the ejecta is driven by shock progating through the interior of the star, and eventually expands through the circumstellar medium, forming a cold dense shell. As the shock wave approaches the shell, there is an increase in UV and optical radiation at the location of the shock breakout. We have developed a suite of simple semi-analytical models in order to understand the relationship between our observations and the properties of the expanding SN ejecta. When we compare Type IIn observations to a set of modeled SNe, we begin to see the influence of initial explosion conditions on early UV light curve properties such as peak luminosities and decay rate.The fast rise and decay corresponds to the models representing a photosphere moving through the envelope, while the modeled light curves with a slower rise and decay rate are powered by 56Ni decay. However, in both of these cases, models that matched the luminosity were unable to match the low radii from the blackbody models. The effect of shock heating as the supernova material blasts through the circumstellar material can drastically alter the temperature and position of the photosphere. The new set of models redefine the initial modeling conditions to incorporate an outer shell-like structure, and include late-time shock heating from shocks produced as the supernova ejecta travels through the inhomogeneous circumstellar medium.

  19. The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey

    SciTech Connect

    Hayden, Brian T.; Garnavich, Peter M.; Kessler, Richard; Frieman, Joshua A.; Jha, Saurabh W.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Kasen, Daniel; Marriner, John; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

    2010-01-01

    We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our

  20. Complexity in the light curves and spectra of slow-evolving superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Nicholl, M.; Chen, T.-W.; Jerkstrand, A.; Smartt, S. J.; Krühler, T.; Anderson, J. P.; Baltay, C.; Della Valle, M.; Fraser, M.; Gal-Yam, A.; Galbany, L.; Kankare, E.; Maguire, K.; Rabinowitz, D.; Smith, K.; Valenti, S.; Young, D. R.

    2017-07-01

    A small group of the newly discovered superluminous supernovae show broad and slow-evolving light curves. Here we present extensive observational data for the slow-evolving superluminous supernova LSQ14an, which brings this group of transients to four in total in the low-redshift Universe (z < 0.2; SN 2007bi, PTF12dam, SN 2015bn). We particularly focus on the optical and near-infrared evolution during the period from 50 d up to 400 d from peak, showing that they are all fairly similar in their light curve and spectral evolution. LSQ14an shows broad, blueshifted [O III] λλ4959, 5007 lines, as well as a blueshifted [O II] λλ7320, 7330 and [Ca II] λλ7291, 7323. Furthermore, the sample of these four objects shows common features. Semi-forbidden and forbidden emission lines appear surprisingly early at 50-70 d and remain visible with almost no variation up to 400 d. The spectra remain blue out to 400 d. There are small, but discernible light-curve fluctuations in all of them. The light curve of each shows a faster decline than 56Co after 150 d and it further steepens after 300 d. We also expand our analysis presenting X-ray limits for LSQ14an and SN 2015bn and discuss their diagnostic power. These features are quite distinct from the faster evolving superluminous supernovae and are not easily explained in terms of only a variation in ejecta mass. While a central engine is still the most likely luminosity source, it appears that the ejecta structure is complex, with multiple emitting zones and at least some interaction between the expanding ejecta and surrounding material.

  1. Magnetar-driven Shock Breakout and Double-peaked Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel; Metzger, Brian D.; Bildsten, Lars

    2016-04-01

    The light curves of some luminous supernovae are suspected to be powered by the spindown energy of a rapidly rotating magnetar. Here we describe a possible signature of the central engine: a burst of shock breakout emission occurring several days after the supernova explosion. The energy input from the magnetar inflates a high-pressure bubble that drives a shock through the pre-exploded supernova ejecta. If the magnetar is powerful enough, that shock will near the ejecta surface and become radiative. At the time of shock breakout, the ejecta will have expanded to a large radius (∼ {10}14 cm) so that the radiation released is at optical/ultraviolet wavelengths ({T}{{eff}} ≈ 20,000 K) and lasts for several days. The luminosity and timescale of this magnetar-driven shock breakout are similar to the first peak observed recently in the double-peaked light curve of SN-LSQ14BDQ. However, for a large region of model parameter space, the breakout emission is predicted to be dimmer than the diffusive luminosity from direct magnetar heating. A distinct double-peaked light curve may therefore only be conspicuous if thermal heating from the magnetar is suppressed at early times. We describe how such a delay in heating may naturally result from inefficient dissipation and thermalization of the pulsar wind magnetic energy. Without such suppression, the breakout may only be noticeable as a small bump or kink in the early luminosity or color evolution, or as a small but abrupt rise in the photospheric velocity. A similar breakout signature may accompany other central engines in supernovae, such as a black hole accreting fallback material.

  2. ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Nousek, John; Vanden Berk, Daniel; Holland, Stephen T.; Immler, Stefan; Gehrels, Neil; Panagia, Nino; Still, Martin

    2009-05-15

    We present ultraviolet (UV) observations of supernovae (SNe) obtained with the UltraViolet/Optical Telescope (UVOT) on board the Swift spacecraft. This is the largest sample of UV light curves from any single instrument and covers all major SN types and most subtypes. The UV light curves of SNe Ia are fairly homogenous, while SNe Ib/c and IIP show more variety in their light-curve shapes. The UV-optical colors clearly differentiate SNe Ia and IIP, particularly at early times. The color evolution of SNe IIP, however, makes their colors similar to SNe Ia at about 20 days after explosion. SNe Ib/c are shown to have varied UV-optical colors. The use of UV colors to help type SNe will be important for high-redshift SNe discovered in optical observations. These data can be added to ground-based optical and near infrared data to create bolometric light curves of individual objects and as checks on generic bolometric corrections used in the absence of UV data. This sample can also be compared with rest-frame UV observations of high-redshift SNe observed at optical wavelengths.

  3. Constraining Type Ia supernovae progenitor parameters via light curves

    NASA Astrophysics Data System (ADS)

    Sadler, Benjamin

    I study thermonuclear explosions of White Dwarf (WD) stars, or so-called Type Ia supernovae (SNe Ia). Higher precision is needed to determine the nature of the dark energy and to accomplish this we turn to secondary parameters of LC variation. I have devised a general scheme and developed a code to analyze large sets of LC data for these secondary parameter variations which is based on a combination of theoretical model template fitting and Principal Component Analysis. Novel methods for finding statistical trends in sparsely-sampled and non-coincidental light curve data are explored and utilized. In practice, data sets for different supernovae are inhomogeneous in time, time coverage and accuracy, but I have developed a method to remap these inhomogeneous data sets of large numbers of individual objects to a homogeneous data set centered in time and magnitude space from which we can obtain the external, primary, and secondary LC parameters of individual objects. The set of external parameters of a given SN include the time of its maximum light in various bands, its distance modulus, the extinction along the light path, and redshift corrections (K-corrections) due to cosmic expansion. I investigate the intrinsic primary parameter variation of SNe Ia via template fitting, and then probe the secondary LC variations using monochromatic differential analysis in the UBV bands. We use photometry from 25 SNe Ia which were recently and precisely observed by the Carnegie Supernova Project to analyze the presence of theoretical model-based differential LC signatures of Main-Sequence mass variation of the progenitor stars when they formed, central density variation of the WD at the time of the explosion, and metallicity Z variation in the progenitors. The light curves in the V band are found to provide the highest accuracy in determining the distance modulus, K-corrections, extinction, main-sequence mass and central density

  4. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE

    SciTech Connect

    Wang, S. Q.; Wang, L. J.; Dai, Z. G.; Wu, X. F.

    2015-01-20

    Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required.

  5. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Yoon, Sung-Chul; Gräfener, Götz; Blinnikov, Sergei I.

    2017-07-01

    Type IIP supernova progenitors are often surrounded by dense circumstellar media that may result from mass-loss enhancement of the progenitors shortly before their explosions. Previous light-curve studies suggest that the mass-loss rates are enhanced up to ∼0.1 M⊙ yr-1, assuming a constant wind velocity. However, the density of circumstellar media at the immediate stellar vicinity can be much higher than previously inferred for a given mass-loss rate if wind acceleration is taken into account. We show that the wind acceleration has a huge impact when we estimate mass-loss rates from early light curves of Type IIP supernovae by taking SN 2013fs as an example. We perform numerical calculations of the interaction between supernova ejecta and circumstellar media with a constant mass-loss rate but with a β-law wind velocity profile. We find that the mass-loss rate of the progenitor of SN 2013fs shortly before the explosion, which was inferred to be ∼0.1 M⊙ yr-1 with a constant wind velocity of 10 km s-1 by a previous light-curve modelling, can be as low as ∼10-3 M⊙ yr-1 with the same terminal wind velocity of 10 km s-1 but with a wind velocity profile with β ≃ 5. In both cases, the mass of the circumstellar medium is similar (≃0.5 M⊙). Therefore, the beginning of the progenitor's mass-loss enhancement in our interpretation is ∼100 yr before the explosion, not several years. Our result indicates that the immediate dense environment of Type II supernova progenitors may be significantly influenced by wind acceleration.

  6. LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT

    SciTech Connect

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino; Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger; Clayton, Geoffrey C.; Andrews, Jennifer E.; Gallagher, Joseph S.; Sugerman, Ben E. K.; Ercolano, Barbara; Welch, Douglas E-mail: otsuka@asiaa.sinica.edu.tw

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0

  7. Late-time Light Curves of Type II Supernovae: Physical Properties of Supernovae and Their Environment

    NASA Astrophysics Data System (ADS)

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino; Fabbri, Joanna; Barlow, Michael J.; Clayton, Geoffrey C.; Gallagher, Joseph S.; Sugerman, Ben E. K.; Wesson, Roger; Andrews, Jennifer E.; Ercolano, Barbara; Welch, Douglas

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days ~300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate 56Ni masses for our targets (0.5-14 × 10-2 M ⊙) from the bolometric light curve of each of days ~150-300 using SN 1987A as a standard (7.5 × 10-2 M ⊙). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm-3) and SNe 2003gd and 2004et have densities more typical of the interstellar medium (~1 cm-3). We analyze the sample as a whole in the context of physical properties derived in prior work. The 56Ni mass appears well correlated with progenitor mass with a slope of 0.31 × 10-2, supporting the previous work by Maeda et al., who focus on more massive Type II SNe. The

  8. Episodic modulations in supernova radio light curves from luminous blue variable supernova progenitor models

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Groh, Jose H.; Meynet, Georges

    2013-09-01

    Context. Ideally, one would like to know which type of core-collapse supernovae (SNe) is produced by different progenitors and what channels of stellar evolution lead to these progenitors. These links have to be very well known to use the observed frequency of different types of SN events for probing the star formation rate and massive star evolution in different types of galaxies. Aims: We investigate the link between luminous blue variables (LBVs) as SN progenitors and the appearance of episodic light curve modulations in the radio light curves of the SN event. Methods: We use the 20 M⊙ and 25 M⊙ models with rotation at solar metallicity, which are part of an extended grid of stellar models computed by the Geneva team. At their pre-SN stage, these two models have recently been shown to have spectra similar to those of LBV stars, and they possibly explode as Type IIb SNe. Based on the wind properties before the explosion, we derive the density structure of their circumstellar medium. This structure is used as input for computing the SN radio light curve. Results: We find that the 20 M⊙ model shows radio light curves with episodic luminosity modulations similar to those observed in some Type IIb SNe. This occurs because the evolution of the 20 M⊙ model terminates in a region of the HR diagram where radiative stellar winds present strong density variations, caused by the bistability limit. Ending its evolution in a zone of the HR diagram where no change of the mass-loss rates is expected, the 25 M⊙ model presents no such modulations in its radio SN light curve. Conclusions: Our results reinforce the link between SN progenitors and LBV stars. We also confirm the existence of a physical mechanism for a single star to have episodic radio light curve modulations. In the case of the 25 M⊙ progenitors, we do not obtain modulations in the radio light curve, but our models may miss some outbursting behavior in the late stages of massive stars.

  9. Full Bayesian hierarchical light curve modeling of core-collapse supernova populations

    NASA Astrophysics Data System (ADS)

    Sanders, Nathan; Betancourt, Michael; Soderberg, Alicia Margarita

    2016-06-01

    While wide field surveys have yielded remarkable quantities of photometry of transient objects, including supernovae, light curves reconstructed from this data suffer from several characteristic problems. Because most transients are discovered near the detection limit, signal to noise is generally poor; because coverage is limited to the observing season, light curves are often incomplete; and because temporal sampling can be uneven across filters, these problems can be exacerbated at any one wavelength. While the prevailing approach of modeling individual light curves independently is successful at recovering inferences for the objects with the highest quality observations, it typically neglects a substantial portion of the data and can introduce systematic biases. Joint modeling of the light curves of transient populations enables direct inference on population-level characteristics as well as superior measurements for individual objects. We present a new hierarchical Bayesian model for supernova light curves, where information inferred from observations of every individual light curve in a sample is partially pooled across objects to constrain population-level hyperparameters. Using an efficient Hamiltonian Monte Carlo sampling technique, the model posterior can be explored to enable marginalization over weakly-identified hyperparameters through full Bayesian inference. We demonstrate our technique on the Pan-STARRS1 (PS1) Type IIP supernova light curve sample published by Sanders et al. (2015), consisting of nearly 20,000 individual photometric observations of more than 70 supernovae in five photometric filters. We discuss the Stan probabilistic programming language used to implement the model, computational challenges, and prospects for future work including generalization to multiple supernova types. We also discuss scientific results from the PS1 dataset including a new relation between the peak magnitude and decline rate of SNe IIP, a new perspective on the

  10. Photometric Identification of Population III Core-Collapse Supernovae: Multicolor Light Curve Simulations

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Nomoto, Ken'ichi; Tominaga, Nozomu; Ishigaki, Miho N.; Blinnikov, Sergey; Suzuki, Tomoharu

    We study the multicolor light curves for a number of metal-free core-collapse supernova (SN) models (25-100 ȯ ) to determine the indicators for the detection and identification of first generation SNe. We use mixing-fallback supernova explosion models that explain the observed abundance patterns of metal-poor stars. Numerical calculations of the multicolor light curves are performed using the multigroup radiation hydrodynamic code STELLA. The calculated light curves of metal-free SNe are compared with solar-metallicity models and observed SNe. We conclude that the multicolor light curves could be used to identify first-generation SNe in current (Subaru/HSC) and future transient surveys (LSST, James Webb Space Telescope). They are also suitable for identifying low-metallicity SNe in the nearby universe (PTF, Pan-STARRS, Gaia).

  11. Light Curve Models of Supernovae and X-ray Spectra of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Blinnikov, S. I.; Baklanov, P. V.; Kozyreva, A. V.; Sorokina, E. I.

    2005-12-01

    We compare parameters of well-observed type II SN1999em derived by M. Hamuy and D. Nadyozhin based on tet*{LN85} analytic fits with those found from the simulations using our radiative hydro code STELLA. The same code applied to models of SN1993J allows us to estimate systematic errors of extracting foreground extinction toward SN1993J suggested by tet{Clo95} which is based on the assumption of black body radiation of the supernova envelope near the first maximum light after shock break out. A new implicit two-temperature hydro code code SUPREMNA is introduced which self-consistently takes into account the kinetics of ionization, electron thermal conduction, and radiative losses. Finally, a combination of STELLA and SUPREMNA allows us to use the same Type Ia supernova (SNIa) models both for building their light curves and predicting X-ray spectra of young Supernova remnants such as Tycho and Kepler. For the comparison of theoretical results with the observations we used data on Tycho supernova remnant (SNR) obtained with XMM-Newton space telescope.

  12. The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group

    2015-01-01

    The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.

  13. Type Ia Supernova Light-Curve Inference: Hierarchical Bayesian Analysis in the Near-Infrared

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey S.; Wood-Vasey, W. Michael; Friedman, Andrew S.; Kirshner, Robert P.

    2009-10-01

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHKs SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are σ(MJ ) = 0.17 ± 0.03, σ(MH ) = 0.11 ± 0.03, and σ(MKs ) = 0.19 ± 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms-1 is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  14. Supernova Shock Breakout Light Curves and Spectra from CASTRO Multigroup Radiation Simulations

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth; Woosley, S. E.

    2014-01-01

    We present preliminary results from a study of supernova shock breakout with the new multigroup radiation transport version of the CASTRO simulation code. Shock breakout occurs when the outgoing shockwave of a supernova explosion reaches the surface of the progenitor star and produces a bright flash. The breakout flash's spectral temperature, duration, and luminosity carry information about the progenitor star that may otherwise be very difficult to recover. To aid in detection and understanding of this phenomenon, we present integrated light curves and spectra of breakouts from a range of progenitors and explosions, including very low energy supernovae and pair-instability supernovae.

  15. The Light Curve and Distance of the Kepler Supernova: News from Four Centuries Ago

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar

    2017-06-01

    We study the light curve of SN 1604 using the historical data collected at the time of observation of the outburst. Comparing the supernova with recent SNe Ia of various rates of decline after maximum light, we find that this event looks like a normal SN Ia (stretch s close to 0.9 : 0.9 ± 0.13), a fact that is also favored by the late light curve. The supernova is heavily obscured by 2.7 ± 0.1 mag in V. We obtain an estimate of the distance to the explosion with a value of d=5+/- 0.7 {kpc}. This can help to settle ongoing discussions on the distance to the supernova. It also shows that this supernova is of the same kind as those of the SN Ia samples that we now use for cosmology.

  16. Analysis of the early spectra and light curve of SN 1987A

    NASA Technical Reports Server (NTRS)

    Hauschildt, Peter H.; Ensman, Lisa M.

    1994-01-01

    Numerical modeling of supernova spectra, light curves, and hydrodynamics requires physical inputs, numerical techniques, approximations, and assumptions which must be thoroughly understood in order to study the details of supernova explosions. Here, we discuss some of these in the context of the early evolution of supernova 1987A. Gray radiation-hydrodynamics is used to calculate the bolometric light curve and the hydrodynamic evolution of the supernova. Synthetic spectra are then obtained for the resulting density and velocity structure. The spectrum calculations are performed using a special-relativistic treatment of the radiative transfer equation in the comoving frame, line blanketing by about 10(exp 5) spectral lines, and departures from local thermodynamic equilibrium (LTE) for H I, He I, Mg II, and Ca II. We find that we are able to simultaneously fit the early light curve and spectra reasonably well, using a progenitor model from Arnett (1991a), without fine-tuning the free parameters. Temperature structures and radiative equilibrium, non-LTE effects, homologous expansion, and mean opacities are discussed.

  17. Fast evolving pair-instability supernova models: evolution, explosion, light curves

    NASA Astrophysics Data System (ADS)

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; Fröhlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan T.; Noebauer, Ulrich M.; van Rossum, Daniel R.; Heger, Alexander; Even, Wesley P.; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2017-01-01

    With an increasing number of superluminous supernovae (SLSNe) discovered, the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISNe), (2) magnetar-driven supernovae and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study, we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light-curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 and 250 M⊙) at relatively high metallicity (Z = 0.001) do not retain hydrogen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light-curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.

  18. The effect of background galaxy contamination on the absolute magnitude and light curve speed class of type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Boisseau, John R.; Wheeler, J. Craig

    1991-01-01

    Observational data are presented in support of the hypothesis that background galaxy contamination is present in the photometric data of Ia supernovae and that this effect can account for the observed dispersion in the light curve speeds of most of Ia supernovae. The implication is that the observed dispersion in beta is artificial and that most of Ia supernovae have nearly homogeneous light curves. The result supports the notion that Ia supernovae are good standard candles.

  19. The effect of background galaxy contamination on the absolute magnitude and light curve speed class of type Ia supernovae

    SciTech Connect

    Boisseau, J.R.; Wheeler, J.C. )

    1991-04-01

    Observational data are presented in support of the hypothesis that background galaxy contamination is present in the photometric data of Ia supernovae and that this effect can account for the observed dispersion in the light curve speeds of most of Ia supernovae. The implication is that the observed dispersion in beta is artificial and that most of Ia supernovae have nearly homogeneous light curves. The result supports the notion that Ia supernovae are good standard candles. 26 refs.

  20. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    SciTech Connect

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario; Gutiérrez, Claudia P.; Antezana, Roberto; De Jaeger, Thomas; Förster, Francisco; González, Luis; Stritzinger, Maximilian D.; Contreras, Carlos; Olivares E, Felipe; Phillips, Mark M.; Campillay, Abdo; Castellón, Sergio; Hsiao, Eric; Schulze, Steve; Bolt, Luis; Folatelli, Gastón; Freedman, Wendy L.; Krzemiński, Wojtek; and others

    2014-05-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the 'plateau' phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the 'plateau' stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply 'SN II' with an 's {sub 2}' value giving the decline rate during the 'plateau' phase, indicating its morphological type.

  1. Characterizing the V-band Light-curves of Hydrogen-rich Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario; Gutiérrez, Claudia P.; Stritzinger, Maximilian D.; Olivares E., Felipe; Phillips, Mark M.; Schulze, Steve; Antezana, Roberto; Bolt, Luis; Campillay, Abdo; Castellón, Sergio; Contreras, Carlos; de Jaeger, Thomas; Folatelli, Gastón; Förster, Francisco; Freedman, Wendy L.; González, Luis; Hsiao, Eric; Krzemiński, Wojtek; Krisciunas, Kevin; Maza, José; McCarthy, Patrick; Morrell, Nidia I.; Persson, Sven E.; Roth, Miguel; Salgado, Francisco; Suntzeff, Nicholas B.; Thomas-Osip, Joanna

    2014-05-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the "plateau" phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the "plateau" stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply "SN II" with an "s 2" value giving the decline rate during the "plateau" phase, indicating its morphological type. Based on observations obtained with the du-Pont and Swope telescopes at LCO, and the Steward Observatory's CTIO60, SO90 and CTIO36 telescopes.

  2. Analysis of late-time light curves of Type IIb, Ib and Ic supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Johnson, V.; Clocchiatti, A.

    2015-06-01

    The shape of the light-curve peak of radioactive-powered core-collapse `stripped-envelope' supernovae constrains the ejecta mass, nickel mass and kinetic energy by the brightness and diffusion time for a given opacity and observed expansion velocity. Late-time light curves give constraints on the ejecta mass and energy, given the gamma-ray opacity. Previous work has shown that the principal light-curve peaks for SN IIb with small amounts of hydrogen and for hydrogen/helium-deficient SN Ib/c are often rather similar near maximum light, suggesting similar ejecta masses and kinetic energies, but that late-time light curves show a wide dispersion, suggesting a dispersion in ejecta masses and kinetic energies. It was also shown that SN IIb and SN Ib/c can have very similar late-time light curves, but different ejecta velocities demanding significantly different ejecta masses and kinetic energies. We revisit these topics by collecting and analysing well-sampled single-band and quasi-bolometric light curves from the literature. We find that the late-time light curves of stripped-envelope core-collapse supernovae are heterogeneous. We also show that the observed properties, the photospheric velocity at peak, the rise time and the late decay time, can be used to determine the mean opacity appropriate to the peak. The opacity determined in this way is considerably smaller than common estimates. We discuss how the small effective opacity may result from recombination and asymmetries in the ejecta.

  3. Properties of Magnetars Mimicking 56Ni-powered Light Curves in Type IC Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Chen, Ting-Wan; Langer, Norbert

    2017-02-01

    Many Type Ic superluminous supernovae have light-curve decline rates after their luminosity peak, which are close to the nuclear decay rate of {}56{Co}, consistent with the interpretation that they are powered by {}56{Ni} and possibly pair-instability supernovae. However, their rise times are typically shorter than those expected from pair-instability supernovae, and Type Ic superluminous supernovae are often suggested to be powered by magnetar spin-down. If magnetar spin-down is actually a major mechanism to power Type Ic superluminous supernovae, it should be able to produce decline rates similar to the {}56{Co} decay rate rather easily. In this study, we investigate the conditions for magnetars under which their spin-down energy input can behave like the {}56{Ni} nuclear decay energy input. We find that an initial magnetic field strength within a certain range is sufficient to keep the magnetar energy deposition within a factor of a few of the {}56{Co} decay energy for several hundreds of days. Magnetar spin-down needs to be by almost pure dipole radiation with the braking index close to three to mimic {}56{Ni} in a wide parameter range. Not only late-phase {}56{Co}-decay-like light curves, but also rise time and peak luminosity of most {}56{Ni}-powered light curves can be reproduced by magnetars. Bolometric light curves for more than 700 days are required to distinguish the two energy sources solely by them. We expect that more slowly declining superluminous supernovae with short rise times should be found if they are mainly powered by magnetar spin-down.

  4. Type II Supernova Energetics and Comparison of Light Curves to Shock-Cooling Models

    NASA Technical Reports Server (NTRS)

    Rubin, Adam; Gal-Yam, Avishay; Cia, Annalisa De; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Cenko, S. Bradley

    2016-01-01

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with greater than 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 13 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of EM = (0.2-20) x 10(exp 51) erg/(10 M stellar mass), and have a mean energy per unit mass of E/ M = 0.85 x 10(exp 51) erg(10 stellar mass), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of Ni-56 produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (Delta m(sub15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.

  5. Type II supernova energetics and comparison of light curves to shock-cooling models

    DOE PAGES

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; ...

    2016-03-16

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, withmore » $$\\gt 5$$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 1051 erg/(10 $${M}_{\\odot }$$), and have a mean energy per unit mass of $$\\langle E/M\\rangle =0.85\\times {10}^{51}$$ erg/(10 $${M}_{\\odot }$$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ($${\\rm{\\Delta }}{m}_{15}$$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.« less

  6. Type II Supernova Energetics and Comparison of Light Curves to Shock-cooling Models

    NASA Astrophysics Data System (ADS)

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Woźniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y.-C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-01

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with \\gt 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) × 1051 erg/(10 {M}⊙ ), and have a mean energy per unit mass of < E/M> =0.85× {10}51 erg/(10 {M}⊙ ), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({{Δ }}{m}15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.

  7. Type II supernova energetics and comparison of light curves to shock-cooling models

    SciTech Connect

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Wozniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y. -C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-16

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with $\\gt 5$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 1051 erg/(10 ${M}_{\\odot }$), and have a mean energy per unit mass of $\\langle E/M\\rangle =0.85\\times {10}^{51}$ erg/(10 ${M}_{\\odot }$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (${\\rm{\\Delta }}{m}_{15}$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.

  8. Characterizing mid-ultraviolet to optical light curves of nearby type IIn supernovae

    DOE PAGES

    de la Rosa, Janie; Roming, Pete; Pritchard, Tyler; ...

    2016-03-21

    Here, we present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, wemore » introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.« less

  9. CHARACTERIZING MID-ULTRAVIOLET TO OPTICAL LIGHT CURVES OF NEARBY TYPE IIn SUPERNOVAE

    SciTech Connect

    De la Rosa, Janie; Roming, Pete; Pritchard, Tyler; Fryer, Chris

    2016-03-20

    We present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, we introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.

  10. Characterizing mid-ultraviolet to optical light curves of nearby type IIn supernovae

    SciTech Connect

    de la Rosa, Janie; Roming, Pete; Pritchard, Tyler; Fryer, Chris

    2016-03-21

    Here, we present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, we introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.

  11. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE

    SciTech Connect

    Pejcha, Ondřej; Prieto, Jose L.

    2015-02-01

    We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles result in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.

  12. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  13. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  14. Preliminary NIR Late Light Curve of the Type Ia Supernova SN2009nr

    NASA Astrophysics Data System (ADS)

    Heath, Jonathan; Bryngelson, G.

    2013-01-01

    Type Ia supernovae (SNe Ia) are important in determining the expansion of the universe based on the uniformity of their light curves. It is essential to understand the behavior of these supernovae in order to strengthen our confidence in their use as standard candles. A small, but increasing number of SNe Ia have been observed later than the 200 day epoch in the near-infrared (NIR). Most of these exhibit a flattening of the NIR power, even as the visible light declines at a steady rate. It is unclear as to exactly what causes this behavior, and how typical it is. In order to characterize the late behavior of SNe Ia, images of the supernova SN2009nr were analyzed using the Image Reduction and Analysis Facility (IRAF). These images were taken with the 4m Mayall Telescope at Kitt Peak National-Observatory using the FLAMINGOS IR Imaging Spectrometer. The supernova’s magnitude was normalized with respect to the magnitudes of known stars so that traits related to the supernova may be compared to others. We present preliminary NIR (J, H, K) light curves of the observed supernova and compare them to other SNe Ia observed at these epochs.

  15. RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE

    SciTech Connect

    Ganeshalingam, Mohan; Li Weidong; Filippenko, Alexei V.; Anderson, Carmen; Foster, Griffin; Griffith, Christopher V.; Joubert, Niels; Leja, Joel; Macomber, Brent; Pritchard, Tyler; Thrasher, Patrick; Winslow, Dustin; Gates, Elinor L.; Grigsby, Bryant J.; Lowe, Thomas B.

    2010-10-15

    We present BVRI light curves of 165 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search follow-up photometry program from 1998 through 2008. Our light curves are typically well sampled (cadence of 3-4 days) with an average of 21 photometry epochs. We describe our monitoring campaign and the photometry reduction pipeline that we have developed. Comparing our data set to that of Hicken et al., with which we have 69 overlapping supernovae (SNe), we find that as an ensemble the photometry is consistent, with only small overall systematic differences, although individual SNe may differ by as much as 0.1 mag, and occasionally even more. Such disagreement in specific cases can have significant implications for combining future large data sets. We present an analysis of our light curves which includes template fits of light-curve shape parameters useful for calibrating SNe Ia as distance indicators. Assuming the B - V color of SNe Ia at 35 days past maximum light can be presented as the convolution of an intrinsic Gaussian component and a decaying exponential attributed to host-galaxy reddening, we derive an intrinsic scatter of {sigma} = 0.076 {+-} 0.019 mag, consistent with the Lira-Phillips law. This is the first of two papers, the second of which will present a cosmological analysis of the data presented herein.

  16. The late-time light curve of the Type Ia supernova SN 2011fe

    NASA Astrophysics Data System (ADS)

    Dimitriadis, G.; Sullivan, M.; Kerzendorf, W.; Ruiter, A. J.; Seitenzahl, I. R.; Taubenberger, S.; Doran, G. B.; Gal-Yam, A.; Laher, R. R.; Maguire, K.; Nugent, P.; Ofek, E. O.; Surace, J.

    2017-07-01

    We present late-time optical R-band imaging data from the Palomar Transient Factory (PTF) for the nearby Type Ia supernova SN 2011fe. The stacked PTF light curve provides densely sampled coverage down to R ≃ 22 mag over 200-620 d past explosion. Combining with literature data, we estimate the pseudo-bolometric light curve for this event from 200 to 1600 d after explosion, and constrain the likely near-infrared (Near-IR) contribution. This light curve shows a smooth decline consistent with radioactive decay, except over ˜450 to ˜600 d where the light curve appears to decrease faster than expected based on the radioactive isotopes presumed to be present, before flattening at around 600 d. We model the 200-1600 d pseudo-bolometric light curve with the luminosity generated by the radioactive decay chains of 56Ni, 57Ni and 55Co, and find it is not consistent with models that have full positron trapping and no infrared catastrophe (IRC); some additional energy escape other than optical/near-IR photons is required. However, the light curve is consistent with models that allow for positron escape (reaching 75 per cent by day 500) and/or an IRC (with 85 per cent of the flux emerging in non-optical wavelengths by day 600). The presence of the 57Ni decay chain is robustly detected, but the 55Co decay chain is not formally required, with an upper mass limit estimated at 0.014 M⊙. The measurement of the 57Ni/56Ni mass ratio is subject to significant systematic uncertainties, but all of our fits require a high ratio >0.031 (>1.3 in solar abundances).

  17. Measuring Type Ia Supernova Distances and Redshifts From TheirMulti-band Light Curves

    SciTech Connect

    Kim, Alex G.; Miquel, Ramon

    2007-08-12

    The distance and redshift of a type Ia supernova can bedetermined simultaneously through its multi-band light curves. This factmay beused for imaging surveys that discover and obtain photometry forlarge numbers of supernovae; so many that it would be difficult to obtaina spectroscopic redshift for each. Using available supernova-analysistools we find that there are several conditions in which a viabledistance--redshift can be determined. Uncertainties in the effectivedistance at z~;0.3 are dominated by redshift uncertainties coupled withthe steepness of the Hubble law. By z~;0.5 the Hubble law flattens outand distance-modulus uncertainties dominate. Observations that giveS/N=50 at peak brightness and a four-day observer cadence in each ofgriz-bands are necessary to match the intrinsic supernova magnitudedispersion out to z=1.0. Lower S/N can be tolerated with the addition ofredshift priors (e.g., from a host-galaxy photometric redshift),observationsin an additional redder band, or by focusing on supernovaredshifts that have particular leverage for this measurement. Morestringent S/N requirements are anticipated as improved systematicscontrol over intrinsic color, metallicity, and dust is attempted to bedrawn from light curves.

  18. COMPARING THE LIGHT CURVES OF SIMULATED TYPE Ia SUPERNOVAE WITH OBSERVATIONS USING DATA-DRIVEN MODELS

    SciTech Connect

    Diemer, Benedikt; Kessler, Richard; Graziani, Carlo; Jordan, George C. IV; Lamb, Donald Q.; Long, Min; Van Rossum, Daniel R.

    2013-08-20

    We propose a robust, quantitative method to compare the synthetic light curves of a Type Ia supernova (SN Ia) explosion model with a large set of observed SNe Ia, and derive a figure of merit for the explosion model's agreement with observations. The synthetic light curves are fit with the data-driven model SALT2 which returns values for stretch, color, and magnitude at peak brightness, as well as a goodness-of-fit parameter. Each fit is performed multiple times with different choices of filter bands and epoch range in order to quantify the systematic uncertainty on the fitted parameters. We use a parametric population model for the distribution of observed SN Ia parameters from large surveys, and extend it to represent red, dim, and bright outliers found in a low-redshift SN Ia data set. We discuss the potential uncertainties of this population model and find it to be reliable given the current uncertainties on cosmological parameters. Using our population model, we assign each set of fitted parameters a likelihood of being observed in nature, and a figure of merit based on this likelihood. We define a second figure of merit based on the quality of the light curve fit, and combine the two measures into an overall figure of merit for each explosion model. We compute figures of merit for a variety of one-, two-, and three-dimensional explosion models and show that our evaluation method allows meaningful inferences across a wide range of light curve quality and fitted parameters.

  19. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Lyman, J. D.; Bersier, D.; James, P. A.; Mazzali, P. A.; Eldridge, J. J.; Fraser, M.; Pian, E.

    2016-03-01

    Literature data are collated for 38 stripped-envelope core-collapse supernovae (SE SNe; i.e. SNe IIb, Ib, Ic and Ic-BL) that have good light-curve coverage in more than one optical band. Using bolometric corrections derived in previous work, the bolometric light curve of each SN is recovered and template bolometric light curves provided. Peak light distributions and decay rates are investigated; SNe subtypes are not cleanly distinguished in this parameter space, although some grouping of types does occur and there is a suggestion of a Phillips-like relation for most SNe Ic-BL. The bolometric light curves are modelled with a simple analytical prescription and compared to results from more detailed modelling. Distributions of the explosion parameters show the extreme nature of SNe Ic-BL in terms of their 56Ni mass and the kinetic energy, however ejected masses are similar to other subtypes. SNe Ib and Ic have very similar distributions of explosion parameters, indicating a similarity in progenitors. SNe IIb are the most homogeneous subtype and have the lowest average values for 56Ni mass, ejected mass, and kinetic energy. Ejecta masses for each subtype and SE SNe as a whole are inconsistent with those expected from very massive stars. The majority of the ejecta mass distribution is well described by more moderately massive progenitors in binaries, indicating these are the dominant progenitor channel for SE SNe.

  20. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes

    SciTech Connect

    Nakar, Ehud; Piro, Anthony L.

    2014-06-20

    Early observations of supernova light curves are powerful tools for shedding light on the pre-explosion structures of their progenitors and their mass-loss histories just prior to explosion. Some core-collapse supernovae that are detected during the first days after the explosion prominently show two peaks in the optical bands, including the R and I bands, where the first peak appears to be powered by the cooling of shocked surface material and the second peak is clearly powered by radioactive decay. Such light curves have been explored in detail theoretically for SN 1993J and 2011dh, where it was found that they may be explained by progenitors with extended, low-mass envelopes. Here, we generalize these results. We first explore whether any double-peaked light curve of this type can be generated by a progenitor with a 'standard' density profile, such as a red supergiant or a Wolf-Rayet star. We show that a standard progenitor (1) cannot produce a double-peaked light curve in the R and I bands and (2) cannot exhibit a fast drop in the bolometric luminosity as is seen after the first peak. We then explore the signature of a progenitor with a compact core surrounded by extended, low-mass material. This may be a hydrostatic low-mass envelope or material ejected just prior to the explosion. We show that it naturally produces both of these features. We use this result to provide simple formulae to estimate (1) the mass of the extended material from the time of the first peak, (2) the extended material radius from the luminosity of the first peak, and (3) an upper limit on the core radius from the luminosity minimum between the two peaks.

  1. Supernovae with Two Peaks in the Optical Light Curve and the Signature of Progenitors with Low-mass Extended Envelopes

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Piro, Anthony L.

    2014-06-01

    Early observations of supernova light curves are powerful tools for shedding light on the pre-explosion structures of their progenitors and their mass-loss histories just prior to explosion. Some core-collapse supernovae that are detected during the first days after the explosion prominently show two peaks in the optical bands, including the R and I bands, where the first peak appears to be powered by the cooling of shocked surface material and the second peak is clearly powered by radioactive decay. Such light curves have been explored in detail theoretically for SN 1993J and 2011dh, where it was found that they may be explained by progenitors with extended, low-mass envelopes. Here, we generalize these results. We first explore whether any double-peaked light curve of this type can be generated by a progenitor with a "standard" density profile, such as a red supergiant or a Wolf-Rayet star. We show that a standard progenitor (1) cannot produce a double-peaked light curve in the R and I bands and (2) cannot exhibit a fast drop in the bolometric luminosity as is seen after the first peak. We then explore the signature of a progenitor with a compact core surrounded by extended, low-mass material. This may be a hydrostatic low-mass envelope or material ejected just prior to the explosion. We show that it naturally produces both of these features. We use this result to provide simple formulae to estimate (1) the mass of the extended material from the time of the first peak, (2) the extended material radius from the luminosity of the first peak, and (3) an upper limit on the core radius from the luminosity minimum between the two peaks.

  2. The Theoretical Light Curve and Spectral Evolution of Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Eastman, Ronald G.; Woosley, S. E.; Weaver, T. A.; Pinto, Philip A.

    1993-05-01

    The light curve of a Type II plateau (II-p) supernova, observationally the most common supernova event, has been qualitatively well understood for some time as a combination of a) shock break-out and a hard uv-transient; b) recombination of the hydrogen envelope; and c) depending on the mass of (56) Ni ejected, an enduring exponential tail powered by radioactivity However, all calculations thus far (excepting SN 1987A) have been based upon a very simple prescription for radiation transport that allows the computation to proceed in what nominally is a stellar evolution code. The matter and radiation are assumed to have a single temperature and the opacity is treated as purely absorptive even in the case of electron scattering. Here we report the results of a detailed radiation transport calculation for the explosion of a model 15 M\\sun \\ red supergiant, a typical Type II event which may also be of some relevance to the bright supernova 1993J now transpiring in M81. Two sets of calculations are presented: 1) A light curve (given in terms of photometry in various bandpasses) modelled assuming local thermodynamic equilibrium (LTE), but including the effect of 63 ions and over 100 thousand atomic lines and their Doppler shifts. The transport of radiation is followed in 500 frequency bins from 30 microns to 20 Angstroms and the transport of gamma-rays from radioactive decay is also handled in a way that accounts for non-local deposition. 2) Non-LTE calculations of the spectrum in the same energy band for a grid of times during the first year of the supernova. These calculations and those of other mass supernovae will be compared with observations of Type II supernovae, including as available and appropriate, data from SN 1993J.

  3. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Cho, Richard; Contreras, Maria; Jha, Saurabh; Matheson, Tom; Modjaz, Maryam; Rest, Armin; Michael Wood-Vasey, W.; Barton, Elizabeth J.; Bragg, Ann; Briceno, Cesar; Ciupik, Larry; Dendy, Kristi-Concannon E-mail: kirshner@cfa.harvard.edu

    2009-07-20

    We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously observed and reduced nearby SNe Ia (z {approx}< 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of {approx}<0.02 mag in BVRIr'i' and {approx}<0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

  4. VizieR Online Data Catalog: Light curves of 2 superluminous supernovae (Cooke+, 2012)

    NASA Astrophysics Data System (ADS)

    Cooke, J.; Sullivan, M.; Gal-Yam, A.; Barton, E. J.; Carlberg, R. G.; Ryan-Weber, E. V.; Horst, C.; Omori, Y.; Diaz, G.

    2012-11-01

    A rare class of 'superluminous' supernovae that are about ten or more times more luminous at their peaks than other types of luminous supernova has recently been found at low to intermediate redshifts. A small subset of these events have luminosities that evolve slowly and result in radiated energies of up to about 1051ergs. Therefore, they are probably examples of 'pair-instability' or 'pulsational pair-instability' supernovae with estimated progenitor masses of 100 to 250 times that of the Sun. These events are exceedingly rare at low redshift, but are expected to be more common at high redshift because the mass distribution of the earliest stars was probably skewed to high values. Here we report the detection of two superluminous supernovae, at redshifts of 2.05 and 3.90, that have slowly evolving light curves. We estimate the rate of events at redshifts of 2 and 4 to be approximately ten times higher than the rate at low redshift. The extreme luminosities of superluminous supernovae extend the redshift limit for supernova detection using present technology, previously 2.36, and provide a way of investigating the deaths of the first generation of stars to form after the Big Bang. (2 data files).

  5. Timescale stretch parameterization of Type Ia supernova B-band light curves

    SciTech Connect

    Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

    2001-04-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF {approx} 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects.

  6. THE MID-INFRARED LIGHT CURVE OF NEARBY CORE-COLLAPSE SUPERNOVA SN 2011dh (PTF 11eon)

    SciTech Connect

    Helou, George; Surace, Jason; Kasliwal, Mansi M.; Ofek, Eran O.; Arcavi, Iair; Gal-Yam, Avishay

    2013-11-20

    We present Spitzer observations at 3.6 and 4.5 μm of the supernova SN 2011dh (PTF 11eon) in M51 from 18 days to 625 days after explosion. The mid-infrared emission peaks at 24 days after explosion at a few ×10{sup 7} L {sub ☉}, and decays more slowly than the visible-light bolometric luminosity. The infrared color temperature cools for the first 90 days and then is constant. Simple numerical models of a thermal echo can qualitatively reproduce the early behavior. At late times, the mid-IR light curve cannot be explained by a simple thermal echo model, suggesting additional dust heating or line emission mechanisms. We also propose that thermal echoes can serve as effective probes to uncover supernovae in heavily obscured environments, and speculate that under the right conditions, integrating the early epoch of the mid-infrared light curve may constrain the total energy in the shock breakout flash.

  7. VizieR Online Data Catalog: UBVRIz light curves of 51 Type II supernovae (Galbany+, 2016)

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Maza, J.; de Jaeger, T.; Moraga, T.; Gonzalez-Gaitan, S.; Krisciunas, K.; Morrell, N. I.; Thomas-Osip, J.; Krzeminski, W.; Gonzalez, L.; Antezana, R.; Wishnjewski, M.; McCarthy, P.; Anderson, J. P.; Gutierrez, C. P.; Stritzinger, M.; Folatelli, G.; Anguita, C.; Galaz, G.; Green, E. M.; Impey, C.; Kim, Y.-C.; Kirhakos, S.; Malkan, M. A.; Mulchaey, J. S.; Phillips, A. C.; Pizzella, A.; Prosser, C. F.; Schmidt, B. P.; Schommer, R. A.; Sherry, W.; Strolger, L.-G.; Wells, L. A.; Williger, G. M.

    2016-08-01

    This paper presents a sample of multi-band, visual-wavelength light curves of 51 type II supernovae (SNe II) observed from 1986 to 2003 in the course of four different surveys: the Cerro Tololo Supernova Survey, the Calan Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernovae Survey (CATS). Near-infrared photometry and optical spectroscopy of this set of SNe II will be published in two companion papers. A list of the SNe II used in this study is presented in Table1. The first object in our list is SN 1986L and it is the only SN observed with photoelectric techniques (by M.M.P and S.K., using the Cerro Tololo Inter-American Observatory (CTIO) 0.9m equipped with a photometer and B and V filters). The remaining SNe were observed using a variety of telescopes equipped with CCD detectors and UBV(RI)KCz filters (see Table5). The magnitudes for the photometric sequences of the 51 SNe II are listed in Table4. In every case, these sequences were derived from observations of Landolt standards (see Appendix D in Hamuy et al. 2001ApJ...558..615H for the definition of the z band and Stritzinger et al. 2002AJ....124.2100S for the description of the z-band standards). Table5 lists the resulting UBVRIz magnitudes for the 51 SNe. (3 data files).

