Sample records for early tau pathology

  1. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain

    PubMed Central

    Maphis, Nicole; Xu, Guixiang; Kokiko-Cochran, Olga N.; Jiang, Shanya; Cardona, Astrid; Ransohoff, Richard M.; Lamb, Bruce T.

    2015-01-01

    Pathological aggregation of tau is a hallmark of Alzheimer’s disease and related tauopathies. We have previously shown that the deficiency of the microglial fractalkine receptor (CX3CR1) led to the acceleration of tau pathology and memory impairment in an hTau mouse model of tauopathy. Here, we show that microglia drive tau pathology in a cell-autonomous manner. First, tau hyperphosphorylation and aggregation occur as early as 2 months of age in hTauCx3cr1−/− mice. Second, CD45+ microglial activation correlates with the spatial memory deficit and spread of tau pathology in the anatomically connected regions of the hippocampus. Third, adoptive transfer of purified microglia derived from hTauCx3cr1−/− mice induces tau hyperphosphorylation within the brains of non-transgenic recipient mice. Finally, inclusion of interleukin 1 receptor antagonist (Kineret®) in the adoptive transfer inoculum significantly reduces microglia-induced tau pathology. Together, our results suggest that reactive microglia are sufficient to drive tau pathology and correlate with the spread of pathological tau in the brain. PMID:25833819

  2. Characterization of Early Pathological Tau Conformations and Phosphorylation in Chronic Traumatic Encephalopathy

    PubMed Central

    Kanaan, Nicholas M.; Cox, Kristine; Alvarez, Victor E.; Stein, Thor D.; Poncil, Sharra; McKee, Ann C.

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that develops after repetitive head injury. Several lines of evidence in other tauopathies suggest that tau oligomer formation induces neurotoxicity and that tau oligomer-mediated neurotoxicity involves induction of axonal dysfunction through exposure of an N-terminal motif in tau, the phosphatase-activating domain (PAD). Additionally, phosphorylation at serine 422 in tau occurs early and correlates with cognitive decline in patients with Alzheimer disease (AD). We performed immunohistochemistry and immunofluorescence on fixed brain sections and biochemical analysis of fresh brain extracts to characterize the presence of PAD-exposed tau (TNT1 antibody), tau oligomers (TOC1 antibody), tau phosphorylated at S422 (pS422 antibody), and tau truncated at D421 (TauC3 antibody) in the brains of 9-11 cases with CTE and cases of nondemented aged controls and AD (Braak VI) (n = 6, each). All 3 early tau markers (ie, TNT1, TOC1, and pS422) were present in CTE and displayed extensive colocalization in perivascular tau lesions that are considered diagnostic for CTE. Notably, the TauC3 epitope, which is abundant in AD, was relatively sparse in CTE. Together, these results provide the first description of PAD exposure, TOC1 reactive oligomers, phosphorylation of S422, and TauC3 truncation in the tau pathology of CTE. PMID:26671985

  3. Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies

    PubMed Central

    Combs, Benjamin; Hamel, Chelsey; Kanaan, Nicholas M.

    2016-01-01

    Conformational changes involving the amino terminus of the tau protein are among the earliest alterations associated with tau pathology in Alzheimer’s disease and other tauopathies. This region of tau contains a phosphatase-activating domain (PAD) that is aberrantly exposed in pathological forms of the protein, an event that is associated with disruptions in anterograde fast axonal transport. We utilized four antibodies that recognize the amino terminus of tau, TNT1, TNT2 (a novel antibody), Tau12, and Tau13, to further study this important region. Using scanning alanine mutations in recombinant tau proteins, we refined the epitopes of each antibody. We examined the antibodies’ relative abilities to specifically label pathological tau in non-denaturing and denaturing assays to gain insight into some of the mechanistic details of PAD exposure. We then determined the pattern of tau pathology labeled by each antibody in human hippocampal sections at various disease stages in order to characterize PAD exposure in the context of disease progression. The characteristics of reactivity for the antibodies fell into two groups. TNT1 and TNT2 recognized epitopes within amino acids 7–12 and specifically identified recombinant tau aggregates and pathological tau from Alzheimer’s disease brains in a conformation-dependent manner. These antibodies labeled early pre-tangle pathology from neurons in early Braak stages and colocalized with thiazine red, a marker of fibrillar pathology, in classic neurofibrillary tangles. However, late tangles were negative for TNT1 and TNT2 indicating a loss of the epitope in later stages of tangle evolution. In contrast, Tau12 and Tau13 both identified discontinuous epitopes in the amino terminus and were unable to differentiate between normal and pathological tau in biochemical and tissue immunohistological assays. Despite the close proximity of these epitopes, the antibodies demonstrated remarkably different abilities to identify

  4. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils

    PubMed Central

    Banks, Rachel A.; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N.; Riddle, Dawn M.; Li, Chi; Brown, Hannah J.; Zhang, Bin

    2017-01-01

    process such as the early seeding events leading to new tau pathology have remained elusive. This study validates the use of GFP-labeled tau expressed by neurons in vivo and in vitro as models for investigating mechanisms underlying the seeded transmission of tau pathology as well as tau-focused drug discovery to identify disease-modifying therapies for AD and related tauopathies. PMID:28986461

  5. GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils.

    PubMed

    Gibbons, Garrett S; Banks, Rachel A; Kim, Bumjin; Xu, Hong; Changolkar, Lakshmi; Leight, Susan N; Riddle, Dawn M; Li, Chi; Gathagan, Ronald J; Brown, Hannah J; Zhang, Bin; Trojanowski, John Q; Lee, Virginia M-Y

    2017-11-22

    process such as the early seeding events leading to new tau pathology have remained elusive. This study validates the use of GFP-labeled tau expressed by neurons in vivo and in vitro as models for investigating mechanisms underlying the seeded transmission of tau pathology as well as tau-focused drug discovery to identify disease-modifying therapies for AD and related tauopathies. Copyright © 2017 the authors 0270-6474/17/3711485-10$15.00/0.

  6. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau.

    PubMed

    Lasagna-Reeves, Cristian A; Castillo-Carranza, Diana L; Sengupta, Urmi; Guerrero-Munoz, Marcos J; Kiritoshi, Takaki; Neugebauer, Volker; Jackson, George R; Kayed, Rakez

    2012-01-01

    Intracerebral injection of brain extracts containing amyloid or tau aggregates in transgenic animals can induce cerebral amyloidosis and tau pathology. We extracted pure populations of tau oligomers directly from the cerebral cortex of Alzheimer disease (AD) brain. These oligomers are potent inhibitors of long term potentiation (LTP) in hippocampal brain slices and disrupt memory in wild type mice. We observed for the first time that these authentic brain-derived tau oligomers propagate abnormal tau conformation of endogenous murine tau after prolonged incubation. The conformation and hydrophobicity of tau oligomers play a critical role in the initiation and spread of tau pathology in the naïve host in a manner reminiscent of sporadic AD.

  7. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains

    PubMed Central

    Boluda, Susana; Iba, Michiyo; Zhang, Bin; Raible, Kevin M.; Lee, Virginia M-Y.; Trojanowski, John Q.

    2015-01-01

    Filamentous tau pathologies are hallmark lesions of several neurodegenerative tauopathies including Alzheimer’s disease (AD) and corticobasal degeneration (CBD) which show cell type-specific and topographically distinct tau inclusions. Growing evidence supports templated transmission of tauopathies through functionally interconnected neuroanatomical pathways suggesting that different self-propagating strains of pathological tau could account for the diverse manifestations of neurodegenerative tauopathies. Here, we describe the rapid and distinct cell type-specific spread of pathological tau following intracerebral injections of CBD or AD brain extracts enriched in pathological tau (designated CBD-Tau and AD-Tau, respectively) in young human mutant P301S tau transgenic (Tg) mice (line PS19) ~6–9 months before they show onset of mutant tau transgene-induced tau pathology. At 1 month post-injection of CBD-Tau, tau inclusions developed predominantly in oligodendrocytes of the fimbria and white matter near the injection sites with infrequent intraneuronal tau aggregates. In contrast, injections of AD-Tau in young PS19 mice induced tau pathology predominantly in neuronal perikarya with little or no oligodendrocyte involvement 1 month post-injection. With longer post-injection survival intervals of up to 6 months, CBD-Tau- and AD-Tau-induced tau pathology spread to different brain regions distant from the injection sites while maintaining the cell type-specific pattern noted above. Finally, CA3 neuron loss was detected 3 months post-injection of AD-Tau but not CBD-Tau. Thus, AD-Tau and CBD-Tau represent specific pathological tau strains that spread differentially and may underlie distinct clinical and pathological features of these two tauopathies. Hence, these strains could become targets to develop disease-modifying therapies for CBD and AD. PMID:25534024

  8. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.

    PubMed

    Maass, Anne; Lockhart, Samuel N; Harrison, Theresa M; Bell, Rachel K; Mellinger, Taylor; Swinnerton, Kaitlin; Baker, Suzanne L; Rabinovici, Gil D; Jagust, William J

    2018-01-17

    The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [ 18 F]AV-1451 and [ 11 C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship

  9. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.

    PubMed

    Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili

    2015-03-26

    Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be

  10. Insulin dysfunction and Tau pathology.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2014-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  11. Insulin dysfunction and Tau pathology

    PubMed Central

    El Khoury, Noura B.; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2013-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia. PMID:24574966

  12. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    PubMed

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    PubMed

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  14. Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology

    PubMed Central

    Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T.; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo

    2015-01-01

    Alzheimer’s disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia and accounts for 60 to 70% of demented individuals. In view of the early appearance of neuronal deposits of the hyperphosphorylated cytoskeletal protein tau in the transentorhinal and entorhinal regions of the allocortex (i.e. in Braak and Braak AD stage I in the evolution of the AD-related cortical tau cytoskeletal pathology) it has been believed for a long time that these allocortical regions represent the first brain targets of the AD-related tau cytoskeletal pathology. However, recent pathoanatomical studies suggested that the subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions may also comprise AD-related cytoskeletal changes already at very early Braak and Braak AD stages. In order to corroborate these initial results we systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all the subcortical nuclei known to send efferent projections to these vulnerable allocortical regions of three individuals with Braak and Braak AD stage 0 and fourteen individuals with Braak and Braak AD stage I by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive neuronal tau cytoskeletal pathology in a subset of these subcortical nuclei (i.e. medial septal nucleus, nuclei of the vertical and horizontal limbs of the diagonal band of Broca, basal nucleus of Meynert; claustrum; hypothalamic ventromedial, tuberomamillary and supramamillary nuclei, perifornical region and lateral area; thalamic central medial, laterodorsal, subparafascicular, and central lateral nuclei, medial pulvinar and limitans-suprageniculate complex; peripeduncular nucleus, dopaminergic substantia nigra and ventral tegmental area, periaqueductal gray, midbrain and pontine dorsal raphe nuclei, locus

  15. Anesthesia and Tau Pathology

    PubMed Central

    Whittington, Robert A.; Bretteville, Alexis; Dickler, Maya F.; Planel, Emmanuel

    2013-01-01

    Alzheimer’s disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration. PMID:23535147

  16. In Vivo Imaging of Tau Pathology Using Magnetic Resonance Imaging Textural Analysis

    PubMed Central

    Colgan, Niall; Ganeshan, Balaji; Harrison, Ian F.; Ismail, Ozama; Holmes, Holly E.; Wells, Jack A.; Powell, Nick M.; O'Callaghan, James M.; O'Neill, Michael J.; Murray, Tracey K.; Ahmed, Zeshan; Collins, Emily C.; Johnson, Ross A.; Groves, Ashley; Lythgoe, Mark F.

    2017-01-01

    Background: Non-invasive characterization of the pathological features of Alzheimer's disease (AD) could enhance patient management and the development of therapeutic strategies. Magnetic resonance imaging texture analysis (MRTA) has been used previously to extract texture descriptors from structural clinical scans in AD to determine cerebral tissue heterogeneity. In this study, we examined the potential of MRTA to specifically identify tau pathology in an AD mouse model and compared the MRTA metrics to histological measures of tau burden. Methods: MRTA was applied to T2 weighted high-resolution MR images of nine 8.5-month-old rTg4510 tau pathology (TG) mice and 16 litter matched wild-type (WT) mice. MRTA comprised of the filtration-histogram technique, where the filtration step extracted and enhanced features of different sizes (fine, medium, and coarse texture scales), followed by quantification of texture using histogram analysis (mean gray level intensity, mean intensity, entropy, uniformity, skewness, standard-deviation, and kurtosis). MRTA was applied to manually segmented regions of interest (ROI) drawn within the cortex, hippocampus, and thalamus regions and the level of tau burden was assessed in equivalent regions using histology. Results: Texture parameters were markedly different between WT and TG in the cortex (E, p < 0.01, K, p < 0.01), the hippocampus (K, p < 0.05) and in the thalamus (K, p < 0.01). In addition, we observed significant correlations between histological measurements of tau burden and kurtosis in the cortex, hippocampus and thalamus. Conclusions: MRTA successfully differentiated WT and TG in brain regions with varying degrees of tau pathology (cortex, hippocampus, and thalamus) based on T2 weighted MR images. Furthermore, the kurtosis measurement correlated with histological measures of tau burden. This initial study indicates that MRTA may have a role in the early diagnosis of AD and the assessment of tau pathology using routinely

  17. Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice.

    PubMed

    Liu, Wencheng; Zhao, Lingzhi; Blackman, Brittany; Parmar, Mayur; Wong, Man Ying; Woo, Thomas; Yu, Fangmin; Chiuchiolo, Maria J; Sondhi, Dolan; Kaminsky, Stephen M; Crystal, Ronald G; Paul, Steven M

    2016-12-07

    Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using

  18. Loss of Bin1 Promotes the Propagation of Tau Pathology.

    PubMed

    Calafate, Sara; Flavin, William; Verstreken, Patrik; Moechars, Diederik

    2016-10-18

    Tau pathology propagates within synaptically connected neuronal circuits, but the underlying mechanisms are unclear. BIN1-amphiphysin2 is the second most prevalent genetic risk factor for late-onset Alzheimer's disease. In diseased brains, the BIN1-amphiphysin2 neuronal isoform is downregulated. Here, we show that lowering BIN1-amphiphysin2 levels in neurons promotes Tau pathology propagation whereas overexpression of neuronal BIN1-amphiphysin2 inhibits the process in two in vitro models. Increased Tau propagation is caused by increased endocytosis, given our finding that BIN1-amphiphysin2 negatively regulates endocytic flux. Furthermore, blocking endocytosis by inhibiting dynamin also reduces Tau pathology propagation. Using a galectin-3-binding assay, we show that internalized Tau aggregates damage the endosomal membrane, allowing internalized aggregates to leak into the cytoplasm to propagate pathology. Our work indicates that lower BIN1 levels promote the propagation of Tau pathology by efficiently increasing aggregate internalization by endocytosis and endosomal trafficking. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Advanced imaging of tau pathology in Alzheimer Disease: New perspectives from super resolution microscopy and label-free nanoscopy.

    PubMed

    Schierle, Gabriele S Kaminski; Michel, Claire H; Gasparini, Laura

    2016-08-01

    Alzheimer's disease (AD) is the main cause of dementia in the elderly population. Over 30 million people worldwide are living with dementia and AD prevalence is projected to increase dramatically in the next two decades. In terms of neuropathology, AD is characterized by two major cerebral hallmarks: extracellular β-amyloid (Aβ) plaques and intracellular Tau inclusions, which start accumulating in the brain 15-20 years before the onset of symptoms. Within this context, the scientific community worldwide is undertaking a wide research effort to detect AD pathology at its earliest, before symptoms appear. Neuroimaging of Aβ by positron emission tomography (PET) is clinically available and is a promising modality for early detection of Aβ pathology and AD diagnosis. Substantive efforts are ongoing to develop advanced imaging techniques for early detection of Tau pathology. Here, we will briefly describe the key features of Tau pathology and its heterogeneity across various neurodegenerative diseases bearing cerebral Tau inclusions (i.e., tauopathies). We will outline the current status of research on Tau-specific PET tracers and their clinical development. Finally, we will discuss the potential application of novel super-resolution and label-free techniques for investigating Tau pathology at the experimental level and their potential application for AD diagnosis. Microsc. Res. Tech. 79:677-683, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Harnessing the immune system for treatment and detection of tau pathology.

    PubMed

    Congdon, Erin E; Krishnaswamy, Senthilkumar; Sigurdsson, Einar M

    2014-01-01

    The tau protein is an attractive target for therapy and diagnosis. We started a tau immunotherapy program about 13 years ago and have since demonstrated that active and passive immunotherapies diminish tau pathology and improve function, including cognition, in different mouse models. These findings have been confirmed and extended by several groups. We routinely detect neuronal, and to a lesser extent microglial, antibody uptake correlating with tau pathology. Antibodies bind tau aggregates in the endosomal/lysosomal system, enhancing clearance presumably by promoting their disassembly. Extracellular clearance has recently been shown by others, using antibodies that apparently are not internalized. As most pathological tau is neuronal, intracellular targeting may be more efficacious. However, extracellular tau may be more accessible to antibodies, with tau-antibody complexes a target for microglial phagocytosis. The extent of involvement of each pathway may depend on numerous factors including antibody properties, degree of pathology, and experimental model. On the imaging front, multiple tau ligands derived from β-sheet dyes have been developed by several groups, some with promising results in clinical PET tests. Postmortem analysis should clarify their tau specificity, as in theory and based on histological staining, those are likely to have some affinity for various amyloids. We are developing antibody-derived tau probes that should be more specific, and have in mouse models shown in vivo detection and binding to pathological tau after peripheral injection. These are exciting times for research on tau therapies and diagnostic agents that hopefully can be applied to humans in the near future.

  1. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody

    PubMed Central

    Luo, Wenjie; Liu, Wencheng; Hu, Xiaoyan; Hanna, Mary; Caravaca, April; Paul, Steven M.

    2015-01-01

    Microglia have been shown to contribute to the clearance of brain amyloid β peptides (Aβ), the major component of amyloid plaques, in Alzheimer’s disease (AD). However, it is not known whether microglia play a similar role in the clearance of tau, the major component of neurofibrillary tangles (NFTs). We now report that murine microglia rapidly internalize and degrade hyperphosphorylated pathological tau isolated from AD brain tissue in a time-dependent manner in vitro. We further demonstrate that microglia readily degrade human tau species released from AD brain sections and eliminate NFTs from brain sections of P301S tauopathy mice. The anti-tau monoclonal antibody MC1 enhances microglia-mediated tau degradation in an Fc-dependent manner. Our data identify a potential role for microglia in the degradation and clearance of pathological tau species in brain and provide a mechanism explaining the potential therapeutic actions of passively administered anti-tau monoclonal antibodies. PMID:26057852

  2. Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study.

    PubMed

    Lace, G; Savva, G M; Forster, G; de Silva, R; Brayne, C; Matthews, F E; Barclay, J J; Dakin, L; Ince, P G; Wharton, S B

    2009-05-01

    Deposits of abnormally phosphorylated tau protein are found in numerous neurodegenerative disorders; the 'tauopathies', which include Alzheimer's and Pick's diseases, but tau pathology is also found in the ageing brain. Variation in tau pathology in brain ageing and its relationship to development of tauopathies and cognitive impairment remains unclear. We aimed to determine the extent and pattern of spread of tau pathology in the hippocampus, a susceptible region important in dementia and milder states of memory impairment, using hippocampal samples from the elderly population-based Medical Research Council Cognitive Function and Ageing Study neuropathology cohort. Tau deposition was assessed in hippocampal anatomical sub-regions using the AT8 antibody to phosphorylated tau and isoform-specific antibodies to 3 and 4-repeat tau (RD3 and RD4). Abeta pathology was also assessed. In this population sample, which includes the full ageing spectrum from individuals with no cognitive impairment to those with dementia satisfying clinico-pathology criteria for Alzheimer's disease, we have demonstrated a high prevalence at death of tau pathology. AT8, Abeta, RD3 and RD4 showed similar regional distribution and increased RD3 was noted in late-stage ghost tangles. Abeta was shown to be a poor explanatory variable for tau pathology. Tau deposition progressed in a hierarchical manner. Hippocampal input regions and projection zones (such as lateral entorhinal cortex, CA1/subiculum border and outer molecular layer of dentate) were initially affected, with anterograde progression though the hippocampal circuitry. Six hippocampal tau anatomical stages were defined, each linking projectionally to their adjacent stages, suggesting spread of tau malfunction through neuroanatomical pathways in hippocampal ageing. These stages were significantly associated with dementia, and may provide a clinically useful tool in the clinico-pathological assessment of dementia and mild cognitive

  3. cis p-tau: early driver of brain injury and tauopathy blocked by antibody

    PubMed Central

    Mannix, Rebekah; Qiu, Jianhua; Moncaster, Juliet; Chen, Chun-Hau; Yao, Yandan; Lin, Yu-Min; Driver, Jane A; Sun, Yan; Wei, Shuo; Luo, Man-Li; Albayram, Onder; Huang, Pengyu; Rotenberg, Alexander; Ryo, Akihide; Goldstein, Lee E; Pascual-Leone, Alvaro; McKee, Ann C.; Meehan, William; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury. PMID:26176913

  4. Distinct chronology of neuronal cell cycle re-entry and tau pathology in the 3xTg-AD mouse model and Alzheimer's disease patients.

    PubMed

    Hradek, Alex C; Lee, Hyun-Pil; Siedlak, Sandra L; Torres, Sandy L; Jung, Wooyoung; Han, Ashley H; Lee, Hyoung-gon

    2015-01-01

    Cell cycle re-entry in Alzheimer's disease (AD) has emerged as an important pathological mechanism in the progression of the disease. This appearance of cell cycle related proteins has been linked to tau pathology in AD, but the causal and temporal relationship between the two is not completely clear. In this study, we found that hyperphosphorylated retinoblastoma protein (ppRb), a key regulator for G1/S transition, is correlated with a late marker for hyperphosphorylation of tau but not with other early markers for tau alteration in the 3xTg-AD mouse model. However, in AD brains, ppRb can colocalize with both early and later markers for tau alterations, and can often be found singly in many degenerating neurons, indicating the distinct development of pathology between the 3xTg-AD mouse model and human AD patients. The conclusions of this study are two-fold. First, our findings clearly demonstrate the pathological link between the aberrant cell cycle re-entry and tau pathology. Second, the chronological pattern of cell cycle re-entry with tau pathology in the 3xTg-AD mouse is different compared to AD patients suggesting the distinct pathogenic mechanism between the animal AD model and human AD patients.

  5. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    PubMed

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Two Novel Tau Antibodies Targeting the 396/404 Region Are Primarily Taken Up by Neurons and Reduce Tau Protein Pathology*

    PubMed Central

    Gu, Jiaping; Congdon, Erin E.; Sigurdsson, Einar M.

    2013-01-01

    Aggregated Tau proteins are hallmarks of Alzheimer disease and other tauopathies. Recent studies from our group and others have demonstrated that both active and passive immunizations reduce Tau pathology and prevent cognitive decline in transgenic mice. To determine the efficacy and safety of targeting the prominent 396/404 region, we developed two novel monoclonal antibodies (mAbs) with distinct binding profiles for phospho and non-phospho epitopes. The two mAbs significantly reduced hyperphosphorylated soluble Tau in long term brain slice cultures without apparent toxicity, suggesting the therapeutic importance of targeting the 396/404 region. In mechanistic studies, we found that neurons were the primary cell type that internalized the mAbs, whereas a small amount of mAbs was taken up by microglia cells. Within neurons, the two mAbs were highly colocalized with distinct pathological Tau markers, indicating their affinity toward different stages or forms of pathological Tau. Moreover, the mAbs were largely co-localized with endosomal/lysosomal markers, and partially co-localized with autophagy pathway markers. Additionally, the Fab fragments of the mAbs were able to enter neurons, but unlike the whole antibodies, the fragments were not specifically localized in pathological neurons. In summary, our Tau mAbs were safe and efficient to clear pathological Tau in a brain slice model. Fc-receptor-mediated endocytosis and the endosome/autophagosome/lysosome system are likely to have a critical role in antibody-mediated clearance of Tau pathology. PMID:24089520

  7. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R; Morin, Françoise; Planel, Emmanuel

    2017-04-12

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer's disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients.

  8. High-fat, high-sugar, and high-cholesterol consumption does not impact tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-11-01

    Aggregates of hyperphosphorylated tau protein are a pathological hallmark of Alzheimer's disease (AD). The origin of AD is multifactorial, and many metabolic disorders originating from overconsumption of fat, cholesterol, and sugar are associated with higher risk of AD later in life. However, the effects of fat, cholesterol, and sugar overconsumption on tau pathology in AD remain controversial. Using the hTau mice, a model of AD-like tau pathology, we assessed the effects of high-fat, high-cholesterol, and/or high-sugar diets on tau pathogenesis. Surprisingly, we found no effects of these compounds, even combined, on tau phosphorylation, O-GlcNAcylation, splicing, cleavage, and aggregation, suggesting that their overconsumption does not seem to worsen tau pathology in these mice. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  9. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology

    PubMed Central

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R.; Morin, Françoise; Planel, Emmanuel

    2017-01-01

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer’s disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients. PMID:28402338

  10. Targeting Aβ and tau in Alzheimer's disease, an early interim report

    PubMed Central

    Golde, Todd E.; Petrucelli, Leonard; Lewis, Jada

    2009-01-01

    The amyloid β (Aβ) and tau proteins, which misfold, aggregate, and accumulate in the Alzheimer's disease (AD) brain, are implicated as central factors in a complex neurodegenerative cascade. Studies of mutations that cause early onset AD and promote Aβ accumulation in the brain strongly support the notion that inhibiting Aβ aggregation will prevent AD. Similarly, genetic studies of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17 MAPT) showing that mutations in the MAPT gene encoding tau lead to abnormal tau accumulation and neurodegeneration. Such genetic studies clearly show that tau dysfunction and aggregation can be central to neurodegeneration, however, most likely in a secondary fashion in relation to AD. Additional pathologic, biochemical and modeling studies further support the concept that Aβ and tau are prime targets for disease modifying therapies in AD. Treatment strategies aimed at preventing the aggregation and accumulation of Aβ, tau, or both proteins should therefore be theoretically possible, assuming that treatment can be initiated before either irreversible damage is present or downstream, self-sustaining, pathological cascades have been initiated. Herein, we will review recent advances and also potential setbacks with respect to the myriad of therapeutic strategies that are designed to slow down, prevent, or clear the accumulation of either “pathological” Aβ or tau. We will also discuss the need for thoughtful prioritization with respect to clinical development of the pre-clinically validated modifiers of Aβ and tau pathology. The current number of candidate therapies targeting Aβ is becoming so large that a triage process is clearly needed to insure that resources are invested in a way such that the best candidates for disease modifying therapy are rapidly moved toward clinical trials. Finally, we will discuss the challenges for an appropriate “triage” after potential disease modifying therapies

  11. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology.

    PubMed

    Belarbi, Karim; Burnouf, Sylvie; Fernandez-Gomez, Francisco-Jose; Laurent, Cyril; Lestavel, Sophie; Figeac, Martin; Sultan, Audrey; Troquier, Laetitia; Leboucher, Antoine; Caillierez, Raphaëlle; Grosjean, Marie-Eve; Demeyer, Dominique; Obriot, Hélène; Brion, Ingrid; Barbot, Bérangère; Galas, Marie-Christine; Staels, Bart; Humez, Sandrine; Sergeant, Nicolas; Schraen-Maschke, Susanna; Muhr-Tailleux, Anne; Hamdane, Malika; Buée, Luc; Blum, David

    2011-08-01

    Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease

    PubMed Central

    Fu, Hongjun; Rodriguez, Gustavo A.; Herman, Mathieu; Emrani, Sheina; Nahmani, Eden; Barrett, Geoffrey; Figueroa, Helen Y.; Goldberg, Eliana

    2017-01-01

    Summary The earliest stages of Alzheimer's disease (AD) are characterized by the formation of mature tangles in the entorhinal cortex and disorientation and confusion navigating familiar places. The medial entorhinal cortex (MEC) contains specialized neurons called grid cells that form part of the spatial navigation system. Here we show in a transgenic mouse model expressing mutant human tau predominantly in the EC that the formation of mature tangles in old mice was associated with excitatory cell loss and deficits in grid cell function, including destabilized grid fields and reduced firing rates, as well as altered network activity. Overt tau pathology in the aged mice was accompanied by spatial memory deficits. Therefore, tau pathology initiated in the entorhinal cortex could lead to deficits in grid cell firing and underlie the deterioration of spatial cognition seen in human AD. PMID:28111080

  13. The hippocampal longitudinal axis-relevance for underlying tau and TDP-43 pathology.

    PubMed

    Lladó, Albert; Tort-Merino, Adrià; Sánchez-Valle, Raquel; Falgàs, Neus; Balasa, Mircea; Bosch, Beatriz; Castellví, Magda; Olives, Jaume; Antonell, Anna; Hornberger, Michael

    2018-06-01

    Recent studies suggest that hippocampus has different cortical connectivity and functionality along its longitudinal axis. We sought to elucidate the possible different pattern of atrophy in longitudinal axis of hippocampus between Amyloid/Tau pathology and TDP-43-pathies. Seventy-three presenile subjects were included: Amyloid/Tau group (33 Alzheimer's disease with confirmed cerebrospinal fluid [CSF] biomarkers), probable TDP-43 group (7 semantic variant progressive primary aphasia, 5 GRN and 2 C9orf72 mutation carriers) and 26 healthy controls. We conducted a region-of-interest voxel-based morphometry analysis on the hippocampal longitudinal axis, by contrasting the groups, covarying with CSF biomarkers (Aβ 42 , total tau, p-tau) and covarying with episodic memory scores. Amyloid/Tau pathology affected mainly posterior hippocampus while anterior left hippocampus was more atrophied in probable TDP-43-pathies. We also observed a significant correlation of posterior hippocampal atrophy with Alzheimer's disease CSF biomarkers and visual memory scores. Taken together, these data suggest that there is a potential differentiation along the hippocampal longitudinal axis based on the underlying pathology, which could be used as a potential biomarker to identify the underlying pathology in different neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease.

    PubMed

    Cisbani, Giulia; Maxan, Alexander; Kordower, Jeffrey H; Planel, Emmanuel; Freeman, Thomas B; Cicchetti, Francesca

    2017-11-01

    Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative

  15. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer's disease.

    PubMed

    Bejanin, Alexandre; Schonhaut, Daniel R; La Joie, Renaud; Kramer, Joel H; Baker, Suzanne L; Sosa, Natasha; Ayakta, Nagehan; Cantwell, Averill; Janabi, Mustafa; Lauriola, Mariella; O'Neil, James P; Gorno-Tempini, Maria L; Miller, Zachary A; Rosen, Howard J; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2017-12-01

    Neuropathological and in vivo studies have revealed a tight relationship between tau pathology and cognitive impairment across the Alzheimer's disease spectrum. However, tau pathology is also intimately associated with neurodegeneration and amyloid pathology. The aim of the present study was therefore to assess whether grey matter atrophy and amyloid pathology contribute to the relationship between tau pathology, as measured with 18F-AV-1451-PET imaging, and cognitive deficits in Alzheimer's disease. We included 40 amyloid-positive patients meeting criteria for mild cognitive impairment due to Alzheimer's disease (n = 5) or probable Alzheimer's disease dementia (n = 35). Twelve patients additionally fulfilled the diagnostic criteria for posterior cortical atrophy and eight for logopenic variant primary progressive aphasia. All participants underwent 3 T magnetic resonance imaging, amyloid (11C-PiB) positron emission tomography and tau (18F-AV-1451) positron emission tomography, and episodic and semantic memory, language, executive and visuospatial functions assessment. Raw cognitive scores were converted to age-adjusted Z-scores (W-scores) and averaged to compute composite scores for each cognitive domain. Independent regressions were performed between 18F-AV-1451 binding and each cognitive domain, and we used the Biological Parametric Mapping toolbox to further control for local grey matter volumes, 11C-PiB uptake, or both. Partial correlations and causal mediation analyses (mediation R package) were then performed in brain regions showing an association between cognition and both 18F-AV-1451 uptake and grey matter volume. Our results showed that decreased cognitive performance in each domain was related to increased 18F-AV-1451 binding in specific brain regions conforming to established brain-behaviour relationships (i.e. episodic memory: medial temporal lobe and angular gyrus; semantic memory: left anterior temporal regions; language: left posterior superior

  16. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample.

    PubMed

    La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M; Ayakta, Nagehan; Baker, Suzanne L; Bourakova, Viktoriya; Boxer, Adam L; Cha, Jungho; Karydas, Anna; Jerome, Gina; Maass, Anne; Mensing, Ashley; Miller, Zachary A; O'Neil, James P; Pham, Julie; Rosen, Howard J; Tsai, Richard; Visani, Adrienne V; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2018-01-23

    To assess the relationships between fluid and imaging biomarkers of tau pathology and compare their diagnostic utility in a clinically heterogeneous sample. Fifty-three patients (28 with clinical Alzheimer disease [AD] and 25 with non-AD clinical neurodegenerative diagnoses) underwent β-amyloid (Aβ) and tau ([ 18 F]AV1451) PET and lumbar puncture. CSF biomarkers (Aβ 42 , total tau [t-tau], and phosphorylated tau [p-tau]) were measured by multianalyte immunoassay (AlzBio3). Receiver operator characteristic analyses were performed to compare discrimination of Aβ-positive AD from non-AD conditions across biomarkers. Correlations between CSF biomarkers and PET standardized uptake value ratios (SUVR) were assessed using skipped Pearson correlation coefficients. Voxelwise analyses were run to assess regional CSF-PET associations. [ 18 F]AV1451-PET cortical SUVR and p-tau showed excellent discrimination between Aβ-positive AD and non-AD conditions (area under the curve 0.92-0.94; ≤0.83 for other CSF measures), and reached 83% classification agreement. In the full sample, cortical [ 18 F]AV1451 was associated with all CSF biomarkers, most strongly with p-tau ( r = 0.75 vs 0.57 for t-tau and -0.49 for Aβ 42 ). When restricted to Aβ-positive patients with AD, [ 18 F]AV1451 SUVR correlated modestly with p-tau and t-tau (both r = 0.46) but not Aβ 42 ( r = 0.02). On voxelwise analysis, [ 18 F]AV1451 correlated with CSF p-tau in temporoparietal cortices and with t-tau in medial prefrontal regions. Within AD, Mini-Mental State Examination scores were associated with [ 18 F]AV1451-PET, but not CSF biomarkers. [ 18 F]AV1451-PET and CSF p-tau had comparable value for differential diagnosis. Correlations were robust in a heterogeneous clinical group but attenuated (although significant) in AD, suggesting that fluid and imaging biomarkers capture different aspects of tau pathology. This study provides Class III evidence that, in a clinical sample of patients with a variety

  17. Affinity of Tau antibodies for solubilized pathological Tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy.

    PubMed

    Congdon, Erin E; Lin, Yan; Rajamohamedsait, Hameetha B; Shamir, Dov B; Krishnaswamy, Senthilkumar; Rajamohamedsait, Wajitha J; Rasool, Suhail; Gonzalez, Veronica; Levenga, Josien; Gu, Jiaping; Hoeffer, Charles; Sigurdsson, Einar M

    2016-08-30

    A few tau immunotherapies are now in clinical trials with several more likely to be initiated in the near future. A priori, it can be anticipated that an antibody which broadly recognizes various pathological tau aggregates with high affinity would have the ideal therapeutic properties. Tau antibodies 4E6 and 6B2, raised against the same epitope region but of varying specificity and affinity, were tested for acutely improving cognition and reducing tau pathology in transgenic tauopathy mice and neuronal cultures. Surprisingly, we here show that one antibody, 4E6, which has low affinity for most forms of tau acutely improved cognition and reduced soluble phospho-tau, whereas another antibody, 6B2, which has high affinity for various tau species was ineffective. Concurrently, we confirmed and clarified these efficacy differences in an ex vivo model of tauopathy. Alzheimer's paired helical filaments (PHF) were toxic to the neurons and increased tau levels in remaining neurons. Both toxicity and tau seeding were prevented by 4E6 but not by 6B2. Furthermore, 4E6 reduced PHF spreading between neurons. Interestingly, 4E6's efficacy relates to its high affinity binding to solubilized PHF, whereas the ineffective 6B2 binds mainly to aggregated PHF. Blocking 4E6's uptake into neurons prevented its protective effects if the antibody was administered after PHF had been internalized. When 4E6 and PHF were administered at the same time, the antibody was protective extracellularly. Overall, these findings indicate that high antibody affinity for solubilized PHF predicts efficacy, and that acute antibody-mediated improvement in cognition relates to clearance of soluble phospho-tau. Importantly, both intra- and extracellular clearance pathways are in play. Together, these results have major implications for understanding the pathogenesis of tauopathies and for development of immunotherapies.

  18. Modulation of Tau Isoforms Imbalance Precludes Tau Pathology and Cognitive Decline in a Mouse Model of Tauopathy.

    PubMed

    Espíndola, Sonia Lorena; Damianich, Ana; Alvarez, Rodrigo Javier; Sartor, Manuela; Belforte, Juan Emilio; Ferrario, Juan Esteban; Gallo, Jean-Marc; Avale, María Elena

    2018-04-17

    The microtubule-associated protein tau regulates myriad neuronal functions, such as microtubule dynamics, axonal transport and neurite outgrowth. Tauopathies are neurodegenerative disorders characterized by the abnormal metabolism of tau, which accumulates as insoluble neuronal deposits. The adult human brain contains equal amounts of tau isoforms with three (3R) or four (4R) repeats of microtubule-binding domains, derived from the alternative splicing of exon 10 (E10) in the tau transcript. Several tauopathies are associated with imbalances of tau isoforms, due to splicing deficits. Here, we used a trans-splicing strategy to shift the inclusion of E10 in a mouse model of tauopathy that produces abnormal excess of 3R tau. Modulating the 3R/4R ratio in the prefrontal cortex led to a significant reduction of pathological tau accumulation concomitant with improvement of neuronal firing and reduction of cognitive impairments. Our results suggest promising potential for the use of RNA reprogramming in human neurodegenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology fed with Western diet.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Marette, André; Planel, Emmanuel

    2017-10-03

    Tau is a microtubule-associated protein that becomes pathological when it undergoes hyperphosphorylation and aggregation as seen in Alzheimer's disease (AD). AD is mostly sporadic, with environmental, biological and/or genetic risks factors, interacting together to promote the disease. In the past decade, reports have suggested that obesity in midlife could be one of these risk factors. On the other hand, caloric restriction and physical exercise have been reported to reduce the incidence and outcome of obesity as well as AD. We evaluated the impact of voluntary physical exercise and caloric restriction on tau pathology during 2months in hTau mice under high caloric diet in order to evaluate if these strategies could prevent AD-like pathology in obese conditions. We found no effects of obesity induced by Western diet on both Tau phosphorylation and aggregation compared to controls. However, exercise reduced tau phosphorylation while caloric restriction exacerbated its aggregation in the brains of obese hTau mice. We then examined the mechanisms underlying changes in tau phosphorylation and aggregation by exploring major tau kinases and phosphatases and key proteins involved in autophagy. However, there were no significant effects of voluntary exercise and caloric restriction on these proteins in hTau mice that could explain our results. In this study, we report differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in our obese mice, namely beneficial effect of exercise on tau phosphorylation and deleterious effect of caloric restriction on tau aggregation. Our results suggest that lifestyle strategies used to reduce metabolic disorders and AD must be selected and studied carefully to avoid exacerbation of pathologies. Copyright © 2017. Published by Elsevier Inc.

  20. Hsp90 activator Aha1 drives production of pathological tau aggregates

    PubMed Central

    Shelton, Lindsey B.; Baker, Jeremy D.; Zheng, Dali; Sullivan, Leia E.; Solanki, Parth K.; Webster, Jack M.; Sun, Zheying; Sabbagh, Jonathan J.; Nordhues, Bryce A.; Koren, John; Ghosh, Suman; Blagg, Brian S. J.; Dickey, Chad A.

    2017-01-01

    The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer’s disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood–brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression. PMID:28827321

  1. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  2. Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses.

    PubMed

    Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T

    2014-06-10

    Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.

  3. Imaging the accumulation and suppression of tau pathology using multiparametric MRI

    PubMed Central

    Holmes, Holly E.; Colgan, Niall; Ismail, Ozama; Ma, Da; Powell, Nick M.; O'Callaghan, James M.; Harrison, Ian F.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morton; Fisher, Alice; Cardoso, M.J.; Modat, Marc; Walker-Samuel, Simon; Fisher, Elizabeth M.C.; Ourselin, Sebastien; O'Neill, Michael J.; Wells, Jack A.; Collins, Emily C.; Lythgoe, Mark F.

    2016-01-01

    Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology—a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes. PMID:26923415

  4. Phosphorylation of Threonine 175 Tau in the Induction of Tau Pathology in Amyotrophic Lateral Sclerosis-Frontotemporal Spectrum Disorder (ALS-FTSD). A Review.

    PubMed

    Moszczynski, Alexander J; Hintermayer, Matthew A; Strong, Michael J

    2018-01-01

    Approximately 50-60% of all patients with amyotrophic lateral sclerosis (ALS) will develop a deficit of frontotemporal function, ranging from frontotemporal dementia (FTD) to one or more deficits of neuropsychological, speech or language function which are collectively known as the frontotemporal spectrum disorders of ALS (ALS-FTSD). While the neuropathology underlying these disorders is most consistent with a widespread alteration in the metabolism of transactive response DNA-binding protein 43 (TDP-43), in both ALS with cognitive impairment (ALSci) and ALS with FTD (ALS-FTD; also known as MND-FTD) there is evidence for alterations in the metabolism of the microtubule associated protein tau. This alteration in tau metabolism is characterized by pathological phosphorylation at residue Thr 175 (pThr 175 tau) which in vitro is associated with activation of GSK3β (pTyr 216 GSK3β), phosphorylation of Thr 231 tau, and the formation of cytoplasmic inclusions with increased rates of cell death. This putative pathway of pThr 175 induction of pThr 231 and the formation of pathogenic tau inclusions has been recently shown to span a broad range of tauopathies, including chronic traumatic encephalopathy (CTE) and CTE in association with ALS (CTE-ALS). This pathway can be experimentally triggered through a moderate traumatic brain injury, suggesting that it is a primary neuropathological event and not secondary to a more widespread neuronal dysfunction. In this review, we discuss the neuropathological underpinnings of the postulate that ALS is associated with a tauopathy which manifests as a FTSD, and examine possible mechanisms by which phosphorylation at Thr 175 tau is induced. We hypothesize that this might lead to an unfolding of the hairpin structure of tau, activation of GSK3β and pathological tau fibril formation through the induction of cis -Thr 231 tau conformers. A potential role of TDP-43 acting synergistically with pathological tau metabolism is proposed.

  5. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer's disease.

    PubMed

    Ehrenberg, A J; Nguy, A K; Theofilas, P; Dunlop, S; Suemoto, C K; Di Lorenzo Alho, A T; Leite, R P; Diehl Rodriguez, R; Mejia, M B; Rüb, U; Farfel, J M; de Lucena Ferretti-Rebustini, R E; Nascimento, C F; Nitrini, R; Pasquallucci, C A; Jacob-Filho, W; Miller, B; Seeley, W W; Heinsen, H; Grinberg, L T

    2017-08-01

    Hyperphosphorylated tau neuronal cytoplasmic inclusions (ht-NCI) are the best protein correlate of clinical decline in Alzheimer's disease (AD). Qualitative evidence identifies ht-NCI accumulating in the isodendritic core before the entorhinal cortex. Here, we used unbiased stereology to quantify ht-NCI burden in the locus coeruleus (LC) and dorsal raphe nucleus (DRN), aiming to characterize the impact of AD pathology in these nuclei with a focus on early stages. We utilized unbiased stereology in a sample of 48 well-characterized subjects enriched for controls and early AD stages. ht-NCI counts were estimated in 60-μm-thick sections immunostained for p-tau throughout LC and DRN. Data were integrated with unbiased estimates of LC and DRN neuronal population for a subset of cases. In Braak stage 0, 7.9% and 2.6% of neurons in LC and DRN, respectively, harbour ht-NCIs. Although the number of ht-NCI+ neurons significantly increased by about 1.9× between Braak stages 0 to I in LC (P = 0.02), we failed to detect any significant difference between Braak stage I and II. Also, the number of ht-NCI+ neurons remained stable in DRN between all stages 0 and II. Finally, the differential susceptibility to tau inclusions among nuclear subdivisions was more notable in LC than in DRN. LC and DRN neurons exhibited ht-NCI during AD precortical stages. The ht-NCI increases along AD progression on both nuclei, but quantitative changes in LC precede DRN changes. © 2017 British Neuropathological Society.

  6. Progressive Pathological Changes in Neurochemical Profile of the Hippocampus and Early Changes in the Olfactory Bulbs of Tau Transgenic Mice (rTg4510).

    PubMed

    Kim, Jieun; Choi, In-Young; Duff, Karen E; Lee, Phil

    2017-06-01

    Tauopathies such as Alzheimer's disease and frontotemporal lobe degeneration (FTLD-tau) dementia, characterized by pathologic aggregation of the microtubule-associated tau protein and formation of neurofibrillary tangles, have been linked to neurodegeneration and cognitive decline. The early detection of cerebral abnormalities and the identification of biological contributors to the continuous pathologic processes of neurodegeneration in tauopathies critically hinge on sensitive and reliable measures of biomarkers in the living brain. In this study, we measured alterations in a number of key neurochemicals associated with tauopathy-induced neurodegeneration in the hippocampus and the olfactory bulbs of a transgenic mouse model of FTLD-tauopathy, line rTg4510, using in vivo 1 H magnetic resonance spectroscopy at 9.4 T. The rTg4510 line develops tauopathy at a young age (4-5 months), reaching a severe stage by 8-12 months of age. Longitudinal measurement of neurochemical concentrations in the hippocampus of mice from 5 to 12 months of age showed significant progressive changes with distinctive disease staging patterns including N-acetylaspartate, myo-inositol, γ-aminobutyric acid, glutathione and glutamine. The accompanying hippocampal volume loss measured using magnetic resonance imaging showed significant correlation (p < 0.01) with neurochemical measurements. Neurochemical alterations in the olfactory bulbs were more pronounced than those in the hippocampus in rTg4510 mice. These results demonstrate progressive neuropathology in the mouse model and provide potential biomarkers of early neuropathological events and effective noninvasive monitoring of the disease progression and treatment efficacy, which can be easily translated to clinical studies.

  7. A comparative study on pathological features of transgenic rat lines expressing either three or four repeat misfolded tau.

    PubMed

    Valachova, Bernadeta; Brezovakova, Veronika; Bugos, Ondrej; Jadhav, Santosh; Smolek, Tomas; Novak, Petr; Zilka, Norbert

    2018-08-01

    Human tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by distinct clinical features, typical histopathological structures, and defined ratio(s) of three-repeat and four-repeat tau isoforms within pathological aggregates. How the optional microtubule-binding repeat of tau influences this differentiation of pathologies is understudied. We have previously generated and characterized transgenic rodent models expressing human truncated tau aa151-391 with either three (SHR24) or four microtubule-binding repeats (SHR72). Here, we compare the behavioral and neuropathological hallmarks of these two transgenic lines using a battery of tests for sensorimotor, cognitive, and neurological functions over the age range of 3.5-15 months. Progression of sensorimotor and neurological deficits was similar in both transgenic lines; however, the lifespan of transgenic line SHR72 expressing truncated four-repeat tau was markedly shorter than SHR24. Moreover, the expression of three or four-repeat tau induced distinct neurofibrillary pathology in these lines. Transgenic lines displayed different distribution of tau pathology and different type of neurofibrillary tangles. Our results suggest that three- and four-repeat isoforms of tau may display different modes of action in the diseased brain. © 2018 Wiley Periodicals, Inc.

  8. Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus of Alzheimer's Disease Patients.

    PubMed

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner

    2016-01-01

    In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 μm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their

  9. The role of tau in the pathological process and clinical expression of Huntington’s disease

    PubMed Central

    Vuono, Romina; Winder-Rhodes, Sophie; de Silva, Rohan; Cisbani, Giulia; Drouin-Ouellet, Janelle; Spillantini, Maria G.; Cicchetti, Francesca

    2015-01-01

    Huntington’s disease is a neurodegenerative disorder caused by an abnormal CAG repeat expansion within exon 1 of the huntingtin gene HTT. While several genetic modifiers, distinct from the Huntington’s disease locus itself, have been identified as being linked to the clinical expression and progression of Huntington’s disease, the exact molecular mechanisms driving its pathogenic cascade and clinical features, especially the dementia, are not fully understood. Recently the microtubule associated protein tau, MAPT, which is associated with several neurodegenerative disorders, has been implicated in Huntington’s disease. We explored this association in more detail at the neuropathological, genetic and clinical level. We first investigated tau pathology by looking for the presence of hyperphosphorylated tau aggregates, co-localization of tau with mutant HTT and its oligomeric intermediates in post-mortem brain samples from patients with Huntington’s disease (n = 16) compared to cases with a known tauopathy and healthy controls. Next, we undertook a genotype–phenotype analysis of a large cohort of patients with Huntington’s disease (n = 960) with a particular focus on cognitive decline. We report not only on the tau pathology in the Huntington’s disease brain but also the association between genetic variation in tau gene and the clinical expression and progression of the disease. We found extensive pathological inclusions containing abnormally phosphorylated tau protein that co-localized in some instances with mutant HTT. We confirmed this related to the disease process rather than age, by showing it is also present in two patients with young-onset Huntington’s disease (26 and 40 years old at death). In addition we demonstrate that tau oligomers (suggested to be the most likely neurotoxic tau entity) are present in the Huntington’s disease brains. Finally we highlight the clinical significance of this pathology by demonstrating that the MAPT

  10. Multimodal PET Imaging of Amyloid and Tau Pathology in Alzheimer Disease and Non-Alzheimer Disease Dementias.

    PubMed

    Xia, Chenjie; Dickerson, Bradford C

    2017-07-01

    Biomarkers of the molecular pathology underpinning dementia syndromes are increasingly recognized as crucial for diagnosis and development of disease-modifying treatments. Amyloid PET imaging is an integral part of the diagnostic assessment of Alzheimer disease. Its use has also deepened understanding of the role of amyloid pathology in Lewy body disorders and aging. Tau PET imaging is an imaging biomarker that will likely play an important role in the diagnosis, monitoring, and treatment in dementias. Using tau PET imaging to examine how tau pathology relates to amyloid and other markers of neurodegeneration will serve to better understand the pathophysiologic cascade that leads to dementia. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    PubMed

    Lewis, Jada; Dickson, Dennis W

    2016-01-01

    Tau is a microtubule-associated protein and a key regulator of microtubule stabilization as well as the main component of neurofibrillary tangles-a principle neuropathological hallmark of Alzheimer's disease (AD)-as well as pleomorphic neuronal and glial inclusions in neurodegenerative tauopathies. Cross-sectional studies of neurofibrillary pathology in AD reveal a stereotypic spatiotemporal pattern of neuronal vulnerability that correlates with disease severity; however, the relationship of this pattern to disease progression is less certain and exceptions to the typical pattern have been described in a subset of AD patients. The basis for the selective vulnerability of specific populations of neurons to tau pathology and cell death is largely unknown, although there have been a number of hypotheses based upon shared properties of vulnerable neurons (e.g., degree of axonal myelination or synaptic plasticity). A recent hypothesis for selective vulnerability takes into account the emerging science of functional connectivity based upon resting state functional magnetic resonance imaging, where subsets of neurons that fire synchronously define patterns of degeneration similar to specific neurodegenerative disorders, including various tauopathies. In the past 6 years, the concept of tau propagation has emerged from numerous studies in cell and animal models suggesting that tau moves from cell-to-cell and that this may trigger aggregation and region-to-region spread of tau pathology within the brain. How the spread of tau pathology relates to functional connectivity is an area of active investigation. Observations of templated folding and propagation of tau have prompted comparisons of tau to prions, the pathogenic proteins in transmissible spongiform encephalopathies. In this review, we discuss the most compelling studies in the field, discuss their shortcomings and consider their implications with respect to human tauopathies as well as the controversy that

  12. Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice.

    PubMed

    Van der Jeugd, Ann; Parra-Damas, Arnaldo; Baeta-Corral, Raquel; Soto-Faguás, Carlos M; Ahmed, Tariq; LaFerla, Frank M; Giménez-Llort, Lydia; D'Hooge, Rudi; Saura, Carlos A

    2018-04-24

    Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer's disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12-14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.

  13. Tau Pathology is Present In Vivo and Develops In Vitro in Sensory Neurons from Human P301S Tau Transgenic Mice: A System for Screening Drugs against Tauopathies

    PubMed Central

    Mellone, Manuela; Kestoras, Dimitra; Andrews, Melissa R.; Dassie, Elisa; Crowther, R. Anthony; Stokin, Gorazd B.; Tinsley, Jon; Horne, Graeme; Goedert, Michel

    2013-01-01

    Intracellular tau aggregates are the neuropathological hallmark of several neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, and cases of frontotemporal dementia, but the link between these aggregates and neurodegeneration remains unclear. Neuronal models recapitulating the main features of tau pathology are necessary to investigate the molecular mechanisms of tau malfunction, but current models show little and inconsistent spontaneous tau aggregation. We show that dorsal root ganglion (DRG) neurons in transgenic mice expressing human P301S tau (P301S-htau) develop tau pathology similar to that found in brain and spinal cord and a significant reduction in mechanosensation occurs before detectable fibrillar tau formation. DRG neuronal cultures established from adult P301S-htau mice at different ages retained the pattern of aberrant tau found in vivo. Moreover, htau became progressively hyperphosphorylated over 2 months in vitro beginning with nonsymptomatic neurons, while hyperphosphorylated P301S-htau-positive neurons from 5-month-old mice cultured for 2 months died preferentially. P301S-htau-positive neurons grew aberrant axons, including spheroids, typically found in human tauopathies. Neurons cultured at advanced stages of tau pathology showed a 60% decrease in the fraction of moving mitochondria. SEG28019, a novel O-GlcNAcase inhibitor, reduced steady-state pSer396/pSer404 phosphorylation over 7 weeks in a significant proportion of DRG neurons showing for the first time the possible beneficial effect of prolonged dosing of O-GlcNAcase inhibitor in vitro. Our system is unique in that fibrillar tau forms without external manipulation and provides an important new tool for understanding the mechanisms of tau dysfunction and for screening of compounds for treatment of tauopathies. PMID:24227726

  14. Plasma tau in Alzheimer disease.

    PubMed

    Mattsson, Niklas; Zetterberg, Henrik; Janelidze, Shorena; Insel, Philip S; Andreasson, Ulf; Stomrud, Erik; Palmqvist, Sebastian; Baker, David; Tan Hehir, Cristina A; Jeromin, Andreas; Hanlon, David; Song, Linan; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W; Hansson, Oskar; Blennow, Kaj

    2016-10-25

    To test whether plasma tau is altered in Alzheimer disease (AD) and whether it is related to changes in cognition, CSF biomarkers of AD pathology (including β-amyloid [Aβ] and tau), brain atrophy, and brain metabolism. This was a study of plasma tau in prospectively followed patients with AD (n = 179), patients with mild cognitive impairment (n = 195), and cognitive healthy controls (n = 189) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and cross-sectionally studied patients with AD (n = 61), mild cognitive impairment (n = 212), and subjective cognitive decline (n = 174) and controls (n = 274) from the Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study at Lund University, Sweden. A total of 1284 participants were studied. Associations were tested between plasma tau and diagnosis, CSF biomarkers, MRI measures, 18 fluorodeoxyglucose-PET, and cognition. Higher plasma tau was associated with AD dementia, higher CSF tau, and lower CSF Aβ 42 , but the correlations were weak and differed between ADNI and BioFINDER. Longitudinal analysis in ADNI showed significant associations between plasma tau and worse cognition, more atrophy, and more hypometabolism during follow-up. Plasma tau partly reflects AD pathology, but the overlap between normal aging and AD is large, especially in patients without dementia. Despite group-level differences, these results do not support plasma tau as an AD biomarker in individual people. Future studies may test longitudinal plasma tau measurements in AD. © 2016 American Academy of Neurology.

  15. Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: A Chronic Effects of Neurotrauma Consortium Study

    PubMed Central

    Mufson, Elliott J.; Perez, Sylvia E.; Nadeem, Muhammad; Mahady, Laura; Kanaan, Nicholas M.; Abrahamson, Eric E.; Ikonomovic, Milos D.; Crawford, Fiona; Alvarez, Victor; Stein, Thor; McKee, Ann C.

    2017-01-01

    Objective To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. Method To characterize NFT pathology we used tau- antibodies marking early, intermediate, and late stages of NFT development in cholinergic basal forebrain tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI). Results We found evidence that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pretangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-β (Aβ) deposits in CTE. A higher percent of pS422/p75NTR, pS422 and TNT1 labeled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. Conclusion The development of NFTs within the nbM neurons could contribute to the basal forebrain cortical cholinergic disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE. PMID:27834536

  16. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.

  17. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for...multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to identify progressive tau...after traumatic brain injury. Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in

  18. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation

    PubMed Central

    Ossola, Bernardino; Zhao, Chao; Compston, Alastair; Pluchino, Stefano; Franklin, Robin J. M.

    2015-01-01

    Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule‐associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau‐induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S‐htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2‐month‐old P301S‐htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL‐1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S‐htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S‐htau axons to demyelination‐induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S‐htau mice compared with Wt mice‐derived OPCs. Because the OPCs from P301S‐htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice‐derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination. GLIA 2016;64:457–471 PMID:26576485

  19. Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro.

    PubMed

    Pérez, Mar; Medina, Miguel; Hernández, Félix; Avila, Jesús

    2018-03-05

    The microtubule-associated protein Tau plays a crucial role in stabilizing neuronal microtubules. In Tauopathies, Tau loses its ability to bind microtubules, detach from them and forms intracellular aggregates. Increasing evidence in recent years supports the notion that Tau pathology spreading throughout the brain in AD and other Tauopathies is the consequence of the propagation of specific Tau species along neuroanatomically connected brain regions in a so-called "prion-like" manner. A number of steps are assumed to be involved in this process, including secretion, cellular uptake, transcellular transfer and/or seeding, although the precise mechanisms underlying propagation of Tau pathology are not fully understood yet. This review summarizes recent evidence on the nature of the specific Tau species that are propagated and the different mechanisms of Tau pathology spreading.

  20. Proteopathic tau seeding predicts tauopathy in vivo

    PubMed Central

    Holmes, Brandon B.; Furman, Jennifer L.; Mahan, Thomas E.; Yamasaki, Tritia R.; Mirbaha, Hilda; Eades, William C.; Belaygorod, Larisa; Cairns, Nigel J.; Holtzman, David M.; Diamond, Marc I.

    2014-01-01

    Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer’s disease, this model predicts that tau seeds propagate pathology through the brain via cell–cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼300 fM) and synuclein (∼300 pM) fibrils. This assay readily discriminates Alzheimer’s disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration. PMID:25261551

  1. Depletion of microglia and inhibition of exosome synthesis halt tau propagation

    PubMed Central

    Asai, Hirohide; Ikezu, Seiko; Tsunoda, Satoshi; Medalla, Maria; Luebke, Jennifer; Haydar, Tarik; Wolozin, Benjamin; Butovsky, Oleg; Kügler, Sebastian; Ikezu, Tsuneya

    2015-01-01

    Accumulation of pathological tau protein is a major hallmark of Alzheimer’s disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus–based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target. PMID:26436904

  2. A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer's disease: effect on Tau and amyloid pathologies in vitro.

    PubMed

    Coutadeur, Séverine; Benyamine, Hélène; Delalonde, Laurence; de Oliveira, Catherine; Leblond, Bertrand; Foucourt, Alicia; Besson, Thierry; Casagrande, Anne-Sophie; Taverne, Thierry; Girard, Angélique; Pando, Matthew P; Désiré, Laurent

    2015-05-01

    The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aβ) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Aβ production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ-induced Tau phosphorylation and DYRK1A-stimulated Aβ production. DYRK1A is thus as a key element of Aβ-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies. Inhibition of the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is a new high-potential therapeutic approach for Alzheimer disease. Here we describe EHT 5372, a novel potent and selective DYRK1A inhibitor. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation, Aβ production and Aβ effects on phospho-Tau, including Tau aggregation. © 2014 International Society for Neurochemistry.

  3. Closing the tau loop: the missing tau mutation

    PubMed Central

    McCarthy, Allan; Lonergan, Roisin; Olszewska, Diana A.; O’Dowd, Sean; Cummins, Gemma; Magennis, Brian; Fallon, Emer M.; Pender, Niall; Huey, Edward D.; Cosentino, Stephanie; O’Rourke, Killian; Kelly, Brendan D.; O’Connell, Martin; Delon, Isabelle; Farrell, Michael; Spillantini, Maria Grazia; Rowland, Lewis P.; Fahn, Stanley; Craig, Peter; Hutton, Michael

    2015-01-01

    Frontotemporal lobar degeneration comprises a group of disorders characterized by behavioural, executive, language impairment and sometimes features of parkinsonism and motor neuron disease. In 1994 we described an Irish-American family with frontotemporal dementia linked to chromosome 17 associated with extensive tau pathology. We named this disinhibition-dementia-parkinsonism-amyotrophy complex. We subsequently identified mutations in the MAPT gene. Eleven MAPT gene splice site stem loop mutations were identified over time except for 5’ splice site of exon 10. We recently identified another Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the ‘missing’ +15 mutation at the intronic boundary of exon 10. We performed a clinical, neuropsychological and neuroimaging study on the proband and four siblings, including two affected siblings. We sequenced MAPT and performed segregation analysis. We looked for a biological effect of the tau variant by performing real-time polymerase chain reaction analysis of RNA extracted from human embryonic kidney cells transfected with exon trapping constructs. We found a c.915+15A>C exon 10/intron 10 stem loop mutation in all affected subjects but not in the unaffected. The c.915+15A>C variant caused a shift in tau splicing pattern to a predominantly exon 10+ pattern presumably resulting in predominant 4 repeat tau and little 3 repeat tau. This strongly suggests that the c.915+15A>C variant is a mutation and that it causes frontotemporal dementia linked to chromosome 17 in this pedigree by shifting tau transcription and translation to +4 repeat tau. Tau (MAPT) screening should be considered in families where amnesia or atypical parkinsonism coexists with behavioural disturbance early in the disease process. We describe the final missing stem loop tau mutation predicted 15 years ago. Mutations have now been identified at all predicted sites within the ‘stem’ when the

  4. Tau-imaging in neurodegeneration.

    PubMed

    Bischof, Gérard N; Endepols, Heike; van Eimeren, Thilo; Drzezga, Alexander

    2017-11-01

    Pathological cerebral aggregations of proteins are suggested to play a crucial role in the development of neurodegenerative disorders. For example, aggregation of the protein ß-amyloid in form of extracellular amyloid-plaques as well as intraneuronal depositions of the protein tau in form of neurofibrillary tangles represent hallmarks of Alzheimer's disease (AD). Recently, novel tracers for in vivo molecular imaging of tau-aggregates in the brain have been introduced, complementing existing tracers for imaging amyloid-plaques. Available data on these novel tracers indicate that the subject of Tau-PET may be of considerable complexity. On the one hand this refers to the various forms of appearance of tau-pathology in different types of neurodegenerative disorders. On the other hand, a number of hurdles regarding validation of these tracers still need to be overcome with regard to comparability and standardization of the different tracers, observed off-target/non-specific binding and quantitative interpretation of the signal. These issues will have to be clarified before systematic clinical application of this exciting new methodological approach may become possible. Potential applications refer to early detection of neurodegeneration, differential diagnosis between tauopathies and non-tauopathies and specific patient selection and follow-up in therapy trials. Copyright © 2017. Published by Elsevier Inc.

  5. Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy.

    PubMed

    Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L

    2017-03-01

    Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated

  6. Transcriptome analysis of a tau overexpression model in rats implicates an early pro-inflammatory response

    PubMed Central

    Wang, David B.; Dayton, Robert D.; Zweig, Richard M.; Klein, Ronald L.