  8. Light Curves and Spectra from a Unimodal Core-collapse Supernova

    NASA Astrophysics Data System (ADS)

    Wollaeger, Ryan T.; Hungerford, Aimee L.; Fryer, Chris L.; Wollaber, Allan B.; van Rossum, Daniel R.; Even, Wesley

    2017-08-01

    To assess the effectiveness of optical emission as a probe of spatial asymmetry in core-collapse supernovae (CCSNe), we apply the radiative transfer software SuperNu to a unimodal CCSN model. The SNSPH radiation hydrodynamics software was used to simulate an asymmetric explosion of a 16 {M}⊙ zero-age main-sequence binary star. The ejecta has 3.36 {M}⊙ with 0.024 {M}⊙ of radioactive 56Ni, with unipolar asymmetry along the z-axis. For 96 discrete angular views, we find a ratio between maximum and minimum peak total luminosities of ˜1.36. The brightest light curves emerge from views orthogonal to the z-axis. Multigroup spectra from UV to IR are obtained. We find a shift in wavelength with viewing angle in a near-IR Ca ii emission feature, consistent with Ca being mostly in the unimode. We compare emission from the gray gamma-ray transfer in SuperNu and from the detailed gamma-ray transfer code Maverick. Relative to the optical light curves, the brightness of the gamma-ray emission is more monotonic with respect to viewing angle. UBVRI broadband light curves are also calculated. Parallel with the unimode, the U and B bands have excess luminosity at ≳ 10 days post-explosion, due to 56Ni on the unimode. We compare our CCSN model with SN 2002ap, which is thought to have a similar ejecta morphology.

  9. Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Maguire, K.

    2015-04-01

    Type Ia supernovae (SNe Ia) have been proposed to be much better distance indicators at near-infrared (NIR) compared to optical wavelengths - the effect of dust extinction is expected to be lower and it has been shown that SNe Ia behave more like `standard candles' at NIR wavelengths. To better understand the physical processes behind this increased uniformity, we have studied the Y, J and H-filter light curves of 91 SNe Ia from the literature. We show that the phases and luminosities of the first maximum in the NIR light curves are extremely uniform for our sample. The phase of the second maximum, the late-phase NIR luminosity and the optical light-curve shape are found to be strongly correlated, in particular more luminous SNe Ia reach the second maximum in the NIR filters at a later phase compared to fainter objects. We also find a strong correlation between the phase of the second maximum and the epoch at which the SN enters the Lira law phase in its optical colour curve (epochs ˜ 15 to 30 d after B-band maximum). The decline rate after the second maximum is very uniform in all NIR filters. We suggest that these observational parameters are linked to the nickel and iron mass in the explosion, providing evidence that the amount of nickel synthesized in the explosion is the dominating factor shaping the optical and NIR appearance of SNe Ia.

  10. The bolometric light curves and physical parameters of stripped-envelope supernovae

    DOE PAGES

    Prentice, S. J.; Mazzali, P. A.; Pian, E.; ...

    2016-02-08

    The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity Lp , enabling the construction of a luminosity function. Subsequently, the mass of 56 Ni synthesized in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL)more » and gamma-ray burst SNe are the most luminous subtypes with a combined median Lp , in erg s-1 , of log(Lp) = 43.00 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median MNi = 0.34, 0.16, 0.14, and 0.11 M ⊙ , respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from L p /2 to L p more quickly than SNe Ib/IIb; consequently, their light curves are not as broad.« less

  11. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken'ichi; Sorokina, Elena; Kozyreva, Alexandra; Blinnikov, Sergei

    2017-08-01

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  12. Constraining spacetime variations of nuclear decay rates from light curves of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Karpikov, Ivan; Piskunov, Maxim; Sokolov, Anton; Troitsky, Sergey

    2015-06-01

    The luminosity of fading type Ia supernovae is governed by radioactive decays of Ni 56 and Co 56 . The decay rates are proportional to the Fermi coupling constant GF and, therefore, are determined by the vacuum expectation value v of the Brout-Englert-Higgs field. We use publicly available sets of light curves of type Ia supernova at various redshifts to constrain possible spacetime variations of the Ni 56 decay rate. The resulting constraint is not very tight; however, it is the only direct bound on the variation of the decay rate for redshifts up to z ˜1 . We discuss potential applications of the result to searches for nonconstancy of GF and v .

  13. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  14. The Carnegie Supernova Project: Light-curve Fitting with SNooPy

    NASA Astrophysics Data System (ADS)

    Burns, Christopher R.; Stritzinger, Maximilian; Phillips, M. M.; Kattner, ShiAnne; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B.

    2011-01-01

    In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

  15. SNaX: A Database of Supernova X-Ray Light Curves

    NASA Astrophysics Data System (ADS)

    Ross, Mathias; Dwarkadas, Vikram V.

    2017-06-01

    We present the Supernova X-ray Database (SNaX), a compilation of the X-ray data from young supernovae (SNe). The database includes the X-ray fluxes and luminosities of young SNe, from days to years after outburst. The original goal and intent of this study was to present a database of Type IIn SNe (SNe IIn), which we have accomplished. Our ongoing goal is to expand the database to include all SNe for which published data are available. The database interface allows one to search for SNe using various criteria, plot all or selected data points, and download both the data and the plot. The plotting facility allows for significant customization. There is also a facility for the user to submit data that can be directly incorporated into the database. We include an option to fit the decay of any given SN light curve with a power-law. The database includes a conversion of most data points to a common 0.3-8 keV band so that SN light curves may be directly compared with each other. A mailing list has been set up to disseminate information about the database. We outline the structure and function of the database, describe its various features, and outline the plans for future expansion.

  16. Very Low-energy Supernovae: Light Curves and Spectra of Shock Breakout

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth; Woosley, S. E.; Zhang, Weiqun

    2017-08-01

    The brief transient emitted as a shock wave erupts through the surface of a pre-supernova star carrying information about the stellar radius and explosion energy. Here, the CASTRO code, which treats radiation transport using multigroup flux-limited diffusion, is used to simulate the light curves and spectra of shock breakout in very low-energy supernovae (VLE SNe), explosions in giant stars with final kinetic energy much less than 1051 erg. VLE SN light curves, computed here with the KEPLER code, are distinctively faint, red, and long-lived, making them challenging to find with transient surveys. The accompanying shock breakouts are brighter, though briefer, and potentially easier to detect. Previous analytic work provides general guidance, but numerical simulations are challenging, due to the range of conditions and lack of equilibration between color and effective temperatures. We consider previous analytic work and extend discussions of color temperature and opacity to the lower energy range explored by these events. Since this is the first application of the CASTRO code to shock breakout, test simulations of normal energy shock breakout of SN 1987A are carried out and compared with the literature. A set of breakout light curves and spectra are then calculated for VLE SNe with final kinetic energies in the range {10}47{--}{10}50 erg for red supergiants with main-sequence masses of 15 and 25 {M}⊙ . The importance of uncertainties in stellar atmosphere model, opacity, and ambient medium is discussed, as are observational prospects with current and forthcoming missions.

  17. Signatures of pulsars in the light curves of newly formed supernova remnants

    NASA Astrophysics Data System (ADS)

    Kotera, K.; Phinney, E. S.; Olinto, A. V.

    2013-07-01

    We explore the effect of pulsars, in particular those born with millisecond periods, on their surrounding supernova ejectas. While they spin down, fast-spinning pulsars release their tremendous rotational energy in the form of a relativistic magnetized wind that can affect the dynamics and luminosity of the supernova. We estimate the thermal and non-thermal radiations expected from these specific objects, concentrating at times a few years after the onset of the explosion. We find that the bolometric light curves present a high luminosity plateau (that can reach 1043-1044 erg s-1) over a few years. An equally bright TeV gamma-ray emission, and a milder X-ray peak (of the order of 1040-1042 erg s-1) could also appear a few months to a few years after the explosion, as the pulsar wind nebula emerges, depending on the injection parameters. The observations of these signatures by following the emission of a large number of supernovae could have important implications for the understanding of core-collapse supernovae and reveal the nature of the remnant compact object.

  18. Pair-instability Supernova Simulations: Progenitor Evolution, Explosion, and Light Curves

    NASA Astrophysics Data System (ADS)

    Gilmer, Matthew S.; Kozyreva, Alexandra; Hirschi, Raphael; Fröhlich, Carla; Yusof, Norhasliza

    2017-09-01

    In recent years, the viability of the pair-instability supernova (PISN) scenario for explaining superluminous supernovae has all but disappeared except for a few slowly-evolving examples. However, PISNe are not predicted to be superluminous throughout the bulk of their mass range. In fact, it is more likely that the first PISN we see (if we have not seen one already) will not be superluminous. Here, we present hydrodynamic simulations of PISNe for four stellar models with unique envelope properties spanning the PISN mass range. In addition, we compute synthetic light curves (LCs) for comparison with current and future observations. We also investigate, in the context of our most massive model, the prospect of mixing in the supernova ejecta, alleviating discrepancies between current PISN models and the remaining superluminous candidate events. To this end, we present the first published 3D hydrodynamic simulations of PISNe. After achieving convergence between 1D, 2D, and 3D simulations, we examine mixing in the supernova ejecta and its affect on the bolometric LC. We observe slight deviations from spherical symmetry, which increase with the number of dimensions. We find no significant effects on the bolometric LC; however, we conclude that mixing between the silicon and oxygen rich layers caused by the Rayleigh–Taylor instability may affect spectra.

  19. Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2

    SciTech Connect

    Jha, Saurabh; Riess, Adam G.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-01-05

    We present an updated version of the Multicolor Light Curve Shape method to measure distances to type Ia supernovae (SN Ia), incorporating new procedures for K-correction and extinction corrections. We also develop a simple model to disentangle intrinsic color variations and reddening by dust, and expand the method to incorporate U-band light curves and to more easily accommodate prior constraints on any of the model parameters. We apply this method to 133 nearby SN Ia, including 95 objects in the Hubble flow (cz {ge} 2500 km s{sup -1}), which give an intrinsic dispersion of less than 7% in distance. The Hubble flow sample, which is of critical importance to all cosmological uses of SN Ia, is the largest ever presented with homogeneous distances. We find the Hubble flow supernovae with H{sub 0}d{sub SN} {ge} 7400 km s{sup -1} yield an expansion rate that is 6.5 {+-} 1.8% lower than the rate determined from supernovae within that distance, and this can have a large effect on measurements of the dark energy equation of state with SN Ia. Peculiar velocities of SN Ia host galaxies in the rest frame of the Local Group are consistent with the dipole measured in the Cosmic Microwave Background. Direct fits of SN Ia that are significantly reddened by dust in their host galaxies suggest their mean extinction law may be described by R{sub V} {approx_equal} 2.7, but optical colors alone provide weak constraints on R{sub V}.

  20. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    SciTech Connect

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-04-20

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A{sub V} and the ratio of total-to-selective dust absorption R{sub V} . For SNe with low dust extinction, A{sub V} {approx}< 0.4, we find R{sub V} {approx} 2.5-2.9, while at high extinctions, A{sub V} {approx}> 1, low values of R{sub V} < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  1. The bolometric light curves and physical parameters of stripped-envelope supernovae

    SciTech Connect

    Prentice, S. J.; Mazzali, P. A.; Pian, E.; Gal-Yam, A.; Kulkarni, S. R.; Rubin, A.; Corsi, A.; Fremling, C.; Sollerman, J.; Yaron, O.; Arcavi, I.; Zheng, W.; Kasliwal, M. M.; Filippenko, A. V.; Cenko, S. B.; Cao, Y.; Nugent, P. E.

    2016-02-08

    The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity Lp , enabling the construction of a luminosity function. Subsequently, the mass of 56 Ni synthesized in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median Lp , in erg s-1 , of log(Lp) = 43.00 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median MNi = 0.34, 0.16, 0.14, and 0.11 M ⊙ , respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from L p /2 to L p more quickly than SNe Ib/IIb; consequently, their light curves are not as broad.

  2. Supernova 1987A: neutrino-driven explosions in three dimensions and light curves

    NASA Astrophysics Data System (ADS)

    Utrobin, V. P.; Wongwathanarat, A.; Janka, H.-Th.; Müller, E.

    2015-09-01

    Context. The well-observed and well-studied type IIP Supernova 1987A (SN 1987A), produced by the explosion of a blue supergiant in the Large Magellanic Cloud, is a touchstone for the evolution of massive stars, the simulation of neutrino-driven explosions, and the modeling of light curves and spectra. Aims: In the framework of the neutrino-driven explosion mechanism, we study the dependence of explosion properties on the structure of different blue supergiant progenitors and compare the corresponding light curves with observations of SN 1987A. Methods: Three-dimensional (3D) simulations of neutrino-driven explosions are performed with the explicit, finite-volume, Eulerian, multifluid hydrodynamics code Prometheus, using of four available presupernova models as initial data. At a stage of almost homologous expansion, the hydrodynamical and composition variables of the 3D models are mapped to a spherically symmetric configuration, and the simulations are continued with the implicit, Lagrangian radiation-hydrodynamics code Crab to follow the blast-wave evolution into the SN outburst. Results: All of our 3D neutrino-driven explosion models, with explosion energies compatible with SN 1987A, produce 56Ni in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail. Two of our models (based on the same progenitor) yield maximum velocities of around 3000 km s-1 for the bulk of ejected 56Ni, consistent with observational data. In all of our models inward mixing of hydrogen during the 3D evolution leads to minimum velocities of hydrogen-rich matter below 100 km s-1, which is in good agreement with spectral observations. However, the explosion of only one of the considered progenitors reproduces the shape of the broad light curve maximum of SN 1987A fairly well. Conclusions: The considered presupernova models, 3D explosion simulations, and light-curve calculations can explain the basic observational features of SN 1987A, except for those

  3. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    SciTech Connect

    Mosher, J.; Guy, J.; Kessler, R.; Astier, P.; Marriner, J.; Betoule, M.; Sako, M.; El-Hage, P.; Biswas, R.; Pain, R.; Kuhlmann, S.; Regnault, N.; Frieman, J. A.; Schneider, D. P.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  4. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} – w {sub recovered}) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  5. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin E-mail: kirshner@cfa.harvard.edu

    2009-08-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sup +0.066} {sub -0.068} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  6. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves

    SciTech Connect

    Hicken, Malcolm; Wood-Vasey, W.Michael; Blondin, Stephane; Challis, Peter; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-06

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sub -0.068}{sup +0.066} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {Delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  7. CfAIR2: Near-infrared Light Curves of 94 Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Wood-Vasey, W. M.; Marion, G. H.; Challis, Peter; Mandel, Kaisey S.; Bloom, Joshua S.; Modjaz, Maryam; Narayan, Gautham; Hicken, Malcolm; Foley, Ryan J.; Klein, Christopher R.; Starr, Dan L.; Morgan, Adam; Rest, Armin; Blake, Cullen H.; Miller, Adam A.; Falco, Emilio E.; Wyatt, William F.; Mink, Jessica; Skrutskie, Michael F.; Kirshner, Robert P.

    2015-09-01

    CfAIR2 is a large, homogeneously reduced set of near-infrared (NIR) light curves (LCs) for Type Ia supernovae (SNe Ia) obtained with the 1.3 m Peters Automated InfraRed Imaging TELescope. This data set includes 4637 measurements of 94 SNe Ia and 4 additional SNe Iax observed from 2005 to 2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes {{JHK}}s photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z ˜ 0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the LCs begin before the time of maximum, and the coverage typically contains ˜13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for SN cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the SN cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.

  8. Supernova Explosions of Super-asymptotic Giant Branch Stars: Multicolor Light Curves of Electron-capture Supernovae

    NASA Astrophysics Data System (ADS)

    Tominaga, Nozomu; Blinnikov, Sergei I.; Nomoto, Ken'ichi

    2013-07-01

    An electron-capture supernova (ECSN) is a core-collapse supernova (CCSN) explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M MS ~ 7-9.5 M ⊙. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curve of a CCSN. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 1050 erg and the small 56Ni mass of 2.5 × 10-3 M ⊙, we perform a multi-group radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope masses and hydrogen abundances. We demonstrate that a shock breakout has a peak luminosity of L ~ 2 × 1044 erg s-1 and can evaporate circumstellar dust up to R ~ 1017 cm for the case of carbon dust, that the plateau luminosity and plateau duration of ECSNe are L ~ 1042 erg s-1 and t ~ 60-100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ~4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by the spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires an ECSN model with a significantly low explosion energy of E ~ 1048 erg.

  9. The bumpy light curve of Type IIn supernova iPTF13z over 3 years

    NASA Astrophysics Data System (ADS)

    Nyholm, A.; Sollerman, J.; Taddia, F.; Fremling, C.; Moriya, T. J.; Ofek, E. O.; Gal-Yam, A.; De Cia, A.; Roy, R.; Kasliwal, M. M.; Cao, Y.; Nugent, P. E.; Masci, F. J.

    2017-08-01

    A core-collapse (CC) supernova (SN) of Type IIn is dominated by the interaction of SN ejecta with the circumstellar medium (CSM). Some SNe IIn (e.g. SN 2006jd) have episodes of re-brightening ("bumps") in their light curves. We present iPTF13z, a Type IIn SN discovered on 2013 February 1 by the intermediate Palomar Transient Factory (iPTF). This SN showed at least five bumps in its declining light curve between 130 and 750 days after discovery. We analyse this peculiar behaviour and try to infer the properties of the CSM, of the SN explosion, and the nature of the progenitor star. We obtained multi-band optical photometry for over 1000 days after discovery with the P48 and P60 telescopes at Palomar Observatory. We obtained low-resolution optical spectra during the same period. We did an archival search for progenitor outbursts. We analyse the photometry and the spectra, and compare iPTF13z to other SNe IIn. In particular we derive absolute magnitudes, colours, a pseudo-bolometric light curve, and the velocities of the different components of the spectral lines. A simple analytical model is used to estimate the properties of the CSM. iPTF13z had a light curve peaking at Mr ≲ - 18.3 mag. The five bumps during its decline phase had amplitudes ranging from 0.4 to 0.9 mag and durations between 20 and 120 days. The most prominent bumps appeared in all the different optical bands, when covered. The spectra of this SN showed typical SN IIn characteristics, with emission lines of Hα (with broad component FWHM 103 - 104 km s-1 and narrow component FWHM 102 km s-1) and He i, but also with Fe ii, Ca ii, Na i D and Hβ P Cygni profiles (with velocities of 103km s-1). A pre-explosion outburst was identified lasting ≳ 50 days, with Mr ≈ - 15 mag around 210 days before discovery. Large, variable progenitor mass-loss rates (≳0.01M⊙ yr-1) and CSM densities (≳10-16 g cm-3) are derived. The SN was hosted by a metal-poor dwarf galaxy at redshift z = 0.0328. We suggest that

  10. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S.; Groner, Ted; Hartman, Joel; Rest, Armin; Cramer, Claire E.; Wood-Vasey, W. Michael; Currie, Thayne; De Kleer, Kathy; Esquerdo, Gil; Everett, Mark; and others

    2012-06-01

    We present multi-band optical photometry of 94 spectroscopically confirmed Type Ia supernovae (SNe Ia) in the redshift range 0.0055-0.073, obtained between 2006 and 2011. There are a total of 5522 light-curve points. We show that our natural-system SN photometry has a precision of {approx}< 0.03 mag in BVr'i', {approx}< 0.06 mag in u', and {approx}< 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard-system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of {approx}0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al. This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SNe Ia is now sufficiently large to remove most of the statistical sampling error from the dark-energy error budget. But pursuing the dark-energy systematic errors by determining highly accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SNe Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.

  11. The Sloan Digital Sky Survey-II: Photometry and Supernova Ia Light Curves from the 2005 Data

    SciTech Connect

    Holtzman, Jon A.; Marriner, John; Kessler, Richard; Sako, Masao; Dilday, Ben; Frieman, Joshua A.; Schneider, Donald P.; Bassett, Bruce; Becker, Andrew; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Doi, Mamoru; Garnavich, Peter M.; Hogan, Craig J.; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Marshall, Jennifer L.; McGinnis, David; Miknaitis, Gajus; /KICP, Chicago /Portsmouth U., ICG /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Rochester Inst. Tech. /KIPAC, Menlo Park /Portsmouth U., ICG /Tokyo U., Inst. Astron. /South African Astron. Observ. /Cape Town U. /Tokyo U., ICRR /KIPAC, Menlo Park

    2010-08-26

    We present ugriz light curves for 146 spectroscopically confirmed or spectroscopically probable Type Ia supernovae from the 2005 season of the SDSS-II Supernova survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that supernova brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique that demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season.

  12. From magnitudes and redshifts of supernovae, their light-curves, and angular sizes of galaxies to a tenable cosmology

    NASA Astrophysics Data System (ADS)

    Traunmüller, Hartmut

    2014-04-01

    Early physical cosmologies were based on interpretations of the cosmic redshift for which there was insufficient evidence and on theories of gravitation that appear to be falsified by galactic dynamics. Eventually, the big bang paradigm came to be guarded against refutation by ad hoc hypotheses (dark matter, cosmic inflation, dark energy) and free parameters. Presently available data allow a more satisfactory phenomenological approach. Using data on magnitude and redshift from 892 type Ia supernovae, it is first shown that these suggest that the redshift factor (1+ z) is simply an exponential function of distance and that, for "standard candles", magnitude m=5log[(1+ z)ln(1+ z)]+const. While these functions are incompatible with a big bang, they characterize certain tired light models as well as exponential expansion models. However, the former are falsified by the stretched light curves of distant supernovae and the latter by the absence of a predicted 1+ z increase in the angular sizes of galaxies. Instead, the observations suggest that physical processes speed up and objects contract uniformly as an exponential function of time, standards of measurement not excluded, and only free waves being excepted. Distant events proceed, then, more slowly, while angular sizes remain unaffected, approximately as observed. Since all objects contract in proportion, the Universe retains a static appearance. A corresponding physical theory, which should also explain galactic dynamics, remains yet to be derived from first principles. A way to do this, satisfying also Mach's principle, is vaguely suggested.

  13. SUPER-CHANDRASEKHAR-MASS LIGHT CURVE MODELS FOR THE HIGHLY LUMINOUS TYPE Ia SUPERNOVA 2009dc

    SciTech Connect

    Kamiya, Yasuomi; Tanaka, Masaomi; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.; Suzuki, Tomoharu

    2012-09-10

    Several highly luminous Type Ia supernovae (SNe Ia) have been discovered. Their high luminosities are difficult to explain with the thermonuclear explosions of Chandrasekhar-mass white dwarfs (WDs). In the present study, we estimate the progenitor mass of SN 2009dc, one of the extremely luminous SNe Ia, using the hydrodynamical models as follows. Explosion models of super-Chandrasekhar-mass (super-Ch-mass) WDs are constructed, and multi-color light curves (LCs) are calculated. The comparison between our calculations and the observations of SN 2009dc suggests that the exploding WD has a super-Ch mass of 2.2-2.4 M{sub Sun }, producing 1.2-1.4 M{sub Sun} of {sup 56}Ni, if the extinction by its host galaxy is negligible. If the extinction is significant, the exploding WD is as massive as {approx}2.8 M{sub Sun }, and {approx}1.8 M{sub Sun} of {sup 56}Ni is necessary to account for the observations. Whether the host-galaxy extinction is significant or not, the progenitor WD must have a thick carbon-oxygen layer in the outermost zone (20%-30% of the WD mass), which explains the observed low expansion velocity of the ejecta and the presence of carbon. Our estimate of the mass of the progenitor WD, especially for the extinction-corrected case, is challenging to the current scenarios of SNe Ia. Implications for the progenitor scenarios are also discussed.

  14. SUPERNOVA EXPLOSIONS OF SUPER-ASYMPTOTIC GIANT BRANCH STARS: MULTICOLOR LIGHT CURVES OF ELECTRON-CAPTURE SUPERNOVAE

    SciTech Connect

    Tominaga, Nozomu; Blinnikov, Sergei I.; Nomoto, Ken'ichi E-mail: Sergei.Blinnikov@itep.ru

    2013-07-01

    An electron-capture supernova (ECSN) is a core-collapse supernova (CCSN) explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M{sub MS} {approx} 7-9.5 M{sub Sun }. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curve of a CCSN. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 Multiplication-Sign 10{sup 50} erg and the small {sup 56}Ni mass of 2.5 Multiplication-Sign 10{sup -3} M{sub Sun }, we perform a multi-group radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope masses and hydrogen abundances. We demonstrate that a shock breakout has a peak luminosity of L {approx} 2 Multiplication-Sign 10{sup 44} erg s{sup -1} and can evaporate circumstellar dust up to R {approx} 10{sup 17} cm for the case of carbon dust, that the plateau luminosity and plateau duration of ECSNe are L {approx} 10{sup 42} erg s{sup -1} and t {approx} 60-100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by {approx}4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by the spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires an ECSN model with a significantly low explosion energy of E {approx} 10{sup 48} erg.

  15. THE EFFECTS ON SUPERNOVA SHOCK BREAKOUT AND SWIFT LIGHT CURVES DUE TO THE MASS OF THE HYDROGEN-RICH ENVELOPE

    SciTech Connect

    Bayless, Amanda J.; Roming, Peter W. A.; Even, Wesley; Frey, Lucille H.; Fryer, Chris L.; Young, Patrick A.

    2015-06-01

    Mass loss remains one of the primary uncertainties in stellar evolution. In the most massive stars, mass loss dictates the circumstellar medium and can significantly alter the fate of the star. Mass loss is caused by a variety of wind mechanisms and also through binary interactions. Supernovae (SNe) are excellent probes of this mass loss, both the circumstellar material and the reduced mass of the hydrogen-rich envelope. In this paper, we focus on the effects of reducing the hydrogen-envelope mass on the SN light curve, studying both the shock breakout and peak light-curve emission for a wide variety of mass-loss scenarios. Even though the trends of this mass loss will be masked somewhat by variations caused by different progenitors, explosion energies, and circumstellar media, these trends have significant effects on the SN light curves that should be seen in SN surveys. We conclude with a comparison of our results to a few key observations.

  16. Against the Wind: Radio Light Curves of Type Ia Supernovae Interacting with Low-density Circumstellar Shells

    NASA Astrophysics Data System (ADS)

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N.

    2016-06-01

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.

  17. Against the Wind: Radio Light Curves of Type IA Supernovae Interacting with Low-Density Circumstellar Shells

    SciTech Connect

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N.

    2016-05-26

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.

  18. Against the Wind: Radio Light Curves of Type IA Supernovae Interacting with Low-Density Circumstellar Shells

    DOE PAGES

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N.

    2016-05-26

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we modelmore » the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.« less

  19. The late behavior of supernova 1987A. I - The light curve. II - Gamma-ray transparency of the ejecta

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Fu, Albert

    1989-01-01

    Observations of the late (t = 20-1500 days) bolometric light curve and the gamma-lines and X-rays from supernova 1987A are compared to theoretical models. It is found that 0.073 + or - 0.015 solar masses of freshly synthesized Ni-56 must be present to fit the bolometric light curve. The results place limits on the luminosity and presumed period of the newly formed pulsar/neutron star. In the second half of the paper, the problem of computing the luminosities in gamma-ray lines and in X-rays from supernova 1987A is addressed. High-energy observations suggest the development of large-scale clumping and bubbling of radioactive material in the ejecta. A model is proposed with a hydrogen envelope mass of about 7 solar masses, homologous scale expansion velocities of about 3000 km/s, and an approximately uniform mass distribution.

  20. The late behavior of supernova 1987A. I - The light curve. II - Gamma-ray transparency of the ejecta

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Fu, Albert

    1989-01-01

    Observations of the late (t = 20-1500 days) bolometric light curve and the gamma-lines and X-rays from supernova 1987A are compared to theoretical models. It is found that 0.073 + or - 0.015 solar masses of freshly synthesized Ni-56 must be present to fit the bolometric light curve. The results place limits on the luminosity and presumed period of the newly formed pulsar/neutron star. In the second half of the paper, the problem of computing the luminosities in gamma-ray lines and in X-rays from supernova 1987A is addressed. High-energy observations suggest the development of large-scale clumping and bubbling of radioactive material in the ejecta. A model is proposed with a hydrogen envelope mass of about 7 solar masses, homologous scale expansion velocities of about 3000 km/s, and an approximately uniform mass distribution.

  1. Toward Characterization of the Type IIP Supernova Progenitor Population: A Statistical Sample of Light Curves from Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Sanders, N. E.; Soderberg, A. M.; Gezari, S.; Betancourt, M.; Chornock, R.; Berger, E.; Foley, R. J.; Challis, P.; Drout, M.; Kirshner, R. P.; Lunnan, R.; Marion, G. H.; Margutti, R.; McKinnon, R.; Milisavljevic, D.; Narayan, G.; Rest, A.; Kankare, E.; Mattila, S.; Smartt, S. J.; Huber, M. E.; Burgett, W. S.; Draper, P. W.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2015-02-01

    In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of <~ 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches.

  2. iPTF13beo: the double-peaked light curve of a Type Ibn supernova discovered shortly after explosion

    NASA Astrophysics Data System (ADS)

    Gorbikov, Evgeny; Gal-Yam, Avishay; Ofek, Eran O.; Vreeswijk, Paul M.; Nugent, Peter E.; Chotard, Nicolas; Kulkarni, Shrinivas R.; Cao, Yi; De Cia, Annalisa; Yaron, Ofer; Tal, David; Arcavi, Iair; Kasliwal, Mansi M.; Cenko, S. Bradley; Sullivan, Mark; Chen, Juncheng

    2014-09-01

    We present optical photometric and spectroscopic observations of the Type Ibn (SN 2006jc-like) supernova (SN) iPTF13beo. Detected by the intermediate Palomar Transient Factory ˜3 h after the estimated first light, iPTF13beo is the youngest and the most distant (˜430 Mpc) Type Ibn event ever observed. The iPTF13beo light curve is consistent with light curves of other Type Ibn SNe and with light curves of fast Type Ic events, but with a slightly faster rise-time of two days. In addition, the iPTF13beo R-band light curve exhibits a double-peak structure separated by ˜9 d, not observed before in any Type Ibn SN. A low-resolution spectrum taken during the iPTF13beo rising stage is featureless, while a late-time spectrum obtained during the declining stage exhibits narrow and intermediate-width He I and Si II features with full width at half-maximum ≈2000-5000 km s-1 and is remarkably similar to the prototypical SN Ibn 2006jc spectrum. We suggest that our observations support a model of a massive star exploding in a dense He-rich circumstellar medium (CSM). A shock breakout in a CSM model requires an eruption releasing a total mass of ˜0.1 M⊙ over a time-scale of couple of weeks prior to the SN explosion.

  3. LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC)

    SciTech Connect

    Morozova, Viktoriya; Renzo, Mathieu; Ott, Christian D.; Clausen, Drew; Couch, Sean M.; Ellis, Justin; Roberts, Luke F.; Piro, Anthony L.

    2015-11-20

    We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming blackbody emission. As a first application of SNEC, we consider the explosions of a grid of 15 M{sub ⊙} (at zero-age main sequence, ZAMS) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ∼20–100 days if ≳1.5–2 M{sub ⊙} of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for SNe IIP in nature, it suggests that, at least for ZAMS masses ≲20 M{sub ⊙}, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for SNe IIL, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for SNe IIb, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ∼500 R{sub ⊙}.

  4. LSQ14bdq: A Type Ic Super-luminous Supernova with a Double-peaked Light Curve

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Sim, S. A.; Inserra, C.; Anderson, J. P.; Baltay, C.; Benetti, S.; Chambers, K.; Chen, T.-W.; Elias-Rosa, N.; Feindt, U.; Flewelling, H. A.; Fraser, M.; Gal-Yam, A.; Galbany, L.; Huber, M. E.; Kangas, T.; Kankare, E.; Kotak, R.; Krühler, T.; Maguire, K.; McKinnon, R.; Rabinowitz, D.; Rostami, S.; Schulze, S.; Smith, K. W.; Sullivan, M.; Tonry, J. L.; Valenti, S.; Young, D. R.

    2015-07-01

    We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ˜1 day after explosion show a bright and relatively fast initial peak, lasting for ˜15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal 56Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ˜ 2× {10}52 erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf-Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.

  5. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  6. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Filippenko, Alexei V.

    2017-03-01

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  7. TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM K-CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES

    SciTech Connect

    Saunders, C.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Kim, A. G.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2015-02-10

    We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a given supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.

  8. Early-Time Flux Measurements of SN 2014J Obtained with Small Robotic Telescopes: Extending the AAVSO Light Curve

    NASA Astrophysics Data System (ADS)

    Poppe, B.; Plaggenborg, T.; Zheng, W.; Shivvers, I.; Itagaki, K.; Filippenko, A. V.; Kunz, J.

    2015-06-01

    In this work, early-time photometry of supernova (SN) 2014J is presented, extending the AAVSO CCD database to prediscovery dates. The applicability of NASA's small robotic MicroObservatory Network telescopes for photometric measurements is evaluated. Prediscovery and postdiscovery photometry of SN 2014J is measured from images taken by two different telescopes of the network, and is compared to measurements from the Katzman Automatic Imaging Telescope and the Itagaki Observatory. In the early light-curve phase (which exhibits stable spectral behavior with constant color indices), these data agree with reasonably high accuracy (better than 0.05 mag around maximum brightness, and 0.15 mag at earlier times). Owing to the changing spectral energy distribution of the SN and the different spectral characteristics of the systems used, differences increase after maximum light. We augment light curves of SN 2014J downloaded from the American Association of Variable Star Observers (AAVSO) online database with these data, and consider the complete brightness evolution of this important Type Ia SN. Furthermore, the first detection presented here (Jan. 15.427, 2014) appears to be one of the earliest observations of SN 2014J yet published, taken less than a day after the SN exploded.

  9. Light-curve Analysis of Ordinary Type IIP Supernovae Based on Neutrino-driven Explosion Simulations in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Utrobin, V. P.; Wongwathanarat, A.; Janka, H.-Th.; Müller, E.

    2017-09-01

    Type II-plateau supernovae (SNe IIP) are the most numerous subclass of core-collapse SNe originating from massive stars. In the framework of the neutrino-driven explosion mechanism, we study the properties of the SN outburst for a red supergiant progenitor model and compare the corresponding light curves with observations of the ordinary Type IIP SN 1999em. Three-dimensional (3D) simulations of (parametrically triggered) neutrino-driven explosions are performed with the (explicit, finite-volume, Eulerian, multifluid hydrodynamics) code Prometheus, using a presupernova model of a 15 M ⊙ star as initial data. On approaching homologous expansion, the hydrodynamic and composition variables of the 3D models are mapped to a spherically symmetric configuration, and the simulations are continued with the (implicit, Lagrangian, radiation hydrodynamics) code Crab to follow the evolution of the blast wave during the SN outburst. Our 3D neutrino-driven explosion model with an explosion energy of about 0.5× {10}51 erg produces 56Ni in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail of SN 1999em. The considered presupernova model, 3D explosion simulations, and light-curve calculations can explain the basic observational features of SN 1999em, except for those connected to the presupernova structure of the outer stellar layers. Our 3D simulations show that the distribution of 56Ni-rich matter in velocity space is asymmetric with a strong dipole component that is consistent with the observations of SN 1999em. The monotonic decline in luminosity from the plateau to the radioactive tail in ordinary SNe IIP is a manifestation of the intense turbulent mixing at the He/H composition interface.

  10. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  11. Quark-novae Occurring in Massive Binaries : A Universal Energy Source in Superluminous Supernovae with Double-peaked Light Curves

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico

    2016-02-01

    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq (http://www.quarknova.ca/LCGallery.html). In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 1052 erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (i.e., second) CE and the previously ejected H-rich (i.e., first) CE.

  12. QUARK-NOVAE OCCURRING IN MASSIVE BINARIES: A UNIVERSAL ENERGY SOURCE IN SUPERLUMINOUS SUPERNOVAE WITH DOUBLE-PEAKED LIGHT CURVES

    SciTech Connect

    Ouyed, Rachid; Leahy, Denis; Koning, Nico

    2016-02-10

    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq (http://www.quarknova.ca/LCGallery.html). In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 10{sup 52} erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (i.e., second) CE and the previously ejected H-rich (i.e., first) CE.

  13. Light curves of 213 Type Ia supernovae from the Essence survey

    SciTech Connect

    Narayan, G.; Rest, A.; Tucker, B. E.; Foley, R. J.; Wood-Vasey, W. M.; Challis, P.; Stubbs, C.; Kirshner, R. P.; Aguilera, C.; Becker, A. C.; Blondin, S.; Clocchiatti, A.; Covarrubias, R.; Damke, G.; Davis, T. M.; Filippenko, A. V.; Ganeshalingam, M.; Garg, A.; Garnavich, P. M.; Hicken, M.; Jha, S. W.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Prieto, J. L.; Riess, A. G.; Schmidt, B. P.; Silverman, J. M.; Smith, R. C.; Sollerman, J.; Spyromilio, J.; Suntzeff, N. B.; Tonry, J. L.; Zenteno, A.

    2016-05-06

    The ESSENCE survey discovered 213 Type Ia supernovae at redshifts $0.1\\lt z\\lt 0.81$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.

  14. Light curves of 213 Type Ia supernovae from the Essence survey

    SciTech Connect

    Narayan, G.; Rest, A.; Tucker, B. E.; Foley, R. J.; Wood-Vasey, W. M.; Challis, P.; Stubbs, C.; Kirshner, R. P.; Aguilera, C.; Becker, A. C.; Blondin, S.; Clocchiatti, A.; Covarrubias, R.; Damke, G.; Davis, T. M.; Filippenko, A. V.; Ganeshalingam, M.; Garg, A.; Garnavich, P. M.; Hicken, M.; Jha, S. W.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Prieto, J. L.; Riess, A. G.; Schmidt, B. P.; Silverman, J. M.; Smith, R. C.; Sollerman, J.; Spyromilio, J.; Suntzeff, N. B.; Tonry, J. L.; Zenteno, A.

    2016-05-06

    The ESSENCE survey discovered 213 Type Ia supernovae at redshifts $0.1\\lt z\\lt 0.81$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.

  15. Light curves of 213 Type Ia supernovae from the Essence survey

    DOE PAGES

    Narayan, G.; Rest, A.; Tucker, B. E.; ...

    2016-05-06

    The ESSENCE survey discovered 213 Type Ia supernovae at redshiftsmore » $$0.1\\lt z\\lt 0.81$$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.« less

  16. RADIATION-HYDRODYNAMICAL MODELING OF CORE-COLLAPSE SUPERNOVAE: LIGHT CURVES AND THE EVOLUTION OF PHOTOSPHERIC VELOCITY AND TEMPERATURE

    SciTech Connect

    Pumo, M. L.; Zampieri, L.

    2011-11-01

    We have developed a relativistic, radiation-hydrodynamics Lagrangian code, specifically tailored to simulate the evolution of the main observables (light curve and the evolution of photospheric velocity and temperature) in core-collapse supernova (CC-SN) events. The distinctive features of the code are an accurate treatment of radiative transfer coupled to relativistic hydrodynamics, a self-consistent treatment of the evolution of the innermost ejecta taking into account the gravitational effects of the central compact remnant, and a fully implicit Lagrangian approach to the solution of the coupled nonlinear finite difference system of equations. Our aim is to use it as a numerical tool to perform calculations of a grid of models to be compared with observations of CC-SNe. In this paper, we present some testcase simulations and a comparison with observations of SN 1987A, as well as with the results obtained with other numerical codes. We also briefly discuss the influence of the main physical parameters (ejected mass, progenitor radius, explosion energy, amount of {sup 56}Ni) on the evolution of the ejecta, and the implications of our results in connection with the possibility to 'standardize' hydrogen-rich CC-SNe for using them as candles to measure cosmological distances.

  17. SN 2011ht: confirming a class of interacting supernovae with plateau light curves (Type IIn-P)

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Smith, Nathan; Silverman, Jeffrey M.; Filippenko, Alexei V.; Morgan, Adam N.; Cenko, S. Bradley; Ganeshalingam, Mohan; Clubb, Kelsey I.; Bloom, Joshua S.; Matheson, Thomas; Milne, Peter

    2013-05-01

    We present photometry and spectroscopy of the Type IIn supernova (SN) 2011ht, identified previously as a possible SN impostor. The light curve exhibits an abrupt transition from a well-defined ˜120 d plateau to a steep bolometric decline, plummeting 4-5 mag in the optical and 2-3 mag in the infrared in only ˜10 d. Leading up to peak brightness (MV = -17.4 mag), a hot emission-line spectrum exhibits strong signs of interaction with circumstellar material (CSM), in the form of relatively narrow P-Cygni features of H I and He I superimposed on broad Lorentzian wings. For the latter half of the plateau phase, the spectrum exhibits strengthening P-Cygni profiles of Fe II, Ca II and Hα. By day 147, after the plateau has ended, the SN entered the nebular phase, heralded by the appearance of forbidden transitions of [O I], [O II] and [Ca II] over a weak continuum. At this stage, the light curve exhibits a low optical luminosity that is comparable to that of the most subluminous Type II-P supernovae, and a relatively fast visual wavelength decline that appeared to be significantly steeper than the 56Co decay rate. However, the total pseudo-bolometric decline, including the infrared luminosity, is consistent with 56Co decay, and implies a low 56Ni mass in the range 0.006-0.01 M⊙, near the lower end of the range exhibited by SNe II-P. We therefore characterize SN 2011ht as a core-collapse SN very similar to the peculiar SNe IIn 1994W and 2009kn. These three SNe appear to define a subclass, which are Type IIn based on their spectrum, but that also exhibit well-defined plateaus and produce low 56Ni yields. We therefore suggest Type IIn-P as a name for this subclass. The absence of observational signatures of high-velocity material from SNe IIn-P could be the result of an opaque shell at the shocked SN-CSM interface, which remains optically thick longer than the time-scale for the inner ejecta to cool and become transparent. Possible progenitors of SNe IIn-P, consistent

  18. Multi-color Optical and Near-infrared Light Curves of 64 Stripped-envelope Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Bianco, F. B.; Modjaz, M.; Hicken, M.; Friedman, A.; Kirshner, R. P.; Bloom, J. S.; Challis, P.; Marion, G. H.; Wood-Vasey, W. M.; Rest, A.

    2014-08-01

    We present a densely sampled, homogeneous set of light curves of 64 low-redshift (z <~ 0.05) stripped-envelope supernovae (SNe of Type IIb, Ib, Ic, and Ic-BL). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in Arizona, with the optical FLWO 1.2 m and the near-infrared (NIR) Peters Automated Infrared 1.3 m telescopes. Our data set consists of 4543 optical photometric measurements on 61 SNe, including a combination of {U\\!BV\\!RI}, {U\\!BV\\!r^{\\prime }i^{\\prime }}, and {u^{\\prime }\\!BV\\!r^{\\prime }i^{\\prime }}, and 1919 JHKs NIR measurements on 25 SNe. This sample constitutes the most extensive multi-color data set of stripped-envelope SNe to date. Our photometry is based on template-subtracted images to eliminate any potential host-galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SNe were observed spectroscopically by the Harvard-Smithsonian Center for Astrophysics (CfA) SN group, and the spectra are presented in a companion paper. A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SNe will be presented in a follow-up paper.

  19. Inferring supernova IIb/Ib/Ic ejecta properties from light curves and spectra: correlations from radiative-transfer models

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Woosley, Stan; Livne, Eli; Waldman, Roni; Yoon, Sung-Chul; Langer, Norbert

    2016-05-01

    We present 1D non-local thermodynamic equilibrium time-dependent radiative-transfer simulations for a large grid of supernovae (SNe) IIb/Ib/Ic that result from the terminal explosion of the mass donor in a close-binary system. Our sample covers ejecta masses Me of 1.7-5.2 M⊙, kinetic energies Ekin of 0.6-5.0 × 1051 erg, and 56Ni masses of 0.05-0.30 M⊙. We find a strong correlation between the 56Ni mass and the photometric properties at maximum, and between the rise time to bolometric maximum and the post-maximum decline rate. We confirm the small scatter in (V - R) at 10 d past R-band maximum. The quantity V_m ≡ √{2E_kin/M_e} is comparable to the Doppler velocity measured from He I 5875 Å at maximum in SNe IIb/Ib, although some scatter arises from the uncertain level of chemical mixing. The O I 7772 Å line may be used for SNe Ic, but the correspondence deteriorates with higher ejecta mass/energy. We identify a temporal reversal of the Doppler velocity at maximum absorption in the ˜1.05 μm feature in all models. The reversal is due to He I alone and could serve as a test for the presence of helium in SNe Ic. Because of variations in composition and ionization, the ejecta opacity shows substantial variations with both velocity and time. This is in part the origin of the offset between our model light curves and the predictions from the Arnett model.

  20. MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Bianco, F. B.; Modjaz, M.; Hicken, M.; Friedman, A.; Kirshner, R. P.; Challis, P.; Marion, G. H.; Bloom, J. S.; Wood-Vasey, W. M.; Rest, A.

    2014-08-01

    We present a densely sampled, homogeneous set of light curves of 64 low-redshift (z ≲ 0.05) stripped-envelope supernovae (SNe of Type IIb, Ib, Ic, and Ic-BL). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in Arizona, with the optical FLWO 1.2 m and the near-infrared (NIR) Peters Automated Infrared 1.3 m telescopes. Our data set consists of 4543 optical photometric measurements on 61 SNe, including a combination of U BV RI, U BV r{sup ′}i{sup ′}, and u{sup ′} BV r{sup ′}i{sup ′}, and 1919 JHK{sub s} NIR measurements on 25 SNe. This sample constitutes the most extensive multi-color data set of stripped-envelope SNe to date. Our photometry is based on template-subtracted images to eliminate any potential host-galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SNe were observed spectroscopically by the Harvard-Smithsonian Center for Astrophysics (CfA) SN group, and the spectra are presented in a companion paper. A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SNe will be presented in a follow-up paper.

  1. TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1

    SciTech Connect

    Sanders, N. E.; Soderberg, A. M.; Chornock, R.; Berger, E.; Challis, P.; Drout, M.; Kirshner, R. P.; Lunnan, R.; Marion, G. H.; Margutti, R.; McKinnon, R.; Milisavljevic, D.; Gezari, S.; Betancourt, M.; Foley, R. J.; Narayan, G.; Rest, A.; Kankare, E.; Mattila, S.; Smartt, S. J.; and others

    2015-02-01

    In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as ''Type IIL'' SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of ≲ 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches.

  2. Implications of the Early X-Ray Afterglow Light Curves of Swift GRBs

    SciTech Connect

    Granot, Jonathan; Konigl, Arieh; Piran, Tsvi; /Hebrew U.

    2006-01-17

    According to current models, gamma-ray bursts (GRBs) are produced when the energy carried by a relativistic outflow is dissipated and converted into radiation. The efficiency of this process, {epsilon}{sub {gamma}}, is one of the critical factors in any GRB model. The X-ray afterglow light curves of Swift GRBs show an early stage of flattish decay. This has been interpreted as reflecting energy injection. When combined with previous estimates, which have concluded that the kinetic energy of the late ({approx}> 10 hr) afterglow is comparable to the energy emitted in {gamma}-rays, this interpretation implies very high values of {epsilon}{sub {gamma}}, corresponding to {approx}> 90% of the initial energy being converted into {gamma}-rays. Such a high efficiency is hard to reconcile with most models, including in particular the popular internal-shocks model. We re-analyze the derivation of the kinetic energy from the afterglow X-ray flux and re-examine the resulting estimates of the efficiency. We confirm that, if the flattish decay arises from energy injection and the pre-Swift broad-band estimates of the kinetic energy are correct, then {epsilon}{sub {gamma}} {approx}> 0.9. We discuss various issues related to this result, including an alternative interpretation of the light curve in terms of a two-component outflow model, which we apply to the X-ray observations of GRB 050315. We point out, however, that another interpretation of the flattish decay--a variable X-ray afterglow efficiency (e.g., due to a time dependence of afterglow shock microphysical parameters)--is possible. We also show that direct estimates of the kinetic energy from the late X-ray afterglow flux are sensitive to the assumed values of the shock microphysical parameters and suggest that broad-band afterglow fits might have underestimated the kinetic energy (e.g., by overestimating the fraction of electrons that are accelerated to relativistic energies). Either one of these possibilities implies a

  3. Rest-Frame R-band Light Curve of a z ~ 1.3 Supernova Obtained with Keck Laser Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Dawson, K. S.; Koo, D. C.; Max, C.; Larkin, J. E.; Wright, S. A.; Steinbring, E.; Barczys, M.; Aldering, G.; Barbary, K.; Doi, M.; Fadeyev, V.; Goldhaber, G.; Hattori, T.; Ihara, Y.; Kashikawa, N.; Konishi, K.; Kowalski, M.; Kuznetsova, N.; Lidman, C.; Morokuma, T.; Perlmutter, S.; Rubin, D.; Schlegel, D. J.; Spadafora, A. L.; Takanashi, N.; Yasuda, N.

    2007-06-01

    We present Keck diffraction-limited H-band photometry of a z~1.3 Type Ia supernova (SN) candidate, first identified in a Hubble Space Telescope search for SNe in massive high-redshift galaxy clusters. The adaptive optics (AO) data were obtained with the Laser Guide Star facility during four observing runs from 2005 September to November. In the analysis of data from the observing run nearest to maximum SN brightness, the SN was found to have a magnitude H=23.9+/-0.14 (Vega). We present the H-band (approximately rest-frame R) light curve and provide a detailed analysis of the AO photometric uncertainties. By constraining the aperture correction with a nearby (4'' separation) star we achieve 0.14 mag photometric precision, despite the spatially varying AO point-spread function.

  4. More evidence for the red-shift dependence of colour from the Joint Light-curve Analysis supernova sample using red-shift tomography

    NASA Astrophysics Data System (ADS)

    Li, Miao; Li, Nan; Wang, Shuang; Zhou, Lanjun

    2016-08-01

    In this work, by applying the red-shift tomography method to the Joint Light-curve Analysis (JLA) supernova sample, we explore the possible red-shift dependence of the stretch luminosity α and the colour luminosity β. The basic idea is to divide the JLA sample into different red-shift bins, assuming that α and β are piecewise constants. Then, by constraining the ΛCDM model, we check the consistency of the cosmology-fitting results given by the supernova sample of each red-shift bin. We also adopt the same technique to explore the possible evolution of β in various subsamples of JLA. Using the full JLA data, we find that α is always consistent with a constant value. In contrast, at high red shift, β has a significant trend of decreasing, at ˜3.5σ confidence level (CL). Moreover, we find that the low-z subsample favours a constant β; in contrast, the Sloan Digital Sky Survey and Supernova Legacy Survey subsamples favour a decreasing β at 2σ and 3.3σ CL, respectively. Besides, by using a binned parametrization of β, we study the impact of the evolution of β on parameter estimation. We find that compared with a constant β, a varying β yields a larger best-fitting value of fractional matter density Ωm0, which slightly deviates from the best-fitting result given by other cosmological observations. However, for both the varying β and the constant β cases, the 1σ regions of Ωm0 are still consistent with the result given by other observations.

  5. Early-time polarized optical light curve of GRB 131030A

    NASA Astrophysics Data System (ADS)

    King, O. G.; Blinov, D.; Giannios, D.; Papadakis, I.; Angelakis, E.; Baloković, M.; Fuhrmann, L.; Hovatta, T.; Khodade, P.; Kiehlmann, S.; Kylafis, N.; Kus, A.; Myserlis, I.; Modi, D.; Panopoulou, G.; Papamastorakis, I.; Pavlidou, V.; Pazderska, B.; Pazderski, E.; Pearson, T. J.; Rajarshi, C.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2014-11-01

    We report the polarized optical light curve of a gamma-ray burst afterglow obtained using the RoboPol instrument. Observations began 655 s after the initial burst of gamma-rays from GRB 131030A, and continued uninterrupted for 2 h. The afterglow displayed a low, constant fractional linear polarization of p = (2.1 ± 1.6) per cent throughout, which is similar to the interstellar polarization measured on nearby stars. The optical brightness decay is consistent with a forward-shock propagating in a medium of constant density, and the low polarization fraction indicates a disordered magnetic field in the shock front. This supports the idea that the magnetic field is amplified by plasma instabilities on the shock front. These plasma instabilities produce strong magnetic fields with random directions on scales much smaller than the total observable region of the shock, and the resulting randomly-oriented polarization vectors sum to produce a low net polarization over the total observable region of the shock.

  6. SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION

    SciTech Connect

    Amanullah, R.; Garavini, G.; Goobar, A.; Lidman, C.; Rubin, D.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K.; Goldhaber, G.; Astier, P.; Burns, M. S.; Conley, A.; Dawson, K. S.; Deustua, S. E.; Fruchter, A. S.; Doi, M.; Fabbro, S.; Folatelli, G.; Furusawa, H.

    2010-06-10

    We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise Hubble Space Telescope data, and spectra of six SNe Ia that were discovered during 2001, are presented. Additionally, for the two SNe with z > 1, we present ground-based J-band photometry from Gemini and the Very Large Telescope. These are among the most distant SNe Ia for which ground-based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation. We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 SNe, the Union2 compilation. The flat concordance {Lambda}CDM model remains an excellent fit to the Union2 data with the best-fit constant equation-of-state parameter w = -0.997{sup +0.050} {sub -0.054}(stat){sup +0.077} {sub -0.082}(stat + sys together) for a flat universe, or w = -1.038{sup +0.056} {sub -0.059}(stat){sup +0.093} {sub -0.097}(stat + sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depends strongly on redshift. In particular, at z {approx_gt} 1, the existence and nature of dark energy are only weakly constrained by the data.

  7. On the Early-Time Excess Emission in Hydrogen-Poor Superluminous Supernovae

    NASA Technical Reports Server (NTRS)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Perley, Daniel A.; Quimby, Robert M.; Waldman, Roni; Sullivan, Mark; Yan, Lin; Ofek, Eran O.; hide

    2017-01-01

    We present the light curves of the hydrogen-poor super-luminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (approximately 10 days) and brightness relative to the main peak (23 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (greater than 30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of 56Ni and 56Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

  8. On the Early-time Excess Emission in Hydrogen-poor Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Perley, Daniel A.; Quimby, Robert M.; Waldman, Roni; Sullivan, Mark; Yan, Lin; Ofek, Eran O.; Fremling, Christoffer; Taddia, Francesco; Sollerman, Jesper; Valenti, Stefano; Arcavi, Iair; Howell, D. Andrew; Filippenko, Alexei V.; Cenko, S. Bradley; Yaron, Ofer; Kasliwal, Mansi M.; Cao, Yi; Ben-Ami, Sagi; Horesh, Assaf; Rubin, Adam; Lunnan, Ragnhild; Nugent, Peter E.; Laher, Russ; Rebbapragada, Umaa D.; Woźniak, Przemysław; Kulkarni, Shrinivas R.

    2017-01-01

    We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (∼10 days) and brightness relative to the main peak (2–3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of 56Ni and 56Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

  9. On The Early-Time Excess Emission In Hydrogen-Poor Superluminous Supernovae

    DOE PAGES

    Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; ...

    2017-01-18

    Here, we present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (~10 days) and brightness relative to the main peak (2-3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration ( > 30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of amore » different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of 56Ni and 56Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.« less

  10. Type IIb SN 2011fu: spectral and light curve evolution

    NASA Astrophysics Data System (ADS)

    Morales-Garoffolo, A.; Elias-Rosa, N.; Isern, J.; NTT-TNG Large Programme

    2013-05-01

    Type IIb supernovae (SNe) are a subclass of core-collapse supernovae that appear to be a hybrid between SNe characterized by the presence of H in their spectra (Type II) and Type Ib/c SNe (those that do not exhibit H features in their spectra but possibly HeI). We present some preliminary results of the photometric and spectroscopic analysis of type IIb supernova 2011fu. In principle, the characteristics of SN 2001fu are pretty similar to those of canonical type IIb SNe, but its Bessel UBVRI and Sloan uriz light curves (LCs) present an early peak resembling the unique case of the well studied type IIb SN 1993J (Richmond et al. 1994, AJ, 107, 1022).

  11. THE VERY EARLY LIGHT CURVE OF SN 2015F IN NGC 2442: A POSSIBLE DETECTION OF SHOCK-HEATED COOLING EMISSION AND CONSTRAINTS ON SN Ia PROGENITOR SYSTEM

    SciTech Connect

    Im, Myungshin; Choi, Changsu; Kim, Jae-Woo; Yoon, Sung-Chul; Ehgamberdiev, Shuhrat A.; Monard, Libert A. G.; Sung, Hyun-Il E-mail: changsu@astro.snu.ac.kr

    2015-11-15

    The main progenitor candidates of Type Ia supernovae (SNe Ia) are white dwarfs in binary systems where the companion star is another white dwarf (double degenerate (DD) system) or a less-evolved, non-degenerate star with R{sub *} ≳ 0.1 R{sub ⊙} (single degenerate system). However, no direct observational evidence exists to tell us which progenitor system is more common. Recent studies suggest that the light curve of a supernova shortly after its explosion can be used to set a limit on the progenitor size, R{sub *}. Here, we report high-cadence monitoring observations of SN 2015F, a normal SN Ia in the galaxy NGC 2442, starting about 84 days before the first light time. Using our daily cadence data, we capture the emergence of the radioactively powered light curve; more importantly, with >97.4% confidence, we detect possible dim precursor emission that appears roughly 1.5 days before the rise of the radioactively powered emission. The signal is consistent with theoretical expectations for a progenitor system involving a companion star with R{sub *} ≃ 0.1–1 R{sub ⊙} or a prompt explosion of a DD system, but is inconsistent with the typically invoked size of a white dwarf progenitor of R{sub *} ∼ 0.01 R{sub ⊙}. Upper limits on the precursor emission also constrain the progenitor size to be R{sub *} ≲ 0.1 R{sub ⊙} with a companion star size of R{sub *} ≲ 1.0 R{sub ⊙}, excluding a very large companion star in the progenitor system. Additionally, we find that the distance to SN 2015F is 23.9 ± 0.4 Mpc.

  12. The Very Early Light Curve of SN 2015F in NGC 2442: A Possible Detection of Shock-heated Cooling Emission and Constraints on SN Ia Progenitor System

    NASA Astrophysics Data System (ADS)

    Im, Myungshin; Choi, Changsu; Yoon, Sung-Chul; Kim, Jae-Woo; Ehgamberdiev, Shuhrat A.; Monard, Libert A. G.; Sung, Hyun-Il

    2015-11-01

    The main progenitor candidates of Type Ia supernovae (SNe Ia) are white dwarfs in binary systems where the companion star is another white dwarf (double degenerate (DD) system) or a less-evolved, non-degenerate star with R* ≳ 0.1 R⊙ (single degenerate system). However, no direct observational evidence exists to tell us which progenitor system is more common. Recent studies suggest that the light curve of a supernova shortly after its explosion can be used to set a limit on the progenitor size, R*. Here, we report high-cadence monitoring observations of SN 2015F, a normal SN Ia in the galaxy NGC 2442, starting about 84 days before the first light time. Using our daily cadence data, we capture the emergence of the radioactively powered light curve; more importantly, with >97.4% confidence, we detect possible dim precursor emission that appears roughly 1.5 days before the rise of the radioactively powered emission. The signal is consistent with theoretical expectations for a progenitor system involving a companion star with R* ≃ 0.1-1 R⊙ or a prompt explosion of a DD system, but is inconsistent with the typically invoked size of a white dwarf progenitor of R* ˜ 0.01 R⊙. Upper limits on the precursor emission also constrain the progenitor size to be R* ≲ 0.1 R⊙ with a companion star size of R* ≲ 1.0 R⊙, excluding a very large companion star in the progenitor system. Additionally, we find that the distance to SN 2015F is 23.9 ± 0.4 Mpc.

  13. LCC: Light Curves Classifier

    NASA Astrophysics Data System (ADS)

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  14. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Sand, David J.; Valenti, Stefano; Brown, Peter; Howell, D. Andrew; McCully, Curtis; Kasen, Daniel; Arcavi, Iair; Azalee Bostroem, K.; Tartaglia, Leonardo; Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa; Stritzinger, Maximilian D.

    2017-08-01

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R ⊙ from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ6580) absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  15. Pre-nebular Light Curves of SNe I

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Fryer, Christopher; Matheson, Thomas

    2017-09-01

    We compare analytic predictions of supernova light curves with recent high-quality data from SN2011fe (Ia), KSN2011b (Ia), and the Palomar Transient Factory and the La Silla-QUEST variability survey (LSQ) (Ia). Because of the steady, fast cadence of observations, KSN2011b provides unique new information on SNe Ia: the smoothness of the light curve, which is consistent with significant large-scale mixing during the explosion, possibly due to 3D effects (e.g., Rayleigh–Taylor instabilities), and provides support for a slowly varying leakage (mean opacity). For a more complex light curve (SN2008D, SN Ib), we separate the luminosity due to multiple causes and indicate the possibility of a radioactive plume. The early rise in luminosity is shown to be affected by the opacity (leakage rate) for thermal and non-thermal radiation. A general derivation of Arnett’s rule again shows that it depends upon all processes heating the plasma, not just radioactive ones, so that SNe Ia will differ from SNe Ibc if the latter have multiple heating processes.

  16. Meteor light curves: the relevant parameters

    NASA Astrophysics Data System (ADS)

    Brosch, N.; Helled, Ravit; Polishook, D.; Almoznino, E.; David, N.

    2004-11-01

    We investigate a uniform sample of 113 light curves of meteors collected at the Wise Observatory in 2002 November during a campaign to observe the Leonid meteor shower. We use previously defined descriptors, such as the classical skewness parameter F and a recently defined pointedness variable P, along with a number of other measurable or derived quantities, in order to explore the parameter space in search of meaningful light curve descriptors. In comparison with previous publications, we make extensive use of statistical techniques to reveal links among the various parameters and to understand their relative importance. In particular, we show that meteors with long-duration trails rise slowly to their maximal brightness and also decay slowly from the peak, while showing milder flaring than other meteors. Early skewed meteors, with their peak brightness in the first half of the light curve, show a fast rise to the peak. We show that the duration of the luminous phase of the meteor is the most important variable differentiating among the 2002 meteor trails. The skewness parameter F, which is widely used in meteor light curve analyses, appears only as the second or third in order of importance in explaining the variance among the observed light curves, with the most important parameter being related to the duration of the meteor light-producing phase. We suggest that the pointedness parameter P could possibly be useful in describing differences among meteor showers, perhaps by being related to the different compositions of meteoroids, and also in comparing observations to model light curves. We compare the derived characteristics of the 2002 meteors with model predictions and conclude that more work is required to define a consistent set of measurable and derived light-curve parameters that would characterize the light production from meteors. We suggest that meteor observers should consider publishing more characterizing parameters from the light curves they

  17. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.

    PubMed

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-04

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  18. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken’Ichi; Yasuda, Naoki; Jha, Saurabh W.; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D.; Mazzali, Paolo A.; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J.; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-01

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion–ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models—the helium-ignition branch—does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  19. Light curves and spectra from a thermonuclear explosion of a white dwarf merger

    SciTech Connect

    van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert; Wollaeger, Ryan T.; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2016-08-15

    Double-degenerate (DD) mergers of carbon–oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). But, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. We utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1 ${M}_{\\odot }$ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. Finally, we discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.

  20. Light curves and spectra from a thermonuclear explosion of a white dwarf merger

    DOE PAGES

    van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert; ...

    2016-08-15

    Double-degenerate (DD) mergers of carbon–oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). But, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. We utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1more » $${M}_{\\odot }$$ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. Finally, we discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.« less

  1. Light curves and spectra from a thermonuclear explosion of a white dwarf merger

    SciTech Connect

    van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert; Wollaeger, Ryan T.; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2016-08-15

    Double-degenerate (DD) mergers of carbon–oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). But, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. We utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1 ${M}_{\\odot }$ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. Finally, we discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.

  2. Light Curves and Spectra from a Thermonuclear Explosion of a White Dwarf Merger

    NASA Astrophysics Data System (ADS)

    van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert; Wollaeger, Ryan T.; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2016-08-01

    Double-degenerate (DD) mergers of carbon-oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). However, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. Here, we utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1 {M}⊙ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. We discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.

  3. Analysis of Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.

    2015-07-01

    We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.

  4. K2 Mission Light Curves

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey C.; morris, robert; Bryson, Steve; Jenkins, Jon Michael; Caldwell, Douglas

    2015-08-01

    The K2 mission is now generating light curves for its ecliptic-field campaigns. Producing good photometry for K2 is more challenging than for Kepler’s prime mission because periodic thruster firings are used to compensate for the loss of two reaction wheels. These firings, referred to as "roll tweaks", result in spacecraft rotation along the barrel axis and high corresponding image motion. The resulting motion-dominated systematic errors are dramatically different than the focus-dominated systematic errors experienced during the prime mission. They also make it challenging to properly identify and remove flux from background objects present in the optimal apertures. We summarize these challenges and describe the resulting modifications to the Kepler pipeline for the processing of K2 data. The quality of the K2 mission light curves is characterized.

  5. K2 High-cadence Light Curves of Transients

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Garnavich, Peter M.; Tucker, Brad; Shaya, Edward J.; Olling, Robert; Kasen, Daniel; Zenteno, Alfredo; Margheim, Steven J.; Smith, Chris; James, David

    2017-01-01

    I will give an overview of the Kepler Extra-Galactic Survey (KEGS), a program using Kepler to search for supernovae, active galactic nuclei, and other transients in galaxies. To date we have found 22 supernova, and with 2 more years (through 2018) planned, including the forward-facing C16/C17, we hope to discover 20 - 30 more SN. The 30-minute cadence of Kepler has reveales subtle features in the light-curves of these supernova not detectable with any other survey, including, shock break-out in a large number of SN, improving our understanding of supernova progenitors. We can also search in nearby galaxies for very fast and faint transients, filling in a previously unaccessible parameter space.

  6. Two superluminous supernovae from the early universe discovered by the supernova legacy survey

    SciTech Connect

    Howell, D. A.; Kasen, D.; Lidman, C.; Sullivan, M.; Conley, A.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Carlberg, R. G.; Fouchez, D.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.

    2013-12-20

    We present spectra and light curves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae (SNe) discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at M{sub U} = –22.7 it is one of the most luminous SNe ever observed, and it gives a rare glimpse into the rest-frame ultraviolet where these SNe put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but on the basis of the SN spectrum, we estimate it to be at z ∼ 1.5. Both SNe have similar observer-frame griz light curves, which map to rest-frame light curves in the U band and UV, rising in ∼20 rest-frame days or longer and declining over a similar timescale. The light curves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra with theoretical models, and we identify lines of C II, C III, Fe III, and Mg II in the spectra of SNLS 06D4eu and SCP 06F6 and find that they are consistent with an expanding explosion of only a few solar masses of carbon, oxygen, and other trace metals. Thus, the progenitors appear to be related to those suspected for SNe Ic. A high kinetic energy, 10{sup 52} erg, is also favored. Normal mechanisms of powering core-collapse or thermonuclear SNe do not seem to work for these SNe. We consider models powered by {sup 56}Ni decay and interaction with circumstellar material, but we find that the creation and spin-down of a magnetar with a period of 2 ms, a magnetic field of 2 × 10{sup 14} G, and a 3 M {sub ☉} progenitor provides the best fit to the data.

  7. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    SciTech Connect

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M.

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  8. The Frequency of Supernovae in the Early Universe

    NASA Astrophysics Data System (ADS)

    Melinder, Jens

    Supernovae are cosmic explosions of cataclysmic proportion that signify the death of a star. While being interesting phenomena in their own right, their brightness also make them excellent probes of the early universe. Depending on the type of the progenitor star and the origin of the explosion different subjects can be investigated. In this dissertation the work I have done on the detection, characterisation and rate measurements of supernovae in the Stockholm VIMOS Supernova Search is presented. We have discovered 16 supernovae that exploded billions of years ago (or, equivalently, at high redshift, z). The observed brightness and colour evolution have been used to classify the supernovae into either thermonuclear (type Ia) or core collapse (type II) supernovae. The accuracy of the classification code is high, only about 5% of the supernovae are mistyped, similar to other codes of the same kind. By comparing the observed frequency of supernovae to simulations the underlying supernova rate at these high redshifts have been measured. The main result reported in this thesis is that the core collapse supernova rate at high redshift matches the rates estimated from looking at the star formation history of the universe, and agree well with previous studies. The rate of Ia supernovae at high redshift have been investigated by several projects, our results show a somewhat higher rate of Ia supernovae than expected. Proper estimates of the systematic errors of rate measurements are found to be very important. Furthermore, by using novel techniques for reducing and stacking images, we have obtained a galaxy sample containing approximately 50,000 galaxies. Photometric redshifts have been obtained for most of the galaxies, the resulting accuracy below z=1 is on the order of 10%. The galaxy sample has also been used to find high redshift sources, so called Lyman Break Galaxies, at z=3-5.

  9. Properties of SN Ia progenitors from light curves and spectra

    NASA Astrophysics Data System (ADS)

    Höflich, P.; Dragulin, P.; Mitchell, J.; Penney, B.; Sadler, B.; Diamond, T.; Gerardy, C.

    2013-04-01

    With recent advances in theory and observations, direct connections emerge between the progenitors of Type Ia Supernovae (SNe Ia) and the observed light curves and spectra. A direct link is important for our understanding of the supernovae physics, the diversity of SNe Ia and the use of SNe Ia for high-precision cosmology because the details of the explosion depends sensitively on the initial conditions and the explosion scenario(s) realized in nature. Do SNe Ia originate from SD- or DD systems, and do they lead to M Ch mass explosions or dynamical mergers? Does the statistical distribtion of SNe Ia depend on their environment which can be expected to change with redshift? In this contribution, we will exam from the theoretical point of view the tell-tails for this connection, their consistency with the observations, and future directions. In a first section, we present the physics of the explosion, light curves and spectral formation in a nutshell to help understanding the connection. For details of the progenitor evolution and explosion physics, we refer to reviews and the other contributions in this issue. Each of the topical sections starts with a brief general review followed by a more detailed discussion of specific results. Because the youth of the field, some bias is unavoidable towards results obtained within our collaborations (and FSU). The imprint of the metallicity, progenitor stars and properties such as the central density of the exploding WD are presented. IR spectroscopy, polarimetry and imaging of SNR remnants are discussed as a tool to test for the WD properties, magnetic fields and asymmetries. We discuss different classes of Type Ia supernovae, and their environment. Possible correlations between the spectroscopic and light curve properties of SN Ia are discussed. Finally, the overall emerging picture and future developments are discussed.

  10. Radiation Hydrodynamical Models for Type I Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Sorokina, Elena; Blinnikov, Sergei; Tolstov, Alexey; Bersten, Melina; Quimby, Robert

    The physical origin of Type I superluminous supernovae (SLSNe-I), whose luminosities are 10 to 100 times brighter than normal core-collapse supernovae, remains still unknown. Radioactive-decays, magnetars, and circumstellar interactions have been proposed for the power source the light curves, although no definitive conclusions have been reached yet. Since most of light curve studies have been based on simplified semi-analytic models, we have constructed detailed light curve models for various mass of stars including very massive ones and large amount of mass loss with radiation hydrodynamical calculations. Here we focus on the magnetar and circumstellar interaction models and compare their rising time, peak luminosity, width, decline rate of the light curves with observations which show quite a large diversities. We then discuss how to discriminate these models, relevant models parameters, their evolutionary origins, possible roles of chemical enrichment of the early universe, and implications for the identifications of first stars.

  11. Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Kasliwal, Mansi M.; Arcavi, Iair; Horesh, Assaf; Hancock, Paul; Valenti, Stefano; Cenko, S. Bradley; Kulkarni, S. R.; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Sand, David; Yaron, Ofer; Graham, Melissa; Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H.; Walker, Emma S.; Mazzali, Paolo; Howell, D. Andrew; Li, K. L.; Kong, A. K. H.; Bloom, Joshua S.; Nugent, Peter E.; Surace, Jason; Masci, Frank; Carpenter, John; Degenaar, Nathalie; Gelino, Christopher R.

    2013-09-01

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an MB luminosity of -5.52 ± 0.39 mag and a B - I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×1012 g cm-1. Assuming a wind velocity of 103 km s-1, we derive a progenitor mass-loss rate of 3 × 10-5 M ⊙ yr-1. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  12. EARLY EMISSION FROM TYPE Ia SUPERNOVAE

    SciTech Connect

    Rabinak, Itay; Waxman, Eli; Livne, Eli

    2012-09-20

    A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a {approx}10{sup 3} s long UV/optical flash with a luminosity of {approx}1 to {approx}3 Multiplication-Sign 10{sup 39} erg s{sup -1}. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t{sub drop} {approx} 1 hr due to the deviation from pure radiation domination.

  13. Generating artificial light curves: revisited and updated

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; McHardy, I. M.; Papadakis, I. E.

    2013-08-01

    The production of artificial light curves with known statistical and variability properties is of great importance in astrophysics. Consolidating the confidence levels during cross-correlation studies, understanding the artefacts induced by sampling irregularities, establishing detection limits for future observatories are just some of the applications of simulated data sets. Currently, the widely used methodology of amplitude and phase randomization is able to produce artificial light curves which have a given underlying power spectral density (PSD) but which are strictly Gaussian distributed. This restriction is a significant limitation, since the majority of the light curves, e.g. active galactic nuclei, X-ray binaries, gamma-ray bursts, show strong deviations from Gaussianity exhibiting `burst-like' events in their light curves yielding long-tailed probability density functions (PDFs). In this study, we propose a simple method which is able to precisely reproduce light curves which match both the PSD and the PDF of either an observed light curve or a theoretical model. The PDF can be representative of either the parent distribution or the actual distribution of the observed data, depending on the study to be conducted for a given source. The final artificial light curves contain all of the statistical and variability properties of the observed source or theoretical model, i.e. the same PDF and PSD, respectively. Within the framework of Reproducible Research, the code and the illustrative example used in this paper are both made publicly available in the form of an interactive MATHEMATICA notebook.

  14. Classification of ASKAP Vast Radio Light Curves

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  15. Classification of ASKAP Vast Radio Light Curves

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  16. On the Light Curves of AM CVn

    NASA Astrophysics Data System (ADS)

    Smak, J.

    2017-03-01

    Light curves of AM CVn are analyzed by decomposing them into their Fourier components. The amplitudes of the fundamental mode and overtones of the three components: the superhumps, the negative superhumps and the orbital variations, are found to be variable. This implies that variations in the shape of the observed light curve of AM CVn are not only due to the interference between those components, but also due to the intrinsic variability within these components.

  17. supernovae: Photometric classification of supernovae

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Moss, Adam

    2017-05-01

    Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

  18. The infrared light curve of Periodic Comet Halley 1986 III and its relationship to the visual light curve, C2, and water production rates

    NASA Technical Reports Server (NTRS)

    Morris, Charles S.; Hanner, Martha S.

    1993-01-01

    The near-IR light curve of Periodic Comet Halley 1986 III is analyzed and compared with C2 production, water production, and the visual light curve. This is the most complete IR light curve compiled to date for any comet. The scattering phase function at small sun-comet-earth angles is shown to affect the slope of near-IR light curve significantly. P/Halley's dust production, as inferred from the IR light curve showed an increased production rate near perihelion which appears to be correlated with the onset of significant jet activity. The near-IR light curve, visual light curve, C2, and water production rates displayed different heliocentric variations, suggesting that one parameter cannot be accurately estimated from another. This is particularly true of the early preperihelion visual light curve. A peak of 0.3-0.5 magnitude in the visual magnitude, representing the integrated brightness of the comet's visible coma, lagged the other parameters by about a day. The near-IR color, J-H, was less red during periods of strong dust activity.

  19. The infrared light curve of Periodic Comet Halley 1986 III and its relationship to the visual light curve, C2, and water production rates

    NASA Technical Reports Server (NTRS)

    Morris, Charles S.; Hanner, Martha S.

    1993-01-01

    The near-IR light curve of Periodic Comet Halley 1986 III is analyzed and compared with C2 production, water production, and the visual light curve. This is the most complete IR light curve compiled to date for any comet. The scattering phase function at small sun-comet-earth angles is shown to affect the slope of near-IR light curve significantly. P/Halley's dust production, as inferred from the IR light curve showed an increased production rate near perihelion which appears to be correlated with the onset of significant jet activity. The near-IR light curve, visual light curve, C2, and water production rates displayed different heliocentric variations, suggesting that one parameter cannot be accurately estimated from another. This is particularly true of the early preperihelion visual light curve. A peak of 0.3-0.5 magnitude in the visual magnitude, representing the integrated brightness of the comet's visible coma, lagged the other parameters by about a day. The near-IR color, J-H, was less red during periods of strong dust activity.

  20. Electron-capture supernovae exploding within their progenitor wind

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Tominaga, Nozomu; Langer, Norbert; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.

    2014-09-01

    The most massive stars on the asymptotic giant branch (AGB), or the so-called super-AGB stars, are thought to produce supernovae triggered by electron captures in their degenerate O+Ne+Mg cores. Super-AGB stars are expected to have slow winds with high mass-loss rates, so their circumstellar density is high. The explosions of super-AGB stars are therefore presumed to occur in this dense circumstellar environment. We provide the first synthetic light curves for such events by exploding realistic electron-capture supernova progenitors within their super-AGB winds. We find that the early light curve - that is, before the recombination wave reaches the bottom of the hydrogen-rich envelope of supernova ejecta (the plateau phase) - is not affected by the dense wind. However, after the luminosity drop following the plateau phase, the luminosity remains much higher when the super-AGB wind is taken into account. We compare our results to the historical light curve of SN 1054, the progenitor of the Crab Nebula, and show that the explosion of an electron-capture supernova within an ordinary super-AGB wind can explain the observed light curve features. We conclude that SN 1054 could have been a Type IIn supernova without any extra extreme mass loss, which was previously suggested to be necessary to account for its early high luminosity. We also show that our light curves match Type IIn supernovae with an early plateau phase or the so-called Type IIn-P supernovae, and suggest that they are electron-capture supernovae within super-AGB winds. Although some electron-capture supernovae can be bright in the optical spectral range due to the large progenitor radius, their X-ray luminosity from the interaction does not necessarily get as bright as other Type IIn supernovae whose optical luminosities are also powered by the interaction. Thus, we suggest that optically bright X-ray-faint Type IIn supernovae can emerge from electron-capture supernovae. Optically faint Type IIn supernovae

  1. Multiwavelength light curve parameters of Cepheid variables

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anupam; Kanbur, Shashi M.; Marconi, Marcella; Rejkuba, Marina; Singh, Harinder P.; Ngeow, Chow-Choong

    2017-09-01

    We present a comparative analysis of theoretical and observed light curves of Cepheid variables using Fourier decomposition. The theoretical light curves at multiple wavelengths are generated using stellar pulsation models for chemical compositions representative of Cepheids in the Galaxy and Magellanic Clouds. The observed light curves at optical (VI), near-infrared (JHKs) and mid-infrared (3.6 & 4.5-μm) bands are compiled from the literature. We discuss the variation of light curve parameters as a function of period, wavelength and metallicity. Theoretical and observed Fourier amplitude parameters decrease with increase in wavelength while the phase parameters increase with wavelength. We find that theoretical amplitude parameters obtained using canonical mass-luminosity levels exhibit a greater offset with respect to observations when compared to non-canonical relations. We also discuss the impact of variation in convective efficiency on the light curve structure of Cepheid variables. The increase in mixing length parameter results in a zero-point offset in bolometric mean magnitudes and reduces the systematic large difference in theoretical amplitudes with respect to observations.

  2. Low mass SN IA and the late light curve

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.; Fryer, C. L.; Hand, K. P.

    1995-01-01

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co56, whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co56 decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. The other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (1051 erg in kinetic energy) explosion must be small, Mejec = 0.4M(circle dot) with Mejec (proportional to) KE0.5. Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M(circle dot). This is very difficult to explain with the 'canonical' Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni56 production and hence result in type Ia supernovae with luminosities decreased down to (approximately) 50% that predicted by the 'standard' model.

  3. Cosmology from High Redshift Supernovae

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter

    The discovery of a correlation between the light curve shape and intrinsic b rightness has made Type Ia supernovae exceptionally accurate distance indicators out to cosmologically interesting redshifts. Ground-based searches and follow-up as well as Hubble S pace Telescope observations of Type Ia supernovae have produced a significant number of object s with redshifts between 0.3 and 1.0. The distant SNe, when combined with a local samp le analyzed in the same way, provide reliable constraints on the deceleration and age of th e Universe. Early this year, an analysis of a handful of Type Ia events indicated that the deceleration was too small for gravitating matter alone to make a flat Universe. A larger sa mple of supernovae gives the surprising result that the Universe is accelerating, implying the exi stence of a cosmological constant or some other exotic form of energy. The success of this research has depended on the development of algorithms and software to register, scale and subtract CCD images taken weeks apart and to search for var iable objects. A good fraction of the point-sources identified are asteroids, variable stars, or AGN, so spectra are needed to confirm the identification as a Type Ia supernova and obt ain a redshift. The best candidates are followed photometrically to construct light curves. The steps to transform the observed light curves into cosmologically interestin g results will also be described.

  4. The Supernova Early Warning System (SNEWS)

    NASA Astrophysics Data System (ADS)

    Habig, A.; SNEWS Collaboration

    2005-05-01

    SNEWS is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type-II Supernova. This project exploits the ˜hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert. SNEWS is currently operational and ready, and this poster presents the procedures in use. SNEWS work is supported by NSF collaborative grant #0302166.

  5. A PANOPLY OF CEPHEID LIGHT CURVE TEMPLATES

    SciTech Connect

    Yoachim, Peter; McCommas, Les P.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2009-06-15

    We have generated accurate V and I template light curves using a combination of Fourier decomposition and principal component analysis for a large sample of Cepheid light curves. Unlike previous studies, we include short-period Cepheids and stars pulsating in the first overtone mode in our analysis. Extensive Monte Carlo simulations show that our templates can be used to precisely measure Cepheid magnitudes and periods, even in cases where there are few observational epochs. These templates are ideal for characterizing serendipitously discovered Cepheids and can be used in conjunction with surveys such as Pan-Starrs and LSST where the observational sampling may not be optimized for Cepheids.

  6. Cellinoid shape model for multiple light curves

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Ping; Ip, Wing-Huen

    2015-04-01

    Extended from the ellipsoid shape, cellinoid shape model consists of eight octants from eight different ellipsoids with the constraint that the adjacent octants have the same semi-axes in common. With the asymmetric shape, cellinoid shape model could be adopted in simulating the irregular shapes of asteroids. In this article, we attempt to apply cellinoid shape model to multiple light curves observed in various geometries and present some techniques to make the whole inverse process more efficient. Finally numerical experiments confirm that cellinoid shape model could derive the physical parameters of asteroids from both of synthetic and real light curves.

  7. The wavelength dependence of Triton's light curve

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Veverka, J.; Helfenstein, P.; Mcewen, A.

    1991-01-01

    Using Voyager observations, it is demonstrated that Triton's orbital light curve is strongly wavelength-dependent, a characteristic which readily explains some of the apparent discrepancies among pre-Voyager telescopic measurements. Specifically, a light curve amplitude (peak to peak) is found that decreases systematically with increasing wavelength from about 0.08 magnitude (peak to peak) near 200 nm to less than 0.02 magnitude near 1000 nm. Peak brightness occurs near 90 deg orbital longitude (leading hemisphere). The brightness variation across this hemisphere is close to sinusoidal; the variation across the darker hemisphere is more complex. The decrease in light curve amplitude with increasing wavelength appears to be due to a decrease in contrast among surface markings, rather than to atmospheric obscuration. The model also explains the observed decrease in the amplitude of Triton's light curve at visible wavelengths over the past decade, a decrease related to the current migration of the subsolar latitude toward the south pole; it is predicted that this trend will continue into the 1990s.

  8. Modeling and Fitting Exoplanet Transit Light Curves

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Ruch, G. T.

    2013-01-01

    We present a numerical model along with an original fitting routine for the analysis of transiting extra-solar planet light curves. Our light curve model is unique in several ways from other available transit models, such as the analytic eclipse formulae of Mandel & Agol (2002) and Giménez (2006), the modified Eclipsing Binary Orbit Program (EBOP) model implemented in Southworth’s JKTEBOP code (Popper & Etzel 1981; Southworth et al. 2004), or the transit model developed as a part of the EXOFAST fitting suite (Eastman et al. in prep.). Our model employs Keplerian orbital dynamics about the system’s center of mass to properly account for stellar wobble and orbital eccentricity, uses a unique analytic solution derived from Kepler’s Second Law to calculate the projected distance between the centers of the star and planet, and calculates the effect of limb darkening using a simple technique that is different from the commonly used eclipse formulae. We have also devised a unique Monte Carlo style optimization routine for fitting the light curve model to observed transits. We demonstrate that, while the effect of stellar wobble on transit light curves is generally small, it becomes significant as the planet to stellar mass ratio increases and the semi-major axes of the orbits decrease. We also illustrate the appreciable effects of orbital ellipticity on the light curve and the necessity of accounting for its impacts for accurate modeling. We show that our simple limb darkening calculations are as accurate as the analytic equations of Mandel & Agol (2002). Although our Monte Carlo fitting algorithm is not as mathematically rigorous as the Markov Chain Monte Carlo based algorithms most often used to determine exoplanetary system parameters, we show that it is straightforward and returns reliable results. Finally, we show that analyses performed with our model and optimization routine compare favorably with exoplanet characterizations published by groups such as the

  9. More Unusual Light Curves from Kepler

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    Twenty-three new objects have been added to the growing collection of stars observed to have unusual dips in their light curves. A recent study examines these stars and the potential causes of their strange behavior.An Influx of DataThe primary Kepler mission provided light curves for over 100,000 stars, and its continuation K2 is observing another 20,000 stars every three months. As we enter an era where these enormous photometric data sets become commonplace Gaia will obtain photometry for millions of stars, and LSST billions its crucial that we understand the different categories of variability observed in these stars.The authors find three different types of light curves among their 23 unusual stars. Scallop-shell curves (top) show many undulations; persistent flux-dip class curves (middle) have discrete triangularly shaped flux dips; transient, narrow dip class curves (bottom) have only one dip that is variable in depth. The authors speculate a common cause for the scallop-shell and persistent flux-dip stars, and a different cause for the transient flux-dip stars. [Stauffer et al. 2017]After filtering out the stars with planets, those in binary systems, those with circumstellar disks, and those with starspots, a number of oddities remain: a menagerie of stars with periodic variability that cant be accounted for in these categories. Some of these stars are now famous (for instance, Boyajians star); some are lesser known. But by continuing to build up this sample of stars with unusual light curves, we have a better chance of understanding the sources of variability.Building the MenagerieTo this end, a team of scientists led by John Stauffer (Spitzer Science Center at Caltech) has recently hunted for more additions to this sample in the K2 data set. In particular, they searched through the light curves from stars in the Oph and Upper Scorpius star-forming region a data set that makes up the largest collection of high-quality light curves for low-mass, pre

  10. DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

    SciTech Connect

    Cao, Yi; Horesh, Assaf; Kulkarni, S. R.; Kasliwal, Mansi M.; Arcavi, Iair; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Yaron, Ofer; Hancock, Paul; Valenti, Stefano; Graham, Melissa; Howell, D. Andrew; Cenko, S. Bradley; Sand, David; Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H.; Walker, Emma S.; Mazzali, Paolo; and others

    2013-09-20

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M{sub B} luminosity of –5.52 ± 0.39 mag and a B – I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10{sup 12} g cm{sup –1}. Assuming a wind velocity of 10{sup 3} km s{sup –1}, we derive a progenitor mass-loss rate of 3 × 10{sup –5} M {sub ☉} yr{sup –1}. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  11. A synthetic light curve solution of the OAO-2 ultraviolet light curves of u Herculis

    NASA Technical Reports Server (NTRS)

    Eaton, J. A.

    1978-01-01

    OAO 2 ultraviolet photometry of the eclipsing binary u Her is reported and interpreted. The light curve of u Her is found to be intrinsically variable, the variable light curve is rectified, and the adjusted light and color curves are plotted. A simultaneous solution to three adjusted OAO 2 light curves (at respective wavelengths of 3320, 1910, and 1550 A) is obtained by using the Roche model. The results indicate that the system is semidetached if the gravity darkening of the secondary is not significantly larger than expected. It is suggested that the primary is responsible for the variable light curve, that the monochromatic albedo of the secondary is very low at short wavelengths, and that the depth of primary eclipse is strongly dependent on the primary's limb darkening.

  12. Radio light curves of V471 Tauri

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Caillault, Jean-Pierre; Skillman, David R.

    1993-01-01

    We have acquired light curves at a wavelength of 6 cm of the eclipsing binary V471 Tauri around the orbit, in order to determine the geometrical location of the radio emission in the binary. Each light curve shows a broad minimum near the time of optical eclipse, suggesting that the radio luminosity originates between the two stars. Other observations at X-ray, UV, and visual wavelengths are also supportive of the idea of a gas cloud more or less permanently located between the stars. This could be explained if the radio emission arises from the interaction of the magnetic fields of the secondary and the white dwarf near the line of centers.