    2010-01-01

    Neurofibrillary tangles comprised of the microtubule-associated protein tau are pathological features of Alzheimer's disease and several other neurodegenerative diseases, such as progressive supranuclear palsy. We previously overexpressed tau in the substantia nigra of rats and mimicked some of the neurodegenerative sequelae that occur in humans such as tangle formation, loss of dopamine neurons, and microgliosis. To study molecular changes involved in the tau-induced disease state, we used DNA microarrays at an early stage of the disease process. A range of adeno-associated virus (AAV9) vector doses for tau were injected in groups of rats with a survival interval of two weeks. Specific decreases in messages for dopamine related genes validated the technique with respect to the dopaminergic cell loss observed. Of the mRNAs upregulated, there was a dose-dependent effect on multiple genes involved in immune response such as chemokines, interferon-inducible genes and leukocyte markers, only in the tau vector groups and not in dose-matched controls of either transgene-less empty vector or control green fluorescent protein vector. Histological staining for dopamine neurons and microglia matched the loss of dopaminergic markers and upregulation of immune response mRNAs in the microarray data, respectively. RT-PCR for selected markers confirmed the microarray results, with similar changes found by either technique. The mRNA data correlate well with previous findings, and underscore microgliosis and immune response in the degenerative process following tau overexpression. PMID:20346943

  7. Familial early-onset dementia with tau intron 10 + 16 mutation with clinical features similar to those of Alzheimer disease.

    PubMed

    Doran, Mark; du Plessis, Daniel G; Ghadiali, Eric J; Mann, David M A; Pickering-Brown, Stuart; Larner, Andrew J

    2007-10-01

    Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) owing to the tau intron 10 + 16 mutation usually occurs with a prototypical frontotemporal dementia phenotype with prominent disinhibition and affective disturbances. To report a new FTDP-17 pedigree with the tau intron 10 + 16 mutation demonstrating a clinical phenotype suggestive of Alzheimer disease. Case reports. Regional neuroscience centers in northwest England. Patients We examined 4 members of a kindred in which 8 individuals were affected in 3 generations. All 4 patients reported memory difficulty. Marked anomia was also present, but behavioral disturbances were conspicuously absent in the early stages of disease. All patients had an initial clinical diagnosis of Alzheimer disease. No mutations were found in the presenilin or amyloid precursor protein genes. Pathologic examination of the proband showed features typical of FTDP-17, and tau gene analysis showed the intron 10 + 16 mutation. This pedigree illustrates the phenotypic variability of tau intron 10 + 16 mutations. In pedigrees with a clinical diagnosis of Alzheimer disease but without presenilin or amyloid precursor protein gene mutations, tau gene mutations may be found.

  8. Fluorine-19 magnetic resonance imaging probe for the detection of tau pathology in female rTg4510 mice.

    PubMed

    Yanagisawa, Daijiro; Ibrahim, Nor Faeizah; Taguchi, Hiroyasu; Morikawa, Shigehiro; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Tooyama, Ikuo

    2018-05-01

    Aggregation of tau into neurofibrillary tangles (NFTs) is characteristic of tauopathies, including Alzheimer's disease. Recent advances in tau imaging have attracted much attention because of its potential contributions to early diagnosis and monitoring of disease progress. Fluorine-19 magnetic resonance imaging ( 19 F-MRI) may be extremely useful for tau imaging once a high-quality probe has been formulated. In this investigation, a novel fluorine-19-labeling compound has been developed as a probe for tau imaging using 19 F-MRI. This compound is a buta-1,3-diene derivative with a polyethylene glycol side chain bearing a CF 3 group and is known as Shiga-X35. Female rTg4510 mice (a mouse model of tauopathy) and wild-type mice were intravenously injected with Shiga-X35, and magnetic resonance imaging of each mouse's head was conducted in a 7.0-T horizontal-bore magnetic resonance scanner. The 19 F-MRI in rTg4510 mice showed an intense signal in the forebrain region. Analysis of the signal intensity in the forebrain region revealed a significant accumulation of fluorine-19 magnetic resonance signal in the rTg4510 mice compared with the wild-type mice. Histological analysis showed fluorescent signals of Shiga-X35 binding to the NFTs in the brain sections of rTg4510 mice. Data collected as part of this investigation indicate that 19 F-MRI using Shiga-X35 could be a promising tool to evaluate tau pathology in the brain. © 2017 Wiley Periodicals, Inc.

  9. Familial Prion Disease with Alzheimer Disease-Like Tau Pathology and Clinical Phenotype

    PubMed Central

    Jayadev, Suman; Nochlin, David; Poorkaj, Parvoneh; Steinbart, Ellen J.; Mastrianni, James A.; Montine, Thomas J.; Ghetti, Bernardino; Schellenberg, Gerard D.; Bird, Thomas D.; Leverenz, James B.

    2011-01-01

    Objective To describe the Alzheimer disease (AD)-like clinical and pathological features, including marked neurofibrillary tangle (NFT) pathology, of a familial prion disease due to a rare nonsense mutation of the prion gene (PRNP). Methods Longitudinal clinical assessments were available for the proband and her mother. After death, both underwent neuropathological evaluation. PRNP was sequenced after failure to find immunopositive Aβ deposits in the proband and the documentation of prion protein (PrP) immunopositive pathology. Results The proband presented at age 42 years with a 3-year history of progressive short-term memory impairment and depression. Neuropsychological testing found impaired memory performance, with relatively preserved attention and construction. She was diagnosed with AD and died at age 47 years. Neuropathologic evaluation revealed extensive limbic and neocortical NFT formation and neuritic plaques consistent with a Braak stage of VI. The NFTs were immunopositive, with multiple tau antibodies, and electron microscopy revealed paired helical filaments. However, the neuritic plaques were immunonegative for Aβ, whereas immunostaining for PrP was positive. The mother of the proband had a similar presentation, including depression, and had been diagnosed clinically and pathologically as AD. Reevaluation of her brain tissue confirmed similar tau and PrP immunostaining findings. Genetic analysis revealed that both the proband and her mother had a rare PRNP mutation (Q160X) that resulted in the production of truncated PrP. Interpretation We suggest that PRNP mutations that result in a truncation of PrP lead to a prolonged clinical course consistent with a clinical diagnosis of AD and severe AD-like NFTs. PMID:21416485

  10. Sources of extracellular tau and its signaling.

    PubMed

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  11. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease.

    PubMed

    Kovacech, B; Novak, M

    2010-12-01

    Deposits of the misfolded neuronal protein tau are major hallmarks of neurodegeneration in Alzheimer's disease (AD) and other tauopathies. The etiology of the transformation process of the intrinsically disordered soluble protein tau into the insoluble misordered aggregate has attracted much attention. Tau undergoes multiple modifications in AD, most notably hyperphosphorylation and truncation. Hyperphosphorylation is widely regarded as the hottest candidate for the inducer of the neurofibrillary pathology. However, the true nature of the impetus that initiates the whole process in the human brains remains unknown. In AD, several site-specific tau cleavages were identified and became connected to the progression of the disease. In addition, western blot analyses of tau species in AD brains reveal multitudes of various truncated forms. In this review we summarize evidence showing that tau truncation alone is sufficient to induce the complete cascade of neurofibrillary pathology, including hyperphosphorylation and accumulation of misfolded insoluble forms of tau. Therefore, proteolytical abnormalities in the stressed neurons and production of aberrant tau cleavage products deserve closer attention and should be considered as early therapeutic targets for Alzheimer's disease.

  12. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer's disease.

    PubMed

    Schöll, Michael; Ossenkoppele, Rik; Strandberg, Olof; Palmqvist, Sebastian; Jögi, Jonas; Ohlsson, Tomas; Smith, Ruben; Hansson, Oskar

    2017-09-01

    Patients with Alzheimer's disease can present with different clinical phenotypes. Individuals with late-onset Alzheimer's disease (>65 years) typically present with medial temporal lobe neurodegeneration and predominantly amnestic symptomatology, while patients with early-onset Alzheimer's disease (<65 years) exhibit greater neocortical involvement associated with a clinical presentation including dyspraxia, executive dysfunction, or visuospatial impairment. We recruited 20 patients with early-onset Alzheimer's disease, 21 with late-onset Alzheimer's disease, three with prodromal early-onset Alzheimer's disease and 13 with prodromal late-onset Alzheimer's disease, as well as 30 cognitively healthy elderly controls, that had undergone 18F-AV-1451 tau positron emission tomography and structural magnetic resonance imaging to explore whether early- and late-onset Alzheimer's disease exhibit differential regional tau pathology and atrophy patterns. Strong associations of lower age at symptom onset with higher 18F-AV-1451 uptake were observed in several neocortical regions, while higher age did not yield positive associations in neither patient group. Comparing patients with early-onset Alzheimer's disease with controls resulted in significantly higher 18F-AV-1451 retention throughout the neocortex, while comparing healthy controls with late-onset Alzheimer's disease patients yielded a distinct pattern of higher 18F-AV-1451 retention, predominantly confined to temporal lobe regions. When compared against each other, the early-onset Alzheimer's disease group exhibited greater uptake than the late-onset group in prefrontal and premotor, as well as in inferior parietal cortex. These preliminary findings indicate that age may constitute an important contributor to Alzheimer's disease heterogeneity highlighting the potential of tau positron emission tomography to capture phenotypic variation across patients with Alzheimer's disease. © The Author (2017). Published by Oxford

  13. The Existence of Primary Age-Related Tauopathy Suggests that not all the Cases with Early Braak Stages of Neurofibrillary Pathology are Alzheimer's Disease.

    PubMed

    Giaccone, Giorgio

    2015-01-01

    The distinction between Alzheimer's disease (AD) and Primary Age-Related Tauopathy (PART) is a hotly debated issue. As most lines of evidence support the tenet that tau pathology occurs downstream of amyloid-β deposition, it seems reasonable to consider PART as a separate disease process not necessarily related to Aβ and hence AD. Following this view, the early stages of neurofibrillary pathology may not always be the forerunner of diffuse neurofibrillary changes and AD. The ongoing debate further enhances the need for greater caution against any future predictions using tau cerebrospinal fluid and imaging biomarkers.

  14. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease.

    PubMed

    Tracy, Tara E; Gan, Li

    2018-05-09

    The accumulation of pathological tau in the brain is associated with neuronal deterioration and cognitive impairments in tauopathies including Alzheimer's disease. Tau, while primarily localized in the axons of healthy neurons, accumulates in the soma and dendrites of neurons under pathogenic conditions. Tau is found in both presynaptic and postsynaptic compartments of neurons in Alzheimer's disease. New research supports that soluble forms of tau trigger pathophysiology in the brain by altering properties of synaptic and neuronal function at the early stages of disease progression, before neurons die. Here we review the current understanding of how tau-mediated synaptic and neuronal dysfunction contributes to cognitive decline. Delineating the mechanisms by which pathogenic tau alters synapses, dendrites and axons will help lay the foundation for new strategies that can restore neuronal function in tauopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Tau and Amyloid-β Cerebrospinal Fluid Biomarkers have Differential Relationships with Cognition in Mild Cognitive Impairment.

    PubMed

    Malpas, Charles B; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia; O'Brien, Terence J

    2015-01-01

    Alzheimer's disease (AD) is characterized by two primary pathologies: tau-related neurofibrillary tangles and the extracellular accumulation of amyloid-β (Aβ). The development of these pathologies is topologically distinct early in the disease, with Aβ beginning to accumulate as a diffuse, neocortical pathology, while tau-related pathology begins to form in mesial temporal regions. This study investigated the hypothesis that, by virtue of this distinction, there exist preferential associations between the primary pathologies and aspects of the cognitive phenotype. We investigated the relationship between cerebrospinal fluid (CSF) biomarkers for tau and Aβ pathologies with neurocognitive measures in 191 patients with mild cognitive impairment (MCI). Participants completed cognitive tests of new learning, information processing speed, and working memory. Separate regression models were computed and then followed up with mediation analyses to examine the predictive status of CSF biomarkers. The effect of Aβ on learning was mediated by phospho-tau (p = 0.008). In contrast, Aβ had a direct effect on information processing speed that was not mediated by phospho-tau (p = 0.59). No predictors were significant for working memory. This study provided evidence for a differential relationship of Aβ and phospho-tau pathologies on the neurocognitive phenotype of MCI. This supports the proposition that these primary AD pathologies maximally affect different aspects of cognition, and has potential implications for cognitive assessments and the use of biomarkers in disease-modifyingtherapeutic trials.

  16. Investigations into Retinal Pathology in the Early Stages of a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Chidlow, Glyn; Wood, John P.M.; Manavis, Jim; Finnie, John; Casson, Robert J.

    2016-01-01

    There is increasing recognition that visual performance is impaired in early stages of Alzheimer’s disease (AD); however, no consensus exists as to the mechanisms underlying this visual dysfunction, in particular regarding the timing, nature, and extent of retinal versus cortical pathology. If retinal pathology presents sufficiently early, it offers great potential as a source of novel biomarkers for disease diagnosis. The current project utilized an array of immunochemical and molecular tools to perform a characterization of retinal pathology in the early stages of disease progression using a well-validated mouse model of AD (APPSWE/PS1ΔE9). Analytical endpoints included examination of aberrant amyloid and tau in the retina, quantification of any neuronal degeneration, delineation of cellular stress responses of neurons and particularly glial cells, and investigation of oxidative stress. Brain, eyes, and optic nerves were taken from transgenic and wild-type mice of 3 to 12 months of age and processed for immunohistochemistry, qPCR, or western immunoblotting. The results revealed robust expression of the human APP transgene in the retinas of transgenic mice, but a lack of identifiable retinal pathology during the period when amyloid deposits were dramatically escalating in the brain. We were unable to demonstrate the presence of amyloid plaques, dystrophic neurites, neuronal loss, macro- or micro-gliosis, aberrant cell cycle re-entry, oxidative stress, tau hyperphosphorylation, or upregulations of proinflammatory cytokines or stress signaling molecules in the retina. The overall results do not support the hypothesis that detectable retinal pathology occurs concurrently with escalating amyloid deposition in the brains of APPSWE/PS1ΔE9 mice. PMID:28035930

  17. Passive Immunization with Anti-Tau Antibodies in Two Transgenic Models

    PubMed Central

    Chai, Xiyun; Wu, Su; Murray, Tracey K.; Kinley, Robert; Cella, Claire V.; Sims, Helen; Buckner, Nicola; Hanmer, Jenna; Davies, Peter; O'Neill, Michael J.; Hutton, Michael L.; Citron, Martin

    2011-01-01

    The microtubule-associated protein Tau plays a critical role in the pathogenesis of Alzheimer disease and several related disorders (tauopathies). In the disease Tau aggregates and becomes hyperphosphorylated forming paired helical and straight filaments, which can further condense into higher order neurofibrillary tangles in neurons. The development of this pathology is consistently associated with progressive neuronal loss and cognitive decline. The identification of tractable therapeutic targets in this pathway has been challenging, and consequently very few clinical studies addressing Tau pathology are underway. Recent active immunization studies have raised the possibility of modulating Tau pathology by activating the immune system. Here we report for the first time on passive immunotherapy for Tau in two well established transgenic models of Tau pathogenesis. We show that peripheral administration of two antibodies against pathological Tau forms significantly reduces biochemical Tau pathology in the JNPL3 mouse model. We further demonstrate that peripheral administration of the same antibodies in the more rapidly progressive P301S tauopathy model not only reduces Tau pathology quantitated by biochemical assays and immunohistochemistry, but also significantly delays the onset of motor function decline and weight loss. This is accompanied by a reduction in neurospheroids, providing direct evidence of reduced neurodegeneration. Thus, passive immunotherapy is effective at preventing the buildup of intracellular Tau pathology, neurospheroids, and associated symptoms, although the exact mechanism remains uncertain. Tau immunotherapy should therefore be considered as a therapeutic approach for the treatment of Alzheimer disease and other tauopathies. PMID:21841002

  18. Extra-Virgin Olive Oil Attenuates Amyloid-β and Tau Pathologies in the Brains of TgSwDI Mice

    PubMed Central

    Qosa, Hisham; Mohamed, Loqman A.; Batarseh, Yazan S.; Alqahtani, Saeed; Ibrahim, Baher; LeVine, Harry; Keller, Jeffrey N.; Kaddoumi, Amal

    2015-01-01

    Extra-virgin olive oil (EVOO) is one of the main elements of Mediterranean diet. Several studies have suggested that EVOO has several health promoting effects that could protect from and decrease the risk of Alzheimer’s disease (AD). In this study, we investigated the effect of consumption of EVOO-enriched diet on amyloid- and tau- related pathological alterations that are associated with the progression of AD and cerebral amyloid angiopathy (CAA) in TgSwDI mice. Feeding mice with EVOO-enriched diet for 6 months, beginning at an age before amyloid-β (Aβ) accumulation starts, has significantly reduced total Aβ and tau brain levels with a significant improvement in mouse cognitive behavior. This reduction in brain Aβ was explained by the enhanced Aβ clearance pathways and reduced brain production of Aβ via modulation of APP processing. On the other hand, although feeding mice with EVOO-enriched diet for 3 months, beginning at an age after Aβ accumulation starts, showed improved clearance across the BBB and significant reduction in Aβ levels, it did not affect tau levels or improve cognitive functions of TgSwDI mouse. Collectively, results of this study suggest the long-term consumption of EVOO-containing diet starting at early age provides a protective effect against AD and its related disorder CAA. PMID:26344778

  19. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation

    PubMed Central

    Cohen, Todd J.; Constance, Brian H.; Hwang, Andrew W.; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer’s disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies. PMID:27383765

  20. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    PubMed

    Cohen, Todd J; Constance, Brian H; Hwang, Andrew W; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  1. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and...11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17...To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing efforts include

  2. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2016-02-01

    14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive...pugilistica 3, 11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain...Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing

  3. In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology

    PubMed Central

    Caso, Francesca; Mandelli, Maria Luisa; Henry, Maya; Gesierich, Benno; Bettcher, Brianne M.; Ogar, Jennifer; Filippi, Massimo; Comi, Giancarlo; Magnani, Giuseppe; Sidhu, Manu; Trojanowski, John Q.; Huang, Eric J.; Grinberg, Lea T.; Miller, Bruce L.; Dronkers, Nina; Seeley, William W.

    2014-01-01

    Objective: To identify early cognitive and neuroimaging features of sporadic nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA) caused by frontotemporal lobar degeneration (FTLD) subtypes. Methods: We prospectively collected clinical, neuroimaging, and neuropathologic data in 11 patients with sporadic nfvPPA with FTLD-tau (nfvPPA-tau, n = 9) or FTLD–transactive response DNA binding protein pathology of 43 kD type A (nfvPPA-TDP, n = 2). We analyzed patterns of cognitive and gray matter (GM) and white matter (WM) atrophy at presentation in the whole group and in each pathologic subtype separately. We also considered longitudinal clinical data. Results: At first evaluation, regardless of pathologic FTLD subtype, apraxia of speech (AOS) was the most common cognitive feature and atrophy involved the left posterior frontal lobe. Each pathologic subtype showed few distinctive features. At presentation, patients with nfvPPA-tau presented with mild to moderate AOS, mixed dysarthria with prominent hypokinetic features, clear agrammatism, and atrophy in the GM of the left posterior frontal regions and in left frontal WM. While speech and language deficits were prominent early, within 3 years of symptom onset, all patients with nfvPPA-tau developed significant extrapyramidal motor signs. At presentation, patients with nfvPPA-TDP had severe AOS, dysarthria with spastic features, mild agrammatism, and atrophy in left posterior frontal GM only. Selective mutism occurred early, when general neurologic examination only showed mild decrease in finger dexterity in the right hand. Conclusions: Clinical features in sporadic nfvPPA caused by FTLD subtypes relate to neurodegeneration of GM and WM in frontal motor speech and language networks. We propose that early WM atrophy in nfvPPA is suggestive of FTLD-tau pathology while early selective GM loss might be indicative of FTLD-TDP. PMID:24353332

  4. Deletion of Type-2 Cannabinoid Receptor Induces Alzheimer's Disease-Like Tau Pathology and Memory Impairment Through AMPK/GSK3β Pathway.

    PubMed

    Wang, Lin; Liu, Bing-Jin; Cao, Yun; Xu, Wei-Qi; Sun, Dong-Sheng; Li, Meng-Zhu; Shi, Fang-Xiao; Li, Man; Tian, Qing; Wang, Jian-Zhi; Zhou, Xin-Wen

    2018-06-01

    Although several studies have shown that type-2 cannabinoid receptor (CB2R) is involved in Alzheimer's disease (AD) pathology, the effects of CB2R on AD-like tau abnormal phosphorylation and its underlying mechanism remain unclear. Herein, we employed the CB2R -/- mice as the animal model to explore roles of CB2R in regulating tau phosphorylation and brain function. We found that CB2R -/- mice display AD-like tau hyperphosphorylation, hippocampus-dependent memory impairment, increase of GSK3β activity, decrease of AMPK and Sirt1 activity and mitochondria dysfunction. Interestingly, AICAR or resveratrol (AMPK agonist) could efficiently rescue most alternations caused by solo deletion of CB2R in CB2R -/- mice. Moreover, JWH133, a selective agonist of CB2R, reduces phosphorylation of tau and GSK3β activity in HEK293 tau cells, but the effects of JWH133 on phosphorylation of tau and GSK3β disappeared while blocking AMPK activity with compound C or Prkaa2-RNAi. Taken together, our study indicated that deletion of CB2R induces behavior damage and AD-like pathological alternation via AMPK/GSK3β pathway. These findings proved that CB2R/AMPK/GSK3β pathway can be a promising new drug target for AD.

  5. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture.

    PubMed

    Zempel, Hans; Dennissen, Frank J A; Kumar, Yatender; Luedtke, Julia; Biernat, Jacek; Mandelkow, Eva-Maria; Mandelkow, Eckhard

    2017-07-21

    Subcellular mislocalization of the microtubule-associated protein Tau is a hallmark of Alzheimer disease (AD) and other tauopathies. Six Tau isoforms, differentiated by the presence or absence of a second repeat or of N-terminal inserts, exist in the human CNS, but their physiological and pathological differences have long remained elusive. Here, we investigated the properties and distributions of human and rodent Tau isoforms in primary forebrain rodent neurons. We found that the Tau diffusion barrier (TDB), located within the axon initial segment (AIS), controls retrograde (axon-to-soma) and anterograde (soma-to-axon) traffic of Tau. Tau isoforms without the N-terminal inserts were sorted efficiently into the axon. However, the longest isoform (2N4R-Tau) was partially retained in cell bodies and dendrites, where it accelerated spine and dendrite growth. The TDB (located within the AIS) was impaired when AIS components (ankyrin G, EB1) were knocked down or when glycogen synthase kinase-3β (GSK3β; an AD-associated kinase tethered to the AIS) was overexpressed. Using superresolution nanoscopy and live-cell imaging, we observed that microtubules within the AIS appeared highly dynamic, a feature essential for the TDB. Pathomechanistically, amyloid-β insult caused cofilin activation and F-actin remodeling and decreased microtubule dynamics in the AIS. Concomitantly with these amyloid-β-induced disruptions, the AIS/TDB sorting function failed, causing AD-like Tau missorting. In summary, we provide evidence that the human and rodent Tau isoforms differ in axodendritic sorting and amyloid-β-induced missorting and that the axodendritic distribution of Tau depends on AIS integrity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    PubMed

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  7. Review: Tau in biofluids - relation to pathology, imaging and clinical features.

    PubMed

    Zetterberg, H

    2017-04-01

    Tau is a microtubule-binding protein that is important for the stability of neuronal axons. It is normally expressed within neurons and is also secreted into the brain interstitial fluid that communicates freely with cerebrospinal fluid (CSF) and, in a more restricted manner, blood via the glymphatic clearance system of the brain. In Alzheimer's disease (AD), neuroaxonal degeneration results in increased release of tau from neurons. Furthermore, tau is truncated and phosphorylated, which leads to aggregation of tau in neurofibrillary tangles of the proximal axoplasm. Neuroaxonal degeneration and tangle formation are reflected by increased concentrations of total tau (T-tau, measured using assays that detect most forms of tau) and phospho-tau (P-tau, measured using assays with antibodies specific to phosphorylated forms of tau). In AD CSF, both T-tau and P-tau concentrations are increased. In stroke and other CNS disorders with neuroaxonal injury but without tangles, T-tau is selectively increased, whereas P-tau concentration often stays normal. In tauopathies (diseases with both neurodegeneration and neurofibrillary tangles) other than AD, CSF T-tau and P-tau concentrations are typically unaltered, which is a puzzling result that warrants further investigation. In the current review, I discuss the association of T-tau and P-tau concentrations in body fluids with neuropathological changes, imaging findings and clinical features in AD and other CNS diseases. © 2017 British Neuropathological Society.

  8. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics.

    PubMed

    Pritchard, Susanne M; Dolan, Philip J; Vitkus, Alisa; Johnson, Gail V W

    2011-08-01

    It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD. © 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  9. The Significance of α-Synuclein, Amyloid-β and Tau Pathologies in Parkinson’s Disease Progression and Related Dementia

    PubMed Central

    Compta, Y.; Parkkinen, L.; Kempster, P.; Selikhova, M.; Lashley, T.; Holton, J.L.; Lees, A.J.; Revesz, T.

    2014-01-01

    Background Dementia is one of the milestones of advanced Parkinson’s disease (PD), with its neuropathological substrate still being a matter of debate, particularly regarding its potential mechanistic implications. Objective The aim of this study was to review the relative importance of Lewy-related α-synuclein and Alzheimer’s tau and amyloid-β (Aβ) pathologies in disease progression and dementia in PD. Methods We reviewed studies conducted at the Queen Square Brain Bank, Institute of Neurology, University College London, using large PD cohorts. Results Cortical Lewy- and Alzheimer-type pathologies are associated with milestones of poorer prognosis and with non-tremor predominance, which have been, in turn, linked to dementia. The combination of these pathologies is the most robust neuropathological substrate of PD-related dementia, with cortical Aβ burden determining a faster progression to dementia. Conclusion The shared relevance of these pathologies in PD progression and dementia is in line with experimental data suggesting synergism between α-synuclein, tau and Aβ and with studies testing these proteins as disease biomarkers, hence favouring the eventual testing of therapeutic strategies targeting these proteins in PD. PMID:24028925

  10. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Isoprenoids and tau pathology in sporadic Alzheimer's disease.

    PubMed

    Pelleieux, Sandra; Picard, Cynthia; Lamarre-Théroux, Louise; Dea, Doris; Leduc, Valérie; Tsantrizos, Youla S; Poirier, Judes

    2018-05-01

    The mevalonate pathway has been described to play a key role in Alzheimer's disease (AD) physiopathology. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are nonsterol isoprenoids derived from mevalonate, which serve as precursors to numerous human metabolites. They facilitate protein prenylation; hFPP and hGGPP synthases act as gateway enzymes to the prenylation of the small guanosine triphosphate (GTP)ase proteins such as RhoA and cdc42 that have been shown to facilitate phospho-tau (p-Tau, i.e., protein tau phosphorylated) production in the brain. In this study, a significant positive correlation was observed between the synthases mRNA prevalence and disease status (FPPS, p < 0.001, n = 123; GGPPS, p < 0.001, n = 122). The levels of mRNA for hFPPS and hGGPPS were found to significantly correlate with the amount of p-Tau protein levels (p < 0.05, n = 34) and neurofibrillary tangle density (p < 0.05, n = 39) in the frontal cortex. Interestingly, high levels of hFPPS and hGGPPS mRNA prevalence are associated with earlier age of onset in AD (p < 0.05, n = 58). Together, these results suggest that accumulation of p-Tau in the AD brain is related, at least in part, to increased levels of neuronal isoprenoids. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.

    PubMed

    Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal

    2017-01-01

    The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.

  13. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maass, Anne; Landau, Susan; Baker, Suzanne L.

    The recent development of tau-specific positron emission tomography (PET) tracers enables in vivo quantification of regional tau pathology, one of the key lesions in Alzheimer's disease (AD). Tau PET imaging may become a useful biomarker for clinical diagnosis and tracking of disease progression but there is no consensus yet on how tau PET signal is best quantified. The goal of the current paper was to evaluate multiple whole-brain and region-specific approaches to detect clinically relevant tau PET signal. Two independent cohorts of cognitively normal adults and amyloid-positive (Aβ +) patients with mild cognitive impairment (MCI) or AD-dementia underwent [ 18F]AV-1451more » PET. Methods for tau tracer quantification included: (i) in vivo Braak staging, (ii) regional uptake in Braak composite regions, (iii) several whole-brain measures of tracer uptake, (iv) regional uptake in AD-vulnerable voxels, and (v) uptake in a priori defined regions. Receiver operating curves characterized accuracy in distinguishing Aβ - controls from AD/MCI patients and yielded tau positivity cutoffs. Clinical relevance of tau PET measures was assessed by regressions against cognition and MR imaging measures. Key tracer uptake patterns were identified by a factor analysis and voxel-wise contrasts. Braak staging, global and region-specific tau measures yielded similar diagnostic accuracies, which differed between cohorts. While all tau measures were related to amyloid and global cognition, memory and hippocampal/entorhinal volume/thickness were associated with regional tracer retention in the medial temporal lobe. Key regions of tau accumulation included medial temporal and inferior/middle temporal regions, retrosplenial cortex, and banks of the superior temporal sulcus. Finally, our data indicate that whole-brain tau PET measures might be adequate biomarkers to detect AD-related tau pathology. However, regional measures covering AD-vulnerable regions may increase sensitivity to early

  14. Rapid Neurofibrillary Tangle Formation after Localized Gene Transfer of Mutated Tau

    PubMed Central

    Klein, Ronald L.; Lin, Wen-Lang; Dickson, Dennis W.; Lewis, Jada; Hutton, Michael; Duff, Karen; Meyer, Edwin M.; King, Michael A.

    2004-01-01

    Neurofibrillary pathology was produced in the brains of adult rats after localized gene transfer of human tau carrying the P301L mutation, which is associated with frontotemporal dementia with parkinsonism. Within 1 month of in situ transfection of the basal forebrain region of normal rats, tau-immunoreactive and argyrophilic neuronal lesions formed. The fibrillar lesions had features of neurofibrillary tangles and tau immunoreactivity at light and electron microscopic levels. In addition to neurofibrillary tangles, other tau pathology, including pretangles and neuropil threads, was abundant and widespread. Tau gene transfer to the hippocampal region of amyloid-depositing transgenic mice produced pretangles and threads, as well as intensely tau-immunoreactive neurites in amyloid plaques. The ability to produce neurofibrillary pathology in adult rodents makes this a useful method to study tau-related neurodegeneration. PMID:14695347

  15. Effects of antibodies to phosphorylated and non-phosphorylated tau on in vitro tau phosphorylation at Serine-199: Preliminary report.

    PubMed

    Loeffler, David A; Smith, Lynnae M; Klaver, Andrea C; Martić, Sanela

    2015-07-01

    Phosphorylation of multiple amino acids on tau protein ("hyperphosphorylation") is required for the development of tau pathology in Alzheimer's disease. Administration of anti-tau antibodies to transgenic "tauopathy mice" has been shown to reduce their tau pathology but the mechanisms responsible are unclear. To examine the effects of anti-tau antibodies on tau phosphorylation, we used western blots to study the effects of three antibodies to phosphorylated tau (pTau), namely anti-pTau S199, T231, and S396, and three antibodies to non-phosphorylated tau on in vitro phosphorylation of recombinant human tau-441 at S199. Inclusion of an anti-pTau T231 antibody in the phosphorylation reaction reduced the intensity of monomeric pTau S199 in western blots of denaturing gels, but the other antibodies had no apparent effects on this process. Surprisingly, including all three anti-phospho-tau antibodies in the reaction did not reduce the intensity of the monomer band, possibly due to steric hindrance between the antibodies. These preliminary findings suggest that anti-tau antibodies may have minimal direct effects on tau phosphorylation. Limitations of using western blots to examine the effects of anti-tau antibodies on this process were found to include between-experiment variability in pTau band densities and poor resolution of high molecular weight pTau oligomers. The presence of bands representing immunoglobulins as well as pTau may also complicate interpretation of the western blots. Further studies are indicated to examine the effects of anti-pTau antibodies on phosphorylation of other tau amino acids in addition to S199. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Tau PET binding distinguishes patients with early-stage posterior cortical atrophy from amnestic Alzheimer disease dementia

    PubMed Central

    Day, Gregory S.; Gordon, Brian A.; Jackson, Kelley; Christensen, Jon J.; Ponisio, Maria Rosana; Su, Yi; Ances, Beau M; Benzinger, Tammie L.S.; Morris, John C.

    2017-01-01

    Background Flortaucipir (tau) PET binding distinguishes individuals with clinically well-established posterior cortical atrophy (PCA) due to Alzheimer disease (AD) from cognitively normal (CN) controls. However, it is not known whether tau PET binding patterns differentiate individuals with PCA from those with amnestic AD, particularly early in the symptomatic stages of disease. Methods Flortaucipir and florbetapir (β-amyloid) PET-imaging were performed in individuals with early-stage PCA (N=5), amnestic AD dementia (N=22), and CN controls (N=47). Average tau and β-amyloid deposition were quantified using standard uptake value ratios and compared at a voxel-wise level, controlling for age. Results PCA patients (median age-at-onset, 59 [51–61] years) were younger at symptom-onset than similarly-staged individuals with amnestic AD (75 [60–85] years) or CN controls (73 [61–90] years; p=0.002). Flortaucipir uptake was higher in individuals with early-stage symptomatic PCA versus those with early-stage amnestic AD or CN controls, and greatest in posterior regions. Regional elevations in florbetapir were observed in areas of greatest tau deposition in PCA patients. Conclusions and Relevance Flortaucipir uptake distinguished individuals with PCA and amnestic AD dementia early in the symptomatic course. The posterior brain regions appear to be uniquely vulnerable to tau deposition in PCA, aligning with clinical deficits that define this disease subtype. PMID:28394771

  17. Tau-PET Binding Distinguishes Patients With Early-stage Posterior Cortical Atrophy From Amnestic Alzheimer Disease Dementia.

    PubMed

    Day, Gregory S; Gordon, Brian A; Jackson, Kelley; Christensen, Jon J; Rosana Ponisio, Maria; Su, Yi; Ances, Beau M; Benzinger, Tammie L S; Morris, John C

    2017-01-01

    Flortaucipir (tau) positron emission tomography (PET) binding distinguishes individuals with clinically well-established posterior cortical atrophy (PCA) due to Alzheimer disease (AD) from cognitively normal (CN) controls. However, it is not known whether tau-PET binding patterns differentiate individuals with PCA from those with amnestic AD, particularly early in the symptomatic stages of disease. Flortaucipir and florbetapir (β-amyloid) PET imaging were performed in individuals with early-stage PCA (N=5), amnestic AD dementia (N=22), and CN controls (N=47). Average tau and β-amyloid deposition were quantified using standard uptake value ratios and compared at a voxelwise level, controlling for age. PCA patients [median age-at-onset, 59 (51 to 61) years] were younger at symptom onset than similarly staged individuals with amnestic AD [75 (60 to 85) years] or CN controls [73 (61 to 90) years; P=0.002]. Flortaucipir uptake was higher in individuals with early-stage symptomatic PCA versus those with early-stage amnestic AD or CN controls, and greatest in posterior regions. Regional elevations in florbetapir were observed in areas of greatest tau deposition in PCA patients. Flortaucipir uptake distinguished individuals with PCA and amnestic AD dementia early in the symptomatic course. The posterior brain regions appear to be uniquely vulnerable to tau deposition in PCA, aligning with clinical deficits that define this disease subtype.

  18. Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer’s disease and other tauopathies

    PubMed Central

    Florenzano, Fulvio; Veronica, Corsetti; Ciasca, Gabriele; Ciotti, Maria Teresa; Pittaluga, Anna; Olivero, Gunedalina; Feligioni, Marco; Iannuzzi, Filomena; Latina, Valentina; Maria Sciacca, Michele Francesco; Sinopoli, Alessandro; Milardi, Danilo; Pappalardo, Giuseppe; Marco, De Spirito; Papi, Massimiliano; Atlante, Anna; Bobba, Antonella; Borreca, Antonella; Calissano, Pietro; Amadoro, Giuseppina

    2017-01-01

    The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer’s disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration. PMID:29029390

  19. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease

    PubMed Central

    Reyes, Juan F.; Fu, Yifan; Vana, Laurel; Kanaan, Nicholas M.; Binder, Lester I.

    2011-01-01

    A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain. PMID:21514440

  20. Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer’s Disease

    PubMed Central

    Mullins, Roger J.; Diehl, Thomas C.; Chia, Chee W.; Kapogiannis, Dimitrios

    2017-01-01

    Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease (AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR represents a translational gap that has hindered its study in living humans. In our lab, we have been working to develop biomarkers that reflect the common mechanisms of brain IR and AD that may be used to follow their engagement by experimental treatments. We present two promising biomarkers for brain IR in AD: insulin cascade mediators probed in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a fundamental link between brain IR and AD, we provide a novel analysis demonstrating the close spatial correlation between brain expression of genes implicated in IR (using Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed to propose the bold hypotheses that baseline differences in the metabolic reliance on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta (Aβ) pathology, and that IR is a critical link between these two pathologies that define AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and target engagement. PMID:28515688

  1. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy.

    PubMed

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. Copyright © 2015 Elsevier B.V. All rights

  2. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy

    PubMed Central

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K.; Bernick, Charles; Ghosh, Chaitali; Bazarian, Jeffrey J.; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six post mortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. PMID:26556772

  3. Detecting tau in serum of transgenic animal models after tau immunotherapy treatment.

    PubMed

    d'Abramo, Cristina; Acker, Christopher M; Schachter, Joel B; Terracina, Giuseppe; Wang, Xiaohai; Forest, Stefanie K; Davies, Peter

    2016-01-01

    In the attempt to elucidate if the "peripheral sink hypothesis" could be a potential mechanism of action for tau removal in passive immunotherapy experiments, we have examined tau levels in serum of chronically injected JNPL3 and Tg4510 transgenic animals. Measurement of tau in serum of mice treated with tau antibodies is challenging because of the antibody interference in sandwich enzyme-linked immunosorbent assays. To address this issue, we have developed a heat-treatment protocol at acidic pH to remove interfering molecules from serum, with excellent recovery of tau. The present data show that pan-tau and conformational antibodies do increase tau in mouse sera. However, these concentrations in serum do not consistently correlate with reductions of tau pathology in brain, suggesting that large elevations of tau species measured in serum are not predictive of efficacy. Here, we describe a reliable method to detect tau in serum of transgenic animals that have undergone tau immunotherapy. Levels of tau in human serum are less than the sensitivity of current assays, although artifactual signals are common. The method may be useful in similarly treated humans, a situation in which false positive signals are likely. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1

    PubMed Central

    Iijima-Ando, Kanae; Sekiya, Michiko; Suzuki, Emiko; Lu, Bingwei; Iijima, Koichi M.

    2012-01-01

    Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi–mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD–related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD. PMID:22952452

  5. Overlapping but distinct TDP-43 and tau pathologic patterns in aged hippocampi.

    PubMed

    Smith, Vanessa D; Bachstetter, Adam D; Ighodaro, Eseosa; Roberts, Kelly; Abner, Erin L; Fardo, David W; Nelson, Peter T

    2018-03-01

    Intracellular proteinaceous aggregates (inclusion bodies) are almost always detectable at autopsy in brains of elderly individuals. Inclusion bodies composed of TDP-43 and tau proteins often coexist in the same brain, and each of these pathologic biomarkers is associated independently with cognitive impairment. However, uncertainties remain about how the presence and neuroanatomical distribution of inclusion bodies correlate with underlying diseases including Alzheimer's disease (AD). To address this knowledge gap, we analyzed data from the University of Kentucky AD Center autopsy series (n = 247); none of the brains had frontotemporal lobar degeneration. A specific question for this study was whether neurofibrillary tangle (NFT) pathology outside of the Braak NFT staging scheme is characteristic of brains with TDP-43 pathology but lacking AD, that is those with cerebral age-related TDP-43 with sclerosis (CARTS). We also tested whether TDP-43 pathology is associated with comorbid AD pathology, and whether argyrophilic grains are relatively likely to be present in cases with, vs. without, TDP-43 pathology. Consistent with prior studies, hippocampal TDP-43 pathology was associated with advanced AD - Braak NFT stages V/VI. However, argyrophilic grain pathology was not more common in cases with TDP-43 pathology in this data set. In brains with CARTS (TDP-43[+]/AD[-] cases), there were more NFTs in dentate granule neurons than were seen in TDP-43[-]/AD[-] cases. These dentate granule cell NFTs could provide a proxy indicator of CARTS pathology in cases lacking substantial AD pathology. Immunofluorescent experiments in a subsample of cases found that, in both advanced AD and CARTS, approximately 1% of dentate granule neurons were PHF-1 immunopositive, whereas ∼25% of TDP-43 positive cells showed colocalized PHF-1 immunoreactivity. We conclude that NFTs in hippocampal dentate granule neurons are often present in CARTS, and TDP-43 pathology may be secondary to or

  6. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    PubMed Central

    Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet

    2016-01-01

    Abstract Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  7. Early Alzheimer's disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei).

    PubMed

    Perez, Sylvia E; Sherwood, Chet C; Cranfield, Michael R; Erwin, Joseph M; Mudakikwa, Antoine; Hof, Patrick R; Mufson, Elliott J

    2016-03-01

    Amyloid beta (Aβ) and tau pathology have been described in the brains of captive aged great apes, but the natural progression of these age-related pathologies from wild great apes, including the gorilla, is unknown. In our previous study of Western lowland gorillas (Gorilla gorilla gorilla) who were housed in American Zoos and Aquariums-accredited facilities, we found an age-related increase in Aβ-positive plaques and vasculature, tau-positive astrocytes, oligodendrocyte coiled bodies, and neuritic clusters in the neocortex as well as hippocampus in older animals. Here, we demonstrate that aged wild mountain gorillas (Gorilla beringei beringei), who spent their entire lives in their natural habitat, also display an age-related increase in amyloid precursor protein (APP) and/or Aβ-immunoreactive blood vessels and plaques, but very limited tau pathology, in the frontal cortex. These results indicate that Aβ and tau lesions are age-related events that occur in the brain of gorillas living in captivity and in the wild. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    PubMed Central

    2012-01-01

    The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer's disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies. PMID:24278740

  9. Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases

    PubMed Central

    Nilson, Ashley N.; English, Kelsey C.; Gerson, Julia E.; Barton Whittle, T.; Nicolas Crain, C.; Xue, Judy; Sengupta, Urmi; Castillo-Carranza, Diana L.; Zhang, Wenbo; Gupta, Praveena; Kayed, Rakez

    2016-01-01

    It is well-established that inflammation plays an important role in Alzheimer’s disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles. However, evidence suggests that smaller soluble aggregates, called oligomers, are the most toxic species and form prior to tangles. Furthermore, tau oligomers can spread to neighboring cells and between anatomically connected brain regions. In addition, recent evidence suggests that inspecting the retina may be a window to brain pathology. We hypothesized that there is a relationship between tau oligomers and inflammation, which are hallmarks of early disease. We conducted immunofluorescence and biochemical analyses on tauopathy mice, FTLD, and AD subjects. We showed that oligomers co-localize with astrocytes, microglia, and HMGB1, a pro-inflammatory cytokine. Additionally, we show that tau oligomers are present in the retina and are associated with inflammatory cells suggesting that the retina may be a valid non-invasive biomarker for brain pathology. These results suggest that there may be a toxic relationship between tau oligomers and inflammation. Therefore, the ability of tau oligomers to spread may initiate a feed-forward cycle in which tau oligomers induce inflammation, leading to neuronal damage, and thus more inflammation. Further mechanistic studies are warranted in order to understand this relationship, which may have critical implications for improving the treatment of tauopathies. PMID:27716675

  10. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia

    PubMed Central

    Planel, Emmanuel; Bretteville, Alexis; Liu, Li; Virag, Laszlo; Du, Angela L.; Yu, Wai Haung; Dickson, Dennis W.; Whittington, Robert A.; Duff, Karen E.

    2009-01-01

    Alzheimer’s disease and other tauopathies are characterized by the presence of intracellular neurofibrillary tangles composed of hyperphosphorylated, insoluble tau. General anesthesia has been shown to be associated with increased risk of Alzheimer’s disease, and we have previously demonstrated that anesthesia induces hypothermia, which leads to overt tau hyperphosphorylation in the brain of mice regardless of the anesthetic used. To investigate whether anesthesia enhances the long-term risk of developing pathological forms of tau, we exposed a mouse model with tauopathy to anesthesia and monitored the outcome at two time points—during anesthesia, or 1 wk after exposure. We found that exposure to isoflurane at clinically relevant doses led to increased levels of phospho-tau, increased insoluble, aggregated forms of tau, and detachment of tau from microtubules. Furthermore, levels of phospho-tau distributed in the neuropil, as well as in cell bodies increased. Interestingly, the level of insoluble tau was increased 1 wk following anesthesia, suggesting that anesthesia precipitates changes in the brain that provoke the later development of tauopathy. Overall, our results suggest that anesthesia-induced hypothermia could lead to an acceleration of tau pathology in vivo that could have significant clinical implications for patients with early stage, or overt neurofibrillary tangle pathology.—Planel, E., Bretteville, A., Liu, L., Virag, L., Du, A. L., Yu, W. Y., Dickson, D. W., Whittington, R. A., Duff, K. E. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. PMID:19279139

  11. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory.

    PubMed

    Pristerà, Andrea; Saraulli, Daniele; Farioli-Vecchioli, Stefano; Strimpakos, Georgios; Costanzi, Marco; di Certo, Maria Grazia; Cannas, Sara; Ciotti, Maria Teresa; Tirone, Felice; Mattei, Elisabetta; Cestari, Vincenzo; Canu, Nadia

    2013-11-01

    Different pathological tau species are involved in memory loss in Alzheimer's disease, the most common cause of dementia among older people. However, little is known about how tau pathology directly affects adult hippocampal neurogenesis, a unique form of structural plasticity implicated in hippocampus-dependent spatial learning and mood-related behavior. To this aim, we generated a transgenic mouse model conditionally expressing a pathological tau fragment (26-230 aa of the longest human tau isoform, or N-tau) in nestin-positive stem/progenitor cells. We found that N-tau reduced the proliferation of progenitor cells in the adult dentate gyrus, reduced cell survival and increased cell death by a caspase-3-independent mechanism, and recruited microglia. Although the number of terminally differentiated neurons was reduced, these showed an increased dendritic arborization and spine density. This resulted in an increase of anxiety-related behavior and an impairment of episodic-like memory, whereas less complex forms of spatial learning remained unaltered. Understanding how pathological tau species directly affect neurogenesis is important for developing potential therapeutic strategies to direct neurogenic instructive cues for hippocampal function repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. ERP-based detection of brain pathology in rat models for preclinical Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Nouriziabari, Seyed Berdia

    Early pathological features of Alzheimer's disease (AD) include the accumulation of hyperphosphorylated tau protein (HP-tau) in the entorhinal cortex and progressive loss of basal forebrain (BF) cholinergic neurons. These pathologies are known to remain asymptomatic for many years before AD is clinically diagnosed; however, they may induce aberrant brain processing which can be captured as an abnormality in event-related potentials (ERPs). Here, we examined cortical ERPs while a differential associative learning paradigm was applied to adult male rats with entorhinal HP-tau, pharmacological blockade of muscarinic acetylcholine receptors, or both conditions. Despite no impairment in differential associative and reversal learning, each pathological feature induced distinct abnormality in cortical ERPs to an extent that was sufficient for machine classifiers to accurately detect a specific type of pathology based on these ERP features. These results highlight a potential use of ERPs during differential associative learning as a biomarker for asymptomatic AD pathology.

  13. Comparison of extent of tau pathology in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration with Pick bodies and early onset Alzheimer's disease.

    PubMed

    Shiarli, A-M; Jennings, R; Shi, J; Bailey, K; Davidson, Y; Tian, J; Bigio, E H; Ghetti, B; Murrell, J R; Delisle, M B; Mirra, S; Crain, B; Zolo, P; Arima, K; Iseki, E; Murayama, S; Kretzschmar, H; Neumann, M; Lippa, C; Halliday, G; Mackenzie, J; Khan, N; Ravid, R; Dickson, D; Wszolek, Z; Iwatsubo, T; Pickering-Brown, S M; Mann, D M A

    2006-08-01

    In order to gain insight into the pathogenesis of frontotemporal lobar degeneration (FTLD), the mean tau load in frontal cortex was compared in 34 patients with frontotemporal dementia linked to chromosome 17 (FTDP-17) with 12 different mutations in the tau gene (MAPT), 11 patients with sporadic FTLD with Pick bodies and 25 patients with early onset Alzheimer's disease (EOAD). Tau load was determined, as percentage of tissue occupied by stained product, by image analysis of immunohistochemically stained sections using the phospho-dependent antibodies AT8, AT100 and AT180. With AT8 and AT180 antibodies, the amount of tau was significantly (P < 0.001 in each instance) less than that in EOAD for both FTDP-17 (8.5% and 10.0% respectively) and sporadic FTLD with Pick bodies (16.1% and 10.0% respectively). With AT100, the amount of tau detected in FTDP-17 was 54% (P < 0.001) of that detected in EOAD, but no tau was detected in sporadic FTLD with Pick bodies using this particular antibody. The amount of insoluble tau deposited within the brain in FTDP-17 did not depend in any systematic way upon where the MAPT mutation was topographically located within the gene, or on the physiological or structural change generated by the mutation, regardless of which anti-tau antibody was used. Not only does the amount of tau deposited in the brain differ between the three disorders, but the pattern of phosphorylation of tau also varies according to disease. These findings raise important questions relating to the role of aggregated tau in neurodegeneration - whether this represents an adaptive response which promotes the survival of neurones, or whether it is a detrimental change that directly, or indirectly, brings about the demize of the affected cell.

  14. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease

    PubMed Central

    Kang, Ju-Hee; Irwin, David J.; Chen-Plotkin, Alice S.; Siderowf, Andrew; Caspell, Chelsea; Coffey, Christopher S.; Waligórska, Teresa; Taylor, Peggy; Pan, Sarah; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Simuni, Tanya; Tanner, Caroline M.; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Mollenhauer, Brit; Trojanowski, John Q.; Shaw, Leslie M.

    2014-01-01

    Importance We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far. Objective To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study. Design, Setting, and Participants Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort. Main Outcomes and Measures The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol. Results Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we

  15. Alzheimer's disease pathological lesions activate the spleen tyrosine kinase.

    PubMed

    Schweig, Jonas Elias; Yao, Hailan; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Mouzon, Benoit; Crawford, Fiona; Mullan, Michael; Paris, Daniel

    2017-09-06

    The pathology of Alzheimer's disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.

  16. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions.

    PubMed

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-04-28

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.

  17. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions

    PubMed Central

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2–4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr216 being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr216 was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD. PMID:27124580

  18. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.

    PubMed

    Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  19. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy

    PubMed Central

    Ferrer, Isidro; Grinberg, Lea T.; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  20. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    PubMed

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Brainstem Tau Cytoskeletal Pathology of Alzheimer's Disease: A Brief Historical Overview and Description of its Anatomical Distribution Pattern, Evolutional Features, Pathogenetic and Clinical Relevance.

    PubMed

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Turco, Domenico Del; Seidel, Kay; Dunnen, Wilfred den; Korf, Horst-Werner

    2016-01-01

    The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD

  2. ApoE4 induces Aβ42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice

    PubMed Central

    2013-01-01

    Background Recent findings suggest that the pathological effects of apoE4, the most prevalent genetic risk factor for Alzheimer’s disease (AD), start many years before the onset of the disease and are already detectable at a young age. In the present study we investigated the extent to which such pathological and cognitive impairments also occur in young apoE4 mice. Results This study revealed that the levels of the presynaptic glutamatergic vesicular transporter, VGlut, in the CA3, CA1, and DG hippocampal subfields were lower in hippocampal neurons of young (4-month-old) apoE4-targeted replacement mice than in those of the apoE3 mice. In contrast, the corresponding inhibitory GABAergic nerve terminals and perikarya were not affected by apoE4. This synaptic effect was associated with hyperphosphorylation of tau in these neurons. In addition, apoE4 increased the accumulation of neuronal Aβ42 and induced mitochondrial changes, both of which were specifically pronounced in CA3 neurons. Spatial navigation behavioral studies revealed that these hippocampal pathological effects of apoE4 are associated with corresponding behavioral impairments. Time-course studies revealed that the effects of apoE4 on tau hyperphosphorylation and the mitochondria were already apparent at the age of 1 month and that the apoE4-driven accumulation of neuronal Aβ and reduced VGlut levels evolve later and are apparent at the age of 2–4 months. Furthermore, the levels of tau phosphorylation decrease in apoE3 mice and increase in apoE4 mice between 1 and 4 months, whereas the levels of Aβ42 decrease in apoE3 mice and are not affected in apoE4 mice over the same time period. Conclusions These findings show that apoE4 stimulates the accumulation of Aβ42 and hyperphosphorylated tau and reduces the levels of VGlut in hippocampal neurons of young apoE4-targeted replacement mice and that these neurochemical effects are associated with cognitive impairments. This model is not associated with

  3. ApoE4 induces Aβ42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice.

    PubMed

    Liraz, Ori; Boehm-Cagan, Anat; Michaelson, Daniel M

    2013-05-17

    Recent findings suggest that the pathological effects of apoE4, the most prevalent genetic risk factor for Alzheimer's disease (AD), start many years before the onset of the disease and are already detectable at a young age. In the present study we investigated the extent to which such pathological and cognitive impairments also occur in young apoE4 mice. This study revealed that the levels of the presynaptic glutamatergic vesicular transporter, VGlut, in the CA3, CA1, and DG hippocampal subfields were lower in hippocampal neurons of young (4-month-old) apoE4-targeted replacement mice than in those of the apoE3 mice. In contrast, the corresponding inhibitory GABAergic nerve terminals and perikarya were not affected by apoE4.This synaptic effect was associated with hyperphosphorylation of tau in these neurons. In addition, apoE4 increased the accumulation of neuronal Aβ42 and induced mitochondrial changes, both of which were specifically pronounced in CA3 neurons. Spatial navigation behavioral studies revealed that these hippocampal pathological effects of apoE4 are associated with corresponding behavioral impairments. Time-course studies revealed that the effects of apoE4 on tau hyperphosphorylation and the mitochondria were already apparent at the age of 1 month and that the apoE4-driven accumulation of neuronal Aβ and reduced VGlut levels evolve later and are apparent at the age of 2-4 months. Furthermore, the levels of tau phosphorylation decrease in apoE3 mice and increase in apoE4 mice between 1 and 4 months, whereas the levels of Aβ42 decrease in apoE3 mice and are not affected in apoE4 mice over the same time period. These findings show that apoE4 stimulates the accumulation of Aβ42 and hyperphosphorylated tau and reduces the levels of VGlut in hippocampal neurons of young apoE4-targeted replacement mice and that these neurochemical effects are associated with cognitive impairments. This model is not associated with hypothesis-driven mechanistic

  4. R-flurbiprofen improves tau, but not Aß pathology in a triple transgenic model of Alzheimer's disease

    PubMed Central

    Carreras, Isabel; McKee, Ann C.; Choi, Ji-Kyung; Aytan, Nurgul; Kowall, Neil W.

    2013-01-01

    We have previously reported that chronic ibuprofen treatment improves cognition and decreases intracellular Aß and phosphorylated-tau levels in 3xTg-AD mice. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) that independently of its anti-inflammatory effects has anti-amyloidogenic activity as a gamma-secretase modulator (GSM) and both activities have the potential to decrease Aß pathology. To further understand the effects of NSAIDs in 3xTg-AD mice, we treated 3xTg-AD mice with R-flurbiprofen, an enantiomer of the NSAID flurbiprofen that maintains the GSM activity but has greatly reduced anti-inflammatory activity, and analyzed its effect on cognition, Aß, tau, and the neurochemical profile of the hippocampus. Treatment with R-flurbiprofen from 5 to 7 months of age resulted in improved cognition on the radial arm water maze (RAWM) test and decreased the level of hyperphosphorylated tau immunostained with AT8 and PHF-1 antibodies. No significant changes in the level of Aß (using 6E10 and NU-1 antibodies) were detected. Using magnetic resonance spectroscopy (MRS) we found that R-flurbiprofen treatment decreased the elevated level of glutamine in 3xTg-AD mice down to the level detected in non-transgenic mice. Glutamine levels correlated with PHF-1 immunostained hyperphosphorylated tau. We also found an inverse correlation between the concentration of glutamate and learning across all the mice in the study. Glutamine and glutamate, neurochemicals that shuttles between neurons and astrocytes to maintain glutamate homeostasis in the synapses, deserve further attention as MR markers of cognitive function. PMID:24161403

  5. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  6. PET Imaging of Tau Deposition in the Aging Human Brain

    PubMed Central

    Schonhaut, Daniel R.; O’Neil, James P.; Janabi, Mustafa; Ossenkoppele, Rik; Baker, Suzanne L.; Vogel, Jacob W.; Faria, Jamie; Schwimmer, Henry D.; Rabinovici, Gil D.; Jagust, William J.

    2016-01-01

    SUMMARY Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. Using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid, and was associated with decline in global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. The present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition. PMID:26938442

  7. PET Imaging of Tau Deposition in the Aging Human Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöll, Michael; Lockhart, Samuel N.; Schonhaut, Daniel R.

    Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. In this study, using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline inmore » global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. In conclusion, the present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.« less

  8. PET Imaging of Tau Deposition in the Aging Human Brain

    DOE PAGES

    Schöll, Michael; Lockhart, Samuel N.; Schonhaut, Daniel R.; ...

    2016-03-02

    Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. In this study, using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline inmore » global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. In conclusion, the present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.« less

  9. Neurodegenerative disorder FTDP-17-related tau intron 10 +16C → T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice.

    PubMed

    Umeda, Tomohiro; Yamashita, Takenari; Kimura, Tetsuya; Ohnishi, Kiyouhisa; Takuma, Hiroshi; Ozeki, Tomoko; Takashima, Akihiko; Tomiyama, Takami; Mori, Hiroshi

    2013-07-01

    Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative disorder caused by mutations in the tau gene. Many mutations identified in FTDP-17 have been shown to affect tau exon 10 splicing in vitro, which presumably causes pathologic imbalances in exon 10(-) [3-repeat (3R)] and exon 10(+) [4-repeat (4R)] tau expression and leads to intracellular inclusions of hyperphosphorylated tau in patient brains. However, no reports have investigated this theory using model mice with a tau intronic mutation. Herein, we generated new transgenic mice harboring the tau intron 10 +16C → T mutation. We prepared a transgene construct containing intronic sequences required for exon 10 splicing in the longest tau isoform cDNA. Although mice bearing the construct without the intronic mutation showed normal developmental changes of the tau isoform from 3R tau to equal amounts of 3R and 4R tau, mice with the mutation showed much higher levels of 4R tau at the adult stage. 4R tau was selectively recovered in insoluble brain fractions in their old age. Furthermore, these mice displayed abnormal tau phosphorylation, synapse loss and dysfunction, memory impairment, glial activation, tangle formation, and neuronal loss in an age-dependent manner. These findings provide the first evidence in a mouse model that a tau intronic mutation-induced imbalance of 3R and 4R tau could be a cause of tauopathy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. CSF tau and β-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders.

    PubMed

    Irwin, David J; Xie, Sharon X; Coughlin, David; Nevler, Naomi; Akhtar, Rizwan S; McMillan, Corey T; Lee, Edward B; Wolk, David A; Weintraub, Daniel; Chen-Plotkin, Alice; Duda, John E; Spindler, Meredith; Siderowf, Andrew; Hurtig, Howard I; Shaw, Leslie M; Grossman, Murray; Trojanowski, John Q

    2018-03-20

    To test the association of antemortem CSF biomarkers with postmortem pathology in Lewy body disorders (LBD). Patients with autopsy-confirmed LBD (n = 24) and autopsy-confirmed Alzheimer disease (AD) (n = 23) and cognitively normal (n = 36) controls were studied. In LBD, neuropathologic criteria defined Lewy body α-synuclein (SYN) stages with medium/high AD copathology (SYN + AD = 10) and low/no AD copathology (SYN - AD = 14). Ordinal pathology scores for tau, β-amyloid (Aβ), and SYN pathology were averaged across 7 cortical regions to obtain a global cerebral score for each pathology. CSF total tau (t-tau), phosphorylated tau at threonine 181 , and Aβ 1-42 levels were compared between LBD and control groups and correlated with global cerebral pathology scores in LBD with linear regression. Diagnostic accuracy for postmortem categorization of LBD into SYN + AD vs SYN - AD or neocortical vs brainstem/limbic SYN stage was tested with receiver operating curves. SYN + AD had higher CSF t-tau (mean difference 27.0 ± 8.6 pg/mL) and lower Aβ 1-42 (mean difference -84.0 ± 22.9 g/mL) compared to SYN - AD ( p < 0.01, both). Increasing global cerebral tau and plaque scores were associated with higher CSF t-tau ( R 2 = 0.15-0.16, p < 0.05, both) and lower Aβ 1-42 ( R 2 = 0.43-0.49, p < 0.001, both), while increasing cerebral SYN scores were associated with lower CSF Aβ 1-42 ( R 2 = 0.31, p < 0.001) and higher CSF t-tau/Aβ 1-42 ratio ( R 2 = 0.27, p = 0.01). CSF t-tau/Aβ 1-42 ratio had 100% specificity and 90% sensitivity for SYN + AD, and CSF Aβ 1-42 had 77% specificity and 82% sensitivity for neocortical SYN stage. Higher antemortem CSF t-tau/Aβ 1-42 and lower Aβ 1-42 levels are predictive of increasing cerebral AD and SYN pathology. These biomarkers may identify patients with LBD vulnerable to cortical SYN pathology who may benefit from both SYN and AD-targeted disease-modifying therapies. © 2018 American Academy of Neurology.

  11. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption

    PubMed Central

    Jones, Emmalee M.; Dubey, Manish; Camp, Phillip J.; Vernon, Briana C.; Biernat, Jacek; Mandelkow, Eckhard; Majewski, Jaroslaw; Chi, Eva Y.

    2012-01-01

    The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that lipid membrane can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40's presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40's strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases. PMID:22401494

  12. Inhibition of GSK3 dependent tau phosphorylation by metals.

    PubMed

    Gómez-Ramos, Alberto; Domínguez, Jorge; Zafra, Delia; Corominola, Helena; Gomis, Ramon; Guinovart, Joan J; Avila, Jesús

    2006-04-01

    One of the main pathological characteristics of Alzheimer's disease is the presence in the brain of the patients of an aberrant structure, the paired helical filaments, composed of hyperphosphorylated tau. The level of tau phosphorylation has been correlated with the capacity for tau aggregation. Thus, the mechanism for tau phosphorylation could be important to clarify those pathological features in Alzheimer's disease. Tau protein could be modified by different kinases, being GSK3 the one that could modify more sites of that protein. GSK3 activity could be modulate by the presence of metals like magnesium that can be required for the proper function of the kinase, whereas, metals like manganesum or lithium inhibit the activity of the kinase. Many works have been done to study the inhibition of GSK3 by lithium, a specific inhibitor of that kinase. More recently, it has been indicated that sodium tungstate could also inhibit GSK3 through a different mechanism. In this review, we discuss the effect of these two metals, lithium and tungstate, on GSK3 (or tau I kinase) activity.