  13. Modeling Light Curves for Improved Classification

    NASA Astrophysics Data System (ADS)

    Faraway, Julian; Mahabal, Ashish; Sun, Jiayang; Wang, Xiaofeng; Yi; Zhang, Lingsong

    2016-02-01

    Many synoptic surveys are observing large parts of the sky multiple times. The resulting lightcurves provide a wonderful window to the dynamic nature of the universe. However, there are many significant challenges in analyzing these light curves. These include heterogeneity of the data, irregularly sampled data, missing data, censored data, known but variable measurement errors, and most importantly, the need to classify in astronomical objects in real time using these imperfect light curves. We describe a modeling-based approach using Gaussian process regression for generating critical measures representing features for the classification of such lightcurves. We demonstrate that our approach performs better by comparing it with past methods. Finally, we provide future directions for use in sky-surveys that are getting even bigger by the day.

  14. Light curves of rotating, oscillating neutron stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, T. E.

    1992-01-01

    A technique has been developed for computing the light curve produced by a rotating, oscillating neutron star that emits radiation from circular polar cap regions, as are thought to exist in pulsars, X-ray binaries, and perhaps X-ray bursters. Several examples of light curves produced by single, low-order (l = 1, 2) oscillation modes are given. A Gaussian beaming function is used to simulate typical radio pulsar beam widths in order to investigate a neutron star oscillation model for subpulse drift in pulsars. X-ray bursts and X-ray pulsars have also been simulated to assess the possibility of detecting such oscillations in these sources with XTE and AXAF.

  15. Icarus: Stellar binary light curve synthesis tool

    NASA Astrophysics Data System (ADS)

    Breton, Rene

    2016-11-01

    Icarus is a stellar binary light curve synthesis tool that generates a star, given some basic binary parameters, by solving the gravitational potential equation, creating a discretized stellar grid, and populating the stellar grid with physical parameters, including temperature and surface gravity. Icarus also evaluates the outcoming flux from the star given an observer's point of view (i.e., orbital phase and orbital orientation).

  16. SS433 Trek 2: light curve analysis.

    NASA Astrophysics Data System (ADS)

    Fukue, J.; Obana, Y.; Okugami, M.

    The authors have calculated theoretical light curves of SS433 during eclipse and precession, using a model in which SS433 consists of a geometrically thick torus around a compact star and a companion star filling the Roche lobe. The favorite combination is that the mass ratio is about 2 (a compact star is a black hole) and the surface temperature of the companion is around 17000K.

  17. Analysis of light curve of LP Camelopardalis

    NASA Astrophysics Data System (ADS)

    Prudil, Z.; Skarka, M.; Zejda, M.

    2016-05-01

    We present photometric analysis of the RRab type pulsating star LP Cam. The star was observed at Brno Observatory and Planetarium during nine nights. Measurements were calibrated to the Johnson photometric system. Four captured and thirteen previously published maxima timings allowed us to refine the pulsation period and the zero epoch. The light curve was Fourier decomposed to estimate physical parameters using empirical relations. Our results suggest that LP Cam is a common RR Lyrae star with high, almost solar metallicity.

  18. Ultraviolet light curves of V535 Arae

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.

    1991-01-01

    The light curve of V535 Ara is determined from observations of this long-period W UMa binary in the UV, and its gravity darkening is estimated. The UV colors and spectral type correspond to (B - V)0 = 0.24, or A8V, and imply that the star should have very little residual convection in its envelope. It is concluded that the gravity darkening is large, as in a radiative star, unless it is modified by circulation in the common envelope, or unless all stars this warm are convective. Four solutions are obtained to a combination of optical and UV light curves, two for high radiative gravity darkening, and two for low convective gravity darkening. The light curves were fitted equally well in all four cases, while in all but the one with low-gravity darkening and a hot inner face there was a rather large global temperature difference between the two stars. It is suggested that the W UMa binaries are found only at spectral types later than about A8 because their outer envelopes must be convective to transfer luminosity.

  19. PSD analysis of optical QSO light curves

    NASA Astrophysics Data System (ADS)

    Simm, Torben; Salvato, M.; Saglia, R.; Ponti, G.; Lanzuisi, G.; Trakhtenbrot, B.; Nandra, K.; Bender, R.

    2016-08-01

    One of the elementary properties of quasar activity is continuous variability in the UV/optical bands. The power spectral density (PSD) potentially contains information about the underlying processes connected to variability. We applied a novel method based on continuous-time autoregressive moving average (CARMA) models (Kelly et al. 2014) to derive the PSD even for irregularly sampled light curves. Using a sample of ~100 X-ray selected non-local QSOs from the XMM-COSMOS catalog and optical light curves provided by the Pan-STARRS1 MDF survey we find that the PSD resembles a broken power-law with a high-frequency slope significantly steeper than observed in X-ray studies. The PSD normalization is observed to scale inversely with bolometric luminosity and Eddington ratio, whereas there is no correlation between the characteristic bend timescale and black hole mass. We find a weak tendency for QSOs with higher black hole mass to have steeper high-frequency PSD slopes. In an ongoing work we extend these studies employing a sample of ~700 variable broad-line QSOs with high-quality black hole mass estimates and well-sampled light curves from the SDSS-RM project.

  20. Low mass SN Ia and the late light curve

    SciTech Connect

    Colgate, S.A.; Fryer, C.L.; Hand, K.P.

    1995-12-31

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co{sup 56}, whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co{sup 56} decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. The other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese, 1980). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (10{sup 51} erg in kinetic energy) explosion must be small, M{sub ejec} = 0.4M{sub {circle_dot}} with M{sub ejec} {proportional_to} KE{sup 0.5}. Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M{sub {circle_dot}}. This is very difficult to explain with the ``canonical`` Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni{sup 56} production and hence result in type Ia supernovae with luminosities decreased down to {approximately} 50% that predicted by the ``standard`` model.

  1. Creating A Light Curve Using Gathered Data

    NASA Astrophysics Data System (ADS)

    Wiggs, Joseph; Stolarz, S. A.; DePorto, R. W.; Shake, W. J.; Piper, M.; Linder, T. R.; Holmes, R.; Conwell, J.

    2012-01-01

    Our group of students with the support of educators and astronomers carried out a program to do astrometric and photometric analysis on the asteroid 2000 SO1 with the objective of obtaining a more in depth analysis of this asteroid and publishing light curve data describing the period of the asteroid. We chose our target asteroid using the minor planet center database, choosing an object that would have an acceptable Right Ascension, Declination, magnitude, and air mass for the ARO (Astronomical Research Observatory)-30 inch telescope operated by the SKYNET program. Our journey began with using Astrometrica for the IASC/WISE Program to identify and find new asteroids in the sky and add data to the Minor Planet Center Database. We then used MPO (Minor Planet Observatory) Canopus to form a light curve and conduct a fourier analysis on an example asteroid to familiarize ourselves with the program and used the program again to conduct fourier analysis on asteroid 2000 SO1. The educational goal in mind was to (a) learn the process of collecting and analyzing data using Astrometrica, MPO Canopus, the Minor Planet Center, and SKYNET and (b) create a poster to display the steps used in the process of surveying taken images and the production of a light curve. We collected 300 images a night, while discarding all the corrupted images, until we had enough data to accurately represent the object.Our work was successful due to resources from; Eastern Illinois University's Physics Department, the Astronomical Research Observatory, the University of Chicago's Yerkes Observatory, the SKYNET network, NASA's IASC/WISE (International Astronomical Search Collaboration/ Wide-Field Infrared Survey Explorer), NITARP (NASA/IPAC Teacher Archive Research Program) and Lincoln-Way North High School.

  2. Template Reproduction of GRB Pulse Light Curves

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon E.; Preece, R. D.; Loredo, T. J.; Wolpert, R. L.; Broadbent, M. E.

    2014-01-01

    A study of well-isolated pulses in gamma ray burst light curves indicates that simple models having smooth and monotonic pulse rises and decays are inadequate. Departures from the Norris et al. (2005) pulse shape are in the form of a wave-like pre-peak residual that is mirrored and stretched following the peak. Pulse shape departures are present in GRB pulses of all durations, but placement of the departures relative to pulse peaks correlates with asymmetry. This establishes an additional link between temporal structure and spectral evolution, as pulse asymmetry is related to initial hardness while pulse duration indicates the rate of hard-to-soft pulse evolution.

  3. Walter Baade, Fritz Zwicky, and Rudolph Minkowski's Early Supernova Research, 1927 - 1973

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1999-12-01

    Long before he ``discovered" the two stellar populations, Walter Baade was a pioneer in research on supernovae and their remnants. In 1927, while still in Germany, Baade emphasized what he called ``Hauptnovae" (chief novae) as highly luminous, potential distance indicators. He joined the Mount Wilson staff in 1931, bringing the ``secret" of the Schmidt camera with him, and encouraged Fritz Zwicky to carry out a supernova search with one at Palomar. Baade and Zwicky used the term ``supernova" in their 1933 joint paper. Zwicky began a systematic search in 1936, and Baade followed up with the 100-in reflector to derive light curves. He confirmed that Tycho's ``nova" of 1572 and the Crab nebula had been supernovae in our Galaxy. Baade advised N. U. Mayall, at Lick, on his spectroscopic study of the Crab nebula. In 1933, after Hitler came to power, Rudolph Minkowski had to leave Germany. Baade managed to get him a Mount Wilson staff position. Minkowski then did the spectroscopic observations of supernovae, beginning in 1937. Within a few years he and Baade were able to distinguish type I and II supernovae. Baade's further work on supernovae included historical research in Latin, Italian, and German, as well as filter photography. He searched hard for a remnant of SN 1885 in M 31, but never succeeded in finding it. After World War II the Crab nebula was found to be a strong radio source, and Baade and Minkowski used the 200-in to identify other supernova remnants, beginning with Cas A. Baade collaborated closely with Jan Oort and his student, Lo Woltjer, in their studies of the Crab nebula. After Baade retired in 1958, Minkowski continued supernova research for more than a decade; one of his favorite objects was the expanding Cygnus Loop.

  4. The early phases of the Type Iax supernova SN 2011ay

    NASA Astrophysics Data System (ADS)

    Szalai, Tamás; Vinkó, József; Sárneczky, Krisztián; Takáts, Katalin; Benkő, József M.; Kelemen, János; Kuli, Zoltán; Silverman, Jeffrey M.; Marion, G. Howie; Wheeler, J. Craig

    2015-10-01

    We present a detailed study of the early phases of the peculiar supernova (SN) 2011ay based on BVRI photometry obtained at Konkoly Observatory, Hungary, and optical spectra taken with the Hobby-Eberly Telescope at McDonald Observatory, Texas. The spectral analysis carried out with SYN++ and SYNAPPS confirms that SN 2011ay belongs to the recently defined class of SNe Iax, which is also supported by the properties of its light and colour curves. The estimated photospheric temperature around maximum light, Tphot ˜ 8000 K, is lower than in most SNe Ia, which results in the appearance of strong Fe II features in the spectra of SN 2011ay, even during the early phases. We also show that strong blending with metal features (those of Ti II, Fe II, Co II) makes the direct analysis of the broad spectral features very difficult, and this may be true for all SNe Iax. We find two alternative spectrum models that both describe the observed spectra adequately, but their photospheric velocities differ by at least ˜3000 km s-1. The quasi-bolometric light curve of SN 2011ay has been assembled by integrating the ultraviolet-optical spectral energy distributions. Fitting a modified Arnett model to Lbol(t), the moment of explosion and other physical parameters, i.e. the rise time to maximum, the 56Ni mass and the total ejecta mass are estimated as trise ˜ 14 ± 1 d, MNi ˜ 0.22 ± 0.01 M⊙ and Mej ˜ 0.8 M⊙, respectively.

  5. Early observations of the nearby Type Ia supernova SN 2015F

    NASA Astrophysics Data System (ADS)

    Cartier, R.; Sullivan, M.; Firth, R. E.; Pignata, G.; Mazzali, P.; Maguire, K.; Childress, M. J.; Arcavi, I.; Ashall, C.; Bassett, B.; Crawford, S. M.; Frohmaier, C.; Galbany, L.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Johansson, J.; Kasai, E. K.; McCully, C.; Prajs, S.; Prentice, S.; Schulze, S.; Smartt, S. J.; Smith, K. W.; Smith, M.; Valenti, S.; Young, D. R.

    2017-02-01

    We present photometry and time series spectroscopy of the nearby Type Ia supernova (SN Ia) SN 2015F over -16 d to +80 d relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2015F is a slightly sub-luminous SN Ia with a decline rate of Δm15(B) = 1.35 ± 0.03 mag, placing it in the region between normal and SN 1991bg-like events. Our densely sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II λ6580 absorption until -4 days, and high-velocity Ca II is particularly strong at <-10 d at expansion velocities of ≃23 000 km s-1. At early times, our spectral modelling with SYN++ shows strong evidence for iron-peak elements (Fe II, Cr II, Ti II, and V II) expanding at velocities >14 000 km s-1, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at ˜6800 Å that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases, the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 Å feature is weakly present in other normal SN Ia events and common in the SN 1991bg-like sub-class.

  6. Optical Light Curve and Cooling Break of GRB 050502A

    NASA Astrophysics Data System (ADS)

    Yost, S. A.; Alatalo, K.; Rykoff, E. S.; Aharonian, F.; Akerlof, C. W.; Ashley, M. C. B.; Blake, C. H.; Bloom, J. S.; Boettcher, M.; Falco, E. E.; Göǧüş, E.; Güver, T.; Halpern, J. P.; Horns, D.; Joshi, M.; Kızıloǧlu, Ü.; McKay, T. A.; Mirabal, N.; Özel, M.; Phillips, A.; Quimby, R. M.; Rujopakarn, W.; Schaefer, B. E.; Shields, J. C.; Skrutskie, M.; Smith, D. A.; Starr, D. L.; Swan, H. F.; Szentgyorgyi, A.; Vestrand, W. T.; Wheeler, J. C.; Wren, J.

    2006-01-01

    We present light curves of the afterglow of GRB 050502A, including very early data at t-tGRB<60 s. The light curve is composed of unfiltered ROTSE-IIIb optical observations from 44 s to 6 hr postburst, R-band MDM observations from 1.6 to 8.4 hr postburst, and PAIRITEL JHKs observations from 0.6 to 2.6 hr postburst. The optical light curve is fit by a broken power law, where tα steepens from α=-1.13+/-0.02 to -1.44+/-0.02 at ~5700 s. This steepening is consistent with the evolution expected for the passage of the cooling frequency νc through the optical band. Even in our earliest observation at 44 s postburst, there is no evidence that the optical flux is brighter than a backward extrapolation of the later power law would suggest. The observed decay indices and spectral index are consistent with either an ISM or a wind fireball model, but slightly favor the ISM interpretation. The expected spectral index in the ISM interpretation is consistent within 1 σ with the observed spectral index β=-0.8+/-0.1 the wind interpretation would imply a spectral index slightly (~2 σ) shallower than observed. A small amount of dust extinction at the source redshift could steepen an intrinsic spectrum sufficiently to account for the observed value of β. In this picture, the early optical decay, with the peak at or below 4.7×1014 Hz at 44 s, requires very small electron and magnetic energy partitions from the fireball.

  7. Visible and Near-infrared Light Curves of SN 2009nr

    NASA Astrophysics Data System (ADS)

    Heath, Jonathan; Bryngelson, Ginger

    2014-03-01

    This study explores the behavior of SN 2009nr, an apparently normal type Ia supernova (SN Ia). A plot of this object's brightness over time is known as a light curve. Because of the uniformity of their light curves, SNe Ia are valuable markers for determining the expansion of the universe and other cosmological parameters. Understanding the properties of these supernovae is vital in order to build our confidence in their use as standard candles. A small, but increasing number of SN Ia late-time observations have been made in the near-infrared (NIR). Most exhibit a flattening of the NIR power even as the visible light declines at a steady rate. It is still unclear as to why they exhibit this behavior and how typical this is. In order to characterize the late behavior of SNe Ia, images of SN 2009nr were analyzed using the Image Reduction and Analysis Facility (IRAF). NIR (J, H, K) images were taken with the 4m Mayall Telescope at Kitt Peak National-Observatory using the FLAMINGOS IR Imaging Spectrometer while visible (B, V, R, I) images used the Mosaic 1 imager. The supernova's apparent magnitude for each night of observation (by filter) was found by using reference stars. We present preliminary light curves of SN 2009nr and a comparison to another SN observed at similar epochs.

  8. Early UV emission from disc-originated matter (DOM) in Type Ia supernovae in the double-degenerate scenario

    NASA Astrophysics Data System (ADS)

    Levanon, Naveh; Soker, Noam

    2017-09-01

    We show that the blue and UV excess emission in the first few days of some Type Ia supernovae (SNe Ia) can be accounted in the double-degenerate (DD) scenario by the collision of the SN ejecta with circumstellar matter that was blown by the accretion disc formed during the merger process of the two white dwarfs (WDs). We assume that in cases of excess early light, the disc blows the circumstellar matter, that we term disc-originated matter (DOM), hours to days before explosion. To perform our analysis, we first provide a model-based definition for early excess light, replacing the definition of excess light relative to a power-law fit to the rising luminosity. We then examine the light curves of the SNe Ia iPTF14atg and SN 2012cg, and find that the collision of the ejecta with a DOM in the frame of the DD scenario can account for their early excess emission. Thus, early excess light does not necessarily imply the presence of a stellar companion in the frame of the single-degenerate scenario. Our findings further increase the variety of phenomena that the DD scenario can account for, and emphasize the need to consider all different SN Ia scenarios when interpreting observations.

  9. Comparison of 1998 and 1999 Leonid Light Curve Morphology and Meteoroid Structure

    NASA Technical Reports Server (NTRS)

    Murray, Ian S.; Beech, Martin; Taylor, Michael J.; Jenniskens, Peter; Hawkes, Robert L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Photometric low-light level video observations of 1999 Leonid storm meteors have been obtained from airborne platforms during the Leonid multi-instrument aircraft campaign (Leonid MAC). The 1999 Leonid light curves tend to be skewed towards the end point of the trajectory, while the 1998 Leonid light curves were not. The variation in the light curves from 1998 and 1999 can be explained as an overall reduction in the mass distribution index, alpha from approximately 1.95 in 1998 to approximately 1.75 in 1999. We have interpreted this behavior as being either indicative of a gradual loss of the "glue" that keeps the grains together, or the fact that the meteoroids sampled in 1998 had a different morphological structure to those sampled in 1999. The early fragmentation of a dustball meteoroid results in a light curve that peaks sooner than that predicted by classical single body ablation theory.

  10. ENERGY SOURCES AND LIGHT CURVES OF MACRONOVAE

    SciTech Connect

    Kisaka, Shota; Ioka, Kunihito; Takami, Hajime E-mail: takami@post.kek.jp

    2015-04-01

    A macronova (kilonova) was discovered with a short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of r-process elements synthesized in the ejecta of a neutron star (NS)–binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or NS, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we develop analytical formulae for the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and a better fit to observations than the r-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of the central engine and the r-process nucleosynthesis.

  11. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua Evan

    Type Ia supernovae (SNe Ia) are the current standard-bearers for dark energy but face several hurdles for their continued success in future large surveys. For example, spectroscopic classification of the myriad SNe soon to be discovered will not be possible, and systematics from uncertainties in dust corrections and the evolution of SN demographics and/or empirical calibrations used to standardize SNe Ia must be studied. Through the identification of low-dust host galaxies and through increased understanding of both the SN - progenitor connections and empirical calibrations, host galaxy information may offer opportunities to improve the cosmological utility of SNe Ia. The first half of this thesis analyzes the sample of SNe Ia discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields. Correlations between properties of SNe and their host galaxies are examined at high redshift. Using galaxy color and quantitative morphology to determine the red sequence in 25 clusters, a model is developed to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, 6 early-type cluster member hosts and 11 SN Ia early-type field hosts are identified. For the first time at z > 0.9, the correlation between host galaxy type and the rise and fall time of SN Ia light curves is confirmed. The relatively simple spectral energy distributions of early-type galaxies also enables stellar mass measurements for these hosts. In combination with literature host mass measurements, these measurements are used to show, at z > 0.9, a hint of the correlation between host mass and Hubble residuals reported at lower redshift. By simultaneously fitting cluster galaxy formation histories and dust content to the scatter of the cluster red sequences, it is shown that dust reddening of early-type cluster SN hosts is likely less

  12. The Transit Light Curve (TLC) Project

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Winn, J. N.

    2006-09-01

    We present results from our recently initiated Transit Light Curve (TLC) Project, a program of long-term monitoring of transiting extrasolar planets. The principal scientific goals of this project are: (1) to refine the estimates of the physical and orbital properties of these planets, and (2) to search for variations in the transit times (Holman and Murray 2005, Agol et al. 2005) and light curve shapes that indicate the presence of additional, perturbing planets (Miralda-Escude 2002). To date, we have observed transits of nine of the ten known transiting planets. To observe the bright northern hemisphere targets, we are using the KeplerCam on the 1.2-m telescope at the F.L. Whipple Observatory on Mt. Hopkins, AZ. For the fainter and southern hemisphere OGLE planets, we are using the Inamori Magellan Areal Camera and Spectrograph (IMACS) on the 6.5-m Magellan Baade telescope, and the Raymond and Beverly Sackler Magellan Instant Camera (MagIC) on the 6.5-m Magellan Clay telescope. In most cases, our photometry is accurate enough ( 1 mmag per minute of integration) that the resulting uncertainties in the planetary and stellar radii are dominated by the uncertainty in the assumed stellar mass, rather than by the statistical error. The noise in our KeplerCam photometry of XO-1b and TrES-1, in particular, is nearly Gaussian and time-averages down with the expected 1/sqrt(t) dependence all the way up to 30 minute time bins. This opens the possibility of detecting signals at the 0.1 mmag or even 0.01 mmag level, such as that produced by reflected light, by combining the results of many observations with small ground-based telescopes. Our transit timings for these systems are accurate to within 15 seconds.

  13. THE WISE LIGHT CURVES OF POLARS

    SciTech Connect

    Harrison, Thomas E.; Campbell, Ryan K. E-mail: Ryan.Campbell@humboldt.edu

    2015-08-15

    We have extracted the WISE (Wide-field Infrared Survey Explorer) single-exposure data for a sample of 72 polars, which are highly magnetic cataclysmic variables (CVs). We combine these data with both published and unpublished optical and infrared data to explore the origins of the large amplitude variations seen in these systems. In nearly every case, we find evidence for cyclotron emission in the WISE bandpasses. We find that the derived magnetic field strengths for some polars are either too high, or cyclotron emission from lower field components, located spatially coincident to the main accreting poles, must be occurring. We have also estimated field strengths for a number of polars where no such values exist. In addition, contrary to expectations, we find that emission from the fundamental cyclotron harmonic (n = 1) appears to be nearly always present when the magnetic field is of the appropriate strength that it falls within a WISE bandpass. We find that the light curves for RBS 490, an ultrashort-period (46 minutes) CV, suggest that it is a polar. Modeling its spectrum indicates that its donor star is much hotter than expected. Nearly all of the detected polars show 11.5 μm (“W3 band”) excesses. The general lack of variability seen in the W3 bandpass light curves for higher-field polars demonstrates that these excesses are probably not due to cyclotron emission. There is circumstantial evidence that these excesses can be attributed to bremsstrahlung emission from their accretion streams. Reduction of the Spitzer 24 μm image of V1500 Cyg shows that it appears to be located at the center of a small nebula.

  14. SPOTTED STAR LIGHT CURVES WITH ENHANCED PRECISION

    SciTech Connect

    Wilson, R. E.

    2012-09-15

    The nearly continuous timewise coverage of recent photometric surveys is free of the large gaps that compromise attempts to follow starspot growth and decay as well as motions, thereby giving incentive to improve computational precision for modeled spots. Due to the wide variety of star systems in the surveys, such improvement should apply to light/velocity curve models that accurately include all the main phenomena of close binaries and rotating single stars. The vector fractional area (VFA) algorithm that is introduced here represents surface elements by small sets of position vectors so as to allow accurate computation of circle-triangle overlap by spherical geometry. When computed by VFA, spots introduce essentially no noticeable scatter in light curves at the level of one part in 10,000. VFA has been put into the Wilson-Devinney light/velocity curve program and all logic and mathematics are given so as to facilitate entry into other such programs. Advantages of precise spot computation include improved statistics of spot motions and aging, reduced computation time (intrinsic precision relaxes needs for grid fineness), noise-free illustration of spot effects in figures, and help in guarding against false positives in exoplanet searches, where spots could approximately mimic transiting planets in unusual circumstances. A simple spot growth and decay template quantifies time profiles, and specifics of its utilization in differential corrections solutions are given. Computational strategies are discussed, the overall process is tested in simulations via solutions of synthetic light curve data, and essential simulation results are described. An efficient time smearing facility by Gaussian quadrature can deal with Kepler mission data that are in 30 minute time bins.

  15. Pluto's light curve in 1933 1934

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Buie, Marc W.; Smith, Luke Timothy

    2008-10-01

    The Pluto-Charon system has complex photometric variations on all time scales; due to rotational modulations of dark markings across the surface, the changing orientation of the system as viewed from Earth, occultations and eclipses between Pluto and Charon, as well as the sublimation and condensation of frosts on the surface. The earliest useable light curve for Pluto is from 1953 to 1955 when Pluto was 35 AU from the Sun. Earlier data on Pluto has the potential to reveal properties of the surface at a greater heliocentric distance with nearly identical illumination and viewing geometry. We are reporting on a new accurate photographic light curve of Pluto for 1933-1934 when the heliocentric distance was 40 AU. We used 43 B-band and V-band images of Pluto on 32 plates taken on 15 nights from 19 March 1933 to 10 March 1934. Most of these plates were taken with the Mount Wilson 60″ and 100″ telescopes, but 7 of the plates (now at the Harvard College Observatory) were taken with the 12″ and 16″ Metcalf doublets at Oak Ridge. The plates were measured with an iris diaphragm photometer, which has an average one-sigma photometric error on these plates of 0.08 mag as measured by the repeatability of constant comparison stars. The modern B and V magnitudes for the comparison stars were measured with the Lowell Observatory Hall 1.1-m telescope. The magnitudes in the plate's photographic system were converted to the Johnson B- and V-system after correction with color terms, even though they are small in size. We find that the average B-band mean opposition magnitude of Pluto in 1933-1934 was 15.73±0.01, and we see a roughly sinusoidal modulation on the rotational period (6.38 days) with a peak-to-peak amplitude of 0.11±0.03 mag. With this, we show that Pluto darkened by 5% from 1933-1934 to 1953-1955. This darkening from 1933-1934 to 1953-1955 cannot be due to changing viewing geometry (as both epochs had identical sub-Earth latitudes), so our observations must

  16. Do the Kepler AGN light curves need reprocessing?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.; Williams, Joshua; Carini, Michael T.

    2015-10-01

    We gauge the impact of spacecraft-induced effects on the inferred variability properties of the light curve of the Seyfert 1 AGN Zw 229-15 observed by Kepler. We compare the light curve of Zw 229-15 obtained from the Kepler MAST data base with a reprocessed light curve constructed from raw pixel data. We use the first-order structure function, SF(δt), to fit both light curves to the damped power-law PSD (power spectral density) of Kasliwal et al. On short time-scales, we find a steeper log PSD slope (γ = 2.90 to within 10 per cent) for the reprocessed light curve as compared to the light curve found on MAST (γ = 2.65 to within 10 per cent) - both inconsistent with a damped random walk (DRW) which requires γ = 2. The log PSD slope inferred for the reprocessed light curve is consistent with previous results that study the same reprocessed light curve. The turnover time-scale is almost identical for both light curves (27.1 and 27.5 d for the reprocessed and MAST data base light curves). Based on the obvious visual difference between the two versions of the light curve and on the PSD model fits, we conclude that there remain significant levels of spacecraft-induced effects in the standard pipeline reduction of the Kepler data. Reprocessing the light curves will change the model inferenced from the data but is unlikely to change the overall scientific conclusions reached by Kasliwal et al. - not all AGN light curves are consistent with the DRW.

  17. Towards dynamic light-curve catalogues

    NASA Astrophysics Data System (ADS)

    Scheers, Bart; Groffen, Fabian

    2012-09-01

    Time-domain astronomy is becoming a fundamental aspect of the next generation of astronomical instruments. The timing properties will revolutionise the studies of all kinds of astronomical objects. Consequetially, the huge complex data volumes and high cadences of these facilities will force us to overhaul and extend current software solutions. LOFAR, laying the groundwork for this, will produce a continuously updated spectral light-curve catalogue of all detected sources, with real-time capabilities to cope with the growth of 50 - 100TB/yr, making it the largest dynamic astronomical catalogue. Automated pipelines use the column-store MonetDB as their key component. We exploit SciLens, a 300+ node, 4-tier locally distributed cluster focussed on massive I/O. Introduction of the new array-based query language, SciQL, simplifies data exploration and mining. I will demonstrate how MonetDB/SQL & SciQL on its SciLens platform manages the millions of lightcurves for LOFAR. Initial benchmark results confirm the linear scale-up performance over tens of TBs using tens of nodes.

  18. NONPARAMETRIC BAYESIAN ESTIMATION OF PERIODIC LIGHT CURVES

    SciTech Connect

    Wang Yuyang; Khardon, Roni; Protopapas, Pavlos

    2012-09-01

    Many astronomical phenomena exhibit patterns that have periodic behavior. An important step when analyzing data from such processes is the problem of identifying the period: estimating the period of a periodic function based on noisy observations made at irregularly spaced time points. This problem is still a difficult challenge despite extensive study in different disciplines. This paper makes several contributions toward solving this problem. First, we present a nonparametric Bayesian model for period finding, based on Gaussian Processes (GPs), that does not make assumptions on the shape of the periodic function. As our experiments demonstrate, the new model leads to significantly better results in period estimation especially when the light curve does not exhibit sinusoidal shape. Second, we develop a new algorithm for parameter optimization for GP which is useful when the likelihood function is very sensitive to the parameters with numerous local minima, as in the case of period estimation. The algorithm combines gradient optimization with grid search and incorporates several mechanisms to overcome the high computational complexity of GP. Third, we develop a novel approach for using domain knowledge, in the form of a probabilistic generative model, and incorporate it into the period estimation algorithm. Experimental results validate our approach showing significant improvement over existing methods.

  19. A light curve and its analysis of Type Ia SN 1604

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee; Lee, Dae-Young; Mihn, Byeong-Hee

    2015-08-01

    SN 1604, known as Kepler’s supernova, was first detected by European observers, but a full light curve including its peak brightness and initial decline part can only be completed by extra data from Korean royal astronomers of four centuries ago. Nowadays, it is considered one of the Type Ia galactic supernovae, which show the empirical correlation between decline rate and peak luminosity - so called Phillips relation or width-luminosity (W-L) relation. Here, we reconstruct a new light curve based on both the Korean and European records of SN 1604. Using this light curve and W-L relation, we present an observed rise time and decline rates after peak, and derive its absolute peak magnitude and distance. In this study, observed rise time (≈ 19±1 days) shows a good agreement with typical mean time of Type Ia SNe, while the initial decline rates such as Δm15(V) and Δm20(V) represent steeper and faster values than the extra-galactic SNe Ia. Moreover, its absolute peak magnitude and distance derived from the W-L relation show much fainter and nearer values, respectively than the estimated results by different methods

  20. Seeing Core-Collapse Supernovae in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Brown, Peter

    Core-collapse supernovae are the catastrophic deaths of massive stars. Ultraviolet observations are needed to understand the energy of the explosion through the study of the bolometric light curves. Early-time ultraviolet observations constrain the size of the progenitor. Ultraviolet spectra can break the degeneracies between temperature/ionization, reddening, and metallicity which hinder our understanding of ultraviolet photometry. Optical observations of high-redshift supernovae probe rest-frame ultraviolet wavelengths, requiring space-based observations of nearby supernovae against which to compare. Ultraviolet observations of core-collapse supernovae can also help distinguish them from type Ia supernovae, enabling cleaner photometric type Ia supernova samples for cosmological measurements. The Ultraviolet/Optical Telescope (UVOT) on the Swift satellite has observed over two hundred core-collapse supernovae in the ultraviolet, including sixty-nine ultraviolet grism spectra of twenty core-collapse SNe. Additional ultraviolet spectra have been obtained by the International Ultraviolet Explorer, Hubble Space Telescope, and Galaxy Evolution Explorer. We propose a project to reduce the Swift grism spectra and combine with the other ultraviolet and groundbased optical/NIR spectra to create time-series bolometric spectra. We will use these bolometric spectra to better understand temperature, reddening, and metallicity and create bolometric light curves of these core collapse SNe. We will also use early time ultraviolet photometry and spectroscopy to constrain the progenitors of core collapse SNe. The ultraviolet observations fill a critical niche in our understanding of core collapse supernovae, and this program will enhance the scientific use of this important dataset from multiple space missions. Beyond core-collapse supernovae, the templates will allow studies of the dust properties around the progenitor systems (including the wavelength dependence of the extinction

  1. The Infrared Light Curve of SN 2011fe in M101 and the Distance to M101

    NASA Astrophysics Data System (ADS)

    Matheson, T.; Joyce, R. R.; Allen, L. E.; Saha, A.; Silva, D. R.; Wood-Vasey, W. M.; Adams, J. J.; Anderson, R. E.; Beck, T. L.; Bentz, M. C.; Bershady, M. A.; Binkert, W. S.; Butler, K.; Camarata, M. A.; Eigenbrot, A.; Everett, M.; Gallagher, J. S.; Garnavich, P. M.; Glikman, E.; Harbeck, D.; Hargis, J. R.; Herbst, H.; Horch, E. P.; Howell, S. B.; Jha, S.; Kaczmarek, J. F.; Knezek, P.; Manne-Nicholas, E.; Mathieu, R. D.; Meixner, M.; Milliman, K.; Power, J.; Rajagopal, J.; Reetz, K.; Rhode, K. L.; Schechtman-Rook, A.; Schwamb, M. E.; Schweiker, H.; Simmons, B.; Simon, J. D.; Summers, D.; Young, M. D.; Weyant, A.; Wilcots, E. M.; Will, G.; Williams, D.

    2012-07-01

    We present near-infrared light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting 14 days before maximum brightness in the B band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera. When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 ± 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used.

  2. The Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew

    2017-01-01

    Las Cumbres Observatory is a global network of robotic telescopes specializing in time domain astronomy. It currently has nine 1m telescopes, two 2m telescopes, and seven 0.4m telescopes. The Supernova Key Project is a 3 year program to obtain light curves and spectra of 500 supernovae with Las Cumbres Observatory. Here we show recent results, detail plans for the next Supernova Key Project, and explain how the US community can get involved.

  3. Light curve analysis of southern eclipsing binary EM Car

    NASA Astrophysics Data System (ADS)

    Ćiçek, C.; Bulut, I.; Bulut, A.

    2017-02-01

    In this study, ASAS light curve of the eclipsing binary EM Car (Sp = O8V, P = 3.4 days) has been analyzed using the Wilson-Devinney method. The light curve analyses have found that EM Car is a detached eclipsing binary system with small eccentric orbit

  4. Light curve demography via Bayesian functional data analysis

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas; Budavari, Tamas; Hendry, Martin A.; Kowal, Daniel; Ruppert, David

    2015-08-01

    Synoptic time-domain surveys provide astronomers, not simply more data, but a different kind of data: large ensembles of multivariate, irregularly and asynchronously sampled light curves. We describe a statistical framework for light curve demography—optimal accumulation and extraction of information, not only along individual light curves as conventional methods do, but also across large ensembles of related light curves. We build the framework using tools from functional data analysis (FDA), a rapidly growing area of statistics that addresses inference from datasets that sample ensembles of related functions. Our Bayesian FDA framework builds hierarchical models that describe light curve ensembles using multiple levels of randomness: upper levels describe the source population, and lower levels describe the observation process, including measurement errors and selection effects. Schematically, a particular object's light curve is modeled as the sum of a parameterized template component (modeling population-averaged behavior) and a peculiar component (modeling variability across the population), subsequently subjected to an observation model. A functional shrinkage adjustment to individual light curves emerges—an adaptive, functional generalization of the kind of adjustments made for Eddington or Malmquist bias in single-epoch photometric surveys. We are applying the framework to a variety of problems in synoptic time-domain survey astronomy, including optimal detection of weak sources in multi-epoch data, and improved estimation of Cepheid variable star luminosities from detailed demographic modeling of ensembles of Cepheid light curves.

  5. Magnetares como fuentes para potenciar supernovas superluminosas

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Benvenuto, O. G.

    2016-08-01

    Magnetars have been proposed as one of the possible sources to power the light curve of super-luminous supernovae. We have included the energy deposited by a hypothetical magnetar in our one-dimensional hydrodynamical code, and analyzed the dynamical effect on the supernova ejecta. In particular, we present a model for SN 2011kl, the first object associated with a ultra-long-duration gamma-ray burst. Finally, we show its effect on the light curves of hydrogen rich supernovae.

  6. Nucleosynthesis in Early Supernova Winds II: The Role of Neutrinos

    SciTech Connect

    Pruet, J; Hoffman, R; Woosley, S; Janka, H; Buras, R

    2005-11-04

    One of the outstanding unsolved riddles of nuclear astrophysics is the origin of the so called ''p-process'' nuclei from A = 92 to 126. Both the lighter and heavier p-process nuclei are adequately produced in the neon and oxygen shells of ordinary Type II supernovae, but the origin of these intermediate isotopes, especially {sup 92,94}Mo and {sup 96,98}Ru, has long been mysterious. Here we explore the production of these nuclei in the neutrino-driven wind from a young neutron star. We consider such early times that the wind still contains a proton excess because the rates for {nu}{sub e} and positron captures on neutrons are faster than those for the inverse captures on protons. Following a suggestion by Froehlich et al. (2005), they also include the possibility that, in addition to the protons, {alpha}-particles, and heavy seed, a small flux of neutrons is maintained by the reaction p({bar {nu}}{sub e}, e{sup +})n. This flux of neutrons is critical in bridging the long waiting points along the path of the rp-process by (n,p) and (n,{gamma}) reactions. Using the unmodified ejecta histories from a recent two-dimensional supernova model by Janka, Buras, and Rampp (2003), they find synthesis of p-rich nuclei up to {sup 102}Pd. However, if the entropy of these ejecta is increased by a factor of two, the synthesis extends to {sup 120}Te. Still larger increases in entropy, that might reflect the role of magnetic fields or vibrational energy input neglected in the hydrodynamical model, result in the production of numerous r-, s-, and p-process nuclei up to A {approx} 170, even in winds that are proton-rich.

  7. The H-alpha light curves of novae in M31

    NASA Technical Reports Server (NTRS)

    Ciardullo, Robin; Shafter, Allen W.; Ford, Holland C.; Neill, James D.; Shara, Michael M.

    1990-01-01

    H-alpha and B light curves are presented for 11 M31 novae, four of which were well observed near maximum. These data, along with the H-alpha light curves of two Galactic novae, demonstrate that a nova's maximum H-alpha flux occurs days or weeks after its continuum maximum at a monochromatic intensity 1-2 magnitudes above its peak flux in B. Moreover, after this maximum is achieved, a typical nova will radiate a third as many photons in H-alpha as in the entire B bandpass. The most interesting part of a nova's H-alpha light curve, however, is its decline. It is found that, regardless of a nova's speed, its H-alpha decay rate after maximum is almost identical to its decay rate in B. This behavior suggests that most of a nova's optical luminosity during early decline is continuum emission from the nebula, rather than direct radiation from the central source.

  8. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  9. Finding Ancient Supernovae at 5 < z < 12 with Frontier Fields

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.

    Supernovae are important probes of the properties of stars at high redshifts because they can be detected at early epochs and their masses can be inferred from their light curves. Direct detection of the first cosmic explosions in the universe will only be possible with JWST, WFIRST and the next generation of extremely large telescopes. But strong gravitational lensing by massive clusters, like those in the Frontier Fields, could reveal supernovae at slightly lower redshifts now by magnifying their flux by factors of 10 or more. We find that Frontier Fields will likely discover dozens of core-collapse supernovae at 5 < z < 12. Future surveys of cluster lenses similar in scope to Frontier Fields by JWST might find hundreds of these events out to z ~ 15 - 17. Besides revealing the masses of early stars, these ancient supernovae could also constrain cosmic star formation rates in the era of first galaxy formation.

  10. Finding Ancient Supernovae at 5 < z < 12 with Frontier Fields

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel

    2015-08-01

    Supernovae are important probes of the properties of stars at high redshifts because they can be detected at early epochs and their masses can be inferred from their light curves. Finding the first cosmic explosions in the universe will only be possible with JWST, the WFIRST and the next generation of extremely large telescopes. But strong gravitational lensing by massive clusters, like those in the Frontier Fields, could reveal supernovae at slightly lower redshifts now by magnifying their flux by factors of 10 or more. We find that Frontier Fields will likely discover dozens of core-collapse supernovae at 5 < z < 12. Future surveys of cluster lenses similar in scope to Frontier Fields by JWST might find hundreds of these events out to z ~ 15 - 17. Besides revealing the masses of early stars, these ancient supernovae could also constrain cosmic star formation rates in the era of first galaxy formation.

  11. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-01-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 microns. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 microns and 0.6 mag at 4.5 microns. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 microns) and W2 (4.6 microns) from the Wide-field Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude approximately 0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude approximately 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 micron filters.

  12. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; hide

    2016-01-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 microns. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 microns and 0.6 mag at 4.5 microns. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 microns) and W2 (4.6 microns) from the Wide-field Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude approximately 0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude approximately 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune's atmosphere than for K2. Methane gas is the dominant opacity source in Neptune's atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 micron filters.

  13. Cepheid light curve demography via Bayesian functional data analysis

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.; Hendry, Martin; Kowal, Daniel; Ruppert, David

    2016-01-01

    Synoptic time-domain surveys provide astronomers, not simply more data, but a different kind of data: large ensembles of multivariate, irregularly and asynchronously sampled light curves. We describe a statistical framework for light curve demography—optimal accumulation and extraction of information, not only along individual light curves as conventional methods do, but also across large ensembles of related light curves. We build the framework using tools from functional data analysis (FDA), a rapidly growing area of statistics that addresses inference from datasets that sample ensembles of related functions. Our Bayesian FDA framework builds hierarchical models that describe light curve ensembles using multiple levels of randomness: upper levels describe the source population, and lower levels describe the observation process, including measurement errors and selection effects. Roughly speaking, a particular object's light curve is modeled as the sum of a parameterized template component (modeling population-averaged behavior) and a peculiar component (modeling variability across the population), subsequently subjected to an observation model. A functional shrinkage adjustment to individual light curves emerges—an adaptive, functional generalization of the kind of adjustments made for Eddington or Malmquist bias in single-epoch photometric surveys. We describe ongoing work applying the framework to improved estimation of Cepheid variable star luminosities via FDA-based refinement and generalization of the Cepheid period-luminosity relation.

  14. VizieR Online Data Catalog: SNe Ia light curves for the LSQ-CSP sample (Walker+, 2015)

    NASA Astrophysics Data System (ADS)

    Walker, E. S.; Baltay, C.; Campillay, A.; Citrenbaum, C.; Contreras, C.; Ellman, N.; Feindt, U.; Gonzalez, C.; Graham, M. L.; Hadjiyska, E.; Hsiao, E. Y.; Krisciunas, K.; McKinnon, R.; Ment, K.; Morrell, N.; Nugent, P.; Phillips, M. M.; Rabinowitz, D.; Rostami, S.; Seron, J.; Stritzinger, M.; Sullivan, M.; Tucker, B. E.

    2015-08-01

    All of the supernovae described in this paper were discovered in the La Silla/QUEST Southern Hemisphere Variability Survey and were classified spectroscopically as SNe Ia by a variety of larger telescopes. The spectra are available on the WISEREP database (Yaron & Gal-Yam 2012PASP..124..668Y). The supernovae published here were followed photometrically in multiple filter bands using the Swope telescope at the Las Campanas Observatory to construct the light curves covering the period around maximum light. The La Silla/QUEST survey started the Low Redshift Supernova Search in 2011 December (Baltay et al. 2013PASP..125..683B). The survey uses the 1m ESO Schmidt telescope at the La Silla Observatory in Chile. The spectroscopy used to classify the supernova candidates was carried out using five different telescopes. The spectra taken for this sample of supernovae that had peak brightness before 2013 May are: ------------------------------------------------------------------ Source Telescope Spectrometer No. of SNe ------------------------------------------------------------------ PESSTO 3.5m NTT EFOSC-II 12 CSP II 2.5m du Pont WFCCD 10 SNfactory 2.2m UHT SNIFS 8 LCOGT 2.0m Faulkes FLOYDS 2 PTF/CalTech 5.0m Palomar DBSP 1 ------------------------------------------------------------------ PESSTO = Public ESO Spectroscopic Survey for Transient Objects. CSP II = the second Carnegie Supernova Survey. SNfactory = Supernova Factory. LCOGT = Las CumbrasOptical Global Telescopes. PTF = Palomar Transient Factory. NTT = New Technology Telescope. UHT = University of Hawaii Telescope. EFOSC-II = ESO Faint Object Spectrograph and Camera. WFCCD = wide Field CCD Camera. SNIFS = Supernova Integral Field Spectrometer. FLOYDS = Faulkes Low Resolution Spectrograph. DBSP = Double Spectrograph on the 200 Telescope. ------------------------------------------------------------------ The 1m Swope telescope at the Las Campanas Observatory was used to follow the SNe Ia with optical imaging to

  15. QUEST1 VARIABILITY SURVEY. III. LIGHT CURVE CATALOG UPDATE

    SciTech Connect

    Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Honeycutt, R. K.; Adams, B.; Baltay, C.; Gebhard, M.; Andrews, P.; Coppi, P.; Emmet, W.; Vivas, A. K.; Abad, C.; Bongiovanni, A.; Briceno, C.; Bruzual, G.; Prugna, F. Della; Hernandez, J.; Bailyn, C.; Ferrin, I.; Fuenmayor, F.

    2009-03-15

    This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects.

  16. An analysis of the light curve of Pluto.

    NASA Technical Reports Server (NTRS)

    Lacis, A. A.; Fix, J. D.

    1972-01-01

    The light curve of Pluto is analyzed in terms of a geometrical model consisting of bright and dark areas which are assumed to exhibit either a diffuse or a geometrical type of reflectivity. A Fourier analysis method is used to invert the observed light curve to obtain the longitudinal distribution of bright and dark areas for any combination of albedos selected for the two types of terrain. The analysis indicates that the light curve of Pluto can be readily understood in terms of a surface consisting of bright and dark areas. However, on the basis of the presently available photometric data, the existence or absence of limb-darkened material cannot be established.

  17. Using Kepler Light Curves for Astronomy Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Cash, Jennifer; Rivers, S.; Eleby, J.; Gould, A.; Komatsu, T.

    2014-01-01

    We will present our efforts related to Education and Public Outreach activities using Kepler Light Curves. We are currently developing interactive web based activities to introduce the public to the general topic of Stellar Variability and Intrinsic Variable Stars in particular using the high quality light curves of over a dozen Kepler targets. Along with the public website, we are exploring areas to develop teacher guides to use Kepler Light Curves in the middle and high school classrooms. These efforts are supported through a NASA EPSCoR grant "South Carolina Joint Venture Program" via a subaward to SC State University.

  18. New Developments in Eclipsing Binary Light Curve Modeling

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Stagg, C. R.

    1994-03-01

    The light curve modeling of binary stars has continued to evolve since its founding by Henry Norris Russell (see Russell and Merrill 1952 and citations therein) nearly a century ago, accelerated in the 1950s by Kopal's introduction of Roche geometry into models and by the development of synthetic light curve computer code in the 1970's. Improved physics and the use of more kinds of observational input are providing another round of important advances that promise to enlarge our knowledge of both binary stars and ensembles containing them. Here we discuss the newer horizons of light curve modeling and the steps being taken toward them.

  19. A comparative modeling of supernova 1993J

    NASA Technical Reports Server (NTRS)

    Blinnikov, Sergei; Eastman, Ron; Bartunov, Oleg; Popolitov, Vlad; Woosley, Stan

    1997-01-01

    The light curve of Supernova 1993J is calculated using two computational radiation transport approaches. The two approaches are represented by the computer codes STELLA and EDDINGTON. The emphasis is on the shock breakout and the photometry in the U, B and V bands during the first 120 days of the supernova. The STELLA model includes implicit hydrodynamics and is able to model early supernova evolution before the expansion is homologous. The STELLA model employs multi-group photonics and is able to follow the radiation as it decouples from the matter. The EDDINGTON code uses an algorithm for integrating the transport equation which assumes homologous expansion and uses a finer frequency resolution. The agreement between the two codes is considered to be satisfactory only in the case where compatible physical assumptions are made concerning the opacity. The assumptions are justified. The continuum spectrum for SN 1993J is predicted near the shock breakout to be superior to that predicted by standard single energy group hydrocodes. The uncertainties involved in current time dependent models of supernova light curves are discussed.

  20. A comparative modeling of supernova 1993J

    NASA Technical Reports Server (NTRS)

    Blinnikov, Sergei; Eastman, Ron; Bartunov, Oleg; Popolitov, Vlad; Woosley, Stan

    1997-01-01

    The light curve of Supernova 1993J is calculated using two computational radiation transport approaches. The two approaches are represented by the computer codes STELLA and EDDINGTON. The emphasis is on the shock breakout and the photometry in the U, B and V bands during the first 120 days of the supernova. The STELLA model includes implicit hydrodynamics and is able to model early supernova evolution before the expansion is homologous. The STELLA model employs multi-group photonics and is able to follow the radiation as it decouples from the matter. The EDDINGTON code uses an algorithm for integrating the transport equation which assumes homologous expansion and uses a finer frequency resolution. The agreement between the two codes is considered to be satisfactory only in the case where compatible physical assumptions are made concerning the opacity. The assumptions are justified. The continuum spectrum for SN 1993J is predicted near the shock breakout to be superior to that predicted by standard single energy group hydrocodes. The uncertainties involved in current time dependent models of supernova light curves are discussed.

  1. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    SciTech Connect

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Kasliwal, Mansi M.; Ben-Ami, Sagi; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Collaboration: ULTRASAT Science Team; WTTH consortium; GALEX Science Team; Palomar Transient Factory; and others

    2016-03-20

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  2. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  3. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    NASA Technical Reports Server (NTRS)

    Nousek, J. A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S. K.; Burrows, D. N.; Mangano, V.; Barthelmy, S.

    2005-01-01

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments. These power law segments are separated by two corresponding break times. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadx activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission: from photons that are radiated at large angles relative to our line of sight. The first break in the light curve takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve. This energy injection increases the energy of the afterglow shock by at least a factor of f greater than or approx. equal to 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  4. The broken light curves of gamma-ray bursts GRB 990123 and GRB 990510

    NASA Astrophysics Data System (ADS)

    Holland, S.; Björnsson, G.; Hjorth, J.; Thomsen, B.

    2000-12-01

    We have collected all of the published photometry for GRB 990123 and GRB 990510, the first two gamma-ray bursts where breaks were seen in the light curves of their optical afterglows, and determined the shapes of their light curves and the break times. These parameters were used to investigate the physical mechanisms responsible for the breaks and the nature of the ambient medium that the bursts occurred in. The light curve for GRB 990123 is best fit by a broken power law with a break 1.68 +/- 0.19 days after the burst, a slope of alpha_1 = -1.12 +/- 0.08 before the break, and a slope of alpha_2 = -1.69 +/- 0.06 after the break. This is consistent with a collimated outflow with a fixed opening angle of theta_0 ~ 5degr . In this case the break in the light curve is due to the relativistic fireball slowing to Gamma ~ 1/theta_0 . The light curve for GRB 990510 is best fit by a continuous function with an early-time slope of alpha_1 = -0.54 +/- 0.14, a late-time slope of alpha_2 = -1.98 +/- 0.19, and a slow transition between the two regimes approximately one day after the burst. This is consistent with a collimated outflow with theta_0 ~ 5degr that is initially radiative, but undergoes a sideways expansion that begins approximately one day after the burst. This sideways expansion is responsible for the slow break in the light curve. Partly based on observations collected with the 6m telescope of the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences (RAS) which is operated under the financial support of Science Department of Russia (registration number 01-43) and on data from the ING Archive and the HST Archive.

  5. Determining the progenitors of supernovae with early robotic observations

    NASA Astrophysics Data System (ADS)

    Howell, Andrew

    2015-08-01

    We present results from the LCOGT Supernova Key Project, a three year program to obtain lightcurves and spectra of 600 supernovae. The Las Cumbres Observatory Global Telescope Network is a network of eleven robotic 1m and 2m telescopes located at 5 sites around the world. With this facility long term monitoring of transient phenomena is possible, as are nearly instantaneous observations. We report on both core-collapse and thermonuclear supernovae observed within days of explosion, allowing insight into their progenitor stars.

  6. Determining the progenitors of supernovae with early robotic observations

    NASA Astrophysics Data System (ADS)

    Howell, Andrew

    We present results from the LCOGT Supernova Key Project, a three year program to obtain lightcurves and spectra of 600 supernovae. The Las Cumbres Observatory Global Telescope Network is a network of eleven robotic 1m and 2m telescopes located at 5 sites around the world. With this facility long term monitoring of transient phenomena is possible, as are nearly instantaneous observations. We report on both core-collapse and thermonuclear supernovae observed within days of explosion, allowing insight into their progenitor stars.

  7. CATALOG OF 93 NOVA LIGHT CURVES: CLASSIFICATION AND PROPERTIES

    SciTech Connect

    Strope, Richard J.; Schaefer, Bradley E.; Henden, Arne A.

    2010-07-15

    We present a catalog of 93 very-well-observed nova light curves. The light curves were constructed from 229,796 individual measured magnitudes, with the median coverage extending to 8.0 mag below peak and 26% of the light curves following the eruption all the way to quiescence. Our time-binned light curves are presented in figures and as complete tabulations. We also calculate and tabulate many properties about the light curves, including peak magnitudes and dates, times to decline by 2, 3, 6, and 9 mag from maximum, the time until the brightness returns to quiescence, the quiescent magnitude, power-law indices of the decline rates throughout the eruption, the break times in this decline, plus many more properties specific to each nova class. We present a classification system for nova light curves based on the shape and the time to decline by 3 mag from the peak (t{sub 3}). The designations are 'S' for smooth light curves (38% of the novae), 'P' for plateaus (21%), 'D' for dust dips (18%), 'C' for cusp-shaped secondary maxima (1%), 'O' for quasi-sinusoidal oscillations superposed on an otherwise smooth decline (4%), 'F' for flat-topped light curves (2%), and 'J' for jitters or flares superposed on the decline (16%). Our classification consists of this single letter followed by the t{sub 3} value in parentheses; so, for example, V1500 Cyg is S(4), GK Per is O(13), DQ Her is D(100), and U Sco is P(3).

  8. X-Rays from the Explosion Site: Fifteen Years of Light Curves of SN 1993J

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Dwarkadas, Vikram V.; Ray, Alak; Immler, Stefan; Pooley, David

    2009-01-01

    We present a comprehensive analysis of the X-ray light curves of SN 1993J in a nearby galaxy M81. This is the only supernova other than SN 1987A, which is so extensively followed in the X-ray bands. Here we report on SN 1993J observations with the Chandra in the year 2005 and 2008, and Swift observations in 2005, 2006 and 2008. We combined these observations with all available archival data of SN 1993J, which includes ROSAT, ASCA, Chandra, and XMM-Newton, observations from 1993 April to 2006 August. In this paper we report the X-ray light curves of SN 1993J, extending up to fifteen years, in the soft (0.3-2.4 keV), hard (2-8 keV) and combined (0.3-8 keV) bands. The hard and soft-band fluxes decline at different rates initially, but after about 5 years they both undergo a t(sup -1) decline. The soft X-rays, which are initially low, start dominating after a few hundred days. We interpret that most of the emission below 8 keV is coming from the reverse shock which is radiative initially for around first 1000-2000 days and then turn into adiabatic shock. Our hydrodynamic simulation also confirms the reverse shock origin of the observed light curves. We also compare the Ha line luminosity of SN 1993J with its X-ray light curve and note that the Ha line luminosity has a fairly high fraction of the X-ray emission, indicating presence of clumps in the emitting plasma.

  9. X-Rays from the Explosion Site: Fifteen Years of Light Curves of SN 1993J

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Dwarkadas, Vikram V.; Ray, Alak; Immler, Stefan; Pooley, David

    2009-01-01

    We present a comprehensive analysis of the X-ray light curves of SN 1993J in a nearby galaxy M81. This is the only supernova other than SN 1987A, which is so extensively followed in the X-ray bands. Here we report on SN 1993J observations with the Chandra in the year 2005 and 2008, and Swift observations in 2005, 2006 and 2008. We combined these observations with all available archival data of SN 1993J, which includes ROSAT, ASCA, Chandra, and XMM-Newton, observations from 1993 April to 2006 August. In this paper we report the X-ray light curves of SN 1993J, extending up to fifteen years, in the soft (0.3-2.4 keV), hard (2-8 keV) and combined (0.3-8 keV) bands. The hard and soft-band fluxes decline at different rates initially, but after about 5 years they both undergo a t(sup -1) decline. The soft X-rays, which are initially low, start dominating after a few hundred days. We interpret that most of the emission below 8 keV is coming from the reverse shock which is radiative initially for around first 1000-2000 days and then turn into adiabatic shock. Our hydrodynamic simulation also confirms the reverse shock origin of the observed light curves. We also compare the Ha line luminosity of SN 1993J with its X-ray light curve and note that the Ha line luminosity has a fairly high fraction of the X-ray emission, indicating presence of clumps in the emitting plasma.

  10. EVEREST: Pixel Level Decorrelation of K2 Light Curves

    NASA Astrophysics Data System (ADS)

    Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

    2016-10-01

    We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.

  11. Deep Recurrent Neural Networks for Supernovae Classification

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  12. THE DIVERSE BROADBAND LIGHT CURVES OF SWIFT GAMMA-RAY BURSTS REPRODUCED WITH THE CANNONBALL MODEL

    SciTech Connect

    Dado, Shlomo; Dar, Arnon; De Rujula, A. E-mail: arnon@physics.technion.ac.il E-mail: alvaro.derujula@cern.ch

    2009-05-01

    Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the Cannonball (CB) model of long gamma-ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows (AGs). Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early until late time and faithfully represent the entire diversity of the broadband light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of 'glory' light. During their fast decline phase, ICS is taken over by SR, which dominates their broadband AG. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical 'humps' in XRFs, are correctly predicted. The 'canonical' and noncanonical X-ray light curves and the chromatic behavior of the broadband AGs are well reproduced. In particular, in canonical X-ray light curves, the initial fast decline and rapid softening of the prompt emission, the transition to the plateau phase, the subsequent gradual steepening of the plateau to an asymptotic power-law decay, and the transition from chromatic to achromatic behavior of the light curves agree well with those predicted by the CB model. The Swift early-time data on XRF 060218 are inconsistent with a blackbody emission from a shock breakout through a stellar envelope. Instead, they are well described by ICS of glory light by a jet breaking out from SN2006aj.

  13. The Diverse Broadband Light Curves of Swift Gamma-Ray Bursts Reproduced with the Cannonball Model

    NASA Astrophysics Data System (ADS)

    Dado, Shlomo; Dar, Arnon; De Rújula, A.

    2009-05-01

    Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the Cannonball (CB) model of long gamma-ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows (AGs). Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early until late time and faithfully represent the entire diversity of the broadband light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of "glory" light. During their fast decline phase, ICS is taken over by SR, which dominates their broadband AG. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical "humps" in XRFs, are correctly predicted. The "canonical" and noncanonical X-ray light curves and the chromatic behavior of the broadband AGs are well reproduced. In particular, in canonical X-ray light curves, the initial fast decline and rapid softening of the prompt emission, the transition to the plateau phase, the subsequent gradual steepening of the plateau to an asymptotic power-law decay, and the transition from chromatic to achromatic behavior of the light curves agree well with those predicted by the CB model. The Swift early-time data on XRF 060218 are inconsistent with a blackbody emission from a shock breakout through a stellar envelope. Instead, they are well described by ICS of glory light by a jet breaking out from SN2006aj.

  14. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μm. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μm and 0.6 mag at 4.5 μm. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μm) and W2 (4.6 μm) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude ˜0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude ˜0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μm filters.

  15. SOUSA Supernova Surprises

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.

    2017-01-01

    The Swift Optical/Ultraviolet Supernova Archive is an effort to make public the Swift UVOT images and final photometry of as many supernovae as possible. These include many of the nearest, brightest, and most exciting supernovae of the last decade. Hiding within the archive, however, are supernovae you have never heard of, which never the less show extremes in color or luminosity or interesting light curve behavior in the ultraviolet. I will highlight some of the extreme objects of different subtypes and puzzling objects which warrant further study.

  16. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-time Observations, First-light Time, Distance to NGC 4666, and Progenitor Constraints

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Piro, A. L.; Holoien, T. W.-S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Woźniak, P. R.

    2016-08-01

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”) discovered ASASSN-14lp just ˜2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ({{Δ }}{m}15(B)=0.80+/- 0.05), a B-band maximum at 2457015.82 ± 0.03, a rise time of {16.94}-0.10+0.11 days, and moderate host-galaxy extinction (E{(B-V)}{host}=0.33+/- 0.06). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of μ =30.8+/- 0.2, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 {R}⊙ .

  17. The young and bright Type Ia supernova ASASSN-14lp: Discovery, early-time observations, first-light time, distance to NGC 4666, and progenitor constraints

    DOE PAGES

    Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.; ...

    2016-07-27

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (more » $${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$$), a B-band maximum at 2457015.82 ± 0.03, a rise time of $${16.94}_{-0.10}^{+0.11}$$ days, and moderate host-galaxy extinction ($$E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $$\\mu =30.8\\pm 0.2$$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 $${R}_{\\odot }$$.« less

  18. The young and bright Type Ia supernova ASASSN-14lp: Discovery, early-time observations, first-light time, distance to NGC 4666, and progenitor constraints

    SciTech Connect

    Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Wozniak, P. R.

    2016-07-27

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$), a B-band maximum at 2457015.82 ± 0.03, a rise time of ${16.94}_{-0.10}^{+0.11}$ days, and moderate host-galaxy extinction ($E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $\\mu =30.8\\pm 0.2$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 ${R}_{\\odot }$.

  19. The young and bright Type Ia supernova ASASSN-14lp: Discovery, early-time observations, first-light time, distance to NGC 4666, and progenitor constraints

    SciTech Connect

    Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Wozniak, P. R.

    2016-07-27

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$), a B-band maximum at 2457015.82 ± 0.03, a rise time of ${16.94}_{-0.10}^{+0.11}$ days, and moderate host-galaxy extinction ($E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $\\mu =30.8\\pm 0.2$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 ${R}_{\\odot }$.

  20. Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation

    NASA Technical Reports Server (NTRS)

    Hoflich, P.; Khokhlov, A. M.; Wheeler, J. C.

    1995-01-01

    We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.

  1. Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation

    NASA Technical Reports Server (NTRS)

    Hoflich, P.; Khokhlov, A. M.; Wheeler, J. C.

    1995-01-01

    We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.

  2. Vaporization of comet nuclei - Light curves and life times

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Ahearn, M. F.

    1979-01-01

    The effects of vaporization from the nucleus of a comet are examined and it is shown that a latitude dependence of vaporization can explain the asymmetries in cometary light curves. An attempt is made to explain the observed variation in molecular production rates with heliocentric distance when employing CO2 and clathrate hydrate ice as cometary nuclei substances. The energy balance equation and the vapor pressure equations of water and CO2 are used in calculating the vaporization from a surface. Calculations were carried out from both dry-ice and water-ice nuclei, using a variety of different effective visual albedos, but primarily for a thermal infrared of 0 (emission). Attention is given to cometary lifetimes and light curves and it was determined that the asymmetry in light curves occurs (occasionally) as a 'seasonal' effect due to a variation in the angle between the comet's rotation axis and the sun-comet line.

  3. PERIOD VARIATION AND ASYMMETRY LIGHT CURVES OF XY URSAE MAJORIS

    SciTech Connect

    Yuan Jinzhao

    2010-05-15

    New CCD photometric observations of the chromospherically active binary XY Ursae Majoris (XY UMa) were obtained every year since 2006. The light curves obtained in the late Spring of 2006 show obvious variations on a short timescale, while the light curves obtained in 2008 December do not. But both sets of light curves are markedly asymmetric, and were analyzed using the 2003 version of the Wilson-Devinney code with spot model. New absolute physical parameters are obtained. It is found that the total spotted area on the more massive component covers 7% of the photospheric surface in 2008 December. Fitting all available light minimum times including the newly obtained ones with a sinusoidal ephemeris and a four-part linear ephemeris reveals that the orbital period undergoes quasi-periodic oscillation rather than sinusoidal variations. Between the two mechanisms of magnetic activity and a third body around the eclipsing pair, the former one is more plausible.

  4. Optical light curves of FUor and FUor-like objects

    NASA Astrophysics Data System (ADS)

    Semkov, Evgeni; Peneva, Stoyanka; Ibryamov, Sunay

    2017-06-01

    Using recent data from photometric monitoring and data from the photographic plate archives we aim to study, the long-term photometric behavior of FUors. The construction of the historical light curves of FUors could be very important for determining the beginning of the outburst, the time to reach the maximum light, the rate of increase and decrease in brightness, the pre-outburst variability of the star. Our CCD photometric observations were performed with the telescopes of the Rozhen (Bulgaria) and Skinakas (Crete, Greece) observatories. Most suitable for long-term photometric study are the plate archives of the big Schmidt telescopes, as the telescopes at Kiso Observatory, Asiago Observatory, Palomar Observatory and others. In comparing our results with light curves of the well-studied FUors, we conclude that every new FUor object shows different photometric behavior. Each known FUor has a different rate of increase and decrease in brightness and a different light curve shape.

  5. A Crowd Sourced Light Curve for SN 2014G

    NASA Astrophysics Data System (ADS)

    Martin, J. C.

    2014-05-01

    SN 2014G was initially classified as a Type IIn (CBET 3787) and was later revealed to be a Type II-L (ATEL 5935). In addition to having an interesting classification, it was also relatively bright, nearby (peak V ~ 14.3) and easy to observe with small to moderate sized telescope. We mounted a cooperative effort open to both professional and non-professional observers with the goal of producing a light curve that could accurately measure variations in brightness of 0.1 mag with a cadence of one every two days or better. Simply collecting measured magnitudes often results in a light curve with systematic offsets between independent contributors. To minimize that effect without burdening the volunteer observers with too many additional requirements, we collected calibrated images and processed them uniformly to produce the light curve.

  6. DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY

    SciTech Connect

    Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Filippenko, Alexei V.; Cenko, S. Bradley; Mazzali, Paolo A.; Modjaz, Maryam; Horesh, Assaf; Kulkarni, Shrinivas R.; Perley, Daniel; Howell, D. Andrew; Graham, Melissa L.; Sand, David J.; Horst, J. Chuck; Leonard, Douglas C.; Im, Myunshin; Jeon, Yiseul; Sullivan, Mark; and others

    2012-12-01

    We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t){proportional_to}(t - t{sub 0}) {sup n}) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure ({approx}30, 000 km s{sup -1} derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M{sub Sun} and a large ((5-10) Multiplication-Sign 10{sup 51} erg) kinetic energy, the later being close to the regime of GRB-SN properties.

  7. Light curves of light rays passing through a wormhole

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Harada, Tomohiro

    2017-01-01

    Gravitational lensing is a good probe into the topological structure of dark gravitating celestial objects. In this paper, we investigate the light curve of a light ray that passes through the throat of an Ellis wormhole, the simplest example of traversable wormholes. The method developed here is also applicable to other traversable wormholes. To study whether the light curve of a light ray that passes through a wormhole throat is distinguishable from that which does not, we also calculate light curves without the passage of a throat for an Ellis wormhole, a Schwarzschild black hole, and an ultrastatic wormhole with the spatial geometry identical to that of the Schwarzschild black hole in the following two cases: (i) "microlensing," where the source, lens, and observer are almost aligned in this order and the light ray starts at the source, refracts in the weak gravitational field of the lens with a small deflection angle, and reaches the observer; and (ii) "retrolensing," where the source, observer, and lens are almost aligned in this order, and the light ray starts at the source, refracts in the vicinity of the light sphere of the lens with a deflection angle very close to π , and reaches the observer. We find that the light curve of the light ray that passes through the throat of the Ellis wormhole is clearly distinguishable from that by the microlensing but not from that by the retrolensing. This is because the light curve of a light ray that passes by a light sphere of a lens with a large deflection angle has common characters, irrespective of the details of the lens object. This implies that the light curves of the light rays that pass through the throat of more general traversable wormholes are qualitatively the same as that of the Ellis wormhole.

  8. Physical characteristics of faint meteors by light curve and high-resolution observations, and the implications for parent bodies

    NASA Astrophysics Data System (ADS)

    Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward

    2016-04-01

    Optical observations of faint meteors (10-7 < mass < 10-4 kg) were collected by the Canadian Automated Meteor Observatory between 2010 April and 2014 May. These high-resolution (metre scale) observations were combined with two-station light-curve observations and the meteoroid orbit to classify meteors and attempt to answer questions related to meteoroid fragmentation, strength, and light-curve shape. The F parameter was used to classify the meteor light-curve shape; the observed morphology was used to classify the fragmentation mode; and the Tisserand parameter described the origin of the meteoroid. We find that most meteor light curves are symmetric (mean F parameter 0.49), show long distinct trails (continuous fragmentation), and are cometary in origin. Meteors that show no obvious fragmentation (presumably single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of meteors observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that meteors which show negligible fragmentation are more often on high-inclination orbits (i > 60°) than low-inclination ones. We also find that dynamically asteroidal meteors fragment as often as dynamically cometary meteors, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.

  9. Establishing a CCD Light Curve For BW Vul (Abstract)

    NASA Astrophysics Data System (ADS)

    Cowall, D.

    2016-12-01

    (Abstract only) BW Vul is a pulsating variable star of the class BCEP. Review of the AID over the last 20 years reveals only scattered visual observations. Since 2011, a few CCD observations have been obtained with the BSMs, but not enough to obtain any knowledge of the light curve other than a mean color. Rapid cadence time series of BW Vul are currently underway using the AAVSOnet. The data generated should allow for modeling of the light curve and an updated ephemeris of Tmin values with O-C analysis.

  10. CG Cygni - Solutions of 1979 and 1980 light curves

    NASA Astrophysics Data System (ADS)

    Sowell, James R.; Wilson, John W.; Hall, Douglas S.; Peyman, Pamela E.

    1987-05-01

    Three new V light curves of CG Cyg, a short-period RS CVn binary, are presented. Fourier analysis showed the wave to be present still. The most striking feature of the light outside eclipse is the monotonic increase in the mean level by 15% since 1967. Solution of the rectified light curve yielded values of i = 81°.8, k = 1.00, and p0 = -0.44. These, combined with published spectroscopic elements, gave values of Rh = Rc = 0.80 R_sun;, Mh = Mc = 0.52 M_sun;, and a = 3.13 R_sun;.

  11. Interpretation of OAO-2 ultraviolet light curves of beta Doradus

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. L.; Lillie, C. F.; Hill, S. J.

    1975-01-01

    Middle-ultraviolet light curves of beta Doradus, obtained by OAO-2, are presented along with other evidence indicating that the small additional bumps observed on the rising branches of these curves have their origin in shock-wave phenomena in the upper atmosphere of this classical Cepheid. A simple piston-driven spherical hydrodynamic model of the atmosphere is developed to explain the bumps, and the calculations are compared with observations. The model is found to be consistent with the shapes of the light curves as well as with measurements of the H-alpha radial velocities.

  12. The earliest spectroscopy of the GRB 030329 afterglow with SAO RAS 6-m telescope and early spectra of core-collapse supernova

    NASA Astrophysics Data System (ADS)

    Kurt, V. G.; Sokolov, V. V.; Fatkhullin, T. A.; Komarova, V. N.; Lebedev, V. S.; Sokolova, T. N.; Castro-Tirado, A. J.; de Ugarte Postigo, A.; Gorosabel, J.; Guziy, S.

    2005-07-01

    The earliest BTA (SAO RAS 6-m telescope) spectroscopic observations of the GRB 030329 optical transient (OT) are presented, which almost coincide in time with the “first break" (t ˜ 0.5 day after the GRB) of the OT light curve. The beginning of spectral changes are seen as early as ˜ 10-12 hours after the GRB. So, the onset of the spectral changes for t < 1 day indicates that the contribution from Type Ic supernova (SN) into the OT optical flux can be detected earlier. The properties of early spectra of GRB 030329/SN 2003dh can be consistent with a shock moving into a stellar wind formed from the pre-SN. Such a behavior (similar to that near the UV shock breakout in SNe) can be explained by the existence of a dense matter in the immediate surroundings of massive stellar GRB/SN progenitor (see Young et al., ApJ, 449 (1995) L51 and Imshennik and Nadyozhin, Usp. Fiz. Nauk, 5 (1988) 561). The urgency is emphasized of observation of early GRB/SN spectra for solving a question that is essential for understanding GRB physical mechanism: Do all long-duration gamma-ray bursts are caused by (or physically connected to) ordinary core-collapse supernovae? If clear association of normal/ordinary core-collapse SNe (SN Ib/c, and others SN types) and GRBs would be revealed in numbers of cases, we may have strong observational limits for gamma-ray beaming and for real energetics of the GRB sources.

  13. No evidence for an early seventeenth-century Indian sighting of Kepler's supernova (SN1604)

    NASA Astrophysics Data System (ADS)

    van Gent, R. H.

    2013-03-01

    In a recent paper in this journal, Sule et al. (2011) argued that an early 17th-century Indian mural of the constellation Sagittarius with a dragon-headed tail indicated that the bright supernova of 1604 was also sighted by Indian astronomers. In this paper it will be shown that this identification is based on a misunderstanding of traditional Islamic astrological iconography and that the claim that the mural represents an early 17th-century Indian sighting of the supernova of 1604 has to be rejected.

  14. Prelimary Photoelectric Light Curve for DHK29=SAO 70629

    NASA Astrophysics Data System (ADS)

    Kaiser, Daniel H.; Gunn, Jerry B.; Lamb, Charles F.; Sullivan, Philip

    The newly discovered eclipsing binary star DHK 29 = SAO 70629 has been observed photoelectrically from October 1992 to October 1993. With the light curve coverage 75% complete, it is apparent that the initial 1.9-day period reported in IB VS 3815 is the half-period. Three times of primary minima have been determined. New light elements are given.

  15. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    SciTech Connect

    Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; Beardmore, A.P.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Falcone, A.D.; Gehrels, N.; Giommi, P.; Goad, M.; Godet, O.; Hurkett, C.; /Penn State U., Astron. Astrophys. /NASA, Marshall /Leicester U. /KIPAC, Menlo Park /Princeton, Inst. Advanced Study /NASA, Marshall /IASF, Palermo /Brera Observ. /Frascati /Milan Bicocca U. /NASA, Goddard

    2005-08-17

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments: (1) an initial very steep decay ({infinity} t{sup -a} with 3 {approx}< a{sub 1} {approx}< 5) , followed by (2) a very shallow decay (0.2 {approx}< a{sub 2} {approx}< 0.8), and finally (3) a somewhat steeper decay (1 {approx}< a{sub 3} {approx}< 1.5). These power law segments are separated by two corresponding break times, 300 s {approx}< t{sub break,1} {approx}< 500 s and 10{sup 3} s {approx}< t{sub break,2} {approx}< 10{sup 4} s. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t{sub break,1}) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a{sub 2}) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t{sub break,2}). This energy injection increases the energy of the afterglow shock by at least a factor of f {approx}> 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  16. SNEWS The SuperNova Early Warning System

    NASA Astrophysics Data System (ADS)

    SNEWS Group

    2005-06-01

    SNEWS is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse and is about to be seen as a Supernova. This project exploits the ˜hours time difference between neutrinos promptly escaping the nascent supernova and photons originating when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert. SNEWS is currently operational and ready, and this poster presents the procedures in use.

  17. Spatial Reasoning Training Through Light Curves Of Model Asteroids

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nakroshis, Paul A.; Rudnick, Benjamin T.; Brautigam, Maxwell J.; Nelson, Tyler W.

    2015-11-01

    Recent research has demonstrated that spatial reasoning skills, long known to be crucial to math and science success, are teachable. Even short stints of training can improve spatial reasoning skills among students who lack them (Sorby et al., 2006). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their spatial reasoning skill (Hill et al., 2010). We have designed a hands on asteroid rotation lab that provides practice in spatial reasoning tasks while building the student’s understanding of photometry. For our tool, we mount a model asteroid, with any shape of our choosing, on a slowly rotating motor shaft, whose speed is controlled by the experimenter. To mimic an asteroid light curve, we place the model asteroid in a dark box, shine a movable light source upon our asteroid, and record the light reflected onto a moveable camera. Students may then observe changes in the light curve that result from varying a) the speed of rotation, b) the model asteroid’s orientation with respect to the motor axis, c) the model asteroid’s shape or albedo, and d) the phase angle. After practicing with our tool, students are asked to pair new objects to their corresponding light curves. To correctly pair objects to their light curves, students must imagine how light scattering off of a three dimensional rotating object is imaged on a ccd sensor plane, and then reduced to a series of points on a light curve plot. Through the use of our model asteroid, the student develops confidence in spatial reasoning skills.

  18. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ˜100 pc, consisting of two main events: one at 1.7-3.2 million years ago, and the other at 6.5-8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  19. THE DISCOVERY OF ELLIPSOIDAL VARIATIONS IN THE KEPLER LIGHT CURVE OF HAT-P-7

    SciTech Connect

    Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Fortney, Jonathan J.; Jenkins, Jon; Rowe, Jason F.; Koch, David; Borucki, William J.

    2010-04-20

    We present an analysis of the early Kepler observations of the previously discovered transiting planet HAT-P-7b. The light curve shows the transit of the star, the occultation of the planet, and the orbit phase-dependent light from the planet. In addition, phase-dependent light from the star is present, known as 'ellipsoidal variations'. The very nearby planet (only four stellar radii away) gravitationally distorts the star and results in a flux modulation twice per orbit. The ellipsoidal variations can confuse interpretation of the planetary phase curve if not self-consistently included in the modeling. We fit the light curve using the Roche potential approximation and derive improved planet and orbit parameters.

  20. Exotrending: Fast and easy-to-use light curve detrending software for exoplanets

    NASA Astrophysics Data System (ADS)

    Barragán, Oscar; Gandolfi, Davide

    2017-06-01

    The simple, straightforward Exotrending code detrends exoplanet transit light curves given a light curve (flux versus time) and good ephemeris (epoch of first transit and orbital period). The code has been tested with Kepler and K2 light curves and should work with any other light curve.

  1. What powers the 3000-day light curve of SN 2006gy?

    SciTech Connect

    Fox, Ori D.; Smith, Nathan; Ammons, S. Mark; Andrews, Jennifer; Bostroem, K. Azalee; Cenko, S. Bradley; Clayton, Geoffrey C.; Dwek, Eli; Filippenko, Alexei V.; Gallagher, Joseph S.; Kelly, Patrick L.; Mauerhan, Jon C.; Miller, Adam A.; Van Dyk, Schuyler D.

    2015-10-27

    SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>1051 erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g. shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ~800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Furthermore, we report detections of SN 2006gy using HST and Keck AO at ~3000 d post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K'-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system.

  2. What powers the 3000-day light curve of SN 2006gy?

    NASA Astrophysics Data System (ADS)

    Fox, Ori D.; Smith, Nathan; Ammons, S. Mark; Andrews, Jennifer; Bostroem, K. Azalee; Cenko, S. Bradley; Clayton, Geoffrey C.; Dwek, Eli; Filippenko, Alexei V.; Gallagher, Joseph S.; Kelly, Patrick L.; Mauerhan, Jon C.; Miller, Adam A.; Van Dyk, Schuyler D.

    2015-12-01

    SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>1051 erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g. shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ˜800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here, we report detections of SN 2006gy using HST and Keck AO at ˜3000 d post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K'-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system.

  3. What powers the 3000-day light curve of SN 2006gy?

    DOE PAGES

    Fox, Ori D.; Smith, Nathan; Ammons, S. Mark; ...

    2015-10-27

    SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>1051 erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g. shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ~800), ruling out themore » likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Furthermore, we report detections of SN 2006gy using HST and Keck AO at ~3000 d post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K'-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system.« less

  4. empiriciSN: Supernova parameter generator

    NASA Astrophysics Data System (ADS)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-08-01

    empiriciSN generates realistic supernova parameters given photometric observations of a potential host galaxy, based entirely on empirical correlations measured from supernova datasets. It is intended to be used to improve supernova simulation for DES and LSST. It is extendable such that additional datasets may be added in the future to improve the fitting algorithm or so that additional light curve parameters or supernova types may be fit.

  5. A LUMINOUS AND FAST-EXPANDING TYPE Ib SUPERNOVA SN 2012au

    SciTech Connect

    Takaki, Katsutoshi; Fukazawa, Yasushi; Itoh, Ryosuke; Ueno, Issei; Ui, Takahiro; Urano, Takeshi; Kawabata, Koji S.; Akitaya, Hiroshi; Moritani, Yuki; Ohsugi, Takashi; Uemura, Makoto; Yoshida, Michitoshi; Yamanaka, Masayuki; Maeda, Keiichi; Nomoto, Ken'ichi; Tanaka, Masaomi; Kinugasa, Kenzo; Sasada, Mahito

    2013-08-01

    We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6 days until {approx} + 150 days after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absolute magnitude is M{sub R} = -18.7 {+-} 0.2 mag, which suggests that this supernova belongs to a very luminous group among Type Ib supernovae. The line velocity of He I {lambda}5876 is about 15,000 km s{sup -1} around maximum, which is much faster than that in a typical Type Ib supernova. From the quasi-bolometric peak luminosity of (6.7 {+-} 1.3) Multiplication-Sign 10{sup 42} erg s{sup -1}, we estimate the {sup 56}Ni mass produced during the explosion as {approx}0.30 M{sub Sun }. We also give a rough constraint to the ejecta mass 5-7 M{sub Sun} and the kinetic energy (7-18) Multiplication-Sign 10{sup 51} erg. We find a weak correlation between the peak absolute magnitude and He I velocity among Type Ib SNe. The similarities to SN 1998bw in the density structure inferred from the light-curve model as well as the large peak bolometric luminosity suggest that SN 2012au had properties similar to energetic Type Ic supernovae.

  6. Time delays between Fermi-LAT and GBM light curves of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Castignani, G.; Guetta, D.; Pian, E.; Amati, L.; Puccetti, S.; Dichiara, S.

    2014-05-01

    Aims: Most gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope exhibit a delay of up to about 10 seconds between the trigger time of the hard X-ray signal as measured by the Fermi Gamma-ray Burst Monitor (GBM) and the onset of the MeV-GeV counterpart detected by the Fermi Large Area Telescope (LAT). This delay may hint at important physics, whether it is due to the intrinsic variability of the inner engine or related to quantum dispersion effects in the velocity of light propagation from the sources to the observer. Therefore, it is critical to have a proper assessment of how these time delays affect the overall properties of the light curves. Methods: We cross-correlated the 5 brightest GRBs of the 1st Fermi-LAT Catalog by means of the continuous correlation function (CCF) and of the discrete correlation function (DCF). The former is suppressed because of the low number counts in the LAT light curves. A maximum in the DCF suggests there is a time lag between the curves, whose value and uncertainty are estimated through a Gaussian fitting of the DCF profile and light curve simulation via a Monte Carlo approach. Results: The cross-correlation of the observed LAT and GBM light curves yields time lags that are mostly similar to those reported in the literature, but they are formally consistent with zero. The cross-correlation of the simulated light curves yields smaller errors on the time lags and more than one time lag for GRBs 090902B and 090926A. For all 5 GRBs, the time lags are significantly different from zero and consistent with those reported in the literature, when only the secondary maxima are considered for those two GRBs. Conclusions: The DCF method proves the presence of (possibly multiple) time lags between the LAT and GBM light curves in a given GRB and underlines the complexity of their time behavior. While this suggests that the delays should be ascribed to intrinsic physical mechanisms, more sensitivity and more statistics are

  7. DISCOVERY OF THE EXTREMELY ENERGETIC SUPERNOVA 2008fz

    SciTech Connect

    Drake, A. J.; Djorgovski, S. G.; Mahabal, A.; Williams, R.; Graham, M. J.; Prieto, J. L.; Balam, D.; Catelan, M.; Beshore, E.; Larson, S.

    2010-08-01

    We report on the discovery and initial observations of the energetic type IIn supernova 2008fz. This object was discovered at redshift z = 0.133 and reached an apparent magnitude of V {approx} 17. After correcting for Galactic extinction and redshift, we determine the peak absolute magnitude of the event to be M{sub V} = -22.3, placing it among the most luminous supernovae discovered. The optical energy emitted by SN 2008fz (based on the light curve over an 88 day period) is possibly the most ever observed for a supernova (>1.4 x 10{sup 51} erg). The event was more luminous than the type IIn SN 2006gy, but exhibited the same smooth, slowly evolving light curve. As is characteristic of type IIn supernova, the early spectra of SN 2008fz initially exhibited narrow Balmer lines which were replaced by a broader component at later times. The spectra also show a blue continuum with no signs of Ca or Na absorption, suggesting that there is little extinction due to dust in the host or circumstellar material. No host galaxy is identified in prior co-added images reaching R {approx} 22. From the supernova's redshift, we place an upper limit on the brightness of the host of M{sub R} {approx} -17 (similar to the brightness of the Small Magellanic Cloud). The presence of the supernova within such a faint galaxy follows the majority of recently discovered highly luminous supernovae. A possible reason for this is the combination of a high star formation rate in low-mass galaxies with a low-metallicity environment.

  8. Discovery of the Extremely Energetic Supernova 2008fz

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Djorgovski, S. G.; Prieto, J. L.; Mahabal, A.; Balam, D.; Williams, R.; Graham, M. J.; Catelan, M.; Beshore, E.; Larson, S.

    2010-08-01

    We report on the discovery and initial observations of the energetic type IIn supernova 2008fz. This object was discovered at redshift z = 0.133 and reached an apparent magnitude of V ~ 17. After correcting for Galactic extinction and redshift, we determine the peak absolute magnitude of the event to be MV = -22.3, placing it among the most luminous supernovae discovered. The optical energy emitted by SN 2008fz (based on the light curve over an 88 day period) is possibly the most ever observed for a supernova (>1.4 × 1051 erg). The event was more luminous than the type IIn SN 2006gy, but exhibited the same smooth, slowly evolving light curve. As is characteristic of type IIn supernova, the early spectra of SN 2008fz initially exhibited narrow Balmer lines which were replaced by a broader component at later times. The spectra also show a blue continuum with no signs of Ca or Na absorption, suggesting that there is little extinction due to dust in the host or circumstellar material. No host galaxy is identified in prior co-added images reaching R ~ 22. From the supernova's redshift, we place an upper limit on the brightness of the host of MR ~ -17 (similar to the brightness of the Small Magellanic Cloud). The presence of the supernova within such a faint galaxy follows the majority of recently discovered highly luminous supernovae. A possible reason for this is the combination of a high star formation rate in low-mass galaxies with a low-metallicity environment.

  9. Synthetic Light Curves for Born Again Events: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, M. M.; Rohrmann, R. D.

    2013-01-01

    The development of surveys which will be able to cover a large region of the sky several times per year will allow the massive detection of transient events taking place on timescales of years. In addition, the projected full digitalization of the Harvard plate collection will open a new window on the identification of slow transients taking place on timescales of centuries. In particular, these projects will allow the detection of stars undergoing slow eruptions as those expected during late helium flashes in the post-AGB evolution. In order to identify those transients which correspond with late helium flashes the development of synthetic light curves of those events is mandatory. In this connection we present preliminary results of a project aimed at computing grids of theoretical light curves of born again stars.

  10. Enhancements of Bayesian Blocks; Application to Large Light Curve Databases

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff

    2015-01-01

    Bayesian Blocks are optimal piecewise linear representations (step function fits) of light-curves. The simple algorithm implementing this idea, using dynamic programming, has been extended to include more data modes and fitness metrics, multivariate analysis, and data on the circle (Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations, Scargle, Norris, Jackson and Chiang 2013, ApJ, 764, 167), as well as new results on background subtraction and refinement of the procedure for precise timing of transient events in sparse data. Example demonstrations will include exploratory analysis of the Kepler light curve archive in a search for "star-tickling" signals from extraterrestrial civilizations. (The Cepheid Galactic Internet, Learned, Kudritzki, Pakvasa1, and Zee, 2008, arXiv: 0809.0339; Walkowicz et al., in progress).

  11. Multi-wavelength analysis of Ellerman Bomb Light Curves

    NASA Astrophysics Data System (ADS)

    Herlender, M.; Berlicki, A.

    We present the results of a multi-wavelength photometric analysis of Ellerman Bomb (EB) observations obtained from the Dutch Open Telescope. In our data we have found 6 EBs located in the super-penumbra of the main spot in the active region NOAA 10781. We present light curves of EB observed in the Hα line centre and wing +0.7 Å, in the Ca II H line centre and wing~+2.35 Å, in the G-band and in the TRACE 1600 Å filter. We have shown that EBs were visible in the G-band and moreover, there was a good correlation between the light curves in the G-band and in the Hα line wings. We also found quasi-periodic oscillations of EBs brightness in the G-band, CaII H line and TRACE 1600 Å filter.