  13. R-flurbiprofen improves tau, but not Aß pathology in a triple transgenic model of Alzheimer's disease.

    PubMed

    Carreras, Isabel; McKee, Ann C; Choi, Ji-Kyung; Aytan, Nurgul; Kowall, Neil W; Jenkins, Bruce G; Dedeoglu, Alpaslan

    2013-12-06

    We have previously reported that chronic ibuprofen treatment improves cognition and decreases intracellular Aß and phosphorylated-tau levels in 3xTg-AD mice. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) that independently of its anti-inflammatory effects has anti-amyloidogenic activity as a gamma-secretase modulator (GSM) and both activities have the potential to decrease Aß pathology. To further understand the effects of NSAIDs in 3xTg-AD mice, we treated 3xTg-AD mice with R-flurbiprofen, an enantiomer of the NSAID flurbiprofen that maintains the GSM activity but has greatly reduced anti-inflammatory activity, and analyzed its effect on cognition, Aß, tau, and the neurochemical profile of the hippocampus. Treatment with R-flurbiprofen from 5 to 7 months of age resulted in improved cognition on the radial arm water maze (RAWM) test and decreased the level of hyperphosphorylated tau immunostained with AT8 and PHF-1 antibodies. No significant changes in the level of Aß (using 6E10 and NU-1 antibodies) were detected. Using magnetic resonance spectroscopy (MRS) we found that R-flurbiprofen treatment decreased the elevated level of glutamine in 3xTg-AD mice down to the level detected in non-transgenic mice. Glutamine levels correlated with PHF-1 immunostained hyperphosphorylated tau. We also found an inverse correlation between the concentration of glutamate and learning across all the mice in the study. Glutamine and glutamate, neurochemicals that shuttles between neurons and astrocytes to maintain glutamate homeostasis in the synapses, deserve further attention as MR markers of cognitive function. © 2013 Published by Elsevier B.V.

  14. Proteolytic cleavage of polymeric tau protein by caspase-3: implications for Alzheimer disease.

    PubMed

    Jarero-Basulto, Jose J; Luna-Muñoz, Jose; Mena, Raul; Kristofikova, Zdena; Ripova, Daniela; Perry, George; Binder, Lester I; Garcia-Sierra, Francisco

    2013-12-01

    Truncated tau protein at Asp(421) is associated with neurofibrillary pathology in Alzheimer disease (AD); however, little is known about its presence in the form of nonfibrillary aggregates. Here, we report immunohistochemical staining of the Tau-C3 antibody, which recognizes Asp(421)-truncated tau, in a group of AD cases with different extents of cognitive impairment. In the hippocampus, we found distinct nonfibrillary aggregates of Asp(421)-truncated tau. Unlike Asp(421)-composed neurofibrillary tangles, however, these nonfibrillary pathologies did not increase significantly with respect to the Braak staging and, therefore, make no significant contribution to cognitive impairment. On the other hand, despite in vitro evidence that caspase-3 cleaves monomeric tau at Asp(421), to date, this truncation has not been demonstrated to be executed by this protease in polymeric tau entities. We determined that Asp(421) truncation can be produced by caspase-3 in oligomeric and multimeric complexes of recombinant full-length tau in isolated native tau filaments in vitro and in situ in neurofibrillary tangles analyzed in fresh brain slices from AD cases. Our data suggest that generation of this pathologic Asp(421) truncation of tau in long-lasting fibrillary structures may produce further permanent toxicity for neurons in the brains of patients with AD.

  15. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults

    PubMed Central

    Koscik, Rebecca L.; Carlsson, Cynthia M.; Zetterberg, Henrik; Blennow, Kaj; Okonkwo, Ozioma C.; Sager, Mark A.; Asthana, Sanjay; Johnson, Sterling C.; Benca, Ruth M.; Bendlin, Barbara B.

    2017-01-01

    Objective: To determine the relationship between sleep quality and CSF markers of Alzheimer disease (AD) pathology in late midlife. Methods: We investigated the relationship between sleep quality and CSF AD biomarkers in a cohort enriched for parental history of sporadic AD, the Wisconsin Registry for Alzheimer's Prevention. A total of 101 participants (mean age 62.9 ± 6.2 years, 65.3% female) completed sleep assessments and CSF collection and were cognitively normal. Sleep quality was measured with the Medical Outcomes Study Sleep Scale. CSF was assayed for biomarkers of amyloid metabolism and plaques (β-amyloid 42 [Aβ42]), tau pathology (phosphorylated tau [p-tau] 181), neuronal/axonal degeneration (total tau [t-tau], neurofilament light [NFL]), neuroinflammation/astroglial activation (monocyte chemoattractant protein–1 [MCP-1], chitinase-3-like protein 1 [YKL-40]), and synaptic dysfunction/degeneration (neurogranin). To adjust for individual differences in total amyloid production, Aβ42 was expressed relative to Aβ40. To assess cumulative pathology, CSF biomarkers were expressed in ratio to Aβ42. Relationships among sleep scores and CSF biomarkers were assessed with multiple regression, controlling for age, sex, time between sleep and CSF measurements, and CSF assay batch. Results: Worse subjective sleep quality, more sleep problems, and daytime somnolence were associated with greater AD pathology, indicated by lower CSF Aβ42/Aβ40 and higher t-tau/Aβ42, p-tau/Aβ42, MCP-1/Aβ42, and YKL-40/Aβ42. There were no significant associations between sleep and NFL or neurogranin. Conclusions: Self-report of poor sleep was associated with greater AD-related pathology in cognitively healthy adults at risk for AD. Effective strategies exist for improving sleep; therefore sleep health may be a tractable target for early intervention to attenuate AD pathogenesis. PMID:28679595

  16. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer's disease and down syndrome.

    PubMed

    Tatebe, Harutsugu; Kasai, Takashi; Ohmichi, Takuma; Kishi, Yusuke; Kakeya, Tomoshi; Waragai, Masaaki; Kondo, Masaki; Allsop, David; Tokuda, Takahiko

    2017-09-04

    There is still a substantial unmet need for less invasive and lower-cost blood-based biomarkers to detect brain Alzheimer's disease (AD) pathology. This study is aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181) is informative in the diagnosis of AD. We have developed a novel ultrasensitive immunoassay to quantify plasma p-tau181, and measured the levels of plasma p-tau181 in three cohorts. In the first cohort composed of 20 AD patients and 15 age-matched controls, the plasma levels of p-tau181 were significantly higher in the AD patients than those in the controls (0.171 ± 0.166 pg/ml in AD versus 0.0405 ± 0.0756 pg/ml in controls, p = 0.0039). The percentage of the subjects whose levels of plasma p-tau181 exceeded the cut-off value (0.0921 pg/ml) was significantly higher in the AD group compared with the control group (60% in AD versus 16.7% in controls, p = 0.0090). In the second cohort composed of 20 patients with Down syndrome (DS) and 22 age-matched controls, the plasma concentrations of p-tau181 were significantly higher in the DS group (0.767 ± 1.26 pg/ml in DS versus 0.0415 ± 0.0710 pg/ml in controls, p = 0.0313). There was a significant correlation between the plasma levels of p-tau181 and age in the DS group (R 2  = 0.4451, p = 0.0013). All of the DS individuals showing an extremely high concentration of plasma p-tau181 (> 1.0 pg/ml) were older than the age of 40. In the third cohort composed of 8 AD patients and 3 patients with other neurological diseases, the levels of plasma p-tau181 significantly correlated with those of CSF p-tau181 (R 2  = 0.4525, p = 0.023). We report for the first time quantitative data on the plasma levels of p-tau181 in controls and patients with AD and DS, and these data suggest that the plasma p-tau181 is a promising blood biomarker for brain AD pathology. This exploratory pilot study warrants further large-scale and well-controlled studies to

  17. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease.

    PubMed

    Santangelo, Roberto; Cecchetti, Giordano; Bernasconi, Maria Paola; Cardamone, Rosalinda; Barbieri, Alessandra; Pinto, Patrizia; Passerini, Gabriella; Scomazzoni, Francesco; Comi, Giancarlo; Magnani, Giuseppe

    2017-01-01

    Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.

  18. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections

    PubMed Central

    Tai, Xin You; Koepp, Matthias; Duncan, John S.; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y. W.; Reeves, Cheryl; Michalak, Zuzanna

    2016-01-01

    Abstract See Bernasconi (doi:10.1093/aww202) for a scientific commentary on this article. Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer’s disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer’s disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer’s disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of

  19. An Unbiased Approach to Identifying Tau Kinases That Phosphorylate Tau at Sites Associated with Alzheimer Disease

    PubMed Central

    Cavallini, Annalisa; Brewerton, Suzanne; Bell, Amanda; Sargent, Samantha; Glover, Sarah; Hardy, Clare; Moore, Roger; Calley, John; Ramachandran, Devaki; Poidinger, Michael; Karran, Eric; Davies, Peter; Hutton, Michael; Szekeres, Philip; Bose, Suchira

    2013-01-01

    Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies. PMID:23798682

  20. Early Alzheimer's Disease Neuropathology Detected by Proton MR Spectroscopy

    PubMed Central

    Murray, Melissa E.; Przybelski, Scott A.; Lesnick, Timothy G.; Liesinger, Amanda M.; Spychalla, Anthony; Zhang, Bing; Gunter, Jeffrey L.; Parisi, Joseph E.; Boeve, Bradley F.; Knopman, David S.; Petersen, Ronald C.; Jack, Clifford R.; Dickson, Dennis W.

    2014-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) is sensitive to early neurodegenerative processes associated with Alzheimer's disease (AD). Although 1H-MRS metabolite ratios of N-acetyl aspartate (NAA)/creatine (Cr), NAA/myoinositol (mI), and mI/Cr measured in the posterior cingulate gyrus reveal evidence of disease progression in AD, pathologic underpinnings of the 1H-MRS metabolite changes in AD are unknown. Pathologically diagnosed human cases ranging from no likelihood to high likelihood AD (n = 41, 16 females and 25 males) who underwent antemortem 1H-MRS of the posterior cingulate gyrus at 3 tesla were included in this study. Immunohistochemical evaluation was performed on the posterior cingulate gyrus using antibodies to synaptic vesicles, hyperphosphorylated tau (pTau), neurofibrillary tangle conformational-epitope (cNFT), amyloid-β, astrocytes, and microglia. The slides were digitally analyzed using Aperio software, which allows neuropathologic quantification in the posterior cingulate gray matter. MRS and pathology associations were adjusted for time from scan to death. Significant associations across AD and control subjects were found between reduced synaptic immunoreactivity and both NAA/Cr and NAA/mI in the posterior cingulate gyrus. Higher pTau burden was associated with lower NAA/Cr and NAA/mI. Higher amyloid-β burden was associated with elevated mI/Cr and lower NAA/mI ratios, but not with NAA/Cr. 1H-MRS metabolite levels reveal early neurodegenerative changes associated with AD pathology. Our findings support the hypothesis that a decrease in NAA/Cr is associated with loss of synapses and early pTau pathology, but not with amyloid-β or later accumulation of cNFT pathology in the posterior cingulate gyrus. In addition, elevation of mI/Cr is associated with the occurrence of amyloid-β plaques in AD. PMID:25471565

  1. Microtubules (tau) as an emerging therapeutic target: NAP (davunetide).

    PubMed

    Gozes, Illana

    2011-01-01

    This review focuses on the discovery of activity-dependent neuroprotective protein (ADNP) and the ensuing discovery of NAP (davunetide) toward clinical development with emphasis on microtubule protection. ADNP immunoreactivity was shown to occasionally decorate microtubules and ADNP silencing inhibited neurite outgrowth as measured by microtubule associated protein 2 (MAP2) labeling. ADNP knockout is lethal, while 50% reduction in ADNP (ADNP haploinsufficiency) resulted in the microtubule associated protein tau pathology coupled to cognitive dysfunction and neurodegeneration. NAP (davunetide), an eight amino acid peptide derived from ADNP partly ameliorated deficits associated with ADNP deficiency. NAP (davunetide) interacted with microtubules, protected against microtubule toxicity associated with zinc, nocodazole and oxidative stress in vitro and against tau pathology and MAP6 (stable tubuleonly polypeptide - STOP) pathology in vivo. NAP (davunetide) provided neurotrophic functions promoting neurite outgrowth as measured by increases in MAP2 immunoreactivity and synapse formation by increasing synaptophysin expression. NAP (davunetide) protection against neurodegeneration has recently been shown to extend to katanin-related microtubule disruption under conditions of tau deficiencies. In conclusion, NAP (davunetide) provided potent neuroprotection in a broad range of neurodegenerative models, protecting the neuroglial cytoskeleton in vitro and inhibiting tau pathology (tauopathy) in vivo. Based on these extensive preclinical results, davunetide (NAP) is now being evaluated in a Phase II/III study of the tauopathy, progressive supranuclear palsy (PSP); (Allon Therapeutics Inc.).

  2. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies.

    PubMed

    Tardivel, Meryem; Bégard, Séverine; Bousset, Luc; Dujardin, Simon; Coens, Audrey; Melki, Ronald; Buée, Luc; Colin, Morvane

    2016-11-04

    A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer's disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies.

  3. Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies

    PubMed Central

    Kontaxi, Christiana; Piccardo, Pedro; Gill, Andrew C.

    2017-01-01

    Tau is a microtubule-associated protein responsible mainly for stabilizing the neuronal microtubule network in the brain. Under normal conditions, tau is highly soluble and adopts an “unfolded” conformation. However, it undergoes conformational changes resulting in a less soluble form with weakened microtubule stabilizing properties. Altered tau forms characteristic pathogenic inclusions in Alzheimer's disease and related tauopathies. Although, tau hyperphosphorylation is widely considered to be the major trigger of tau malfunction, tau undergoes several post-translational modifications at lysine residues including acetylation, methylation, ubiquitylation, SUMOylation, and glycation. We are only beginning to define the site-specific impact of each type of lysine modification on tau biology as well as the possible interplay between them, but, like phosphorylation, these modifications are likely to play critical roles in tau's normal and pathobiology. This review summarizes the latest findings focusing on lysine post-translational modifications that occur at both endogenous tau protein and pathological tau forms in AD and other tauopathies. In addition, it highlights the significance of a site-dependent approach of studying tau post-translational modifications under normal and pathological conditions. PMID:28848737

  4. Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration

    PubMed Central

    Merkwirth, Carsten; Morbin, Michela; Brönneke, Hella S.; Jordan, Sabine D.; Rugarli, Elena I.; Langer, Thomas

    2012-01-01

    Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies

  5. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies.

    PubMed

    Arima, Kunimasa

    2006-10-01

    The microtubule-associated protein tau aggregates into filaments in the form of neurofibrillary tangles, neuropil threads and argyrophilic grains in neurons, in the form of variable astrocytic tangles in astrocytes and in the form of coiled bodies and argyrophilic threads in oligodendrocytes. These tau filaments may be classified into two types, straight filaments or tubules with 9-18 nm diameters and "twisted ribbons" composed of two parallel aligned components. In the same disease, the fine structure of tau filaments in glial cells roughly resembles that in neurons. In sporadic tauopathies, individual tau filaments show characteristic sizes, shapes and arrangements, and therefore contribute to neuropathologic differential diagnosis. In frontotemporal dementias caused by tau gene mutations, variable filamentous profiles were observed in association with mutation sites and insoluble tau isoforms, including straight filaments or tubules, paired helical filament-like filaments, and twisted ribbons. Pre-embedding immunoelectron microscopic studies were carried out using anti-3-repeat tau and anti-4-repeat tau specific antibodies, RD3 and RD4. Straight tubules in neuronal and astrocytic Pick bodies were immunolabeled by the anti-3-repeat tau antibody. The anti-4-repeat tau antibody recognized abnormal tubules comprising neurofibrillary tangles, coiled bodies and argyrophilic threads in progressive supranuclear palsy (PSP) and corticobasal degeneration. In the pre-embedding immunoelectron microscopic study using the phosphorylated tau AT8 antibody, tuft-shaped astrocytes of PSP were found to be composed of bundles of abnormal tubules in processes and perikarya of protoplasmic astrocytes. In this study, the 3-repeat tau or 4-repeat tau epitope was detected in situ at the ultrastructural level in abnormal tubules in representative pathological lesions in Pick's disease, PSP and corticobasal degeneration.

  6. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections.

    PubMed

    Tai, Xin You; Koepp, Matthias; Duncan, John S; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y W; Reeves, Cheryl; Michalak, Zuzanna; Thom, Maria

    2016-09-01

    SEE BERNASCONI DOI101093/AWW202 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer's disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer's disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer's disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and

  7. Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain.

    PubMed

    Kovacs, Gabor G; Xie, Sharon X; Robinson, John L; Lee, Edward B; Smith, Douglas H; Schuck, Theresa; Lee, Virginia M-Y; Trojanowski, John Q

    2018-06-11

    Aging-related tau astrogliopathy (ARTAG) describes tau pathology in astrocytes in different locations and anatomical regions. In the present study we addressed the question of whether sequential distribution patterns can be recognized for ARTAG or astroglial tau pathologies in both primary FTLD-tauopathies and non-FTLD-tauopathy cases. By evaluating 687 postmortem brains with diverse disorders we identified ARTAG in 455. We evaluated frequencies and hierarchical clustering of anatomical involvement and used conditional probability and logistic regression to model the sequential distribution of ARTAG and astroglial tau pathologies across different brain regions. For subpial and white matter ARTAG we recognize three and two patterns, respectively, each with three stages initiated or ending in the amygdala. Subependymal ARTAG does not show a clear sequential pattern. For grey matter (GM) ARTAG we recognize four stages including a striatal pathway of spreading towards the cortex and/or amygdala, and the brainstem, and an amygdala pathway, which precedes the involvement of the striatum and/or cortex and proceeds towards the brainstem. GM ARTAG and astrocytic plaque pathology in corticobasal degeneration follows a predominantly frontal-parietal cortical to temporal-occipital cortical, to subcortical, to brainstem pathway (four stages). GM ARTAG and tufted astrocyte pathology in progressive supranuclear palsy shows a striatum to frontal-parietal cortical to temporal to occipital, to amygdala, and to brainstem sequence (four stages). In Pick's disease cases with astroglial tau pathology an overlapping pattern with PSP can be appreciated. We conclude that tau-astrogliopathy type-specific sequential patterns cannot be simplified as neuron-based staging systems. The proposed cytopathological and hierarchical stages provide a conceptual approach to identify the initial steps of the pathogenesis of tau pathologies in ARTAG and primary FTLD-tauopathies.

  8. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy

    PubMed Central

    Carroll, Jenna C.; Iba, Michiyo; Bangasser, Debbie A.; Valentino, Rita J.; James, Michael J.; Brunden, Kurt R.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2011-01-01

    Since over-activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs in Alzheimer’s disease (AD), dysregulation of stress neuromediators may play a mechanistic role in the pathophysiology of AD. However, the effects of stress on tau phosphorylation are poorly understood and the relationship between corticosterone and corticotropin-releasing factor (CRF) on both Aβ and tau pathology remain unclear. Therefore, we first established a model of chronic stress which exacerbates Aβ accumulation in Tg2576 mice and then extended this stress paradigm to a tau transgenic mouse model with the P301S mutation (PS19) which displays tau hyperphosphorylation, insoluble tau inclusions and neurodegeneration. We show for the first time that both Tg2576 and PS19 mice demonstrate a heightened HPA stress profile in the unstressed state. In Tg2576 mice, one month of restraint/isolation (RI) stress increased Aβ levels, suppressed microglial activation, and worsened spatial and fear memory compared to non-stressed mice. In PS19 mice, RI stress promoted tau hyperphosphorylation, insoluble tau aggregation, neurodegeneration and fear-memory impairments. These effects were not mimicked by chronic corticosterone administration but were prevented by pre-stress administration of a CRF receptor type 1 (CRF1) antagonist. The role for a CRF1-dependent mechanism was further supported by the finding that mice over-expressing CRF had increased hyperphosphorylated tau compared to wildtype littermates. Together, these results implicate HPA dysregulation in AD neuropathogenesis and suggest that prolonged stress may increase Aβ and tau hyperphosphorylation. These studies also implicate CRF in AD pathophysiology and suggest that pharmacological manipulation of this neuropeptide may be a potential therapeutic strategy for AD. PMID:21976528

  9. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies.

    PubMed

    Avila, Jesús; Pallas, Noemí; Bolós, Marta; Sayas, C Laura; Hernandez, Felix

    2016-06-01

    Microtubule associated protein tau, a protein mainly expressed in neurons, plays an important role in several diseases related to dementia, named tauopathies. Alzheimer disease is the most relevant tauopathy. The role of tau protein in dementia is now a topic under discussion, and is the focus of this review. We have covered two major areas: tau pathology and tau as a therapeutic target. Tau pathology is mainly related to a gain of toxic function due to an abnormal accumulation, aberrant modifications (such as hyperphosphorylation and truncation, among others) and self-aggregation of tau into oligomers or larger structures. Also, tau can be found extracellularly in a toxic form. Tau-based therapy is mainly centered on avoiding the gain of these toxic functions of tau. Tau therapies are focused on lowering tau levels, mainly of modified tau species that could be toxic for neurons (phosphorylated, truncated or aggregated tau), in intracellular or extracellular form. Decreasing the levels of those toxic species is a possible therapeutic strategy.

  10. Early pathology in sleep studies of patients with familial Creutzfeldt-Jakob disease.

    PubMed

    Givaty, Gili; Maggio, Nicola; Cohen, Oren S; Blatt, Ilan; Chapman, Joab

    2016-10-01

    In this study, we aimed to assess sleep function in patients with recent-onset familial Creutzfeldt-Jakob disease (fCJD). The largest cluster of fCJD patients is found in Jews of Libyan origin, linked to the prion protein gene (PRNP) E200K mutation. The high index of suspicion in these patients often leads to early diagnosis, with complaints of insomnia being a very common presenting symptom of the disease. The study included 10 fCJD patients diagnosed by clinical manifestations, magnetic resonance imaging (MRI) scan of the brain, elevated tau protein in the cerebrospinal fluid (CSF) and positive PRNP E200K mutation. Standard polysomnography was performed after a brief interview confirming the presence of sleep disturbances. All patients showed a pathological sleep pattern according to all scoring evaluation settings. The sleep stages were characterized by (i) disappearance of sleep spindles; (ii) outbursts of periodic sharp waves and shallowing of sleep consisting in increased Stage 2 and wake periods during the night, as well as decrease of slow-wave sleep and rapid eye movement (REM) sleep. Recordings of respiratory functions reported irregular breathing with central and obstructive apnea and hypopnea. The typical hypotonia occurring during the night and atonia during REM sleep were replaced by hyperactive sleep consisting of multiple jerks, movements and parasomnia (mainly talking) throughout the night. In conclusion, we report unique pathological sleep patterns in early fCJD associated with the E200K mutation. Specific respiratory disturbances and lack of atonia could possibly serve as new, early diagnostic tools in the disease. © 2016 European Sleep Research Society.

  11. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies.

    PubMed

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Network Disruption and Cerebrospinal Fluid Amyloid-Beta and Phospho-Tau Levels in Mild Cognitive Impairment.

    PubMed

    Canuet, Leonides; Pusil, Sandra; López, María Eugenia; Bajo, Ricardo; Pineda-Pardo, José Ángel; Cuesta, Pablo; Gálvez, Gerardo; Gaztelu, José María; Lourido, Daniel; García-Ribas, Guillermo; Maestú, Fernando

    2015-07-15

    Synaptic dysfunction is a core deficit in Alzheimer's disease, preceding hallmark pathological abnormalities. Resting-state magnetoencephalography (MEG) was used to assess whether functional connectivity patterns, as an index of synaptic dysfunction, are associated with CSF biomarkers [i.e., phospho-tau (p-tau) and amyloid beta (Aβ42) levels]. We studied 12 human subjects diagnosed with mild cognitive impairment due to Alzheimer's disease, comparing those with normal and abnormal CSF levels of the biomarkers. We also evaluated the association between aberrant functional connections and structural connectivity abnormalities, measured with diffusion tensor imaging, as well as the convergent impact of cognitive deficits and CSF variables on network disorganization. One-third of the patients converted to Alzheimer's disease during a follow-up period of 2.5 years. Patients with abnomal CSF p-tau and Aβ42 levels exhibited both reduced and increased functional connectivity affecting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and medial temporal areas in different frequency bands. A reduction in posterior cingulate functional connectivity mediated by p-tau was associated with impaired axonal integrity of the hippocampal cingulum. We noted that several connectivity abnormalities were predicted by CSF biomarkers and cognitive scores. These preliminary results indicate that CSF markers of amyloid deposition and neuronal injury in early Alzheimer's disease associate with a dual pattern of cortical network disruption, affecting key regions of the default mode network and the temporal cortex. MEG is useful to detect early synaptic dysfunction associated with Alzheimer's disease brain pathology in terms of functional network organization. In this preliminary study, we used magnetoencephalography and an integrative approach to explore the impact of CSF biomarkers, neuropsychological scores, and white matter structural abnormalities

  13. Caspase-2 cleavage of tau reversibly impairs memory.

    PubMed

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  14. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies.

    PubMed

    Giacomini, Caterina; Koo, Chuay-Yeng; Yankova, Natalia; Tavares, Ignatius A; Wray, Selina; Noble, Wendy; Hanger, Diane P; Morris, Jonathan D H

    2018-05-07

    In Alzheimer's disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.

  15. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice*

    PubMed Central

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.

    2013-01-01

    The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626

  16. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy.

    PubMed

    Shi, Yang; Yamada, Kaoru; Liddelow, Shane Antony; Smith, Scott T; Zhao, Lingzhi; Luo, Wenjie; Tsai, Richard M; Spina, Salvatore; Grinberg, Lea T; Rojas, Julio C; Gallardo, Gilbert; Wang, Kairuo; Roh, Joseph; Robinson, Grace; Finn, Mary Beth; Jiang, Hong; Sullivan, Patrick M; Baufeld, Caroline; Wood, Michael W; Sutphen, Courtney; McCue, Lena; Xiong, Chengjie; Del-Aguila, Jorge L; Morris, John C; Cruchaga, Carlos; Fagan, Anne M; Miller, Bruce L; Boxer, Adam L; Seeley, William W; Butovsky, Oleg; Barres, Ben A; Paul, Steven M; Holtzman, David M

    2017-09-28

    APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms. However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau

  17. Tau Positive Neurons Show Marked Mitochondrial Loss and Nuclear Degradation in Alzheimer's Disease.

    PubMed

    Wee, Melissa; Chegini, Fariba; Power, John H T; Majd, Shohreh

    2018-06-12

    Alzheimer's disease (AD) pathology consists of intraneuronal neurofibrillary tangles, made of hyperphosphorylated tau and extracellular accumulation of beta amyloid (Aβ) in Aβ plaques. There is an extensive debate as to which pathology initiates and responsible for cellular loss in AD. Using confocal and light microscopy, post mortem brains from control and AD cases, an antibody to SOD2 as a marker for mitochondria and an antibody to all forms of tau, we analyzed mitochondrial density in tau positive neurons along with nuclear degradation by calculating the raw integrative density. Our findings showed an extensive staining of aggregated tau in cell bodies, dystrophic neurites and neurofilaments in AD with minimal staining in control tissue, along with a marked decrease in mitochondria in tau positive (tau+) neurons. The control or tau negative (tau-) neurons in AD contained an even distribution of mitochondria, which was greatly diminished in tau+ neurons by 40%. There were no significant differences between control and tau- neurons in AD. Tau+ neurons showed marked nuclear degradation which appeared to progress with the extent of tau aggregation. The aggregated tau infiltrated and appeared to break the nuclear envelope with progressively more DNA exiting the nucleus and associating with accumulating of intracellular tau. We report mitochondrial decrease is likely due to a decrease in protein synthesis rather than a redistribution of mitochondria because of decreased axonal transport. We suggest that the decrease in mitochondria and nuclear degradation are key mechanisms for the neuronal loss seen in AD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Increased Vulnerability of the Hippocampus in Transgenic Mice Overexpressing APP and Triple Repeat Tau.

    PubMed

    Arner, Andrew; Rockenstein, Edward; Mante, Michael; Florio, Jazmin; Masliah, Deborah; Salehi, Bahar; Adame, Anthony; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A

    2018-01-01

     Alzheimer's disease (AD) is the most common tauopathy, characterized by progressive accumulation of amyloid-β (Aβ) and hyperphosphorylated tau. While pathology associated with the 4-repeat (4R) tau isoform is more abundant in corticobasal degeneration and progressive supranuclear palsy, both 3R and 4R tau isoforms accumulate in AD. Many studies have investigated interactions between Aβ and 4R tau in double transgenic mice, but few, if any, have examined the effects of Aβ with 3R tau. To examine this relationship, we crossed our APP751 mutant line with our recently characterized 3R tau mutant model to create a bigenic line (hAPP-3RTau) to model AD neuropathology. Mice were analyzed at 3 and 6 months of age for pathological and behavioral endpoints. While both the 3RTau and the hAPP-3RTau mice showed neuronal loss, increased tau aggregation, Aβ plaques and exhibited more behavioral deficits compared to the non-tg control, the bigenic mice often displaying relatively worsening levels. We found that even in young animals we found that the presence of APP/Aβ increased the accumulation of 3R tau in the neocortex and hippocampus. This observation was accompanied by activation of GSK3 and neurodegeneration in the neocortex and CA1 region. These results suggest that in addition to 4R tau, APP/Aβ may also enhance accumulation of 3R tau, a process which may be directly relevant to pathogenic pathways in AD. Our results demonstrate that this bigenic model closely parallels the pathological course of AD and may serve as a valuable model for testing new pharmacological interventions.

  19. PET Imaging of Tau Pathology and Relationship to Amyloid, Longitudinal MRI, and Cognitive Change in Down Syndrome: Results from the Down Syndrome Biomarker Initiative (DSBI).

    PubMed

    Rafii, Michael S; Lukic, Ana S; Andrews, Randolph D; Brewer, James; Rissman, Robert A; Strother, Stephen C; Wernick, Miles N; Pennington, Craig; Mobley, William C; Ness, Seth; Matthews, Dawn C

    2017-01-01

    Adults with Down syndrome (DS) represent an enriched population for the development of Alzheimer's disease (AD), which could aid the study of therapeutic interventions, and in turn, could benefit from discoveries made in other AD populations. 1) Understand the relationship between tau pathology and age, amyloid deposition, neurodegeneration (MRI and FDG PET), and cognitive and functional performance; 2) detect and differentiate AD-specific changes from DS-specific brain changes in longitudinal MRI. Twelve non-demented adults, ages 30 to 60, with DS were enrolled in the Down Syndrome Biomarker Initiative (DSBI), a 3-year, observational, cohort study to demonstrate the feasibility of conducting AD intervention/prevention trials in adults with DS. We collected imaging data with 18F-AV-1451 tau PET, AV-45 amyloid PET, FDG PET, and volumetric MRI, as well as cognitive and functional measures and additional laboratory measures. All amyloid negative subjects imaged were tau-negative. Among the amyloid positive subjects, three had tau in regions associated with Braak stage VI, two at stage V, and one at stage II. Amyloid and tau burden correlated with age. The MRI analysis produced two distinct volumetric patterns. The first differentiated DS from normal (NL) and AD, did not correlate with age or amyloid, and was longitudinally stable. The second pattern reflected AD-like atrophy and differentiated NL from AD. Tau PET and MRI atrophy correlated with several cognitive and functional measures. Tau accumulation is associated with amyloid positivity and age, as well as with progressive neurodegeneration measurable using FDG and MRI. Tau correlates with cognitive decline, as do AD-specific hypometabolism and atrophy.

  20. Tau PET in Alzheimer disease and mild cognitive impairment.

    PubMed

    Cho, Hanna; Choi, Jae Yong; Hwang, Mi Song; Lee, Jae Hoon; Kim, You Jin; Lee, Hye Mi; Lyoo, Chul Hyoung; Ryu, Young Hoon; Lee, Myung Sik

    2016-07-26

    To investigate the topographical distribution of tau pathology and its effect on functional and structural changes in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) by using (18)F-AV-1451 PET. We included 20 patients with AD, 15 patients with MCI, and 20 healthy controls, and performed neuropsychological function tests, MRI, as well as (18)F-florbetaben (for amyloid) and (18)F-AV-1451 (for tau) PET scans. By using the regional volume-of-interest masks extracted from MRIs, regional binding values of standardized uptake value ratios and volumes were measured. We compared regional binding values among 3 diagnostic groups and identified correlations among the regional binding values, performance in each cognitive function test, and regional atrophy. (18)F-AV-1451 binding was increased only in the entorhinal cortex in patients with MCI, while patients with AD exhibited greater binding in most cortical regions. In the 35 patients with MCI and AD, (18)F-AV-1451 binding in most of the neocortex increased with a worsening of global cognitive function. The visual and verbal memory functions were associated with the extent of (18)F-AV-1451 binding, especially in the medial temporal regions. The (18)F-AV-1451 binding also correlated with the severity of regional atrophy of the cerebral cortex. Tau PET imaging with (18)F-AV-1451 could serve as an in vivo biomarker for the evaluation of AD-related tau pathology and monitoring disease progression. The accumulation of pathologic tau is more closely related to functional and structural deterioration in the AD spectrum than β-amyloid. © 2016 American Academy of Neurology.

  1. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury.

    PubMed

    Ost, M; Nylén, K; Csajbok, L; Ohrfelt, A Olsson; Tullberg, M; Wikkelsö, C; Nellgård, P; Rosengren, L; Blennow, K; Nellgård, B

    2006-11-14

    We investigated if tau, microtubular binding protein, in serum and ventricular CSF (vCSF) in patients with severe traumatic brain injury (TBI) during the initial posttraumatic days correlated to 1-year outcome. Patients with severe TBI (n = 39, Glasgow Coma Scale score tau on days 0 to 14, using ELISA. vCSF total tau correlated to 1-year Extended Glasgow Outcome Scale (GOSE), the NIH Stroke Scale (NIHSS) neurologic status, and the Bartel Daily Living Index. Patients (n = 20) with normal pressure hydrocephalus (NPH) served as reference. Higher levels of tau were found in TBI patients vs patients with NPH. A correlation was found between initial vCSF total tau and GOSE levels (R = 0.42, p < 0.001) but not between vCSF total tau and NIHSS or Bartel scores at 1 year. A vCSF total tau level of >2,126 pg/mL on days 2 to 3 discriminated between dead and alive (sensitivity of 100% and a specificity of 81%). A vCSF total tau level of >702 pg/mL on days 2 to 3 discriminated between bad (GOSE 1 to 4) and good (GOSE 5 to 8) outcome (sensitivity of 83% and a specificity of 69%). Patients with GOSE 1 (dead) had higher vCSF total tau levels on days 2 to 3 (p < 0.001) vs both surviving patients (GOSE 2 to 8) and those with NPH. Total tau was not detected in serum throughout the study. The increase in ventricular CSF (vCSF) total tau probably reflects axonal damage, known to be a central pathologic mechanism in traumatic brain injury (TBI). These results suggest that vCSF total tau may be an important early biochemical neuromarker for predicting long-term outcome in patients with a severe TBI.

  2. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration

    PubMed Central

    Hoover, Brian R.; Reed, Miranda N.; Su, Jianjun; Penrod, Rachel D.; Kotilinek, Linda A.; Grant, Marianne K.; Pitstick, Rose; Carlson, George A.; Lanier, Lorene M.; Yuan, Li-Lian; Ashe, Karen H.; Liao, Dezhi

    2010-01-01

    The microtubule-associated protein tau accumulates in Alzheimer’s and other fatal dementias, which manifest when forebrain neurons die. Recent advances in understanding these disorders indicate that brain dysfunction precedes neurodegeneration, but the role of tau is unclear. Here, we show that early tau-related deficits develop not from the loss of synapses or neurons, but rather as a result of synaptic abnormalities caused by the accumulation of hyperphosphorylated tau within intact dendritic spines, where it disrupts synaptic function by impairing glutamate receptor trafficking or synaptic anchoring. Mutagenesis of 14 disease-associated serine and threonine amino acid residues to create pseudohyperphosphorylated tau caused tau mislocalization while creation of phosphorylation-deficient tau blocked the mis-targeting of tau to dendritic spines. Thus, tau phosphorylation plays a critical role in mediating tau mislocalization and subsequent synaptic impairment. These data establish that the locus of early synaptic malfunction caused by tau resides in dendritic spines. PMID:21172610

  3. Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease.

    PubMed

    Joo, Illsung L; Lai, Aaron Y; Bazzigaluppi, Paolo; Koletar, Margaret M; Dorr, Adrienne; Brown, Mary E; Thomason, Lynsie A M; Sled, John G; McLaurin, JoAnne; Stefanovic, Bojana

    2017-04-12

    Alzheimer's disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans.

  4. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer's disease mice.

    PubMed

    Xie, Yongli; Tan, Yibin; Zheng, Youbiao; Du, Xiubo; Liu, Qiong

    2017-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease which is clinically characterized by memory loss and cognitive decline caused by protein misfolding and aggregation. Imbalance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of AD. Selenium (Se), a vital trace element with excellent antioxidant potential, is preferentially retained in the brain in Se-limited conditions and has been reported to provide neuroprotection through resisting oxidative damage. In this paper, we studied for the first time the potential of Ebselen, a lipid-soluble selenium compound with GPx-like activity, in the treatment of cognitive dysfunction and neuropathology of triple-transgenic AD (3 × Tg-AD) mice, AD model cell, and primary culture. We demonstrated that Ebselen inhibited oxidative stress in both AD model cells and mouse brains with increasing GPx and SOD activities and meanwhile reduced p38 mitogen-activated protein kinases activities. By decreasing the expression of amyloid precursor protein and β-secretase, Ebselen reduced the levels of Aβ in AD neurons and mouse brains, especially the most toxic oligomeric form. Besides, mislocation of phosphorylated tau in neurons and phosphorylation levels of tau protein at Thr231, Ser396, and Ser404 residues were also inhibited by Ebselen, probably by its regulatory roles in glycogen synthase kinase 3β and protein phosphatase 2A activity. In addition, Ebselen mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in AD model cells and neurons. Consequently, the spatial learning and memory of 3 × Tg-AD mice were significantly improved upon Ebselen treatment. This study provides a potential novel therapeutic approach for the prevention of AD.

  5. Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington's disease.

    PubMed

    Gratuze, Maud; Noël, Anastasia; Julien, Carl; Cisbani, Giulia; Milot-Rousseau, Philippe; Morin, Françoise; Dickler, Maya; Goupil, Claudia; Bezeau, François; Poitras, Isabelle; Bissonnette, Stéphanie; Whittington, Robert A; Hébert, Sébastien S; Cicchetti, Francesca; Parker, J Alex; Samadi, Pershia; Planel, Emmanuel

    2015-01-01

    Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by polyglutamine expansions in the amino-terminal region of the huntingtin (Htt) protein. At the cellular level, neuronal death is accompanied by the proteolytic cleavage, misfolding and aggregation of huntingtin. Abnormal hyperphosphorylation of tau protein is a characteristic feature of a class of neurodegenerative diseases called tauopathies. As a number of studies have reported tau pathology in HD patients, we investigated whether HD pathology may promote tau hyperphosphorylation and if so tackle some of its underlying mechanisms. For that purpose, we used the R6/2 mouse, a well-characterized model of HD, and analyzed tau phosphorylation before and after the onset of HD-like symptoms. We found a significant increase in tau hyperphosphorylation at the PHF-1 epitope in pre-symptomatic R6/2 mice, whereas symptomatic mice displayed tau hyperphosphorylation at multiple tau phosphoepitopes (AT8, CP13, PT205 and PHF-1). There was no activation of major tau kinases that could explain this observation. However, when we examined tau phosphatases, we found that calcineurin/PP2B was downregulated by 30% in pre-symptomatic and 50% in symptomatic R6/2 mice, respectively. We observed similar changes in tau phosphorylation and calcineurin expression in Q175 mice, another HD model. Calcineurin was also reduced in Q111 compared with Q7 cells. Finally, pharmacological or genetic inhibition of endogenous calcineurin was sufficient to promote tau hyperphosphorylation in neuronal cells. Taken together, our data suggest that mutant huntingtin can induce abnormal tau hyperphosphorylation in vivo, via the deregulation of calcineurin. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP) in the face of Tau mutation.

    PubMed

    Schirer, Yulie; Malishkevich, Anna; Ophir, Yotam; Lewis, Jada; Giladi, Eliezer; Gozes, Illana

    2014-01-01

    Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP) is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (~3-fold transcripts) in the cerebral cortex of young transgenic mice (~disease onset), but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Here, Brahma (Brm), a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF)-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is warranted.

  7. Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease

    PubMed Central

    Joo, Illsung L.; Lai, Aaron Y.; Bazzigaluppi, Paolo; Koletar, Margaret M.; Dorr, Adrienne; Brown, Mary E.; Thomason, Lynsie A. M.; Sled, John G.; McLaurin, JoAnne; Stefanovic, Bojana

    2017-01-01

    Alzheimer’s disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans. PMID:28401931

  8. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    PubMed Central

    2017-01-01

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer's disease-related protein aggregation as an underlying mechanism of age-related memory impairment. SIGNIFICANCE STATEMENT Alterations in episodic memory and the accumulation of Alzheimer's pathology are common in cognitively normal older adults. However, evidence of pathological effects on episodic memory has largely been limited to β-amyloid (Aβ). Because Aβ and tau often cooccur in older adults, previous research offers an incomplete understanding of the relationship between pathology and episodic memory. With the recent development of in vivo tau PET radiotracers, we show that Aβ and tau are associated with different aspects of memory encoding, leading to aberrant neural activity that is behaviorally detrimental. In addition, our results provide evidence linking Aβ- and tau-associated neural dysfunction to brain atrophy. PMID:28213439

  9. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers.

    PubMed

    Rubenstein, Richard; Chang, Binggong; Yue, John K; Chiu, Allen; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T; Wang, Kevin K W; Cooper, Shelly R; Dams-O'Connor, Kristen; Borrasso, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Vassar, Mary J

    2017-09-01

    Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau-T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13-15, n = 162) from healthy controls. The P-tau level and P-tau-T-tau ratio were higher in individuals with more severe TBI (GCS, ≤12 vs 13-15). The P-tau level and P-tau-T-tau

  10. Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG).

    PubMed

    Kovacs, Gabor G; Xie, Sharon X; Lee, Edward B; Robinson, John L; Caswell, Carrie; Irwin, David J; Toledo, Jon B; Johnson, Victoria E; Smith, Douglas H; Alafuzoff, Irina; Attems, Johannes; Bencze, Janos; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Budka, Herbert; Dickson, Dennis W; Dugger, Brittany N; Duyckaerts, Charles; Ferrer, Isidro; Forrest, Shelley L; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Grinberg, Lea T; Halliday, Glenda M; Hatanpaa, Kimmo J; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Ironside, James W; King, Andrew; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Love, Seth; Mackenzie, Ian R; Mao, Qinwen; Matej, Radoslav; McLean, Catriona; Munoz, David G; Murray, Melissa E; Neltner, Janna; Nelson, Peter T; Ritchie, Diane; Rodriguez, Roberta D; Rohan, Zdenek; Rozemuller, Annemieke; Sakai, Kenji; Schultz, Christian; Seilhean, Danielle; Smith, Vanessa; Tacik, Pawel; Takahashi, Hitoshi; Takao, Masaki; Rudolf Thal, Dietmar; Weis, Serge; Wharton, Stephen B; White, Charles L; Woulfe, John M; Yamada, Masahito; Trojanowski, John Q

    2017-07-01

    Aging-related tau astrogliopathy (ARTAG) is a recently introduced terminology. To facilitate the consistent identification of ARTAG and to distinguish it from astroglial tau pathologies observed in the primary frontotemporal lobar degeneration tauopathies we evaluated how consistently neuropathologists recognize (1) different astroglial tau immunoreactivities, including those of ARTAG and those associated with primary tauopathies (Study 1); (2) ARTAG types (Study 2A); and (3) ARTAG severity (Study 2B). Microphotographs and scanned sections immunostained for phosphorylated tau (AT8) were made available for download and preview. Percentage of agreement and kappa values with 95% confidence interval (CI) were calculated for each evaluation. The overall agreement for Study 1 was >60% with a kappa value of 0.55 (95% CI 0.433-0.645). Moderate agreement (>90%, kappa 0.48, 95% CI 0.457-0.900) was reached in Study 2A for the identification of ARTAG pathology for each ARTAG subtype (kappa 0.37-0.72), whereas fair agreement (kappa 0.40, 95% CI 0.341-0.445) was reached for the evaluation of ARTAG severity. The overall assessment of ARTAG showed moderate agreement (kappa 0.60, 95% CI 0.534-0.653) among raters. Our study supports the application of the current harmonized evaluation strategy for ARTAG with a slight modification of the evaluation of its severity. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  11. Nature of Tau-Associated Neurodegeneration and the Molecular Mechanisms

    PubMed Central

    Yang, Ying; Wang, Jian-Zhi

    2018-01-01

    Neurodegeneration is defined as the progressive loss of structure or function of the neurons. As the nature of degenerative cell loss is currently not clear, there is no specific molecular marker to measure neurodegeneration. Therefore, researchers have been using apoptotic markers to measure neurodegeneration. However, neurodegeneration is completely different from apoptosis by morphology and time course. Lacking specific molecular marker has been the major hindrance in research of neurodegenerative disorders. Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and tau accumulation forming neurofibrillary tangles is a hallmark pathology in the AD brains, suggesting that tau must play a critical role in AD neurodegeneration. Here we review part of our published papers on tau-related studies, and share our thoughts on the nature of tau-associated neurodegeneration in AD. PMID:29562535

  12. Signature of an aggregation-prone conformation of tau

    NASA Astrophysics Data System (ADS)

    Eschmann, Neil A.; Georgieva, Elka R.; Ganguly, Pritam; Borbat, Peter P.; Rappaport, Maxime D.; Akdogan, Yasar; Freed, Jack H.; Shea, Joan-Emma; Han, Songi

    2017-03-01

    The self-assembly of the microtubule associated tau protein into fibrillar cell inclusions is linked to a number of devastating neurodegenerative disorders collectively known as tauopathies. The mechanism by which tau self-assembles into pathological entities is a matter of much debate, largely due to the lack of direct experimental insights into the earliest stages of aggregation. We present pulsed double electron-electron resonance measurements of two key fibril-forming regions of tau, PHF6 and PHF6*, in transient as aggregation happens. By monitoring the end-to-end distance distribution of these segments as a function of aggregation time, we show that the PHF6(*) regions dramatically extend to distances commensurate with extended β-strand structures within the earliest stages of aggregation, well before fibril formation. Combined with simulations, our experiments show that the extended β-strand conformational state of PHF6(*) is readily populated under aggregating conditions, constituting a defining signature of aggregation-prone tau, and as such, a possible target for therapeutic interventions.

  13. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice.

    PubMed

    Chen, Shuyi; Sun, Jie; Zhao, Gang; Guo, Ai; Chen, Yanlin; Fu, Rongxia; Deng, Yanqiu

    2017-08-01

    The purpose of this study was to explore how liraglutide affects AD-like pathology and cognitive function in APP/PS1/Tau triple transgenic (3 × Tg) Alzheimer disease (AD) model mice. Male 3 × Tg mice and C57BL/6 J mice were treated for 8 weeks with liraglutide (300 μg/kg/day, subcutaneous injection) or saline. Levels of phosphorylated tau, neurofilaments (NFs), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in brain tissues were assessed with western blots. Fluoro-Jade-B labeling were applied to detect pathological changes. The Morris water maze (MWM) was used to assess the spatial learning and memory. Liraglutide decreased levels of hyperphosphorylated tau and NFs in 3 × Tg liraglutide-treated (Tg + LIR) mice, increased ERK phosphorylation, and decreased JNK phosphorylation. Liraglutide also decreased the number of degenerative neurons in the hippocampus and cortex of Tg + LIR mice, and shortened their escape latencies and increased their hidden platform crossings in the MWM task. Liraglutide did not significantly affect the animals' body weight (BW) or fasting blood glucose. Liraglutide can reduce hyperphosphorylation of tau and NFs and reduce neuronal degeneration, apparently through alterations in JNK and ERK signaling, which may be related to its positive effects on AD-like learning and memory impairment.

  14. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology.

    PubMed

    Calderón-Garcidueñas, Lilian; González-Maciel, Angélica; Reynoso-Robles, Rafael; Kulesza, Randy J; Mukherjee, Partha S; Torres-Jardón, Ricardo; Rönkkö, Topi; Doty, Richard L

    2018-06-20

    There is growing evidence that air pollution is a risk factor for a number of neurodegenerative diseases, most notably Alzheimer's (AD) and Parkinson's (PD). It is generally assumed that the pathology of these diseases arises only later in life and commonly begins within olfactory eloquent pathways prior to the onset of the classical clinical symptoms. The present study demonstrates that chronic exposure to high levels of air pollution results in AD- and PD-related pathology within the olfactory bulbs of children and relatively young adults ages 11 months to 40 years. The olfactory bulbs (OBs) of 179 residents of highly polluted Metropolitan Mexico City (MMC) were evaluated for AD- and alpha-synuclein-related pathology. Even in toddlers, hyperphosphorylated tau (hTau) and Lewy neurites (LN) were identified in the OBs. By the second decade, 84% of the bulbs exhibited hTau (48/57), 68% LNs and vascular amyloid (39/57) and 36% (21/57) diffuse amyloid plaques. OB active endothelial phagocytosis of red blood cell fragments containing combustion-derived nanoparticles (CDNPs) and the neurovascular unit damage were associated with myelinated and unmyelinated axonal damage. OB hTau neurites were associated mostly with pretangle stages 1a and 1b in subjects ≤ 20 years of age, strongly suggesting olfactory deficits could potentially be an early guide of AD pretangle subcortical and cortical hTau. APOE4 versus APOE3 carriers were 6-13 times more likely to exhibit OB vascular amyloid, neuronal amyloid accumulation, alpha-synuclein aggregates, hTau neurofibrillary tangles, and neurites. Remarkably, APOE4 carriers were 4.57 times more likely than non-carriers to die by suicide. The present findings, along with previous data that over a third of clinically healthy MMC teens and young adults exhibit low scores on an odor identification test, support the concept that olfactory testing may aid in identifying young people at high risk for neurodegenerative diseases. Moreover

  15. Emerging drug targets for Aβ and tau in Alzheimer’s disease: a systematic review

    PubMed Central

    West, Sophie; Bhugra, Praveen

    2015-01-01

    Aims Currently, treatment for Alzheimer’s disease (AD) focuses on the cholinergic hypothesis and provides limited symptomatic effects. Research currently focuses on other factors that are thought to contribute to AD development such as tau proteins and Aβ deposits, and how modification of the associated pathology affects outcomes in patients. This systematic review summarizes and appraises the evidence for the emerging drugs affecting Aβ and tau pathology in AD. Methods A comprehensive, systematic online database search was conducted using the databases ScienceDirect and PubMed to include original research articles. A systematic review was conducted following a minimum set of standards, as outlined by The PRISMA Group 1. Specific inclusion and exclusion criteria were followed and studies fitting the criteria were selected. No human trials were included in this review. In vitro and in vivo AD models were used to assess efficacy to ensure studied agents were emerging targets without large bodies of evidence. Results The majority of studies showed statistically significant improvement (P < 0.05) of Aβ and/or tau pathology, or cognitive effects. Many studies conducted in AD animal models have shown a reduction in Aβ peptide burden and a reduction in tau phosphorylation post-intervention. This has the potential to reduce plaque formation and neuronal degeneration. Conclusions There are many emerging targets showing promising results in the effort to modify the pathological effects associated with AD. Many of the trials also provided evidence of the clinical effects of such drugs reducing pathological outcomes, which was often demonstrated as an improvement of cognition. PMID:25753046

  16. Alzheimer disease therapy--moving from amyloid-β to tau.

    PubMed

    Giacobini, Ezio; Gold, Gabriel

    2013-12-01

    Disease-modifying treatments for Alzheimer disease (AD) have focused mainly on reducing levels of amyloid-β (Aβ) in the brain. Some compounds have achieved this goal, but none has produced clinically meaningful results. Several methodological issues relating to clinical trials of these agents might explain this failure; an additional consideration is that the amyloid cascade hypothesis--which places amyloid plaques at the heart of AD pathogenesis--does not fully integrate a large body of data relevant to the emergence of clinical AD. Importantly, amyloid deposition is not strongly correlated with cognition in multivariate analyses, unlike hyperphosphorylated tau, neurofibrillary tangles, and synaptic and neuronal loss, which are closely associated with memory deficits. Targeting tau pathology, therefore, might be more clinically effective than Aβ-directed therapies. Furthermore, numerous immunization studies in animal models indicate that reduction of intracellular levels of tau and phosphorylated tau is possible, and is associated with improved cognitive performance. Several tau-related vaccines are in advanced preclinical stages and will soon enter clinical trials. In this article, we present a critical analysis of the failure of Aβ-directed therapies, discuss limitations of the amyloid cascade hypothesis, and suggest the potential value of tau-targeted therapy for AD.

  17. Learning Impairments, Memory Deficits, and Neuropathology in Aged Tau Transgenic Mice Are Dependent on Leukotrienes Biosynthesis: Role of the cdk5 Kinase Pathway.

    PubMed

    Giannopoulos, Phillip F; Chiu, Jian; Praticò, Domenico

    2018-06-07

    Previous studies showed that the leukotrienes pathway is increased in human tauopathy and that its manipulation may modulate the onset and development of the pathological phenotype of tau transgenic mice. However, whether interfering with leukotrienes biosynthesis is beneficial after the behavioral deficits and the neuropathology have fully developed in these mice is not known. To test this hypothesis, aged tau transgenic mice were randomized to receive zileuton, a specific leukotriene biosynthesis inhibitor, or vehicle starting at 12 months of age for 16 weeks and then assessed in their functional and pathological phenotype. Compared with baseline, we observed that untreated tau mice had a worsening of their memory and spatial learning. By contrast, tau mice treated with zileuton had a reversal of these deficits and behaved in an undistinguishable manner from wild-type mice. Leukotriene-inhibited tau mice had an amelioration of synaptic integrity, lower levels of neuroinflammation, and a significant reduction in tau phosphorylation and pathology, which was secondary to an involvement of the cdk5 kinase pathway. Taken together, our findings represent the first demonstration that the leukotriene biosynthesis is functionally involved at the later stages of the tau pathological phenotype and represents an ideal target with viable therapeutic potential for treating human tauopathies.

  18. Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease.

    PubMed

    Dean, Douglas C; Hurley, Samuel A; Kecskemeti, Steven R; O'Grady, J Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J; Carlsson, Cynthia M; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B

    2017-01-01

    observed between myelin water fraction and phosphorylated tau 181/β-amyloid 42, suggesting that phosphorylated tau 181/β-amyloid 42 levels modulate age-related changes in myelin water fraction. These findings suggest amyloid pathologies significantly influence white matter and that these abnormalities may signify an early feature of the disease process. We expect that clarifying the nature of myelin damage in preclinical AD may be informative on the disease's course and lead to new markers of efficacy for prevention and treatment trials.

  19. Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies

    PubMed Central

    Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin

    2012-01-01

    Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer’s disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer’s disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology. PMID:22699908

  20. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation.

    PubMed

    Li, Xiao-Hong; Lv, Bing-Ling; Xie, Jia-Zhao; Liu, Jing; Zhou, Xin-Wen; Wang, Jian-Zhi

    2012-07-01

    Accumulation of β-amyloid and hyperphosphorylated tau with synapse damage and memory deterioration are hallmark lesions of Alzheimer disease (AD), but the upstream causative factors are elusive. The advanced glycation endproducts (AGEs) are elevated in AD brains and the AGEs can stimulate β-amyloid production. Whether and how AGEs may cause AD-like tau hyperphosphorylation and memory-related deficits is not known. Here we report that AGEs induce tau hyperphosphorylation, memory deterioration, decline of synaptic proteins, and impairment of long-term potentiation (LTP) in rats. In SK-NS-H cells, upregulation of AGEs receptor (RAGE), inhibition of Akt, and activation of glycogen synthase kinase-3 (GSK-3), Erk1/2, and p38 were observed after treatment with AGEs. In rats, blockage of RAGE attenuated the AGE-induced GSK-3 activation, tau hyperphosphorylation, and memory deficit with restoration of synaptic functions, and simultaneous inhibition of GSK-3 also antagonized the AGE-induced impairments. Our data reveal that AGEs can induce tau hyperphosphorylation and impair synapse and memory through RAGE-mediated GSK-3 activation and targeting RAGE/GSK-3 pathway can efficiently improve the AD-like histopathological changes and memory deterioration. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease.

    PubMed

    Jazvinšćak Jembrek, Maja; Slade, Neda; Hof, Patrick R; Šimić, Goran

    2018-05-04

    Alzheimer's disease (AD), the most common progressive neurodegenerative disorder, is characterized by severe cognitive decline and personality changes as a result of synaptic and neuronal loss. The defining clinicopathological hallmarks of the disease are deposits of amyloid precursor protein (APP)-derived amyloid-β peptides (Aβ) in the brain parenchyma, and intracellular aggregates of truncated and hyperphosphorylated tau protein in neurofibrillary tangles (NFT). At the cellular and molecular levels, many intertwined pathological mechanisms that relate Aβ and tau pathology with a transcription factor p53 have been revealed. p53 is activated in response to various stressors that threaten genomic stability. Depending on damage severity, it promotes neuronal death or survival, predominantly via transcription-dependent mechanisms that affect expression of apoptosis-related target genes. Levels of p53 are enhanced in the AD brain and maintain sustained tau hyperphosphorylation, whereas intracellular Aβ directly contributes to p53 pool and promotes downstream p53 effects. The review summarizes the role of p53 in neuronal function, discusses the interactions of p53, tau, and Aβ in the normal brain and during the progression of AD pathology, and considers the impact of the most prominent hereditary risk factors of AD on p53/tau/Aβ interactions. A better understanding of this intricate interplay would provide deeper insight into AD pathology and might offer some novel therapeutic targets for the improvement of treatment options. In this regard, drugs and natural compounds targeting the p53 pathway are of growing interest in neuroprotection as they may represent promising therapeutic approaches in the prevention of oxidative stress-dependent pathological processes underlying AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Pathologic features of early inflammatory bowel disease.

    PubMed

    Finkelstein, Sydney D; Sasatomi, Eizaburo; Regueiro, Miguel

    2002-03-01

    Often the pathologic changes of IBD are subtle and may not be present in a proportion of biopsy specimens. In cases of early disease, the changes may be missed, and additional specimens should be taken after a period of time. Modifying factors, such as prebiopsy treatment and coexisting disease, should be considered. A forum to review cases and allow for communication between gastroenterologists and pathologists is especially useful for clinicopathologic correlation and assignment of a working diagnosis to each case. Careful attention to the pathologic features of early UC and CD would be most useful when evaluating new therapies for IBD.

  3. Cholinesterase inhibitors may increase phosphorylated tau in Alzheimer’s disease

    PubMed Central

    Wilcock, Gordon K.; Vinters, Harry V.; Perry, Elaine K.; Perry, Robert; Ballard, Clive G.; Love, Seth

    2014-01-01

    Cholinesterase inhibitors (ChEIs) are widely used for the symptomatic treatment of Alzheimer’s disease (AD). In vitro and in animal studies, ChEIs have been shown to influence the processing of Aβ and the phosphorylation of tau, proteins that are the principal constituents of the plaques and neurofibrillary tangles, respectively, in AD brain. However, little is known about the effects of these drugs on Aβ and tau pathology in AD. Using avidin-biotin immunohistochemistry and computer-assisted image analysis, we compared Aβ and tau loads in the frontal and temporal cortices of 72 brains from matched cohorts of AD patients who had or had not received ChEIs. Patients treated with ChEIs had accumulated significantly more phospho-tau in their cerebral cortex than had untreated patients (P = 0.004). Aβ accumulation was reduced but not significantly. These data raise the possibility that increased tau phosphorylation may influence long-term clinical responsiveness to ChEIs. PMID:19240967

  4. Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology.

    PubMed

    Wilson, Gabrielle R; Sim, Joe C H; McLean, Catriona; Giannandrea, Maila; Galea, Charles A; Riseley, Jessica R; Stephenson, Sarah E M; Fitzpatrick, Elizabeth; Haas, Stefan A; Pope, Kate; Hogan, Kirk J; Gregg, Ronald G; Bromhead, Catherine J; Wargowski, David S; Lawrence, Christopher H; James, Paul A; Churchyard, Andrew; Gao, Yujing; Phelan, Dean G; Gillies, Greta; Salce, Nicholas; Stanford, Lynn; Marsh, Ashley P L; Mignogna, Maria L; Hayflick, Susan J; Leventer, Richard J; Delatycki, Martin B; Mellick, George D; Kalscheuer, Vera M; D'Adamo, Patrizia; Bahlo, Melanie; Amor, David J; Lockhart, Paul J

    2014-12-04

    Advances in understanding the etiology of Parkinson disease have been driven by the identification of causative mutations in families. Genetic analysis of an Australian family with three males displaying clinical features of early-onset parkinsonism and intellectual disability identified a ∼45 kb deletion resulting in the complete loss of RAB39B. We subsequently identified a missense mutation (c.503C>A [p.Thr168Lys]) in RAB39B in an unrelated Wisconsin kindred affected by a similar clinical phenotype. In silico and in vitro studies demonstrated that the mutation destabilized the protein, consistent with loss of function. In vitro small-hairpin-RNA-mediated knockdown of Rab39b resulted in a reduction in the density of α-synuclein immunoreactive puncta in dendritic processes of cultured neurons. In addition, in multiple cell models, we demonstrated that knockdown of Rab39b was associated with reduced steady-state levels of α-synuclein. Post mortem studies demonstrated that loss of RAB39B resulted in pathologically confirmed Parkinson disease. There was extensive dopaminergic neuron loss in the substantia nigra and widespread classic Lewy body pathology. Additional pathological features included cortical Lewy bodies, brain iron accumulation, tau immunoreactivity, and axonal spheroids. Overall, we have shown that loss-of-function mutations in RAB39B cause intellectual disability and pathologically confirmed early-onset Parkinson disease. The loss of RAB39B results in dysregulation of α-synuclein homeostasis and a spectrum of neuropathological features that implicate RAB39B in the pathogenesis of Parkinson disease and potentially other neurodegenerative disorders. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity

    PubMed Central

    Stack, Cliona; Jainuddin, Shari; Elipenahli, Ceyhan; Gerges, Meri; Starkova, Natalia; Starkov, Anatoly A.; Jové, Mariona; Portero-Otin, Manuel; Launay, Nathalie; Pujol, Aurora; Kaidery, Navneet Ammal; Thomas, Bobby; Tampellini, Davide; Beal, M. Flint; Dumont, Magali

    2014-01-01

    Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology. PMID:24556215

  6. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  7. The novel Tau mutation G335S: clinical, neuropathological and molecular characterization.

    PubMed

    Spina, Salvatore; Murrell, Jill R; Yoshida, Hirotaka; Ghetti, Bernardino; Bermingham, Niamh; Sweeney, Brian; Dlouhy, Stephen R; Crowther, R Anthony; Goedert, Michel; Keohane, Catherine

    2007-04-01

    Mutations in Tau cause the inherited neurodegenerative disease, frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Known coding region mutations cluster in the microtubule-binding region, where they alter the ability of tau to promote microtubule assembly. Depending on the tau isoforms, this region consists of three or four imperfect repeats of 31 or 32 amino acids, each of which contains a characteristic and invariant PGGG motif. Here, we report the novel G335S mutation, which changes the PGGG motif of the third tau repeat to PGGS, in an individual who developed social withdrawal, emotional bluntness and stereotypic behavior at age 22, followed by disinhibition, hyperorality and ideomotor apraxia. Abundant tau-positive inclusions were present in neurons and glia in the frontotemporal cortex, hippocampus and brainstem. Sarkosyl-insoluble tau showed paired helical and straight filaments, as well as more irregular rope-like filaments. The pattern of pathological tau bands was like that of Alzheimer disease. Experimentally, the G335S mutation resulted in a greatly reduced ability of tau to promote microtubule assembly, while having no significant effect on heparin-induced assembly of recombinant tau into filaments.

  8. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy.