  12. CALCULATING TIME LAGS FROM UNEVENLY SAMPLED LIGHT CURVES

    SciTech Connect

    Zoghbi, A.; Reynolds, C.; Cackett, E. M.

    2013-11-01

    Timing techniques are powerful tools to study dynamical astrophysical phenomena. In the X-ray band, they offer the potential of probing accretion physics down to the event horizon. Recent work has used frequency- and energy-dependent time lags as tools for studying relativistic reverberation around the black holes in several Seyfert galaxies. This was achieved due to the evenly sampled light curves obtained using XMM-Newton. Continuously sampled data are, however, not always available and standard Fourier techniques are not applicable. Here, building on the work of Miller et al., we discuss and use a maximum likelihood method to obtain frequency-dependent lags that takes into account light curve gaps. Instead of calculating the lag directly, the method estimates the most likely lag values at a particular frequency given two observed light curves. We use Monte Carlo simulations to assess the method's applicability and use it to obtain lag-energy spectra from Suzaku data for two objects, NGC 4151 and MCG-5-23-16, that had previously shown signatures of iron K reverberation. The lags obtained are consistent with those calculated using standard methods using XMM-Newton data.

  13. General Model for Light Curves of Chromospherically Active Binary Stars

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Henry, G. W.; Lehtinen, J.

    2017-04-01

    The starspots on the surface of many chromospherically active binary stars concentrate on long-lived active longitudes separated by 180°. Shifts in activity between these two longitudes, the “flip-flop” events, have been observed in single stars like FK Comae and binary stars like σ Geminorum. Recently, interferometry has revealed that ellipticity may at least partly explain the flip-flop events in σ Geminorum. This idea was supported by the double-peaked shape of the long-term mean light curve of this star. Here we show that the long-term mean light curves of 14 chromospherically active binaries follow a general model that explains the connection between orbital motion, changes in starspot distribution, ellipticity, and flip-flop events. Surface differential rotation is probably weak in these stars, because the interference of two constant period waves may explain the observed light curve changes. These two constant periods are the active longitude period ({P}{act}) and the orbital period ({P}{orb}). We also show how to apply the same model to single stars, where only the value of P act is known. Finally, we present a tentative interference hypothesis about the origin of magnetic fields in all spectral types of stars. The CPS results are available electronically at the Vizier database.

  14. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    SciTech Connect

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong; Silverman, Jeffrey M.; Howie Marion, G.; Kasen, Daniel; Wang, Xiaofeng; Valenti, Stefano; Howell, D. Andrew; Ciabattari, Fabrizio; Cenko, S. Bradley; Balam, Dave; Hsiao, Eric; Sand, David; and others

    2013-11-20

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

  15. The Very Young Type Ia Supernova 2013dy: Discovery, and Strong Carbon Absorption in Early-time Spectra

    NASA Astrophysics Data System (ADS)

    Zheng, WeiKang; Silverman, Jeffrey M.; Filippenko, Alexei V.; Kasen, Daniel; Nugent, Peter E.; Graham, Melissa; Wang, Xiaofeng; Valenti, Stefano; Ciabattari, Fabrizio; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Cenko, S. Bradley; Balam, Dave; Howell, D. Andrew; Hsiao, Eric; Li, Weidong; Marion, G. Howie; Sand, David; Vinko, Jozsef; Wheeler, J. Craig; Zhang, JuJia

    2013-11-01

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R 0 <~ 0.25 R ⊙, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of MB = -18.72 ± 0.03 mag ~17.7 days after first light.

  16. Optical and X-ray rest-frame light curves of the BAT6 sample

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Covino, S.; Rogantini, D.; Salvaterra, R.; Sbarufatti, B.; Bernardini, M. G.; Campana, S.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Nava, L.; Vergani, S. D.; Tagliaferri, G.

    2014-05-01

    Aims: We present the rest-frame light curves in the optical and X-ray bands of an unbiased and complete sample of the Swift long gamma-ray bursts (GRBs), namely, the BAT6 sample. Methods: The unbiased BAT6 sample (consisting of 58 events) has the highest level of completeness in redshift (~95%), allowing us to compute the rest-frame X-ray and optical light curves for 55 and 47 objects, respectively. We compute the X-ray and optical luminosities, which accounte for any possible source of absorption (Galactic and intrinsic) that could affect the observed fluxes in these two bands. Results: We compare the behaviour observed in the X-ray to that in the optical bands to assess the relative contribution of the emission during the prompt and afterglow phases. We unarguably demonstrate that rest-frame optical luminosity distribution of the GRBs is not bimodal and is clustered around the mean value Log(LR) = 29.9 ± 0.8 when estimated at a rest-frame time of 12 h. This is in contrast to what is found in previous works and confirms that the GRB population has an intrinsic unimodal luminosity distribution. For more than 70% of the events, the rest-frame light curves in the X-ray and optical bands have a different evolution, indicating distinct emitting regions and/or mechanisms. The X-ray light curves, which are normalised to the GRB isotropic energy (Eiso), provide evidence for X-ray emission that is still powered by the prompt emission until late times (~hours after the burst event). On the other hand, the same test performed for the Eiso-normalised optical light curves shows that the optical emission is a better proxy of the afterglow emission from early to late times. Appendix A is available in electronic form at http://www.aanda.orgTables 2 and 3 and data used for the figures are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A72

  17. Smooth Light Curves from a Bumpy Ride: Relativistic Blast Wave Encounters a Density Jump

    SciTech Connect

    Nakar, Ehud; Granot, Jonathan; /KIPAC, Menlo Park

    2006-06-06

    Some gamma-ray burst (GRB) afterglow light curves show significant variability, which often includes episodes of rebrightening. Such temporal variability had been attributed in several cases to large fluctuations in the external density, or density ''bumps''. Here we carefully examine the effect of a sharp increase in the external density on the afterglow light curve by considering, for the first time, a full treatment of both the hydrodynamic evolution and the radiation in this scenario. To this end we develop a semi-analytic model for the light curve and carry out several elaborate numerical simulations using a one dimensional hydrodynamic code together with a synchrotron radiation code. Two spherically symmetric cases are explored in detail--a density jump in a uniform external medium, and a wind termination shock. The effect of density clumps is also constrained. Contrary to previous works, we find that even a very sharp (modeled as a step function) and large (by a factor of a >> 1) increase in the external density does not produce sharp features in the light curve, and cannot account for significant temporal variability in GRB afterglows. For a wind termination shock, the light curve smoothly transitions between the asymptotic power laws over about one decade in time, and there is no rebrightening in the optical or X-rays that could serve as a clear observational signature. For a sharp jump in a uniform density profile we find that the maximal deviation {Delta}{alpha}{sub max} of the temporal decay index {alpha} from its asymptotic value (at early and late times), is bounded (e.g, {Delta}{alpha}{sub max} < 0.4 for {alpha} = 10); {Delta}{alpha}{sub max} slowly increases with {alpha}, converging to {Delta}{alpha}{sub max} {approx} 1 at very large {alpha} values. Therefore, no optical rebrightening is expected in this case as well. In the X-rays, while the asymptotic flux is unaffected by the density jump, the fluctuations in {alpha} are found to be comparable to

  18. Light-Curve Survey of Jupiter Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Melita, M.; Ortiz, J. L.; Licandro, J.; Williams, I. P.; Jones, D.

    2008-09-01

    Trojan asteroids are an interesting population of minor bodies due to their dynamical characteristics, their physical properties and that they are relatively isolated located at the snow-line The main hypotheses about the origin of the Jupiter Trojans assumed that they formed either during the final stages of the planetary formation (Marzari & Scholl 1998), or during the epoch of planetary migration (Morbidelli et al. 2005), in any case more than 3.8 Gy. ago. The dynamical configuration kept the Trojans isolated from the asteroid Main Belt throughout the history of the Solar System. In spite of eventual interactions with other populations of minor bodies like the Hildas, the Jupiter family comets, and the Centaurs, their collisional evolution has been dictated mostly by the intrapopulation collisions (Marzari et al. 1996, 1997). Therefore, the Jupiter Trojans may be considered primordial bodies, whose dynamical and physical properties can provide important clues about the environment of planetary formation. The available sample of Jupiter Trojans light-curves is small and mainly restricted to the largest objects. According to the MPC-website (updated last in March 2006), the present sample of rotation periods and light-curve-amplitudes of the Jupiter Trojan asteroids is composed by 25 objects with some information about their periods and by 10 of them with only an amplitude estimation. A survey of contact binary Trojan asteroids has been done by Mann et al. 2007, where they have recorded more than 100 amplitudes from sparse-sampled light-curves and very-wellresolved rotational periods. More than 2000 Trojan asteroids have been discovered up to date, so, there is an urgent need to enlarge the sample of intrinsic rotation periods and accurate light-curve amplitudes and to extend it to smaller sizes. Results and Discusions We requested 26 nights of observation in the second semester of 2007, to begin with the survey. They were scheduled for the following instruments

  19. The Recurrent Nova T CrB; Two Discoveries from the 102,000 Magnitude Light Curves from 1855 to 2013 in Johnson B & V

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2014-01-01

    Recurrent Nova T CrB erupted in 1866 and was the first well-observed nova eruption. The modern concept of nova developed only in the early 1900s, but many observers kept track of this mysterious variable. With a curious anticipatory warning from Leslie Peltier in 1945, T CrB erupted again in 1946. Recurrent novae are popularly featured as the solution to the supernova progenitor problem, so I collected an exhaustive historical light curve of T CrB from 1855-2013. I have collected magnitudes from dusty logbooks at the RAS, AAVSO, and Cambridge, and measured its brightness from archival plates in Sonneberg, Harvard, and Bamberg. More magnitudes have been pulled from the very-obscure early literature as well as from visual archives worldwide (primarily AAVSO). It is critical that these magnitudes (in visual, V, photographic, and B systems) all be correctly reduced to the modern Johnson B & V systems, and this was done by tracking down the original comparison stars and deriving the correct color terms for application to both T CrB and its comparison stars. These techniques are new, and I have never seen anyone apply such corrections to historical data. The result is a well-sampled light curve with 3100 V magnitudes from 1855-1946, 98400 V-magnitudes from 1946-2013, and 2500 B magnitudes from 1890-2013. Two new discoveries have come from all this historical data: (1) T CrB had a large and sharp increase in its orbital period across its 1946 eruption by 0.046%, implying a mass ejection of close to 0.00060 solar masses. Thus, the white dwarf ejected much more mass in 1946 than it accreted from 1866-1946, and T CrB is not a supernova progenitor. (2) Across both eruptions, T CrB was in a high state (1.0 mag bright in B) from T-8 to T-1 years and T+0 to T+8 years with sharp transitions. The well-known and still-mysterious second eruption at T+0.4 years is superposed on this high state. The drop from high to low state just before the eruption appears to be causally connected

  20. Transit light curves with finite integration time: Fisher information analysis

    SciTech Connect

    Price, Ellen M.; Rogers, Leslie A.

    2014-10-10

    Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal to noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curve photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal to noise (constant total integration time in the absence of read noise). Uncertainties on the transit ingress/egress time increase by a factor of 34 for Earth-size planets and 3.4 for Jupiter-size planets around Sun-like stars for integration times of 30 minutes compared to instantaneously sampled light curves. Similarly, uncertainties on the mid-transit time for Earth and Jupiter-size planets increase by factors of 3.9 and 1.4. Uncertainties on the transit depth are largely unaffected by finite integration times. While correlations among the transit depth, ingress duration, and transit duration all increase in magnitude with longer integration times, the mid-transit time remains uncorrelated with the other parameters. We provide code in Python and Mathematica for predicting the variances and covariances at www.its.caltech.edu/∼eprice.

  1. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    NASA Technical Reports Server (NTRS)

    Wakeford, H. R.; Sing, D.K.; Deming, D.; Mandell, A.

    2016-01-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 microns probe primarily the H2O absorption band at 1.4 microns, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as "ramp" probability (R (sub p)) divided by "ramp" total (R (sub asterisk)), which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta (sub lambda) times lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  2. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    NASA Technical Reports Server (NTRS)

    Wakeford, H. R.; Sing, D.K.; Deming, D.; Mandell, A.

    2016-01-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 microns probe primarily the H2O absorption band at 1.4 microns, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as "ramp" probability (R (sub p)) divided by "ramp" total (R (sub asterisk)), which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta (sub lambda) times lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  3. Thermal Emission Light-Curves of Rapidly Rotating Asteroids

    NASA Astrophysics Data System (ADS)

    Rozitis, Ben; Emery, Joshua; Lowry, Stephen; Rozek, Agata; Wolters, Stephen; Snodgrass, Colin; Green, Simon

    2014-12-01

    We propose to use Spitzer/IRAC to obtain simultaneous 3 and 4 um light-curves of 23 rapidly rotating asteroids (rotation periods of less than 3 hrs) to determine thermal inertia and surface roughness spatial variations. These observations will probe asteroid geophysics and constrain the origin of their rapid rotation. Rapidly rotating asteroids are unusual bodies where their own self-gravity is balanced or exceeded by rotational centrifugal forces, and are thought to have acquired their fast rotation rates through the YORP effect - a radiative torque induced by exposure to sunlight. For each target asteroid, we will measure thermal flux in both IRAC bands for a full rotation. When combined with shapes and spin axes derived from our ground-based programme, and a thermophysical model, we will be able to identify any temperature variations resulting from thermal inertia and/or surface roughness variation, and be able to constrain theoretical predictions of YORP rotational acceleration. The thermal property variations will be compared against models of surface gravity in order to provide insights into the physical processes by which asteroids retain and lose surface material. 16 of our target asteroids are being observed at optical wavelengths in a European Southern Observatory (ESO) Large Programme (LP) awarded 82 nights to constrain rotation period changes induced by the YORP effect (PI Stephen Lowry; Program IDs 185.C-1033, 185.C-1034). Approximately 80 additional nights on a range of other facilities has also been awarded for this programme. The ESO LP will support the Spitzer programme by providing shape and spin axis information necessary to search for surface property variations in the thermal emission light-curves of these asteroids. Likewise, the Spitzer/IRAC thermal emission light-curves will allow us to derive the physical properties that drive the YORP effect on the ESO LP asteroids.

  4. Transit Light Curves with Finite Integration Time: Fisher Information Analysis

    NASA Astrophysics Data System (ADS)

    Price, Ellen M.; Rogers, Leslie A.

    2014-10-01

    Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal to noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curve photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal to noise (constant total integration time in the absence of read noise). Uncertainties on the transit ingress/egress time increase by a factor of 34 for Earth-size planets and 3.4 for Jupiter-size planets around Sun-like stars for integration times of 30 minutes compared to instantaneously sampled light curves. Similarly, uncertainties on the mid-transit time for Earth and Jupiter-size planets increase by factors of 3.9 and 1.4. Uncertainties on the transit depth are largely unaffected by finite integration times. While correlations among the transit depth, ingress duration, and transit duration all increase in magnitude with longer integration times, the mid-transit time remains uncorrelated with the other parameters. We provide code in Python and Mathematica for predicting the variances and covariances at www.its.caltech.edu/~eprice.

  5. A new approach to the analysis of Mira light curves

    NASA Technical Reports Server (NTRS)

    Mennessier, M. O.; Barthes, D.; Mattei, J. A.

    1990-01-01

    Two different but complementary methods for predicting Mira luminosities are presented. One method is derived from a Fourier analysis, it requires performing deconvolution, and its results are not certain due to the inherent instability of deconvolution problems. The other method is a learning method utilizing artificial intelligence techniques where a light curve is presented as an ordered sequence of pseudocycles, and rules are learned by linking the characteristics of several consecutive pseudocycles to one characteristic of the future cycle. It is observed that agreement between these methods is obtainable when it is possible to eliminate similar false frequencies from the preliminary power spectrum and to improve the degree of confidence in the rules.

  6. Low States of Polars from CRTS Optical Light Curves

    NASA Astrophysics Data System (ADS)

    Santana, Joshua; Mason, Paul A.

    2017-01-01

    We present a study of light curves from the 10 year baseline for 98 polars observed using the Catalina Realtime Transit Survey (CRTS). In particular we investigate the stability of high and low luminosity states, for which these highly magnetic binaries are known. We identify several classes of behavior. Some polars have stable low states, (EF Eri, AR UMa, AM Her) in which they spend considerable time. About as many dip in brightness to low states followed by quick returns, (CE Gru, BM CrB). A few like FL Cet show 3 distinctive states.

  7. New NIR light-curve templates for classical Cepheids

    NASA Astrophysics Data System (ADS)

    Inno, L.; Matsunaga, N.; Romaniello, M.; Bono, G.; Monson, A.; Ferraro, I.; Iannicola, G.; Persson, E.; Buonanno, R.; Freedman, W.; Gieren, W.; Groenewegen, M. A. T.; Ita, Y.; Laney, C. D.; Lemasle, B.; Madore, B. F.; Nagayama, T.; Nakada, Y.; Nonino, M.; Pietrzyński, G.; Primas, F.; Scowcroft, V.; Soszyński, I.; Tanabé, T.; Udalski, A.

    2015-04-01

    Aims: We present new near-infrared (NIR) light-curve templates for fundamental (FU, J, H, KS) and first overtone (FO, J) classical Cepheids. The new templates together with period-luminosity and period-Wesenheit (PW) relations provide Cepheid distances from single-epoch observations with a precision only limited by the intrinsic accuracy of the method adopted. Methods: The templates rely on a very large set of Galactic and Magellanic Cloud Cepheids (FU, ~600; FO, ~200) with well-sampled NIR (IRSF data set) and optical (V, I; OGLE data set) light-curves. To properly trace the change in the shape of the light-curve as a function of pulsation period, we split the sample of calibrating Cepheids into ten different period bins. The templates for the first time cover FO Cepheids and the short-period range of FU Cepheids (P ≤ 5 days). Moreover, the phase zero-point is anchored to the phase of the mean magnitude along the rising branch. The new approach has several advantages in sampling the light-curve of bump Cepheids when compared with the canonical phase of maximum light. We also provide new empirical estimates of the NIR-to-optical amplitude ratios for FU and FO Cepheids. We perform detailed analytical fits using seventh-order Fourier series and multi-Gaussian periodic functions. The latter are characterized by fewer free parameters (nine vs. fifteen). Results: The mean NIR magnitudes based on the new templates are up to 80% more accurate than single-epoch NIR measurements and up to 50% more accurate than the mean magnitudes based on previous NIR templates, with typical associated uncertainties ranging from 0.015 mag (J band) to 0.019 mag (KS band). Moreover, we find that errors on individual distance estimates for Small Magellanic Cloud Cepheids derived from NIR PW relations are essentially reduced to the intrinsic scatter of the adopted relations. Conclusions: Thus, the new templates are the ultimate tool for estimating precise Cepheid distances from NIR single

  8. Variability in GRB light curves: Introducing Orthogonal Matching Pursuit

    NASA Astrophysics Data System (ADS)

    Dereli, Husne; Bégué, Damien; Ryde, Felix

    2016-07-01

    Constraining the variability of GRBs is important as it is one of the few keys to estimate many unknown parameters, such as the emission radius, the Lorentz factor, the size of the progenitor. In this work, we introduced the Orthogonal Matching Pursuit (OMP) method to study GRB light curves and to compute the minimum time variability of GRBs. Commonly used in medical sciences, this method reconstructs a signal by choosing among predefined functional shapes. We will discuss the implementation of the code, and compare its performances with those of other dedicated methods (Haar wavelet analysis, peak finding algorithm and step wise filter correlation).

  9. A new approach to the analysis of Mira light curves

    NASA Technical Reports Server (NTRS)

    Mennessier, M. O.; Barthes, D.; Mattei, J. A.

    1990-01-01

    Two different but complementary methods for predicting Mira luminosities are presented. One method is derived from a Fourier analysis, it requires performing deconvolution, and its results are not certain due to the inherent instability of deconvolution problems. The other method is a learning method utilizing artificial intelligence techniques where a light curve is presented as an ordered sequence of pseudocycles, and rules are learned by linking the characteristics of several consecutive pseudocycles to one characteristic of the future cycle. It is observed that agreement between these methods is obtainable when it is possible to eliminate similar false frequencies from the preliminary power spectrum and to improve the degree of confidence in the rules.

  10. Light curves and phase relations of the asteroid 55 Pandora

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. G.; Kruglyj, Yu. N.; Lupishko, D. F.; Harris, A. W.; Chernova, G. P.

    1993-01-01

    Photoelectric observations of 55 Pandora were performed in Feb.-March 1989 (six nights) in the phase-angle range of 2.5-14 deg and in Sept.-Nov. 1991 (15 nights) in the range 0.5-16.3 deg. The mean amplitudes of the light curves in these oppositions were 0.22m and 0.10m, respectively. The data indicate that Pandora is a typical M-asteroid, and that the high albedo observed by the IRAS satellite does not correspond to reality.

  11. A revised historical light curve of Eta Carinae and the timing of close periastron encounters

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Frew, David J.

    2011-08-01

    The historical light curve of the 19th century 'Great Eruption' of η Carinae provides a striking record of the violent instabilities encountered by massive stars. In this paper, we report and analyse newly uncovered historical estimates of the visual brightness of η Car during its eruption, and we correct some mistakes in the original record. The revised historical light curve looks substantially different from previous accounts; it shows two brief precursor eruptions in 1838 and 1843 that resemble modern supernova impostors, while the final brightening in 1844 December marks the time when η Car reached its peak brightness. We consider the timing of brightening events as they pertain to the binary system in η Car. (1) The brief 1838 and 1843 events rose to peak brightness within weeks of periastron passages if the pre-1845 orbital period was ˜5 per cent shorter than that at present due to the mass-loss of the eruption. Each event lasted only ˜100 d. (2) The main brightening at the end of 1844 has no conceivable association with periastron, beginning suddenly more than 1.5 yr after periastron. It lasted ˜10 yr, with no obvious influence of periastron encounters during that time. (3) The 1890 eruption began to brighten at periastron, but took over 1 yr to reach maximum brightness and remained there for almost 10 yr. A second periastron passage mid-way through the 1890 eruption had no visible effect. While the evidence for a link between periastron encounters and the two brief precursor events is compelling, the differences between the three cases above make it difficult to explain all three phenomena with the same mechanism.

  12. Flare Characteristics from X-ray Light Curves

    NASA Astrophysics Data System (ADS)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  13. Observations of fuors. I. Light curve of V 1057 Cyg

    SciTech Connect

    Ibragimov, M.A.; Shevchenko, V.S.

    1988-01-01

    The photographic magnitudes m/sub pg/, m/sub pv/, m/sub pr/ of the fuor V 1057 Cyg obtained during the period July 1968-August 1970 and photoelectric UBVRI' observations during the period July 1078-December 1985 are given. At the time of the rise and the light maximum of V 1057 Cyg, 26 estimates were obtained of m/sub pg/, 20 of m/sub pv/, and three of m/sub pr/. The color index upper limit V - I < 3.5 was obtained in the pre-outburst epoch. Analysis of the B, V, R light curves obtained from 300 observation nights reveals a periodic component in the small-scale light curve with a period of about 12 days and an amplitude of about 0.1 V. There has been a further slowing down in the rate of decrease of the brightness: from 1982 through 1986 the brightness of V 1057 Cyg did not decrease by more than O.2 V, whereas during the preceding four years the decrease in the brightness was ..delta..V > 0.4.

  14. WASP-14 b: transit timing analysis of 19 light curves

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Maciejewski, G.; Seeliger, M.; Marka, C.; Fernández, M.; Güver, T.; Göğüş, E.; Nowak, G.; Vaňko, M.; Berndt, A.; Eisenbeiss, T.; Mugrauer, M.; Trepl, L.; Gelszinnis, J.

    2015-08-01

    Although WASP-14 b is one of the most massive and densest exoplanets on a tight and eccentric orbit, it has never been a target of photometric follow-up monitoring or dedicated observing campaigns. We report on new photometric transit observations of WASP-14 b obtained within the framework of Transit Timing Variations @ Young Exoplanet Transit Initiative (TTV@YETI). We collected 19 light curves of 13 individual transit events using six telescopes located in five observatories distributed in Europe and Asia. From light-curve modelling, we determined the planetary, stellar, and geometrical properties of the system and found them in agreement with the values from the discovery paper. A test of the robustness of the transit times revealed that in case of a non-reproducible transit shape the uncertainties may be underestimated even with a wavelet-based error estimation methods. For the timing analysis, we included two publicly available transit times from 2007 and 2009. The long observation period of seven years (2007-2013) allowed us to refine the transit ephemeris. We derived an orbital period 1.2 s longer and 10 times more precise than the one given in the discovery paper. We found no significant periodic signal in the timing-residuals and, hence, no evidence for TTV in the system.

  15. Spectral Lags Obtained by CCF of Smoothed Light Curves

    NASA Astrophysics Data System (ADS)

    Zhaosheng; Chen, Li; Wang, Dehua

    2012-04-01

    We present a new technique to calculate the spectral lags of gamma-ray bursts (GRBs). Unlike previous processing methods, we first smooth the light curves of gamma-ray bursts in high- and low-energy bands using the "Loess" filter, then we directly define the spectral lags as such to maximize the cross-correlation function (CCF) between two smoothed light curves. This method is suitable for various shapes of CCF; it effectively avoids the errors caused by manual selections for the fitting function and fitting interval. Using the method, we have carefully measured the spectral lags of individual pulses contained in Swift BAT gamma-ray bursts with known redshifts and confirmed the anticorrelation between the spectral lag and the isotropic luminosity. The distribution of spectral lags can be well fitted by four Gaussian components, with the centroids at 0.03 s, 0.09 s, 0.15 s, and 0.21 s, respectively. We find that some spectral lags of the multipeak GRBs seem to evolve with time.

  16. Spectral Lags Obtained by CCF of Smoothed Light Curves

    NASA Astrophysics Data System (ADS)

    Li, Zhaosheng; Chen, Li; Wang, Dehua

    2012-04-01

    We present a new technique to calculate the spectral lags of gamma-ray bursts (GRBs). Unlike previous processing methods, we first smooth the light curves of gamma-ray bursts in high- and low-energy bands using the “Loess” filter, then we directly define the spectral lags as such to maximize the cross-correlation function (CCF) between two smoothed light curves. This method is suitable for various shapes of CCF; it effectively avoids the errors caused by manual selections for the fitting function and fitting interval. Using the method, we have carefully measured the spectral lags of individual pulses contained in Swift BAT gamma-ray bursts with known redshifts and confirmed the anticorrelation between the spectral lag and the isotropic luminosity. The distribution of spectral lags can be well fitted by four Gaussian components, with the centroids at 0.03 s, 0.09 s, 0.15 s, and 0.21 s, respectively. We find that some spectral lags of the multipeak GRBs seem to evolve with time.

  17. Inferring asymmetric limb cloudiness on exoplanets from transit light curves

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Gratier, P.; Bordé, P.; Leconte, J.; Selsis, F.

    2016-05-01

    Context. Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. Aims: We present a conceptually simple technique for detecting inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals that are different from standard symmetric models. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. Methods: We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b, and HD 209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well suited for this method since it allows for a very high time resolution. Results: We do not find any statistically sound cloud signature in the data of the considered planets. For HAT-P-7b, a tentative detection of an asymmetric cloud cover is found, consistent with analysis of the optical phase curve. Based on Bayesian probability arguments, a symmetric model with an offset in the transit ephemeris is still the most viable model. This work demonstrates that for suitable targets, namely low-gravity planets around bright stars, the method can be used to constrain cloud cover characteristics and is thus a helpful additional tool for the study of exoplanetary atmospheres.

  18. Broadband turbulent spectra in gamma-ray burst light curves

    SciTech Connect

    Van Putten, Maurice H. P. M.; Guidorzi, Cristiano; Frontera, Filippo

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  19. Light Curve and Orbital Period Analysis of VX Lac

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; Nelson, R. H.; Şenavcı, H. V.; İzci, D.; Özavcı, İ.; Gümüş, D.

    2017-04-01

    In this study, we performed simultaneously light curve and radial velocity, and also period analyses of the eclipsing binary system VX Lac. Four color (BVRI) light curves of the system were analysed using the W-D code. The results imply that VX Lac is a classic Algol-type binary with a mass ratio of q=0.27, of which the less massive secondary component fills its Roche lobe. The orbital period behaviour of the system was analysed by assuming the light time effect (LITE) from a third body. The O-C analysis yielded a mass transfer rate of dM/dt=1.86×10-8M⊙yr-1 and the minimal mass of the third body to be M3=0.31M⊙. The residuals from mass transfer and the third body were also analysed because another cyclic variation is seen in O-C diagram. This periodic variation was examined under the hypotheses of stellar magnetic activity and fourth body.

  20. SIMULATED PERFORMANCE OF TIMESCALE METRICS FOR APERIODIC LIGHT CURVES

    SciTech Connect

    Findeisen, Krzysztof; Hillenbrand, Lynne; Cody, Ann Marie

    2015-01-10

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time-domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy—Δm-Δt plots, peak-finding, and Gaussian process regression—and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that Δm-Δt plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out analogous simulations for their own observing programs.

  1. Simulated Performance of Timescale Metrics for Aperiodic Light Curves

    NASA Astrophysics Data System (ADS)

    Findeisen, Krzysztof; Cody, Ann Marie; Hillenbrand, Lynne

    2015-01-01

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time-domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy—Δm-Δt plots, peak-finding, and Gaussian process regression—and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that Δm-Δt plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out analogous simulations for their own observing programs.

  2. A Semiautomatic Pipeline for Be Star Light Curves

    NASA Astrophysics Data System (ADS)

    Rímulo, L. R.; Carciofi, A. C.; Rivinius, T.; Okazaki, A.

    2016-11-01

    Observational and theoretical studies from the last decade have shown that the Viscous Decretion Disk (VDD) scenario, in which turbulent viscosity is the physical mechanism responsible for the transport of material and angular momentum ejected from the star to the outer regions of the disk, is the only viable model for explaining the circumstellar disks of Be stars. In the α-disk approach applied to the VDD, the dimensionless parameter α is a measure of the turbulent viscosity. Recently, combining the time-dependent evolution of a VDD α-disk with non-LTE radiative transfer calculations, the first measurement of the α parameter was made, for the disk dissipation of the Be star ω CMa. It was found that α≍ 1 for that Be disk. The main motivation of this present work is the statistical determination of the α parameter. For this purpose, we present a pipeline that will allow the semiautomatic determination of the α parameter of several dozens of light curves of Be stars available from photometric surveys, In this contribution, we describe the pipeline, outlining the main staps required for the semiautomatic analysis of light curves

  3. A Review of Correlated Noise in Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, J.; Blecic, J.; Hardy, R. A.; Hardin, M.

    2013-10-01

    A number of the occultation light curves of exoplanets exhibit time-correlated residuals (a.k.a. correlated or red noise) in their model fits. The correlated noise might arise from inaccurate models or unaccounted astrophysical or telescope systematics. A correct assessment of the correlated noise is important to determine true signal-to-noise ratios of a planet's physical parameters. Yet, there are no in-depth statistical studies in the literature for some of the techniques currently used (RMS-vs-bin size plot, prayer beads, and wavelet-based modeling). We subjected these correlated-noise assessment techniques to basic tests on synthetic data sets to characterize their features and limitations. Initial results indicate, for example, that, sometimes the RMS-vs-bin size plots present artifacts when the bin size is similar to the observation duration. Further, the prayer beads doesn't correctly increase the uncertainties to compensate for the lack of accuracy if there is correlated noise. We have applied these techniques to several Spitzer secondary-eclipse hot-Jupiter light curves and discuss their implications. This work was supported in part by NASA planetary atmospheres grant NNX13AF38G and Astrophysics Data Analysis Program NNX12AI69G.

  4. On the nature of rapidly fading Type II supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Pruzhinskaya, Maria V.; Ergon, Mattias; Blinnikov, Sergei I.

    2016-01-01

    It has been suggested that Type II supernovae with rapidly fading light curves (a.k.a. Type IIL supernovae) are explosions of progenitors with low-mass hydrogen-rich envelopes which are of the order of 1 M⊙. We investigate light-curve properties of supernovae from such progenitors. We confirm that such progenitors lead to rapidly fading Type II supernovae. We find that the luminosity of supernovae from such progenitors with the canonical explosion energy of 1051 erg and 56Ni mass of 0.05 M⊙ can increase temporarily shortly before all the hydrogen in the envelope recombines. As a result, a bump appears in their light curves. The bump appears because the heating from the nuclear decay of 56Ni can keep the bottom of hydrogen-rich layers in the ejecta ionized, and thus the photosphere can stay there for a while. We find that the light-curve bump becomes less significant when we make explosion energy larger (≳2 × 1051 erg), 56Ni mass smaller (≲0.01 M⊙), 56Ni mixed in the ejecta, or the progenitor radius larger. Helium mixing in hydrogen-rich layers makes the light-curve decline rates large but does not help reducing the light-curve bump. Because the light-curve bump we found in our light-curve models has not been observed in rapidly fading Type II supernovae, they may be characterized by not only low-mass hydrogen-rich envelopes but also higher explosion energy, larger degrees of 56Ni mixing, and/or larger progenitor radii than slowly fading Type II supernovae, so that the light-curve bump does not become significant.

  5. Supernova VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  6. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  7. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  8. VizieR Online Data Catalog: V346 Cen multiwavelength light curves (Mayer+, 2016)

    NASA Astrophysics Data System (ADS)

    Mayer, P.; Harmanec, P.; Wolf, M.; Nemravova, J.; Prsa, A.; Fremat, Y.; Zejda, M.; Liska, J.; Jurysek, J.; Honkova, K.; Masek, M.

    2016-06-01

    We present photographic light curves from O'Connell (1939, Publications of the Riverview College Observatory, 2, 5), uvby light curves from Gimenez et al. (1986A&AS...66...45G), BVR light curves from 0.6 m reflector with a CCD camera, Mt. John, New Zealand, green light curve from Sonnar 4/135mm telephoto lens with a CCD ATIK16IC camera, Sutherland, South Africa and BVRI light curves from 0.3m Meade Schmidt-Cassegrain reflector with a CCD camera. (5 data files).

  9. Multifrequency light curves of low-frequency variable radio sources

    NASA Astrophysics Data System (ADS)

    Altschuler, D. R.; Broderick, J. J.; Dennison, B.; Mitchell, K. J.; Odell, S. L.; Condon, J. J.; Payne, H. E.

    1984-12-01

    Light curves for the low-frequency variable sources AO 0235 + 16, NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3, obtained in monthly observations at 318, 430, and 606 MHz using the 305-m telescope at Arecibo and in bimonthly observations at 880 MHz and 1.4 GHz using the 91-m Green Bank transit telescope during 1980-1983, are presented and analyzed. AO 0235 + 16 is found to have basically canonical variability which is attributed to relativistically moving evolving synchrotron components; but in the other sources, strong simultaneous variations at 318, 430, and 606 MHz are observed to be greatly diminished in amplitude at 880 MHz and 1.4 GHz, confirming the existence of the intermediate-frequency gap at about 1 GHz proposed by Spangler and Cotton (1981). The possibility that a second variability mechanism is active in these sources is explored.

  10. Multifrequency light curves of low-frequency variable radio sources

    NASA Technical Reports Server (NTRS)

    Altschuler, D. R.; Broderick, J. J.; Dennison, B.; Mitchell, K. J.; Odell, S. L.; Condon, J. J.; Payne, H. E.

    1984-01-01

    Light curves for the low-frequency variable sources AO 0235 + 16, NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3, obtained in monthly observations at 318, 430, and 606 MHz using the 305-m telescope at Arecibo and in bimonthly observations at 880 MHz and 1.4 GHz using the 91-m Green Bank transit telescope during 1980-1983, are presented and analyzed. AO 0235 + 16 is found to have basically canonical variability which is attributed to relativistically moving evolving synchrotron components; but in the other sources, strong simultaneous variations at 318, 430, and 606 MHz are observed to be greatly diminished in amplitude at 880 MHz and 1.4 GHz, confirming the existence of the intermediate-frequency gap at about 1 GHz proposed by Spangler and Cotton (1981). The possibility that a second variability mechanism is active in these sources is explored.

  11. High-order harmonics in light curves of Kepler planets

    NASA Astrophysics Data System (ADS)

    Armstrong, Caden; Rein, Hanno

    2015-10-01

    The Kepler mission was launched in 2009 and has discovered thousands of planet candidates. In a recent paper, Esteves et al. found a periodic signal in the light curves of KOI-13 and HAT-P-7, with a frequency triple the orbital frequency of a transiting planet. We found similar harmonics in many systems with a high occurrence rate. At this time, the origins of the signal are not entirely certain. We look carefully at the possibility of errors being introduced through our data processing routines but conclude that the signal is real. The harmonics on multiples of the orbital frequency are a result of non-sinusoidal periodic signals. We speculate on their origin and generally caution that these harmonics could lead to wrong estimates of planet albedos, beaming mass estimates, and ellipsoidal variations.

  12. Detecting faint echoes in stellar-flare light curves

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.

    1992-01-01

    Observational considerations are discussed for detecting echoes from flare-star photospheres and from stellar or planetary companions. Synthetic spectra are used to determine optimal conditions for the recovery of echoes in flare light curves. The most detectable echoes are expected to appear in broadband observations of the UV continuum. Short-lived flares are ideal for resolving echoes from the flare-star photosphere and may provide constraints for stellar-flare models. Strong outbursts may be used to detect stellar or planetary companions of a flare star. However, the possible planetary configurations that may be probed by this method are limited to Jupiter-size objects in tight orbits about the parent star.

  13. Multifrequency light curves of low-frequency variable radio sources

    NASA Technical Reports Server (NTRS)

    Altschuler, D. R.; Broderick, J. J.; Dennison, B.; Mitchell, K. J.; Odell, S. L.; Condon, J. J.; Payne, H. E.

    1984-01-01

    Light curves for the low-frequency variable sources AO 0235 + 16, NRAO 140, PKS 1117 + 14, DA 406, CTA 102, and 3C 454.3, obtained in monthly observations at 318, 430, and 606 MHz using the 305-m telescope at Arecibo and in bimonthly observations at 880 MHz and 1.4 GHz using the 91-m Green Bank transit telescope during 1980-1983, are presented and analyzed. AO 0235 + 16 is found to have basically canonical variability which is attributed to relativistically moving evolving synchrotron components; but in the other sources, strong simultaneous variations at 318, 430, and 606 MHz are observed to be greatly diminished in amplitude at 880 MHz and 1.4 GHz, confirming the existence of the intermediate-frequency gap at about 1 GHz proposed by Spangler and Cotton (1981). The possibility that a second variability mechanism is active in these sources is explored.

  14. A Light Curve of Theta-1 Orionis A

    NASA Astrophysics Data System (ADS)

    Robertson, J. R.; Stutts, S. C.; Caton, D. B.

    2002-12-01

    Theta-1 Orionis A (V1016 Ori), a member of the Trapezium, was only discovered to be an eclipsing binary system in 1974. The study of this system has been recently summarized by Strickland and Lloyd (The Observatory, 120, 2000, pp. 141-149). We are obtaining a complete light curve in VBRI using a CCD on the 18-inch telescope at Appalachian State University's Dark Sky Observatory. We have obtained new times of primary minimum and are searching for the undiscovered secondary eclipse as well. A status update on this project will be presented. We gratefully acknowledge the support of the National Science Foundation, through grant AST-9731062, and the Dunham Fund for Astrophysical Research. We would also like to thank the staff of the U.S. Naval Observatory Library and acknowledge the use of the Simbad Astronomical Data Base. The instrumentation help provided by Lee Hawkins and Robert Miller is appreciated as well.

  15. Thermal evolution and light curves of young bare strange stars.

    PubMed

    Page, Dany; Usov, Vladimir V

    2002-09-23

    We study numerically the cooling of a young bare strange star and show that its thermal luminosity, mostly due to e(+)e(-) pair production from the quark surface, may be much higher than the Eddington limit. The mean energy of photons far from the strange star is approximately 10(2) keV or even more. This differs both qualitatively and quantitatively from the thermal emission from neutron stars and provides a definite observational signature for bare strange stars. It is shown that the energy gap of superconducting quark matter may be estimated from the light curves if it is in the range from approximately 0.5 MeV to a few MeV.

  16. Common Envelope Light Curves. I. Grid-code Module Calibration

    NASA Astrophysics Data System (ADS)

    Galaviz, Pablo; De Marco, Orsola; Passy, Jean-Claude; Staff, Jan E.; Iaconi, Roberto

    2017-04-01

    The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been put forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8 M ⊙ red giant branch star interacts with a 0.6 M ⊙ companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.

  17. On Correlated-noise Analyses Applied to Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Loredo, Thomas J.; Lust, Nate B.; Blecic, Jasmina; Stemm, Madison

    2017-01-01

    Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here, we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging’s rms-versus-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect when retrieving the eclipse depth from Spitzer data sets, these methods covered the true (injected) depth within the 68% credible region in only ∼45%–65% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo (MC3). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. MC3 is a Python/C code, available at https://github.com/pcubillos/MCcubed.

  18. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  19. Slowly fading super-luminous supernovae that are not pair-instability explosions.

    PubMed

    Nicholl, M; Smartt, S J; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T-W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

    2013-10-17

    Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.

  20. Slowly fading super-luminous supernovae that are not pair-instability explosions

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.-W.; Smith, K.; Young, D. R.; Sim, S. A.; Valenti, S.; Howell, D. A.; Bresolin, F.; Kudritzki, R. P.; Tonry, J. L.; Huber, M. E.; Rest, A.; Pastorello, A.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mattila, S.; Kankare, E.; Kangas, T.; Leloudas, G.; Sollerman, J.; Taddia, F.; Berger, E.; Chornock, R.; Narayan, G.; Stubbs, C. W.; Foley, R. J.; Lunnan, R.; Soderberg, A.; Sanders, N.; Milisavljevic, D.; Margutti, R.; Kirshner, R. P.; Elias-Rosa, N.; Morales-Garoffolo, A.; Taubenberger, S.; Botticella, M. T.; Gezari, S.; Urata, Y.; Rodney, S.; Riess, A. G.; Scolnic, D.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K.; Flewelling, H. A.; Magnier, E. A.; Kaiser, N.; Metcalfe, N.; Morgan, J.; Price, P. A.; Sweeney, W.; Waters, C.

    2013-10-01

    Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of `pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10-6 times that of the core-collapse rate.

  1. Video meteor light curve analysis of Orionids and Geminids and developing a method for obtaining the absolute light curves of shower meteors from the single station data

    NASA Astrophysics Data System (ADS)

    Grašić, L.; Milanović, N.; Pavlović, D.

    2016-01-01

    We developed a method for obtaining the absolute light curves of the shower meteors from single station video data. We found that even though the height of a meteor atmospheric trajectory obtained by using this method may have a large error, the absolute light curve shape is preserved. We used our method to calculate the F parameters of the Orionid and Geminid light curves. The light curves were obtained from the single station video data by the instrument with a limiting sensitivity of 3.5m. We found that for our sample of the light curves the zenith distance of meteor radiant does not affect the F parameter for either of the two showers. The value of F parameter of the Orionids obtained in this paper matches the values obtained by other authors, whilst for the Geminids it is significantly different.

  2. Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO

    NASA Astrophysics Data System (ADS)

    Maund, J. R.; Fraser, M.; Smartt, S. J.; Botticella, M. T.; Barbarino, C.; Childress, M.; Gal-Yam, A.; Inserra, C.; Pignata, G.; Reichart, D.; Schmidt, B.; Sollerman, J.; Taddia, F.; Tomasella, L.; Valenti, S.; Yaron, O.

    2013-04-01

    We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (<6 d). We derive a luminosity for the progenitor, in comparison with MARCS model spectral energy distributions, of log {L/L}_{⊙} = 5.15± 0.19, from which we infer an initial mass range of 14-22 M⊙. This is the first SN with an identified progenitor to be followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO).

  3. EMISSION FROM PAIR-INSTABILITY SUPERNOVAE WITH ROTATION

    SciTech Connect

    Chatzopoulos, E.; Van Rossum, Daniel R.; Craig, Wheeler J.; Whalen, Daniel J.; Smidt, Joseph; Wiggins, Brandon

    2015-01-20

    Pair-instability supernovae (PISNe) have been suggested as candidates for some superluminous supernovae, such as SN 2007bi, and as one of the dominant types of explosion occurring in the early universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating, therefore exhibiting different evolutionary properties due to the effects of rotationally induced mixing and mass-loss. Proper identification of such events requires rigorous radiation hydrodynamics and radiative transfer calculations that capture not only the behavior of the light curve but also the spectral evolution of these events. We present radiation hydrodynamics and radiation transport calculations for 90-300 M {sub ☉} rotating PISNe covering both the shock breakout and late light curve phases. We also investigate cases of different initial metallicity and rotation rate to determine the impact of these parameters on the detailed spectral characteristics of these events. In agreement with recent results on non-rotating PISNe, we find that for a range of progenitor masses and rotation rates these events have intrinsically red colors in contradiction with observations of superluminous supernovae. The spectroscopic properties of rotating PISNe are similar to those of non-rotating events with stripped hydrogen and helium envelopes. We find that the progenitor metallicity and rotation rate properties are erased after the explosion and cannot be identified in the resulting model spectra. It is the combined effects of pre-supernova mass-loss and the basic properties of the supernova ejecta such as mass, temperature, and velocity that have the most direct impact in the model spectra of PISNe.