    PubMed

    Blair, Laura J; Frauen, Haley D; Zhang, Bo; Nordhues, Bryce A; Bijan, Sara; Lin, Yen-Chi; Zamudio, Frank; Hernandez, Lidice D; Sabbagh, Jonathan J; Selenica, Maj-Linda B; Dickey, Chad A

    2015-01-31

    The blood-brain barrier (BBB) is damaged in tauopathies, including progressive supranuclear palsy (PSP) and Alzheimer's disease (AD), which is thought to contribute to pathogenesis later in the disease course. In AD, BBB dysfunction has been associated with amyloid beta (Aß) pathology, but the role of tau in this process is not well characterized. Since increased BBB permeability is found in tauopathies without Aß pathology, like PSP, we suspected that tau accumulation alone could not only be sufficient, but even more important than Aß for BBB damage. Longitudinal evaluation of brain tissue from the tetracycline-regulatable rTg4510 tau transgenic mouse model showed progressive IgG, T cell and red blood cell infiltration. The Evans blue (EB) dye that is excluded from the brain when the BBB is intact also permeated the brains of rTg4510 mice following peripheral administration, indicative of a bonafide BBB defect, but this was only evident later in life. Thus, despite the marked brain atrophy and inflammation that occurs earlier in this model, BBB integrity is maintained. Interestingly, BBB dysfunction emerged at the same time that perivascular tau emerged around major hippocampal blood vessels. However, when tau expression was suppressed using doxycycline, BBB integrity was preserved, suggesting that the BBB can be stabilized in a tauopathic brain by reducing tau levels. For the first time, these data demonstrate that tau alone can initiate breakdown of the BBB, but the BBB is remarkably resilient, maintaining its integrity in the face of marked brain atrophy, neuroinflammation and toxic tau accumulation. Moreover, the BBB can recover integrity when tau levels are reduced. Thus, late stage interventions targeting tau may slow the vascular contributions to cognitive impairment and dementia that occur in tauopathies.

  9. CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease

    PubMed Central

    Shi, Min; Kovac, Andrej; Korff, Ane; Cook, Travis J.; Ginghina, Carmen; Bullock, Kristin M.; Yang, Li; Stewart, Tessandra; Zheng, Danfeng; Aro, Patrick; Atik, Anzari; Kerr, Kathleen F.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Montine, Thomas J.; Banks, William A.; Zhang, Jing

    2016-01-01

    Background Alzheimer disease (AD) and Parkinson disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. Methods Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by Single Molecule Array technology with 303 subjects. Results The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls, and correlated with cerebrospinal fluid tau. Conclusions Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD. PMID:27234211

  10. Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy

    PubMed Central

    Spires-Jones, Tara L; Friedman, Taylor; Pitstick, Rose; Polydoro, Manuela; Roe, Allyson; Carlson, George A; Hyman, Bradley T

    2014-01-01

    Alzheimer's disease is characterized pathologically by aggregation of amyloid beta into senile plaques and aggregation of pathologically modified tau into neurofibrillary tangles. While changes in amyloid processing are strongly implicated in disease initiation, the recent failure of amyloid-based therapies has highlighted the importance of tau as a therapeutic target. “Tangle busting” compounds including methylene blue and analogous molecules are currently being evaluated as therapeutics in Alzheimer's disease. Previous studies indicated that methylene blue can reverse tau aggregation in vitro after 10 minutes, and subsequent studies suggested that high levels of drug reduce tau protein levels (assessed biochemically) in vivo. Here, we tested whether methylene blue could remove established neurofibrillary tangles in the rTg4510 model of tauopathy, which develops robust tangle pathology. We find that 6 weeks of methylene blue dosing in the water from 16 months to 17.5 months of age decreases soluble tau but does not remove sarkosyl insoluble tau, or histologically defined PHF1 or Gallyas positive tangle pathology. These data indicate that methylene blue treatment will likely not rapidly reverse existing tangle pathology. PMID:24462887

  11. BAG3 facilitates the clearance of endogenous tau in primary neurons.

    PubMed

    Lei, Zhinian; Brizzee, Corey; Johnson, Gail V W

    2015-01-01

    Tau is a microtubule associated protein that is found primarily in neurons, and in pathologic conditions, such as Alzheimer's disease (AD) it accumulates and contributes to the disease process. Because tau plays a fundamental role in the pathogenesis of AD and other tauopathies, and in AD mouse models reducing tau levels improves outcomes, approaches that facilitate tau clearance are being considered as therapeutic strategies. However, fundamental to the development of such interventions is a clearer understanding of the mechanisms that regulate tau clearance. Here, we report a novel mechanism of tau degradation mediated by the co-chaperone BAG3. BAG3 has been shown to be an essential component of a complex that targets substrates to the autophagy pathway for degradation. In rat primary neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose resulted in significant decreases in tau and phospho-tau levels. These treatments also induced an upregulation of BAG3. Proteasome inhibition activated JNK, which was responsible for the upregulation of BAG3 and increased tau clearance. Inhibiting JNK or knocking down BAG3 blocked the proteasome inhibition-induced decreases in tau. Further, BAG3 overexpression alone resulted in significant decreases in tau and phospho-tau levels in neurons. These results indicate that BAG3 plays a critical role in regulating the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic approach in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Alzheimer Abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP.

    PubMed

    Granic, Antoneta; Padmanabhan, Jaya; Norden, Michelle; Potter, Huntington

    2010-02-15

    Both sporadic and familial Alzheimer's disease (AD) patients exhibit increased chromosome aneuploidy, particularly trisomy 21, in neurons and other cells. Significantly, trisomy 21/Down syndrome patients develop early onset AD pathology. We investigated the mechanism underlying mosaic chromosome aneuploidy in AD and report that FAD mutations in the Alzheimer Amyloid Precursor Protein gene, APP, induce chromosome mis-segregation and aneuploidy in transgenic mice and in transfected cells. Furthermore, adding synthetic Abeta peptide, the pathogenic product of APP, to cultured cells causes rapid and robust chromosome mis-segregation leading to aneuploid, including trisomy 21, daughters, which is prevented by LiCl addition or Ca(2+) chelation and is replicated in tau KO cells, implicating GSK-3beta, calpain, and Tau-dependent microtubule transport in the aneugenic activity of Abeta. Furthermore, APP KO cells are resistant to the aneugenic activity of Abeta, as they have been shown previously to be resistant to Abeta-induced tau phosphorylation and cell toxicity. These results indicate that Abeta-induced microtubule dysfunction leads to aneuploid neurons and may thereby contribute to the pathogenesis of AD.

  13. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P

    2015-10-01

    The therapeutic effects of intravenous immunoglobulin (IVIG) products were recently studied in Alzheimer's disease (AD) patients. Pilot studies produced encouraging results but phase II and III trials gave disappointing results; a further study is in progress. IVIG products contain antibodies to tau protein, the main component of neurofibrillary tangles (NFTs). The tau used to detect IVIG's anti-tau antibodies in previous studies was non-phosphorylated recombinant human tau-441, but NFT-associated tau is extensively phosphorylated. The objective of this study was to determine if various IVIG products contain specific antibodies to phosphorylated tau (anti-pTau antibodies). ELISAs were used to evaluate binding of six IVIG products to a 12 amino acid peptide, tau 196-207, which was phosphorylated ("pTau peptide") or non-phosphorylated ("non-pTau peptide") at Serine-199 and Serine-202. Both amino acid residues are phosphorylated in AD NFTs. Each IVIG's "anti-pTau antibody ratio" was calculated by dividing its binding to the pTau peptide by its binding to the non-pTau peptide. Seven experiments were performed and data were pooled, with each experiment contributing one data point from each IVIG product. Mean anti-pTau antibody ratios greater than 1.0, suggesting specific antibodies to phosphorylated tau, were found for three IVIG products. Because administration of antibodies to phosphorylated tau has been found to reduce tau-associated pathology in transgenic mouse models of tauopathy, increasing the levels of anti-pTau antibodies, together with other selected antibodies such as anti-Aβ, in IVIG might increase its ability to slow AD's progression. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Digital ELISA for the quantification of attomolar concentrations of Alzheimer's disease biomarker protein Tau in biological samples.

    PubMed

    Pérez-Ruiz, Elena; Decrop, Deborah; Ven, Karen; Tripodi, Lisa; Leirs, Karen; Rosseels, Joelle; van de Wouwer, Marlies; Geukens, Nick; De Vos, Ann; Vanmechelen, Eugeen; Winderickx, Joris; Lammertyn, Jeroen; Spasic, Dragana

    2018-07-26

    The close correlation between Tau pathology and Alzheimer's disease (AD) progression makes this protein a suitable biomarker for diagnosis and monitoring of the disorder evolution. However, the use of Tau in diagnostics has been hampered, as it currently requires collection of cerebrospinal fluid (CSF), which is an invasive clinical procedure. Although measuring Tau-levels in blood plasma would be favorable, the concentrations are below the detection limit of a conventional ELISA. In this work, we developed a digital ELISA for the quantification of attomolar protein Tau concentrations in both buffer and biological samples. Individual Tau molecules were first captured on the surface of magnetic particles using in-house developed antibodies and subsequently isolated into the femtoliter-sized wells of a 2 × 2 mm 2 microwell array. Combination of high-affinity antibodies, optimal assay conditions and a digital quantification approach resulted in a 24 ± 7 aM limit of detection (LOD) in buffer samples. Additionally, a dynamic range of 6 orders of magnitude was achieved by combining the digital readout with an analogue approach, allowing quantification from attomolar to picomolar levels of Tau using the same platform. This proves the compatibility of the presented assay with the wide range of Tau concentrations encountered in different biological samples. Next, the developed digital assay was applied to detect total Tau levels in spiked blood plasma. A similar LOD (55 ± 29 aM) was obtained compared to the buffer samples, which was 5000-fold more sensitive than commercially available ELISAs and even outperformed previously reported digital assays with 10-fold increase in sensitivity. Finally, the performance of the developed digital ELISA was assessed by quantifying protein Tau in three clinical CSF samples. Here, a high correlation (i.e. Pearson coefficient of 0.99) was found between the measured percentage of active particles and the reference protein Tau

  15. Probing Conformational Dynamics of Tau Protein by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Sankaranarayanan, Sethu; Yang, Ling; Ahlijanian, Michael; Tao, Li; Tymiak, Adrienne A.; Chen, Guodong

    2018-01-01

    Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. [Figure not available: see fulltext.

  16. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction

    PubMed Central

    Tugaeva, Kristina V.; Tsvetkov, Philipp O.

    2017-01-01

    Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA) phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau) are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods. PMID:28575131

  17. Amyloid and Tau PET Demonstrate Region-Specific Associations in Normal Older People

    PubMed Central

    Lockhart, Samuel N.; Schöll, Michael; Baker, Suzanne L.; Ayakta, Nagehan; Swinnerton, Kaitlin N.; Bell, Rachel K.; Mellinger, Taylor J.; Shah, Vyoma D.; O’Neil, James P.; Janabi, Mustafa; Jagust, William J.

    2017-01-01

    β-amyloid (Aβ) and tau pathology become increasingly prevalent with age, however, the spatial relationship between the two pathologies remains unknown. We examined local (same region) and non-local (different region) associations between these 2 aggregated proteins in 46 normal older adults using [18F]AV-1451 (for tau) and [11C]PiB (for Aβ) positron emission tomography (PET) and 1.5T magnetic resonance imaging (MRI) images. While local voxelwise analyses showed associations between PiB and AV-1451 tracer largely in the temporal lobes, k-means clustering revealed that some of these associations were driven by regions with low tracer retention. We followed this up with a whole-brain region-by-region (local and non-local) partial correlational analysis. We calculated each participant’s mean AV-1451 and PiB uptake values within 87 regions of interest (ROI). Pairwise ROI analysis demonstrated many positive PiB—AV-1451 associations. Importantly, strong positive partial correlations (controlling for age, sex, and global gray matter fraction, p < .01) were identified between PiB in multiple regions of association cortex and AV-1451 in temporal cortical ROIs. There were also less frequent and weaker positive associations of regional PiB with frontoparietal AV-1451 uptake. Particularly in temporal lobe ROIs, AV-1451 uptake was strongly predicted by PiB across multiple ROI locations. These data indicate that Aβ and tau pathology show significant local and non-local regional associations among cognitively normal elderly, with increased PiB uptake throughout the cortex correlating with increased temporal lobe AV-1451 uptake. The spatial relationship between Aβ and tau accumulation does not appear to be specific to Aβ location, suggesting a regional vulnerability of temporal brain regions to tau accumulation regardless of where Aβ accumulates. PMID:28232190

  18. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity.

    PubMed

    Stack, Cliona; Jainuddin, Shari; Elipenahli, Ceyhan; Gerges, Meri; Starkova, Natalia; Starkov, Anatoly A; Jové, Mariona; Portero-Otin, Manuel; Launay, Nathalie; Pujol, Aurora; Kaidery, Navneet Ammal; Thomas, Bobby; Tampellini, Davide; Beal, M Flint; Dumont, Magali

    2014-07-15

    Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. iPS Cell Cultures from a Gerstmann-Sträussler-Scheinker Patient with the Y218N PRNP Mutation Recapitulate tau Pathology.

    PubMed

    Matamoros-Angles, Andreu; Gayosso, Lucía Mayela; Richaud-Patin, Yvonne; di Domenico, Angelique; Vergara, Cristina; Hervera, Arnau; Sousa, Amaya; Fernández-Borges, Natalia; Consiglio, Antonella; Gavín, Rosalina; López de Maturana, Rakel; Ferrer, Isidro; López de Munain, Adolfo; Raya, Ángel; Castilla, Joaquín; Sánchez-Pernaute, Rosario; Del Río, José Antonio

    2018-04-01

    Gerstmann-Sträussler-Scheinker (GSS) syndrome is a fatal autosomal dominant neurodegenerative prionopathy clinically characterized by ataxia, spastic paraparesis, extrapyramidal signs and dementia. In some GSS familiar cases carrying point mutations in the PRNP gene, patients also showed comorbid tauopathy leading to mixed pathologies. In this study we developed an induced pluripotent stem (iPS) cell model derived from fibroblasts of a GSS patient harboring the Y218N PRNP mutation, as well as an age-matched healthy control. This particular PRNP mutation is unique with very few described cases. One of the cases presented neurofibrillary degeneration with relevant Tau hyperphosphorylation. Y218N iPS-derived cultures showed relevant astrogliosis, increased phospho-Tau, altered microtubule-associated transport and cell death. However, they failed to generate proteinase K-resistant prion. In this study we set out to test, for the first time, whether iPS cell-derived neurons could be used to investigate the appearance of disease-related phenotypes (i.e, tauopathy) identified in the GSS patient.

  20. CBT for eating disorders: The impact of early changes in eating pathology on later changes in personality pathology, anxiety and depression.

    PubMed

    Turner, Hannah; Marshall, Emily; Wood, Francesca; Stopa, Lusia; Waller, Glenn

    2016-02-01

    Whilst studies have consistently identified early symptom reduction as an important predictor of treatment outcome, the impact of early change on common comorbid features has not been investigated. This study of CBT for eating disorders explored patterns of early change in eating pathology and longer-term change in personality pathology, anxiety and depression. It also explored the impact of early change in eating pathology on overall change in personality pathology, anxiety and depression. Participants were 179 adults diagnosed with eating disorders who were offered a course of CBT in an out-patient community eating disorders service in the UK. Patients completed a measure of eating disorder psychopathology at the start of treatment and following the 6th session. They also completed measures of personality disorder cognitions, anxiety and depression at the start and end of treatment. There were significant changes in eating pathology over the first six sessions of treatment. Significant improvements were also seen in personality disorder pathology, anxiety and depression by the end of therapy. Effect sizes were medium to large for both completer and intention to treat analyses. Early changes in eating pathology were associated with later changes in common comorbid features, with early reduction in restraint being a key predictor. These findings demonstrate that early symptom change can be achieved in CBT for eating disorders when delivered in routine clinical practice. Such change has long-term benefits that go beyond the domain of eating pathology, enhancing change in personality pathology, anxiety and depression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy.

    PubMed

    Spires-Jones, Tara L; Friedman, Taylor; Pitstick, Rose; Polydoro, Manuela; Roe, Allyson; Carlson, George A; Hyman, Bradley T

    2014-03-06

    Alzheimer's disease is characterized pathologically by aggregation of amyloid beta into senile plaques and aggregation of pathologically modified tau into neurofibrillary tangles. While changes in amyloid processing are strongly implicated in disease initiation, the recent failure of amyloid-based therapies has highlighted the importance of tau as a therapeutic target. "Tangle busting" compounds including methylene blue and analogous molecules are currently being evaluated as therapeutics in Alzheimer's disease. Previous studies indicated that methylene blue can reverse tau aggregation in vitro after 10 min, and subsequent studies suggested that high levels of drug reduce tau protein levels (assessed biochemically) in vivo. Here, we tested whether methylene blue could remove established neurofibrillary tangles in the rTg4510 model of tauopathy, which develops robust tangle pathology. We find that 6 weeks of methylene blue dosing in the water from 16 months to 17.5 months of age decreases soluble tau but does not remove sarkosyl insoluble tau, or histologically defined PHF1 or Gallyas positive tangle pathology. These data indicate that methylene blue treatment will likely not rapidly reverse existing tangle pathology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Mutual relationship between Tau and central insulin signalling: consequences for AD and Tauopathies ?

    PubMed

    Gratuze, Maud; Joly-Amado, Aurélie; Vieau, Didier; Buée, Luc; Blum, David

    2018-02-13


    Alzheimer's disease (AD) is a progressive neurodegenerative disorder mainly characterized by cognitive deficits and neuropathological changes such as Tau lesions and amyloid plaques, but also associated with non-cognitive symptomatology. Metabolic and neuroendocrine abnormalities, such as alterations in body weight, brain insulin impairments and lower brain glucose metabolism, that often precede clinical diagnosis, have been extensively reported in AD patients. However, the origin of these symptoms and their relation to pathology and cognitive impairments remain misunderstood. Insulin is a hormone involved in the control of energy homeostasis both peripherally and centrally, and insulin resistant state has been linked to increased risk of dementia. It is now well established that insulin resistance can exacerbate Tau lesions, mainly by disrupting the balance between Tau kinases and phosphatases. On the other hand, emerging literature indicates that Tau protein can also modulate insulin signalling in the brain, thus creating a detrimental vicious circle. The following review will highlight our current understanding on the role of insulin in the brain and its relation to Tau protein in the context of AD and Tauopathies. Considering that insulin signaling is prone to be pharmacologically targeted at multiple levels, it constitutes an appealing approach to improve both insulin brain sensitivity and mitigate brain pathology with expected positive outcome in term of cognition.
    . ©2018S. Karger AG, Basel.

  3. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain

    PubMed Central

    Takeda, Shuko; Wegmann, Susanne; Cho, Hansang; DeVos, Sarah L.; Commins, Caitlin; Roe, Allyson D.; Nicholls, Samantha B.; Carlson, George A.; Pitstick, Rose; Nobuhara, Chloe K.; Costantino, Isabel; Frosch, Matthew P.; Müller, Daniel J.; Irimia, Daniel; Hyman, Bradley T.

    2015-01-01

    Tau pathology is known to spread in a hierarchical pattern in Alzheimer's disease (AD) brain during disease progression, likely by trans-synaptic tau transfer between neurons. However, the tau species involved in inter-neuron propagation remains unclear. To identify tau species responsible for propagation, we examined uptake and propagation properties of different tau species derived from postmortem cortical extracts and brain interstitial fluid of tau-transgenic mice, as well as human AD cortices. Here we show that PBS-soluble phosphorylated high-molecular-weight (HMW) tau, though very low in abundance, is taken up, axonally transported, and passed on to synaptically connected neurons. Our findings suggest that a rare species of soluble phosphorylated HMW tau is the endogenous form of tau involved in propagation and could be a target for therapeutic intervention and biomarker development. PMID:26458742

  4. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology.

    PubMed

    Radde, Rebecca; Bolmont, Tristan; Kaeser, Stephan A; Coomaraswamy, Janaky; Lindau, Dennis; Stoltze, Lars; Calhoun, Michael E; Jäggi, Fabienne; Wolburg, Hartwig; Gengler, Simon; Haass, Christian; Ghetti, Bernardino; Czech, Christian; Hölscher, Christian; Mathews, Paul M; Jucker, Mathias

    2006-09-01

    We have generated a novel transgenic mouse model on a C57BL/6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter element (APPPS1 mice). Cerebral amyloidosis starts at 6-8 weeks and the ratio of human amyloid (A)beta42 to Abeta40 is 1.5 and 5 in pre-depositing and amyloid-depositing mice, respectively. Consistent with this ratio, extensive congophilic parenchymal amyloid but minimal amyloid angiopathy is observed. Amyloid-associated pathologies include dystrophic synaptic boutons, hyperphosphorylated tau-positive neuritic structures and robust gliosis, with neocortical microglia number increasing threefold from 1 to 8 months of age. Global neocortical neuron loss is not apparent up to 8 months of age, but local neuron loss in the dentate gyrus is observed. Because of the early onset of amyloid lesions, the defined genetic background of the model and the facile breeding characteristics, APPPS1 mice are well suited for studying therapeutic strategies and the pathomechanism of amyloidosis by cross-breeding to other genetically engineered mouse models.

  5. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology

    PubMed Central

    Radde, Rebecca; Bolmont, Tristan; Kaeser, Stephan A; Coomaraswamy, Janaky; Lindau, Dennis; Stoltze, Lars; Calhoun, Michael E; Jäggi, Fabienne; Wolburg, Hartwig; Gengler, Simon; Haass, Christian; Ghetti, Bernardino; Czech, Christian; Hölscher, Christian; Mathews, Paul M; Jucker, Mathias

    2006-01-01

    We have generated a novel transgenic mouse model on a C57BL/6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter element (APPPS1 mice). Cerebral amyloidosis starts at 6–8 weeks and the ratio of human amyloid (A)β42 to Aβ40 is 1.5 and 5 in pre-depositing and amyloid-depositing mice, respectively. Consistent with this ratio, extensive congophilic parenchymal amyloid but minimal amyloid angiopathy is observed. Amyloid-associated pathologies include dystrophic synaptic boutons, hyperphosphorylated tau-positive neuritic structures and robust gliosis, with neocortical microglia number increasing threefold from 1 to 8 months of age. Global neocortical neuron loss is not apparent up to 8 months of age, but local neuron loss in the dentate gyrus is observed. Because of the early onset of amyloid lesions, the defined genetic background of the model and the facile breeding characteristics, APPPS1 mice are well suited for studying therapeutic strategies and the pathomechanism of amyloidosis by cross-breeding to other genetically engineered mouse models. PMID:16906128

  6. Preclinical Evaluation of [(18)F]THK-5105 Enantiomers: Effects of Chirality on Its Effectiveness as a Tau Imaging Radiotracer.

    PubMed

    Tago, Tetsuro; Furumoto, Shozo; Okamura, Nobuyuki; Harada, Ryuichi; Adachi, Hajime; Ishikawa, Yoichi; Yanai, Kazuhiko; Iwata, Ren; Kudo, Yukitsuka

    2016-04-01

    Noninvasive imaging of tau and amyloid-β pathologies would facilitate diagnosis of Alzheimer's disease (AD). Recently, we have developed [(18)F]THK-5105 for selective detection of tau pathology by positron emission tomography (PET). The purpose of this study was to clarify biological properties of optically pure [(18)F]THK-5105 enantiomers. Binding for tau aggregates in AD brain section was evaluated by autoradiography (ARG). In vitro binding assays were performed to evaluate the binding properties of enantiomers for AD brain homogenates. The pharmacokinetics in the normal mouse brains was assessed by ex vivo biodistribution assay The ARG of enantiomers showed the high accumulation of radioactivity corresponding to the distribution of tau deposits. In vitro binding assays revealed that (S)-[(18)F]THK-5105 has slower dissociation from tau than (R)-[(18)F]THK-5105. Biodistribution assays indicated that (S)-[(18)F]THK-5105 eliminated faster from the mouse brains and blood compared with (R)-[(18)F]THK-5105. (S)-[(18)F]THK-5105 could be more suitable than (R)-enantiomer for a tau imaging agent.

  7. Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease

    PubMed Central

    Dean, Douglas C.; Hurley, Samuel A.; Kecskemeti, Steven R.; O’Grady, J. Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J.; Carlsson, Cynthia M.; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A.; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.

    2016-01-01

    preferentially affected in AD. Furthermore, significant age-by-biomarker interactions were observed between myelin water fraction and phosphorylated tau 181/β-amyloid 42, suggesting that phosphorylated tau 181/β-amyloid 42 levels modulate age-related changes in myelin water fraction. CONCLUSIONS AND RELEVANCE These findings suggest amyloid pathologies significantly influence white matter and that these abnormalities may signify an early feature of the disease process. We expect that clarifying the nature of myelin damage in preclinical AD may be informative on the disease’s course and lead to new markers of efficacy for prevention and treatment trials. PMID:27842175

  8. Increased Tau Phosphorylation and Tau Truncation, and Decreased Synaptophysin Levels in Mutant BRI2/Tau Transgenic Mice

    PubMed Central

    Garringer, Holly J.; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI2 gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI2 (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI2 can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration. PMID:23418567

  9. Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice.

    PubMed

    Garringer, Holly J; Murrell, Jill; Sammeta, Neeraja; Gnezda, Anita; Ghetti, Bernardino; Vidal, Ruben

    2013-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI(2) gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI(2) (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI(2) can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration.

  10. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

    PubMed

    Paranjape, Smita R; Riley, Andrew P; Somoza, Amber D; Oakley, C Elizabeth; Wang, Clay C C; Prisinzano, Thomas E; Oakley, Berl R; Gamblin, T Chris

    2015-05-20

    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.

  11. Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy.

    PubMed

    Cope, Thomas E; Rittman, Timothy; Borchert, Robin J; Jones, P Simon; Vatansever, Deniz; Allinson, Kieren; Passamonti, Luca; Vazquez Rodriguez, Patricia; Bevan-Jones, W Richard; O'Brien, John T; Rowe, James B

    2018-02-01

    Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in

  12. Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum.

    PubMed

    Cho, Hanna; Lee, Hye Sun; Choi, Jae Yong; Lee, Jae Hoon; Ryu, Young Hoon; Lee, Myung Sik; Lyoo, Chul Hyoung

    2018-04-17

    We investigated sequential order between tau and amyloid-β (Aβ) deposition in Alzheimer disease spectrum using a conditional probability method. Two hundred twenty participants underwent 18 F-flortaucipir and 18 F-florbetaben positron emission tomography scans and neuropsychological tests. The presence of tau and Aβ in each region and impairment in each cognitive domain were determined by Z-score cutoffs. By comparing pairs of conditional probabilities, the sequential order of tau and Aβ deposition were determined. Probability for the presence of tau in the entorhinal cortex was higher than that of Aβ in all cortical regions, and in the medial temporal cortices, probability for the presence of tau was higher than that of Aβ. Conversely, in the remaining neocortex above the inferior temporal cortex, probability for the presence of Aβ was always higher than that of tau. Tau pathology in the entorhinal cortex may appear earlier than neocortical Aβ and may spread in the absence of Aβ within the neighboring medial temporal regions. However, Aβ may be required for massive tau deposition in the distant cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology

    PubMed Central

    Yang, Sujeong; Cacquevel, Matthias; Saksida, Lisa M.; Bussey, Timothy J.; Schneider, Bernard L.; Aebischer, Patrick; Melani, Riccardo; Pizzorusso, Tommaso; Fawcett, James W.; Spillantini, Maria Grazia

    2015-01-01

    Alzheimer's disease is the most prevalent tauopathy and cause of dementia. We investigate the hypothesis that reactivation of plasticity can restore function in the presence of neuronal damage resulting from tauopathy. We investigated two models with tau hyperphosphorylation, aggregation and neurodegeneration: a transgenic mouse model in which the mutant P301S tau is expressed in neurons (Tg P301S), and a model in which an adeno-associated virus expressing P301S tau (AAV-P301S) was injected in the perirhinal cortex, a region critical for object recognition (OR) memory. Both models show profound loss of OR memory despite only 15% neuronal loss in the Tg P301S and 26% in AAV-P301S-injected mice. Recordings from perirhinal cortex slices of 3 month-old P301S transgenic mice showed a diminution in synaptic transmission following temporal stimulation. Chondroitinase ABC (ChABC) can reactivate plasticity and affect memory through actions on perineuronal nets. ChABC was injected into the perirhinal cortex and animals were tested for OR memory 1 week later, demonstrating restoration of OR memory to normal levels. Synaptic transmission indicated by fEPSP amplitude was restored to control levels following ChABC treatment. ChABC did not affect the progression of neurodegenerative tauopathy. These findings suggest that increasing plasticity by manipulation of perineuronal nets offers a novel therapeutic approach to the treatment of memory loss in neurodegenerative disorders. PMID:25483398

  14. Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2012-07-01

    This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.

  15. A High-throughput Screening Assay for Determining Cellular Levels of Total Tau Protein

    PubMed Central

    Dehdashti, Seameen J.; Zheng, Wei; Gever, Joel R.; Wilhelm, Robert; Nguyen, Dac-Trung; Sittampalam, Gurusingham; McKew, John C.; Austin, Christopher P.; Prusiner, Stanley B.

    2014-01-01

    The microtubule-associated protein (MAP) tau has been implicated in the pathology of numerous neurodegenerative diseases. In the past decade, the hyperphosphorylated and aggregated states of tau protein have been important targets in the drug discovery field for the potential treatment of Alzheimer’s disease. Although several compounds have been reported to reduce the hyperphosphorylated state of tau or impact the stabilization of tau, their therapeutic activities are still to be validated. Recently, reduction of total cellular tau protein has emerged as an alternate intervention point for drug development and a potential treatment of tauopathies. We have developed and optimized a homogenous assay, using the AlphaLISA and HTRF assay technologies, for the quantification of total cellular tau protein levels in the SH-SY5Y neuroblastoma cell line. The signal-to-basal ratios were 375 and 5.3, and the Z’ factors were 0.67 and 0.60 for the AlphaLISA and HTRF tau assays, respectively. The clear advantages of this homogeneous tau assay over conventional total tau assays, such as ELISA and Western blot, are the elimination of plate wash steps and miniaturization of the assay into 1536-well plate format for the ultra–high-throughput screening of large compound libraries. PMID:23905996

  16. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    PubMed Central

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  17. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes.

    PubMed

    Filipcik, Peter; Cente, Martin; Zilka, Norbert; Smolek, Tomas; Hanes, Jozef; Kucerak, Juraj; Opattova, Alena; Kovacech, Branislav; Novak, Michal

    2015-07-01

    Accumulation of misfolded forms of microtubule associated, neuronal protein tau causes neurofibrillary degeneration typical of Alzheimer's disease and other tauopathies. This process is accompanied by elevated cellular stress and concomitant deregulation of heat-shock proteins. We used a transgenic rat model of tauopathy to study involvement of heat shock protein 27 (Hsp27) in the process of neurofibrillary degeneration, its cell type specific expression and correlation with the amount of insoluble tau protein aggregates. The expression of Hsp27-mRNA is more than doubled and levels of Hsp27 protein tripled in aged transgenic animals with tau pathology. The data revealed a strong positive and highly significant correlation between Hsp27-mRNA and amount of sarkosyl insoluble tau. Interestingly, intracellular accumulation of insoluble misfolded tau protein in neurons was associated with overexpression of Hsp27 almost exclusively in reactive astrocytes, not in neurons. The topological dissociation of neuronally expressed pathological tau and the induction of astrocytic Hsp27, GFAP, and Vimentin along with up-regulation of microglia specific markers such as CD18, CD68 and C3 point to cooperation of astrocytes, microglia and neurons in response to intra-neuronal accumulation of insoluble tau. Our data suggest that over expression of Hsp27 represents a part of microglia-mediated astrocytic response mechanism in the process of neurofibrillary degeneration, which is not necessarily associated with neuroprotection and which in contrary may accelerate neurodegeneration in late stage of the disease. This phenomenon should be considered during development of disease modifying strategies for treatment of tauopathies and AD via regulation of activity of Hsp27. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Speech-Language Pathology: Preparing Early Interventionists

    ERIC Educational Resources Information Center

    Prelock, Patricia A.; Deppe, Janet

    2015-01-01

    The purpose of this article is to explain the role of speech-language pathology in early intervention. The expected credentials of professionals in the field are described, and the current numbers of practitioners serving young children are identified. Several resource documents available from the American Speech-­Language Hearing Association are…

  19. Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model.

    PubMed

    Lasagna-Reeves, Cristian A; de Haro, Maria; Hao, Shuang; Park, Jeehye; Rousseaux, Maxime W C; Al-Ramahi, Ismael; Jafar-Nejad, Paymaan; Vilanova-Velez, Luis; See, Lauren; De Maio, Antonia; Nitschke, Larissa; Wu, Zhenyu; Troncoso, Juan C; Westbrook, Thomas F; Tang, Jianrong; Botas, Juan; Zoghbi, Huda Y

    2016-10-19

    Many neurodegenerative proteinopathies share a common pathogenic mechanism: the abnormal accumulation of disease-related proteins. As growing evidence indicates that reducing the steady-state levels of disease-causing proteins mitigates neurodegeneration in animal models, we developed a strategy to screen for genes that decrease the levels of tau, whose accumulation contributes to the pathology of both Alzheimer disease (AD) and progressive supranuclear palsy (PSP). Integrating parallel cell-based and Drosophila genetic screens, we discovered that tau levels are regulated by Nuak1, an AMPK-related kinase. Nuak1 stabilizes tau by phosphorylation specifically at Ser356. Inhibition of Nuak1 in fruit flies suppressed neurodegeneration in tau-expressing Drosophila, and Nuak1 haploinsufficiency rescued the phenotypes of a tauopathy mouse model. These results demonstrate that decreasing total tau levels is a valid strategy for mitigating tau-related neurodegeneration and reveal Nuak1 to be a novel therapeutic entry point for tauopathies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease.

    PubMed

    Kayed, Rakez

    2010-11-01

    The aggregation and accumulation of the microtubule-associated protein (Tau) is a pathological hallmark of Alzheimer's disease (AD) and many neurodegenerative diseases. Despite the poor correlation between neurofirillary tangles (NFTs) and disease progression, and evidence showing, that neuronal loss in AD actually precedes NFTs formation research until recently focused on them and other large meta-stable inclusions composed of aggregated hyperphosphorylated tau protein. Lately, the significance and toxicity of NFTs has been challenged and new aggregated tau entity has emerged as the true pathogenic species in tauopathies and a possible mediator of Aβ toxicity in AD. Tau intermediate aggregate (tau oligomers; aggregates of an intermediate that is between monomers and NFTs in size) can cause neurodegeneration and memory impairment in the absence of Aβ. This exciting body of evidence includes results from human brain samples, transgenic mouse and cell-based studies. Despite extensive efforts to develop a safe and efficacious vaccine for AD using Aβ peptide as an immunogen in active vaccination approaches or anti Aβ antibodies for passive vaccination, success has been modest. Nonetheless, these studies have produced a wealth of fundamental knowledge that has potential to application to the development of a tau-based immunotherapy. Herein, I discuss the evidence supporting the critical role of tau oligomers in AD, the potential and challenges for targeting them by immunotherapy as a novel approach for AD treatment.

  1. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    PubMed Central

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  2. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    PubMed

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  3. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau–Total Tau Ratio as Acute and Chronic Traumatic Brain Injury Biomarkers

    PubMed Central

    Rubenstein, Richard; Chang, Binggong; Yue, John K.; Chiu, Allen; Winkler, Ethan A.; Puccio, Ava M.; Diaz-Arrastia, Ramon; Yuh, Esther L.; Mukherjee, Pratik; Valadka, Alex B.; Gordon, Wayne A.; Okonkwo, David O.; Davies, Peter; Agarwal, Sanjeev; Lin, Fan; Sarkis, George; Yadikar, Hamad; Yang, Zhihui; Manley, Geoffrey T.; Wang, Kevin K. W.

    2017-01-01

    IMPORTANCE Annually in the United States, at least 3.5 million people seek medical attention for traumatic brain injury (TBI). The development of therapies for TBI is limited by the absence of diagnostic and prognostic biomarkers. Microtubule-associated protein tau is an axonal phosphoprotein. To date, the presence of the hypophosphorylated tau protein (P-tau) in plasma from patients with acute TBI and chronic TBI has not been investigated. OBJECTIVE To examine the associations between plasma P-tau and total-tau (T-tau) levels and injury presence, severity, type of pathoanatomic lesion (neuroimaging), and patient outcomes in acute and chronic TBI. DESIGN, SETTING, AND PARTICIPANTS In the TRACK-TBI Pilot study, plasma was collected at a single time point from 196 patients with acute TBI admitted to 3 level I trauma centers (<24 hours after injury) and 21 patients with TBI admitted to inpatient rehabilitation units (mean [SD], 176.4 [44.5] days after injury). Control samples were purchased from a commercial vendor. The TRACK-TBI Pilot study was conducted from April 1, 2010, to June 30, 2012. Data analysis for the current investigation was performed from August 1, 2015, to March 13, 2017. MAIN OUTCOMES AND MEASURES Plasma samples were assayed for P-tau (using an antibody that specifically recognizes phosphothreonine-231) and T-tau using ultra-high sensitivity laser-based immunoassay multi-arrayed fiberoptics conjugated with rolling circle amplification. RESULTS In the 217 patients with TBI, 161 (74.2%) were men; mean (SD) age was 42.5 (18.1) years. The P-tau and T-tau levels and P-tau–T-tau ratio in patients with acute TBI were higher than those in healthy controls. Receiver operating characteristic analysis for the 3 tau indices demonstrated accuracy with area under the curve (AUC) of 1.000, 0.916, and 1.000, respectively, for discriminating mild TBI (Glasgow Coma Scale [GCS] score, 13–15, n = 162) from healthy controls. The P-tau level and P-tau–T-tau ratio

  4. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons

    PubMed Central

    Zheng, Ya-Li; Kesavapany, Sashi; Gravell, Maneth; Hamilton, Rebecca S; Schubert, Manfred; Amin, Niranjana; Albers, Wayne; Grant, Philip; Pant, Harish C

    2005-01-01

    The extracellular aggregation of amyloid β (Aβ) peptides and the intracellular hyperphosphorylation of tau at specific epitopes are pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). Cdk5 phosphorylates tau at AD-specific phospho-epitopes when it associates with p25. p25 is a truncated activator, which is produced from the physiological Cdk5 activator p35 upon exposure to Aβ peptides. We show that neuronal infections with Cdk5 inhibitory peptide (CIP) selectively inhibit p25/Cdk5 activity and suppress the aberrant tau phosphorylation in cortical neurons. Furthermore, Aβ1−42-induced apoptosis of these cortical neurons was also reduced by coinfection with CIP. Of particular importance is our finding that CIP did not inhibit endogenous or transfected p35/Cdk5 activity, nor did it inhibit the other cyclin-dependent kinases such as Cdc2, Cdk2, Cdk4 and Cdk6. These results, therefore, provide a strategy to address, and possibly ameliorate, the pathology of neurodegenerative diseases that may be a consequence of aberrant p25 activation of Cdk5, without affecting ‘normal' Cdk5 activity. PMID:15592431

  6. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases.

    PubMed

    Kovacs, Gabor G; Robinson, John L; Xie, Sharon X; Lee, Edward B; Grossman, Murray; Wolk, David A; Irwin, David J; Weintraub, Dan; Kim, Christopher F; Schuck, Theresa; Yousef, Ahmed; Wagner, Stephanie T; Suh, Eunran; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Trojanowski, John Q

    2017-04-01

    The term "aging-related tau astrogliopathy" (ARTAG) describes pathological accumulation of abnormally phosphorylated tau protein in astrocytes. We evaluated the correlates of ARTAG types (i.e., subpial, subependymal, white and gray matter, and perivascular) in different neuroanatomical regions. Clinical, neuropathological, and genetic (eg, APOE ε4 allele, MAPT H1/H2 haplotype) data from 628 postmortem brains from subjects were investigated; most of the patients had been longitudinally followed at the University of Pennsylvania. We found that (i) the amygdala is a hotspot for all ARTAG types; (ii) age at death, male sex, and presence of primary frontotemporal lobar degeneration (FTLD) tauopathy are significantly associated with ARTAG; (iii) age at death, greater degree of brain atrophy, ventricular enlargement, and Alzheimer disease (AD)-related variables are associated with subpial, white matter, and perivascular ARTAG types; (iv) AD-related variables are associated particularly with lobar white matter ARTAG; and (v) gray matter ARTAG in primary FTLD-tauopathies appears in areas without neuronal tau pathology. We provide a reference map of ARTAG types and propose at least 5 constellations of ARTAG. Furthermore, we propose a conceptual link between primary FTLD-tauopathy and ARTAG-related astrocytic tau pathologies. Our observations serve as a basis for etiological stratification and definition of progression patterns of ARTAG. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  7. Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus

    PubMed Central

    Chalermpalanupap, Termpanit; Weinshenker, David

    2017-01-01

    Degeneration of locus coeruleus (LC) is an underappreciated hallmark of Alzheimer's disease (AD). The LC is the main source of norepinephrine (NE) in the forebrain, and its degeneration is highly correlated with cognitive impairment and amyloid-beta (Aβ) and tangle pathology. Hyperphosphorylated tau in the LC is among the first detectable AD-like neuropathology in the brain, and while the LC/NE system impacts multiple aspects of AD (e.g., cognition, neuropathology, and neuroinflammation), the functional consequences of hyperphosphorylated tau accrual on LC neurons are not known. Recent evidence suggests that LC neurons accumulate aberrant tau species for decades before frank LC cell body degeneration occurs in AD, suggesting that a therapeutic window exists. In this review, we combine the literature on how pathogenic tau affects forebrain neurons with the known properties and degeneration patterns of LC neurons to synthesize hypotheses on hyperphosphorylated tau-induced dysfunction of LC neurons and the prion-like spread of pretangle tau from the LC to the forebrain. We also propose novel experiments using both in vitro and in vivo models to address the many questions surrounding the impact of hyperphosphorylated tau on LC neurons in AD and its role in disease progression. PMID:29038736

  8. Tau Phosphorylation Pathway Genes and Cerebrospinal Fluid Tau Levels in Alzheimer’s Disease

    PubMed Central

    Bekris, Lynn M.; Millard, Steve; Lutz, Franziska; Li, Gail; Galasko, Doug R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby W.; Yu, Chang-En; Peskind, Elaine R.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5′ and 3′ regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner. PMID:22927204

  9. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease.

    PubMed

    Llorens-Martín, Maria; Blazquez-Llorca, Lidia; Benavides-Piccione, Ruth; Rabano, Alberto; Hernandez, Felix; Avila, Jesus; DeFelipe, Javier

    2014-01-01

    A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer's disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits.

  10. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. © 2014

  11. Mild cognitive impairment and asymptomatic Alzheimer disease subjects: equivalent β-amyloid and tau loads with divergent cognitive outcomes.

    PubMed

    Iacono, Diego; Resnick, Susan M; O'Brien, Richard; Zonderman, Alan B; An, Yang; Pletnikova, Olga; Rudow, Gay; Crain, Barbara; Troncoso, Juan C

    2014-04-01

    Older adults with intact cognition before death and substantial Alzheimer disease (AD) lesions at autopsy have been termed "asymptomatic AD subjects" (ASYMAD). We previously reported hypertrophy of neuronal cell bodies, nuclei, and nucleoli in the CA1 of the hippocampus (CA1), anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex of ASYMAD versus age-matched Control and mild cognitive impairment (MCI) subjects. However, it was unclear whether the neuronal hypertrophy could be attributed to differences in the severity of AD pathology. Here, we performed quantitative analyses of the severity of β-amyloid (Aβ) and phosphorylated tau (tau) loads in the brains of ASYMAD, Control, MCI, and AD subjects (n = 15 per group) from the Baltimore Longitudinal Study of Aging. Tissue sections from CA1, anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex were immunostained for Aβ and tau; the respective loads were assessed using unbiased stereology by measuring the fractional areas of immunoreactivity for each protein in each region. The ASYMAD and MCI groups did not differ in Aβ and tau loads. These data confirm that ASYMAD and MCI subjects have comparable loads of insoluble Aβ and tau in regions vulnerable to AD pathology despite divergent cognitive outcomes. These findings imply that cognitive impairment in AD may be caused or modulated by factors other than insoluble forms of Aβ and tau.

  12. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease.

    PubMed

    Cruchaga, Carlos; Kauwe, John S K; Harari, Oscar; Jin, Sheng Chih; Cai, Yefei; Karch, Celeste M; Benitez, Bruno A; Jeng, Amanda T; Skorupa, Tara; Carrell, David; Bertelsen, Sarah; Bailey, Matthew; McKean, David; Shulman, Joshua M; De Jager, Philip L; Chibnik, Lori; Bennett, David A; Arnold, Steve E; Harold, Denise; Sims, Rebecca; Gerrish, Amy; Williams, Julie; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Shaw, Leslie M; Trojanowski, John Q; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Peskind, Elaine R; Galasko, Douglas; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2013-04-24

    Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimer's disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Dendritic Degeneration, Neurovascular Defects, and Inflammation Precede Neuronal Loss in a Mouse Model for Tau-Mediated Neurodegeneration

    PubMed Central

    Jaworski, Tomasz; Lechat, Benoit; Demedts, David; Gielis, Lies; Devijver, Herman; Borghgraef, Peter; Duimel, Hans; Verheyen, Fons; Kügler, Sebastian; Van Leuven, Fred

    2011-01-01

    Adeno-associated virus (AAV)–mediated expression of wild-type or mutant P301L protein tau produces massive degeneration of pyramidal neurons without protein tau aggregation. We probed this novel model for genetic and structural factors and early parameters of pyramidal neurodegeneration. In yellow fluorescent protein–expressing transgenic mice, intracerebral injection of AAV-tauP301L revealed early damage to apical dendrites of CA1 pyramidal neurons, whereas their somata remained normal. Ultrastructurally, more and enlarged autophagic vacuoles were contained in degenerating dendrites and manifested as dark, discontinuous, vacuolated processes surrounded by activated astrocytes. Dendritic spines were lost in AAV-tauP301L–injected yellow fluorescent protein–expressing transgenic mice, and ultrastructurally, spines appeared dark and degenerating. In CX3CR1EGFP/EGFP-deficient mice, microglia were recruited early to neurons expressing human tau. The inflammatory response was accompanied by extravasation of plasma immunoglobulins. α2-Macroglobulin, but neither albumin nor transferrin, became lodged in the brain parenchyma. Large proteins, but not Evans blue, entered the brain of mice injected with AAV-tauP301L. Ultrastructurally, brain capillaries were constricted and surrounded by swollen astrocytes with extensions that contacted degenerating dendrites and axons. Together, these data corroborate the hypothesis that neuroinflammation participates essentially in tau-mediated neurodegeneration, and the model recapitulates early dendritic defects reminiscent of “dendritic amputation” in Alzheimer's disease. PMID:21839061

  14. Reproductive and early life stages pathology - Histopathology workshop report

    USGS Publications Warehouse

    Bruno, D.W.; Nowak, B.; Elliott, Diane G.

    2006-01-01

    Pathology occurring during reproduction and larval development represents an important part of the life cycle of fish, and the diseases that affect eggs and larvae often result in significant losses. However, mortality during this period is frequently ignored or poorly researched as the temptation is to replace the losses rather than investigate the causes. A histopathology workshop organised at the newly refurnished laboratory within the Danish Veterinary School was an opportunity to discuss the pathology of selected diseases associated with Reproductive and Early Life Stages Pathology. Several people also kindly provided reference slides.

  15. Narrative Organization Deficit in Lewy Body Disorders Is Related to Alzheimer Pathology.

    PubMed

    Grossman, Murray; Irwin, David J; Jester, Charles; Halpin, Amy; Ash, Sharon; Rascovsky, Katya; Weintraub, Daniel; McMillan, Corey T

    2017-01-01

    Background: Day-to-day interactions depend on conversational narrative, and we examine here the neurobiological basis for difficulty organizing narrative discourse in patients with Lewy body disorders (LBD). Method: Narrative organization was examined in 56 non-aphasic LBD patients, including a non-demented cohort ( n = 30) with Parkinson's disease (PD) or PD-Mild Cognitive Impairment PD-MCI,) and a cohort with mild dementia ( n = 26) including PD-dementia (PDD) and dementia with Lewy bodies (DLB), with similar age and education but differing in MMSE ( p < 0.001). We used a previously reported procedure that probes patients' judgments of the organization of brief, familiar narratives (e.g., going fishing, wrapping a present). A subgroup of 24 patients had MRI assessment of regional gray matter (GM) atrophy and cerebrospinal fluid (CSF) levels of biomarkers for Alzheimer's disease (AD) pathology, including beta amyloid (Aβ), total-tau ( t -tau), and phosphorylated-tau ( p -tau). Results: Mildly demented LBD patients had a significant deficit judging narratives compared to non-demented patients, but this deficit was not correlated with MMSE. Regression analyses instead related narrative organization to regions of frontal GM atrophy, and CSF levels of Aβ and t -tau associated with presumed AD pathology in these frontal regions. Conclusion: These findings are consistent with the hypothesis that CSF markers of AD pathology associated with frontal regions play a role in difficulty organizing narratives in LBD.

  16. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease

    PubMed Central

    Llorens-Martín, Maria; Blazquez-Llorca, Lidia; Benavides-Piccione, Ruth; Rabano, Alberto; Hernandez, Felix; Avila, Jesus; DeFelipe, Javier

    2014-01-01

    A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer’s disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits. PMID:24904307

  17. Evidence that iron accelerates Alzheimer's pathology: a CSF biomarker study.

    PubMed

    Ayton, Scott; Diouf, Ibrahima; Bush, Ashley Ian

    2018-05-01

    To investigate whether cerebrospinal fluid (CSF) ferritin (reporting brain iron) is associated with longitudinal changes in CSF β-amyloid (Aβ) and tau. Mixed-effects models of CSF Aβ 1-42 and tau were constructed using data from 296 participants who had baseline measurement of CSF ferritin and annual measurement of CSF tau and Aβ 1-42 for up to 5 years. In subjects with biomarker-confirmed Alzheimer's pathology, high CSF ferritin (>6.2 ng/mL) was associated with accelerated depreciation of CSF Aβ 1-42 (reporting increased plaque formation; p=0.0001). CSF ferritin was neither associated with changes in CSF tau in the same subjects, nor longitudinal changes in CSF tau or Aβ 1-42 in subjects with low baseline pathology. In simulation modelling of the natural history of Aβ deposition, which we estimated to occur over 31.4 years, we predicted that it would take 12.6 years to reach the pathology threshold value of CSF Aβ from healthy normal levels, and this interval is not affected by CSF ferritin. CSF ferritin influences the fall in CSF Aβ over the next phase, where high CSF ferritin accelerated the transition from threshold preclinical Aβ levels to the average level of Alzheimer's subjects from 18.8 to 10.8 years. Iron might facilitate Aβ deposition in Alzheimer's and accelerate the disease process. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Longitudinal tau PET in ageing and Alzheimer’s disease

    PubMed Central

    Jack, Clifford R; Wiste, Heather J; Schwarz, Christopher G; Lowe, Val J; Senjem, Matthew L; Vemuri, Prashanthi; Weigand, Stephen D; Therneau, Terry M; Knopman, Dave S; Gunter, Jeffrey L; Jones, David T; Graff-Radford, Jonathan; Kantarci, Kejal; Roberts, Rosebud O; Mielke, Michelle M; Machulda, Mary M; Petersen, Ronald C

    2018-01-01

    within cognitively impaired abnormal amyloid. The ordering of the sample size estimates by outcome measure was MRI < tau PET < cognitive measures. At a group-wise level, observable rates of short-term serial tau accumulation were only seen in the presence of abnormal amyloid. As disease progressed to clinically symptomatic stages (cognitively impaired abnormal amyloid), observable rates of tau accumulation were seen uniformly throughout the brain providing evidence that tau does not accumulate in one area at a time or in start-stop, stepwise sequence. The information captured by rate measures in different meta-regions of interest, even those with little topographic overlap, was similar. The implication is that rate measurements from simple meta-regions of interest, without the need for Braak-like staging, may be sufficient to capture progressive within-person accumulation of pathologic tau. Tau PET SUVR measures should be an efficient outcome measure in disease-modifying clinical trials. PMID:29538647

  19. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein.

    PubMed

    Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik

    2017-01-01

    Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.

  20. Determination of the Michel Parameters and the tau Neutrino Helicity in tau Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-05-07

    Using the CLEO II detector at the e{sup +}e{sup -} storage ring CESR, we have determined the Michel parameters {rho}, {zeta}, and {delta} in {tau}{sup {-+}}{nu}{bar {nu}} decay as well as the {tau} neutrino helicity parameter H{sub {nu}{sub {tau}}} in {tau}{sup {-+}}{pi}{sup 0}{nu} decay. From a data sample of 3.02 x 10{sup 6} {tau} pairs produced at {radical}s = 10.6 GeV, using events of the topology e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} (l{sup {+-}}{nu}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}) and e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {yields} ({pi}{sup {+-}}{pi}{sup 0}{bar {nu}})({pi}{sup {-+}}{pi}{sup 0}{nu}), and the determined sign of h{submore » {nu}{sub {tau}}} [1,2], the combined result of the three samples is: {rho} = 0.747 {+-} 0.010 {+-} 0.006, {zeta} = 1.007 {+-} 0.040 {+-} 0.015, {zeta}{delta} = 0.745 {+-}0.026 {+-}0.009, and h{sub {nu}{sub {tau}}} = -0.995 {+-} 0.010 {+-} 0.003. The results are in agreement with the Standard Model V-A interaction.« less

  1. Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease.

    PubMed

    Lambracht-Washington, Doris; Rosenberg, Roger N

    2013-08-01

    Immunotherapy might provide an effective treatment for Alzheimer disease (AD). A unique feature of AD immunotherapies is that an immune response against a self antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focussed on two possible targets in this regard: One is the inhibition of accumulation and deposition of Amyloid beta 1-42 (Aβ42), which is one of the major peptides found in senile plaques and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations) is already in several stages of clinical trials, tau based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phoshorylated tau was found, high interest has again focussed on further development of tau based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. And last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects as these two pathologies are likely synergistic; an approach which has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, present on overview on halted, ongoing and upcoming clinical trials together with ongoing preclinical studies targeting tau or Aβ42.

  2. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP.

    PubMed

    Rojas, Julio C; Bang, Jee; Lobach, Iryna V; Tsai, Richard M; Rabinovici, Gil D; Miller, Bruce L; Boxer, Adam L

    2018-01-23

    To determine the ability of CSF biomarkers to predict disease progression in progressive supranuclear palsy (PSP). We compared the ability of baseline CSF β-amyloid 1-42 , tau, phosphorylated tau 181 (p-tau), and neurofilament light chain (NfL) concentrations, measured by INNO-BIA AlzBio3 or ELISA, to predict 52-week changes in clinical (PSP Rating Scale [PSPRS] and Schwab and England Activities of Daily Living [SEADL]), neuropsychological, and regional brain volumes on MRI using linear mixed effects models controlled for age, sex, and baseline disease severity, and Fisher F density curves to compare effect sizes in 50 patients with PSP. Similar analyses were done using plasma NfL measured by single molecule arrays in 141 patients. Higher CSF NfL concentration predicted more rapid decline (biomarker × time interaction) over 52 weeks in PSPRS ( p = 0.004, false discovery rate-corrected) and SEADL ( p = 0.008), whereas lower baseline CSF p-tau predicted faster decline on PSPRS ( p = 0.004). Higher CSF tau concentrations predicted faster decline by SEADL ( p = 0.004). The CSF NfL/p-tau ratio was superior for predicting change in PSPRS, compared to p-tau ( p = 0.003) or NfL ( p = 0.001) alone. Higher NfL concentrations in CSF or blood were associated with greater superior cerebellar peduncle atrophy (fixed effect, p ≤ 0.029 and 0.008, respectively). Both CSF p-tau and NfL correlate with disease severity and rate of disease progression in PSP. The inverse correlation of p-tau with disease severity suggests a potentially different mechanism of tau pathology in PSP as compared to Alzheimer disease. Copyright © 2017 American Academy of Neurology.

  3. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.

    PubMed

    Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R

    2017-12-01

    Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non

  4. Modeling the complex pathology of Alzheimer’s disease in Drosophila

    PubMed Central

    Fernandez-Funez, Pedro; de Mena, Lorena; Rincon-Limas, Diego E.

    2015-01-01

    Alzheimer’s disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of Amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncovering the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42. PMID:26024860

  5. Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Abeta42 immunisation in Alzheimer's disease.

    PubMed

    Boche, Delphine; Donald, Jane; Love, Seth; Harris, Scott; Neal, James W; Holmes, Clive; Nicoll, James A R

    2010-07-01

    Alzheimer's disease (AD) pathology is characterised by aggregation in the brain of amyloid-beta (Abeta) peptide and hyperphosphorylated tau (phospho-tau), although how these proteins interact in disease pathogenesis is unclear. Abeta immunisation results in removal of Abeta from the brain but cognitive decline continues to progress, possibly due to persistent phospho-tau. We quantified phospho-tau and Abeta42 in the brains of 10 AD patients (iAD) who were actively immunised with Abeta42 (AN1792, Elan Pharmaceuticals) compared with 28 unimmunised AD cases (cAD). The phospho-tau load was lower in the iAD than the cAD group in the cerebral cortex (cAD 1.08% vs. iAD 0.72%, P = 0.048), CA1 hippocampus (cAD 2.26% vs. iAD 1.05%; P = 0.001), subiculum (cAD 1.60% vs. iAD 0.31%; P = 0.001) and entorhinal cortex (cAD 1.10% vs. iAD 0.18%; P < 0.001). Assessment of the localisation within neurons of phospho-tau indicated that the Abeta immunotherapy-associated reduction was confined to neuronal processes, i.e. neuropil threads and dystrophic neurites. However, the phospho-tau accumulation in the neuronal cell bodies, contributing to neurofibrillary tangles, appeared not to be affected. In showing that Abeta immunisation can influence phospho-tau pathology, we confirm the position of Abeta as a target for modifying tau accumulation in AD and demonstrate a link between these proteins. However, the continuing progression of cognitive decline in AD patients after Abeta immunisation may be explained by its lack of apparent effect on tangles.

  6. Rate of local tumor progression following radiofrequency ablation of pathologically early hepatocellular carcinoma.

    PubMed

    Hao, Yoshiteru; Numata, Kazushi; Ishii, Tomohiro; Fukuda, Hiroyuki; Maeda, Shin; Nakano, Masayuki; Tanaka, Katsuaki

    2017-05-07

    To evaluate whether pathologically early hepatocellular carcinoma (HCC) exhibited local tumor progression after radiofrequency ablation (RFA) less often than typical HCC. Fifty pathologically early HCCs [tumor diameter (mm): mean, 15.8; range, 10-23; follow-up days after RFA: median, 1213; range, 216-2137] and 187 typical HCCs [tumor diameter (mm): mean, 15.6; range, 6-30; follow-up days after RFA: median, 1116; range, 190-2328] were enrolled in this retrospective study. The presence of stromal invasion (namely, tumor cell invasion into the intratumoral portal tracts) was considered to be the most important pathologic finding for the diagnosis of early HCCs. Typical HCC was defined as the presence of a hyper-vascular lesion accompanied by delayed washout using contrast-enhanced computed tomography or contrast-enhanced magnetic resonance imaging. Follow-up examinations were performed at 3-mo intervals to monitor for signs of local tumor progression. The local tumor progression rates of pathologically early HCCs and typical HCCs were then determined using the Kaplan-Meier method. During the follow-up period for the 50 pathologically early HCCs, 49 (98%) of the nodules did not exhibit local tumor progression. However, 1 nodule (2%) was associated with a local tumor progression found 636 d after RFA. For the 187 typical HCCs, 46 (24.6%) of the nodules exhibited local recurrence after RFA. The follow-up period until the local tumor progression of typical HCC was a median of 605 d, ranging from 181 to 1741 d. Among the cases with typical HCCs, local tumor progression had occurred in 7.0% (7/187), 16.0% (30/187), 21.9% (41/187) and 24.6% (46/187) of the cases at 1, 2, 3 and 4 years, respectively. Pathologically early HCC was statistically associated with a lower rate of local tumor progression, compared with typical HCC, when evaluated using a log-rank test ( P = 0.002). The rate of local tumor progression for pathologically early HCCs after RFA was significantly lower

  7. Rate of local tumor progression following radiofrequency ablation of pathologically early hepatocellular carcinoma

    PubMed Central

    Hao, Yoshiteru; Numata, Kazushi; Ishii, Tomohiro; Fukuda, Hiroyuki; Maeda, Shin; Nakano, Masayuki; Tanaka, Katsuaki

    2017-01-01

    AIM To evaluate whether pathologically early hepatocellular carcinoma (HCC) exhibited local tumor progression after radiofrequency ablation (RFA) less often than typical HCC. METHODS Fifty pathologically early HCCs [tumor diameter (mm): mean, 15.8; range, 10-23; follow-up days after RFA: median, 1213; range, 216-2137] and 187 typical HCCs [tumor diameter (mm): mean, 15.6; range, 6-30; follow-up days after RFA: median, 1116; range, 190-2328] were enrolled in this retrospective study. The presence of stromal invasion (namely, tumor cell invasion into the intratumoral portal tracts) was considered to be the most important pathologic finding for the diagnosis of early HCCs. Typical HCC was defined as the presence of a hyper-vascular lesion accompanied by delayed washout using contrast-enhanced computed tomography or contrast-enhanced magnetic resonance imaging. Follow-up examinations were performed at 3-mo intervals to monitor for signs of local tumor progression. The local tumor progression rates of pathologically early HCCs and typical HCCs were then determined using the Kaplan-Meier method. RESULTS During the follow-up period for the 50 pathologically early HCCs, 49 (98%) of the nodules did not exhibit local tumor progression. However, 1 nodule (2%) was associated with a local tumor progression found 636 d after RFA. For the 187 typical HCCs, 46 (24.6%) of the nodules exhibited local recurrence after RFA. The follow-up period until the local tumor progression of typical HCC was a median of 605 d, ranging from 181 to 1741 d. Among the cases with typical HCCs, local tumor progression had occurred in 7.0% (7/187), 16.0% (30/187), 21.9% (41/187) and 24.6% (46/187) of the cases at 1, 2, 3 and 4 years, respectively. Pathologically early HCC was statistically associated with a lower rate of local tumor progression, compared with typical HCC, when evaluated using a log-rank test (P = 0.002). CONCLUSION The rate of local tumor progression for pathologically early HCCs after

  8. APOE Predicts Aβ but not Tau Alzheimer’s Pathology in Cognitively Normal Aging

    PubMed Central

    Morris, John C.; Roe, Catherine M.; Xiong, Chengjie; Fagan, Anne M; Goate, Alison M.; Holtzman, David M.; Mintun, Mark A.

    2009-01-01

    Objective To examine interactions of Apolipoprotein E (APOE) genotype with age and with in vivo measures of preclinical Alzheimer’s disease (AD) in cognitively normal aging. Methods Two hundred and 41 cognitively normal individuals, age 45 to 88 years, had cerebral amyloid imaging studies with Pittsburgh Compound-B (PIB). Of the 241 individuals, 168 (70%) also had cerebrospinal fluid (CSF) assays of amyloid-beta42 (Aβ42), tau, and phosphorylated tau (ptau181). All individuals were genotyped for APOE. Results The frequency of individuals with elevated mean cortical binding potential (MCBP) for PIB rose in an age-dependent manner from 0% at ages 45-49 years to 30.3% at 80-88 years. Reduced levels of CSF Aβ42 appear to begin earlier (18.2% of those age 45-49 years) and increase with age in higher frequencies (50% at age 80-88 years) than elevations of MCBP. There is a gene dose effect for the APOE4 genotype, with greater MCBP increases and greater reductions in CSF Aβ42 with increased numbers of APOE4 alleles. Individuals with an APOE2 have no increase in MCBP with age and have higher CSF Aβ42 levels than individuals without an APOE2 allele. There is no APOE4 or APOE2 effect on CSF tau or ptau181. Interpretation Increasing cerebral Aβ deposition with age is the pathobiological phenotype of APOE4. The biomarker sequence that detects Aβ deposition may first be lowered CSF Aβ42, followed by elevated MCBP for PIB. A substantial proportion of cognitively normal individuals have presumptive preclinical AD. PMID:20186853

  9. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration.

    PubMed

    Goossens, Joery; Bjerke, Maria; Van Mossevelde, Sara; Van den Bossche, Tobi; Goeman, Johan; De Vil, Bart; Sieben, Anne; Martin, Jean-Jacques; Cras, Patrick; De Deyn, Peter Paul; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan

    2018-03-20

    We explored the diagnostic performance of cerebrospinal fluid (CSF) biomarkers in allowing differentiation between frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD), as well as between FTLD pathological subtypes. CSF levels of routine AD biomarkers (phosphorylated tau (p-tau 181 ), total tau (t-tau), and amyloid-beta (Aβ) 1-42 ) and neurofilament proteins, as well as progranulin levels in both CSF and serum were quantified in definite FTLD (n = 46), clinical AD (n = 45), and cognitively healthy controls (n = 20). FTLD subgroups were defined by genetic carrier status and/or postmortem neuropathological confirmation (FTLD-TDP: n = 34, including FTLD-C9orf72: n = 19 and FTLD-GRN: n = 9; FTLD-tau: n = 10). GRN mutation carriers had significantly lower progranulin levels compared to other FTLD patients, AD, and controls. Both t-tau and p-tau 181 were normal in FTLD patients, even in FTLD-tau. Aβ 1-42 levels were very variable in FTLD. Neurofilament light chain (Nf-L) was significantly higher in FTLD compared with AD and controls. The reference logistic regression model based on the established AD biomarkers could be improved by the inclusion of CSF Nf-L, which was also important for the differentiation between FTLD and controls. Within the FTLD cohort, no significant differences were found between FTLD-TDP and FTLD-tau, but GRN mutation carriers had higher t-tau and Nf-L levels than C9orf72 mutation carriers and FTLD-tau patients. There is an added value for Nf-L in the differential diagnosis of FTLD. Progranulin levels in CSF depend on mutation status, and GRN mutation carriers seem to be affected by more severe neurodegeneration.

  10. Metabolic changes over the course of aging in a mouse model of tau deposition

    PubMed Central

    Joly-Amado, Aurélie; Serraneau, Karisa S.; Brownlow, Milene; Marín de Evsikova, Caralina; Speakman, John R.; Gordon, Marcia N.; Morgan, Dave

    2016-01-01

    Weight loss and food intake disturbances that often precede cognitive decline and diagnosis have been extensively reported in Alzheimer’s disease patients. Previously, we observed that transgenic mice overexpressing tau seemed to eat more food, yet weigh less than non-transgenic littermates. Thus the present longitudinal study measured the time course of changes in metabolic state over the lifespan of the tau depositing Tg4510 mouse model of tau deposition. Although body weight was comparable to non-transgenic littermates at 2 months of age, Tg4510 mice weighed less at older ages. This was accompanied by the accumulation of tau pathology and by dramatically increased activity in all phases of the 24-hour cycle. Resting metabolic rate was also increased at 7 months of age. At 12 months near the end of the Tg4510 lifespan, there was a wasting phase, with a considerable decrease of resting metabolic rate, although hyperactivity was maintained. These diverse changes in metabolism in a mouse model of tau deposition are discussed in the context of known changes in energy metabolism in Alzheimer’s disease. PMID:27318134

  11. Tetracyclic Truncated Analogue of the Marine Toxin Gambierol Modifies NMDA, Tau, and Amyloid β Expression in Mice Brains: Implications in AD Pathology.

    PubMed

    Alonso, Eva; Vieira, Andrés C; Rodriguez, Inés; Alvariño, Rebeca; Gegunde, Sandra; Fuwa, Haruhiko; Suga, Yuto; Sasaki, Makoto; Alfonso, Amparo; Cifuentes, José Manuel; Botana, Luis M

    2017-06-21

    Gambierol and its two, tetra- and heptacyclic, analogues have been previously proved as promising molecules for the modulation of Alzheimer's disease (AD) hallmarks in primary cortical neurons of 3xTg-AD fetuses. In this work, the effect of the tetracyclic analogue of gambierol was tested in vivo in 3xTg-AD mice (10 months old) after 1 month of weekly treatment with 50 μg/kg. Adverse effects were not reported throughout the whole treatment period and no pathological signs were observed for the analyzed organs. The compound was found in brain samples after intraperitoneal injection. The tetracyclic analogue of gambierol elicited a decrease of amyloid β 1-42 levels and a dose-dependent inhibition of β-secretase enzyme-1 activity. Moreover, this compound also reduced the phosphorylation of tau at the 181 and 159/163 residues with an increase of the inactive isoform of the glycogen synthase kinase-3β. In accordance with our in vitro neuronal model, this compound produced a reduction in the N2A subunit of the N-methyl-d-aspartate (NMDA) receptor. The combined effect of this compound on amyloid β 1-42 and tau phosphorylation represents a multitarget therapeutic approach for AD which might be more effective for this multifactorial and complex neurodegenerative disease than the current treatments.

  12. Narrative Organization Deficit in Lewy Body Disorders Is Related to Alzheimer Pathology

    PubMed Central

    Grossman, Murray; Irwin, David J.; Jester, Charles; Halpin, Amy; Ash, Sharon; Rascovsky, Katya; Weintraub, Daniel; McMillan, Corey T.

    2017-01-01

    Background: Day-to-day interactions depend on conversational narrative, and we examine here the neurobiological basis for difficulty organizing narrative discourse in patients with Lewy body disorders (LBD). Method: Narrative organization was examined in 56 non-aphasic LBD patients, including a non-demented cohort (n = 30) with Parkinson's disease (PD) or PD-Mild Cognitive Impairment PD-MCI,) and a cohort with mild dementia (n = 26) including PD-dementia (PDD) and dementia with Lewy bodies (DLB), with similar age and education but differing in MMSE (p < 0.001). We used a previously reported procedure that probes patients' judgments of the organization of brief, familiar narratives (e.g., going fishing, wrapping a present). A subgroup of 24 patients had MRI assessment of regional gray matter (GM) atrophy and cerebrospinal fluid (CSF) levels of biomarkers for Alzheimer's disease (AD) pathology, including beta amyloid (Aβ), total-tau (t-tau), and phosphorylated-tau (p-tau). Results: Mildly demented LBD patients had a significant deficit judging narratives compared to non-demented patients, but this deficit was not correlated with MMSE. Regression analyses instead related narrative organization to regions of frontal GM atrophy, and CSF levels of Aβ and t-tau associated with presumed AD pathology in these frontal regions. Conclusion: These findings are consistent with the hypothesis that CSF markers of AD pathology associated with frontal regions play a role in difficulty organizing narratives in LBD. PMID:28228714

  13. Prevalence of Alzheimer's pathologic endophenotypes in asymptomatic and mildly impaired first-degree relatives.

    PubMed

    Lampert, Erika J; Roy Choudhury, Kingshuk; Hostage, Christopher A; Petrella, Jeffrey R; Doraiswamy, P Murali

    2013-01-01

    A positive family history (FH) is a risk factor for late-onset Alzheimer's disease (AD). Our aim was to examine the effects of FH on pathological and neuronal loss biomarkers across the cognitive spectrum. Cross-sectional analyses of data from a national biomarker study. The Alzheimer's Disease Neuroimaging Initiative national study. 257 subjects (ages 55-89), divided into cognitively normal (CN), mild cognitive impairment (MCI), and AD groups, with CSF and FH data. Cerebrospinal fluid (CSF) Aβ42, tau, and tau/Aβ42 ratio, MRI-measured hippocampal volumes. Univariate and multivariate analyses. In MCI, CSF Aβ42 was lower (p = .005), t-tau was higher (p = 0.02) and t-tau/Aβ42 ratio was higher (p = 0.002) in FH+ than FH- subjects. A significant residual effect of FH on pathologic markers in MCI remained after adjusting for ApoE4 (p<0.05). Among CN, 47% of FH+ exhibited "pathologic signature of AD" (CSF t-tau/Aβ42 ratio >0.39) versus 21% of FH- controls (p = 0.03). The FH effect was not significant in AD subjects. Hippocampal and intracranial volumes did not differ between FH+ and FH- subjects in any group. A positive family history of late-onset AD is associated with a higher prevalence of an abnormal cerebral beta-amyloid and tau protein phenotype in MCI. The unexplained genetic heritability in family history is about the half the size of the ApoE4 effect. Longitudinal studies are warranted to more definitively examine this issue.

  14. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents.

    PubMed

    Calderón-Garcidueñas, Lilian; Reynoso-Robles, Rafael; Pérez-Guillé, Beatriz; Mukherjee, Partha S; Gónzalez-Maciel, Angélica

    2017-11-01

    Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM 2.5 ), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer's disease.

    PubMed

    Shao, Charles Y; Mirra, Suzanne S; Sait, Hameetha B R; Sacktor, Todd C; Sigurdsson, Einar M

    2011-09-01

    Impairment of synaptic plasticity underlies memory dysfunction in Alzheimer's disease (AD). Molecules involved in this plasticity such as PSD-95, a major postsynaptic scaffold protein at excitatory synapses, may play an important role in AD pathogenesis. We examined the distribution of PSD-95 in transgenic mice of amyloidopathy (5XFAD) and tauopathy (JNPL3) as well as in AD brains using double-labeling immunofluorescence and confocal microscopy. In wild type control mice, PSD-95 primarily labeled neuropil with distinct distribution in hippocampal apical dendrites. In 3-month-old 5XFAD mice, PSD-95 distribution was similar to that of wild type mice despite significant Aβ deposition. However, in 6-month-old 5XFAD mice, PSD-95 immunoreactivity in apical dendrites markedly decreased and prominent immunoreactivity was noted in neuronal soma in CA1 neurons. Similarly, PSD-95 immunoreactivity disappeared from apical dendrites and accumulated in neuronal soma in 14-month-old, but not in 3-month-old, JNPL3 mice. In AD brains, PSD-95 accumulated in Hirano bodies in hippocampal neurons. Our findings support the notion that either Aβ or tau can induce reduction of PSD-95 in excitatory synapses in hippocampus. Furthermore, this PSD-95 reduction is not an early event but occurs as the pathologies advance. Thus, the time-dependent PSD-95 reduction from synapses and accumulation in neuronal soma in transgenic mice and Hirano bodies in AD may mark postsynaptic degeneration that underlies long-term functional deficits.

  16. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons.

    PubMed

    Patil, Sachin; Chan, Christina

    2005-08-26

    Epidemiological studies suggest that high fat diets significantly increase the risk of Alzheimer's disease (AD). In addition, the AD brain is characterized by high fatty acid content compared to that of healthy subjects. Nevertheless, the basic mechanism relating elevated fatty acids and the pathogenesis of AD remains unclear. The present study examines the role of fatty acids in causing hyperphosphorylation of the tau protein, one of the characteristic signatures of AD pathology. Hyperphosphorylation of tau disrupts the cell cytoskeleton and leads to neuronal degeneration. Here, primary rat cortical neurons and astrocytes were treated with saturated free fatty acids (FFAs), palmitic and stearic acids. There was no change in the levels of phosphorylated tau in rat cortical neurons treated directly with these FFAs. The conditioned media from FFA-treated astrocytes, however, caused hyperphosphorylation of tau in the cortical neurons at AD-specific phospho-epitopes. Co-treatment of neurons with N-acetyl cysteine, an antioxidant, reduced FFA-induced hyperphosphorylation of tau. The present results establish a central role of FFAs in causing hyperphosphorylation of tau through astroglia-mediated oxidative stress.

  17. 18 F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study.

    PubMed

    Schonhaut, Daniel R; McMillan, Corey T; Spina, Salvatore; Dickerson, Bradford C; Siderowf, Andrew; Devous, Michael D; Tsai, Richard; Winer, Joseph; Russell, David S; Litvan, Irene; Roberson, Erik D; Seeley, William W; Grinberg, Lea T; Kramer, Joel H; Miller, Bruce L; Pressman, Peter; Nasrallah, Ilya; Baker, Suzanne L; Gomperts, Stephen N; Johnson, Keith A; Grossman, Murray; Jagust, William J; Boxer, Adam L; Rabinovici, Gil D

    2017-10-01

    18 F-flortaucipir (formerly 18 F-AV1451 or 18 F-T807) binds to neurofibrillary tangles in Alzheimer disease, but tissue studies assessing binding to tau aggregates in progressive supranuclear palsy (PSP) have yielded mixed results. We compared in vivo 18 F-flortaucipir uptake in patients meeting clinical research criteria for PSP (n = 33) to normal controls (n = 46) and patients meeting criteria for Parkinson disease (PD; n = 26). Participants underwent magnetic resonance imaging and positron emission tomography for amyloid-β ( 11 C-PiB or 18 F-florbetapir) and tau ( 18 F-flortaucipir). 18 F-flortaucipir standardized uptake value ratios were calculated (t = 80-100 minutes, cerebellum gray matter reference). Voxelwise and region-of-interest group comparisons were performed in template space, with receiver operating characteristic curve analyses to assess single-subject discrimination. Qualitative comparisons with postmortem tau are reported in 1 patient who died 9 months after 18 F-flortaucipir. Clinical PSP patients showed bilaterally elevated 18 F-flortaucipir uptake in globus pallidus, putamen, subthalamic nucleus, midbrain, and dentate nucleus relative to controls and PD patients (voxelwise p < 0.05 family wise error corrected). Globus pallidus binding best distinguished PSP patients from controls and PD (area under the curve [AUC] = 0.872 vs controls, AUC = 0.893 vs PD). PSP clinical severity did not correlate with 18 F-flortaucipir in any region. A patient with clinical PSP and pathological diagnosis of corticobasal degeneration had severe tau pathology in PSP-related brain structures with good correspondence between in vivo 18 F-flortaucipir and postmortem tau neuropathology. 18 F-flortaucipir uptake was elevated in PSP versus controls and PD patients in a pattern consistent with the expected distribution of tau pathology. Ann Neurol 2017;82:622-634. © 2017 American Neurological Association.

  18. Tau Oligomers as Potential Targets for Alzheimer’s Diagnosis and Novel Drugs

    PubMed Central

    Guzmán-Martinez, Leonardo; Farías, Gonzalo A.; Maccioni, Ricardo Benjamin

    2013-01-01

    A cumulative number of approaches have been carried out to elucidate the pathogenesis of Alzheimer’s disease (AD). Tangles formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. Most of recent studies share in common the observation that formation of tau oligomers and the subsequent pathological filaments arrays is a critical step in AD etiopathogenesis. Oligomeric tau species appear to be toxic for neuronal cells, and therefore appear as an appropriate target for the design of molecules that may control morphological and functional alterations leading to cognitive impairment. Thus, current therapeutic strategies are aimed at three major types of molecules: (1) inhibitors of protein kinases and phosphatases that modify tau and that may control neuronal degeneration, (2) methylene blue, and (3) natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. Only a few polyphenolic molecules have emerged to prevent tau aggregation. In this context, fulvic acid (FA), a humic substance, has potential protective activity cognitive impairment. In fact, formation of paired helical filaments in vitro, is inhibited by FA affecting the length of fibrils and their morphology. PMID:24191153

  19. Anthraquinones inhibit tau aggregation and dissolve Alzheimer's paired helical filaments in vitro and in cells.

    PubMed

    Pickhardt, Marcus; Gazova, Zuzana; von Bergen, Martin; Khlistunova, Inna; Wang, Yipeng; Hascher, Antje; Mandelkow, Eva-Maria; Biernat, Jacek; Mandelkow, Eckhard

    2005-02-04

    The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.

  20. A Novel Tau Mutation in Exon 12, p.Q336H, Causes Hereditary Pick Disease

    PubMed Central

    Tacik, Pawel; DeTure, Michael; Hinkle, Kelly M.; Lin, Wen-Lang; Sanchez-Contreras, Monica; Carlomagno, Yari; Pedraza, Otto; Rademakers, Rosa; Ross, Owen A.; Wszolek, Zbigniew K.; Dickson, Dennis W.

    2015-01-01

    Pick disease (PiD) is a frontotemporal lobar degeneration with distinctive neuronal inclusions (Pick bodies) that are enriched in 3-repeat (3R) tau. Although mostly sporadic, mutations in the tau gene (MAPT) have been reported. We screened 24 cases of neuropathologically confirmed PiD for MAPT mutations and found a novel mutation (c.1008G>C, p.Q336H) in one patient. Pathogenicity was confirmed on microtubule assembly and tau filament formation assays. The patient was compared to sporadic PiD and PiD associated with MAPT mutations from a review of the literature. The patient had behavioral changes at 55 years of age, followed by reduced verbal fluency, parkinsonism and death at 63 years of age. His mother and maternal uncle had similar symptoms. Recombinant tau with p.Q336H mutation formed filaments faster than wild type tau, especially with 3R tau. It also promoted more microtubule assembly than wild type tau. We conclude that mutations in MAPT, including p.Q336H, can be associated with clinical, pathologic, and biochemical features that are similar to those in sporadic PiD. The pathomechanism of p.Q336H, and another previously reported variant at the same codon (p.Q336R), appears to be unique to MAPT mutations in that they not only predispose to abnormal tau filament formation but also facilitate microtubule assembly in a 3R tau-dependent manner. PMID:26426266

  1. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    PubMed

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Ultra-Early Phase pathologies of Alzheimer's disease and other neurodegenerative diseases.

    PubMed

    Okazawa, Hitoshi

    2017-01-01

    The concept of neurodegenerative diseases and the therapeutics targeting these intractable diseases are changing rapidly. Protein aggregation as the top of pathological cascade is now challenged, and many alternative ideas are proposed. Early molecular pathologies before microscopic detection of diseases protein aggregates, which I propose to call "Ultra-Early Phase pathologies or phase 0 pathologies", are the focus of research that might explain the failures of clinical trials with anti-Aβ antibodies against Alzheimer's disease. In this review article, I summarize the critical issues that should be successfully and consistently answered by a new concept of neurodegeneration. For reevaluating old concepts and reconstructing a new concept of neurodegeneration that will replace the old ones, non-biased comprehensive approaches including proteome combined with systems biology analyses will be a powerful tool. I introduce our recent efforts in this orientation that have reached to the stage of non-clinical proof of concept applicable to clinical trials.

  3. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between taumore » and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The

  4. Mammalian Target of Rapamycin (mTor) Mediates Tau Protein Dyshomeostasis

    PubMed Central

    Tang, Zhi; Bereczki, Erika; Zhang, Haiyan; Wang, Shan; Li, Chunxia; Ji, Xinying; Branca, Rui M.; Lehtiö, Janne; Guan, Zhizhong; Filipcik, Peter; Xu, Shaohua; Winblad, Bengt; Pei, Jin-Jing

    2013-01-01

    Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function. PMID:23585566

  5. Tau Now

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Oliva, P.

    2016-10-01

    Ultra High Energy Cosmic Rays and UHE neutrinos may lead to a new deep astronomy. However the most recent results on their correlations and clustering seem to most authors inconclusive. We briefly remind some UHECR models and past and recent results. Our reading and overlapping of IR-gamma-UHECR maps and their correlations seem to answer to several key puzzles, offering a first hope of the UHECR astronomy, mostly ruled by lightest nuclei from nearby Universe. Regarding the UHE neutrino we recently noted that the flavor ratio and the absence of double bang in IceCube within highest energetic ten events may suggest still a dominant noisy prompt component. However a first correlated UHE crossing muon with expected location (through going upward muon neutrino or horizontally) in IceCube is in our view a milestone in neutrino astronomy road map, possibly partially related, to galactic UHECR narrow clustering. The disturbing and persistent atmospheric neutrino noises, both conventional and prompt, call for a better filtered neutrino astronomy: the tau neutrino ones. There are no yet (at present, detectable) TeV-PeVs or more energetic tau neutrino of atmospheric, conventional or prompt nature; only astrophysical ones might soon shine. Double bangs in IceCube and in particular the tau air-showers in large array are the unique definitive expected signatures of astrophysical signals. In particular tau air-shower amplify in a huge way the otherwise single lepton track, once in decay in flight, into a richest three of secondaries (up to a million of billion Cherenkov photons for PeV tau energy) whose wide areas may extend up to nearly kilometer size. Such airshowers are very directional. PeVs energetic tau lepton penetrate hundreds meters inside the rock before its decay. Therefore horizontal tau air-shower in front of deep, wide valleys or mountain cliff [D. Fargion, A. Aiello, R. Conversano; 26th ICRC, He 6.1.09, 6 p. 396-398. (1999). Ed. D. Kieda, et al. arxiv

  6. Tracer Kinetic Analysis of (S)-¹⁸F-THK5117 as a PET Tracer for Assessing Tau Pathology.

    PubMed

    Jonasson, My; Wall, Anders; Chiotis, Konstantinos; Saint-Aubert, Laure; Wilking, Helena; Sprycha, Margareta; Borg, Beatrice; Thibblin, Alf; Eriksson, Jonas; Sörensen, Jens; Antoni, Gunnar; Nordberg, Agneta; Lubberink, Mark

    2016-04-01

    Because a correlation between tau pathology and the clinical symptoms of Alzheimer disease (AD) has been hypothesized, there is increasing interest in developing PET tracers that bind specifically to tau protein. The aim of this study was to evaluate tracer kinetic models for quantitative analysis and generation of parametric images for the novel tau ligand (S)-(18)F-THK5117. Nine subjects (5 with AD, 4 with mild cognitive impairment) received a 90-min dynamic (S)-(18)F-THK5117 PET scan. Arterial blood was sampled for measurement of blood radioactivity and metabolite analysis. Volume-of-interest (VOI)-based analysis was performed using plasma-input models; single-tissue and 2-tissue (2TCM) compartment models and plasma-input Logan and reference tissue models; and simplified reference tissue model (SRTM), reference Logan, and SUV ratio (SUVr). Cerebellum gray matter was used as the reference region. Voxel-level analysis was performed using basis function implementations of SRTM, reference Logan, and SUVr. Regionally averaged voxel values were compared with VOI-based values from the optimal reference tissue model, and simulations were made to assess accuracy and precision. In addition to 90 min, initial 40- and 60-min data were analyzed. Plasma-input Logan distribution volume ratio (DVR)-1 values agreed well with 2TCM DVR-1 values (R(2)= 0.99, slope = 0.96). SRTM binding potential (BP(ND)) and reference Logan DVR-1 values were highly correlated with plasma-input Logan DVR-1 (R(2)= 1.00, slope ≈ 1.00) whereas SUVr(70-90)-1 values correlated less well and overestimated binding. Agreement between parametric methods and SRTM was best for reference Logan (R(2)= 0.99, slope = 1.03). SUVr(70-90)-1 values were almost 3 times higher than BP(ND) values in white matter and 1.5 times higher in gray matter. Simulations showed poorer accuracy and precision for SUVr(70-90)-1 values than for the other reference methods. SRTM BP(ND) and reference Logan DVR-1 values were not

  7. Effect of Continuous Propofol Infusion in Rat on Tau Phosphorylation with or without Temperature Control.

    PubMed

    Huang, Chunxia; Ng, Olivia Tsz-Wa; Ho, Yuen-Shan; Irwin, Michael Garnet; Chang, Raymond Chuen-Chung; Wong, Gordon Tin-Chun

    2016-01-01

    Several studies suggest a relationship between anesthesia-induced tau hyperphosphorylation and the development of postoperative cognitive dysfunction. This study further characterized the effects of continuous propofol infusion on tau protein phosphorylation in rats, with or without temperature control. Propofol was administered intravenously to 8-10-week-old male Sprague-Dawley rats and infused to the loss of the righting reflex for 2 h continuously. Proteins from cortex and hippocampus were examined by western blot and immunohistochemistry. Rectal temperature was significantly decreased during propofol infusion. Propofol with hypothermia significantly increased phosphorylation of tau at AT8, AT180, Thr205, and Ser199 in cortex and hippocampus except Ser396. With temperature maintenance, propofol still induced significant elevation of AT8, Thr205, and Ser199 in cortex and hippocampus; however, increase of AT180 and Ser396 was only found in hippocampus and cortex, respectively. Differential effects of propofol with or without hypothermia on multiple tau related kinases, such as Akt/GSK3β, MAPK pathways, or phosphatase (PP2A), were demonstrated in region-specific manner. These findings indicated that propofol increased tau phosphorylation under both normothermic and hypothermic conditions, and temperature control could partially attenuate the hyperphosphorylation of tau. Further studies are warranted to determine the long-term impact of propofol on the tau pathology and cognitive functions.

  8. Determination of the Michel parameters and the {tau} neutrino helicity in {tau} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLEO Collaboration

    1997-11-01

    Using the CLEO II detector at the Cornell Electron Storage Ring operated at {radical} (s) =10.6GeV, we have determined the Michel parameters {rho}, {xi}, and {delta} in {tau}{sup {minus_plus}}{r_arrow}l{sup {minus_plus}}{nu}{bar {nu}} decay as well as the {tau} neutrino helicity parameter h{sub {nu}{sub {tau}}} in {tau}{sup {minus_plus}}{r_arrow}{pi}{sup {minus_plus}}{pi}{sup 0}{nu} decay. From a data sample of 3.02{times}10{sup 6} produced {tau} pairs we analyzed events of the topologies e{sup +}e{sup {minus}}{r_arrow}{tau}{sup +}{tau}{sup {minus}}{r_arrow}(l{sup {plus_minus}}{nu}{bar {nu}})({pi}{sup {minus_plus}}{pi}{sup 0}{nu}) and e{sup +}e{sup {minus}}{r_arrow}{tau}{sup +}{tau}{sup {minus}}{r_arrow}({pi}{sup {plus_minus}}{pi}{sup 0}{bar {nu}})({pi}{sup {minus_plus}}{pi}{sup 0}{nu}). We obtain {rho}=0.747{rho}=0.747{plus_minus}0.010{plus_minus}0.006, {xi}=1.007{plus_minus}0.040{plus_minus}0.015, {xi}{delta}=0.745{plus_minus}0.026{plus_minus}0.009, and h{sub {nu}{sub {tau}}}={minus}0.995{plus_minus}0.010{plus_minus}0.003, where we have used the previouslymore » determined sign of h{sub {nu}{sub {tau}}} [ARGUS Collaboration, H. Albrecht {ital et al.}, Z. Phys. C {bold 58}, 61 (1993); Phys. Lett. B {bold 349}, 576 (1995)]. We also present the Michel parameters as determined from the electron and muon samples separately. All results are in agreement with the standard model V{minus}A interaction. {copyright} {ital 1997} {ital The American Physical Society}« less

  9. Modulation of neuroinflammation and pathology in the 5XFAD mouse model of Alzheimer's disease using a biased and selective beta-1 adrenergic receptor partial agonist.

    PubMed

    Ardestani, Pooneh Memar; Evans, Andrew K; Yi, Bitna; Nguyen, Tiffany; Coutellier, Laurence; Shamloo, Mehrdad

    2017-04-01

    Degeneration of noradrenergic neurons occurs at an early stage of Alzheimer's Disease (AD). The noradrenergic system regulates arousal and learning and memory, and has been implicated in regulating neuroinflammation. Loss of noradrenergic tone may underlie AD progression at many levels. We have previously shown that acute administration of a partial agonist of the beta-1 adrenergic receptor (ADRB1), xamoterol, restores behavioral deficits in a mouse model of AD. The current studies examined the effects of chronic low dose xamoterol on neuroinflammation, pathology, and behavior in the pathologically aggressive 5XFAD transgenic mouse model of AD. In vitro experiments in cells expressing human beta adrenergic receptors demonstrate that xamoterol is highly selective for ADRB1 and functionally biased for the cAMP over the β-arrestin pathway. Data demonstrate ADRB1-mediated attenuation of TNF-α production with xamoterol in primary rat microglia culture following LPS challenge. Finally, two independent cohorts of 5XFAD and control mice were administered xamoterol from approximately 4.0-6.5 or 7.0-9.5 months, were tested in an array of behavioral tasks, and brains were examined for evidence of neuroinflammation, and amyloid beta and tau pathology. Xamoterol reduced mRNA expression of neuroinflammatory markers (Iba1, CD74, CD14 and TGFβ) and immunohistochemical evidence for microgliosis and astrogliosis. Xamoterol reduced amyloid beta and tau pathology as measured by regional immunohistochemistry. Behavioral deficits were not observed for 5XFAD mice. In conclusion, chronic administration of a selective, functionally biased, partial agonist of ADRB1 is effective in reducing neuroinflammation and amyloid beta and tau pathology in the 5XFAD model of AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain...who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to...repetitive concussive TBI in mice has been optimal. Ongoing efforts include development of more sensitive methods to detect tau, and combinations of

  11. Abnormally phosphorylated tau protein in senile dementia of Lewy body type and Alzheimer disease: evidence that the disorders are distinct.

    PubMed

    Strong, C; Anderton, B H; Perry, R H; Perry, E K; Ince, P G; Lovestone, S

    1995-01-01

    The relationship between Alzheimer disease (AD) and dementia with Lewy bodies (senile dementia Lewy body type, or SDLT) and dementia in Parkinson's disease is unclear. AD pathology is characterised by both amyloid deposition and abnormal phosphorylation of tau in paired helical filaments (PHF-tau). In AD, abnormally phosphorylated PHF-tau is present in neurofibrillary tangles, in neuritic processes of senile plaques, and also in neuropil threads dispersed throughout the cerebral cortex. Cortical homogenates from 12 cases each of AD and SDLT, 13 cases of Parkinson's disease, and 11 normal controls were examined by Western blot analysis with antibodies that detect PHF-tau. No PHF-tau was found in Parkinson's disease or control cortex. No PHF-tau was found in SDLT cases without histological evidence of tangles. PHF-tau was detectable in SDLT cases with a low density of tangles, and large amounts of PHF-tau were present in AD cases. This study demonstrates that abnormally phosphorylated PHF-tau is only present where tangles are found and not in SDLT cases without tangles or with only occasional tangles. It is concluded that Lewy body dementias are distinct at a molecular level from AD.

  12. Memory complaints are related to Alzheimer disease pathology in older persons.

    PubMed

    Barnes, L L; Schneider, J A; Boyle, P A; Bienias, J L; Bennett, D A

    2006-11-14

    To study the relationship between Alzheimer disease (AD) pathology and memory complaints proximate to death. A group of 90 older persons underwent detailed clinical evaluations and brain autopsy at death. The evaluations included administration of questions on subjective memory complaints and clinical classification of dementia and AD. On postmortem examination, neuritic plaques, diffuse plaques, and neurofibrillary tangles in tissue samples from five cortical regions were counted, and a summary measure of overall AD pathology was derived. In addition, amyloid load and tau tangles were quantified in eight regions. In multiple linear regression models adjusted for age, sex, and education, memory complaints were associated with AD pathology, including both amyloid and tau tangles. Subsequent analyses demonstrated that the relationship between memory complaints and AD pathology was present in those with and without dementia, and could not be explained by the potentially confounding effects of depressive symptoms or coexisting common chronic health problems. Memory complaints in older persons may indicate self awareness of a degenerative process.

  13. Cholinergic Basal Forebrain Lesion Decreases Neurotrophin Signaling without Affecting Tau Hyperphosphorylation in Genetically Susceptible Mice.

    PubMed

    Turnbull, Marion T; Coulson, Elizabeth J

    2017-01-01

    Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease that destroys memory and cognitive function. Aggregates of hyperphosphorylated tau protein are a prominent feature in the brain of patients with AD, and are a major contributor to neuronal toxicity and disease progression. However, the factors that initiate the toxic cascade that results in tau hyperphosphorylation in sporadic AD are unknown. Here we investigated whether degeneration of basal forebrain cholinergic neurons (BFCNs) and/or a resultant decrease in neurotrophin signaling cause aberrant tau hyperphosphorylation. Our results reveal that the loss of BFCNs in pre-symptomatic pR5 (P301L) tau transgenic mice results in a decrease in hippocampal brain-derived neurotrophic factor levels and reduced TrkB receptor activation. However, there was no exacerbation of the levels of phosphorylated tau or its aggregation in the hippocampus of susceptible mice. Furthermore the animals' performance in a hippocampal-dependent learning and memory task was unaltered, and no changes in hippocampal synaptic markers were observed. This suggests that tau pathology is likely to be regulated independently of BFCN degeneration and the corresponding decrease in hippocampal neurotrophin levels, although these features may still contribute to disease etiology.

  14. DOPA Decarboxylase Modulates Tau Toxicity.

    PubMed

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  15. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease.

    PubMed

    Bian, Hong; Bian, Wei; Lin, Xiaoying; Ma, Zhaoyin; Chen, Wen; Pu, Ying

    2016-09-01

    To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin-eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau.

  16. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    PubMed

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  17. Activation of G-protein coupled estrogen receptor 1 improves early-onset cognitive impairment via PI3K/Akt pathway in rats with traumatic brain injury.

    PubMed

    Wang, Ze-Fen; Pan, Zhi-Yong; Xu, Cheng-Shi; Li, Zhi-Qiang

    2017-01-22

    Previous studies experimentally reveal that G-protein coupled estrogen receptor 1(GPER) has neuroprotection against ischemic injury. However, its effect on traumatic brain injury (TBI) is less well-established. Cognitive impairment following human TBI is a common clinical observation, and TBI is considered as a risk factor for Alzheimer's disease (AD). This study aimed to observe the possible protective effect of GPER on early-onset cognitive impairment after a single TBI and investigate the cellular mechanism underlying its actions. We found that selective GPER agonist G-1 significantly reduced hippocampal CA1 neuronal loss and improved cognitive impairment in TBI rats. Although previous studies have shown that AD-like tau pathology occurs many years after both repetitive and single TBI, accumulation of hyperphosphorylated tau was not observed within days (detected at 24 h and 7d) after TBI. Furthermore, tau phosphorylation was not altered by G-1 treatment. It was found that G-1 administration caused an increase in p-Akt level. However, the neuroprotective effects of G-1 on spatial cognition and neuronal death were attenuated by PI3K/Akt inhibitor LY294002. These findings indicate that GPER agonist G-1 had protection on cognitive function via activation of PI3K/Akt signaling. Early-onset cognitive impairment following a single TBI was closely associated with acute hippocampal neuronal loss rather than tau pathology. This study suggests that early activation of GPER might be a promising therapeutic strategy for improvement of TBI-induced cognitive outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB.

    PubMed

    Polito, Vinicia A; Li, Hongmei; Martini-Stoica, Heidi; Wang, Baiping; Yang, Li; Xu, Yin; Swartzlander, Daniel B; Palmieri, Michela; di Ronza, Alberto; Lee, Virginia M-Y; Sardiello, Marco; Ballabio, Andrea; Zheng, Hui

    2014-09-01

    Accumulating evidence implicates impairment of the autophagy-lysosome pathway in Alzheimer's disease (AD). Recently discovered, transcription factor EB (TFEB) is a molecule shown to play central roles in cellular degradative processes. Here we investigate the role of TFEB in AD mouse models. In this study, we demonstrate that TFEB effectively reduces neurofibrillary tangle pathology and rescues behavioral and synaptic deficits and neurodegeneration in the rTg4510 mouse model of tauopathy with no detectable adverse effects when expressed in wild-type mice. TFEB specifically targets hyperphosphorylated and misfolded Tau species present in both soluble and aggregated fractions while leaving normal Tau intact. We provide in vitro evidence that this effect requires lysosomal activity and we identify phosphatase and tensin homolog (PTEN) as a direct target of TFEB that is required for TFEB-dependent aberrant Tau clearance. The specificity and efficacy of TFEB in mediating the clearance of toxic Tau species makes it an attractive therapeutic target for treating diseases of tauopathy including AD. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Blast Exposure Causes Early and Persistent Aberrant Phospho- and Cleaved-Tau Expression in a Murine Model of Mild Blast-Induced Traumatic Brain Injury

    PubMed Central

    Huber, Bertrand R.; Meabon, James S.; Martin, Tobin J.; Mourad, Pierre D.; Bennett, Raymond; Kraemer, Brian C.; Cernak, Ibolja; Petrie, Eric C.; Emery, Michael J.; Swenson, Erik R.; Mayer, Cynthia; Mehic, Edin; Peskind, Elaine R.; Cook, David G.

    2014-01-01

    Mild traumatic brain injury (mTBI) is considered the ‘signature injury’ of combat veterans that have served during the wars in Iraq and Afghanistan. This prevalence of mTBI is due in part to the common exposure to high explosive blasts in combat zones. In addition to the threats of blunt impact trauma caused by flying objects and the head itself being propelled against objects, the primary blast overpressure (BOP) generated by high explosives is capable of injuring the brain. Compared to other means of causing TBI, the pathophysiology of mild-to-moderate BOP is less well understood. To study the consequences of BOP exposure in mice, we employed a well-established approach using a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP. We found that 24 hours post-blast a single mild BOP provoked elevation of multiple phosphor- and cleaved-tau species in neurons, as well as elevating manganese superoxide-dismutase (MnSOD or SOD2) levels, a cellular response to oxidative stress. In hippocampus, aberrant tau species persisted for at least 30 days post-exposure, while SOD2 levels returned to sham control levels. These findings suggest that elevated phospho- and cleaved-tau species may be among the initiating pathologic processes induced by mild blast exposure. These findings may have important implications for efforts to prevent blast-induced insults to the brain from progressing into long-term neurodegenerative disease processes. PMID:23948882

  20. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals

    PubMed Central

    Hedden, Trey; Mormino, Elizabeth C.; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F.

    2017-01-01

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ1–42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ+) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ+ individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F18-AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. PMID

  1. Regulation of Tau Pathology by the Microglial Fractalkine Receptor

    PubMed Central

    Bhaskar, Kiran; Konerth, Megan; Kokiko-Cochran, Olga N.; Cardona, Astrid; Ransohoff, Richard M.; Lamb, Bruce T.

    2010-01-01

    SUMMARY Aggregates of the hyperphosphorylated microtubule associated protein tau (MAPT) are an invariant neuropathological feature of tauopathies. Here we show that microglial neuroinflammation promotes MAPT phosphorylation and aggregation. First, lipopolysaccharide-induced microglial activation promotes hyperphosphorylation of endogenous mouse MAPT in non-transgenic mice that is further enhanced in mice lacking the microglial-specific fractalkine receptor (CX3CR1) and is dependent upon functional toll-like receptor 4 and interleukin 1 (IL1) receptors. Second, humanized MAPT transgenic mice lacking CX3CR1 exhibited enhanced MAPT phosphorylation and aggregation as well as behavioral impairments that correlated with increased levels of active p38 MAPK. Third, in vitro experiments demonstrate that microglial activation elevates the level of active p38 MAPK and enhances MAPT hyperphosphorylation within neurons that can be blocked by administration of an interleukin 1 receptor antagonist and a specific p38 MAPK inhibitor. Taken together, our results suggest that CX3CR1 and IL1/p38 MAPK may serve as novel therapeutic targets for human tauopathies. PMID:20920788

  2. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort.

    PubMed

    Kim, S; Swaminathan, S; Shen, L; Risacher, S L; Nho, K; Foroud, T; Shaw, L M; Trojanowski, J Q; Potkin, S G; Huentelman, M J; Craig, D W; DeChairo, B M; Aisen, P S; Petersen, R C; Weiner, M W; Saykin, A J

    2011-01-04

    CSF levels of Aβ1-42, t-tau, and p-tau181p are potential early diagnostic markers for probable Alzheimer disease (AD). The influence of genetic variation on these markers has been investigated for candidate genes but not on a genome-wide basis. We report a genome-wide association study (GWAS) of CSF biomarkers (Aβ1-42, t-tau, p-tau181p, p-tau181p/Aβ1-42, and t-tau/Aβ1-42). A total of 374 non-Hispanic Caucasian participants in the Alzheimer's Disease Neuroimaging Initiative cohort with quality-controlled CSF and genotype data were included in this analysis. The main effect of single nucleotide polymorphisms (SNPs) under an additive genetic model was assessed on each of 5 CSF biomarkers. The p values of all SNPs for each CSF biomarker were adjusted for multiple comparisons by the Bonferroni method. We focused on SNPs with corrected p<0.01 (uncorrected p<3.10×10(-8)) and secondarily examined SNPs with uncorrected p values less than 10(-5) to identify potential candidates. Four SNPs in the regions of the APOE, LOC100129500, TOMM40, and EPC2 genes reached genome-wide significance for associations with one or more CSF biomarkers. SNPs in CCDC134, ABCG2, SREBF2, and NFATC4, although not reaching genome-wide significance, were identified as potential candidates. In addition to known candidate genes, APOE, TOMM40, and one hypothetical gene LOC100129500 partially overlapping APOE; one novel gene, EPC2, and several other interesting genes were associated with CSF biomarkers that are related to AD. These findings, especially the new EPC2 results, require replication in independent cohorts.

  3. Involvement of GSK3 and PP2A in ginsenoside Rb1's attenuation of aluminum-induced tau hyperphosphorylation.

    PubMed

    Zhao, Hai-hua; Di, Jing; Liu, Wen-su; Liu, Hui-li; Lai, Hong; Lü, Yong-li

    2013-03-15

    Environmental agent aluminum, a well-known neurotoxin, has been proposed to play a role in the development of Alzheimer's disease (AD), and produced clinical and pathological features which were strikingly similar to those seen in AD brain, such as neurofibrillary tangles. Ginsenoside Rb1, highly abundant active component of ginseng, has been demonstrated to be neuroprotective against various neurotoxins. In this study we investigated the effect of Rb1 on aluminum-induced tau hyperphosphorylation in ICR mice. Mice were exposed to aluminum chloride (200 mg/kg/day) for 6 months followed by a post treatment of Rb1 (20 mg/kg/day) for another 4 months. Aluminum exposure induced the cognitive ability by Morris water maze, and upregulated the tau phosphorylation level at Ser396 accompanied by increasing p-GSK and decreasing PP2A level in motor, sensory cortex and hippocampal formation. Post treatment of Rb1 significantly improved the learning and memory and reduced the tau phosphorylation by reversing the p-GSK3 and PP2A level. Our results indicate that ginsenoside Rb1 protected mice against Al-induced toxicity. The possible mechanism may be its role in preventing tau hyperphosphorylation by regulating p-GSK3 and PP2A level, which implicate Rb1 as the potential preventive drug candidate for AD and other tau pathology-related neuronal degenerative diseases. Copyright © 2013. Published by Elsevier B.V.

  4. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    PubMed

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by

  5. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    PubMed Central

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  6. Search for the lepton-flavor-violating leptonic B(0)-->mu(+/-)tau(-/+) and B(0)-->e(+/-)tau(-/+).

    PubMed

    Bornheim, A; Lipeles, E; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Gan, K K; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M

    2004-12-10

    We have searched a sample of 9.6 x 10(6) BB events for the lepton-flavor-violating leptonic B decays, B(0)-->mu(+/-)tau(-/+) and B(0)-->e(+/-)tau(-/+). The tau lepton was detected through the decay modes tau-->lnunu(-) , where l=e, mu. There is no indication of a signal, and we obtain the 90% confidence level upper limits B(B(0)-->mu(+/-)tau(-/+))<3.8 x 10(-5) and B(B(0)-->e(+/-)tau(-/+))<1.3 x 10(-4).

  7. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease

    PubMed Central

    Solfrizzi, Vincenzo; Imbimbo, Bruno P.; Lozupone, Madia; Santamato, Andrea; Zecca, Chiara; Barulli, Maria Rosaria; Bellomo, Antonello; Pilotto, Alberto; Daniele, Antonio; Greco, Antonio

    2016-01-01

    The failure of several Phase II/III clinical trials in Alzheimer's disease (AD) with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT+). MT chloride (methylene blue) was investigated in a 24-week Phase II clinical trial in 321 patients with mild to moderate AD that failed to show significant positive effects in mild AD patients, although long-term observations (50 weeks) and biomarker studies suggested possible benefit. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected AD patients and cerebral blood flow in mildly affected patients. Further clinical evidence will come from the large ongoing Phase III trials for the treatment of AD and the behavioral variant of frontotemporal dementia on a new form of this TAI, more bioavailable and less toxic at higher doses, called TRx0237. More recently, inhibitors of tau acetylation are being actively pursued based on impressive results in animal studies obtained by salsalate, a clinically used derivative of salicylic acid. PMID:27429978

  8. Tau Kung | NREL

    Science.gov Websites

    Tau Kung Photo of Feitau Kung Tau Kung Commercial Buildings Research Engineer Feitau.Kung@nrel.gov evaluating building system energy performance in commercial settings, such as office, healthcare, higher

  9. Prospect for measuring the CP phase in the $$h\\tau\\tau$$ coupling at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askew, Andrew; Jaiswal, Prerit; Okui, Takemichi

    The search for a new source of CP violation is one of the most important endeavors in particle physics. A particularly interesting way to perform this search is to probe the CP phase in themore » $$h\\tau\\tau$$ coupling, as the phase is currently completely unconstrained by all existing data. Recently, a novel variable $$\\Theta$$ was proposed for measuring the CP phase in the $$h\\tau\\tau$$ coupling through the $$\\tau^\\pm \\to \\pi^\\pm \\pi^0 \

  10. Prospect for measuring the CP phase in the $$h\\tau\\tau$$ coupling at the LHC

    DOE PAGES

    Askew, Andrew; Jaiswal, Prerit; Okui, Takemichi; ...

    2015-04-01

    The search for a new source of CP violation is one of the most important endeavors in particle physics. A particularly interesting way to perform this search is to probe the CP phase in themore » $$h\\tau\\tau$$ coupling, as the phase is currently completely unconstrained by all existing data. Recently, a novel variable $$\\Theta$$ was proposed for measuring the CP phase in the $$h\\tau\\tau$$ coupling through the $$\\tau^\\pm \\to \\pi^\\pm \\pi^0 \

  11. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond.

    PubMed

    Dayon, Loïc; Guiraud, Seu Ping; Corthésy, John; Da Silva, Laeticia; Migliavacca, Eugenia; Tautvydaitė, Domilė; Oikonomidi, Aikaterini; Moullet, Barbara; Henry, Hugues; Métairon, Sylviane; Marquis, Julien; Descombes, Patrick; Collino, Sebastiano; Martin, François-Pierre J; Montoliu, Ivan; Kussmann, Martin; Wojcik, Jérôme; Bowman, Gene L; Popp, Julius

    2017-06-17

    Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1-42 peptide chain [Aβ 1-42 ] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ 1-42 , tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine

  12. Structure-based inhibitors of tau aggregation

    NASA Astrophysics Data System (ADS)

    Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S.

    2018-02-01

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

  13. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease.

    PubMed

    Ossenkoppele, Rik; Schonhaut, Daniel R; Schöll, Michael; Lockhart, Samuel N; Ayakta, Nagehan; Baker, Suzanne L; O'Neil, James P; Janabi, Mustafa; Lazaris, Andreas; Cantwell, Averill; Vogel, Jacob; Santos, Miguel; Miller, Zachary A; Bettcher, Brianne M; Vossel, Keith A; Kramer, Joel H; Gorno-Tempini, Maria L; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2016-05-01

    SEE SARAZIN ET AL DOI101093/BRAIN/AWW041 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The advent of the positron emission tomography tracer (18)F-AV1451 provides the unique opportunity to visualize the regional distribution of tau pathology in the living human brain. In this study, we tested the hypothesis that tau pathology is closely linked to symptomatology and patterns of glucose hypometabolism in Alzheimer's disease, in contrast to the more diffuse distribution of amyloid-β pathology. We included 20 patients meeting criteria for probable Alzheimer's disease dementia or mild cognitive impairment due to Alzheimer's disease, presenting with a variety of clinical phenotypes, and 15 amyloid-β-negative cognitively normal individuals, who underwent (18)F-AV1451 (tau), (11)C-PiB (amyloid-β) and (18)F-FDG (glucose metabolism) positron emission tomography, apolipoprotein E (APOE) genotyping and neuropsychological testing. Voxel-wise contrasts against controls (at P < 0.05 family-wise error corrected) showed that (18)F-AV1451 and (18)F-FDG patterns in patients with posterior cortical atrophy ('visual variant of Alzheimer's disease', n = 7) specifically targeted the clinically affected posterior brain regions, while (11)C-PiB bound diffusely throughout the neocortex. Patients with an amnestic-predominant presentation (n = 5) showed highest (18)F-AV1451 retention in medial temporal and lateral temporoparietal regions. Patients with logopenic variant primary progressive aphasia ('language variant of Alzheimer's disease', n = 5) demonstrated asymmetric left greater than right hemisphere (18)F-AV1451 uptake in three of five patients. Across 30 FreeSurfer-defined regions of interest in 16 Alzheimer's disease patients with all three positron emission tomography scans available, there was a strong negative association between (18)F-AV1451 and (18)F-FDG uptake (Pearson's r = -0.49 ± 0.07, P < 0.001) and less pronounced positive associations between (11)C-PiB and (18)F

  14. Specific Calpain Inhibition by Calpastatin Prevents Tauopathy and Neurodegeneration and Restores Normal Lifespan in Tau P301L Mice

    PubMed Central

    McBrayer, Mary Kate; Campbell, Jabbar; Kumar, Asok; Hashim, Audrey; Sershen, Henry; Stavrides, Philip H.; Ohno, Masuo; Hutton, Michael; Nixon, Ralph A.

    2014-01-01

    Tau pathogenicity in Alzheimer's disease and other tauopathies is thought to involve the generation of hyperphosphorylated, truncated, and oligomeric tau species with enhanced neurotoxicity, although the generative mechanisms and the implications for disease therapy are not well understood. Here, we report a striking rescue from mutant tau toxicity in the JNPL3 mouse model of tauopathy. We show that pathological activation of calpains gives rise to a range of potentially toxic forms of tau, directly, and by activating cdk5. Calpain overactivation in brains of these mice is accelerated as a result of the marked depletion of the endogenous calpain inhibitor, calpastatin. When levels of this inhibitor are restored in neurons of JNPL3 mice by overexpressing calpastatin, tauopathy is prevented, including calpain-mediated breakdown of cytoskeletal proteins, cdk5 activation, tau hyperphosphorylation, formation of potentially neurotoxic tau fragments by either calpain or caspase-3, and tau oligomerization. Calpastatin overexpression also prevents loss of motor axons, delays disease onset, and extends survival of JNPL3 mice by 3 months to within the range of normal lifespan. Our findings support the therapeutic promise of highly specific calpain inhibition in the treatment of tauopathies and other neurodegenerative states. PMID:25009256

  15. The L266V tau mutation is associated with frontotemporal dementia and Pick-like 3R and 4R tauopathy.

    PubMed

    Hogg, Marion; Grujic, Zoran M; Baker, Matt; Demirci, Serpil; Guillozet, Angela L; Sweet, Alison P; Herzog, Laura L; Weintraub, Sandra; Mesulam, M-Marsel; LaPointe, Nichole E; Gamblin, T C; Berry, Robert W; Binder, Lester I; de Silva, Rohan; Lees, Andrew; Espinoza, Marisol; Davies, Peter; Grover, Andrew; Sahara, Naruhiko; Ishizawa, Takashi; Dickson, Dennis; Yen, Shu-Hui; Hutton, Michael; Bigio, Eileen H

    2003-10-01

    We report a case of rapidly progressive frontotemporal dementia presenting at age 33 years. At autopsy there was severe atrophy of the frontal and temporal lobes. Tau-positive Pick bodies, which ultrastructurally were composed of straight filaments, were present, accompanied by severe neuronal loss and gliosis. RD3, a tau antibody specific for the three-repeat (3R) isoforms, labeled the Pick bodies. ET3, a four-repeat (4R) isoform-specific tau antibody, did not label Pick bodies, but highlighted rare astrocytes, and threads in white matter bundles in the corpus striatum. Analysis of the tau gene revealed an L266V mutation in exon 9. Analysis of brain tissue from this case revealed elevated levels of exon 10+ tau RNA and soluble 4R tau. However, both 3R and 4R isoforms were present in sarkosyl-insoluble tau fractions with a predominance of the shortest 3R isoform. The L266V mutation is associated with decreased rate and extent of tau-induced microtubule assembly, and a 3R isoform-specific increase in tau self assembly as measured by an in vitro assay. Combined, these data indicate that L266V is a pathogenic tau mutation that is associated with Pick-like pathology. In addition, the results of the RD3 and ET3 immunostains clearly explain for the first time the presence of both 3R and 4R tau isoforms in preparations of insoluble tau from some Pick's disease cases.

  16. A Novel MAPT Mutation, G55R, in a Frontotemporal Dementia Patient Leads to Altered Tau Function

    PubMed Central

    Guzman, Elmer; Barczak, Anna; Chodakowska-Żebrowska, Małgorzata; Barcikowska, Maria; Feinstein, Stuart

    2013-01-01

    Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment. PMID:24086739

  17. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments.

    PubMed

    Nishikawa, T; Takahashi, T; Nakamori, M; Hosomi, N; Maruyama, H; Miyazaki, Y; Izumi, Y; Matsumoto, M

    2016-12-01

    Neurofibrillary tangles (NFTs), a cardinal pathological feature of neurodegenerative disorders, such as Alzheimer's disease (AD) are primarily composed of hyper-phosphorylated tau protein. Recently, several other molecules, including flotillin-1, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] and cyclin-dependent kinase 5 (CDK5), have also been revealed as constituents of NFTs. Flotillin-1 and PtdIns(4,5)P2 are considered markers of raft microdomains, whereas CDK5 is a tau kinase. Therefore, we hypothesized that NFTs have a relationship with raft domains and the tau phosphorylation that occurs within NFTs. We investigated six cases of AD, six cases of other neurodegenerative diseases with NFTs and three control cases. We analysed the PtdIns(4,5)P2-immunopositive material in detail, using super-resolution microscopy and electron microscopy to elucidate its pattern of expression. We also investigated the spatial relationship between the PtdIns(4,5)P2-immunopositive material and tau kinases through double immunofluorescence analysis. Pretangles contained either paired helical filaments (PHFs) or PtdIns(4,5)P2-immunopositive small vesicles (approximately 1 μm in diameter) with nearly identical topology to granulovacuolar degeneration (GVD) bodies. Various combinations of these vesicles and GVD bodies, the latter of which are pathological hallmarks observed within the neurons of AD patients, were found concurrently in neurons. These vesicles and GVD bodies were both immunopositive not only for PtdIns(4,5)P2, but also for several tau kinases such as glycogen synthase kinase-3β and spleen tyrosine kinase. These observations suggest that clusters of raft-derived vesicles that resemble GVD bodies are substructures of pretangles other than PHFs. These tau kinase-bearing vesicles are likely involved in the modification of tau protein and in NFT formation. © 2015 The Authors Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of

  18. Phosphorylated human tau associates with mouse prion protein amyloid in scrapie-infected mice but does not increase progression of clinical disease.

    PubMed

    Race, Brent; Phillips, Katie; Kraus, Allison; Chesebro, Bruce

    2016-07-03

    Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.

  19. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe.

    PubMed

    Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung

    2017-09-27

    The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ( 306 VQIVYK 311 ) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.

  20. The nonlinear relationship between cerebrospinal fluid Aβ42 and tau in preclinical Alzheimer's disease.

    PubMed

    de Leon, Mony J; Pirraglia, Elizabeth; Osorio, Ricardo S; Glodzik, Lidia; Saint-Louis, Les; Kim, Hee-Jin; Fortea, Juan; Fossati, Silvia; Laska, Eugene; Siegel, Carole; Butler, Tracy; Li, Yi; Rusinek, Henry; Zetterberg, Henrik; Blennow, Kaj

    2018-01-01

    Cerebrospinal fluid (CSF) studies consistently show that CSF levels of amyloid-beta 1-42 (Aβ42) are reduced and tau levels increased prior to the onset of cognitive decline related to Alzheimer's disease (AD). However, the preclinical prediction accuracy for low CSF Aβ42 levels, a surrogate for brain Aβ42 deposits, is not high. Moreover, the pathology data suggests a course initiated by tauopathy contradicting the contemporary clinical view of an Aβ initiated cascade. CSF Aβ42 and tau data from 3 normal aging cohorts (45-90 years) were combined to test both cross-sectional (n = 766) and longitudinal (n = 651) hypotheses: 1) that the relationship between CSF levels of Aβ42 and tau are not linear over the adult life-span; and 2) that non-linear models improve the prediction of cognitive decline. Supporting the hypotheses, the results showed that a u-shaped quadratic fit (Aβ2) best describes the relationship for CSF Aβ42 with CSF tau levels. Furthermore we found that the relationship between Aβ42 and tau changes with age-between 45 and 70 years there is a positive linear association, whereas between 71 and 90 years there is a negative linear association between Aβ42 and tau. The quadratic effect appears to be unique to Aβ42, as Aβ38 and Aβ40 showed only positive linear relationships with age and CSF tau. Importantly, we observed the prediction of cognitive decline was improved by considering both high and low levels of Aβ42. Overall, these data suggest an earlier preclinical stage than currently appreciated, marked by CSF elevations in tau and accompanied by either elevations or reductions in Aβ42. Future studies are needed to examine potential mechanisms such as failing CSF clearance as a common factor elevating CSF Aβxx analyte levels prior to Aβ42 deposition in brain.

  1. Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Zhou, Qi-Da; Xu, Lin; Zhang, Zhi-Jun

    2015-06-01

    To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.

  2. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  3. CSF tau and tau/Aβ42 predict cognitive decline in Parkinson's disease.

    PubMed

    Liu, Changqin; Cholerton, Brenna; Shi, Min; Ginghina, Carmen; Cain, Kevin C; Auinger, Peggy; Zhang, Jing

    2015-03-01

    A substantial proportion of patients with Parkinson's disease (PD) have concomitant cognitive dysfunction. Identification of biomarker profiles that predict which PD patients have a greater likelihood for progression of cognitive symptoms is pressingly needed for future treatment and prevention approaches. Subjects were drawn from the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) study, a large clinical trial that enrolled initially untreated PD patients. For the current study, Phase One encompassed trial baseline until just prior to levodopa administration (n = 403), and Phase Two spanned the initiation of levodopa treatment until the end of cognitive follow-up (n = 305). Correlations and linear mixed models were performed to determine cross-sectional and longitudinal associations between baseline amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) and measures of memory and executive function. Analyses also considered APOE genotype and tremor- vs. rigidity-dominant phenotype. No association was found between baseline CSF biomarkers and cognitive test performance during Phase One. However, once levodopa treatment was initiated, higher p-tau and p-tau/Aβ42 predicted subsequent decline on cognitive tasks involving both memory and executive functions. The interactions between biomarkers and cognition decline did not appear to be influenced by levodopa dosage, APOE genotype or motor phenotype. The current study has, for the first time, demonstrated the possible involvement of tau species, whose gene (MAPT) has been consistently linked to the risk of PD by genome-wide association studies, in the progression of cognitive symptoms in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer's disease.

    PubMed

    Kang, Ju-Hee; Vanderstichele, Hugo; Trojanowski, John Q; Shaw, Leslie M

    2012-04-01

    The xMAP-Luminex multiplex platform for measurement of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers using Innogenetics AlzBio3 immunoassay reagents that are for research use only has been shown to be an effective tool for early detection of an AD-like biomarker signature based on concentrations of CSF Aβ(1-42), t-tau and p-tau(181). Among the several advantages of the xMAP-Luminex platform for AD CSF biomarkers are: a wide dynamic range of ready-to-use calibrators, time savings for the simultaneous analyses of three biomarkers in one analytical run, reduction of human error, potential of reduced cost of reagents, and a modest reduction of sample volume as compared to conventional enzyme-linked immunosorbant assay (ELISA) methodology. Recent clinical studies support the use of CSF Aβ(1-42), t-tau and p-tau(181) measurement using the xMAP-Luminex platform for the early detection of AD pathology in cognitively normal individuals, and for prediction of progression to AD dementia in subjects with mild cognitive impairment (MCI). Studies that have shown the prediction of risk for progression to AD dementia by MCI patients provide the basis for the use of CSF Aβ(1-42), t-tau and p-tau(181) testing to assign risk for progression in patients enrolled in therapeutic trials. Furthermore emerging study data suggest that these pathologic changes occur in cognitively normal subjects 20 or more years before the onset of clinically detectable memory changes thus providing an objective measurement for use in the assessment of treatment effects in primary treatment trials. However, numerous previous ELISA and Luminex-based multiplex studies reported a wide range of absolute values of CSF Aβ(1-42), t-tau and p-tau(181) indicative of substantial inter-laboratory variability as well as varying degrees of intra-laboratory imprecision. In order to address these issues a recent inter-laboratory investigation that included a common set of CSF pool aliquots from

  5. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    PubMed

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (p<0.05) and fewer crossings over previous platform position (p<0.05) during probe trial. Spontaneous locomotor activity and anxiety in open field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  6. Vital Signs: How Early Can Resident Evaluation Predict Acquisition of Competency in Surgical Pathology?

    PubMed Central

    Ducatman, Barbara S.; Williams, H. James; Hobbs, Gerald; Gyure, Kymberly A.

    2009-01-01

    Objectives To determine whether a longitudinal, case-based evaluation system can predict acquisition of competency in surgical pathology and how trainees at risk can be identified early. Design Data were collected for trainee performance on surgical pathology cases (how well their diagnosis agreed with the faculty diagnosis) and compared with training outcomes. Negative training outcomes included failure to complete the residency, failure to pass the anatomic pathology component of the American Board of Pathology examination, and/or failure to obtain or hold a position immediately following training. Findings Thirty-three trainees recorded diagnoses for 54 326 surgical pathology cases, with outcome data available for 15 residents. Mean case-based performance was significantly higher for those with positive outcomes, and outcome status could be predicted as early as postgraduate year-1 (P  =  .0001). Performance on the first postgraduate year-1 rotation was significantly associated with the outcome (P  =  .02). Although trainees with unsuccessful outcomes improved their performance more rapidly, they started below residents with successful outcomes and did not make up the difference during training. There was no significant difference in Step 1 or 2 United States Medical Licensing Examination (USMLE) scores when compared with performance or final outcomes (P  =  .43 and P  =  .68, respectively) and the resident in-service examination (RISE) had limited predictive ability. Discussion Differences between successful- and unsuccessful-outcome residents were most evident in early residency, ideal for designing interventions or counseling residents to consider another specialty. Conclusion Our longitudinal case-based system successfully identified trainees at risk for failure to acquire critical competencies for surgical pathology early in the program. PMID:21975705

  7. [Pathology of basal ganglia in neurodegenerative diseases].

    PubMed

    Wakabayashi, Koichi; Tanji, Kunikazu; Mori, Fumiaki

    2009-04-01

    Intra- and/or extracellular proteinaceous inclusions in the brain tissue are characteristic pathological markers of many neurodegenerative diseases. Tau protein in neurofibrillary tangles and beta-amyloid in senile plaques are associated with Alzheimer's disease. Tau is associated with various neurological conditions, which are collectively referred to as tauopathies. Alpha-synucleinopathy is a term that collectively refers to a set of diseases in which neurodegeneration is accompanied by intracellular accumulation of alpha-synuclein in neurons or glial cells. Recently, TDP-43 has been identified as a major disease protein in the ubiquitinated inclusions in deseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration with tau-negative, ubiquitin-positive inclusions. Thus, these neurodegenerative disorders comprise a new disease class, namely, TDP-43 proteinopathy. In this article, we review the present understanding of histopathological features of basal ganglia lesions in protein conformation disorders, including tauopathy, alpha-synucleinopathy, and TDP-43 proteinopathy.

  8. Brainstem Alzheimer’s-Like Pathology in the Triple Transgenic Mouse Model of Alzheimer’s Disease

    PubMed Central

    Overk, Cassia R.; Kelley, Christy M.; Mufson, Elliott J.