  4. AN X-RAY AND OPTICAL LIGHT CURVE MODEL OF THE ECLIPSING SYMBIOTIC BINARY SMC3

    SciTech Connect

    Kato, Mariko; Hachisu, Izumi; Mikolajewska, Joanna

    2013-01-20

    Some binary evolution scenarios for Type Ia supernovae (SNe Ia) include long-period binaries that evolve to symbiotic supersoft X-ray sources in their late stage of evolution. However, symbiotic stars with steady hydrogen burning on the white dwarf's (WD) surface are very rare, and the X-ray characteristics are not well known. SMC3 is one such rare example and a key object for understanding the evolution of symbiotic stars to SNe Ia. SMC3 is an eclipsing symbiotic binary, consisting of a massive WD and red giant (RG), with an orbital period of 4.5 years in the Small Magellanic Cloud. The long-term V light curve variations are reproduced as orbital variations in the irradiated RG, whose atmosphere fills its Roche lobe, thus supporting the idea that the RG supplies matter to the WD at rates high enough to maintain steady hydrogen burning on the WD. We also present an eclipse model in which an X-ray-emitting region around the WD is almost totally occulted by the RG swelling over the Roche lobe on the trailing side, although it is always partly obscured by a long spiral tail of neutral hydrogen surrounding the binary in the orbital plane.

  5. Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; Hosseinzadeh, Griffin; Brown, Peter J.; Smartt, Stephen J.; Valenti, Stefano; Tartaglia, Leonardo; Piro, Anthony L.; Sanchez, José L.; Nicholls, Brent; Monard, Berto L. A. G.; Howell, D. Andrew; McCully, Curtis; Sand, David J.; Tonry, John; Denneau, Larry; Stalder, Brian; Heinze, Ari; Rest, Armin; Smith, Ken W.; Bishop, David

    2017-03-01

    SN 2016gkg is a nearby SN IIb discovered shortly after explosion. Like several other Type IIb events with early-time data, SN 2016gkg displays a double-peaked light curve, with the first peak associated with the cooling of a low-mass extended progenitor envelope. We present unprecedented intranight-cadence multi-band photometric coverage of the first light curve peak of SN 2016gkg obtained from the Las Cumbres Observatory Global Telescope network, the Asteroid Terrestrial-impact Last Alert System, the Swift satellite, and various amateur-operated telescopes. Fitting these data to analytical shock-cooling models gives a progenitor radius of ˜40-150 {R}⊙ with ˜2-40 × 10-2 {M}⊙ of material in the extended envelope (depending on the model and the assumed host-galaxy extinction). Our radius estimates are broadly consistent with values derived independently (in other works) from HST imaging of the progenitor star. However, the shock-cooling model radii are on the lower end of the values indicated by pre-explosion imaging. Hydrodynamical simulations could refine the progenitor parameters deduced from the shock-cooling emission and test the analytical models.

  6. Jitter radiation images, spectra and light curves from a relativistic spherical blastwave

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.; Workman, Jared C.; Lazzati, Davide; Medvedev, Mikhail V.

    2009-02-01

    We consider radiation emitted by the jitter mechanism in a Blandford-McKee self-similar blastwave. We assume the magnetic field configuration throughout the whole blastwave meets the condition for the emission of jitter radiation and we compute the ensuing images, light curves and spectra. The calculations are performed for both a uniform and a wind environment. We compare our jitter results to synchrotron results. We show that jitter radiation produces slightly different spectra than synchrotron, in particular between the self-absorption and the peak frequency, where the jitter spectrum is flat, while the synchrotron spectrum grows as ν1/3. The spectral difference is reflected in the early decay slope of the light curves. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behaviour of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behaviour.

  7. Spectroscopic Observations of SN 2012fr: A Luminous, Normal Type Ia Supernova with Early High-velocity Features and a Late Velocity Plateau

    NASA Astrophysics Data System (ADS)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Bufano, F.; de Jaeger, T.; Forster, F.; Gal-Yam, A.; Le Guillou, L.; Maguire, K.; Maund, J.; Mazzali, P. A.; Pignata, G.; Smartt, S.; Spyromilio, J.; Sullivan, M.; Taddia, F.; Valenti, S.; Bayliss, D. D. R.; Bessell, M.; Blanc, G. A.; Carson, D. J.; Clubb, K. I.; de Burgh-Day, C.; Desjardins, T. D.; Fang, J. J.; Fox, O. D.; Gates, E. L.; Ho, I.-T.; Keller, S.; Kelly, P. L.; Lidman, C.; Loaring, N. S.; Mould, J. R.; Owers, M.; Ozbilgen, S.; Pei, L.; Pickering, T.; Pracy, M. B.; Rich, J. A.; Schaefer, B. E.; Scott, N.; Stritzinger, M.; Vogt, F. P. A.; Zhou, G.

    2013-06-01

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity "photospheric" component. This Si II λ6355 HVF fades by phase -5 subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ~12,000 km s-1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s-1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s-1 two weeks before maximum. SN 2012fr resides on the border between the "shallow silicon" and "core-normal" subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the "low velocity gradient" group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  8. Supervised detection of anomalous light curves in massive astronomical catalogs

    SciTech Connect

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos; Kim, Dae-Won

    2014-09-20

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known

  9. Predicting Fundamental Stellar Parameters From Photometric Light Curves

    NASA Astrophysics Data System (ADS)

    Miller, Adam; Richards, J.; Bloom, J. S.; a larger Team

    2014-01-01

    We present a new machine-learning-based framework for the prediction of the fundamental stellar parameters, Teff, log g, and [Fe/H], based on the photometric light curves of variable stellar sources. The method was developed following a systematic spectroscopic survey of stellar variability. Variable sources were selected from repeated Sloan Digital Sky Survey (SDSS) observations of Stripe 82, and spectroscopic observations were obtained with Hectospec on the 6.5-m Multi-Mirror Telescope. In sum, spectra were obtained for ~9000 stellar variables (including ~3000 from the SDSS archive), for which we measured Teff, log g, and [Fe/H] using the Segue Stellar Parameters Pipeline (SSPP). Examining the full sample of ~67k variables in Stripe 82, we show that the vast majority of photometric variables are consistent with main-sequence stars, even after restricting the search to high galactic latitudes. From the spectroscopic sample we confirm that most of these stellar variables are G and K dwarfs, though there is a bias in the output of the SSPP that prevents the identification of M type variables. We are unable to identify the dominant source of variability for these stars, but eclipsing systems and/or star spots are the most likely explanation. We develop a machine-learning model that can determine Teff, log g, and [Fe/H] without obtaining a spectrum. Instead, the random-forest-regression model uses SDSS color information and light-curve features to infer stellar properties. We detail how the feature set is pruned and the model is optimized to produce final predictions of Teff, log g, and [Fe/H] with a typical scatter of 165 K, 0.42 dex, and 0.33 dex, respectively. We further show that for the subset of variables with at least 50 observations in the g band the typical scatter reduces to 75 K, 0.19 dex, and 0.16 dex, respectively. We consider these results an important step on the path to the efficient and optimal extraction of information from future time

  10. Predicting Fundamental Stellar Parameters from Photometric Light Curves

    NASA Astrophysics Data System (ADS)

    Miller, A.

    We present a new machine learning based framework for the prediction of the fun- damental stellar parameters, Teff, logg, and [Fe/H], based on the photometric light curves of variable stellar sources. The method was developed following a systematic spectroscopic survey of stellar variability. Variable sources were selected from re- peated Sloan Digital Sky Survey (SDSS) observations of Stripe 82, and spectroscopic observations were obtained with Hectospec on the 6.5-m Multi-Mirror Telescope. In sum, spectra were obtained for ˜9,000 stellar variables (including ˜3,000 from the SDSS archive), for which we measured Teff, log g, and [Fe/H] using the Segue Stellar Parameters Pipeline (SSPP). Examining the full sample of ˜67,000 variables in Stripe 82, we show that the vast majority of photometric variables are consistent with main-sequence stars, even after restricting the search to high galactic latitudes. From the spectroscopic sample we confirm that most of these stellar variables are G and K dwarfs, though there is a bias in the output of the SSPP that prevents the identification of M type variables. We are unable to identify the dominant source of variability for these stars, but eclipsing systems and/or star spots are the most likely explanation. We develop a machine learning model that can determine Teff , log g, and [Fe/H] without obtaining a spectrum. Instead, the random forest regression model uses SDSS color information and light curve features to infer stellar properties. We detail how the feature set is pruned and the model is optimized to produce final predictions of Teff, log g, and [Fe/H] with a typical scatter of 165 K, 0.42 dex, and 0.33 dex, respectively. We further show that for the subset of variables with at least 50 observations in the g band the typical scatter reduces to 75 K, 0.19 dex, and 0.16 dex, respectively. We consider these results an important step on the path to the efficient and optimal extraction of information from future time

  11. Supervised Detection of Anomalous Light Curves in Massive Astronomical Catalogs

    NASA Astrophysics Data System (ADS)

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos; Kim, Dae-Won

    2014-09-01

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known

  12. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  13. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  14. Four Papers by the Supernova Cosmology Project

    SciTech Connect

    Perlmutter, S.; et al.

    1995-06-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a 'batch' search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and 'standard clock' to study the cosmological parameters q{sub 0}, {Lambda}, {Omega}{sub 0}, and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0}, of these first high-redshift supernovae from our ongoing search.

  15. The light curve of a transient X-ray source

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Eadie, G.; Pounds, K. A.; Ricketts, M. J.; Watson, M.

    1975-01-01

    The Ariel-5 satellite has monitored the X-ray light curve of A1524-62 almost continuously from 40 days prior to maximum light until its disappearance below the effective experimental sensitivity. The source exhibited maximum light on Dec. 4, 1974, at a level of 0.9 the apparent magnitude of the Crab Nebula in the energy band 3-6 keV. Although similar to previously reported transient sources with a decay time constant of about 2 months, the source exhibited an extended, variable preflare on-state of about 1 month at a level of greater than 0.1 maximum light. The four bright (greater than 0.2 of the Crab Nebula) transient sources observed during the first half-year of Ariel-5 operation are indicative of a galactic disk distribution, a luminosity at maximum in excess of 10 to the 37-th power ergs/sec, a frequency of occurrence which may be as high as 100/yr, and a median decay time which is less than 1 month.

  16. The light curve of a transient X-ray source

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Eadie, G.; Pounds, K. A.; Ricketts, M. J.; Watson, M.

    1975-01-01

    The Ariel-5 satellite has monitored the X-ray light curve of A1524-62 almost continuously from 40 days prior to maximum light until its disappearance below the effective experimental sensitivity. The source exhibited maximum light on Dec. 4, 1974, at a level of 0.9 the apparent magnitude of the Crab Nebula in the energy band 3-6 keV. Although similar to previously reported transient sources with a decay time constant of about 2 months, the source exhibited an extended, variable preflare on-state of about 1 month at a level of greater than 0.1 maximum light. The four bright (greater than 0.2 of the Crab Nebula) transient sources observed during the first half-year of Ariel-5 operation are indicative of a galactic disk distribution, a luminosity at maximum in excess of 10 to the 37-th power ergs/sec, a frequency of occurrence which may be as high as 100/yr, and a median decay time which is less than 1 month.

  17. Disk irradiation and light curves of x ray novae

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Wheeler, J. C.; Mineshige, S.

    1994-01-01

    We study the disk instability and the effect of irradiation on outbursts in the black hole X-ray nova system. In both the optical and soft X-rays, the light curves of several X-ray novae, A0620-00, GH 2000+25, Nova Muscae 1991 (GS 1124-68), and GRO J0422+32, show a main peak, a phase of exponential decline, a secondary maximum or reflare, and a final bump in the late decay followed by a rapid decline. Basic disk thermal limit cycle instabilities can account for the rapid rise and overall decline, but not the reflare and final bump. The rise time of the reflare, about 10 days, is too short to represent a viscous time, so this event is unlikely to be due to increased mass flow from the companion star. We explore the possibility that irradiation by X-rays produced in the inner disk can produce these secondary effects by enhancing the mass flow rate within the disk. Two plausible mechanisms of irradiation of the disk are considered: direct irradiation from the inner hot disk and reflected radiation from a corona or other structure above the disk. Both of these processes will be time dependent in the context of the disk instability model and result in more complex time-dependent behavior of the disk structure. We test both disk instability and mass transfer burst models for the secondary flares in the presence of irradiation.

  18. Performance of Electroluminescent Flats for Precision Light Curve Photometry

    NASA Astrophysics Data System (ADS)

    Avril, Ryan L.; Oberst, T. E.

    2014-01-01

    We measure of the quality of flat field frames (flats) taken using an electroluminescent (EL) panel versus both dome and sky flats for purposes of calibrating visual CCD images. Classic dome and sky flats can both suffer from overall gradients and local irregularities. EL panel flats have recently grown in popularity as a third alternative, based partly on their potential to be free of such defects. We assess the flats based on their contributions to the RMS noise of long-duration light curves constructed via differential aperture photometry. The noise levels explored range from ~ 1 - few mmag, as needed for the ground-based detection of transiting planets. The target and reference stars are deliberately permitted to drift across the CCD in order to probe pixel-to-pixel variations. Both the filter and focus are varied during the tests - the former to probe color variation in the flats, and the latter because defocusing tends to average out pixel-to-pixel variations that the flats are intended to remove. All tests were performed at the Westminster College Observatory (WCO), which belongs to the Kilodegree Extremely Little Telescope (KELT)-North follow-up network.

  19. Real Time Polarization Light Curves for Space Debris and Satellites

    NASA Astrophysics Data System (ADS)

    Stryjewski, J.; Hand, D.; Tyler, D.; Murali, S.; Roggemann, M.; Peterson, N.

    2010-09-01

    In recent years there as been a lot of interest in using the time history of re_ected solar light (light curves) from satellites and space debris as a means of determining shape and material composition. Most of these studies used time series analysis in an attempt to classify objects while some have used multi-spectral or spectroscopic approaches. One of the difficulties that most of these approaches had was the lack of high fidelity shape and material modeling. Here we present a high fidelity modeling approach that correctly describes the shape, material and dynamics of space objects. Furthermore, this model, in real time, correctly models reflection, emission, glint and polarization effects. We use this model to show how detection of polarization effects can help characterize both satellites and space debris. Polarization approaches have an advantage over spectroscopic or intensity based method because polarization is unaffected by the atmosphere. We present a comparison of polarization approaches for the analysis of space debris and satellites and discuss the advantages of being able to do these calculations in real time.

  20. THE TRANSIT LIGHT CURVE OF AN EXOZODIACAL DUST CLOUD

    SciTech Connect

    Stark, Christopher C.

    2011-10-15

    Planets embedded within debris disks gravitationally perturb nearby dust and can create clumpy, azimuthally asymmetric circumstellar ring structures that rotate in lock with the planet. The Earth creates one such structure in the solar zodiacal dust cloud. In an edge-on system, the dust 'clumps' periodically pass in front of the star as the planet orbits, occulting and forward-scattering starlight. In this paper, we predict the shape and magnitude of the corresponding transit signal. To do so, we model the dust distributions of collisional, steady-state exozodiacal clouds perturbed by planetary companions. We examine disks with dusty ring structures formed by the planet's resonant trapping of in-spiraling dust for a range of planet masses and semi-major axes, dust properties, and disk masses. We synthesize edge-on images of these models and calculate the transit signatures of the resonant ring structures. The transit light curves created by dusty resonant ring structures typically exhibit two broad transit minima that lead and trail the planetary transit. We find that Jupiter-mass planets embedded within disks hundreds of times denser than our zodiacal cloud can create resonant ring structures with transit depths up to {approx}10{sup -4}, possibly detectable with Kepler. Resonant rings produced by planets more or less massive than Jupiter produce smaller transit depths. Observations of these transit signals may provide upper limits on the degree of asymmetry in exozodiacal clouds.

  1. The light curves of RR Lyrae field stars

    NASA Astrophysics Data System (ADS)

    Simon, N. R.; Teays, T. J.

    1982-10-01

    Fourier decompositions have been made of the light curves of a large sample of RR Lyrae field stars. The coefficients have been tabulated. Following the scheme of an earlier investigation of classical Cepheids, certain combinations of the low-order coefficients - phi21, R21, and phi31 - are plotted against period. The Bailey-type c pulsators stand out from the type ab stars, particularly on the R21 plot which is found to be a more sensitive discriminator of Bailey type than is the traditionally employed amplitude-period diagram. The RR Lyrae plots of phi21, R21, and phi31 are compared with those previously obtained for classical Cepheids. It is noted that, while the Cepheid plots display a tightly defined progression with period, reflecting the influence of a modal resonance, in the RR Lyrae case there is much more scatter. However, some evidence is shown to exist for a Cepheid-like progression appearing among the longer period RR Lyrae pulsators and culminating in the unique small-amplitude variable XZ Ceti.

  2. OBSERVATIONS OF DOPPLER BOOSTING IN KEPLER LIGHT CURVES

    SciTech Connect

    Van Kerkwijk, Marten H.; Breton, Rene P.; Justham, Stephen; Rappaport, Saul A.; Podsiadlowski, Philipp; Han, Zhanwen

    2010-05-20

    Among the initial results from Kepler were two striking light curves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That result became particularly intriguing because a substellar mass had been derived for the secondary in KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large that we can use it to infer a radial velocity amplitude accurate to 1 km s{sup -1}. As far as we are aware, this is the first time a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22 {+-} 0.03 M{sub sun}. We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.

  3. Photometry of the Supernova SN 2011dh in the Whirlpool Galaxy

    NASA Astrophysics Data System (ADS)

    Duong, Nhieu; Sumandal, Julienne; Leonard, Douglas C.; Rachubo, Alisa; Khandrika, Harish G.; Salvo, Chris; Horst, Chuck

    2014-06-01

    Supernovae are categorized by the presence (Type II) or absence (Type I) of hydrogen lines in their spectra. Our object of interest, SN 2011dh is categorized by its early hydrogen lines and dominated by helium lines in the later phases, indicating a type IIb supernova (Ergon et al. 2013). Here, we present optical photometry of the SN 2011dh, which was obtained as part of the MOunt LAguna SUpernova Survey (MOLASUS) over a period of almost two years capturing the entire lifespan in four different filters (BVRI). All photometric measurements were made using IRAF, and employing point-spread-function fitting technique. We discuss and analyze the light curves produced. We acknowledge support from NSF grants AST-0850564, AST-1009571 and AST-1210311, under which part of this research was carried out.

  4. Light echoes - Type II supernovae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This 'light echo' offers a straightforward explanation of the diversity of Type II SN light curves.

  5. FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION

    SciTech Connect

    Rodney, Steven A.; Tonry, John L. E-mail: jt@ifa.hawaii.ed

    2009-12-20

    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN data sets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light-curve templates to classify SN objects. In the first case, we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes fuzzy set theory for the definition and combination of SN light-curve models. For well-sampled light curves with a modest signal-to-noise ratio (S/N >10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with >=98% accuracy. In addition, the SOFT method has the potential to classify SNe into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method are verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper, the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.

  6. GRB970228: A Supernova Gamma-Ray Burst

    NASA Technical Reports Server (NTRS)

    Galama, T. J.; Tanvir, N.; Vreeswijk, P. M.; Wijers, R. A. M. J.; Groot, P. J.; Rol, E.; VanParadiijs, J.; Kouveliotou, C.; Fruchter, A. S.; Guarnieri, A.

    2000-01-01

    We present B-, V-, R(sub c)-, I(sub c)-, J-, H-, and K-band observations of the optical transient (OT) associated with GRB970228 based on a reevaluation of published data. and present yet unpublished data. In order to minimize small calibration differences we collected and analyzed most of the photometry and determined the magnitude of the OT relative to a set of secondary field stars. We confirm that the early decay of the light curves (before March 6. 1997) was faster than that at later times (between March 6 and April 7. 1997). The early-time observations of GRB 970228 are consistent with relativistic blast wave models but the late-time observations are hard to understand in this framework. The observations are well explained by an initial power law decay with alpha = -1.46 +/- 0.33 modified at later times by a type-I(sub c) supernova light curve. together with the evidence for GRB980326 and GRB 980425 this is further evidence that at least some GRBs are associated with an unusual class of core-collapse supernovae.

  7. MODELING THE LIGHT CURVE OF THE TRANSIENT SCP06F6

    SciTech Connect

    Chatzopoulos, Emmanouil; Wheeler, J. Craig; Vinko, J. E-mail: wheel@astro.as.utexas.ed

    2009-10-20

    We consider simple models based on core collapse or pair-formation supernovae (SNe) to account for the light curve of the transient SCP06F6. A radioactive decay diffusion model provides estimates of the mass of the required radioactive nickel and the ejecta as functions of the unknown redshift. An opacity change such as by dust formation or a recombination front may account for the rapid decline from maximum. Within this class of model, the redshift must be less than z approx 1 or the nickel mass would exceed the total mass of the ejecta; the radiated energy would exceed the kinetic energy, and kinematic and photometric estimates of the radius would disagree. We particularly investigate two specific redshifts: z = 0.143, for which Gaensicke et al. have proposed that the unidentified broad absorption features in the spectrum of SCP06F6 are C{sub 2} Swan bands, and z = 0.57 based on a crude agreement with the Ca H and K and UV iron-peak absorption features that are characteristic of SNe of various types. For the lower redshift, we obtain a nickel mass of 0.3 M {sub sun} and an ejected envelope mass of approx 38 M {sub sun}, while for the latter case we find 4.8 M {sub sun} and 20 M {sub sun}, respectively, for fiducial parameters. The kinetic energy of the ejecta, while dependent on uncertain parameters, is generally large, approx10{sup 52} erg, throughout this range of redshift. The ejected masses and kinetic energies are smaller for a more tightly constrained model invoking envelope recombination. We also discuss the possibilities of circumstellar matter (CSM) shell diffusion and shock interaction models. In general, optically thick CSM diffusion models can fit the data with the underlying energy coming from an energetic buried SN. Models in which the CSM is of lower density so that the shock energy is both rapidly thermalized and radiated tend not to be self-consistent. We suggest that a model of SCP06F6 worth further exploration is one in which the redshift is

  8. Transient structure in the high-energy X-ray light curve of NP 0532

    NASA Technical Reports Server (NTRS)

    Ryckman, S. G.; Ricker, G. R.; Scheepmaker, A.; Ballintine, J. E.; Doty, J. P.; Downey, P. M.; Lewin, W. H. G.

    1977-01-01

    The paper reports the observation of pulsed fractions in the primary and secondary peaks, as well as in the interpulse region, of the high-energy X-ray light curve of NP 0532. A statistical analysis of light-curve data is performed, and a similar analysis is carried out using simulated data. It is concluded that a previously reported third peak in the light curve was transient in nature.

  9. The LCOGT Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis; Valenti, Stefano; Lcogt Supernova Key Project

    2015-01-01

    I present first results from the Las Cumbres Observatory Global Telescope Network (LCOGT) Supernova Key Project. LCOGT is a network of 11 robotic one and two meter telescopes spaced around the globe with imaging and spectroscopic capabilities. The supernova key project is a 3 year program to obtain lightcurves and spectra of at least 450 supernovae. About half are expected to be core-collapse supernovae, and half thermonuclear. We will start light curves and spectroscopy within hours of discovery, and focus on those SNe caught soon after explosion. The goals are fivefold: (1) observe supernovae soon after explosion to search for signs of their progenitors, (2) obtain a large homogeneous sample of supernovae for next generation cosmological studies, (3) obtain a large sample of supernovae for statistical studies comparing groups that are split into different populations, (4) obtain some of the first large samples of the recently discovered classes of rare and exotic explosions, (5) obtain the optical light curves and spectroscopy in support of studies at other wavelengths and using other facilities including UV observations, IR imaging and spectroscopy, host galaxy studies, high resolution spectroscopy, and late-time spectroscopy with large telescopes.

  10. A THEORETICAL COLOR-VELOCITY CORRELATION FOR SUPERNOVAE ASSOCIATED WITH GAMMA-RAY BURSTS

    SciTech Connect

    Rapoport, Sharon; Sim, Stuart A.; Schmidt, Brian P.; Maeda, Keiichi; Nomoto, Ken'ichi; Tanaka, Masaomi; Kromer, Markus

    2012-11-01

    We carry out the first multi-dimensional radiative transfer calculations to simultaneously compute synthetic spectra and light curves for models of supernovae driven by fast bipolar outflows. These allow us to make self-consistent predictions for the orientation dependence of both color evolution and spectral features. We compare models with different degrees of asphericity and metallicity and find significant observable consequences of both. In aspherical models, we find spectral and light curve features that vary systematically with observer orientation. In particular, we find that the early-phase light curves are brighter and bluer when viewed close to the polar axis but that the peak flux is highest for equatorial (off-axis) inclinations. Spectral line features also depend systematically on observer orientation, including the velocity of the Si II 6355 A line. Consequently, our models predict a correlation between line velocity and color that could assist the identification of supernovae associated with off-axis jet-driven explosions. The amplitude and range of this correlation depends on the degree of asphericity, the metallicity, and the epoch of observation but we find that it is always present and acts in the same direction.

  11. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  12. Light curve of the optical counterpart of 2A0311-227

    NASA Technical Reports Server (NTRS)

    Williams, G.; Hiltner, W. A.

    1980-01-01

    Visual and blue light curves are presented for the optical counterpart of the X-ray source 2A0311-227. This system, which is the newest member of the AM Herculis class of binaries, has an orbital period of 81 minutes which also modulates the visual light curve. A Fourier analysis of the data has revealed the presence of a 6-minute oscillation, at least in the visual light curve. Whether or not it is also present in the blue light curve is unclear.

  13. Analysis of selected Kepler Mission planetary light curves

    NASA Astrophysics Data System (ADS)

    Rhodes, M. D.; Budding, E.

    2014-06-01

    We have modified the graphical user interfaced close binary system analysis program CurveFit to the form WinKepler and applied it to 16 representative planetary candidate light curves found in the NASA Exoplanet Archive (NEA) at the Caltech website http://exoplanetarchive.ipac.caltech.edu, with an aim to compare different analytical approaches. WinKepler has parameter options for a realistic physical model, including gravity-brightening and structural parameters derived from the relevant Radau equation. We tested our best-fitting parameter-sets for formal determinacy and adequacy. A primary aim is to compare our parameters with those listed in the NEA. Although there are trends of agreement, small differences in the main parameter values are found in some cases, and there may be some relative bias towards a 90∘ value for the NEA inclinations. These are assessed against realistic error estimates. Photometric variability from causes other than planetary transits affects at least 6 of the data-sets studied; with small pulsational behaviour found in 3 of those. For the false positive KOI 4.01, we found that the eclipses could be modelled by a faint background classical Algol as effectively as by a transiting exoplanet. Our empirical checks of limb-darkening, in the cases of KOI 1.01 and 12.01, revealed that the assigned stellar temperatures are probably incorrect. For KOI 13.01, our empirical mass-ratio differs by about 7 % from that of Mislis and Hodgkin (Mon. Not. R. Astron. Soc. 422:1512, 2012), who neglected structural effects and higher order terms in the tidal distortion. Such detailed parameter evaluation, additional to the usual main geometric ones, provides an additional objective for this work.

  14. Variability in the light curve of tidal disruption events†

    NASA Astrophysics Data System (ADS)

    Lu, Zu-Jia; Lin, Da-Bin; Xie, Ling-Hua; Liang, En-Wei

    The X-ray light curve of Sw~J1644+57 indicates this event would be due to a tidal disruption. The lightcurve shows large amplitude fluctuation. As proposed by Lyubarskii (1997), the aperiodic variability observed in the Galactic X-ray binaries and active galactic nuclei is likely from the fluctuation of the viscous parameter in their disks. We explain the significant fluctuation of the late X-ray lightcurve (t>106 seconds) of Sw J1644+57 with this model. We assume the stochastic variations in the viscous parameter featuring as α(R,t) = α0 [1+β(R,t)], where the time-scale for varying β(R,t) is set as ten times of the dynamic time-scale for disk at the radius R (Janiuk & Misra 2012). Based on the simulation results of Lodato et al. (2009), we describe the fallback behavior of the tidal disruption as Ṁ fb ~ {[(t - t b )/t fb ]κ n + [(t - t b )/t fb ]5n/3}-1/n for t > t b and Ṁ fb=0 for other situations, where κ=10.0, n=0.5, t fb=103τ, and t b =102τ in which τ=2π(R f 3/GM BH)1/2 and R f =5r g is the pericentre distance. Figure 1 compare the power-density spectra (PDS) derived from the observed and our simulated lightcurves. It is found the our simulations are well consistent with the observations.

  15. FLaapLUC: Fermi-LAT automatic aperture photometry light curve

    NASA Astrophysics Data System (ADS)

    Lenain, Jean-Philippe

    2017-09-01

    Most high energy sources detected with Fermi-LAT are blazars, which are highly variable sources. High cadence long-term monitoring simultaneously at different wavelengths being prohibitive, the study of their transient activities can help shed light on our understanding of these objects. The early detection of such potentially fast transient events is the key for triggering follow-up observations at other wavelengths. FLaapLUC (Fermi-LAT automatic aperture photometry Light C↔Urve) uses the simple aperture photometry approach to effectively detect relative flux variations in a set of predefined sources and alert potential users. Such alerts can then be used to trigger observations of these sources with other facilities. The FLaapLUC pipeline is built on top of the Science Tools provided by the Fermi-LAT collaboration and quickly generates short- or long-term Fermi-LAT light curves.

  16. Himalayan Chandra Telescope Observations of Type-Ia Supernova SN 2010at

    NASA Astrophysics Data System (ADS)

    Patel, Brandon; Anupama, G.; Sahu, D. K.

    2012-01-01

    We present BVRI photometry and spectroscopy of Type Ia Supernova SN 2010at. SN 2010at is located in the MCG+13-09-010 galaxy (z =0.04) and was discovered on 03-19-2010. Our analysis focuses on the follow up observations taken with the 2-meter Himalayan Chandra Telescope from 2010-03-21 to 2010-05-24. We present the light curve and color evolution of SN 2010at, along with MLCS2k2 and SALT-II light curve fits. We find that SN 2010at's color and photometric evolution are similar to SN 1999ac, but SN 2010at is brighter at maximum. Spectroscopically, SN 2010at appears to be normal at early times. This work was funded by the National Science Foundation's Office of International Science and Education, Grant Number 0854436: International Research Experience for Students, and managed by the National Solar Observatory's Global Oscillation Network.

  17. Systematic Effects in Type-1a Supernovae Surveys from Host Galaxy Spectra

    SciTech Connect

    Strauss, Michael A.

    2013-08-23

    The physical relation between the properties of Type Ia supernovae and their host galaxies is investigated. Such supernovae are used to constrain the properties of dark energy, making it crucial to understand their physical properties and to check for systematic effects relating to the stellar populations of the progenitor stars from which these supernovae arose. This grant found strong evidence for two distinct populations of supernovae, and correlations between the progenitor stellar populations and the nature of the supernova light curves.

  18. The Achromatic Light Curve of the Optical Afterglow of GRB 030226 at a Redshift of z Approximately 2

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Masetti, N.; Guenther, E.; Stecklum, B.; Lindsay, K.

    2003-01-01

    Abstract. We report on optical and near-infrared (NIR) follow-up observations of the afterglow of GRB 030226, mainly performed with the telescopes at ESO La Silla and Paranal, with additional data obtained at other places. Our first observations started 0.2 days after the burst when the afterglow was at a magnitude of R approximately equal to 19 . One week later the magnitude of the afterglow had fallen to R=25, and at two weeks after the burst it could no longer be detected (R > 26). Our VLT blueband spectra show two absorption line systems at redshifts z = 1.962 +/- 0.001 and at z = 1.986 +/- 0.001, placing the redshift of the burster close to 2. Within our measurement errors no evidence for variations in the line strengths has been found between 0.2 and 1.2 days after the burst. An overabundance of alpha-group elements might indicate that the burst occurred in a chemically young interstellar region shaped by the nucleosynthesis from type II supernovae. The spectral slope of the afterglow shows no signs for cosmic dust along the line of sight in the GRB host galaxy, which itself remained undetected (R > 26.2). At the given redshift no supernova component affected the light from the GRB afterglow, so that the optical transient was essentially only powered by the radiation from the GRB fireball, allowing for a detailed investigation of the color evolution of the afterglow light. In our data set no obvious evidence for color changes has been found before, during, or after the smooth break in the light curve approximately 1 day after the burst. In comparison with investigations by others, our data favor the interpretation that the afterglow began to develop into a homogeneous interstellar medium before the break in the light curve became apparent.

  19. The Achromatic Light Curve of the Optical Afterglow of GRB 030226 at a Redshift of z Approximately 2

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Masetti, N.; Guenther, E.; Stecklum, B.; Lindsay, K.

    2003-01-01

    Abstract. We report on optical and near-infrared (NIR) follow-up observations of the afterglow of GRB 030226, mainly performed with the telescopes at ESO La Silla and Paranal, with additional data obtained at other places. Our first observations started 0.2 days after the burst when the afterglow was at a magnitude of R approximately equal to 19 . One week later the magnitude of the afterglow had fallen to R=25, and at two weeks after the burst it could no longer be detected (R > 26). Our VLT blueband spectra show two absorption line systems at redshifts z = 1.962 +/- 0.001 and at z = 1.986 +/- 0.001, placing the redshift of the burster close to 2. Within our measurement errors no evidence for variations in the line strengths has been found between 0.2 and 1.2 days after the burst. An overabundance of alpha-group elements might indicate that the burst occurred in a chemically young interstellar region shaped by the nucleosynthesis from type II supernovae. The spectral slope of the afterglow shows no signs for cosmic dust along the line of sight in the GRB host galaxy, which itself remained undetected (R > 26.2). At the given redshift no supernova component affected the light from the GRB afterglow, so that the optical transient was essentially only powered by the radiation from the GRB fireball, allowing for a detailed investigation of the color evolution of the afterglow light. In our data set no obvious evidence for color changes has been found before, during, or after the smooth break in the light curve approximately 1 day after the burst. In comparison with investigations by others, our data favor the interpretation that the afterglow began to develop into a homogeneous interstellar medium before the break in the light curve became apparent.

  20. Exploding massive stars in real time: highlights from iPTF studies of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Gal-Yam, Avishay

    2017-01-01

    The ultimate explosions of massive stars as core-collapse supernovae (SNe) are an extremely diverse phenomenon, not well understood theoretically. iPTF has provided interesting contributions to this field in several aspects. I will highlight mainly two of these: studies of the early emission from SNe, including the rising part of the light curve and very early flash spectroscopy, which are quite unique to iPTF due to its high cadence; and studies of rare and unusual objects. These span a range of properties from rapidly evolving events to the most extended SNe we know of, events in the luminous and faint ends of the SN luminosity range, and events with complex temporal behavior, such as multiple light-curve bumps. Prospects for future studies with the upcoming ZTF will be briefly presented.

  1. The Union3 Supernova Ia Compilation

    NASA Astrophysics Data System (ADS)

    Rubin, David; Aldering, Greg Scott; Amanullah, Rahman; Barbary, Kyle H.; Bruce, Adam; Chappell, Greta; Currie, Miles; Dawson, Kyle S.; Deustua, Susana E.; Doi, Mamoru; Fakhouri, Hannah; Fruchter, Andrew S.; Gibbons, Rachel A.; Goobar, Ariel; Hsiao, Eric; Huang, Xiaosheng; Ihara, Yutaka; Kim, Alex G.; Knop, Robert A.; Kowalski, Marek; Krechmer, Evan; Lidman, Chris; Linder, Eric; Meyers, Joshua; Morokuma, Tomoki; Nordin, Jakob; Perlmutter, Saul; Ripoche, Pascal; Rykoff, Eli S.; Saunders, Clare; Spadafora, Anthony L.; Suzuki, Nao; Takanashi, Naohiro; Yasuda, Naoki; Supernova Cosmology Project

    2015-01-01

    High-redshift supernovae observed with the Hubble Space Telescope (HST) are crucial for constraining any time variation in dark energy. In a forthcoming paper (Rubin+, in prep), we will present a cosmological analysis incorporating existing supernovae with improved calibrations, and new HST-observed supernovae. We combine these data with most of the world's current literature data, and fit using SALT2-4 to create the Union3 Supernova compilation. We present a new analysis framework that allows non-linear light-curve width and color corrections, direct modeling of color dispersion, and a redshift-dependent host-mass correction.

  2. THE BEHAVIOR OF NOVAE LIGHT CURVES BEFORE ERUPTION

    SciTech Connect

    Collazzi, Andrew C.; Schaefer, Bradley E.; Xiao Limin; Pagnotta, Ashley; Kroll, Peter; Loechel, Klaus; Henden, Arne A.

    2009-12-15

    In 1975, E. R. Robinson conducted the hallmark study of the behavior of classical nova light curves before eruption, and this work has now become part of the standard knowledge of novae. He made three points: 5 out of 11 novae showed pre-eruption rises in the years before eruption, one nova (V446 Her) showed drastic changes in the variability across eruptions, and all but one of the novae (excepting BT Mon) have the same quiescent magnitudes before and after the outburst. This work has not been tested since it came out. We have now tested these results by going back to the original archival photographic plates and measuring large numbers of pre-eruption magnitudes for many novae using comparison stars on a modern magnitude scale. We find in particular that four out of five claimed pre-eruption rises are due to simple mistakes in the old literature, that V446 Her has the same amplitude of variations across its 1960 eruption, and that BT Mon has essentially unchanged brightness across its 1939 eruption. Out of 22 nova eruptions, we find two confirmed cases of significant pre-eruption rises (for V533 Her and V1500 Cyg), while T CrB has a deep pre-eruption dip. These events are a challenge to theorists. We find no significant cases of changes in variability across 27 nova eruptions beyond what is expected due to the usual fluctuations seen in novae away from eruptions. For 30 classical novae plus 19 eruptions from 6 recurrent novae, we find that the average change in magnitude from before the eruption to long after the eruption is 0.0 mag. However, we do find five novae (V723 Cas, V1500 Cyg, V1974 Cyg, V4633 Sgr, and RW UMi) that have significantly large changes, in that the post-eruption quiescent brightness level is over ten times brighter than the pre-eruption level. These large post-eruption brightenings are another challenge to theorists.

  3. The Behavior of Novae Light Curves Before Eruption

    NASA Astrophysics Data System (ADS)

    Collazzi, Andrew C.; Schaefer, Bradley E.; Xiao, Limin; Pagnotta, Ashley; Kroll, Peter; Löchel, Klaus; Henden, Arne A.

    2009-12-01

    In 1975, E. R. Robinson conducted the hallmark study of the behavior of classical nova light curves before eruption, and this work has now become part of the standard knowledge of novae. He made three points: 5 out of 11 novae showed pre-eruption rises in the years before eruption, one nova (V446 Her) showed drastic changes in the variability across eruptions, and all but one of the novae (excepting BT Mon) have the same quiescent magnitudes before and after the outburst. This work has not been tested since it came out. We have now tested these results by going back to the original archival photographic plates and measuring large numbers of pre-eruption magnitudes for many novae using comparison stars on a modern magnitude scale. We find in particular that four out of five claimed pre-eruption rises are due to simple mistakes in the old literature, that V446 Her has the same amplitude of variations across its 1960 eruption, and that BT Mon has essentially unchanged brightness across its 1939 eruption. Out of 22 nova eruptions, we find two confirmed cases of significant pre-eruption rises (for V533 Her and V1500 Cyg), while T CrB has a deep pre-eruption dip. These events are a challenge to theorists. We find no significant cases of changes in variability across 27 nova eruptions beyond what is expected due to the usual fluctuations seen in novae away from eruptions. For 30 classical novae plus 19 eruptions from 6 recurrent novae, we find that the average change in magnitude from before the eruption to long after the eruption is 0.0 mag. However, we do find five novae (V723 Cas, V1500 Cyg, V1974 Cyg, V4633 Sgr, and RW UMi) that have significantly large changes, in that the post-eruption quiescent brightness level is over ten times brighter than the pre-eruption level. These large post-eruption brightenings are another challenge to theorists.

  4. Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kijima, Masachika

    2010-01-01

    The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.

  5. Early-time observations of Type Ia supernovae to reveal progenitors

    NASA Astrophysics Data System (ADS)

    Howell, D. Andrew; Sullivan, Mark; Parrent, Jerod; Nugent, Peter; Hook, Isobel; Dilday, Ben; Maguire, Kate; Graham, Melissa

    2012-02-01

    SNe Ia remain nature's best standardized candles, and yet their progenitors have long been a mystery. However, in a series of three studies this year, our group has placed the first serious constraints on the progenitors of two SNe Ia, finding (1) the first hard evidence that the primary is a CO white dwarf star; (2) in one case the white dwarf is accreting from a mass-losing evolved secondary and has become a recurrent nova like RS Oph; (3) in another case a system like RS Oph is ruled out and the companion is probably a main sequence star. Taken together with our earlier work implicating white dwarfs mergers in the super-Chandra systems, we are led to the remarkable conclusion that there are a multiplicity of progenitors for SNe Ia. This may explain our finding that supernovae in different environments correct to different absolute magnitudes, and could have serious implications for cosmology. Our results depend on early-time observations for which the queue-scheduled Gemini is uniquely suited. We will use these data to rapidly trigger high-resolution searches for circumstellar material at Keck and VLT, and the Gemini data will directly probe the unburned progenitor material in the supernovae themselves.

  6. Optical Transients Powered by Magnetars: Dynamics, Light Curves, and Transition to the Nebular Phase

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Jun; Wang, S. Q.; Dai, Z. G.; Xu, Dong; Han, Yan-Hui; Wu, X. F.; Wei, Jian-Yan

    2016-04-01

    Millisecond magnetars can be formed via several channels: core collapse of massive stars, accretion-induced collapse of white dwarfs (WDs), double WD mergers, double neutron star (NS) mergers, and WD-NS mergers. Because the mass of ejecta from these channels could be quite different, their light curves are also expected to be diverse. We evaluate the dynamic evolution of optical transients powered by millisecond magnetars. We find that the magnetar with a short spin-down timescale converts its rotational energy mostly into the kinetic energy of the transient, while the energy of a magnetar with a long spin-down timescale goes into radiation of the transient. This leads us to speculate that hypernovae could be powered by magnetars with short spin-down timescales. At late times the optical transients will gradually evolve into a nebular phase because of the photospheric recession. We treat the photosphere and nebula separately because their radiation mechanisms are different. In some cases the ejecta could be light enough that the magnetar can accelerate it to a relativistic speed. It is well known that the peak luminosity of a supernova (SN) occurs when the luminosity is equal to the instantaneous energy input rate, as shown by Arnett. We show that photospheric recession and relativistic motion can modify this law. The photospheric recession always leads to a delay of the peak time {t}{pk} relative to the time {t}× at which the SN luminosity equals the instantaneous energy input rate. Relativistic motion, however, may change this result significantly.

  7. Metallicity as a Source of Dispersion in the SNIa Bolometric Light Curve Luminosity-Width Relationship

    NASA Astrophysics Data System (ADS)

    Bravo, E.; Domínguez, I.; Badenes, C.; Piersanti, L.; Straniero, O.

    2010-03-01

    The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of 56Ni, M(56Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M 0 = 2-7 M sun and metallicities Z = 10-5-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, η, and leads to a smaller 56Ni yield, but does not change substantially the dependence of M(56Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M(56Ni). Our main results are: (1) a sizeable amount of 56Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M(56Ni) on Z than obtained by assuming that 56Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M(56Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.

  8. METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY-WIDTH RELATIONSHIP

    SciTech Connect

    Bravo, E.; DomInguez, I.; Badenes, C.; Piersanti, L.; Straniero, O. E-mail: inma@ugr.es

    2010-03-10

    The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of {sup 56}Ni, M({sup 56}Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M {sub 0} = 2-7 M {sub sun} and metallicities Z = 10{sup -5}-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, {eta}, and leads to a smaller {sup 56}Ni yield, but does not change substantially the dependence of M({sup 56}Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M({sup 56}Ni). Our main results are: (1) a sizeable amount of {sup 56}Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M({sup 56}Ni) on Z than obtained by assuming that {sup 56}Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M({sup 56}Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.