    2011-01-01

    The triple transgenic mouse (3xTgAD), harboring human APPSwe, PS1M146V and TauP301L genes, develops age-dependent forebrain intraneuronal Aβ and tau and extraneuronal plaques. We evaluated brainstem AD-like pathology using 6E10, AT8, and Alz50 antibodies and unbiased stereology in young and old 3xTgAD mice. Intraneuronal Aβ occurred in the tectum, periaqueductal gray, substantia nigra, red nucleus, tegmentum and mesencephalic V nucleus at all ages. Aβ-positive neuron numbers significantly decreased in the superior colliculus and substantia nigra while AT8-positive superior colliculus, red nucleus, principal sensory V, vestibular nuclei, and tegmental neurons significantly increased between 2 and 12 months. Alz50-positive neuron numbers increased only in the inferior colliculus between these ages. Dual labeling revealed a few Aβ- and tau- positive neurons. Plaques occurred only in the pons of female 3xTgAD mice starting at 9 months. 3xTgAD mice provide a platform to define in vivo mechanisms of Aβ and tau brainstem pathology. PMID:19524671

  9. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease

    PubMed Central

    Schonhaut, Daniel R.; Schöll, Michael; Lockhart, Samuel N.; Ayakta, Nagehan; Baker, Suzanne L.; O’Neil, James P.; Janabi, Mustafa; Lazaris, Andreas; Cantwell, Averill; Vogel, Jacob; Santos, Miguel; Miller, Zachary A.; Bettcher, Brianne M.; Vossel, Keith A.; Kramer, Joel H.; Gorno-Tempini, Maria L.; Miller, Bruce L.; Jagust, William J.; Rabinovici, Gil D.

    2016-01-01

    See Sarazin et al. (doi:10.1093/brain/aww041) for a scientific commentary on this article. The advent of the positron emission tomography tracer 18F-AV1451 provides the unique opportunity to visualize the regional distribution of tau pathology in the living human brain. In this study, we tested the hypothesis that tau pathology is closely linked to symptomatology and patterns of glucose hypometabolism in Alzheimer’s disease, in contrast to the more diffuse distribution of amyloid-β pathology. We included 20 patients meeting criteria for probable Alzheimer’s disease dementia or mild cognitive impairment due to Alzheimer’s disease, presenting with a variety of clinical phenotypes, and 15 amyloid-β-negative cognitively normal individuals, who underwent 18F-AV1451 (tau), 11C-PiB (amyloid-β) and 18F-FDG (glucose metabolism) positron emission tomography, apolipoprotein E (APOE) genotyping and neuropsychological testing. Voxel-wise contrasts against controls (at P < 0.05 family-wise error corrected) showed that 18F-AV1451 and 18F-FDG patterns in patients with posterior cortical atrophy (‘visual variant of Alzheimer’s disease’, n = 7) specifically targeted the clinically affected posterior brain regions, while 11C-PiB bound diffusely throughout the neocortex. Patients with an amnestic-predominant presentation (n = 5) showed highest 18F-AV1451 retention in medial temporal and lateral temporoparietal regions. Patients with logopenic variant primary progressive aphasia (‘language variant of Alzheimer’s disease’, n = 5) demonstrated asymmetric left greater than right hemisphere 18F-AV1451 uptake in three of five patients. Across 30 FreeSurfer-defined regions of interest in 16 Alzheimer’s disease patients with all three positron emission tomography scans available, there was a strong negative association between 18F-AV1451 and 18F-FDG uptake (Pearson’s r = −0.49 ± 0.07, P < 0.001) and less pronounced positive associations between 11C-PiB and 18F

  10. No added diagnostic value of non-phosphorylated tau fraction (p-taurel) in CSF as a biomarker for differential dementia diagnosis.

    PubMed

    Goossens, Joery; Bjerke, Maria; Struyfs, Hanne; Niemantsverdriet, Ellis; Somers, Charisse; Van den Bossche, Tobi; Van Mossevelde, Sara; De Vil, Bart; Sieben, Anne; Martin, Jean-Jacques; Cras, Patrick; Goeman, Johan; De Deyn, Peter Paul; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan

    2017-07-14

    The Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers Aβ 1-42 , t-tau, and p-tau 181 overlap with other diseases. New tau modifications or epitopes, such as the non-phosphorylated tau fraction (p-tau rel ), may improve differential dementia diagnosis. The goal of this study is to investigate if p-tau rel can improve the diagnostic performance of the AD CSF biomarker panel for differential dementia diagnosis. The study population consisted of 45 AD, 45 frontotemporal lobar degeneration (FTLD), 45 dementia with Lewy bodies (DLB), and 21 Creutzfeldt-Jakob disease (CJD) patients, and 20 cognitively healthy controls. A substantial subset of the patients was pathology-confirmed. CSF levels of Aβ 1-42 , t-tau, p-tau 181 , and p-tau rel were determined with commercially available single-analyte enzyme-linked immunosorbent assay (ELISA) kits. Diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analyses, and area under the curve (AUC) values were compared using DeLong tests. The diagnostic performance of single markers as well as biomarker ratios was determined for each pairwise comparison of different dementia groups and controls. The addition of p-tau rel to the AD biomarker panel decreased its diagnostic performance when discriminating non-AD, FTLD, and DLB from AD. As a single marker, p-tau rel increased the diagnostic performance for CJD. No significant difference was found in AUC values with the addition of p-tau rel when differentiating between AD or non-AD dementias and controls. The addition of p-tau rel to the AD CSF biomarker panel failed to improve differentiation between AD and non-AD dementias.

  11. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals.

    PubMed

    Schultz, Aaron P; Chhatwal, Jasmeer P; Hedden, Trey; Mormino, Elizabeth C; Hanseeuw, Bernard J; Sepulcre, Jorge; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F; Johnson, Keith A; Sperling, Reisa A

    2017-04-19

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ 1-42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ + ) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ + individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F 18 -AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease

  12. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography.

    PubMed

    Mielke, Michelle M; Hagen, Clinton E; Xu, Jing; Chai, Xiyun; Vemuri, Prashanthi; Lowe, Val J; Airey, David C; Knopman, David S; Roberts, Rosebud O; Machulda, Mary M; Jack, Clifford R; Petersen, Ronald C; Dage, Jeffrey L

    2018-04-04

    We examined and compared plasma phospho-tau181 (pTau181) and total tau: (1) across the Alzheimer's disease (AD) clinical spectrum; (2) in relation to brain amyloid β (Aβ) positron emission tomography (PET), tau PET, and cortical thickness; and (3) as a screening tool for elevated brain Aβ. Participants included 172 cognitively unimpaired, 57 mild cognitively impaired, and 40 AD dementia patients with concurrent Aβ PET (Pittsburgh compound B), tau PET (AV1451), magnetic resonance imaging, plasma total tau, and pTau181. Plasma total tau and pTau181 levels were higher in AD dementia patients than those in cognitively unimpaired. Plasma pTau181 was more strongly associated with both Aβ and tau PET. Plasma pTau181 was a more sensitive and specific predictor of elevated brain Aβ than total tau and was as good as, or better than, the combination of age and apolipoprotein E (APOE). Plasma pTau181 may have utility as a biomarker of AD pathophysiology and as a noninvasive screener for elevated brain Aβ. Copyright © 2018. Published by Elsevier Inc.

  13. Amyloid-β oligomer Aβ*56 induces specific alterations of tau phosphorylation and neuronal signaling

    PubMed Central

    Amar, Fatou; Sherman, Mathew A.; Rush, Travis; Larson, Megan; Boyle, Gabriel; Chang, Liu; Götz, Jürgen; Buisson, Alain; Lesné, Sylvain E.

    2018-01-01

    Oligomeric forms of amyloid-forming proteins are believed to be the principal initiating bioactive species in many neurodegenerative disorders, including Alzheimer’s disease (AD). Amyloid-β (Aβ) oligomers are implicated in pathological modification and aggregation of the microtubule-associated protein tau. To investigate the specific molecular pathways activated by different assemblies, we isolated various forms of Aβ from Tg2576 mice. We found that the Aβ*56, which is linked with preclinical AD, interacted with NMDA receptors (NMDARs) in primary cortical neurons, increased NMDAR-dependent Ca2+ influx and, consequently, increased intracellular calcium concentrations and the activation of Ca2+-dependent calmodulin kinase IIα (CaMKIIα). In neurons in mice and in culture, activated CaMKIIα induced increased phosphorylation and missorting of tau, which is associated with AD pathology. In contrast, exposure of cultured primary cortical neurons to other oligomeric Aβ forms (dimers and trimers) did not trigger these effects. Our results indicate that distinct Aβ assemblies activate neuronal signaling pathways in a selective manner, and that dissecting the molecular events caused by each may inform more effective therapeutic strategies. PMID:28487416

  14. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking

    PubMed Central

    Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia

    2016-01-01

    The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease. DOI: http://dx.doi.org/10.7554/eLife.14694.001 PMID:27501441

  15. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes.

    PubMed

    Dey, Aditi; Hao, Shuai; Wosiski-Kuhn, Marlena; Stranahan, Alexis M

    2017-09-01

    Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Clinical features of pathologic childhood aerophagia: early recognition and essential diagnostic criteria.

    PubMed

    Hwang, Jin-Bok; Choi, Won Joung; Kim, Jun Sik; Lee, Sang Yun; Jung, Chul-Ho; Lee, Young Hwan; Kam, Sin

    2005-11-01

    This study investigated the early recognition and diagnosis of pathologic childhood aerophagia to avoid unnecessary diagnostic approaches and serious complications. Between 1995 and 2003, data from 42 consecutive patients with pathologic childhood aerophagia, aged 2 to 16 years, were reviewed. An esophageal air sign was defined as an abnormal air shadow on the proximal esophagus adjacent to the trachea on a full-inflated chest radiograph. Of the 42 patients, the chief complaints were abdominal distention (52.4%), recurrent abdominal pain syndrome (21.4%), chronic diarrhea (11.9%), acute abdominal pain (7.1%) and others (7.2%). Mean symptom duration before diagnosis was 10.6 months (range, 1 to 60 months), and it exceeded 12 months for 16 (38.1%) patients. The clinical features common to all patients were abdominal distention that increased progressively during the day, increased flatus on sleep, increased bowel sound on auscultation and an air-distended stomach with increased gas in the small and large bowel by radiography. Visible or audible air swallowing (26.2%) and repetitive belching (9.5%) were also noted. Esophageal air sign was observed in 76.2% of the patients and in 9.7% of the controls (P=0.0001). The subgroups of pathologic childhood aerophagia divided by underlying associations were pathologic childhood aerophagia without severe mental retardation (76.2%), which consisted of psychological stresses and uncertain condition, and pathologic childhood aerophagia with severe mental retardation (23.8%). The common manifestations of pathologic childhood aerophagia may be its essential diagnostic criteria, and esophageal air sign may be useful for the early recognition of pathologic childhood aerophagia. Our observations show that the diagnostic clinical profiles suggested by Rome II criteria should be detailed and made clearer if they are to serve as diagnostic criteria for pathologic childhood aerophagia.

  17. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    PubMed

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Shawn M.; Lockhart, Samuel N.; Baker, Suzanne L.

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turnmore » associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related protein aggregation as an underlying mechanism of age-related memory impairment.« less

  19. Changes in tau phosphorylation in hibernating rodents.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

    2013-07-01

    Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes. Copyright © 2013 Wiley Periodicals, Inc.

  20. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies

    PubMed Central

    Ono, Maiko; Sahara, Naruhiko; Kumata, Katsushi; Ji, Bin; Ni, Ruiqing; Koga, Shunsuke; Dickson, Dennis W.; Trojanowski, John Q.; Lee, Virginia M-Y.; Yoshida, Mari; Hozumi, Isao; Yoshiyama, Yasumasa; van Swieten, John C.; Nordberg, Agneta; Suhara, Tetsuya; Zhang, Ming-Rong; Higuchi, Makoto

    2017-01-01

    Abstract Diverse neurodegenerative disorders are characterized by deposition of tau fibrils composed of conformers (i.e. strains) unique to each illness. The development of tau imaging agents has enabled visualization of tau lesions in tauopathy patients, but the modes of their binding to different tau strains remain elusive. Here we compared binding of tau positron emission tomography ligands, PBB3 and AV-1451, by fluorescence, autoradiography and homogenate binding assays with homologous and heterologous blockades using tauopathy brain samples. Fluorescence microscopy demonstrated intense labelling of non-ghost and ghost tangles with PBB3 and AV-1451, while dystrophic neurites were more clearly detected by PBB3 in brains of Alzheimer’s disease and diffuse neurofibrillary tangles with calcification, characterized by accumulation of all six tau isoforms. Correspondingly, partially distinct distributions of autoradiographic labelling of Alzheimer’s disease slices with 11C-PBB3 and 18F-AV-1451 were noted. Neuronal and glial tau lesions comprised of 4-repeat isoforms in brains of progressive supranuclear palsy, corticobasal degeneration and familial tauopathy due to N279K tau mutation and 3-repeat isoforms in brains of Pick’s disease and familial tauopathy due to G272V tau mutation were sensitively detected by PBB3 fluorescence in contrast to very weak AV-1451 signals. This was in line with moderate 11C-PBB3 versus faint 18F-AV-1451 autoradiographic labelling of these tissues. Radioligand binding to brain homogenates revealed multiple binding components with differential affinities for 11C-PBB3 and 18F-AV-1451, and higher availability of binding sites on progressive supranuclear palsy tau deposits for 11C-PBB3 than 18F-AV-1451. Our data indicate distinct selectivity of PBB3 compared to AV-1451 for diverse tau fibril strains. This highlights the more robust ability of PBB3 to capture wide-range tau pathologies. PMID:28087578

  1. Developmental exposure to lead (Pb) alters the expression of the human tau gene and its products in a transgenic animal model

    PubMed Central

    Dash, M.; Eid, A.; Subaiea, G.; Chang, J.; Deeb, R.; Masoud, A.; Renehan, W.E.; Adem, A.; Zawia, N.H.

    2016-01-01

    Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregationof the tau protein in the human brain. The best known of these illnesses is Alzheimer's disease (AD); a disease where the microtubule associated protein tau (MAPT) becomes hyperphosphorylated (lowering its binding affinity to microtubules) and aggregates within neurons in the form of neurofibrillary tangles (NFTs). In this paper we examine whether environmental factors play a significant role in tau pathogenesis. Our studies were conducted in a double mutant mouse model that expressed the human tau gene and lacked the gene for murine tau. The human tau mouse model was tested for the transgene's ability to respond to an environmental toxicant. Pups were developmentally exposed to lead (Pb) from postnatal day (PND) 1-20 with 0.2% Pb acetate. Mice were then sacrificed at PND 20, 30, 40 and 60. Protein and mRNA levels for tau and CDK5 as well as tau phosphorylation at Ser396 were determined. In addition, the potential role of miRNA in tau expression was investigated by measuring levels of miR-34c, a miRNA that targets the mRNA for human tau, at PND20 and 50. The expression of the human tau transgene was altered by developmental exposure to Pb. This exposure also altered the expression of miR-34c. Our findings are the first of their kind to test the responsiveness of the human tau gene to an environmental toxicant and to examine an epigenetic mechanism that may be involved in the regulation of this gene's expression. PMID:27293183

  2. Phospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model

    PubMed Central

    Antón-Fernández, Alejandro; Merchán-Rubira, Jesús; Avila, Jesús; Hernández, Félix; DeFelipe, Javier; Muñoz, Alberto

    2017-01-01

    The Golgi apparatus (GA) is a highly dynamic organelle involved in the processing and sorting of cellular proteins. In Alzheimer’s disease (AD), it has been shown to decrease in size and become fragmented in neocortical and hippocampal neuronal subpopulations. This fragmentation and decrease in size of the GA in AD has been related to the accumulation of hyperphosphorylated tau. However, the involvement of other pathological factors associated with the course of the disease, such as the extracellular accumulation of amyloid-β (Aβ) aggregates, cannot be ruled out, since both pathologies are present in AD patients. Here we use the P301S tauopathy mouse model to examine possible alterations of the GA in neurons that overexpress human tau (P301S mutated gene) in neocortical and hippocampal neurons, using double immunofluorescence techniques and confocal microscopy. Quantitative analysis revealed that neurofibrillary tangle (NFT)-bearing neurons had important morphological alterations and reductions in the surface area and volume of the GA compared with NFT-free neurons. Since in this mouse model there are no Aβ aggregates typical of AD, the present findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA, and that these changes may occur in the absence of Aβ pathology. PMID:28922155

  3. Phospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model.

    PubMed

    Antón-Fernández, Alejandro; Merchán-Rubira, Jesús; Avila, Jesús; Hernández, Félix; DeFelipe, Javier; Muñoz, Alberto

    2017-01-01

    The Golgi apparatus (GA) is a highly dynamic organelle involved in the processing and sorting of cellular proteins. In Alzheimer's disease (AD), it has been shown to decrease in size and become fragmented in neocortical and hippocampal neuronal subpopulations. This fragmentation and decrease in size of the GA in AD has been related to the accumulation of hyperphosphorylated tau. However, the involvement of other pathological factors associated with the course of the disease, such as the extracellular accumulation of amyloid-β (Aβ) aggregates, cannot be ruled out, since both pathologies are present in AD patients. Here we use the P301S tauopathy mouse model to examine possible alterations of the GA in neurons that overexpress human tau (P301S mutated gene) in neocortical and hippocampal neurons, using double immunofluorescence techniques and confocal microscopy. Quantitative analysis revealed that neurofibrillary tangle (NFT)-bearing neurons had important morphological alterations and reductions in the surface area and volume of the GA compared with NFT-free neurons. Since in this mouse model there are no Aβ aggregates typical of AD, the present findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA, and that these changes may occur in the absence of Aβ pathology.

  4. Proteomic determination of widespread detergent-insolubility including Abeta but not tau early in the pathogenesis of Alzheimer's disease.

    PubMed

    Woltjer, Randall L; Cimino, P J; Boutté, Angela M; Schantz, Aimee M; Montine, Kathleen S; Larson, Eric B; Bird, Thomas; Quinn, Joseph F; Zhang, Jing; Montine, Thomas J

    2005-11-01

    Biochemical characterization of the major detergent-insoluble proteins that comprise hallmark histopathologic lesions initiated the molecular era of Alzheimer's disease (AD) research. Here, we reinvestigated detergent-insoluble proteins in AD using modern proteomic techniques. Using liquid chromatography (LC)-mass spectrometry (MS)-MS-based proteomics, we robustly identified 125 proteins in the detergent-insoluble fraction of late-onset AD (LOAD) temporal cortex that included several proteins critical to Abeta production, components of synaptic scaffolding, and products of genes linked to an increased risk of LOAD; we verified 15 of 15 of these proteins by Western blot. Following multiple analyses, we estimated that these represent ~80% of detergent-insoluble proteins in LOAD detectable by our method. Abeta, tau, and 7 of 8 other newly identified detergent-insoluble proteins were disproportionately increased in temporal cortex from patients with LOAD and AD derived from mutations in PSEN1 and PSEN2; all of these except tau were elevated in individuals with prodromal dementia, while none except Abeta were elevated in aged APPswe mice. These results are consistent with the amyloid hypothesis of AD and extend it to include widespread protein insolubility, not exclusively Abeta insolubility, early in AD pathogenesis even before the onset of clinical dementia.

  5. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits

    PubMed Central

    Chatterjee, Shreyasi; Mudher, Amritpal

    2018-01-01

    Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease. PMID:29950970

  6. Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: Importance of thermoregulation in linking diabetes and Alzheimer's disease.

    PubMed

    Gratuze, Maud; El Khoury, Noura B; Turgeon, Andréanne; Julien, Carl; Marcouiller, François; Morin, Françoise; Whittington, Robert A; Marette, André; Calon, Frédéric; Planel, Emmanuel

    2017-02-01

    Over the last few decades, there has been a significant increase in epidemiological studies suggesting that type 2 diabetes (T2DM) is linked to a higher risk of Alzheimer's disease (AD). However, how T2DM affects AD pathology, such as tau hyperphosphorylation, is not well understood. In this study, we investigated the impact of T2DM on tau phosphorylation in ob/ob mice, a spontaneous genetic model of T2DM. Tau phosphorylation at the AT8 epitope was slightly elevated in 4-week-old ob/ob mice while 26-week-old ob/ob mice exhibited tau hyperphosphorylation at multiple tau phospho-epitopes (Tau1, CP13, AT8, AT180, PHF1). We then examined the mechanism of tau hyperphosphorylation and demonstrated that it is mostly due to hypothermia, as ob/ob mice were hypothermic and normothermia restored tau phosphorylation to control levels. As caffeine has been shown to be beneficial for diabetes, obesity and tau phosphorylation, we, therefore, used it as therapeutic treatment. Unexpectedly, chronic caffeine intake exacerbated tau hyperphosphorylation by promoting deeper hypothermia. Our data indicate that tau hyperphosphorylation is predominately due to hypothermia consequent to impaired thermoregulation in ob/ob mice. This study establishes a novel link between diabetes and AD, and reinforces the importance of recording body temperature to better assess the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology

    PubMed Central

    Revett, Timothy J.; Baker, Glen B.; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid β peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid β and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid β production, but also amyloid β can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  8. Treatment-as-usual (TAU) is anything but usual: a meta-analysis of CBT versus TAU for anxiety and depression.

    PubMed

    Watts, Sarah E; Turnell, Adrienne; Kladnitski, Natalie; Newby, Jill M; Andrews, Gavin

    2015-04-01

    There were three aims of this study, the first was to examine the efficacy of CBT versus treatment-as-usual (TAU) in the treatment of anxiety and depressive disorders, the second was to examine how TAU is defined in TAU control groups for those disorders, and the third was to explore whether the type of TAU condition influences the estimate of effects of CBT. A systematic search of Cochrane Central Register of Controlled Trials, PsycINFO, and CINAHL was conducted. 48 studies of CBT for depressive or anxiety disorders (n=6926) that specified that their control group received TAU were identified. Most (n=45/48) provided an explanation of the TAU group however there was significant heterogeneity amongst TAU conditions. The meta-analysis showed medium effects favoring CBT over TAU for both anxiety (g=0.69, 95% CI 0.47-0.92, p<0.001, n=1318) and depression (g=0.70, 95% CI 0.49-0.90, p<0.001, n=5054), with differential effects observed across TAU conditions. CBT is superior to TAU and the size of the effect of CBT compared to TAU depends on the nature of the TAU condition. The term TAU is used in different ways and should be more precisely described. The four key details to be reported can be thought of as "who, what, how many, and any additional treatments?" Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Observation of Upsilon(3S)-->tau+tau- and tests of lepton universality in Upsilon decays.

    PubMed

    Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Horwitz, N; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R

    2007-02-02

    Using data collected with the CLEO III detector at the CESR e+e- collider, we report on a first observation of the decay Upsilon(3S)-->tau+tau-, and precisely measure the ratio of branching fractions of Upsilon(nS), n=1, 2, 3, to tau+tau- and mu+mu- final states, finding agreement with expectations from lepton universality. We derive absolute branching fractions for these decays, and also set a limit on the influence of a low mass CP-odd Higgs boson in the decay of the Upsilon(1S).

  10. Novel Treatment Strategies Using TiO2-Nanowired Delivery of Histaminergic Drugs and Antibodies to Tau With Cerebrolysin for Superior Neuroprotection in the Pathophysiology of Alzheimer's Disease.

    PubMed

    Sharma, Aruna; Menon, Preeti K; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Tian, Z Ryan; Ozkizilcik, Asya; Castellani, Rudy J; Mössler, Herbert; Sharma, Hari S

    2017-01-01

    More than 5.5 million Americans of all ages are suffering from Alzheimer's disease (AD) till today for which no suitable therapy has been developed so far. Thus, there is an urgent need to explore novel therapeutic measures to contain brain pathology in AD. The hallmark of AD includes amyloid-beta peptide (AβP) deposition and phosphorylation of tau in AD brain. Recent evidences also suggest a marked decrease in neurotrophic factors in AD. Thus, exogenous supplement of neurotrophic factors could be one of the possible ways for AD therapy. Human postmortem brain in AD shows alterations in histamine receptors as well, indicating an involvement of the amine in AD-induced brain pathology. In this review, we focused on role of histamine 3 and 4 receptor-modulating drugs in the pathophysiology of AD. Moreover, antibodies to histamine and tau appear to be also beneficial in reducing brain pathology, blood-brain barrier breakdown, and edema formation in AD. Interestingly, TiO 2 -nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors attenuated AβP deposition and reduced tau phosphorylation in AD brain leading to neuroprotection. Coadministration of cerebrolysin with histamine antibodies or tau antibodies has further enhanced neuroprotection in AD. These novel observations strongly suggest a role of nanomedicine in AD that requires further investigation. © 2017 Elsevier Inc. All rights reserved.

  11. Measurement of the $$\\mathrm{Z}\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV and validation of $$\\tau$$ lepton analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A measurement is presented of themore » $$\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau$$ cross section in pp collisions at $$\\sqrt{s} = $$ 13 TeV, using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb$$^{-1}$$. The product of the inclusive cross section and branching fraction is measured to be $$\\sigma(\\mathrm{pp} \\to \\mathrm{Z}/\\gamma^{*}\\text{+X}) \\, \\mathcal{B}(\\mathrm{Z}/\\gamma^{*} \\to \\tau\\tau) = $$ 1848 $$\\pm$$ 12 (stat) $$\\pm$$ 67 (syst+lumi) pb, in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of $$\\tau$$ lepton production. The measurement also provides the reconstruction efficiency and energy scale for $$\\tau$$ decays to hadrons+$$\

  12. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway

    PubMed Central

    Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1–42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1–42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1–42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1–42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  13. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    PubMed

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

  14. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer's disease.

    PubMed

    Bazzigaluppi, Paolo; Beckett, Tina L; Koletar, Margaret M; Lai, Aaron Y; Joo, Illsung L; Brown, Mary E; Carlen, Peter L; McLaurin, JoAnne; Stefanovic, Bojana

    2018-03-01

    Alzheimer's disease (AD) is pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aβ-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABA A ) receptor subunits α1 , α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aβ and tau pathologies. This article is part of the Special Issue "Vascular Dementia". © 2017 Her Majesty the Queen in Right of Canada Journal of Neurochemistry © 2017 International Society for Neurochemistry.

  15. Cellular Models of Aggregation-dependent Template-directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer Disease.

    PubMed

    Harrington, Charles R; Storey, John M D; Clunas, Scott; Harrington, Kathleen A; Horsley, David; Ishaq, Ahtsham; Kemp, Steven J; Larch, Christopher P; Marshall, Colin; Nicoll, Sarah L; Rickard, Janet E; Simpson, Michael; Sinclair, James P; Storey, Lynda J; Wischik, Claude M

    2015-04-24

    Alzheimer disease (AD) is a degenerative tauopathy characterized by aggregation of Tau protein through the repeat domain to form intraneuronal paired helical filaments (PHFs). We report two cell models in which we control the inherent toxicity of the core Tau fragment. These models demonstrate the properties of prion-like recruitment of full-length Tau into an aggregation pathway in which template-directed, endogenous truncation propagates aggregation through the core Tau binding domain. We use these in combination with dissolution of native PHFs to quantify the activity of Tau aggregation inhibitors (TAIs). We report the synthesis of novel stable crystalline leucomethylthioninium salts (LMTX®), which overcome the pharmacokinetic limitations of methylthioninium chloride. LMTX®, as either a dihydromesylate or a dihydrobromide salt, retains TAI activity in vitro and disrupts PHFs isolated from AD brain tissues at 0.16 μM. The Ki value for intracellular TAI activity, which we have been able to determine for the first time, is 0.12 μM. These values are close to the steady state trough brain concentration of methylthioninium ion (0.18 μM) that is required to arrest progression of AD on clinical and imaging end points and the minimum brain concentration (0.13 μM) required to reverse behavioral deficits and pathology in Tau transgenic mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Near-atomic model of microtubule-tau interactions.

    PubMed

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment.

    PubMed

    Sohn, Peter Dongmin; Tracy, Tara E; Son, Hye-In; Zhou, Yungui; Leite, Renata E P; Miller, Bruce L; Seeley, William W; Grinberg, Lea T; Gan, Li

    2016-06-29

    Neurons are highly polarized cells in which asymmetric axonal-dendritic distribution of proteins is crucial for neuronal function. Loss of polarized distribution of the axonal protein tau is an early sign of Alzheimer's disease (AD) and other neurodegenerative disorders. The cytoskeletal network in the axon initial segment (AIS) forms a barrier between the axon and the somatodentritic compartment, contributing to axonal retention of tau. Although perturbation of the AIS cytoskeleton has been implicated in neurological disorders, the molecular triggers and functional consequence of AIS perturbation are incompletely understood. Here we report that tau acetylation and consequent destabilization of the AIS cytoskeleton promote the somatodendritic mislocalization of tau. AIS cytoskeletal proteins, including ankyrin G and βIV-spectrin, were downregulated in AD brains and negatively correlated with an increase in tau acetylated at K274 and K281. AIS proteins were also diminished in transgenic mice expressing tauK274/281Q, a tau mutant that mimics K274 and K281 acetylation. In primary neuronal cultures, the tauK274/281Q mutant caused hyperdynamic microtubules (MTs) in the AIS, shown by live-imaging of MT mobility and fluorescence recovery after photobleaching. Using photoconvertible tau constructs, we found that axonal tauK274/281Q was missorted into the somatodendritic compartment. Stabilizing MTs with epothilone D to restore the cytoskeletal barrier in the AIS prevented tau mislocalization in primary neuronal cultures. Together, these findings demonstrate that tau acetylation contributes to the pathogenesis of neurodegenerative disease by compromising the cytoskeletal sorting machinery in the AIS.

  18. Tau Deficiency Down-Regulated Transcription Factor Orthodenticle Homeobox 2 Expression in the Dopaminergic Neurons in Ventral Tegmental Area and Caused No Obvious Motor Deficits in Mice

    PubMed Central

    Tang, Xiaolu; Jiao, Luyan; Zheng, Meige; Yan, Yan; Nie, Qi; Wu, Ting; Wan, Xiaomei; Zhang, Guofeng; Li, Yonglin; Wu, Song; Jiang, Bin; Cai, Huaibin; Xu, Pingyi; Duan, Jinhai; Lin, Xian

    2018-01-01

    Tau protein participates in microtubule stabilization, axonal transport, and protein trafficking. Loss of normal tau function will exert a negative effect. However, current knowledge on the impact of tau deficiency on the motor behavior and related neurobiological changes is controversial. In this study, we examined motor functions and analyzed several proteins implicated in the maintenance of midbrain dopaminergic (DA) neurons (mDANs) function of adult and aged tau+/+, tau+/−, tau−/− mice. We found tau deficiency could not induce significant motor disorders. However, we discovered lower expression levels of transcription factors Orthodenticle homeobox 2 (OTX2) of mDANs in older aged mice. Compared with age-matched tau+/+ mice, there were 54.1% lower (p = 0.0192) OTX2 protein (OTX2-fluorescence intensity) in VTA DA neurons of tau+/−mice and 43.6% lower (p = 0.0249) OTX2 protein in VTA DA neurons of tau−/−mice at 18 months old. Combined with the relevant reports, our results suggested that tau deficiency alone might not be enough to mimic the pathology of Parkinson’s disease. However, OTX2 down-regulation indicates that mDANs of tau-deficient mice will be more sensitive to toxic damage from MPTP. PMID:29337233

  19. Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-actin rods primarily recruit microtubule binding domain epitopes.

    PubMed

    Whiteman, Ineka T; Minamide, Laurie S; Goh, De Lian; Bamburg, James R; Goldsbury, Claire

    2011-01-01

    Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies--AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422--raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD.

  20. The Discovery of the Tau Lepton: Part 1, The Early History Through 1975; Part 2, Confirmation of the Discovery and Measurement of Major Properties, 1976--1982

    DOE R&D Accomplishments Database

    Perl, M. L.

    1994-08-01

    Several previous papers have given the history of the discovery of the {tau} lepton at the Stanford Linear Accelerator Center (SLAC). These papers emphasized (a) the experiments which led to our 1975 publication of the first evidence for the existence of the {tau}, (b) the subsequent experiments which confirmed the existence of the r, and (c) the experiments which elucidated the major properties of the {tau}. That history will be summarized in Part 2 of this talk. In this Part 1, I describe the earlier thoughts and work of myself and my colleagues at SLAC in the 1960's and early 1970's which led to the discovery. I also describe the theoretical and experimental events in particle physics in the 1960's in which our work was immersed. I will also try to describe for the younger generations of particle physicists, the atmosphere in the 1960's. That was before the elucidation of the quark model of hadrons, before the development of the concept of particle generations The experimental paths to program we hot as clear as they are today and we had to cast a wide experimental net.

  1. Measuring B{sup {+-}}{yields}{tau}{sup {+-}}{nu} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu} at the Z peak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akeroyd, A. G.; Chen, C.H.; National Center for Theoretical Sciences, Taiwan

    2008-06-01

    The measurement of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} at the B factories provides important constraints on the parameter tan{beta}/m{sub H{sup {+-}}} in the context of models with two Higgs doublets. Limits on this decay from e{sup +}e{sup -} collisions at the Z peak were sensitive to the sum of B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} and B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}}. Because of the possibly sizeable contribution from B{sub c}{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} we suggest that a signal for this combination might be observed if the CERN LEP L3 Collaboration used its total data of {approx}3.6x10{sup 6} hadronic decays of the Z boson.more » Moreover, we point out that a future linear collider operating at the Z peak (Giga Z option) could constrain tan{beta}/m{sub H{sup {+-}}} from the sum of these processes with a precision comparable to that anticipated at proposed high luminosity B factories from B{sup {+-}}{yields}{tau}{sup {+-}}{nu}{sub {tau}} alone.« less

  2. Tau regulates the subcellular localization of calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreda, Elena Gomez de; Avila, Jesus, E-mail: javila@cbm.uam.es; CIBER de Enfermedades Neurodegenerativas, 28031 Madrid

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in amore » change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.« less

  3. Hyperphosphorylated tau in the brains of mice and monkeys with long-term administration of ketamine.

    PubMed

    Yeung, L Y; Wai, Maria S M; Fan, Ming; Mak, Y T; Lam, W P; Li, Zhen; Lu, Gang; Yew, David T

    2010-03-15

    Ketamine, a non-competitive antagonist at the glutamatergic N-methyl-d-aspartate (NMDA) receptor, might impair memory function of the brain. Loss of memory is also a characteristic of aging and Alzheimer's disease. Hyperphosphorylation of tau is an early event in the aging process and Alzheimer's disease. Therefore, we aimed to find out whether long-term ketmaine administration is related to hyperphosphorylation of tau or not in the brains of mice and monkeys. Results showed that after 6 months' administration of ketamine, in the prefrontal and entorhinal cortical sections of mouse and monkey brains, there were significant increases of positive sites for the hyperphosphorylated tau protein as compared to the control animals receiving no ketamine administration. Furthermore, about 15% of hyperphosphorylated tau positive cells were also positively labeled by terminal dUTP nick end labeling (TUNEL) indicating there might be a relationship between hyperphosphorylation of tau and apoptosis. Therefore, the long-term ketamine toxicity might involve neurodegenerative process similar to that of aging and/or Alzheimer's disease. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Alteration in amyloid β42, phosphorylated tau protein, interleukin 6, and acetylcholine during diabetes-accelerated memory dysfunction in diabetic rats: correlation of amyloid β42 with changes in glucose metabolism.

    PubMed

    Zhou, You; Zhao, Ying; Xie, Hailong; Wang, Yan; Liu, Lin; Yan, Xinjia

    2015-08-14

    Diabetes accelerates memory dysfunction in a continuous, slowly pathological process. Studies suggest that the time course of certain biomarkers can characterize the pathological course of the disease to provide information for early intervention. Thus, there is an urgent need for validated biomarkers to characterize the cognitive impairment induced by DM. We aimed to detect changes in cerebrospinal fluid biomarkers such as amyloid β42, phosphorylated tau protein, interleukin 6, and acetylcholine in diabetic rats over time, and to analyse the relationship between diabetes and cognitive impairment. Rats were injected once intraperitoneally with 1% of streptozotocin to establish a diabetic model. Index changes were investigated longitudinally and all were measured at the end of the experiment at day 75. Aβ42, P-tau, IL-6, and ACh levels in CSF, insulin levels in plasma, and Aβ42 levels in plasma and brain tissue were measured by ELISA. Compared with control, the diabetic model showed ACh in CSF to be decreased by day 15, continuing lower out to day 75. Aβ42 changes in brain and blood showed the same trends but exhibited minima at different time points: day 30 in CSF and day 15 in plasma. After the minimum, Aβ42 in cerebrospinal fluid rose and levelled off lower than in the control group, whereas Aβ42 in plasma rose and went above the controls at day 30, slowly trending upwards for the remainder of the experiment. P-tau protein in CSF in diabetic rats showed an increasing trend, becoming significantly different from the controls at day 60 and day 75. Aβ42 in CSF was strongly negatively correlated with blood glucose at day 15 and was negatively correlated with insulin in serum, particularly at day 45. Our longitudinal research model suggest that changes in the measured biomarkers appear before learning and memory impairments do. Aβ42 and ACh in the diabetes model group clearly changed from day 0 to day 45, and then P-tau and IL-6 varied significantly from day

  5. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    PubMed

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. RNA stores tau reversibly in complex coacervates

    PubMed Central

    Lin, Yanxian; Eschmann, Neil A.; Zhou, Hongjun; Rauch, Jennifer N.; Hernandez, Israel; Guzman, Elmer; Kosik, Kenneth S.; Han, Songi

    2017-01-01

    Nonmembrane-bound organelles that behave like liquid droplets are widespread among eukaryotic cells. Their dysregulation appears to be a critical step in several neurodegenerative conditions. Here, we report that tau protein, the primary constituent of Alzheimer neurofibrillary tangles, can form liquid droplets and therefore has the necessary biophysical properties to undergo liquid-liquid phase separation (LLPS) in cells. Consonant with the factors that induce LLPS, tau is an intrinsically disordered protein that complexes with RNA to form droplets. Uniquely, the pool of RNAs to which tau binds in living cells are tRNAs. This phase state of tau is held in an approximately 1:1 charge balance across the protein and the nucleic acid constituents, and can thus be maximal at different RNA:tau mass ratios, depending on the biopolymer constituents involved. This feature is characteristic of complex coacervation. We furthermore show that the LLPS process is directly and sensitively tuned by salt concentration and temperature, implying it is modulated by both electrostatic interactions between the involved protein and nucleic acid constituents, as well as net changes in entropy. Despite the high protein concentration within the complex coacervate phase, tau is locally freely tumbling and capable of diffusing through the droplet interior. In fact, tau in the condensed phase state does not reveal any immediate changes in local protein packing, local conformations and local protein dynamics from that of tau in the dilute solution state. In contrast, the population of aggregation-prone tau as induced by the complexation with heparin is accompanied by large changes in local tau conformations and irreversible aggregation. However, prolonged residency within the droplet state eventually results in the emergence of detectable β-sheet structures according to thioflavin-T assay. These findings suggest that the droplet state can incubate tau and predispose the protein toward the

  7. The relationship between early biochemical failure and perineural invasion in pathological T2 prostate cancer.

    PubMed

    Endrizzi, J; Seay, T

    2000-04-01

    To evaluate, in patients with pathologically localized prostate cancer, the relationship between early biochemical failure, i.e. an increasing prostate-specific antigen (PSA) level, and perineural invasion (PNI) on final pathology. The records were reviewed of 171 patients with prostate cancer who underwent prostatectomy at one institution between January 1992 and December 1995. Data on the histology, therapy and PSA level were collected and evaluated. Of the 171 patients with pathologically localized (pT2) prostate cancer, 131 were evaluable; 17 (13%) had a detectable PSA level in the first 5 years after surgery and 63 had PNI in the pathological specimen. Of those with PSA recurrence, 14 had PNI, one had no PNI and in two there was no comment on PNI. In comparison, only 10 of the 17 patients with recurrence had a Gleason sum of >/= 7. Perineural invasion seems to be an important predictor of early outcome in patients with organ-confined prostate cancer treated by prostatectomy. In this series it was the most sensitive predictor of biochemical failure. A more detailed pathological evaluation of prostate cancer may allow the clinician to provide closer surveillance and better informed clinical decision-making.

  8. Ebselen inhibits iron-induced tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake.

    PubMed

    Xie, Ling; Zheng, Wei; Xin, Na; Xie, Jing-Wei; Wang, Tao; Wang, Zhan-You

    2012-08-01

    Dysregulation of iron homeostasis is involved in the pathological process of Alzheimer's disease (AD). We have recently reported that divalent metal transporter 1 (DMT1) is upregulated in an AD transgenic mouse brain, and that silencing of DMT1, which reduces cellular iron influx, results in inhibition of amyloidogenesis in vitro, suggesting a potential target of DMT1 for AD therapy. In the present study, we tested the hypothesis that inhibition of DMT1 with ebselen, a DMT1 transport inhibitor, could affect tau phosphorylation. Human neuroblastoma SH-SY5Y cells were pre-treated with ebselen and then treated with ferrous sulfate (dissolved in ascorbic acid), and the effects of ebselen on tau phosphorylation and the relative signaling pathways were examined. Our results showed that ebselen decreased iron influx, reduced iron-induced ROS production, inhibited the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3β, and ultimately attenuated the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. The present study indicates that the neuroprotective effect of ebselen on AD is not only related to its antioxidant activity as reported previously, but is also associated with a reduction in tau phosphorylation by inhibition of DMT1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    PubMed

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.

  10. Sulforaphane Upregulates the Heat Shock Protein Co-Chaperone CHIP and Clears Amyloid-β and Tau in a Mouse Model of Alzheimer's Disease.

    PubMed

    Lee, Siyoung; Choi, Bo-Ryoung; Kim, Jisung; LaFerla, Frank M; Park, Jung Han Yoon; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2018-04-30

    Sulforaphane is an herbal isothiocyanate enriched in cruciferous vegetables. Here, the authors investigate whether sulforaphane modulates the production of amyloid-β (Aβ) and tau, the two main pathological factors in Alzheimer's disease (AD). A triple transgenic mouse model of AD (3 × Tg-AD) is used to study the effect of sulforaphane. Oral gavage of sulforaphane reduces protein levels of monomeric and polymeric forms of Aβ as well as tau and phosphorylated tau in 3 × Tg-AD mice. However, sulforaphane treatment do not affect mRNA expression of amyloid precursor protein or tau. As previous studies show that Aβ and tau metabolism are influenced by a heat shock protein (HSP) co-chaperone, C-terminus of HSP70-interacting protein (CHIP), the authors examine whether sulforaphane can modulate CHIP. The authors find that sulforaphane treatment increase levels of CHIP and HSP70. Furthermore, observations of CHIP-deficient primary neurons derived from 3 × Tg-AD mice suggest that sulforaphane treatment increase CHIP level and clear the accumulation of Aβ and tau. Finally, sulforaphane ameliorated memory deficits in 3 × Tg-AD mice as reveal by novel object/location recognition tests and contextual fear conditioning tests. These results demonstrate that sulforaphane treatment upregulates CHIP and has the potential to decrease the accumulation of Aβ and tau in patients with AD. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau).

    PubMed

    Krut, Jan J; Price, Richard W; Zetterberg, Henrik; Fuchs, Dietmar; Hagberg, Lars; Yilmaz, Aylin; Cinque, Paola; Nilsson, Staffan; Gisslén, Magnus

    2017-07-04

    The prevalence of neurocognitive deficits are reported to be high in HIV-1 positive patients, even with suppressive antiretroviral treatment, and it has been suggested that HIV can cause accelerated aging of the brain. In this study we measured phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) as a potential marker for premature central nervous system (CNS) aging. P-tau increases with normal aging but is not affected by HIV-associated neurocognitive disorders. With a cross-sectional retrospective design, p-tau, total tau (t-tau), neopterin and HIV-RNA were measured in CSF together with plasma HIV-RNA and blood CD4 + T-cells of 225 HIV-infected patients <50 y of age, subdivided into 3 groups: untreated neuroasymptomatic (NA) (n = 145), on suppressive antiretroviral treatment (cART) (n = 49), and HIV-associated dementia (HAD) (n = 31). HIV-negative healthy subjects served as controls (n = 79). P-tau was not significantly higher in any HIV-infected group compared to HIV-negative controls. Significant increases in t-tau were found as expected in patients with HAD compared to NA, cART, and control groups (p < 0.001 ). P-tau was not higher in HIV-infected patients compared to uninfected controls, thus failing to support a role for premature or accelerated brain aging in HIV infection.

  12. Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study.

    PubMed

    Mufson, Elliott J; He, Bin; Ginsberg, Stephen D; Carper, Benjamin A; Bieler, Gayle S; Crawford, Fiona; Alvarez, Victor E; Huber, Bertrand R; Stein, Thor D; McKee, Ann C; Perez, Sylvia E

    2018-06-01

    Military personnel and athletes exposed to traumatic brain injury may develop chronic traumatic encephalopathy (CTE). Brain pathology in CTE includes intracellular accumulation of abnormally phosphorylated tau proteins (p-tau), the main constituent of neurofibrillary tangles (NFTs). Recently, we found that cholinergic basal forebrain (CBF) neurons within the nucleus basalis of Meynert (nbM), which provide the major cholinergic innervation to the cortex, display an increased number of NFTs across the pathological stages of CTE. However, molecular mechanisms underlying nbM neurodegeneration in the context of CTE pathology remain unknown. Here, we assessed the genetic signature of nbM neurons containing the p-tau pretangle maker pS422 from CTE subjects who came to autopsy and received a neuropathological CTE staging assessment (Stages II, III, and IV) using laser capture microdissection and custom-designed microarray analysis. Quantitative analysis revealed dysregulation of key genes in several gene ontology groups between CTE stages. Specifically, downregulation of the nicotinic cholinergic receptor subunit β-2 gene (CHRNB2), monoaminergic enzymes catechol-O-methyltransferase (COMT) and dopa decarboxylase (DDC), chloride channels CLCN4 and CLCN5, scaffolding protein caveolin 1 (CAV1), cortical development/cytoskeleton element lissencephaly 1 (LIS1), and intracellular signaling cascade member adenylate cyclase 3 (ADCY3) was observed in pS422-immunreactive nbM neurons in CTE patients. By contrast, upregulation of calpain 2 (CAPN2) and microtubule-associated protein 2 (MAP2) transcript levels was found in Stage IV CTE patients. These single-population data in vulnerable neurons indicate alterations in gene expression associated with neurotransmission, signal transduction, the cytoskeleton, cell survival/death signaling, and microtubule dynamics, suggesting novel molecular pathways to target for drug discovery in CTE.

  13. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  14. Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation.

    PubMed

    Soliman, Mahmoud L; Geiger, Jonathan D; Chen, Xuesong

    2017-03-01

    The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer's disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.

  15. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD

    PubMed Central

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E.; Ahmed, Zeshan; Parisi, Joseph E.; Yen, Shu-Hui C.; Dickson, Dennis W.

    2013-01-01

    CBD is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus was comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. Additionally, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology. PMID:23371366

  16. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD.

    PubMed

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E; Ahmed, Zeshan; Parisi, Joseph E; Yen, Shu-Hui C; Dickson, Dennis W

    2013-05-01

    Corticobasal degeneration (CBD) is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon, and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus were comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. In addition, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology.

  17. Insecure Attachment and Eating Pathology in Early Adolescence: Role of Emotion Regulation

    ERIC Educational Resources Information Center

    van Durme, Kim; Braet, Caroline; Goossens, Lien

    2015-01-01

    The present study investigated whether associations exist between attachment dimensions toward mother and different forms of eating pathology (EP) in a group of early adolescent boys and girls, and whether these associations were mediated by maladaptive emotion regulation (ER) strategies. Developmentally appropriate self-report questionnaires were…

  18. Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer's disease biomarkers.

    PubMed

    Gordon, Brian A; Zacks, Jeffrey M; Blazey, Tyler; Benzinger, Tammie L S; Morris, John C; Fagan, Anne M; Holtzman, David M; Balota, David A

    2015-05-01

    There is a growing emphasis on examining preclinical levels of Alzheimer's disease (AD)-related pathology in the absence of cognitive impairment. Previous work examining biomarkers has focused almost exclusively on memory, although there is mounting evidence that attention also declines early in disease progression. In the current experiment, 2 attentional control tasks were used to examine alterations in task-evoked functional magnetic resonance imaging data related to biomarkers of AD pathology. Seventy-one cognitively normal individuals (females = 44, mean age = 63.5 years) performed 2 attention-demanding cognitive tasks in a design that modeled both trial- and task-level functional magnetic resonance imaging changes. Biomarkers included amyloid β42, tau, and phosphorylated tau measured from cerebrospinal fluid and positron emission tomography measures of amyloid deposition. Both tasks elicited widespread patterns of activation and deactivation associated with large task-level manipulations of attention. Importantly, results from both tasks indicated that higher levels of tau and phosphorylated tau pathologies were associated with block-level overactivations of attentional control areas. This suggests early alteration in attentional control with rising levels of AD pathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Simulated Cytoskeletal Collapse via Tau Degradation

    PubMed Central

    Sendek, Austin; Fuller, Henry R.; Hayre, N. Robert; Singh, Rajiv R. P.; Cox, Daniel L.

    2014-01-01

    We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i) taus modeled as entropic springs between microtubules, (ii) removal of taus from the bundles due to phosphorylation, and (iii) a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06–0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse. PMID:25162587

  20. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance.

    PubMed

    Congdon, Erin E; Gu, Jiaping; Sait, Hameetha B R; Sigurdsson, Einar M

    2013-12-06

    Tau immunotherapy is effective in transgenic mice, but the mechanisms of Tau clearance are not well known. To this end, Tau antibody uptake was analyzed in brain slice cultures and primary neurons. Internalization was rapid (<1 h), saturable, and substantial compared with control mouse IgG. Furthermore, temperature reduction to 4 °C, an excess of unlabeled mouse IgG, or an excess of Tau antibodies reduced uptake in slices by 63, 41, and 62%, respectively (p = 0.002, 0.04, and 0.005). Uptake strongly correlated with total and insoluble Tau levels (r(2) = 0.77 and 0.87 and p = 0.002 and 0.0002), suggesting that Tau aggregates influence antibody internalization and/or retention within neurons. Inhibiting phagocytosis did not reduce uptake in slices or neuronal cultures, indicating limited microglial involvement. In contrast, clathrin-specific inhibitors reduced uptake in neurons (≤ 78%, p < 0.0001) and slices (≤ 35%, p = 0.03), demonstrating receptor-mediated endocytosis as the primary uptake pathway. Fluid phase endocytosis accounted for the remainder of antibody uptake in primary neurons, based on co-staining with internalized dextran. The receptor-mediated uptake is to a large extent via low affinity FcγII/III receptors and can be blocked in slices (43%, p = 0.04) and neurons (53%, p = 0.008) with an antibody against these receptors. Importantly, antibody internalization appears to be necessary for Tau reduction in primary neurons. Overall, these findings clarify that Tau antibody uptake is primarily receptor-mediated, that these antibodies are mainly found in neurons with Tau aggregates, and that their intracellular interaction leads to clearance of Tau pathology, all of which have major implications for therapeutic development of this approach.

  1. Videothoracoscopy in the diagnosis of intrathoracic pathology: early experience.

    PubMed Central

    Waller, D. A.; Hasan, A.; Forty, J.; Morritt, G. N.

    1994-01-01

    We report our experience using the new technique of videothoracoscopy in the diagnosis of intrathoracic pathology. In the last 12 months, 40 patients (24 male; 16 female) have undergone investigation by this method. Lung biopsy has been performed in 17 patients, pleural biopsy in 20 patients and mediastinal biopsy in three patients. The majority had been referred after other investigations had been inconclusive. All biopsies were diagnostic except one mediastinal biopsy. This early experience suggests that videothoracoscopic biopsy is a well-tolerated technique with high diagnostic yield. PMID:8154806

  2. Sex steroid levels and AD-like pathology in 3xTgAD mice

    PubMed Central

    Ma, Chunqi; Taves, Matthew D.; Soma, Kiran K.; Mufson, Elliott J.

    2014-01-01

    Decreases in testosterone (T) and 17β-oestradiol (E2) are associated with an increased risk for Alzheimer's disease (AD), which has been attributed to an increase in beta amyloid (Aβ) and tau pathologic lesions. While recent studies have used transgenic animal models to test the effects of sex steroid manipulations on AD-like pathology, virtually none have systematically characterised the associations between AD lesions and sex steroid levels in the blood or brain in any mutant model. The present study evaluated age-related changes in T and E2 concentrations, as well as androgen receptor (AR) and oestrogen receptor (ER) α and β expression, in brain regions displaying AD pathology in intact male and female 3xTgAD and non-transgenic (ntg) mice. We report for the first time that circulating and brain T levels significantly increase in male 3xTgAD mice with age, but without changes in AR-immunoreactive (ir) cell number in either the hippocampal CA1 or medial amygdala. The age-related increase in hippocampal T levels correlated positively with increases in the conformational tau isoform, Alz50. These data suggest that the over-expression of human tau may up regulate the hypothalamic-pituitary-gonadal axis in these mice. Although circulating and brain E2 levels remained stable with age in both male and female 3xTgAD and ntg mice, ER-ir cell number in the hippocampus and medial amygdala decreased with age in female transgenic mice. Further, E2 levels were significantly higher in the hippocampus than in serum, suggesting local production of E2. Although triple transgenic mice mimic AD-like pathology, they do not fully replicate changes in human sex steroid levels, and may not be the best model for studying the effects of sex steroids on AD lesions. PMID:22889357

  3. Synthesis of methoxy-X04 derivatives and their evaluation in Alzheimer's disease pathology.

    PubMed

    Boländer, Alexander; Kieser, Daniel; Scholz, Christoph; Heyny-von Haußen, Roland; Mall, Gerhard; Goetschy, Valérie; Czech, Christian; Schmidt, Boris

    2014-01-01

    Alzheimer's disease is characterized by two notorious protein aggregates in the brain: extracellular senile plaques mainly consisting of amyloid-β peptides and tau-protein-derived intracellular paired helical filaments. The diagnosis of Alzheimer's disease is impaired by insufficient sensitivity and specificity of diagnostic methods to visualize these pathological hallmarks over all disease stages. The established fluorescence marker methoxy-X04 stains plaques, tau tangles and amyloid-derived angiopathies with good specificity, yet it is limited by slow elimination in vivo. Since the need for new markers is high, we prepared methoxy-X04 derivatives and evaluated their potential as imaging agents in Alzheimer's disease pathology. In this study, we describe an improved synthesis for methoxy-X04 and its derivatives and their affinity determination for the respective protein targets by immunohistology and a displacement assay. This resulted in the identification of new derivatives of methoxy-X04 with improved binding affinity.

  4. Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    PubMed

    Eisele, Yvonne S; Duyckaerts, Charles

    2016-01-01

    In brains of patients with Alzheimer's disease (AD), Aβ peptides accumulate in parenchyma and, almost invariably, also in the vascular walls. Although Aβ aggregation is, by definition, present in AD, its impact is only incompletely understood. It occurs in a stereotypical spatiotemporal distribution within neuronal networks in the course of the disease. This suggests a role for synaptic connections in propagating Aβ pathology, and possibly of axonal transport in an antero- or retrograde way-although, there is also evidence for passive, extracellular diffusion. Striking, in AD, is the conjunction of tau and Aβ pathology. Tau pathology in the cell body of neurons precedes Aβ deposition in their synaptic endings in several circuits such as the entorhino-dentate, cortico-striatal or subiculo-mammillary connections. However, genetic evidence suggests that Aβ accumulation is the first step in AD pathogenesis. To model the complexity and consequences of Aβ aggregation in vivo, various transgenic (tg) rodents have been generated. In rodents tg for the human Aβ precursor protein, focal injections of preformed Aβ aggregates can induce Aβ deposits in the vicinity of the injection site, and over time in more distant regions of the brain. This suggests that Aβ shares with α-synuclein, tau and other proteins the property to misfold and aggregate homotypic molecules. We propose to group those proteins under the term "propagons". Propagons may lack the infectivity of prions. We review findings from neuropathological examinations of human brains in different stages of AD and from studies in rodent models of Aβ aggregation and discuss putative mechanisms underlying the initiation and spread of Aβ pathology.

  5. Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer's disease subjects: an exploratory study.

    PubMed

    Klaver, Andrea C; Coffey, Mary P; Bennett, David A; Loeffler, David A

    2017-01-01

    Tau vaccination and administration of anti-tau antibodies can prevent pathology and cognitive impairment in transgenic mouse models of tauopathy, suggesting that therapies which increase anti-tau antibodies might slow the development and/or progression of Alzheimer's disease (AD). The extent to which individuals with no cognitive impairment (NCI) possess serum anti-tau antibodies, and whether their concentrations of these antibodies differ from anti-tau antibody levels in persons with mild cognitive impairment (MCI) or AD, are unclear. Previous studies measuring these antibodies did not account for antibody polyvalent binding, which can be extensive, nor that antibody binding to phosphorylated tau peptides could be due to binding to non-phosphorylated epitopes on those peptides. An ELISA controlling for these factors was used to measure the specific binding of serum IgG and IgM to phosphorylated ("pTau;" phosphorylated at Serine-199 and Serine-202) and non-phosphorylated ("non-pTau") tau 196-207 in subjects with NCI, MCI, or AD ( n  = 10/group). Between-group differences in these antibody levels were evaluated for statistical significance, and correlations were examined in pooled data from all subjects between these antibody levels and subject age, global cognitive functioning, and NFT counts. Specific IgG binding to pTau and non-pTau was detected in all subjects except for one NCI control. Specific IgM binding was detected to pTau in all subjects except for two AD patients, and to non-pTau in all subjects. Mean pTau IgG was increased in MCI subjects by 53% and 70% vs. AD and NCI subjects respectively (both p  < 0.05), while no significant differences were found between groups for non-pTau IgG ( p  = 0.052), pTau IgM, or non-pTau IgM. Non-pTau IgG was negatively associated with global cognition (Spearman rho = -0.50). Specific binding of serum IgG and IgM to phosphorylated and non-phosphorylated tau may be present in older persons regardless of their

  6. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

    PubMed

    Ritchie, Craig; Smailagic, Nadja; Noel-Storr, Anna H; Ukoumunne, Obioha; Ladds, Emma C; Martin, Steven

    2017-03-22

    Research suggests that measurable change in cerebrospinal fluid (CSF) biomarkers occurs years in advance of the onset of clinical symptoms (Beckett 2010). In this review, we aimed to assess the ability of CSF tau biomarkers (t-tau and p-tau) and the CSF tau (t-tau or p-tau)/ABeta ratio to enable the detection of Alzheimer's disease pathology in patients with mild cognitive impairment (MCI). These biomarkers have been proposed as important in new criteria for Alzheimer's disease dementia that incorporate biomarker abnormalities. To determine the diagnostic accuracy of 1) CSF t-tau, 2) CSF p-tau, 3) the CSF t-tau/ABeta ratio and 4) the CSF p-tau/ABeta ratio index tests for detecting people with MCI at baseline who would clinically convert to Alzheimer's disease dementia or other forms of dementia at follow-up. The most recent search for this review was performed in January 2013. We searched MEDLINE (OvidSP), Embase (OvidSP), BIOSIS Previews (Thomson Reuters Web of Science), Web of Science Core Collection, including Conference Proceedings Citation Index (Thomson Reuters Web of Science), PsycINFO (OvidSP), and LILACS (BIREME). We searched specialized sources of diagnostic test accuracy studies and reviews. We checked reference lists of relevant studies and reviews for additional studies. We contacted researchers for possible relevant but unpublished data. We did not apply any language or data restriction to the electronic searches. We did not use any methodological filters as a method to restrict the search overall. We selected those studies that had prospectively well-defined cohorts with any accepted definition of MCI and with CSF t-tau or p-tau and CSF tau (t-tau or p-tau)/ABeta ratio values, documented at or around the time the MCI diagnosis was made. We also included studies which looked at data from those cohorts retrospectively, and which contained sufficient data to construct two by two tables expressing those biomarker results by disease status. Moreover

  7. Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology.

    PubMed

    Kamat, Pradip K; Kalani, Anuradha; Rai, Shivika; Tota, Santosh Kumar; Kumar, Ashok; Ahmad, Abdullah S

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.

  8. Phenotype of postural instability/gait difficulty in Parkinson disease: relevance to cognitive impairment and mechanism relating pathological proteins and neurotransmitters

    PubMed Central

    Zuo, Li-Jun; Piao, Ying-Shan; Li, Li-Xia; Yu, Shu-Yang; Guo, Peng; Hu, Yang; Lian, Teng-Hong; Wang, Rui-Dan; Yu, Qiu-Jin; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei

    2017-01-01

    Parkinson disease (PD) is identified as tremor-dominant (TD) and postural instability and gait difficulty (PIGD) phenotypes. The relationships between motor phenotypes and cognitive impairment and the underlying mechanisms relating pathological proteins and neurotransmitters in cerebrospinal fluid (CSF) are unknown. We evaluated the motor symptoms and cognitive function by scales, and detected the levels of pathological proteins and neurotransmitters in CSF. TD group and PIGD group had significantly higher levels of total tau, tau phosphorylated at the position of threonine 181(P-tau181t), threonine 231, serine 396, serine 199 and lower β amyloid (Aβ)1–42 level in CSF than those in control group; PIGD group had significantly higher P-tau181t level and lower Aβ1–42 level than those in TD group. In PD group, PIGD severity was negatively correlated with MoCA score and Aβ1–42 level in CSF, and positively correlated with Hoehn-Yahr stage and P-tau181t level in CSF. In PIGD group, PIGD severity was negatively correlated with homovanillic acid (HVA) level in CSF, and HVA level was positively correlated with Aβ1–42 level in CSF. PIGD was significantly correlated with cognitive impairment, which underlying mechanism might be involved in Aβ1–42 aggregation in brain and relevant neurochemical disturbance featured by the depletion of HVA in CSF. PMID:28332604

  9. A tangled web - tau and sporadic Parkinson's disease.

    PubMed

    Wray, Selina; Lewis, Patrick A

    2010-01-01

    Parkinson's disease (PD) represents a major challenge for health care systems around the world: it is the most common degenerative movement disorder of old age, affecting over 100,000 people in the UK alone (Schrag et al., 2000). Despite the remarkable success of treatments directed at potentiating or replacing dopamine within the brain, which can relieve symptoms for over a decade, PD remains an incurable and invariably fatal disorder. As such, efforts to understand the processes that lead to cell death in the brains of patients with PD are a priority for neurodegenerative researchers. A great deal of progress has been made in this regard by taking advantage of advances in genetics, initially by the identification of genes responsible for rare Mendelian forms of PD (outlined in Table 1), and more recently by applying genome wide association studies (GWAS) to the sporadic form of the disease (Hardy et al., 2009). Several such GWAS have now been carried out, with a meta-analysis currently under way. Using over 6000 cases and 10,000 controls, two of these studies have identified variation at a number of loci as being associated with an increased risk of disease (Satake et al., 2009; Simon-Sanchez et al., 2009). Three genes stand out as candidates from these studies - the SNCA gene, coding for α-synuclein, the LRRK2 gene, coding for leucine rich repeat kinase 2, and MAPT, coding for the microtubule-associated protein tau. Mutations at all three of these loci have been associated with Mendelian forms of disease presenting with the clinical syndrome of Parkinsonism, however only SNCA and LRRK2 have been previously associated with pathologically defined PD (Hardy et al., 2009). Point mutations in α-synuclein, along with gene multiplication events, result in autosomal dominant PD, often with a significant dementia component. In addition to this, α-synuclein is the principle component of the main pathological hallmark of idiopathic PD, the Lewy body, making it an

  10. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine.

    PubMed

    Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L; Everall, Ian P; Masliah, Eliezer

    2011-04-01

    Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Evaluation of chromatic cues for trapping Bactrocera tau.

    PubMed

    Li, Lei; Ma, Huabo; Niu, Liming; Han, Dongyin; Zhang, Fangping; Chen, Junyu; Fu, Yueguan

    2017-01-01

    Trapping technology based on chromatic cues is an important strategy in controlling Tephritidae (fruit flies). The objectives of this present study were to evaluate the preference of Bactrocera tau for different chromatic cues, and to explore an easy method to print and reproduce coloured paper. Chromatic cues significantly affected the preference of adult B. tau. Wavelengths in the 515-604 nm range were the suitable wavelengths for trapping B. tau. Different-day-old B. tau had different colour preferences. Virtual wavelengths of 595 nm (yellow) and 568 nm (yellowish green) were the optimum wavelengths for trapping 5-7-day-old B. tau and 30-32-day-old B. tau respectively. The trap type and height significantly influenced B. tau attraction efficiency. The number of B. tau on coloured traps hung perpendicular to plant rows was not significantly higher than the number on traps hung parallel to plant rows. The quantisation of colour on the basis of Bruton's wavelength to RGB function can serve as an alternative method for printing and reproducing coloured paper, but a corrected equation should be established between the theoretical wavelength and actual wavelength of coloured paper. Results show that a compound paper coloured yellow (595 nm) and yellowish green (568 nm) installed at 60 and 90 cm above the ground shows the maximum effect for trapping B. tau. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation.