  9. Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction

    NASA Astrophysics Data System (ADS)

    Scalzo, R. A.; Childress, M.; Tucker, B.; Yuan, F.; Schmidt, B.; Brown, P. J.; Contreras, C.; Morrell, N.; Hsiao, E.; Burns, C.; Phillips, M. M.; Campillay, A.; Gonzalez, C.; Krisciunas, K.; Stritzinger, M.; Graham, M. L.; Parrent, J.; Valenti, S.; Lidman, C.; Schaefer, B.; Scott, N.; Fraser, M.; Gal-Yam, A.; Inserra, C.; Maguire, K.; Smartt, S. J.; Sollerman, J.; Sullivan, M.; Taddia, F.; Yaron, O.; Young, D. R.; Taubenberger, S.; Baltay, C.; Ellman, N.; Feindt, U.; Hadjiyska, E.; McKinnon, R.; Nugent, P. E.; Rabinowitz, D.; Walker, E. S.

    2014-11-01

    We present photospheric-phase observations of LSQ12gdj, a slowly declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23 800 Å) light curve out to 45 d past B-band maximum light. We estimate that LSQ12gdj produced 0.96 ± 0.07 M⊙ of 56Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27 per cent of the flux at the earliest observed phases, and 17 per cent at maximum light, is emitted bluewards of 3300 Å. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 Å and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, ˜10 per cent of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013 cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.

  10. The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves

    NASA Astrophysics Data System (ADS)

    Mislis, D.; Pyrzas, S.; Alsubai, K. A.; Tsvetanov, Z. I.; Vilchez, N. P. E.

    2017-03-01

    We present DOHA, a new algorithm for cotrending photometric light curves obtained by transiting exoplanet surveys. The algorithm employs a novel approach to the traditional 'differential photometry' technique, by selecting the most suitable comparison star for each target light curve, using a two-step correlation search. Extensive tests on real data reveal that DOHA corrects both intra-night variations and long-term systematics affecting the data. Statistical studies conducted on a sample of ∼9500 light curves from the Qatar Exoplanet Survey reveal that DOHA-corrected light curves show an rms improvement of a factor of ∼2, compared to the raw light curves. In addition, we show that the transit detection probability in our sample can increase considerably, even up to a factor of 7, after applying DOHA.

  11. Type Ibn Supernovae: Not a Single Class

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Arcavi, Iair; Howell, Dale Andrew; McCully, Curtis; Valenti, Stefano

    2016-01-01

    Type Ibn supernovae are a small yet diverse class of explosions whose spectra are characterized by low-velocity helium emission lines. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material. However, unlike the more common Type IIn supernovae, whose interaction with hydrogen-rich circumstellar material has been shown to generate a wide variety of light curve shapes, we find that light curves of Type Ibn supernovae are more homogeneous and faster evolving. Spectroscopically, we find that Type Ibn supernovae divide cleanly into two classes, only one of which resembles the archetypal Type Ibn SN 2006jc. We explore various photometric and spectroscopic parameter spaces in order to characterize these two classes. We consider the possibility that not all objects classified as Type Ibn have the same physical origin.

  12. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    SciTech Connect

    Stauffer, John; Rebull, Luisa; Carey, Sean; Cody, Ann Marie; Hillenbrand, Lynne A.; Carpenter, John; Turner, Neal J.; Terebey, Susan; Morales-Calderón, Maria; Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; and others

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.

  13. SN2002es-like Supernovae from Different Viewing Angles

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Kulkarni, S. R.; Gal-Yam, Avishay; Papadogiannakis, S.; Nugent, P. E.; Masci, Frank J.; Bue, Brian D.

    2016-11-01

    In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2-0.3 mag day-1, before it reached the R-band peak (-18.05 mag). On the other hand, iPTF14dpk rose rapidly to -17 mag within a day of discovery with a rise rate \\gt 1.8 {{mag}} {{{day}}}-1, and then rose slowly to its peak (-18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before -17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova-companion interaction.

  14. The Fall 2004 SDSS Supernova Survey

    SciTech Connect

    Sako, M.

    2005-04-13

    In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of {approx} 2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05-0.35, the so-called ''redshift desert'', in the Hubble diagram. Detailed investigation of the spectral properties of these moderate-redshift SNe Ia will also provide a bridge between local SNe and high-redshift objects, and will help us understand the systematics for future cosmological applications that require high photometric precision. Finally, the large survey volume also provides the opportunity to select unusual supernovae for spectroscopic study that are poorly sampled in other surveys. We report on some of the early results from this program and discuss potential future applications.

  15. The Fall 2004 SDSS Supernova Survey

    NASA Astrophysics Data System (ADS)

    Sako, Masao; Romani, Roger; Frieman, Josh; Adelman-McCarthy, Jen; Becker, Andrew; Dejongh, Fritz; Dilday, Ben; Estrada, Juan; Hendry, John; Holtzman, Jon; Kaplan, Jared; Kessler, Rick; Lampeitl, Hubert; Marriner, John; Miknaitis, Gajus; Riess, Adam; Tucker, Douglas; Barentine, John; Blandford, Roger; Brewington, Howard; Dembicky, Jack; Harvanek, Mike; Hawley, Suzanne; Hogan, Craig; Johnston, David; Kahn, Steve; Ketzeback, Bill; Kleinman, Scot; Krzesinski, Jerzy; Lamenti, Dennis; Long, Dan; McMillan, Russet; Newman, Peter; Nitta, Atsuko; Nichol, Robert; Scranton, Ryan; Sheldon, Erin; Snedden, Stephanie; Stoughton, Chris; York, Don; SDSS Collaboration

    In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of ~ 2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05-0.35, the so-called 'redshift desert', in the Hubble diagram. Detailed investigation of the spectral properties of these moderate-redshift SNe Ia will also provide a bridge between local SNe and high-redshift objects, and will help us understand the systematics for future cosmological applications that require high photometric precision. Finally, the large survey volume also provides the opportunity to select unusual supernovae for spectroscopic study that are poorly sampled in other surveys. We report on some of the early results from this program and discuss potential future applications.

  16. Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Sollerman, J.; Fremling, C.; Migotto, K.; Gal-Yam, A.; Armen, S.; Duggan, G.; Ergon, M.; Filippenko, A. V.; Fransson, C.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Leloudas, G.; Leonard, D. C.; Lunnan, R.; Masci, F. J.; Moon, D.-S.; Silverman, J. M.; Wozniak, P. R.

    2016-04-01

    Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (~84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims: We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters. We also study the metallicity of their environments. Methods: Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected 56Ni mass, the explosion energy, and the ejecta mass. Results: We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected 56Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R⊙ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R⊙ (PTF09gpn) and 300 R⊙ (SN 2004em). Conclusions: We confirm that long-rising SNe II with light-curve shapes closely

  17. Supermassive blackhole growth and the supernovae history in high-z early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    2015-08-01

    A large variety of feedback models, supported by many galaxy surveys, tentatively relate AGN to star formation by stimulation or quenching. However any accretion process from variable AGNs has never been observed to be turned on or off by star formation. We propose to follow the supernovae explosions through the star formation laws of early-type galaxies with the help of the galaxy evolution model Pégase.3. Applied to the continuous Spectral Energy Distribution, including Herschel data of two z=3.8 radio galaxies (4C41.17 and TN J2007-1316), the comparison with Supermassive BlackHole masses from SDSS opens a new interpretation of the AGN-starburst relation without any need of feedback (Rocca-Volmerange et al, 2015, 2013)

  18. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana; Cassisi, Santi E-mail: cmt@iac.es

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  19. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Contopoulos, I.

    2012-01-01

    The Fermi Large Area Telescope has provided an unprecedented database for pulsar emission studies that includes gamma-ray light curves for over 100 pulsars. Modeling these light curves can reveal and constrain the geometry of the particle accelerator, as well as the pulsar magnetic field structure. We have constructed 3D magnetosphere models with finite conductivity, that bridge the extreme vacuum and force-free solutions used in previous light curves modeling. We are investigating the shapes of pulsar gamma-ray light curves using these dissipative solutions with two different approaches: (l) assuming geometric emission patterns of the slot gap and outer gap, and (2) using the parallel electric field provided by the resistive models to compute the trajectories and . emission of the radiating particles. The light curves using geometric emission patterns show a systematic increase in gamma-ray peak phase with increasing conductivity, introducing a new diagnostic of these solutions. The light curves using the model electric fields are very sensitive to the conductivity but do not resemble the observed Fermi light curves, suggesting that some screening of the parallel electric field, by pair cascades not included in the models, is necessary

  20. NEPTUNE'S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES.

    PubMed

    Simon, Amy A; Rowe, Jason F; Gaulme, Patrick; Hammel, Heidi B; Casewell, Sarah L; Fortney, Jonathan J; Gizis, John E; Lissauer, Jack J; Morales-Juberias, Raul; Orton, Glenn S; Wong, Michael H; Marley, Mark S

    2016-02-01

    Observations of Neptune with the Kepler Space Telescope yield a 49 day light curve with 98% coverage at a 1 minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-m telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired nine months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune's zonal wind profile, and confirms observed cloud feature variability. Although Neptune's clouds vary in location and intensity on short and long timescales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extrasolar planet variability measurements. In particular we suggest that the balance between large, relatively stable, atmospheric features and smaller, more transient, clouds controls the character of substellar atmospheric variability. Atmospheres dominated by a few large spots may show inherently greater light curve stability than those which exhibit a greater number of smaller features.

  1. 'Self-absorbed' GeV light curves of gamma-ray burst afterglows

    SciTech Connect

    Panaitescu, A.; Vestrand, W. T.; Woźniak, P.

    2014-06-10

    We investigate the effect that the absorption of high-energy (above 100 MeV) photons produced in gamma-ray burst afterglow shocks has on the light curves and spectra of Fermi Large Area Telescope (LAT) afterglows. Afterglows produced by the interaction of a relativistic outflow with a wind-like medium peak when the blast wave deceleration sets in, and the afterglow spectrum could be hardening before that peak, as the optical thickness to pair formation is decreasing. In contrast, in afterglows produced in the interaction with a homogeneous medium, the optical thickness to pair formation should increase and yield a light curve peak when it reaches unity, followed by a fast light curve decay, accompanied by spectral softening. If energy is injected in the blast wave, then the accelerated increase of the optical thickness yields a convex afterglow light curve. Other features, such as a double-peak light curve or a broad hump, can arise from the evolution of the optical thickness to photon-photon absorption. Fast decays and convex light curves are seen in a few LAT afterglows, but the expected spectral softening is rarely seen in (and difficult to measure with) LAT observations. Furthermore, for the effects of photon-photon attenuation to shape the high-energy afterglow light curve without attenuating it too much, the ejecta initial Lorentz factor must be in a relatively narrow range (50-200), which reduces the chance of observing those effects.

  2. Long-term Light Curve of Highly Variable Protostellar Star GM Cep

    NASA Astrophysics Data System (ADS)

    Xiao, Limin; Kroll, Peter; Henden, Arne A.

    2010-04-01

    We present data from the archival plates at Harvard College Observatory and Sonneberg Observatory showing the field of the solar-type pre-main-sequence star GM Cep. A total of 186 magnitudes of GM Cep have been measured on these archival plates, with 176 in blue sensitivity, six in visible, and four in red. We combine our data with data from the literature and from the American Association of Variable Star Observers to depict the long-term light curves of GM Cep in both B and V wavelengths. The light curves span from 1895 until now, with two densely sampled regions (1935-1945 in the B band, and 2006 until now in the V band). The long-term light curves do not show any fast rise behavior as predicted by an accretion mechanism. Both the light curves and the magnitude histograms confirm the conclusion that the light curves are dominated by dips (possibly from extinction) superposed on some quiescence state, instead of outbursts caused by accretion flares. Our result excludes the possibility of GM Cep being a FUor, EXor, or McNeil's Nebula-type star. Several special cases of T Tauri stars were checked, but none of these light curves were compatible with that of GM Cep. The lack of periodicity in the light curve excludes the possibility of GM Cep being a KH 15D system.

  3. VizieR Online Data Catalog: Pleiades members with K2 light curves. III. (Stauffer+, 2016)

    NASA Astrophysics Data System (ADS)

    Stauffer, J.; Rebull, L.; Bouvier, J.; Hillenbrand, L. A.; Collier-Cameron, A.; Pinsonneault, M.; Aigrain, S.; Barrado, D.; Bouy, H.; Ciardi, D.; Cody, A. M.; David, T.; Micela, G.; Soderblom, D.; Somers, G.; Stassun, K. G.; Valenti, J.; Vrba, F. J.

    2017-01-01

    Light curves for of order 1000 candidate Pleiades members were obtained during the K2 Field 4 campaign. This represents more than half of the known or suspected members of the cluster; most of the members lacking K2 light curves simply fell outside the K2 field of view, and therefore we believe that the sample of cluster members with light curves should be relatively unbiased. The observations and methods are discussed in detail in Paper I (Rebull et al., Cat. J/AJ/152/113). (1 data file).

  4. A light-curve distortion-wave analysis of eight RS Canum Venaticorum systems

    NASA Astrophysics Data System (ADS)

    Caton, D. B.

    1986-01-01

    A program of differential U,B,V photometry of 14 RS CVn systems carried out at Rosemary Hill Observatory in 1978 - 1981 is described, and an analysis of the light curves for the characteristic distortion wave for eight of the systems is presented. The V light curves of the systems are shown. Significant waves were observed in RS CVn, RZ Eri, and RW UMa. No significant waves were found in UX Com, GK Hya, AR Lac, LX Per, or TY Pyx. Unusual light curve distortions were observed in UX Com and AR Lac.

  5. Construction of the light curves for solar flares in the Hα line

    NASA Astrophysics Data System (ADS)

    Borovik, A. V.; Konyaev, P. A.; Zhdanov, A. A.

    2016-09-01

    The results of an investigation of some factors affecting the construction of the light curves for solar flares in the Hα line are presented. It is determined that the type of the light curve depends on the method of measuring the intensity, the size of the measurement window, and the brightness fluctuations of the quiet chromosphere areas (the reference areas). The light curves constructed on the basis of the flare's peak intensity show a real picture of the flare development process. A method for the selection of the "reference areas" is suggested.

  6. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    SciTech Connect

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  7. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  8. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  9. II ZW 229.015: The most complete optical light curve of any AGN

    NASA Astrophysics Data System (ADS)

    Williams, Joshua; Carini, M. T.

    2014-01-01

    II ZW 229.015 is the brightest AGN in the Kepler field of view. It has been extensively monitored with both the Kepler spacecraft and ground based observatories since the beginning of the Kepler mission. The Kepler light curve is unmatched by any optical light curve ever obtained for an AGN. In this poster we present the Kepler and ground based light curve spanning the entire Kepler mission. Using the Kepler light curve, we have performed a time series analysis using the PSRESP methodology and determined a characteristic variability time scale and mass of the central supermassive black hole in II ZW 229.015. We compare this result to the previous mass estimates from variability and reverberation mapping studies of II ZW 229.015.

  10. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect

    Zhang, Bo; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-02-20

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  11. The Observational Signatures of Primordial Pair-Instability Supernovae

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Fryer, Chris

    2010-10-01

    Massive Population III stars from 140-260 Msolar ended their lives as pair-instability supernovae (PISNe), the most energetic thermonuclear explosions in the universe. Detection of these explosions could directly constrain the primordial IMF for the first time, which is key to the formation of the first galaxies, early cosmological reionization, and the chemical enrichment of the primeval IGM. We present radiation hydrodynamical calculations of Pop III PISN light curves and spectra performed with the RAGE code. We find that the initial radiation pulse due to shock breakout from the surface of the star, although attenuated by the Lyman-alpha forest, will still be visible by JWST at z~10-15, and possibly out to z~20 with strong gravitational lensing. We have also studied metal mixing at early stages of the explosion prior to breakout from the surface of the star with the CASTRO AMR code and find vigorous mixing in primordial core-collapse explosions but very little in PISNe. This implies that the key to determining progenitor masses of the first cosmic explosions is early spectroscopy just after shock breakout, and that multidimensional mixing is crucial to accurate low-mass Pop III SNe light curves and spectra.

  12. Diffraction calculation of occultation light curves in the presence of an isothermal atmosphere

    NASA Technical Reports Server (NTRS)

    French, R. G.; Gierasch, P. J.

    1976-01-01

    From diffraction theory, light curves are calculated for stellar occultations by a planetary body with an isothermal atmosphere. The character of the resulting curves is determined by the scale height H, the Fresnel zone size l, the surface atmospheric refractivity, and the planetary radius. An exact general solution and two approximations are presented which are valid when H is much greater than l. The importance is assessed of accounting for diffraction effects of the limb when deducing atmospheric parameters from occultation light curves

  13. Comparison of BRDF-Predicted and Observed Light Curves of GEO Satellites

    DTIC Science & Technology

    2015-10-18

    Inc. Phan Dao AFRL /RV Richard Rast AFRL /RD Although the amount of light received by sensors on the ground from Resident Space Objects...Air Force Research Laboratory ( AFRL ) with predicted light curves from the Ashikhmin-Premoze BRDF and two additional popular illumination models...ground station location, observation time and BRDF. The predicted light curves were then compared with AFRL telescope data. The selected BRDFS

  14. VizieR Online Data Catalog: GTC transit light curves of WASP-48b (Murgas+, 2017)

    NASA Astrophysics Data System (ADS)

    Murgas, F.; Palle, E.; Parviainen, H.; Chen, G.; Nortmann, L.; Nowak, G.; Cabrera-Lavers, A.; Iro, N.

    2017-08-01

    We present the white light curve and the curves produced using bins of 25nm in width, and bins of 10nm in width of one full transit event of WASP-48b taken on July 17, 2014. We provide auxiliary parameters of the observations that were used to detrend the original light curves. These parameters are: airmass, FWHM of the spectral profile in spatial direction, and telescope rotator angle. (3 data files).

  15. Eclipsing binary stars with extreme light curve asymmetries mined from large astronomical surveys

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Athanasios; Kleftogiannis, Georgios; Christopoulou, Panagiota-Eleftheria

    2017-09-01

    The O'Connell effect is one of the most perplexing challenges in binary studies as it has not been convincingly explained. Furthermore, a simple method to obtain essential parameters for eclipsing binaries exhibiting this effect and to extract information describing the asymmetry in the light curve maxima is needed. We have developed an automated program that characterizes the morphology of light curves by depth of both minima, height of both maxima and curvature outside the eclipses.

  16. A Numerical Method for Calculating Stellar Occultation Light Curves from an Arbitrary Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Chamberlain, D. M.; Elliot, J. L.

    1997-01-01

    We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.

  17. EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING

    SciTech Connect

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook

    2016-03-15

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  18. GERLUMPH Data Release 2: 2.5 Billion Simulated Microlensing Light Curves

    NASA Astrophysics Data System (ADS)

    Vernardos, G.; Fluke, C. J.; Bate, N. F.; Croton, D.; Vohl, D.

    2015-04-01

    In the upcoming synoptic all-sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disk. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated \\gt 2.5 billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au.

  19. Accretion disc time lag distributions: applying CREAM to simulated AGN light curves

    NASA Astrophysics Data System (ADS)

    Starkey, D. A.; Horne, Keith; Villforth, C.

    2016-02-01

    Active galactic nuclei (AGN) vary in their brightness across all wavelengths. Moreover, longer wavelength ultraviolet-optical continuum light curves appear to be delayed with respect to shorter wavelength light curves. A simple way to model these delays is by assuming thermal reprocessing of a variable point source (a lamp post) by a blackbody accretion disc. We introduce a new method, CREAM (Continuum REprocessed AGN Markov Chain Monte Carlo), that models continuum variations using this lamp post model. The disc light curves lag the lamp post emission with a time delay distribution sensitive to the disc temperature-radius profile and inclination. We test CREAM's ability to recover both inclination and product of black hole mass and accretion rate {Mdot{M}}, and show that the code is also able to infer the shape of the driving light curve. CREAM is applied to synthetic light curves expected from 1000 s exposures of a 17th magnitude AGN with a 2-m telescope in Sloan g and i bands with Signal-to-Noise Ratio (SNR) of 500-900 depending on the filter and lunar phase. We also test CREAM on poorer quality g and i light curves with SNR = 100. We find in the high-SNR case that CREAM can recover the accretion disc inclination to within an uncertainty of 5° and an {Mdot{M}} to within 0.04 dex.

  20. Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova

    NASA Astrophysics Data System (ADS)

    Mattila, S.; Lundqvist, P.; Sollerman, J.; Kozma, C.; Baron, E.; Fransson, C.; Leibundgut, B.; Nomoto, K.

    2005-11-01

    We present early time high-resolution (VLT/UVES) and late time low-resolution (VLT/FORS) optical spectra of the normal type Ia supernova, SN 2001el. The high-resolution spectra were obtained 9 and 2 days before (B-band) maximum light. This was in order to allow the detection of narrow hydrogen and/or helium emission lines from the circumstellar medium of the supernova. No such lines were detected in our data. We therefore use these spectra together with photoionisation models to derive upper limits of 9×10-6 {M}_⊙ yr-1 and 5×10-5 {M}_⊙ yr-1 for the mass loss rate from the progenitor system of SN 2001el assuming velocities of 10 km s-1 and 50 km s-1, respectively, for a wind extending to outside at least a few × 1015 cm away from the supernova explosion site. So far, these are the best Hα based upper limits obtained for a type Ia supernova, and exclude a symbiotic star in the upper mass loss rate regime (so called Mira type stars) from being the progenitor of SN 2001el. The low-resolution spectrum was obtained in the nebular phase of the supernova, 400 days after the maximum light, to search for any hydrogen rich gas originating from the supernova progenitor system. However, we see no signs of Balmer lines in our spectrum. Therefore, we model the late time spectra to derive an upper limit of 0.03 M⊙ for solar abundance material present at velocities lower than 1000 km s-1 within the supernova explosion site. According to numerical simulations of Marietta et al. (2000) this is less than the expected mass lost by a subgiant, red giant or a main-sequence secondary star at a small binary separation as a result of the SN explosion. Our data therefore exclude these scenarios as the progenitor of SN 2001el. Finally, we discuss the origin of high velocity Ca II lines previously observed in a few type Ia supernovae before the maximum light. We see both the Ca II IR triplet and the H&K lines in our earliest (-9 days) spectrum at a very high velocity of up to 34 000

  1. EARLY-TYPE HOST GALAXIES OF TYPE II AND Ib SUPERNOVAE

    SciTech Connect

    Suh, Hyewon; Jeong, Hyunjin; Yi, Sukyoung K.; Yoon, Sung-chul

    2011-04-01

    Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explorer (GALEX) ultraviolet photometry and the Sloan Digital Sky Survey optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analyzed using the GALEX data and the NASA/IPAC Extragalactic Database optical data. We find that the NUV-optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV - r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.

  2. Berkeley Supernova Ia Program - IV. Carbon detection in early-time optical spectra of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Filippenko, Alexei V.

    2012-09-01

    While O is often seen in spectra of Type Ia supernovae (SNe Ia) as both unburned fuel and a product of C burning, C is only occasionally seen at the earliest times and represents the most direct way of investigating primordial white dwarf material and its relation to SN Ia explosion scenarios and mechanisms. In this paper, we search for C absorption features in 188 optical spectra of 144 low-redshift (z < 0.1) SNe Ia with ages ≲3.6 d after maximum brightness. These data were obtained as part of the Berkeley Supernova Ia Program (BSNIP) and represent the largest set of SNe Ia in which C has ever been searched. We find that ˜11 per cent of the SNe studied show definite C absorption features, while ˜25 per cent show some evidence for C II in their spectra. Also, if one obtains a spectrum at ≲ -5 d, then there is a better than 30 per cent chance of detecting a distinct absorption feature from C II. SNe Ia that show C are found to resemble those without C in many respects, but objects with C tend to have bluer optical colours than those without C. The typical expansion velocity of the C II λ6580 feature is measured to be 12 000-13 000 km s-1, and the ratio of the C II λ6580 to Si II λ6355 velocities is remarkably constant with time and among different objects with a median value of ˜1.05. While the pseudo-equivalent widths (pEWs) of the C II λλ6580 and 7234 features are found mostly to decrease with time, we see evidence of a significant increase in pEW between ˜12 and 11 d before maximum brightness, which is actually predicted by some theoretical models. The range of pEWs measured from the BSNIP data implies a range of C masses in SN Ia ejecta of about (2-30) × 10-3 M⊙.

  3. Models of Interacting Supernovae: Understanding the Physics and Probing the Circumstellar Environment

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    , models of interacting supernovae must take into account descriptions of the hydrodynamical, ionization, and light fronts: a full radiation-hydrodynamical problem. The low densities imply strong departures from thermodynamic equilibrium and, thus, demand a non-LTE treatment in the radiative transfer calculation. We propose a collaboration between the University of Oklahoma (OU) and Florida State University (FSU) to calculate hydrodynamical models, light curves, and NLTE spectra of circumstellar interacting supernovae. We will parameterize the explosion of a massive star, study the hydrodynamical impact onto a circumstellar medium and calculate light curves and spectra. Direct comparison with observed supernovae with give us detailed information on the progenitor star, its mass loss history, and the nature of binary stellar evolution. We will calculate explosion models for some of the stellar structures and the ongoing interaction with the circumstellar material using our radiation hydro code HYDRA and NLTE generalized model atmospheres code PHOENIX. We intend to focus on the physics of interacting supernovae, going beyond the regime where self-similar solutions and phenomenological approaches are valid. This will limit the parameter space that needs to be examined, while still allowing for direct comparison with observations. Since many interacting supernovae are extremely bright, they can be seen at the highest redshifts and are good probes of the darkages. These supernovae will be well observed by upcoming NASA mission JWST as well as ground based surveys such as LSST. The tools for this work are in place: FSU PI Peter Hoeflich has been developing and using the hydrodynamic code HYDRA for over two decades and PI Eddie Baron (OU) has been developing the generalized stellar atmosphere code PHOENIX over the same time period. Baron and Hoeflich have a good working relationship and have cross-compared our codes.

  4. Fast evolving pair-instability supernovae

    DOE PAGES

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; ...

    2016-10-06

    With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In themore » cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.« less

  5. Fast evolving pair-instability supernovae

    SciTech Connect

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; Frohlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan Thomas; Noebauer, Ulrich M.; van Rossum, Daniel R.; Heger, Alexander; Even, Wesley Paul; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2016-10-06

    With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.

  6. Fast evolving pair-instability supernovae

    SciTech Connect

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; Frohlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan Thomas; Noebauer, Ulrich M.; van Rossum, Daniel R.; Heger, Alexander; Even, Wesley Paul; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2016-10-06

    With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.

  7. Binary progenitors of supernovae

    NASA Astrophysics Data System (ADS)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  8. Superluminous Supernovae hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Orellana, M.

    2017-07-01

    We use our radiation hydrodynamic code in order to simulate magnetar powered Superluminous Supernovae (SLSNe). It is assumed that a central rapidly rotating magnetar deposits all its rotational energy into the ejecta where is added to the usual power. The magnetar luminosity and spin-down timescale are adopted as the free parameters of the model. For the case of ASASSN-15lh, which has been claimed as the most luminous supernova ever discovered, we have found physically plausible magnetar parameters can reproduce the overall shape of the bolometric light curve (LC) provided the progenitor mass is ≍ 8M⊙. The ejecta dynamics of this event shows signs of the magnetar energy input which deviates the expansion from the usually assumed homologous behaviour. Our numerical experiments lead us to conclude that the hydrodynamical modeling is necessary in order to derive the properties of powerful magnetars driving SLSNe.

  9. IRTF/SPEX OBSERVATIONS OF THE UNUSUAL KEPLER LIGHT CURVE SYSTEM KIC 8462852

    SciTech Connect

    Lisse, C. M.; Sitko, M. L.; Marengo, M.

    2015-12-20

    We have utilized the NASA/IRTF 3 m SpeX instrument’s high-resolution spectral mode to observe and characterize the near-infrared flux emanating from the unusual Kepler light curve system KIC 8462852. By comparing the resulting 0.8–4.2 μm spectrum to a mesh of model photospheric spectra, the 6 emission line analyses of the Rayner et al. catalog, and the 25 system collections of debris disks we have observed to date using SpeX under the Near InfraRed Debris disk Survey, we have been able to additionally characterize the system. Within the errors of our measurements, this star looks like a normal solar abundance main-sequence F1V to F3V dwarf star without any obvious traces of significant circumstellar dust or gas. Using Connelley and Greene’s emission measures, we also see no evidence of significant ongoing accretion onto the star nor any stellar outflow away from it. Our results are inconsistent with large amounts of static close-in obscuring material or the unusual behavior of a YSO system, but are consistent with the favored episodic giant comet models of a Gyr old stellar system favored by Boyajian et al. We speculate that KIC 8462852, like the ∼1.4 Gyr old F2V system η Corvi, is undergoing a late heavy bombardment, but is only in its very early stages.

  10. CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Herbst, William; Gillen, Edward; Medeiros Guimarães, Marcelo; Bouy, Herve; Favata, Fabio

    2016-03-01

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain

  11. Multi-Dimensional Simulations of Radiative Transfer in Aspherical Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Nomoto, Ken'ichi

    2008-05-01

    We study optical radiation of aspherical supernovae (SNe) and present an approach to verify the asphericity of SNe with optical observations of extragalactic SNe. For this purpose, we have developed a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI (SupernovA Multidimensional RAdIative transfer code). The code can compute the optical light curve and spectra both at early phases (<~40 days after the explosion) and late phases (~1 year after the explosion), based on hydrodynamic and nucleosynthetic models. We show that all the optical observations of SN 1998bw (associated with GRB 980425) are consistent with polar-viewed radiation of the aspherical explosion model with kinetic energy 20×1051 ergs. Properties of off-axis hypernovae are also discussed briefly.

  12. Multi-Dimensional Simulations of Radiative Transfer in Aspherical Core-Collapse Supernovae

    SciTech Connect

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Nomoto, Ken'ichi

    2008-05-21

    We study optical radiation of aspherical supernovae (SNe) and present an approach to verify the asphericity of SNe with optical observations of extragalactic SNe. For this purpose, we have developed a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI (SupernovA Multidimensional RAdIative transfer code). The code can compute the optical light curve and spectra both at early phases (< or approx. 40 days after the explosion) and late phases ({approx}1 year after the explosion), based on hydrodynamic and nucleosynthetic models. We show that all the optical observations of SN 1998bw (associated with GRB 980425) are consistent with polar-viewed radiation of the aspherical explosion model with kinetic energy 20x10{sup 51} ergs. Properties of off-axis hypernovae are also discussed briefly.

  13. LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova

    NASA Astrophysics Data System (ADS)

    Barbarino, C.; Botticella, M. T.; Dall'Ora, M.; Della Valle, M.; Benetti, S.; Lyman, J. D.; Smartt, S. J.; Arcavi, I.; Baltay, C.; Bersier, D.; Dennefeld, M.; Ellman, N.; Fraser, M.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Mitra, A.; McKinnon, R.; Olivares E., F.; Pignata, G.; Rabinowitz, D.; Rostami, S.; Smith, K. W.; Sullivan, M.; Valenti, S.; Yaron, O.; Young, D.

    2017-10-01

    We present the photometric and spectroscopic evolution of the type Ic supernova LSQ14efd, discovered by the La Silla QUEST survey and followed by PESSTO. LSQ14efd was discovered few days after explosion and the observations cover up to ∼100 d. The early photometric points show the signature of the cooling of the shock break-out event experienced by the progenitor at the time of the supernova explosion, one of the first for a type Ic supernova. A comparison with type Ic supernova spectra shows that LSQ14efd is quite similar to the type Ic SN 2004aw. These two supernovae have kinetic energies that are intermediate between standard Ic explosions and those which are the most energetic explosions known (e.g. SN 1998bw). We computed an analytical model for the light-curve peak and estimated the mass of the ejecta 6.3 ± 0.5 M⊙, a synthesized nickel mass of 0.25 M⊙ and a kinetic energy of Ekin = 5.6 ± 0.5 × 1051 erg. No connection between LSQ14efd and a gamma-ray burst event could be established. However we point out that the supernova shows some spectroscopic similarities with the peculiar SN-Ia 1999ac and the SN-Iax SN 2008A. A core-collapse origin is most probable considering the spectroscopic, photometric evolution and the detection of the cooling of the shock breakout.

  14. Tycho Brahe's Supernova: Light from Centuries Past

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar

    2004-09-01

    The light curve of SN 1572 is described in the terms used nowadays to characterize Type Ia supernovae (SNe Ia). By assembling the records of the observations done in 1572-1574 and evaluating their uncertainties, it is possible to recover the light curve and the color evolution of this supernova. It is found that within the SN Ia family, the event should have been an SN Ia with a normal rate of decline, its stretch factor being s~0.9. The visual light curve near maximum, late-time decline, and color evolution sustain this conclusion. After correcting for extinction, the luminosity of this supernova as observed at maximum is found to be MV=-19.24-5log(D/3.0kpc)+/-0.42. From stretch fitting of the overall light curve, the maximum in V would imply a luminosity difference of +0.17+/-0.1 mag, with the maximum brightness of an s=1 SN Ia. The quantity MV is consistent with a distance of 2.8+/-0.4 kpc for the scale of H0=65 km s-1 Mpc-1.

  15. Supernova 1987A in the Large Magellanic Cloud; Proceedings of the Fourth George Mason Astrophysics Workshop, George Mason University, Fairfax, VA, Oct. 12-14, 1987

    NASA Technical Reports Server (NTRS)

    Kafatos, Minas (Editor); Michalitsianos, Andrew G. (Editor)

    1988-01-01

    Papers concerning SN 1987A are presented, covering topics such as images and spectrograms of the SN 1987A progenitor, a linear polarimetric study of SN 1987A, the energetics, nature, and uniqueness of the supernova, comparison of the SN 1987A light curve with other type II supernovae, P-Cygni features and photospheric velocities, the neutrino burst from SN 1987A, mass determination of neutrinos, neutrino transport, energetics, and oscillations. Additional papers discuss supernovae light echoes, the UV interstellar spectrum of SN 1987A, theoretical models of SN 1987A, circumstellar and interstellar interaction, the supernova as a stripped asymptotic-branch giant in a binary system, pulsar formation and the fall back mass fraction, the signals of particle acceleration at SN 1987A, the effects of the mixing of the ejecta on the hard X-ray emissions from the supernova, possible s-process gamma-ray lines in supernovae, detectability of early thermal radiation from a neutron star in SN 1987A, NASA studies of the supernova, and information exchange for SN 1987A. Observational studies presented include optical, IR, radio, and UV observations, IR speckle-interferometry, coded mask X-ray observations, broad band X-ray imaging spectrophotometry, gamma-ray and thermal X-ray observations, and reports from several observatories.

  16. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Dyudina, Ulyana; Zhang, Xi; Li, Liming; Kopparla, Pushkar; Ingersoll, Andrew P.; Dones, Luke; Verbiscer, Anne; Yung, Yuk L.

    2016-05-01

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59-0.72 and 0.39-0.5 μm, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24-0.28 μm. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ˜1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating. Division of Geological and Planetary Sciences, 150-21 California Institute of Technology, Pasadena, CA 91125 USA.

  17. Are the variability properties of the Kepler AGN light curves consistent with a damped random walk?

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-08-01

    We test the consistency of active galactic nuclei (AGN) optical flux variability with the damped random walk (DRW) model. Our sample consists of 20 multiquarter Kepler AGN light curves including both Type 1 and 2 Seyferts, radio-loud and -quiet AGN, quasars, and blazars. Kepler observations of AGN light curves offer a unique insight into the variability properties of AGN light curves because of the very rapid (11.6-28.6 min) and highly uniform rest-frame sampling combined with a photometric precision of 1 part in 105 over a period of 3.5 yr. We categorize the light curves of all 20 objects based on visual similarities and find that the light curves fall into five broad categories. We measure the first-order structure function of these light curves and model the observed light curve with a general broken power-law power spectral density (PSD) characterized by a short-time-scale power-law index γ and turnover time-scale τ. We find that less than half the objects are consistent with a DRW and observe variability on short time-scales (˜2 h). The turnover time-scale τ ranges from ˜10-135 d. Interesting structure function features include pronounced dips on rest-frame time-scales ranging from 10-100 d and varying slopes on different time-scales. The range of observed short-time-scale PSD slopes and the presence of dip and varying slope features suggests that the DRW model may not be appropriate for all AGN. We conclude that AGN variability is a complex phenomenon that requires a more sophisticated statistical treatment.

  18. Light curves, Spherical and Bond albedos of Jupiter, Saturn, and exoplanets.

    NASA Astrophysics Data System (ADS)

    Dyudina, U.

    2015-12-01

    We estimate how the light curve and stellar light reflection of a planet depends on forward and backward scattering, which was observed on Jupiter and Saturn. We fit analytical scattering phase function to Pioneer 10 and 11 spacecraft observations of Jupiter at 0.64 μm and Saturn at 0.64 and 0.44 μm and to Cassini spacecraft observations of Jupiter at 0.938 μm atmospheric window, 0.889 μm CH4 absorption band, and 0.258 μm UV filter. Using scattering ray-tracing model of a planet by Dyudina et al. (2005)*, the images of the planets with different scattering properties are simulated to calculate the reflected luminosity as it varies with scattering phase to produce full-orbit light curves. We compare the light curve shapes and total reflection integrated in all directions (spherical albedos) for Jupiter and Saturn with the ones for planets with Lambertian and semi-infinite Rayleigh-scattering atmosphere. Saturn-like and especially Jupiter-like atmosphere produces light curves that are several times fainter at half-phase than does a Lambertian planet, given the same brightness at transit. The spherical albedo (and hence the wavelengh-integrated Bond albedo) is lower than for a Lambertian planet. Corresponding absorption of the stellar light and planet's heating rate would be higher than estimated for Lambertian planets, especially for bright planets. In extreme case of Jupiter-like scattering at 0.64 μm Lambertian assumption can overestimate spherical albedo by a factor of ˜1.5. We will discuss how the light curves and absorption for planets covered by atmospheres would differ from the light curves of rocky planet without atmosphere. * Dyudina, U. A., et al., Phase Light Curves for Extrasolar Jupiters and Saturns. ApJ, 618, 973-986, 2005

  19. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Dyudina, Ulyana A.; Zhang, Xi; Li, Liming; Kopparla, Pushkar; Ingersoll, Andrew P.; Dones, Henry C. Luke; Verbiscer, Anne J.; Yung, Yuk

    2016-10-01

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet's phase. These observations cover broad bands at 0.59-0.72 and 0.39-0.5 μm, and narrow bands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24-0.28 μm. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ˜1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating. This work is published: Dyudina, U.,et al., 2016: ApJ, 822, 76, http://arxiv.org/abs/1511.04415.

  20. GAMMA RAYS FROM TYPE Ia SUPERNOVA SN 2014J

    SciTech Connect

    Churazov, E.; Sunyaev, R.; Grebenev, S.; Bikmaev, I.; Bravo, E.; Chugai, N.; Jean, P.; Knödlseder, J.; Lebrun, F.

    2015-10-10

    The whole set of INTEGRAL observations of Type Ia supernova SN 2014J, covering the period 19–162 days after the explosion, has been analyzed. For spectral fitting the data are split into early and late periods covering days 19–35 and 50–162, respectively, optimized for {sup 56}Ni and {sup 56}Co lines. As expected for the early period, much of the gamma-ray signal is confined to energies below ∼200 keV, while for the late period it is strongest above 400 keV. In particular, in the late period, {sup 56}Co lines at 847 and 1248 keV are detected at 4.7σ and 4.3σ, respectively. The light curves in several representative energy bands are calculated for the entire period. The resulting spectra and light curves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical one-dimensional models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass white dwarf. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe line profiles, suggesting that, unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta.

  1. Measuring the Universe with Supernovae

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    1996-05-01

    Supernova explosions lead to luminous optical objects which can be used to measure distances in the Universe. Supernova 1987A in the nearby Large Magellanic Cloud provides a direct geometric distance to this galaxy, and a check on the Cepheid variable star distance scale. Using observations of SN 1987A with the Hubble Space Telescope, we find a distance of 51 ± 3 kiloparsec which is consistent with the Cepheid scale. Type II supernovae, which result from the core collapse of a massive star, emit a spectrum which can be accurately modeled. Based on understanding of the radiation transport through the expanding atmospheres, observations of SN II provide distances to 18 galaxies at redshifts up to 14500 km s-1. These distances agree within the errors with distances found from Cepheids, and correspond to a value of the Hubble Contant of 72 ± 7 km s-1Mpc-1. Finally, the Type Ia supernovae, thought to arise from the thermonuclear incineration of a carbon-oxygen white dwarf, provide the best and the brightest tools for measuring extragalactic distances. Careful study shows that these supernovae are not identical, but that there is a well-determined relation between the supernova luminosity and the time history of its light emission: the supernova light curve. Recent work on the ``Multicolor Light Curve Shape Method'' accounts for this effect in an optimal way, and allows an independent determination of the absorption by dust along the line of sight for each object. Using a sample of 20 SN Ia, and calibrating this with distances determined by Hubble Space Telescope observations of Cepheids yields a Hubble Constant of 65 ± 6 km s-1Mpc-1. This corresponds to an age of the Universe (for Ω = 0 ) of about 15 billion years, which is consistent with the age of the elements and the age of globular cluster stars.

  2. KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING

    SciTech Connect

    Matijevic, Gal; Prsa, Andrej; Orosz, Jerome A.; Welsh, William F.; Bloemen, Steven; Barclay, Thomas E-mail: andrej.prsa@villanova.edu

    2012-05-15

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of 'detachedness' of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  3. Light Curve Solutions of Eclipsing Binaries in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Rao, M. S.

    2012-01-01

    We present model light curves for nine eclipsing binary stars in the Large Magellanic Cloud (LMC). These systems are detached binaries with nearly circular orbits, and were pseudorandomly selected from three of 21 LMC regions in the Optical Gravitational Lensing Experiment II (OGLE-II) survey. We make use of light curves, orbital periods, and binary classification as reported in Wyrzykowski et al. (2003). We present light curve solutions created with the software PHysics Of Eclipsing BinariEs (PHOEBE, Prsa & Zwitter 2005). Each solution has the best-fit mass ratio q, system inclination i, component temperatures T1 and T2, and modified Kopal potentials Ω1 and Ω2. PHOEBE employs a Nelder & Mead's Simplex fitting method that adjusts all the input parameters to find the best fit to the light curve. Many of the light curves have significant scatter, which can lead to multiple degenerate best-fit solutions, and we discuss what can be done in the future to refine our results, derive global stellar parameters, and place these nine systems in a larger context. We acknowledge the support of the International Research Experience for Students (IRES) program, which is sponsored by the NSF and administered by NSO/GONG.

  4. A FOURIER OPTICS METHOD FOR CALCULATING STELLAR OCCULTATION LIGHT CURVES BY OBJECTS WITH THIN ATMOSPHERES

    SciTech Connect

    Young, E. F.

    2012-08-15

    A stellar occultation occurs when a solar system object passes in front of a distant star. The light curves resulting from stellar occultations can reveal many aspects of the obscuring object. For airless bodies, the diffraction light curve specifies the object's size, distance and, if several chords are observed, shape. Occultation light curves are especially sensitive to the presence of atmospheres; the refraction light curve is a function of the atmosphere's density, pressure, and temperature profiles. The goal of this paper is to develop a practical algorithm to model the simultaneous effects of diffraction and refraction for objects in which both phenomena are observable. The algorithm we present is flexible: it can be used to calculate light curves by objects with arbitrary shapes and arbitrary atmospheres (including the presence of opacity sources such as hazes), provided that the atmosphere can be represented by a thin screen with a phase delay and an opacity defined at each location in the screen. Because the algorithm is limited at present to thin atmospheres (in which rays from a star are bent but undergo virtually no translation as they pass through an atmosphere), the gas giants, Earth, Mars, and Venus are not treated. Examples of stellar occultations are presented for round or irregularly shaped objects having thin atmospheres of various column densities.

  5. Thermal emission in the early afterglow of gamma-ray bursts from their interaction with supernova ejecta

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Vereshchagin, G. V.; Wang, Y.

    2017-04-01

    Context. A thermal X-ray component is observed in the early afterglow of some gamma-ray bursts. Possible explanations include shockwave breakout, relativistic photosphere, or emission from cocoon. The difficulties of these models are discussed. Aims: We propose an alternative model that attributes such a thermal component to the interaction of the gamma-ray burst outflow with a baryonic material near the gamma-ray burst source. Methods: The analytic model is based on relativistic energy-momentum conservation and a diffusion model for photons. The kinematic and observational properties of the supernova ejecta after the interaction are derived. In particular, the temperature and the duration of the thermal emission are obtained. Results: The model is applied to a prototypical GRB 090618 and other gamma-ray bursts