    PubMed

    Li, Xiao-Hong; Xie, Jia-Zhao; Jiang, Xia; Lv, Bing-Ling; Cheng, Xiang-Shu; Du, Lai-Ling; Zhang, Jia-Yu; Wang, Jian-Zhi; Zhou, Xin-Wen

    2012-12-01

    The hyperphosphorylated tau is a major protein component of neurofibrillary tangle, which is one of hallmarks of Alzheimer's disease (AD). While the level of methylglyoxal (MG) is significantly increased in the AD brains, the role of MG in tau phosphorylation is still not reported. Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). Glycogen synthesis kinase-3β (GSK-3β) and p38 MAPK were activated, whereas the level and activity of JNK, Erk1/2, cdk5, and PP2A were not altered after MG treatment. Simultaneous inhibition of GSK-3β or p38 attenuated the MG-induced tau hyperphosphorylation. Aminoguanidine, a blocker of AGEs formation, could effectively reverse the MG-induced tau hyperphosphorylation. These data suggest that MG induces AD-like tau hyperphosphorylation through AGEs formation involving RAGE up-regulation and GSK-3β activation and p38 activation is also partially involved in MG-induced tau hyperphosphorylation. Thus, targeting MG may be a promising therapeutic strategy to prevent AD-like tau hyperphosphorylation.

  13. Measurement of the absolute branching fraction of Ds+ --> tau+ nutau decay.

    PubMed

    Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G

    2008-04-25

    Using a sample of tagged D(s)(+) decays collected near the D(s)(*+/-)D(s)(-/+) peak production energy in e(+)e(-) collisions with the CLEO-c detector, we study the leptonic decay D(s)(+)-->tau(+)nu(tau) via the decay channel tau(+)-->e(+)nu(e)nu(tau). We measure B(D(s)(+)-->tau(+)nu(tau))=(6.17+/-0.71+/-0.34)%, where the first error is statistical and the second systematic. Combining this result with our measurements of D(s)(+)-->mu(+)nu(mu) and D(s)(+)-->tau(+)nu(tau) (via tau(+)-->pi(+)nu(tau)), we determine f(D(s))=(274+/-10+/-5) MeV.

  14. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers

    PubMed Central

    Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-01-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. PMID:27251042

  15. Normative development of the Child Behavior Checklist Dysregulation Profile from early childhood to adolescence: Associations with personality pathology.

    PubMed

    Deutz, Marike H F; Vossen, Helen G M; De Haan, Amaranta D; Deković, Maja; Van Baar, Anneloes L; Prinzie, Peter

    2018-05-01

    The Dysregulation Profile (DP) is a broad indicator of concurrent affective, behavioral, and cognitive dysregulation, often measured with the anxious/depressed, aggressive behavior, and attention problems syndrome scales of the Child Behavior Checklist. Despite an expanding body of research on the DP, knowledge of the normative developmental course of the DP from early childhood to adolescence is lacking. Furthermore, although we know that the DP longitudinally predicts personality pathology, no research yet has examined whether next to the DP in early childhood, the rate of change of the DP across development predicts personality pathology. Therefore, using cohort-sequential latent growth modeling in a population-based sample (N = 668), we examined the normative developmental course of mother-reported DP from ages 4 to 17 years and its associations with a wide range of adolescent-reported personality pathology dimensions 3 years later. The results showed that the DP follows a nonlinear developmental course with a peak in early adolescence. The initial level of the DP at age 4 and, to a lesser extent, the rate of change in the DP predicted a range of personality pathology dimensions in late adolescence. The findings suggest that the DP is a broad developmental precursor of personality pathology in late adolescence.

  16. Antisense reduction of tau in adult mice protects against seizures.

    PubMed

    DeVos, Sarah L; Goncharoff, Dustin K; Chen, Guo; Kebodeaux, Carey S; Yamada, Kaoru; Stewart, Floy R; Schuler, Dorothy R; Maloney, Susan E; Wozniak, David F; Rigo, Frank; Bennett, C Frank; Cirrito, John R; Holtzman, David M; Miller, Timothy M

    2013-07-31

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS--brain and spinal cord tissue, interstitial fluid, and CSF--while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability.

  17. Digital pathology and image analysis for robust high-throughput quantitative assessment of Alzheimer disease neuropathologic changes.

    PubMed

    Neltner, Janna Hackett; Abner, Erin Lynn; Schmitt, Frederick A; Denison, Stephanie Kay; Anderson, Sonya; Patel, Ela; Nelson, Peter T

    2012-12-01

    Quantitative neuropathologic methods provide information that is important for both research and clinical applications. The technologic advancement of digital pathology and image analysis offers new solutions to enable valid quantification of pathologic severity that is reproducible between raters regardless of experience. Using an Aperio ScanScope XT and its accompanying image analysis software, we designed algorithms for quantitation of amyloid and tau pathologies on 65 β-amyloid (6F/3D antibody) and 48 phospho-tau (PHF-1)-immunostained sections of human temporal neocortex. Quantitative digital pathologic data were compared with manual pathology counts. There were excellent correlations between manually counted and digitally analyzed neuropathologic parameters (R² = 0.56-0.72). Data were highly reproducible among 3 participants with varying degrees of expertise in neuropathology (intraclass correlation coefficient values, >0.910). Digital quantification also provided additional parameters, including average plaque area, which shows statistically significant differences when samples are stratified according to apolipoprotein E allele status (average plaque area, 380.9 μm² in apolipoprotein E [Latin Small Letter Open E]4 carriers vs 274.4 μm² for noncarriers; p < 0.001). Thus, digital pathology offers a rigorous and reproducible method for quantifying Alzheimer disease neuropathologic changes and may provide additional insights into morphologic characteristics that were previously more challenging to assess because of technical limitations.

  18. JNK signaling pathway regulates sorbitol-induced Tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3.

    PubMed

    Olivera Santa-Catalina, Marta; Caballero Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Centeno, Francisco; Lorenzo, María J

    2017-12-15

    Growing evidence suggests that Diabetes Mellitus increases the risk of developing Alzheimer's disease. It is well known that hyperglycemia, a key feature of Diabetes Mellitus, may induce plasma osmolarity disturbances. Both hyperglycemia and hyperosmolarity promote the altered post-translational regulation of microtubule-associated protein Tau. Interestingly, abnormal hyperphosphorylation and cleavage of Tau have been proven to lead to the genesis of filamentous structures referred to as neurofibrillary tangles, the main pathological hallmark of Alzheimer's disease. We have previously described that hyperosmotic stress induced by sorbitol promotes Tau proteolysis and apoptosis in SH-SY5Y cells via caspase-3 activation. In order to gain insights into the regulatory mechanisms of such processes, in this work we explored the intracellular signaling pathways that regulate these events. We found that sorbitol treatment significantly enhanced the activation of conventional families of MAPK in SH-SY5Y cells. Tau proteolysis was completely prevented by JNK inhibition but not affected by either ERK1/2 or p38 MAPK blockade. Moreover, inhibition of JNK, but not ERK1/2 or p38 MAPK, efficiently prevented sorbitol-induced apoptosis and caspase-3 activation. In summary, we provide evidence that JNK signaling pathway is an upstream regulator of hyperosmotic stress-induced Tau cleavage and apoptosis in SH-SY5Y through the control of caspase-3 activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation*

    PubMed Central

    Crowe, Alex; James, Michael J.; Lee, Virginia M.-Y.; Smith, Amos B.; Trojanowski, John Q.; Ballatore, Carlo; Brunden, Kurt R.

    2013-01-01

    Alzheimer disease and several other neurodegenerative disorders are characterized by the accumulation of intraneuronal fibrils comprised of the protein Tau. Tau is normally a soluble protein that stabilizes microtubules, with splice isoforms that contain either three (3-R) or four (4-R) microtubule binding repeats. The formation of Tau fibrils is thought to result in neuronal damage, and inhibitors of Tau fibrillization may hold promise as therapeutic agents. The process of Tau fibrillization can be replicated in vitro, and a number of small molecules have been identified that inhibit Tau fibril formation. However, little is known about how these molecules affect Tau fibrillization. Here, we examined the mechanism by which the previously described aminothieno pyridazine (ATPZ) series of compounds inhibit Tau fibrillization. Active ATPZs were found to promote the oxidation of the two cysteine residues within 4-R Tau by a redox cycling mechanism, resulting in the formation of a disulfide-containing compact monomer that was refractory to fibrillization. Moreover, the ATPZs facilitated intermolecular disulfide formation between 3-R Tau monomers, leading to dimers that were capable of fibrillization. The ATPZs also caused cysteine oxidation in molecules unrelated to Tau. Interestingly, methylene blue, an inhibitor of Tau fibrillization under evaluation in Alzheimer disease clinical trials, caused a similar oxidation of cysteines in Tau and other molecules. These findings reveal that the ATPZs and methylene blue act by a mechanism that may affect their viability as potential therapeutic agents. PMID:23443659

  20. INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isella, Andrea; Carpenter, John M.; Sargent, Anneila I., E-mail: isella@astro.caltech.ed

    2010-05-10

    We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RY Tau and DG Tau at wavelengths of 1.3 mm and 2.8 mm. The angular resolution of the maps is as high as 0.''15, or 20 AU at the distance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Doesmore » the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution reproduces the observations well. Both models constrain the surface density between 15 and 50 AU to within 30% for a given dust opacity. Outside this range, the densities inferred from the two models differ by almost an order of magnitude. The 1.3 mm image from RY Tau shows two peaks separated by 0.''2 with a decline in the dust emission toward the stellar position, which is significant at about 2{sigma}-4{sigma}. For both RY Tau and DG Tau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 M{sub J} orbiting either star at distances between about 10 and 60 AU, unless such a planet is so young that there has been insufficient time to open a gap in the disk surface density. The radial variation of the dust opacity slope, {beta}, was investigated by comparing the 1.3 mm and 2.8 mm observations. We find mean values of {beta} of 0.5 and 0.7 for DG Tau and RY Tau, respectively. Variations in {beta

  1. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers.

    PubMed

    Ojo, Joseph O; Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-07-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  2. Tau Phosphorylation by GSK3 in Different Conditions

    PubMed Central

    Avila, Jesús; León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; DeFelipe, Javier

    2012-01-01

    Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau. PMID:22675648

  3. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  4. Cerebrospinal Fluid Amyloid Beta and Tau Concentrations Are Not Modulated by 16 Weeks of Moderate- to High-Intensity Physical Exercise in Patients with Alzheimer Disease.

    PubMed

    Steen Jensen, Camilla; Portelius, Erik; Siersma, Volkert; Høgh, Peter; Wermuth, Lene; Blennow, Kaj; Zetterberg, Henrik; Waldemar, Gunhild; Gregers Hasselbalch, Steen; Hviid Simonsen, Anja

    2016-01-01

    Physical exercise may have some effect on cognition in patients with Alzheimer disease (AD). However, the underlying biochemical effects are unclear. Animal studies have shown that amyloid beta (Aβ), one of the pathological hallmarks of AD, can be altered with high levels of physical activity. The objective of this study was to elucidate the effect of 16 weeks of moderate- to high-intensity physical exercise on the biomarkers of AD, with special emphasis on the amyloidogenic pathway. From a total of 53 patients with AD participating in the Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study we analyzed cerebrospinal fluid samples for Aβ species, total tau (t-tau), phosphorylated tau (p-tau) and soluble amyloid precursor protein (sAPP) species. We also assessed the patients for apolipoprotein E ε4 (ApoE ε4) genotype. We found no effect of 16 weeks of physical exercise on the selected biomarkers, and no effect of ApoE ε4 genotype. Our findings suggest that the possible effect of physical exercise on cognition in patients with AD is not due to modulation of Aβ, t-tau, p-tau and sAPP species. © 2016 S. Karger AG, Basel.

  5. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies.

    PubMed

    Alonso, Alejandra del C; Li, Ben; Grundke-Iqbal, Inge; Iqbal, Khalid

    2008-08-01

    The accumulation of hyperphosphorylated tau is a common feature of several dementias. Tau is one of the brain microtubule-associated proteins. Here we discuss tau's function in microtubule assembly and stabilization and with regards to tau's interactions with other proteins, membranes, and DNA. We describe and analyze important posttranslational modifications: hyperphosphorylation, glycosylation, ubiquitination, glycation, polyamination, nitration, and truncation. We discuss how these post-translational modifications can alter tau's biological function and what is known about tau self-assembly, and we propose a mechanism of tau polymerization. We analyze the impact of natural mutations on tau that cause fronto-temporal dementia associated with chromosome 17 (FTDP-1 7). Finally, we consider whether tau accumulation or its conformational change is related to tau-induced neurodegeneration, and we propose a mechanism of neurodegeneration.

  6. Association between cerebrospinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer's disease.

    PubMed

    Pereira, Joana B; Westman, Eric; Hansson, Oskar

    2017-10-01

    The aggregation and deposition of amyloid-β (Aβ) peptides into plaques is an early event in Alzheimer's disease (AD), which is followed by different aspects of neurodegeneration that can be measured in the cerebrospinal fluid (CSF) or plasma using neurofilament light (NFL), neurogranin (Ng), total Tau (T-Tau), and phosphorylated tau (P-Tau) levels. The relationship between these biomarkers and regional brain atrophy across the different stages of AD remains largely unexplored. In this study, we assessed whether NFL, Ng, T-Tau, and P-Tau levels in CSF and NFL in plasma are associated with cortical thinning and subcortical volume loss in cognitively normal, mild cognitive impairment, and AD subjects with and without Aβ pathology. Our main findings showed that CSF NFL levels were associated with brain atrophy in all groups, but plasma NFL only correlated with atrophy in symptomatic cases. In contrast, Ng was associated with regional brain atrophy only in individuals with Aβ pathology. Altogether, our main findings suggest that Ng is strongly associated with Aβ pathology, whereas NFL is more unspecific. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  8. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer's disease.

    PubMed

    Lesuis, Sylvie L; Maurin, Herve; Borghgraef, Peter; Lucassen, Paul J; Van Leuven, Fred; Krugers, Harm J

    2016-06-28

    Stress has been implicated as a risk factor for the severity and progression of sporadic Alzheimer's disease (AD). Early life experiences determine stress responsivity in later life, and modulate age-dependent cognitive decline. Therefore, we examined whether early life experiences influence AD outcome in a bigenic mouse model which progressively develops combined tau and amyloid pathology (biAT mice).Mice were subjected to either early life stress (ELS) or to 'positive' early handling (EH) postnatally (from day 2 to 9). In biAT mice, ELS significantly compromised long term survival, in contrast to EH which increased life expectancy. In 4 month old mice, ELS-reared biAT mice displayed increased hippocampal Aβ levels, while these levels were reduced in EH-reared biAT mice. No effects of ELS or EH were observed on the brain levels of APP, protein tau, or PSD-95. Dendritic morphology was moderately affected after ELS and EH in the amygdala and medial prefrontal cortex, while object recognition memory and open field performance were not affected. We conclude that despite the strong transgenic background, early life experiences significantly modulate the life expectancy of biAT mice. Parallel changes in hippocampal Aβ levels were evident, without affecting cognition of young adult biAT mice.

  9. Complete mitochondrial genome of Zeugodacus tau (Insecta: Tephritidae) and differentiation of Z. tau species complex by mitochondrial cytochrome c oxidase subunit I gene

    PubMed Central

    Yong, Hoi-Sen; Lim, Phaik-Eem; Eamsobhana, Praphathip

    2017-01-01

    The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship. PMID:29216281

  10. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2016-10-01

    onto wild-type mice markedly reduces 1) memory including contextual fear memory and spatial memory, and 2) long-term potentiation, a type of...TERMS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s disease 16. SECURITY CLASSIFICATION OF: 17...mechanism leading to TBI and AD. 2 KEYWORDS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s

  11. Tau Kinetics in Neurons and the Human Central Nervous System.

    PubMed

    Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G; Patterson, Bruce W; Gordon, Brian A; Jockel-Balsarotti, Jennifer; Sullivan, Melissa; Crisp, Matthew J; Kasten, Tom; Kirmess, Kristopher M; Kanaan, Nicholas M; Yarasheski, Kevin E; Baker-Nigh, Alaina; Benzinger, Tammie L S; Miller, Timothy M; Karch, Celeste M; Bateman, Randall J

    2018-03-21

    We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. [On "early pathologic anatomy" and "anatomy of medical structure": continuity or point of epistemological rupture?].

    PubMed

    Lellouch, Alain

    2006-06-01

    The aim of this paper is to analyse the technical, conceptual and institutional changes from which, through macroscopic pathology, a new medical science (microscopic pathology) emerged. The "early" pathology was mainly implemented by the Ecole de Paris, at the beginning of the 19th century. After 1850, histo-pathology emerged, in German university institutes (which were separate buildings from the wards and from the dissecting rooms of the hospitals). The birth of histo-pathology is also linked with technical improvements in mass manufactured microscopes, with better techniques for fixing and staining histological samples and lastly, in (1848) withVirchow's cellular theory. Among French doctors, only one, the very famous physician Jean-Martin Charcot (1825-1893) was aware of these dramatic changes. Charcot wrote many texts which are testimonies of an epistemological rupture between two very different types of medicine, the old French "médecine d'hôpital" and the new "lab medicine", developed in German speaking countries and based on the microscope.

  13. A Tangled Web – Tau and Sporadic Parkinson's Disease

    PubMed Central

    Wray, Selina; Lewis, Patrick A.

    2010-01-01

    Parkinson's disease (PD) represents a major challenge for health care systems around the world: it is the most common degenerative movement disorder of old age, affecting over 100,000 people in the UK alone (Schrag et al., 2000). Despite the remarkable success of treatments directed at potentiating or replacing dopamine within the brain, which can relieve symptoms for over a decade, PD remains an incurable and invariably fatal disorder. As such, efforts to understand the processes that lead to cell death in the brains of patients with PD are a priority for neurodegenerative researchers. A great deal of progress has been made in this regard by taking advantage of advances in genetics, initially by the identification of genes responsible for rare Mendelian forms of PD (outlined in Table 1), and more recently by applying genome wide association studies (GWAS) to the sporadic form of the disease (Hardy et al., 2009). Several such GWAS have now been carried out, with a meta-analysis currently under way. Using over 6000 cases and 10,000 controls, two of these studies have identified variation at a number of loci as being associated with an increased risk of disease (Satake et al., 2009; Simon-Sanchez et al., 2009). Three genes stand out as candidates from these studies – the SNCA gene, coding for α-synuclein, the LRRK2 gene, coding for leucine rich repeat kinase 2, and MAPT, coding for the microtubule-associated protein tau. Mutations at all three of these loci have been associated with Mendelian forms of disease presenting with the clinical syndrome of Parkinsonism, however only SNCA and LRRK2 have been previously associated with pathologically defined PD (Hardy et al., 2009). Point mutations in α-synuclein, along with gene multiplication events, result in autosomal dominant PD, often with a significant dementia component. In addition to this, α-synuclein is the principle component of the main pathological hallmark of idiopathic PD, the Lewy body, making it an

  14. Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model.

    PubMed

    Parrella, Edoardo; Maxim, Tom; Maialetti, Francesca; Zhang, Lu; Wan, Junxiang; Wei, Min; Cohen, Pinchas; Fontana, Luigi; Longo, Valter D

    2013-04-01

    In laboratory animals, calorie restriction (CR) protects against aging, oxidative stress, and neurodegenerative pathologies. Reduced levels of growth hormone and IGF-1, which mediate some of the protective effects of CR, can also extend longevity and/or protect against age-related diseases in rodents and humans. However, severely restricted diets are difficult to maintain and are associated with chronically low weight and other major side effects. Here we show that 4 months of periodic protein restriction cycles (PRCs) with supplementation of nonessential amino acids in mice already displaying significant cognitive impairment and Alzheimer's disease (AD)-like pathology reduced circulating IGF-1 levels by 30-70% and caused an 8-fold increase in IGFBP-1. Whereas PRCs did not affect the levels of β amyloid (Aβ), they decreased tau phosphorylation in the hippocampus and alleviated the age-dependent impairment in cognitive performance. These results indicate that periodic protein restriction cycles without CR can promote changes in circulating growth factors and tau phosphorylation associated with protection against age-related neuropathologies. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  15. Nicotinamide Forestalls Pathology and Cognitive Decline in Alzheimer Mice: Evidence for Improved Neuronal Bioenergetics and Autophagy Procession

    PubMed Central

    Liu, Dong; Pitta, Michael; Jiang, Haiyang; Lee, Jong-Hwan; Zhang, Guofeng; Chen, Xinzhi; Kawamoto, Elisa M.; Mattson, Mark P.

    2012-01-01

    Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathological accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated Tau (p-Tau) in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the NAD+ precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. NAD+ biosynthesis, autophagy and PI3K signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and p-Tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (Akt and ERKs) and the transcription factor cyclic AMP response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system. PMID:23273573

  16. Regional tau deposition and subregion atrophy of medial temporal structures in early Alzheimer's disease: A combined positron emission tomography/magnetic resonance imaging study.

    PubMed

    Sone, Daichi; Imabayashi, Etsuko; Maikusa, Norihide; Okamura, Nobuyuki; Furumoto, Shozo; Kudo, Yukitsuka; Ogawa, Masayo; Takano, Harumasa; Yokoi, Yuma; Sakata, Masuhiro; Tsukamoto, Tadashi; Kato, Koichi; Matsuda, Hiroshi

    2017-01-01

    Molecular imaging and selective hippocampal subfield atrophy are a focus of recent Alzheimer's disease (AD) research. Here, we investigated correlations between molecular imaging and hippocampal subfields in early AD. We investigated 18 patients with early AD and 18 healthy control subjects using 11 C-Pittsburgh compound-B (PIB) positron emission tomography (PET) and 18 F-THK5351 PET and automatic segmentation of hippocampal subfields with high-resolution T2-weighted magnetic resonance imaging. The PET images were normalized and underwent voxelwise regression analysis with each subregion volumes using SPM12. As for 18 F-THK5351 PET, the bilateral perirhinal cortex volumes were significantly associated with the ipsilateral or bilateral temporal lobar uptakes, whereas hippocampal subfields showed no correlations. 11 C-PIB PET showed relatively broad negative correlation with the right cornu ammonis 3 volumes. Regional tau deposition was correlated with extrahippocampal subregional atrophy and not with hippocampal subfields, possibly reflecting different underlying mechanisms of atrophy in early AD. Amyloid might be associated with right cornu ammonis 3 atrophy.

  17. Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer's disease.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Merino-Serrais, Paula; Ávila, Jesús; DeFelipe, Javier

    2011-01-01

    A key symptom in the early stages of Alzheimer's disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.

  18. Imbalance of Hsp70 family variants fosters tau accumulation.

    PubMed

    Jinwal, Umesh K; Akoury, Elias; Abisambra, Jose F; O'Leary, John C; Thompson, Andrea D; Blair, Laura J; Jin, Ying; Bacon, Justin; Nordhues, Bryce A; Cockman, Matthew; Zhang, Juan; Li, Pengfei; Zhang, Bo; Borysov, Sergiy; Uversky, Vladimir N; Biernat, Jacek; Mandelkow, Eckhard; Gestwicki, Jason E; Zweckstetter, Markus; Dickey, Chad A

    2013-04-01

    Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants

  19. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection.

    PubMed

    Gisslén, Magnus; Krut, Jan; Andreasson, Ulf; Blennow, Kaj; Cinque, Paola; Brew, Bruce J; Spudich, Serena; Hagberg, Lars; Rosengren, Lars; Price, Richard W; Zetterberg, Henrik

    2009-12-22

    Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPalpha and sAPPbeta), amyloid beta fragment 1-42 (Abeta1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. CSF sAPPalpha and sAPPbeta concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Abeta1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Parallel reductions of CSF sAPPalpha and sAPPbeta in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease.

  20. T-Tau is Associated with Objective Memory Decline Over Two Years in Persons Seeking Help for Subjective Cognitive Decline: A Report from the Gothenburg-Oslo MCI Study.

    PubMed

    Hessen, Erik; Nordlund, Arto; Stålhammar, Jacob; Eckerström, Marie; Bjerke, Maria; Eckerström, Carl; Göthlin, Mattias; Fladby, Tormod; Reinvang, Ivar; Wallin, Anders

    2015-01-01

    There is a need to find very early markers for pre-clinical Alzheimer's disease as interventions early in the disease process are thought to be most effective. The present study aimed to address the potential relation between cerebrospinal fluid (CSF) biomarkers and reduced cognitive function in a relatively young cohort of memory clinic patients with subjective cognitive decline. 122 patients (mean age 63 years) with subjective cognitive decline were recruited from two university memory clinics and followed for two years. The main finding was that the subgroup with objective memory decline during the study period had significantly higher T-tau at baseline than the group with improved memory. Baseline CSF variables showed a trend toward more pathological values in the patients with memory decline compared to those who improved or remained stable. The baseline memory score of those who declined was significantly better than the baseline score of those who improved over two years. The general trend for the whole group was improved memory and executive test scores. There were no differences in cognitive scores based on CSF quartiles at baseline, nor were there differences in cognitive outcome for patients with early amnestic mild cognitive impairment versus average cognitive function at baseline. The main finding that T-tau rather than amyloid-β was associated with memory decline do not support the prevailing opinion about the chain of events assumed to take place in Alzheimer's disease. In addition, memory decline was not associated with poor baseline memory score. Thus, a memory cut-off indicating low baseline memory would not would have identified the declining group.

  1. Neuroprotective effect of novel cognitive enhancer noopept on AD-related cellular model involves the attenuation of apoptosis and tau hyperphosphorylation.

    PubMed

    Ostrovskaya, Rita U; Vakhitova, Yulia V; Kuzmina, Uliyana Sh; Salimgareeva, Milyausha Kh; Zainullina, Liana F; Gudasheva, Tatiana A; Vakhitov, Vener A; Seredenin, Sergey B

    2014-08-06

    Noopept (N-phenyl-acetyl-L-prolylglycine ethyl ester) was constructed as a dipeptide analog of the standard cognition enhancer, piracetam. Our previous experiments have demonstrated the cognition restoring effect of noopept in several animal models of Alzheimer disease (AD). Noopept was also shown to prevent ionic disbalance, excitotoxicity, free radicals and pro-inflammatory cytokines accumulation, and neurotrophine deficit typical for different kinds of brain damages, including AD. In this study, we investigated the neuroprotective action of noopept on cellular model of AD, Aβ 25-35-induced toxicity in PC12 cells and revealed the underlying mechanisms. The neuroprotective effect of noopept (added to the medium at 10 μM concentration, 72 hours before Аβ 25-35) was studied on Аβ 25-35-induced injury (5 μM for 24 h) in PC12 cells. The ability of drug to protect the impairments of cell viability, calcium homeostasis, ROS level, mitochondrial function, tau phosphorylation and neurite outgrowth caused by Аβ 25-35 were evaluated. Following the exposure of PC12 cells to Аβ 25-35 an increase of the level of ROS, intracellular calcium, and tau phosphorylation at Ser396 were observed; these changes were accompanied by a decrease in cell viability and an increase of apoptosis. Noopept treatment before the amyloid-beta exposure improved PC12 cells viability, reduced the number of early and late apoptotic cells, the levels of intracellular reactive oxygen species and calcium and enhanced the mitochondrial membrane potential. In addition, pretreatment of PC12 cell with noopept significantly attenuated tau hyperphosphorylation at Ser396 and ameliorated the alterations of neurite outgrowth evoked by Аβ25-35. Taken together, these data provide evidence that novel cognitive enhancer noopept protects PC12 cell against deleterious actions of Aβ through inhibiting the oxidative damage and calcium overload as well as suppressing the mitochondrial apoptotic pathway

  2. Neuroprotective effect of novel cognitive enhancer noopept on AD-related cellular model involves the attenuation of apoptosis and tau hyperphosphorylation

    PubMed Central

    2014-01-01

    Background Noopept (N-phenyl-acetyl-L-prolylglycine ethyl ester) was constructed as a dipeptide analog of the standard cognition enhancer, piracetam. Our previous experiments have demonstrated the cognition restoring effect of noopept in several animal models of Alzheimer disease (AD). Noopept was also shown to prevent ionic disbalance, excitotoxicity, free radicals and pro-inflammatory cytokines accumulation, and neurotrophine deficit typical for different kinds of brain damages, including AD. In this study, we investigated the neuroprotective action of noopept on cellular model of AD, Aβ25–35-induced toxicity in PC12 cells and revealed the underlying mechanisms. Results The neuroprotective effect of noopept (added to the medium at 10 μM concentration, 72 hours before Аβ25–35) was studied on Аβ25–35-induced injury (5 μM for 24 h) in PC12 cells. The ability of drug to protect the impairments of cell viability, calcium homeostasis, ROS level, mitochondrial function, tau phosphorylation and neurite outgrowth caused by Аβ25–35 were evaluated. Following the exposure of PC12 cells to Аβ25–35 an increase of the level of ROS, intracellular calcium, and tau phosphorylation at Ser396 were observed; these changes were accompanied by a decrease in cell viability and an increase of apoptosis. Noopept treatment before the amyloid-beta exposure improved PC12 cells viability, reduced the number of early and late apoptotic cells, the levels of intracellular reactive oxygen species and calcium and enhanced the mitochondrial membrane potential. In addition, pretreatment of PC12 cell with noopept significantly attenuated tau hyperphosphorylation at Ser396 and ameliorated the alterations of neurite outgrowth evoked by Аβ25–35. Conclusions Taken together, these data provide evidence that novel cognitive enhancer noopept protects PC12 cell against deleterious actions of Aβ through inhibiting the oxidative damage and calcium overload as well as suppressing

  3. Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios.

    PubMed

    Roder, H M; Ingram, V M

    1991-11-01

    We have identified, purified, and characterized two neurofilament/tau kinases from bovine brain, PK36 and PK40, with apparent Mr of 36,000 and 40,000 and with novel biochemical properties. A specially designed immunoassay for phosphorylated epitopes in neurofilament (NF) proteins was used in the early stages of the purification. Neither kinase is closely associated with the cytoskeleton. Both kinases phosphorylate bovine intermediate (NF-M) and heavy (NF-H) NF subunits and also bovine tau at the expected KSP sequences, though other sites cannot be ruled out. In human paired helical filaments, tau, phosphorylated at these same KSP sites, is a major characterized constituent. Neither kinase is activated by the usual second messengers. Tau and the above NF subunits are phosphorylated in high stoichiometric ratios. In the intermediate NF subunit, all the expected sites appear to be phosphorylated, but in the heavy NF subunit only 7 out of the greater than 40 expected sites can be phosphorylated by our kinases. We demonstrate that both kinases can induce considerable shifts of apparent Mr with SDS-PAGE for tau and, for the first time in vitro, also for the intermediate NF subunit. Interestingly, PK36 and particularly PK40 are strongly inhibited by an excess of free ATP. We propose that during normal aging, and in Alzheimer's disease, age-related mitochondrial dysfunction would reduce ATP levels, which in turn might release the neurofilament/tau kinase from inhibition with consequent paired helical filament formation.

  4. The ELISA-measured increase in cerebrospinal fluid tau that discriminates Alzheimer's disease from other neurodegenerative disorders is not attributable to differential recognition of tau assembly forms.

    PubMed

    O'Dowd, Seán T; Ardah, Mustafa T; Johansson, Per; Lomakin, Aleksey; Benedek, George B; Roberts, Kinley A; Cummins, Gemma; El Agnaf, Omar M; Svensson, Johan; Zetterberg, Henrik; Lynch, Timothy; Walsh, Dominic M

    2013-01-01

    Elevated cerebrospinal fluid concentrations of tau discriminate Alzheimer's disease from other neurodegenerative conditions. The reasons for this are unclear. While commercial assay kits are widely used to determine total-tau concentrations, little is known about their ability to detect different aggregation states of tau. We demonstrate that the leading commercial enzyme-linked immunosorbent assay reliably detects aggregated and monomeric tau and evinces good recovery of both species when added into cerebrospinal fluid. Hence, the disparity between total-tau levels encountered in Alzheimer's disease and other neurodegenerative conditions is not due to differential recognition of tau assembly forms or the extent of degeneration.

  5. UX Tau A

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's rendition of the one-million-year-old star system called UX Tau A, located approximately 450 light-years away. Observations from NASA's Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system's central sun-like star.

    Spitzer saw a gap in UX Tau A's disk that extends from 0.2 to 56 astronomical units (an astronomical unit is the distance between the sun and Earth). The gap extends from the equivalent of Mercury to Pluto in our solar system, and is sandwiched between thick inner and outer disks on either side. Astronomers suspect that the gap was carved out by one or more forming planets.

    Such dusty disks are where planets are thought to be born. Dust grains clump together like snowballs to form larger rocks, and then the bigger rocks collide to form the cores of planets. When rocks revolve around their central star, they act like cosmic vacuum cleaners, picking up all the gas and dust in their path and creating gaps.

    Although gaps have been detected in disks swirling around young stars before, UX Tau A is special because the gap is sandwiched between two thick disks of dust. An inner thick dusty disk hugs the central star, then, moving outward, there is a gap, followed by another thick doughnut-shaped disk. Other systems with gaps contain very little to no dust near the central star. In other words, those gaps are more like big holes in the centers of disks.

    Some scientists suspect that these holes could have been carved out by a process called photoevaporation. Photoevaporation occurs when radiation from the central star heats up the gas and dust around it to the point where it evaporates away. The fact that there is thick disk swirling extremely close to UX Tau A's central star rules out the photoevaporation scenario. If photoevaporation from the star played a role, then large amounts of dust would not be floating so close to the star.

  6. Interplay of pathogenic forms of human tau with different autophagic pathways.

    PubMed

    Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria

    2018-02-01

    Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Tau Ranging Revisited

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1989-01-01

    Report reviews history of tau ranging and advocates use of advanced electronic circuitry to revive this composite-code-uplink spacecraft-ranging technique. Very-large-scale integration gives new life to abandoned distance-measuring technique.

  8. Structure-activity relationship of cyanine tau aggregation inhibitors

    PubMed Central

    Chang, Edward; Congdon, Erin E.; Honson, Nicolette S.; Duff, Karen E.; Kuret, Jeff

    2009-01-01

    A structure-activity relationship for symmetrical cyanine inhibitors of human tau aggregation was elaborated using a filter trap assay. Antagonist activity depended on cyanine heterocycle, polymethine bridge length, and the nature of meso- and N-substituents. One potent member of the series, 3,3’-diethyl-9-methylthiacarbocyanine iodide (compound 11), retained submicromolar potency and had calculated physical properties consistent with blood-brain barrier and cell membrane penetration. Exposure of organotypic slices prepared from JNPL3 transgenic mice (which express human tau harboring the aggregation prone P301L tauopathy mutation) to compound 11 for one week revealed a biphasic dose response relationship. Low nanomolar concentrations decreased insoluble tau aggregates to half those observed in slices treated with vehicle alone. In contrast, high concentrations (≥300 nM) augmented tau aggregation and produced abnormalities in tissue tubulin levels. These data suggest that certain symmetrical carbocyanine dyes can modulate tau aggregation in the slice biological model at concentrations well below those associated with toxicity. PMID:19432420

  9. Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain.

    PubMed

    Shively, Sharon B; Edgerton, Sarah L; Iacono, Diego; Purohit, Dushyant P; Qu, Bao-Xi; Haroutunian, Vahram; Davis, Kenneth L; Diaz-Arrastia, Ramon; Perl, Daniel P

    2017-03-01

    , showed minimal p-tau and β-amyloid pathology. These findings suggest that chronic axonal damage contributes to the unique pathology of CTE over time.

  10. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    PubMed

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Interaction between personality traits and cerebrospinal fluid biomarkers of Alzheimer's disease pathology modulates cognitive performance.

    PubMed

    Tautvydaitė, Domilė; Kukreja, Deepti; Antonietti, Jean-Philippe; Henry, Hugues; von Gunten, Armin; Popp, Julius

    2017-02-02

    During adulthood, personality characteristics may contribute to the individual capacity to compensate the impact of developing cerebral Alzheimer's disease (AD) pathology on cognitive impairment in later life. In this study we aimed to investigate whether and how premorbid personality traits interact with cerebrospinal fluid (CSF) markers of AD pathology to predict cognitive performance in subjects with mild cognitive impairment or mild AD dementia and in participants with normal cognition. One hundred and ten subjects, of whom 66 were patients with mild cognitive impairment or mild AD dementia and 44 were healthy controls, had a comprehensive medical and neuropsychological examination as well as lumbar puncture to measure CSF biomarkers of AD pathology (amyloid beta 1-42 , phosphorylated tau and total-tau). Participants' proxies completed the Revised NEO Personality Inventory, Form R to retrospectively assess subjects' premorbid personality. In hierarchical multivariate regression analyses, including age, gender, education, APOEε4 status and cognitive level, premorbid neuroticism, conscientiousness and agreeableness modulated the effect of CSF biomarkers on cognitive performance. Low premorbid openness independently predicted lower levels of cognitive functioning after controlling for biomarker concentrations. Our findings suggest that specific premorbid personality traits are associated with cerebral AD pathology and modulate its impact on cognitive performance. Considering personality characteristics may help to appraise a person's cognitive reserve and the risk of cognitive decline in later life.

  12. Physiological Aβ Concentrations Produce a More Biomimetic Representation of the Alzheimer's Disease Phenotype in iPSC Derived Human Neurons.

    PubMed

    Berry, Bonnie J; Smith, Alec S T; Long, Christopher J; Martin, Candace C; Hickman, James J

    2018-05-22

    Alzheimer's disease (AD) is characterized by slow, progressive neurodegeneration leading to severe neurological impairment, but current drug development efforts are limited by the lack of robust, human-based disease models. Amyloid-β (Aβ) is known to play an integral role in AD progression as it has been shown to interfere with neurological function. However, studies into AD pathology commonly apply Aβ to neurons for short durations at nonphysiological concentrations to induce an exaggerated dysfunctional phenotype. Such methods are unlikely to elucidate early stage disease dysfunction, when treatment is still possible, since damage to neurons by these high concentrations is extensive. In this study, we investigated chronic, pathologically relevant Aβ oligomer concentrations to induce an electrophysiological phenotype that is more representative of early AD progression compared to an acute high-dose application in human cortical neurons. The high, acute oligomer dose resulted in severe neuronal toxicity as well as upregulation of tau and phosphorylated tau. Chronic, low-dose treatment produced significant functional impairment without increased cell death or accumulation of tau protein. This in vitro phenotype more closely mirrors the status of early stage neural decline in AD pathology and could provide a valuable tool to further understanding of early stage AD pathophysiology and for screening potential therapeutic compounds.

  13. Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation

    PubMed Central

    Julien, Carl; Marcouiller, François; Bretteville, Alexis; El Khoury, Noura B.; Baillargeon, Joanie; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro. PMID:22768202

  14. Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo.

    PubMed

    Gerson, Julia E; Sengupta, Urmi; Kayed, Rakez

    2017-01-01

    Tau oligomers have been shown to be the main toxic tau species in a number of neurodegenerative disorders. In order to study tau oligomers both in vitro and in vivo, we have established methods for the reliable preparation, isolation, and detection of tau oligomers. Methods for the seeding of tau oligomers, isolation of tau oligomers from tissue, and detection of tau oligomers using tau oligomer-specific antibodies by biochemical and immunohistochemical methods are detailed below.

  15. Molecular mechanism of tau aggregation induced by anionic and cationic dyes.

    PubMed

    Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A

    2013-01-01

    Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.

  16. Wess-Zumino current and the structure of the decay tau- -->K- pi- K+ nu tau.

    PubMed

    Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H

    2004-06-11

    We present the first study of the vector (Wess-Zumino) current in tau(-)-->K-pi-K+nu(tau) decay using data collected with the CLEO III detector at the Cornell Electron Storage Ring. We determine the quantitative contributions to the decay width from the vector and axial vector currents. Within the framework of a model by Kühn and Mirkes, we identify the quantitative contributions to the total decay rate from the intermediate states omegapi, rho(')pi, and K*K.

  17. The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice.

    PubMed

    To, Alvina W M; Ribe, Elena M; Chuang, Tsu Tshen; Schroeder, Joern E; Lovestone, Simon

    2011-02-10

    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment. Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle. All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.

  18. PBB3 imaging in Parkinsonian disorders: Evidence for binding to tau and other proteins.

    PubMed

    Perez-Soriano, Alexandra; Arena, Julieta E; Dinelle, Katie; Miao, Qing; McKenzie, Jessamyn; Neilson, Nicole; Puschmann, Andreas; Schaffer, Paul; Shinotoh, Hitoshi; Smith-Forrester, Jenna; Shahinfard, Elham; Vafai, Nasim; Wile, Daryl; Wszolek, Zbigniew; Higuchi, Makoto; Sossi, Vesna; Stoessl, A Jon

    2017-07-01

    To study selective regional binding for tau pathology in vivo, using PET with [ 11 C]PBB3 in PSP patients, and other conditions not typically associated with tauopathy. Dynamic PET scans were obtained for 70 minutes after the bolus injection of [ 11 C]PBB3 in 5 PSP subjects, 1 subject with DCTN1 mutation and PSP phenotype, 3 asymptomatic SNCA duplication carriers, 1 MSA subject, and 6 healthy controls of similar age. Tissue reference Logan analysis was applied to each region of interest using a cerebellar white matter reference region. In comparison to the control group, PSP subjects showed specific uptake of [ 11 C]PBB3 in putamen, midbrain, GP, and SN. Longer disease duration and more advanced clinical severity were generally associated with higher tracer retention. A DCTN1/PSP phenotype case showed increased binding in putamen, parietal lobe, and GP. In SNCA duplication carriers, there was a significant increase of [ 11 C] PBB3 binding in GP, putamen, thalamus, ventral striatum, SN, and pedunculopontine nucleus. The MSA case showed increased binding in frontal lobe, GP, midbrain, parietal lobe, putamen, temporal lobe, SN, thalamus, and ventral striatum. All PSP patients showed increased retention of the tracer in the basal ganglia, as expected. Binding was also present in asymptomatic SNCA duplication carriers and in an MSA case, which are not typically associated with pathological tau deposition. This suggests the possibility that [ 11 C]PBB3 binds to alpha-synuclein. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  19. Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice.

    PubMed

    Ramos-Rodriguez, Juan Jose; Ortiz-Barajas, Oscar; Gamero-Carrasco, Carlos; de la Rosa, Pablo Romero; Infante-Garcia, Carmen; Zopeque-Garcia, Nuria; Lechuga-Sancho, Alfonso M; Garcia-Alloza, Monica

    2014-10-01

    Age remains the main risk factor for developing Alzheimer's disease (AD) although certain metabolic alterations, including prediabetes and hyperinsulinemia, also increase this risk. We present a mouse model of AD (APPswe/PS1dE9 mouse) with severe hyperinsulinemia induced by long-term high fat diet (HFD) treatment. After 23 weeks on HFD learning and memory processes were compromised. We observed a significant increase in tau hyperphosphorylation and Aβ pathology, including Aβ levels and amyloid burden. Microglia activation was also significantly increased in HFD-treated mice, both in close proximity to and far from senile plaques. Insulin degrading enzyme and neprilysin levels were not affected, suggesting that Aβ degradation pathways were preserved, whereas we detected an increase in spontaneous cortical bleeding that could underlay an impairment of Aβ interstitial fluid drainage, contributing to the increase in Aβ deposition in APP/PS1-HFD mice. Altogether our data suggest that early hyperinsulinemia is enough to exacerbate AD pathology observed in APP/PS1 mice, and supports the role of insulin-resistance therapies to stop or delay central complications associated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hypoglycemia induces tau hyperphosphorylation.

    PubMed

    Lee, Chu-Wan; Shih, Yao-Hsiang; Wu, Shih-Ying; Yang, Tingting; Lin, Chingju; Kuo, Yu-Min

    2013-03-01

    Cerebral hypoglycemia/hypometabolism is associated with Alzheimer's disease (AD) and is routinely used to assist clinical diagnosis of AD by brain imaging. However, whether cerebral hypoglycemia/hypometabolism contributes to the development of AD or is a response of reduced neuronal activity remains unclear. To investigate the causal relationship, we cultured the differentiated N2a neuroblastoma cells in glucose/pyruvate-deficient media (GDM). Shortly after the N2a cells cultured in the GDM, the mitochondria membrane potential was reduced and the AMP-activated-proteinkinase (AMPK), an energy sensor, was activated. Treatment of GDM not only increased the levels of tau phosphorylation at Ser(262) and Ser(396), but also increased the levels of active forms of GSK3α and GSK3β, two known kinases for tau phosphorylation, of the N2a cells. The levels of activated Akt, a mediator downstream to AMPK and upstream to GSK3α/β, were reduced by the GDM treatment. The effect of hypoglycemia was further examined in vivo by intracerebroventricular (icv) injection of streptozotocin (STZ) to the Wistar rats. STZ selectively injuries glucose transporter type 2-bearing cells which are primarily astrocytes in the rat brain, hence, interrupts glucose transportation from blood vessel to neuron. STZicv injection induced energy crisis in the brain regions surrounding the ventricles, as indicated by higher pAMPK levels in the hippocampus, but not cortex far away from the ventricles. STZ-icv treatment increased the levels of phosphorylated tau and activated GSK3β, but decreased the levels of activated Akt in the hippocampus. The hippocampus-dependent spatial learning and memory was impaired by the STZ-icv treatment. In conclusion, our works suggest that hypoglycemia enhances the AMPK-Akt-GSK3 pathway and leads to tau hyperphosphorylation.

  1. Tau Fibril Formation in Cultured Cells Compatible with a Mouse Model of Tauopathy.

    PubMed

    Matsumoto, Gen; Matsumoto, Kazuki; Kimura, Taeko; Suhara, Tetsuya; Higuchi, Makoto; Sahara, Naruhiko; Mori, Nozomu

    2018-05-17

    Neurofibrillary tangles composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases collectively termed tauopathy. To understand the mechanisms underlying the cause of tauopathy, precise cellular and animal models are required. Recent data suggest that the transient introduction of exogenous tau can accelerate the development of tauopathy in the brains of non-transgenic and transgenic mice expressing wild-type human tau. However, the transmission mechanism leading to tauopathy is not fully understood. In this study, we developed cultured-cell models of tauopathy representing a human tauopathy. Neuro2a (N2a) cells containing propagative tau filaments were generated by introducing purified tau fibrils. These cell lines expressed full-length (2N4R) human tau and the green fluorescent protein (GFP)-fused repeat domain of tau with P301L mutation. Immunocytochemistry and super-resolution microscopic imaging revealed that tau inclusions exhibited filamentous morphology and were composed of both full-length and repeat domain fragment tau. Live-cell imaging analysis revealed that filamentous tau inclusions are transmitted to daughter cells, resulting in yeast-prion-like propagation. By a standard method of tau preparation, both full-length tau and repeat domain fragments were recovered in sarkosyl insoluble fraction. Hyperphosphorylation of full-length tau was confirmed by the immunoreactivity of phospho-Tau antibodies and mobility shifts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These properties were similar to the biochemical features of P301L mutated human tau in a mouse model of tauopathy. In addition, filamentous tau aggregates in cells barely co-localized with ubiquitins, suggesting that most tau aggregates were excluded from protein degradation systems, and thus propagated to daughter cells. The present cellular model of tauopathy will provide an advantage for dissecting

  2. Atypical PKC, PKCλ/ι, activates β-secretase and increases Aβ1-40/42 and phospho-tau in mouse brain and isolated neuronal cells, and may link hyperinsulinemia and other aPKC activators to development of pathological and memory abnormalities in Alzheimer's disease.

    PubMed

    Sajan, Mini P; Hansen, Barbara C; Higgs, Margaret G; Kahn, C Ron; Braun, Ursula; Leitges, Michael; Park, Collin R; Diamond, David M; Farese, Robert V

    2018-01-01

    Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ 1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ 1-40/42 , β-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepatic PKC-λ/ι sufficient to correct hepatic abnormalities and hyperinsulinemia simultaneously reversed increases in Akt, atypical protein kinase C (aPKC), β-secretase, and Aβ 1-40/42 , and restored acute Akt activation. However, 2 aPKC inhibitors additionally blocked insulin's ability to activate brain PKC-λ/ι and thereby increase β-secretase and Aβ 1-40/42 . Furthermore, direct blockade of brain aPKC simultaneously corrected an impairment in novel object recognition in high-fat-fed insulin-resistant mice. In neuronal cells and/or mouse hippocampal slices, PKC-ι/λ activation by insulin, metformin, or expression of constitutive PKC-ι provoked increases in β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau that were blocked by various PKC-λ/ι inhibitors, but not by an Akt inhibitor. PKC-λ/ι provokes increases in brain β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau. Excessive signaling via PKC-λ/ι may link hyperinsulinemia and other PKC-λ/ι activators to pathological and functional abnormalities in Alzheimer's disease. Published by Elsevier Inc.

  3. Protoplanetary disk formation and evolution models: DM Tau and GM Aur

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Guillot, T.

    2002-09-01

    We study the formation and evolution of protoplanetary disks using an axisymmetric turbulent disk model. We compare model results with observational parameters derived for the DM Tau and GM Aur systems. These are relatively old T Tauri stars with large and massive protoplanetary disks. Early disk formation is studied in the standard scenario of slowly rotating isothermal collapsing spheres and is strongly dependent on the initial angular momentum and the collapse accretion rate. The viscous evolution of the disk is integrated in time using the classical Alpha prescription of turbulence. We follow the temporal evolution of the disks until their characteristics fit the observed characteristics of DM Tau and GM Aur. We therefore obtain the set of model parameters that are able to explain the present state of these disks. We also study the disk evolution under the Beta parameterization of turbulence, recently proposed for sheared flows on protoplanetary disks. Both parameterizations allow explaining the present state of both DM Tau and GM Aur. We infer a value of Alpha between 5x10-3 to 0.02 for DM Tau and one order of magnitude smaller for GM Aur. Values of the Beta parameter are in accordance with theoretical predictions of Beta around 2x10-5 but with a larger dispersion on other model parameters, which make us favor the Alpha parameterization of turbulence. Implications for planetary system development in these systems are presented. In particular, GM Aur is a massive and slowly evolving disk where conditions are very favorable for planetesimal growth. The large value of present disk mass and the relatively small observed accretion rate of this system may also be indicative of the presence of an inner gas giant planet. Acknowledgements: This work has been supported by Programme Nationale de Planetologie. R. Hueso acknowledges a post-doctoral fellowship from Gobierno Vasco.

  4. A measurement of the tau Michel parameters at SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, James A.

    1997-05-01

    This thesis presents a measurement of the tau Michel parameters. This measurement utilizes the highly polarized SLC electron beam to extract these quantities directly from the measured tau decay spectra using the 1993--95 SLD sample of 4,528 tau pair events. The results are ρ e = 0.71 ± 0.14 ± 0.05, ζ e = 1.16 ± 0.52 ± 0.06, and (ζδ) e = 0.85 ± 0.43 ± 0.08 for tau decays to electrons and ρ μ = 0.54 ± 0.28 μ 0.14, η μ = -0.59 ± 0.82 ± 0.45, ζsup>μ = 0.75 ± 0.50 ± 0.14, and (ζδ) μmore » = 0.82 ± 0.32 ± 0.07 for tau decays to muons. Combining all leptonic tau decays gives ρ = 0.72 ± 0.09 ± 0.03, ζ = 1.05 ± 0.35 ± 0.04, and ζδ = 0.88 ± 0.27 ± 0.04. These results agree well with the current world average and the Standard Model.« less

  5. Tau proteins in the cerebrospinal fluid of patients with subacute sclerosing panencephalitis.

    PubMed

    Yuksel, Deniz; Yilmaz, Deniz; Uyar, Neval Y; Senbil, Nesrin; Gurer, Yavuz; Anlar, Banu

    2010-06-01

    Neurodegenerative diseases characterized by cytoskeletal deformation and neurofibrillary tangles are associated with altered levels of tau and related proteins in cerebrospinal fluid (CSF). Neuronal or glial fibrillary tangles have been shown in 20% of subacute sclerosing panencephalitis (SSPE) patients. We therefore investigated CSF samples from 60 newly diagnosed SSPE and 31 neurological control patients for total tau (t-tau), phosphorylated tau (p-tau), and S100-B levels by ELISA. There was no difference between patient and control groups in t-tau and S100-B levels. p-Tau was lower in the SSPE group (p=0.009). Past history of measles infection, measles immunization status, latent period between measles and onset of SSPE, duration of symptoms, frequency of myoclonia, neurological deficit index, stage and progression rate of the disease, CSF glucose levels and cell counts, CSF and serum measles IgG titer, distribution of lesions on brain magnetic resonance imaging were not related to t-tau, p-tau and S100-B levels. Mental status and age were negatively correlated with t-tau, and male gender and EEG abnormalities were associated with higher t-tau levels. The levels of tau proteins in our patients suggest there is no, or only scarce and immature, neurofibrillary tangle formation in SSPE. Autopsy studies showing neurofibrillary tangles might have examined older patients with longer disease and more parenchymal involvement. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    DTIC Science & Technology

    2015-10-01

    available, work will commence. Tau, genetics , susceptibility, MAPT, chronic traumatic encephalopathy, Alzheimer disease U U U U 1 USAMRMC Table of...AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John

  7. Alzheimer disease.

    PubMed

    Calderon-Garcidueñas, Ana Laura; Duyckaerts, Charles

    2017-01-01

    Alzheimer disease neuropathology is characterized by the extracellular accumulation of Aβ peptide and intracellular aggregation of hyperphosphorylated tau. With the progression of the disease, macroscopic atrophy affects the entorhinal area and hippocampus, amygdala, and associative regions of the neocortex. The locus coeruleus is depigmented. The deposition of Aβ is first made of diffuse deposits. Amyloid focal deposits constitute the core of the senile plaque which also comprises a corona of tau-positive neurites. Aβ deposits are found successively in the neocortex, the hippocampus, the striatum, the mesencephalon, and finally the cerebellum together with the pontine nuclei (Thal phases). Tau pathology affects in a stereotyped order some specific nuclei of the brainstem, the entorhinal area, the hippocampus, and the neocortex - first the associative areas and secondarily the primary cortices (Braak stages). Loss of synapses is observed in association with tau and Aβ pathology; neuronal loss occurs in the most affected areas. Granulovacuolar degeneration and perisomatic granules are also linked to Alzheimer disease pathology. The physiopathology of Alzheimer disease remains unknown. Familial cases suggest that Aβ deposition is the initial step, but tau pathology appears early in the course and seems to be better correlated with the symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Combining nonoverlap and trend for single-case research: Tau-U.

    PubMed

    Parker, Richard I; Vannest, Kimberly J; Davis, John L; Sauber, Stephanie B

    2011-06-01

    A new index for analysis of single-case research data was proposed, Tau-U, which combines nonoverlap between phases with trend from within the intervention phase. In addition, it provides the option of controlling undesirable Phase A trend. The derivation of Tau-U from Kendall's Rank Correlation and the Mann-Whitney U test between groups is demonstrated. The equivalence of trend and nonoverlap is also shown, with supportive citations from field leaders. Tau-U calculations are demonstrated for simple AB and ABA designs. Tau-U is then field tested on a sample of 382 published data series. Controlling undesirable Phase A trend caused only a modest change from nonoverlap. The inclusion of Phase B trend yielded more modest results than simple nonoverlap. The Tau-U score distribution did not show the artificial ceiling shown by all other nonoverlap techniques. It performed reasonably well with autocorrelated data. Tau-U shows promise for single-case applications, but further study is desirable. Copyright © 2011. Published by Elsevier Ltd.

  9. Metals and cholesterol: two sides of the same coin in Alzheimer’s disease pathology

    PubMed Central

    Wong, Bruce X.; Hung, Ya Hui; Bush, Ashley I.; Duce, James A.

    2014-01-01

    Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed. PMID:24860500

  10. Oligomerization of the protein tau in the Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Larini, Luca

    The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the microtubule associated protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau is extremely flexible and is classified as an intrinsically disordered protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules, which are an essential component of the cytoskeleton of the axon. The microtubule binding region of tau consists of 4 pseudo-repeats that are critical for aggregation as well. In this study, we focus on the aggregation propensity of different segments of the microtubule binding region as well as post-translational modifications that can alter tau dynamics and structure. We have performed replica exchange molecular dynamics simulations to characterize the ensemble of conformations of the monomer and small oligomers as well as how these structures are stabilized or destabilized by mutations and post-translational modifications.

  11. Alzheimer's Disease Normative Cerebrospinal Fluid Biomarkers Validated in PET Amyloid-β Characterized Subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study.

    PubMed

    Li, Qiao-Xin; Villemagne, Victor L; Doecke, James D; Rembach, Alan; Sarros, Shannon; Varghese, Shiji; McGlade, Amelia; Laughton, Katrina M; Pertile, Kelly K; Fowler, Christopher J; Rumble, Rebecca L; Trounson, Brett O; Taddei, Kevin; Rainey-Smith, Stephanie R; Laws, Simon M; Robertson, Joanne S; Evered, Lisbeth A; Silbert, Brendan; Ellis, Kathryn A; Rowe, Christopher C; Macaulay, S Lance; Darby, David; Martins, Ralph N; Ames, David; Masters, Colin L; Collins, Steven

    2015-01-01

    The cerebrospinal fluid (CSF) amyloid-β (Aβ)(1-42), total-tau (T-tau), and phosphorylated-tau (P-tau181P) profile has been established as a valuable biomarker for Alzheimer's disease (AD). The current study aimed to determine CSF biomarker cut-points using positron emission tomography (PET) Aβ imaging screened subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, as well as correlate CSF analyte cut-points across a range of PET Aβ amyloid ligands. Aβ pathology was determined by PET imaging, utilizing ¹¹C-Pittsburgh Compound B, ¹⁸F-flutemetamol, or ¹⁸F-florbetapir, in 157 AIBL participants who also underwent CSF collection. Using an INNOTEST assay, cut-points were established (Aβ(1-42) >544 ng/L, T-tau <407 ng/L, and P-tau181P <78 ng/L) employing a rank based method to define a "positive" CSF in the sub-cohort of amyloid-PET negative healthy participants (n = 97), and compared with the presence of PET demonstrated AD pathology. CSF Aβ(1-42) was the strongest individual biomarker, detecting cognitively impaired PET positive mild cognitive impairment (MCI)/AD with 85% sensitivity and 91% specificity. The ratio of P-tau181P or T-tau to Aβ(1-42) provided greater accuracy, predicting MCI/AD with Aβ pathology with ≥92% sensitivity and specificity. Cross-validated accuracy, using all three biomarkers or the ratio of P-tau or T-tau to Aβ(1-42) to predict MCI/AD, reached ≥92% sensitivity and specificity. CSF Aβ(1-42) levels and analyte combination ratios demonstrated very high correlation with PET Aβ imaging. Our study offers additional support for CSF biomarkers in the early and accurate detection of AD pathology, including enrichment of patient cohorts for treatment trials even at the pre-symptomatic stage.

  12. Placental pathology in early intrauterine growth restriction associated with maternal hypertension.

    PubMed

    Veerbeek, J H W; Nikkels, P G J; Torrance, H L; Gravesteijn, J; Post Uiterweer, E D; Derks, J B; Koenen, S V; Visser, G H A; Van Rijn, B B; Franx, A

    2014-09-01

    To identify key pathological characteristics of placentas from pregnancies complicated by early intrauterine growth restriction, and to examine their relations with maternal hypertensive disease and umbilical artery Doppler waveform abnormalities. Single-center retrospective cohort study of singleton pregnancies with abnormal umbilical artery Doppler flow patterns resulting in a live birth <34 weeks of a baby with a weight <10th percentile for gestational age. Umbilical artery end diastolic flow was classified as being either present or absent/reversed (AREDF). Data were stratified into intrauterine growth restriction with or without hypertensive disease and pathological characteristics were compared between these various conditions according to predefined scoring criteria. Among 164 placentas studied, we found high rates of characteristic histopathological features that were associated with intrauterine growth restriction, including infarction (>5% in 42%), chronic villitis (21%), chronic chorioamnionitis (36%), membrane necrosis (20%), elevated nucleated red blood cells (89%), increased syncytial knotting (93%), increased villous maturation (98%), fetal thrombosis (32%) and distal villous hypoplasia (35%). Chronic inflammation of fetal membranes and syncytial knotting were more common in women with concomitant hypertensive disease as compared to women with normotensive IUGR (p < 0.05). Placentas from women with umbilical artery AREDF were more likely to show increased numbers of nucleated red blood cells and distal villous hypoplasia (p < 0.05). Placentas of women with early IUGR show high rates of several histological aberrations. Further, concomitant maternal hypertension is associated with characteristic inflammatory changes and umbilical artery AREDF with signs of chronic hypoxia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Changes in pathology test ordering by early career general practitioners: a longitudinal study.

    PubMed

    Magin, Parker J; Tapley, Amanda; Morgan, Simon; Henderson, Kim; Holliday, Elizabeth G; Davey, Andrew R; Ball, Jean; Catzikiris, Nigel F; Mulquiney, Katie J; van Driel, Mieke L

    2017-07-17

    To assess the number of pathology tests ordered by general practice registrars during their first 18-24 months of clinical general practice. Longitudinal analysis of ten rounds of data collection (2010-2014) for the Registrar Clinical Encounters in Training (ReCEnT) study, an ongoing, multicentre, cohort study of general practice registrars in Australia. The principal analysis employed negative binomial regression in a generalised estimating equations framework (to account for repeated measures on registrars).Setting, participants: General practice registrars in training posts with five of 17 general practice regional training providers in five Australian states. The registrar participation rate was 96.4%. Number of pathology tests requested per consultation. The time unit for analysis was the registrar training term (the 6-month full-time equivalent component of clinical training); registrars contributed data for up to four training terms. 876 registrars contributed data for 114 584 consultations. The number of pathology tests requested increased by 11% (95% CI, 8-15%; P < 0.001) per training term. Contrary to expectations, pathology test ordering by general practice registrars increased significantly during their first 2 years of clinical practice. This causes concerns about overtesting. As established general practitioners order fewer tests than registrars, test ordering may peak during late vocational training and early career practice. Registrars need support during this difficult period in the development of their clinical practice patterns.

  14. Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Opera Collaboration; Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Asada, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; de Lellis, G.; de Serio, M.; Del Amo Sanchez, P.; di Crescenzo, A.; di Ferdinando, D.; di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Goellnitz, C.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hayakawa, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Katsuragawa, T.; Kawada, J.; Kawahara, H.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malenica, M.; Malgin, A.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Meyer, M.; Mikado, S.; Miyanishi, M.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Umemoto, A.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Yaguchi, I.; Yoshimoto, M.; Zemskova, S.; Zghiche, A.

    2014-10-01

    The OPERA experiment is searching for ν _μ rArr ν _tau oscillations in appearance mode, i.e., via the direct detection of tau leptons in ν _tau charged-current interactions. The evidence of ν _μ rArr ν _tau appearance has been previously reported with three ν _tau candidate events using a sub-sample of data from the 2008-2012 runs. We report here a fourth ν _tau candidate event, with the tau decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analyzed events and the low background, ν _μ rArr ν _tau oscillations are established with a significance of 4.2σ.

  15. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse.

    PubMed

    Dinkins, Michael B; Enasko, John; Hernandez, Caterina; Wang, Guanghu; Kong, Jina; Helwa, Inas; Liu, Yutao; Terry, Alvin V; Bieberich, Erhard

    2016-08-17

    Recent evidence implicates exosomes in the aggregation of Aβ and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aβ42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aβ42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aβ42 and blocked glial clearance of Aβ42 in vitro Aβ42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aβ42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aβ. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome secretion as a potential therapy

  16. Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro

    PubMed Central

    Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-01-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840

  17. [Diagnostic significance of pathologic synkinesis for detection of pyramidal pathology].

    PubMed

    Baliasnyĭ, M M

    1991-01-01

    Five types of pathological synkinesis (++blepharo-ocular, ++blepharo-facial, ++bucco-manual, ++digito-digital on the hands, ++pedo-digital) are described. They are of definite importance for revealing pyramidal pathology including its early stages as well as for objective evaluation and observation of the time-course of changes in the illness.

  18. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  19. High education may offer protection against tauopathy in patients with mild cognitive impairment.

    PubMed

    Rolstad, Sindre; Nordlund, Arto; Eckerström, Carl; Gustavsson, Marie H; Blennow, Kaj; Olesen, Pernille J; Zetterberg, Henrik; Wallin, Anders

    2010-01-01

    The concepts of brain and cognitive reserve stem from the observation that premorbid factors (e.g., education) result in variation in the response to brain pathology. Potential early influence of reserve on pathology, as assessed using the cerebrospinal fluid biomarkers total tau (t-tau) and amyloid-beta42, and cognition was explored in mild cognitive impairment (MCI) patients who remained stable over a two-year period. A total of 102 patients with stable MCI grouped on the basis of educational level were compared with regard to biomarker concentrations and cognitive performance. Stable MCI patients with higher education had lower concentrations of t-tau as compared to those with lower education. Also, educational level predicted a significant proportion of the total variance in t-tau concentrations. Our results suggest that higher education may offer protection against tauopathy.

  20. Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease.

    PubMed

    Saiz-Sanchez, D; Ubeda-Bañon, I; de la Rosa-Prieto, C; Argandoña-Palacios, L; Garcia-Muñozguren, S; Insausti, R; Martinez-Marcos, A

    2010-06-01

    Impaired olfaction is an early symptom of Alzheimer disease (AD). This likely to reflect neurodegenerative processes taking place in basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus. Betaeta-amyloid (Abeta) accumulation in AD brain may relate to decline in somatostatin levels: somatostatin induces the expression of the Abeta-degrading enzyme neprilysin and somatostatin deficiency in AD may therefore reduce Abeta clearance. We have investigated the expression of somatostatin in the anterior olfactory nucleus of AD and control brain. We report that somatostatin levels were reduced by approximately 50% in AD brain. Furthermore, triple-immunofluorescence revealed co-localization of somatostatin expression with Abeta (65.43%) with Abeta and tau (19.75%) and with tau (2.47%). These data indicate that somatostatin decreases in AD and its expression may be linked with Abeta deposition. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. Brain metabolic correlates of CSF Tau protein in a large cohort of Alzheimer's disease patients: A CSF and FDG PET study.

    PubMed

    Chiaravalloti, Agostino; Barbagallo, Gaetano; Ricci, Maria; Martorana, Alessandro; Ursini, Francesco; Sannino, Pasqualina; Karalis, Georgios; Schillaci, Orazio

    2018-01-01

    Physiopathological mechanisms of Alzheimer's disease (AD) are still matter of debate. Especially the role of amyloid β and tau pathology in the development of the disease are still matter of debate. Changes in tau and amyloid β peptide concentration in cerebrospinal fluid (CSF) and hypometabolic patterns at fluorine-18 fluorodeoxyglucose ( 18 F-FDG) PET scanning are considered as biomarkers of AD. The present study was aimed to evaluate the relationships between the concentrations of CSF total Tau (t-Tau), phosphorilated Tau (p-Tau) and Aβ 1-42 amyloid peptide with 18 F-FDG brain distribution in a group of patients with AD. We examined 131 newly diagnosed AD patients according to the NINCDS-ADRDA criteria and 20 healthy controls. The mean (±SD) age of the patients was 70 (±7) years; 57 were male and 74 were female. All patients and controls underwent a complete clinical investigation, including medical history, neurological examination, mini-mental state examination (MMSE), a complete blood screening (including routine exams, thyroid hormones and a complete neuropsychological evaluation). Structural MRI was performed not earlier than 1 month before the 18 F-FDG PET/CT. The following patients were excluded: those with isolated deficits and/or unmodified MMSE (=25/30) on revisit (period of follow-up: 6, 12 and 18 months); patients who had had a clinically manifest acute stroke in the last 6 months with a Hachinsky score greater than 4; and patients with radiological evidence of subcortical lesions. All AD patients were taken off cholinesterase inhibitor treatment throughout the study. We performed lumbar puncture and CSF sampling for diagnostic purposes 2 weeks (±2 days) before the PET/CT scan. The relationship between brain F-FDG uptake and CSF biomarkers was analysed using statistical parametric mapping (SPM8; Wellcome Department of Cognitive Neurology, London, UK) implemented in Matlab R2012b using the MMSE score, sex and age, and other CSF

  2. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity.

    PubMed

    Huang, Yunpeng; Wu, Zhihao; Zhou, Bing

    2016-01-01

    tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.

  3. [18F]FDDNP PET in Tauopathies: Correlation to post mortem Pathology in a Case of Progressive Supranuclear Palsy (PSP)

    NASA Astrophysics Data System (ADS)

    Villegas, Brendon Josef

    This investigation of [18F]FDDNP was conducted in an effort to confirm the presence of disease in a patient with Progressive Supranuclear Palsy (PSP) and to correlate the ante mortem PET scan results to the post mortem pathology. The immunohistochemical and immunofluorescent staining of Paired Helical Filamentous (PHF) tau (AT8) and Amyloid Beta (6F/3D) misfolded proteins demonstrated a widespread deposition in the cortical and subcortical nuclei, the white matter, cerebellar white matter and the medulla oblongata. The in vitro autoradiography demonstrated a neocortical signal comprised of well-delineated amyloid beta in the nucleated layers I/II and hyperphosphorylated tau in the deeper layers III through VI. The autoradiography was well correlated with the immunohistochemical staining in adjacent tissue slides. The binding of the parametric [ 18F]FDDNP distribution volume ratio (DVR) correlated well (Spearman's rho = 0.962, p = .004) with the deposition of tau but not with the presence of amyloid beta (Spearman's rho = -0.829, p = .041). The [ 18F]FDDNP DVR signal appears to be primarily due to the large amount of bound hyperphosphorylated tau (p-tau) and the amyloid beta negligibly contributes to the total signal. Unlabeled FDDNP was shown to bind to tau in the form of globose tangles in the rostral ventromedial medulla as confirmed with both Thioflavin S and PHF-tau Immunofluorescence. The binding of [18F]FDDNP to the human neuroanatomy was investigated in two cohorts of distinct tauopathies and compared to the binding in two tau-negative cohorts against control patients. A cohort of PSP patients (n = 12) with a mean age of 63.8 years and a cohort of Chronic Traumatic Encephalopathy (CTE) patients (n = 14) with a mean age of 58.1 years are both characterized by the presence of various degrees of tau pathology in their brains. The cohort of Parkinson's Disease (PD) patients (n = 16) with a mean age of 63.2 years is initially characterized by clinical symptoms

  4. Self-esteem and peer-perceived social status in early adolescence and prediction of eating pathology in young adulthood.

    PubMed

    Smink, Frédérique R E; van Hoeken, Daphne; Dijkstra, Jan Kornelis; Deen, Mathijs; Oldehinkel, Albertine J; Hoek, Hans W

    2018-04-27

    Self-esteem is implied as a factor in the development of eating disorders. In adolescence peers have an increasing influence. Support for the role of self-esteem in eating disorders is ambiguous and little is known about the influence of social status as judged by others. The present study investigates whether self-esteem and peer status in early adolescence are associated with eating pathology in young adulthood. This study is part of TRAILS, a longitudinal cohort study on mental health and social development from preadolescence into adulthood. At age 11, participants completed the Self-Perception Profile for Children, assessing global self-esteem and self-perceptions regarding social acceptance, physical appearance, and academic competence. At age 13, peer status among classmates was assessed regarding likeability, physical attractiveness, academic performance, and popularity in a subsample of 1,007 participants. The Eating Disorder Diagnostic Scale was administered at age 22. The present study included peer-nominated participants with completed measures of self-perception at age 11 and eating pathology at age 22 (N = 732; 57.8% female). In a combined model, self-perceived physical attractiveness at age 11 and peer popularity at age 13 were inversely correlated with eating pathology at 22 years, while likeability by peers at age 13 was positively related to eating pathology. Both self-perceptions and peer status in early adolescence are significant predictors of eating pathology in young adults. Specific measures of self-esteem and peer-perceived status may be more relevant to the prediction of eating pathology than a global measure of self-esteem. © 2018 The Authors International Journal of Eating Disorders Published by Wiley Periodicals, Inc.

  5. Tau-Dependent Kv4.2 Depletion and Dendritic Hyperexcitability in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Hall, Alicia M.; Throesch, Benjamin T.; Buckingham, Susan C.; Markwardt, Sean J.; Peng, Yin; Wang, Qin

    2015-01-01

    Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing Aβ. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD. PMID:25878292

  6. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology

    PubMed Central

    Rosenberger, Andrea F.N.; Hilhorst, Riet; Coart, Elisabeth; García Barrado, Leandro; Naji, Faris; Rozemuller, Annemieke J.M.; van der Flier, Wiesje M.; Scheltens, Philip; Hoozemans, Jeroen J.M.; van der Vies, Saskia M.

    2015-01-01

    Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention. PMID:26519433

  7. Evidence for an intermediate in tau filament formation.

    PubMed

    Chirita, Carmen N; Kuret, Jeff

    2004-02-17

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy. Protein and surfactant first interacted in solution to form micelles, which then provided negatively charged surfaces that accumulated tau aggregates. Surface aggregation of tau protein was followed by the time-dependent appearance of a thioflavin S reactive intermediate that accumulated over a period of hours. The intermediate was unstable in the absence of anionic surfaces, suggesting it was not filamentous. Fibrillization proceeded after intermediate formation with classic nucleation-dependent kinetics, consisting of lag phase followed by the exponential increase in filament lengths, followed by an equilibrium phase reached in approximately 24 h. The pathway did not require protein insertion into the micelle hydrophobic core or conformational change arising from mixed micelle formation, because anionic microspheres constructed from impermeable polystyrene were capable of qualitatively reproducing all aspects of the fibrillization reaction. It is proposed that the progression from amorphous aggregation through intermediate formation and fibrillization may underlie the activity of other inducers such as hyperphosphorylation and may be operative in vivo.

  8. Early Alzheimer's and Parkinson's disease pathology in urban children: Friend versus Foe responses--it is time to face the evidence.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Mora-Tiscareño, Antonieta; Medina-Cortina, Humberto; Torres-Jardón, Ricardo; Kavanaugh, Michael

    2013-01-01

    Chronic exposure to particulate matter air pollution is known to cause inflammation leading to respiratory- and cardiovascular-related sickness and death. Mexico City Metropolitan Area children exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, and innate and adaptive immune responses. Early dysregulated neuroinflammation, brain microvascular damage, production of potent vasoconstrictors, and perturbations in the integrity of the neurovascular unit likely contribute to progressive neurodegenerative processes. The accumulation of misfolded proteins coincides with the anatomical distribution observed in the early stages of both Alzheimer's and Parkinson's diseases. We contend misfolding of hyperphosphorylated tau (HPπ), alpha-synuclein, and beta-amyloid could represent a compensatory early protective response to the sustained systemic and brain inflammation. However, we favor the view that the chronic systemic and brain dysregulated inflammation and the diffuse vascular damage contribute to the establishment of neurodegenerative processes with childhood clinical manifestations. Friend turns Foe early; therefore, implementation of neuroprotective measures to ameliorate or stop the inflammatory and neurodegenerative processes is warranted in exposed children. Epidemiological, cognitive, structural, and functional neuroimaging and mechanistic studies into the association between air pollution exposures and the development of neuroinflammation and neurodegeneration in children are of pressing importance for public health.

  9. Early Alzheimer's and Parkinson's Disease Pathology in Urban Children: Friend versus Foe Responses—It Is Time to Face the Evidence

    PubMed Central

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Mora-Tiscareño, Antonieta; Medina-Cortina, Humberto; Torres-Jardón, Ricardo; Kavanaugh, Michael

    2013-01-01

    Chronic exposure to particulate matter air pollution is known to cause inflammation leading to respiratory- and cardiovascular-related sickness and death. Mexico City Metropolitan Area children exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, and innate and adaptive immune responses. Early dysregulated neuroinflammation, brain microvascular damage, production of potent vasoconstrictors, and perturbations in the integrity of the neurovascular unit likely contribute to progressive neurodegenerative processes. The accumulation of misfolded proteins coincides with the anatomical distribution observed in the early stages of both Alzheimer's and Parkinson's diseases. We contend misfolding of hyperphosphorylated tau (HPπ), alpha-synuclein, and beta-amyloid could represent a compensatory early protective response to the sustained systemic and brain inflammation. However, we favor the view that the chronic systemic and brain dysregulated inflammation and the diffuse vascular damage contribute to the establishment of neurodegenerative processes with childhood clinical manifestations. Friend turns Foe early; therefore, implementation of neuroprotective measures to ameliorate or stop the inflammatory and neurodegenerative processes is warranted in exposed children. Epidemiological, cognitive, structural, and functional neuroimaging and mechanistic studies into the association between air pollution exposures and the development of neuroinflammation and neurodegeneration in children are of pressing importance for public health. PMID:23509683

  10. Association between Cerebrospinal Fluid Biomarkers for Alzheimer's Disease, APOE Genotypes and Auditory Verbal Learning Task in Subjective Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease.

    PubMed

    Mandecka, Monika; Budziszewska, Magdalena; Barczak, Anna; Pepłońska, Beata; Chodakowska-Żebrowska, Małgorzata; Filipek-Gliszczyńska, Anna; Nesteruk, Marta; Styczyńska, Maria; Barcikowska, Maria; Gabryelewicz, Tomasz

    2016-07-29

    In the course of Alzheimer's disease (AD), early pathological changes in the brain start decades before any clinical manifestation. The concentration levels of AD cerebrospinal fluid (CSF) biomarkers, such as amyloid-β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau (P-tau), may reflect a cerebral pathology facilitating an early diagnosis of the disease and predicting a cognitive deterioration. The aim of this study was to estimate the prevalence of AD CSF biomarkers in those individuals with a subjective cognitive decline (SCD), a mild cognitive impairment (MCI), and Alzheimer's dementia (AD-D), together with the relationships between the biomarkers, an APOE ɛ4 presence, and a verbal episodic memory performance. We included 252 patients from the memory clinic with a diagnosis of SCD (n = 85), MCI (n = 87), and AD-D (n = 80). A verbal episodic memory performance level was assessed and was based on a delayed recall trial from the 10-word list of an auditory verbal learning task (AVLT). We found that the patients with more severe cognitive impairments had significantly lower levels of Aβ1-42 and higher levels of T-tau and P-tau. This pattern was also typical for the APOE ɛ4 carriers, who had lower levels of Aβ1-42 than the noncarriers in the AD-D and MCI groups. The levels of T-tau and P-tau were significantly higher in the APOE ɛ4 carriers than in the noncarriers, but only in the MCI patients. The AVLT performance in the whole study samples was predicted by age, Aβ1-42, and the T-tau CSF biomarkers, but not by the APOE genotyping.

  11. Reducing Aβ load and tau phosphorylation: Emerging perspective for treating Alzheimer's disease.

    PubMed

    Kalra, Jaspreet; Khan, Aamir

    2015-10-05

    Alzheimer's disease (AD) is a complex, progressive neurological disorder affecting elderly population of above 65 years of age, characterized by failure of memory, loss of acquired skills leading to apraxia, agnosia, aphasia and frequent disturbances in emotion with interpersonal and social deterioration. The extracellular senile plaques and intracellular neurofibrillary tangles composed of amyloid beta protein and highly phosphorylated tau protein, the key components involved in pathogenesis of AD are considered as the pathological hallmark of this disease. This has led to immense development in the field of treatment for AD. Recent evidences suggest that removal of protein deposits from AD brains are the newer attempts for treating AD. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario. Therefore, failures from the past can be treated as lessons for the development of efficacious drugs. In addition to this, various non- pharmacological interventions and miscellaneous drugs are also being used now for combating the AD like disease progression. Thus, present review discusses about the disease modifying therapies together with the various non-pharmacological interventions and miscellaneous drugs for treating AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. TauG-guidance of transients in expressive musical performance.

    PubMed

    Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N

    2008-08-01

    The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.

  13. Regulation of brain insulin signaling: A new function for tau

    PubMed Central

    Gratuze, Maud; Planel, Emmanuel

    2017-01-01

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer’s disease, impairment of brain insulin signaling might occur via tau loss of function. PMID:28652305

  14. Regulation of brain insulin signaling: A new function for tau.

    PubMed

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  15. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis.

    PubMed

    Granberg, Tobias; Fan, Qiuyun; Treaba, Constantina Andrada; Ouellette, Russell; Herranz, Elena; Mangeat, Gabriel; Louapre, Céline; Cohen-Adad, Julien; Klawiter, Eric C; Sloane, Jacob A; Mainero, Caterina

    2017-11-01

    Neuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P < 0.001), accompanied by an increased orientation dispersion (P < 0.001 by paired t-test) and lower fractional anisotropy (P < 0.001 by related-samples Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis

  16. Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease.

    PubMed

    Cho, Jinkyung; Shin, Min-Kyoo; Kim, Donghyun; Lee, Inhwan; Kim, Shinuk; Kang, Hyunsik

    2015-09-01

    This study investigated the effect of treadmill running on cognitive declines in the early and advanced stages of Alzheimer disease (AD) in 3xTg-AD mice. At 4 months of age, 3xTg-AD mice (N = 24) were assigned to control (AD + CON, n = 12) or exercise (AD + EX, n = 12) group. At 24 months of age, 3xTg-AD mice (N = 16) were assigned to AD + CON (n = 8) or AD + EX (n = 8) group. The AD + EX mice were subjected to treadmill running for 12 wk. At each pathological stage, the background strain mice were included as wild-type control (WT + CON, n = 8-12). At the early stage of AD, 3xTg-AD mice had impaired short- and long-term memory based on Morris water maze along with higher cortical Aβ deposition, higher hippocampal and cortical tau pathology, and lower hippocampal and cortical PSD-95 and synaptophysin. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the tau pathology along with suppression of the decreased PSD-95 and synaptophysin in the hippocampus and cortex. At the advanced stage of AD, 3xTg-AD mice had impaired short- and long-term memory along with higher levels of Aβ deposition, soluble Aβ1-40 and Aβ1-42, tau pathology, and lower levels of brain-derived neurotrophic factor, PSD-95, and synaptophysin in the hippocampus and cortex. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the Aβ and tau pathology along with suppression of the decreased synaptic proteins and brain-derived neurotrophic factor in the hippocampus and cortex. The current findings suggest that treadmill running provides a nonpharmacological means to combat cognitive declines due to AD pathology.

  17. The Light-time Effect in the Eclipsing Binaries with Early-type Components U CrB and RW Tau

    NASA Astrophysics Data System (ADS)

    Khaliullina, A. I.

    2018-04-01

    A detailed study of the orbital-period variations of the Algol-type eclipsing binaries with earlyspectral- type primary components U CrB and RW Tau has been performed. The period variations in both systems can be described as a superposition of secular and cyclic variations of the period. A secular period increase at a rate of 2.58d × 10-7/year is observed for U CrB, which can be explained if there is a uniform flow of matter from the lower-mass to the higher-mass component, with the total angular momentum conserved. RW Tau features a secular period decrease at a rate of -8.6d × 10-7/year; this could be due to a loss of angular momentum by the binary due to magnetic braking. The cyclic orbital-period variations of U CrB and RWTau can be explained by the motion of the eclipsing binary systems along their long-period orbits. In U CrB, this implies that the eclipsing binary moves with a period of 91.3 years around a third body with mass M 3 > 1.13 M ⊙; in RW Tau, the period of the motion around the third body is 66.6 years, and the mass of the third body is M 3 > 1.24 M ⊙. It also cannot be ruled out that the variations are due to the magnetic cycles of the late-type secondaries. The residual period variations could be a superposition of variations due to non-stationary ejection of matter and effects due to magnetic cycles.

  18. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease

    PubMed Central

    Sundgren, Pia C.; Strandberg, Olof; Zetterberg, Henrik; Minthon, Lennart; Blennow, Kaj; Wahlund, Lars-Olof; Westman, Eric

    2016-01-01

    Objective: We aimed to test whether in vivo levels of magnetic resonance spectroscopy (MRS) metabolites myo-inositol (mI), N-acetylaspartate (NAA), and choline are abnormal already during preclinical Alzheimer disease (AD), relating these changes to amyloid or tau pathology, and functional connectivity. Methods: In this cross-sectional multicenter study (a subset of the prospective Swedish BioFINDER study), we included 4 groups, representing the different stages of predementia AD: (1) cognitively healthy elderly with normal CSF β-amyloid 42 (Aβ42), (2) cognitively healthy elderly with abnormal CSF Aβ42, (3) patients with subjective cognitive decline and abnormal CSF Aβ42, (4) patients with mild cognitive decline and abnormal CSF Aβ42 (Ntotal = 352). Spectroscopic markers measured in the posterior cingulate/precuneus were considered alongside known disease biomarkers: CSF Aβ42, phosphorylated tau, total tau, [18F]-flutemetamol PET, f-MRI, and the genetic risk factor APOE. Results: Amyloid-positive cognitively healthy participants showed a significant increase in mI/creatine and mI/NAA levels compared to amyloid-negative healthy elderly (p < 0.05). In amyloid-positive healthy elderly, mI/creatine and mI/NAA correlated with cortical retention of [18F] flutemetamol tracer ( = 0.44, p = 0.02 and = 0.51, p = 0.01, respectively). Healthy elderly APOE ε4 carriers with normal CSF Aβ42 levels had significantly higher mI/creatine levels (p < 0.001) than ε4 noncarriers. Finally, elevated mI/creatine was associated with decreased functional connectivity within the default mode network (rpearson = −0.16, p = 0.02), independently of amyloid pathology. Conclusions: mI levels are elevated already at asymptomatic stages of AD. Moreover, mI/creatine concentrations were increased in healthy APOE ε4 carriers with normal CSF Aβ42 levels, suggesting that mI levels may reveal regional brain consequences of APOE ε4 before detectable amyloid pathology. PMID:27164711

  19. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease.

    PubMed

    Voevodskaya, Olga; Sundgren, Pia C; Strandberg, Olof; Zetterberg, Henrik; Minthon, Lennart; Blennow, Kaj; Wahlund, Lars-Olof; Westman, Eric; Hansson, Oskar

    2016-05-10

    We aimed to test whether in vivo levels of magnetic resonance spectroscopy (MRS) metabolites myo-inositol (mI), N-acetylaspartate (NAA), and choline are abnormal already during preclinical Alzheimer disease (AD), relating these changes to amyloid or tau pathology, and functional connectivity. In this cross-sectional multicenter study (a subset of the prospective Swedish BioFINDER study), we included 4 groups, representing the different stages of predementia AD: (1) cognitively healthy elderly with normal CSF β-amyloid 42 (Aβ42), (2) cognitively healthy elderly with abnormal CSF Aβ42, (3) patients with subjective cognitive decline and abnormal CSF Aβ42, (4) patients with mild cognitive decline and abnormal CSF Aβ42 (Ntotal = 352). Spectroscopic markers measured in the posterior cingulate/precuneus were considered alongside known disease biomarkers: CSF Aβ42, phosphorylated tau, total tau, [(18)F]-flutemetamol PET, f-MRI, and the genetic risk factor APOE. Amyloid-positive cognitively healthy participants showed a significant increase in mI/creatine and mI/NAA levels compared to amyloid-negative healthy elderly (p < 0.05). In amyloid-positive healthy elderly, mI/creatine and mI/NAA correlated with cortical retention of [(18)F] flutemetamol tracer ([Formula: see text] = 0.44, p = 0.02 and [Formula: see text] = 0.51, p = 0.01, respectively). Healthy elderly APOE ε4 carriers with normal CSF Aβ42 levels had significantly higher mI/creatine levels (p < 0.001) than ε4 noncarriers. Finally, elevated mI/creatine was associated with decreased functional connectivity within the default mode network (rpearson = -0.16, p = 0.02), independently of amyloid pathology. mI levels are elevated already at asymptomatic stages of AD. Moreover, mI/creatine concentrations were increased in healthy APOE ε4 carriers with normal CSF Aβ42 levels, suggesting that mI levels may reveal regional brain consequences of APOE ε4 before detectable amyloid pathology. © 2016 American Academy

  20. FDG metabolism associated with tau-amyloid interaction predicts memory decline

    PubMed Central

    Hanseeuw, Bernard J.; Betensky, Rebecca A.; Schultz, Aaron P.; Papp, Kate V.; Mormino, Elizabeth C.; Sepulcre, Jorge; Bark, John S.; Cosio, Danielle M.; LaPoint, Molly; Chhatwal, Jasmeer P.; Rentz, Dorene M.; Sperling, Reisa A.; Johnson, Keith

    2017-01-01

    Objective To evaluate in normal older adults and preclinical Alzheimer’s disease (AD) the impact of amyloid and regional tauopathy on cerebral glucose metabolism and subsequent memory decline. Methods We acquired positron emission tomography using F18 Flortaucipir (tau), C11 Pittsburgh Compound B (amyloid) and F18 Fluorodeoxyglucose in 90 clinically normal elderly of the Harvard Aging Brain Study. Results Posterior cingulate metabolism decreased when both amyloid and neocortical tau were high and predicted subsequent memory decline in a larger sample of normal elderly. In contrast, frontal hypometabolism related to the common age-related entorhinal tauopathy, but this dysfunction was independent of amyloid, and did not predict significant memory decline. Neocortical tauopathy was positively associated with metabolism in individuals with sub-threshold amyloid, suggesting that glucose metabolism increases before decreasing in the course of preclinical AD. Interpretation Our study identified a synergistic effect of amyloid and tau deposits and demonstrated for the first time in normal elderly its link to AD-like hypometabolism and to AD-like memory decline. The amyloid effect was seen with tau in neocortex, but not with tau in entorhinal cortex, which is the common site of age-related tauopathy. Entorhinal tau was associated with frontal hypometabolism, but this dysfunction was not associated with memory loss. PMID:28253546

  1. Altered phosphorylation of. tau. protein in heat-shocked rats and patients with Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papasozomenos, S.C.; Yuan Su

    1991-05-15

    Six hours after heat shocking 2- to 3-month-old male and female Sprague-Dawley rats at 42C for 15 min, the authors analyzed {tau} protein immunoreactivity in SDS extracts of cerebrums and peripheral nerves by using immunoblot analysis and immunohistochemistry with the anti-{tau} monoclonal antibody Tau-1, which recognizes a phosphate-dependent nonphosphorylated epitope, and with {sup 125}I-labeled protein A. In the cerebal extracts, the authors found altered phosphorylation of {tau} in heat-shocked females, characterized by a marked reduction in the amount of nonphosphorylated {tau}, a doubling of the ratio of total (phosphorylated plus nonphosphorylated) {tau} to nonphosphorylated {tau}, and the appearance of themore » slowest moving phosphorylated {tau} polypeptide (68 kDa). Similar, but milder, changes were observed in male rats. Quantitative immunoblot analysis of cortex and the underlying white matter with Tau-1 and {sup 125}I-labeled protein A showed that the amount of phosphorylated {tau} progressively increased in the Alzheimer disease-affected cerebral cortex, while concurrently a proportionally lesser amount of {tau} entered the white matter axons. The similar findings for the rat heat-shock model and Alzheimer disease suggest that life stressors may play a role in the etiopathogenesis of Alzheimer's disease.« less

  2. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease.

    PubMed

    Yu, Lei; Chibnik, Lori B; Srivastava, Gyan P; Pochet, Nathalie; Yang, Jingyun; Xu, Jishu; Kozubek, James; Obholzer, Nikolaus; Leurgans, Sue E; Schneider, Julie A; Meissner, Alexander; De Jager, Philip L; Bennett, David A

    2015-01-01

    Recent large-scale genome-wide association studies have discovered several genetic variants associated with Alzheimer disease (AD); however, the extent to which DNA methylation in these AD loci contributes to the disease susceptibility remains unknown. To examine the association of brain DNA methylation in 28 reported AD loci with AD pathologies. Ongoing community-based clinical pathological cohort studies of aging and dementia (the Religious Orders Study and the Rush Memory and Aging Project) among 740 autopsied participants 66.0 to 108.3 years old. DNA methylation levels at individual CpG sites generated from dorsolateral prefrontal cortex tissue using a bead assay. Pathological diagnosis of AD by National Institute on Aging-Reagan criteria following a standard postmortem examination. Overall, 447 participants (60.4%) met the criteria for pathological diagnosis of AD. Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 was associated with pathological AD. The association was robustly retained after replacing the binary trait of pathological AD with 2 quantitative and molecular specific hallmarks of AD, namely, Aβ load and paired helical filament tau tangle density. Furthermore, RNA expression of transcripts of SORL1 and ABCA7 was associated with paired helical filament tau tangle density, and the expression of BIN1 was associated with Aβ load. Brain DNA methylation in multiple AD loci is associated with AD pathologies. The results provide further evidence that disruption of DNA methylation is involved in the pathological process of AD.

  3. Human Radiation Dosimetry of [(18)F]AV-1451(T807) to Detect Tau Pathology.

    PubMed

    Choi, Jae Yong; Lyoo, Chul Hyoung; Lee, Jae Hoon; Cho, Hanna; Kim, Kyeong Min; Kim, Jin Su; Ryu, Young Hoon

    2016-08-01

    [(18)F]AV-1451 is a positron emission tomography (PET) radioligand for detecting paired helical filament tau. Our aim was to estimate the radiation dose of [(18)F]AV-1451 in humans. Whole-body PET scans were acquired for six healthy volunteers (three male, three female) for 128 min after injection of [(18)F]AV-1451 (268 ± 31 MBq). Radiation doses were estimated using the OLINDA/EXM software. The estimated organ doses ranged from 7.81 to 81.2 μSv/MBq. The critical organ for radiation burden was the liver. Radiation doses to the reproductive and blood-forming organs were 14.15, 8.43, and 18.35 μSv/MBq for the ovaries, testes, and red marrow, respectively. The mean effective dose was 22.47 ± 3.59 μSv/MBq. A standard single injection of 185 MBq (5 mCi) results in an effective dose of 4.7 mSv in a healthy subject. Therefore, [(18)F]AV-1451 could be used in multiple PET scans of the same subject per year.

  4. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.

    PubMed

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-04-21

    Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.

  5. Effects of interferon-tau on cattle persistently infected with bovine viral diarrhea virus.

    PubMed

    Kohara, Junko; Nishikura, Yumiko; Konnai, Satoru; Tajima, Motoshi; Onuma, Misao

    2012-08-01

    In this study, the antiviral effects of bovine interferon-tau (boIFN-tau) on bovine viral diarrhea virus (BVDV) were examined in vitro and in vivo. In the in vitro experiments, the replication of cytopathic and non-cytopathic BVDV was inhibited in the bovine cells treated with boIFN-tau. The replication of BVDV was completely suppressed by boIFN-tau at a concentration higher than 10(2) U/ml. In order to examine the effect of boIFN-tau on virus propagation in cattle persistently infected (PI) with non-cytopathic BVDV, boIFN-tau was subcutaneously administered to PI cattle at 10(5) U/kg or 10(6) U/kg body weight 5 times per week for 2 weeks. No physical abnormality such as depression was observed in the cattle during the experiment. The mean BVDV titers in the serum of the PI cattle decreased slightly during the boIFN-tau administration period with the dose of 10(6) U/kg. However, the BVDV titers in the serum returned to the pre-administration level after the final boIFN-tau administration. These results suggest that boIFN-tau demonstrates an anti-BVDV effect, reducing the BVDV level in serum transiently when injected into PI cattle.

  6. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks.

    PubMed

    Arendt, Thomas; Bullmann, Torsten

    2013-09-01

    The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".

  7. Correlation of placental pathology and perinatal outcomes with Hemoglobin A1c in early pregnancy in gravidas with pregestational diabetes mellitus.

    PubMed

    Starikov, Roman S; Inman, Kyle; Has, Phinnara; Iqbal, Sara N; Coviello, Elizabeth; He, Mai

    2017-04-01

    Data on the correlation among Hemoglobin A1c (HbA1c), placental pathology, and perinatal outcome in the pregestational diabetic population is severely lacking. We believe that this knowledge will enhance the management of pregnancies complicated by pregestational diabetes. We hypothesize that placental pathology correlates with glycemic control at an early gestational age. This is a retrospective cohort study conducted from 2003 to 2011 at a large tertiary care center. Women included had a singleton gestation, preexisting diabetes mellitus, and information about delivery and placental pathology available for review. Placental pathology and perinatal outcomes were compared across three groups of patients with differing HbA1c levels (<6.5%, 6.5-8.4%, and ≥8.5%). 293 placentas were examined. HbA1c was measured at a mean of 9.5week gestation. Median HbA1c was 7.5%, interquartile range 6.5%-8.9%. 23% of the cohort had HbA1c <6.5%, 41.9% between 6.5% and 8.4%, and 34.8% > 8.5%. BMI varied significantly by group (35.4 vs. 34.4 vs. 32.0 respectively, P = 0.04). Individual placental lesions did not vary with HbA1c levels. The incidence of acute chorioamnionitis differed significantly in the type 1 population and "distal villous hypoplasia" varied in the type 2 population. The results show that HbA1c values in early pregnancy are poor predictors of future placental pathologies. As a result, HbA1c values obtained during early gestation (which reflect the level of glycemic control over an extended period of time) do not correlate with any particular placental pathology, despite reflecting the potential for placental insults secondary to pre-gestational diabetes. Copyright © 2017. Published by Elsevier Ltd.

  8. Focal expression of mutated tau in entorhinal cortex neurons of rats impairs spatial working memory.

    PubMed

    Ramirez, Julio J; Poulton, Winona E; Knelson, Erik; Barton, Cole; King, Michael A; Klein, Ronald L

    2011-01-01

    Entorhinal cortex neuropathology begins very early in Alzheimer's disease (AD), a disorder characterized by severe memory disruption. Indeed, loss of entorhinal volume is predictive of AD and two of the hallmark neuroanatomical markers of AD, amyloid plaques and neurofibrillary tangles (NFTs), are particularly prevalent in the entorhinal area of AD-afflicted brains. Gene transfer techniques were used to create a model neurofibrillary tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the entorhinal cortex of adult rats. The objective of the present investigation was to determine whether adult onset, spatially restricted tauopathy could be sufficient to reproduce progressive deficits in mnemonic function. Spatial memory on a Y-maze was tested for approximately 3 months post-surgery. Upon completion of behavioral testing the brains were assessed for expression of human tau and evidence of tauopathy. Rats injected with the tau vector became persistently impaired on the task after about 6 weeks of postoperative testing, whereas the control rats injected with a green fluorescent protein vector performed at criterion levels during that period. Histological analysis confirmed the presence of hyperphosphorylated tau and NFTs in the entorhinal cortex and neighboring retrohippocampal areas as well as limited synaptic degeneration of the perforant path. Thus, highly restricted vector-induced tauopathy in retrohippocampal areas is sufficient for producing progressive impairment in mnemonic ability in rats, successfully mimicking a key aspect of tauopathies such as AD. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Goodman and Kruskal's TAU-B Statistics: A Fortran-77 Subroutine.

    ERIC Educational Resources Information Center

    Berry, Kenneth J.; Mielke, Paul W., Jr.

    1986-01-01

    An algorithm and associated FORTRAN-77 computer subroutine are described for computing Goodman and Kruskal's tau-b statistic along with the associated nonasymptotic probability value under the null hypothesis tau=O. (Author)

  10. Corticobasal degeneration with TDP-43 pathology presenting with progressive supranuclear palsy syndrome: a distinct clinicopathologic subtype.

    PubMed

    Koga, Shunsuke; Kouri, Naomi; Walton, Ronald L; Ebbert, Mark T W; Josephs, Keith A; Litvan, Irene; Graff-Radford, Neill; Ahlskog, J Eric; Uitti, Ryan J; van Gerpen, Jay A; Boeve, Bradley F; Parks, Adam; Ross, Owen A; Dickson, Dennis W

    2018-06-20

    Corticobasal degeneration (CBD) is a clinically heterogeneous tauopathy, which has overlapping clinicopathologic and genetic characteristics with progressive supranuclear palsy (PSP). This study aimed to elucidate whether transactive response DNA-binding protein of 43 kDa (TDP-43) pathology contributes to clinicopathologic heterogeneity of CBD. Paraffin-embedded sections of the midbrain, pons, subthalamic nucleus, and basal forebrain from 187 autopsy-confirmed CBD cases were screened with immunohistochemistry for phospho-TDP-43. In cases with TDP-43 pathology, additional brain regions (i.e., precentral, cingulate, and superior frontal gyri, hippocampus, medulla, and cerebellum) were immunostained. Hierarchical clustering analysis was performed based on the topographical distribution and severity of TDP-43 pathology, and clinicopathologic and genetic features were compared between the clusters. TDP-43 pathology was observed in 45% of CBD cases, most frequently in midbrain tegmentum (80% of TDP-43-positive cases), followed by subthalamic nucleus (69%). TDP-43-positive CBD was divided into TDP-limited (52%) and TDP-severe (48%) by hierarchical clustering analysis. TDP-severe patients were more likely to have been diagnosed clinically as PSP compared to TDP-limited and TDP-negative patients (80 vs 32 vs 30%, P < 0.001). The presence of downward gaze palsy was the strongest factor for the antemortem diagnosis of PSP, and severe TDP-43 pathology in the midbrain tectum was strongly associated with downward gaze palsy. In addition, tau burden in the olivopontocerebellar system was significantly greater in TDP-positive than TDP-negative CBD. Genetic analyses revealed that MAPT H1/H1 genotype frequency was significantly lower in TDP-severe than in TDP-negative and TDP-limited CBD (65 vs 89 vs 91%, P < 0.001). The homozygous minor allele frequencies in GRN rs5848 and TMEM106B rs3173615 were not significantly different between the three groups. In conclusion, the

  11. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jing; Rocke, David M.; Perry, George

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  12. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE PAGES

    Xia, Jing; Rocke, David M.; Perry, George; ...

    2014-01-01

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  13. Ecological-floristic analysis of soil algae and cyanobacteria on the Tra-Tau and Yurak-Tau Mounts, Bashkiria

    NASA Astrophysics Data System (ADS)

    Bakieva, G. R.; Khaibullina, L. S.; Gaisina, L. A.; Kabirov, R. R.

    2012-09-01

    The species composition of the soil algae and cyanobacteria in the Tra-Tau and Yurak-Tau mountains is represented by 136 species belonging to five phyla: Cyanobacteria (56 species), Chlorophyta (52 species), Xanthophyta (13 species), Bacillariophyta (12 species), and Eustigmatophyta (3 species). Hantzschia amphioxys var. amphioxys, Hantzschia amphioxys var. constricta, Klebsormidium flaccidum, Leptolyngbya foveolarum, Luticola mutica, Navicula minima var. minima, Nostoc punctiforme, Phormidium jadinianum, Phormidium autumnale, and Pinnularia borealis were identified more often than other species. The composition of the algal flora depended on the soil properties; the higher plants also had a significant influence on the species composition of the soil algae.

  14. Beta-amyloid and phosphorylated tau metabolism changes in narcolepsy over time.

    PubMed

    Liguori, Claudio; Placidi, Fabio; Izzi, Francesca; Nuccetelli, Marzia; Bernardini, Sergio; Sarpa, Maria Giovanna; Cum, Fabrizio; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Romigi, Andrea

    2016-03-01

    The aim od this study is to test whether metabolism of beta-amyloid and tau proteins changes in narcolepsy along with the disease course. We analyzed a population of narcoleptic drug-naïve patients compared to a sample of healthy controls. Patients and controls underwent lumbar puncture for assessment of cerebrospinal fluid (CSF) beta-amyloid1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) levels. Moreover, based on the median disease duration of the whole narcolepsy group, the patients were divided into two subgroups: patients with a short disease duration (SdN, <5 years) and patients with a long disease duration (LdN, >5 years). We found significantly lower CSF Aβ42 levels in the whole narcolepsy group with respect to controls. Taking into account the patient subgroups, we documented reduced CSF Aβ42 levels in SdN compared to both LdN and controls. Even LdN patients showed lower CSF Aβ42 levels with respect to controls. Moreover, we documented higher CSF p-tau levels in LdN patients compared to both SdN and controls. Finally, a significant positive correlation between CSF Aβ42 levels and disease duration was evident. We hypothesize that beta-amyloid metabolism and cascade may be impaired in narcolepsy not only at the onset but also along with the disease course, although they show a compensatory profile over time. Concurrently, also CSF biomarkers indicative of neural structure (p-tau) appear to be altered in narcolepsy patients with a long disease duration. However, the mechanism underlying beta-amyloid and tau metabolism impairment in narcolepsy remains still unclear and deserves to be better elucidated.

  15. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    PubMed

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  16. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2017-10-01

    current study is to demonstrate that blast-induced traumatic brain injury (TBI) and Alzheimer’s disease (AD) lead to similar biochemical changes in tau...induced TBI leads to the production of a toxic form of tau that contributes to cognitive and electrophysiological impairments; 2) the formation of...3 4. Impact…………………………...…………………………………... 5 5. Changes/Problems...….……………………………………………… 6 6. Products …………………………………….……….….……………. 6 7

  17. Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits.

    PubMed

    Velazquez, Ramon; Ferreira, Eric; Tran, An; Turner, Emily C; Belfiore, Ramona; Branca, Caterina; Oddo, Salvatore

    2018-05-10

    Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Pick's disease. Tau is a microtubule-binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule-binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno-associated virus (AAV) expressing a doxycycline-inducible short-hairpin (Sh) RNA targeted to tau, herein referred to as AAV-ShRNATau. We performed bilateral stereotaxic injections in 7-month-old C57Bl6/SJL wild-type mice with either the AAV-ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV-ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss-of-function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti-tau therapies are in clinical trials for Alzheimer's disease. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease

    PubMed Central

    Zetterberg, Henrik; Mattsson, Niklas; Johansson, Per; Minthon, Lennart; Blennow, Kaj; Olsson, Mattias

    2015-01-01

    Objective: To compare the diagnostic accuracy of CSF biomarkers and amyloid PET for diagnosing early-stage Alzheimer disease (AD). Methods: From the prospective, longitudinal BioFINDER study, we included 122 healthy elderly and 34 patients with mild cognitive impairment who developed AD dementia within 3 years (MCI-AD). β-Amyloid (Aβ) deposition in 9 brain regions was examined with [18F]-flutemetamol PET. CSF was analyzed with INNOTEST and EUROIMMUN ELISAs. The results were replicated in 146 controls and 64 patients with MCI-AD from the Alzheimer's Disease Neuroimaging Initiative study. Results: The best CSF measures for identifying MCI-AD were Aβ42/total tau (t-tau) and Aβ42/hyperphosphorylated tau (p-tau) (area under the curve [AUC] 0.93–0.94). The best PET measures performed similarly (AUC 0.92–0.93; anterior cingulate, posterior cingulate/precuneus, and global neocortical uptake). CSF Aβ42/t-tau and Aβ42/p-tau performed better than CSF Aβ42 and Aβ42/40 (AUC difference 0.03–0.12, p < 0.05). Using nonoptimized cutoffs, CSF Aβ42/t-tau had the highest accuracy of all CSF/PET biomarkers (sensitivity 97%, specificity 83%). The combination of CSF and PET was not better than using either biomarker separately. Conclusions: Amyloid PET and CSF biomarkers can identify early AD with high accuracy. There were no differences between the best CSF and PET measures and no improvement when combining them. Regional PET measures were not better than assessing the global Aβ deposition. The results were replicated in an independent cohort using another CSF assay and PET tracer. The choice between CSF and amyloid PET biomarkers for identifying early AD can be based on availability, costs, and doctor/patient preferences since both have equally high diagnostic accuracy. Classification of evidence: This study provides Class III evidence that amyloid PET and CSF biomarkers identify early-stage AD equally accurately. PMID:26354982

  19. Search for the standard model Higgs boson in tau final states.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Potter, C; Prado da Silva, W L; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-06-26

    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron pp collider. We select two final states: tau+/- plus missing transverse energy and b jets, and tau+ tau- plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion, and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.

  20. Learning and Memory Deficits upon TAU Accumulation in "Drosophila" Mushroom Body Neurons

    ERIC Educational Resources Information Center

    Mershin, Andreas; Pavlopoulos, Elias; Fitch, Olivia; Braden, Brittany C.; Nanopoulos, Dimitri V.; Skoulakis, Efthimios M. C.

    2004-01-01

    Mutations in the neuronal-specific microtubule-binding protein TAU are associated with several dementias and neurodegenerative diseases. However, the effects of elevated TAU accumulation on behavioral plasticity are unknown. We report that directed expression of wild-type vertebrate and "Drosophila" TAU in adult mushroom body neurons, centers for…

  1. Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro.

    PubMed

    Whittington, Robert A; Virág, László; Gratuze, Maud; Petry, Franck R; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; El Khoury, Noura; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-08-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped

  3. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model.

    PubMed

    Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Pérez-Mediavilla, Alberto; Frechilla, Diana; Del Río, Joaquin; García-Osta, Ana

    2009-06-01

    Chromatin modification through histone acetylation is a molecular pathway involved in the regulation of transcription underlying memory storage. Sodium 4-phenylbutyrate (4-PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. In this study, we report that administration of 4-PBA reversed spatial learning and memory deficits in an established mouse model of Alzheimer's disease (AD) without altering beta-amyloid burden. We also observed that the phosphorylated form of tau was decreased in the AD mouse brain after 4-PBA treatment, an effect probably due to an increase in the inactive form of the glycogen synthase kinase 3beta (GSK3beta). Interestingly, we found a dramatic decrease in brain histone acetylation in the transgenic mice that may reflect an indirect transcriptional repression underlying memory impairment. The administration of 4-PBA restored brain histone acetylation levels and, as a most likely consequence, activated the transcription of synaptic plasticity markers such as the GluR1 subunit of the AMPA receptor, PSD95, and microtubule-associated protein-2. The results suggest that 4-PBA, a drug already approved for clinical use, may provide a novel approach for the treatment of AD.

  4. Levels of Nonphosphorylated and Phosphorylated Tau in Cerebrospinal Fluid of Alzheimer’s Disease Patients

    PubMed Central

    Hu, Yuan Yuan; He, Shan Shu; Wang, Xiaochuan; Duan, Qiu Hong; Grundke-Iqbal, Inge; Iqbal, Khalid; Wang, Jianzhi

    2002-01-01

    We have developed an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay for the measurement of Alzheimer’s disease (AD) abnormally hyperphosphorylated tau in cerebrospinal fluid (CSF). The assay, which recognizes attomolar amounts of tau, is ∼400 and ∼1300 times more sensitive than conventional enzyme-linked immunosorbent assay in determining the hyperphosphorylated tau and total tau, respectively. With this method, we measured both total tau and tau phosphorylated at Ser-396/Ser-404 in lumbar CSFs from AD and control patients. We found that the total tau was 215 ± 77 pg/ml in cognitively normal control (n = 56), 234 ± 92 pg/ml in non-AD neurological (n = 37), 304 ± 126 pg/ml in vascular dementia (n = 46), and 486 ± 168 pg/ml (n = 52) in AD patients, respectively. However, a remarkably elevated level in phosphorylated tau was only found in AD (187 ± 84 pg/ml), as compared with normal controls (54 ± 33 pg/ml), non-AD (63 ± 34 pg/ml), and vascular dementia (72 ± 33 pg/ml) groups. If we used the ratio of hyperphosphorylated tau to total tau of ≥0.33 as cutoff for AD diagnosis, we could confirm the diagnosis in 96% of the clinically diagnosed patients with a specificity of 95%, 86%, 100%, and 94% against nonneurological, non-AD neurological, vascular dementia, and all of the three control groups combined, respectively. It is suggested that the CSF level of tau phosphorylated at Ser-396/Ser-404 is a promising diagnostic marker of AD. PMID:11943712

  5. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits

    PubMed Central

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-01-01

    Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999

  6. Genetic modification of the relationship between phosphorylated tau and neurodegeneration.

    PubMed

    Hohman, Timothy J; Koran, Mary Ellen I; Thornton-Wells, Tricia A

    2014-11-01

    A subset of individuals present at autopsy with the pathologic features of Alzheimer's disease having never manifest the clinical symptoms. We sought to identify genetic factors that modify the relationship between phosphorylated tau (PTau) and dilation of the lateral inferior ventricles. We used data from 700 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). A genome-wide association study approach was used to identify PTau × single nucleotide polymorphism (SNP) interactions. Variance explained by these interactions was quantified using hierarchical linear regression. Five SNP × PTau interactions passed a Bonferroni correction, one of which (rs4728029, POT1, 2.6% of variance) was consistent across ADNI-1 and ADNI-2/GO subjects. This interaction also showed a trend-level association with memory performance and levels of interleukin-6 receptor. Our results suggest that rs4728029 modifies the relationship between PTau and both ventricular dilation and cognition, perhaps through an altered neuroinflammatory response. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  7. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy

    PubMed Central

    Caillet-Boudin, Marie-Laure; Fernandez-Gomez, Francisco-Jose; Tran, Hélène; Dhaenens, Claire-Marie; Buee, Luc; Sergeant, Nicolas

    2013-01-01

    Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration. PMID:24409116

  8. VARIATIONS OF THE 10 mum SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F., E-mail: jbary@colgate.ed, E-mail: jml2u@virginia.ed, E-mail: mfs4n@virginia.ed

    2009-11-20

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 mum silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolutionmore » coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.« less

  9. Multiple cytokines are involved in the early events leading to the Alzheimer’s disease pathology

    PubMed Central

    Wilberding, Akiko; Morimoto, Kaori; Satoh, Haruhisa; Harano, Keiko; Harano, Teruo; Arita, Seizaburo; Tooyama, Ikuo; Konishi, Yoshihiro

    2009-01-01

    It is likely that neuroinflammation begins well before detectable cognitive impairment in Alzheimer’s disease (AD) occurs. Clarifying the alterations occurring prior to the clinical manifestation of overt AD dementia may provide valuable insight into the early diagnosis and management of AD. Herein, to address the issue that neuroinflammation precedes development of AD pathology, we analyzed cytokine expression profiles of the brain, with focus on non-demented control patients with increasing AD pathology, referred to as high pathology control (HPC) cases, who provide an intermediate subset between AD and normal control cases referred to as low pathology control (LPC) cases. With a semi-quantitative analysis of cytokine mRNA, among 15 cytokines and their related molecules tested, we found the involvement of eight: interleukin-1(IL-1) receptor antagonist (IL-1ra), IL-1 converting enzyme (ICE), IL-2, IL-6, IL-8, tumor necrosis factor (TNF) α, macrophage-colony stimulating factor (M-CSF) and transforming growth factor (TGF) β1 during the development from LPC to HPC, while decreases in IL-1ra, IL-8, MCP-1 and TNFα, and an increase in TACE were implicated in the later development from HPC to AD. These findings indicate that neuroinflammation precedes the clinical manifestation of overt dementia, rather than being involved at the later stages of AD. PMID:22586434

  10. Discordance in pathology report after central pathology review: Implications for breast cancer adjuvant treatment.

    PubMed

    Orlando, Laura; Viale, Giuseppe; Bria, Emilio; Lutrino, Eufemia Stefania; Sperduti, Isabella; Carbognin, Luisa; Schiavone, Paola; Quaranta, Annamaria; Fedele, Palma; Caliolo, Chiara; Calvani, Nicola; Criscuolo, Mario; Cinieri, Saverio

    2016-12-01

    Pathological predictive factors are the most important markers when selecting early breast cancer adjuvant therapy. In randomized clinical trials the variability in pathology report after central pathology review is noteworthy. We evaluated the discordance rate (DR) and inter-rater agreement between local and central histopathological report and the clinical implication on treatment decision. A retrospective analysis was conducted in a series of consecutive early breast cancer tumors diagnosed by local pathologists and subsequently reviewed at the Pathology Division of European Institute of Oncology. The inter-rater agreement (k) between local and central pathology was calculated for Ki-67, grading, hormone receptors (ER/PgR) and HER2/neu. The Bland-Altman plots were derived to determine discrepancies in Ki-67, ER and PgR. DR was calculated for ER/PgR and HER2. From 2007 to 2013, 187 pathology specimens from 10 Cancer Centers were reviewed. Substantial agreement was observed for ER (k0.612; 95% CI, 0538-0.686), PgR (k0.659; 95% CI, 0580-0.737), Ki-67 (k0.609; 95% CI, 0.534-0.684) and grading (k0.669; 95% CI, 0.569-0.769). Moderate agreement was found for HER2 (k0.546; 95% CI, 0444-0.649). DR was 9.5% (negativity to positivity) and 31.7% (positivity to negativity) for HER2 and 26.2% (negativity to positivity) and 12.5% (positivity to negativity) for ER/PgR. According to changes in Her2 and ER/PgR status, 23 (12.2%) and 33 (17.6%) systemic prescription were respectively modified. In our retrospective analysis, central pathological review has a significant impact in the decision-making process in early breast cancer, as shown in clinical trials. Further studies are warranted to confirm these provocative results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Role of the tau gene region chromosome inversion in progressive supranuclear palsy, corticobasal degeneration, and related disorders.

    PubMed

    Webb, Amy; Miller, Bruce; Bonasera, Stephen; Boxer, Adam; Karydas, Anna; Wilhelmsen, Kirk C

    2008-11-01

    An inverted region on chromosome 17 has been previously linked to many Pick complex diseases. Due to the inversion, an exact causal locus has been difficult to identify, but the microtubule-associated protein tau gene is a likely candidate gene for its involvement in these diseases with tau inclusion. To search for variants that confer susceptibility to 4 tauopathies and clinically related disorders. Genomewide association study. University research laboratory. A total of 231 samples were genotyped from an unrelated white population of patients with progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), frontotemporal dementia, and frontotemporal dementia with amyotrophy. Unaffected individuals from the same population were used as controls. The results from an inverted region of chromosome 17 that contains the MAPT gene. Genotypes of cases and controls were compared using a Fisher exact test on a marker-by-marker basis. Haplotypes were determined by visually inspecting genotypes. Comparing any particular disease and controls, the association was constant across the inverted chromosome segment. Significant associations were seen for PSP and PSP combined with CBD. Of the 2 haplotypes seen in the region, H1 was overrepresented in PSP and CBD cases compared with controls. As expected, the markers are highly correlated and the association is seen across the entire region, which makes it difficult to narrow down a disease-causing variant or even a possible candidate gene. However, considering the pathologic abnormalities of these diseases and the involvement of tau mutations seen in familial forms, the MAPT gene represents the most likely cause driving the association.

  12. Search for the appearance of atmospheric tau neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Li, Zepeng; Super-Kamiokande Collaboration

    2016-03-01

    Super-K is a 50 kiloton Water Cherenkov detector with 22.5 kiloton of fiducial volume located at a depth of 2700 meters water equivalent. The large target mass in the fiducial volume offers an opportunity to search for rare tau neutrino appearance from oscillations of atmospheric neutrinos. Events after reduction are classified by a particle identification, based on a neural network (Multilayer Perceptrons), that is optimized to distinguish tau leptons produced by charged-current tau neutrino interactions from electron and muon neutrino interactions in the detector. Super-K atmospheric neutrino data are fit with an unbinned maximum likelihood method to search for tau neutrino appearance. The talk presented results with data taken between 1996 and 2014, comprising 4582 days of live time.

  13. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy.

    PubMed

    Zhang, Bin; Higuchi, Makoto; Yoshiyama, Yasumasa; Ishihara, Takeshi; Forman, Mark S; Martinez, Dan; Joyce, Sonali; Trojanowski, John Q; Lee, Virginia M-Y

    2004-05-12

    Intracellular accumulations of filamentous tau inclusions are neuropathological hallmarks of neurodegenerative diseases known as tauopathies. The discovery of multiple pathogenic tau gene mutations in many kindreds with familial frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) unequivocally confirmed the central role of tau abnormalities in the etiology of neurodegenerative disorders. To examine the effects of tau gene mutations and the role of tau abnormalities in neurodegenerative tauopathies, transgenic (Tg) mice were engineered to express the longest human tau isoform (T40) with or without the R406W mutation (RW and hWT Tg mice, respectively) that is pathogenic for FTDP-17 in several kindreds. RW but not hWT tau Tg mice developed an age-dependent accumulation of insoluble filamentous tau aggregates in neuronal perikarya of the cerebral cortex, hippocampus, cerebellum, and spinal cord. Significantly, CNS axons in RW mice contained reduced levels of tau when compared with hWT mice, and this was linked to retarded axonal transport and increased accumulation of an insoluble pool of RW but not hWT tau. Furthermore, RW but not hWT mice demonstrated neurodegeneration and a reduced lifespan. These data indicate that the R406W mutation causes reduced binding of this mutant tau to microtubules, resulting in slower axonal transport. This altered tau function caused by the RW mutation leads to increased accumulation and reduced solubility of RW tau in an age-dependent manner, culminating in the formation of filamentous intraneuronal tau aggregates similar to that observed in tauopathy patients.

  14. N'-benzylidene-benzohydrazides as novel and selective tau-PHF ligands.

    PubMed

    Taghavi, Ali; Nasir, Samir; Pickhardt, Marcus; Heyny-von Haussen, Roland; Mall, Gerhard; Mandelkow, Eckhard; Mandelkow, Eva-Maria; Schmidt, Boris

    2011-01-01

    The structure activity relationship of N'-benzylidene-benzohydrazide (NBB) binding to tau and paired helical filament (PHF) proteins as well as amyloid-β₁₋₄₂ fibrils indicate differential selectivity for these protein aggregates. The ability of the compounds to stain neurofibrillary tangles and senile plaques isolated from human AD brain was investigated histochemically. These studies resulted in several tau-PHF and amyloid-β₁₋₄₂ fibril selective ligands respectively. Supported by these results, we rationalized a model for the design of selective ligands for tau, PHF, and amyloid-β₁₋₄₂ fibrils.

  15. Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration.

    PubMed

    Seo, Sang Won; Thibodeau, Marie-Pierre; Perry, David C; Hua, Alice; Sidhu, Manu; Sible, Isabel; Vargas, Jose Norberto S; Gaus, Stephanie E; Rabinovici, Gil D; Rankin, Katherine D; Boxer, Adam L; Kramer, Joel H; Rosen, Howard J; Gorno-Tempini, Maria Luisa; Grinberg, Lea T; Huang, Eric J; DeArmond, Stephen J; Trojanowski, John Q; Miller, Bruce L; Seeley, William W

    2018-03-20

    To examine clinicopathologic correlations in early vs late age at onset frontotemporal dementia (FTD) and frontotemporal lobar degeneration (FTLD). All patients were clinically evaluated and prospectively diagnosed at the UCSF Memory and Aging Center. Two consecutive series were included: (1) patients with a clinically diagnosed FTD syndrome who underwent autopsy (cohort 1) and (2) patients with a primary pathologic diagnosis of FTLD, regardless of the clinical syndrome (cohort 2). These series were divided by age at symptom onset (cutoff 65 years). In cohort 1, 48 (25.3%) were 65 years or older at symptom onset. Pathologic causes of behavioral variant FTD (bvFTD) were similar in the early age at onset (EO) and late age at onset (LO) bvFTD groups. In corticobasal syndrome (CBS), however, the most common pathologic substrate differed according to age at onset: progressive supranuclear palsy (42.9%) in LO-CBS and Alzheimer disease (AD; 40.7%) in EO-CBS. In cohort 2, 57 (28.4%) were classified as LO-FTLD. Regarding FTLD major molecular classes, FTLD with transactive response DNA-binding protein of 43 kDa was most common in EO-FTLD (44.4%), whereas FTLD-tau (58.3%) was most common in LO-FTLD. Antemortem diagnosis of a non-FTD syndrome, usually AD-type dementia, was more frequent in LO-FTLD than EO-FTLD (19.3% vs 7.7%, p = 0.017). LO-FTLD was also associated with more prevalent comorbid pathologic changes. Of these, moderate to severe AD neuropathologic change and argyrophilic grain disease were overrepresented among patients who received an antemortem diagnosis of AD-type dementia. Patients with FTD and FTLD often develop symptoms after age 65, and age at onset represents an important consideration when making antemortem neuropathologic predictions. © 2018 American Academy of Neurology.

  16. Old age potentiates cold-induced tau phosphorylation: linking thermoregulatory deficit with Alzheimer's disease.

    PubMed

    Tournissac, Marine; Vandal, Milène; François, Arnaud; Planel, Emmanuel; Calon, Frédéric

    2017-02-01

    Thermoregulatory deficits coincide with a rise in the incidence of Alzheimer's disease (AD) in old age. Lower body temperature increases tau phosphorylation, a neuropathological hallmark of AD. To determine whether old age potentiates cold-induced tau phosphorylation, we compared the effects of cold exposure (4 °C, 24 hours) in 6- and 18-month-old mice. Cold-induced changes in body temperature, brown adipose tissue activity, and phosphorylation of tau at Ser202 were not different between 6- and 18-month-old mice. However, following cold exposure, only old mice displayed a significant rise in soluble tau pThr181 and pThr231, which was correlated with body temperature. Inactivation of glycogen synthase kinase 3β was more prominent in young mice, suggesting a protective mechanism against cold-induced tau phosphorylation. These results suggest that old age confers higher susceptibility to tau hyperphosphorylation following a change in body temperature, thereby contributing to an enhanced risk of developing AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    PubMed

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen

    2014-01-16

    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway. © 2013 Published by Elsevier B.V.

  18. An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Ménard, François; Caceres, Claudio; Lefèvre, Charlene; Bonnefoy, Mickael; Cánovas, Héctor; Maret, Sébastien; Pinte, Christophe; Schreiber, Matthias R.; van der Plas, Gerrit

    2017-07-01

    DH Tau is a young (˜1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious {{H}}α emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2+/- 1.7 {M}\\oplus , which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42 M ⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09 M ⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models. This work is based on observations carried out under project D15AC with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  19. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.

    PubMed

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-03-01

    In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. © 2016. Published by The Company of Biologists Ltd.

  20. Nitrative Stress and Tau Accumulation in Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC) in the Kii Peninsula, Japan

    PubMed Central

    Hata, Yukiko; Ma, Ning; Yoneda, Misao; Morimoto, Satoru; Okano, Hideyuki; Murayama, Shigeo; Kawanishi, Shosuke; Kuzuhara, Shigeki; Kokubo, Yasumasa

    2018-01-01

    Objective: The Kii Peninsula of Japan is known to be a high incidence area of amyotrophic lateral sclerosis/parkinsonism-dementia complex (Kii ALS/PDC) with tauopathy. Nitrative stress and oxidative stress on ALS/PDC and their relationship to tau pathology were clarified. Methods: Seven patients with Kii ALS/PDC (3 males and 4 females, average age 70.7 years, 3 with ALS, 2 with ALS with dementia, and 2 with PDC) were analyzed in this study. Five patients with Alzheimer's disease and five normal aged subjects were used as controls. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded temporal lobe sections (the hippocampal area including hippocampus, prosubiculum, subiculum, presubiculum, and parahippocampal gyri) using antibodies to detect phosphorylated tau (anti-AT-8), nitrated guanine (anti-8-NG), anti-iNOS, anti-NFκB, and oxidized guanine (anti-8-OHdG) antibodies. Results: Most hippocampal neurons of Kii ALS/PDC patients were stained with anti-8-NG, anti-iNOS, anti-NFκB, and anti-8-OHdG antibodies and some AT-8 positive neurons were co-stained with anti-8-NG antibody. The numbers of 8-NG positive neurons and 8-OHdG positive neurons were greater than AT-8 positive neurons and the number of 8-NG positive neurons was larger in patients with Kii ALS/PDC than in controls. Conclusion: Nitrative and oxidative stress may take priority over tau accumulation and lead to the neurodegeneration in Kii ALS/PDC. PMID:29403345