Science.gov

Sample records for early terrestrial atmosphere

  1. A comparative study of the early terrestrial atmospheres

    NASA Technical Reports Server (NTRS)

    Durham, Richard; Chamberlain, Joseph W.

    1989-01-01

    The CO2 abundance required for maintenance of the climatic conditions speculated to have existed 4 billion years ago on the earth, Mars, and Venus is presently sought by means of a one-dimensional radiative-convective atmospheric model. It is ascertained on this basis that the terrestrial and Martian atmospheres were highly stable, and unlikely to proceed to a moist or runaway greenhouse state even if CO2 partial pressure were equivalent to 100 bars on earth. The proximity of Venus to the sun rendered its atmosphere highly susceptible to rapid water vapor photodissociation and hydrogen escape.

  2. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  3. Atmospheric oxygen levels affect mudskipper terrestrial performance: implications for early tetrapods.

    PubMed

    Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B

    2013-08-01

    The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.

  4. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  5. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases

    NASA Technical Reports Server (NTRS)

    Schindler, T. L.; Kasting, J. F.

    2000-01-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  6. Impact erosion of terrestrial planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1992-01-01

    I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.

  7. Nucleosynthesis in the terrestrial and solar atmospheres

    NASA Technical Reports Server (NTRS)

    Yu, C.; Zhou, R.; Zhan, S.

    1985-01-01

    Variations of Delta D, delta C-13, Delta C-14 and Delta O-18 with time were measured by a lot of experiments. Many abnormalities of isotope abundances in cosmic rays were found by balloons and satellites. It is suggested that these abnormalities are related to nuclearsynthesis in the terrestrial and solar atmospheres and are closely related to solar activities.

  8. Linkages between terrestrial ecosystems and the atmosphere

    NASA Technical Reports Server (NTRS)

    Bretherton, Francis; Dickinson, Robert E.; Fung, Inez; Moore, Berrien, III; Prather, Michael; Running, Steven W.; Tiessen, Holm

    1992-01-01

    The primary research issue in understanding the role of terrestrial ecosystems in global change is analyzing the coupling between processes with vastly differing rates of change, from photosynthesis to community change. Representing this coupling in models is the central challenge to modeling the terrestrial biosphere as part of the earth system. Terrestrial ecosystems participate in climate and in the biogeochemical cycles on several temporal scales. Some of the carbon fixed by photosynthesis is incorporated into plant tissue and is delayed from returning to the atmosphere until it is oxidized by decomposition or fire. This slower (i.e., days to months) carbon loop through the terrestrial component of the carbon cycle, which is matched by cycles of nutrients required by plants and decomposers, affects the increasing trend in atmospheric CO2 concentration and imposes a seasonal cycle on that trend. Moreover, this cycle includes key controls over biogenic trace gas production. The structure of terrestrial ecosystems, which responds on even longer time scales (annual to century), is the integrated response to the biogeochemical and environmental constraints that develop over the intermediate time scale. The loop is closed back to the climate system since it is the structure of ecosystems, including species composition, that sets the terrestrial boundary condition in the climate system through modification of surface roughness, albedo, and, to a great extent, latent heat exchange. These separate temporal scales contain explicit feedback loops which may modify ecosystem dynamics and linkages between ecosystems and the atmosphere. The long-term change in climate, resulting from increased atmospheric concentrations of greenhouse gases (e.g., CO2, CH4, and nitrous oxide (N2O)) will further modify the global environment and potentially induce further ecosystem change. Modeling these interactions requires coupling successional models to biogeochemical models to

  9. Solar-terrestrial coupling through atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.

  10. Atmospheric evolution of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Hunten, D. M.

    1993-02-01

    The major atmospheric gases on Earth, Venus, and Mars were probably CO2, H2O, and N2. Most of the Earth's CO2 is tied up in minerals such as limestone, and Venus has lost most of its H2O, leaving the CO2 in the atmosphere. Much of Mars' atmosphere may have been eroded in impacts by large meteoroids early in solar-system history. Noble gases are very underabundant everywhere, and must have been lost during an early period: they were probably dragged along during rapid loss of massive amounts of hydrogen. The tenuous atmospheres of Mercury and the moon have lifetimes of a few days or less and must be continuously replenished from internal or external sources.

  11. Water Loss from Terrestrial Planets with CO2-rich Atmospheres

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO2-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ~270 W m-2 (global mean) unlikely to lose more than one Earth ocean of H2O over their lifetimes unless they lose all their atmospheric N2/CO2 early on. Because of the variability of H2O delivery during accretion, our results suggest that many "Earth-like" exoplanets in the habitable zone may have ocean-covered surfaces, stable CO2/H2O-rich atmospheres, and high mean surface temperatures.

  12. Terrestrial sources and distribution of atmospheric sulphur

    PubMed Central

    Lelieveld, J.; Roelofs, G.-J.; Ganzeveld, L.; Feichter, J.; Rodhe, H.

    1997-01-01

    The general circulation model ECHAM has been coupled to a chemistry and sulphur cycle model to study the impact of terrestrial, i.e. mostly anthropogenic sulphur dioxide (SO2), sources on global distributions of sulphur species in the atmosphere. We briefly address currently available source inventories. It appears that global estimates of natural emissions are associated with uncertainties up to a factor of 2, while anthropogenic emissions have uncertainty ranges of about +/- 30 per cent. Further, some recent improvements in the model descriptions of multiphase chemistry and deposition processes are presented. Dry deposition is modelled consistently with meteorological processes and surface properties. The results indicate that surface removal of SO2 is less efficient than previously assumed, and that the SO2 lifetime is thus longer. Coupling of the photochemistry and sulphur chemistry schemes in the model improves the treatment of multiphase processes such as oxidant (hydrogen peroxide) supply in aqueous phase SO2 oxidation. The results suggest that SO2 oxidation by ozone (O3) in the aqueous phase is more important than indicated in earlier work. However, it appears that we still overestimate atmospheric SO2 concentrations near the surface in the relatively polluted Northern Hemisphere. On the other hand, we somewhat underestimate sulphate levels in these regions, which suggests that additional heterogeneous reaction mechanisms, e.g. on aerosols, enhance SO2 oxidation.

  13. Were early pterosaurs inept terrestrial locomotors?

    PubMed

    Witton, Mark P

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual

  14. Were early pterosaurs inept terrestrial locomotors?

    PubMed Central

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual

  15. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  16. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    2008-06-01

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds ( e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  17. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds (e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  18. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  19. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated

  20. Supernovae effects on the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Chandra, S.; Stecher, T. P.

    1980-01-01

    The first effects of a nearby (10 parsec) supernova on the earth's atmosphere will be caused by ultraviolet radiation dissociating molecular oxygen. The event will be of about one month's duration. Several months later nuclear gamma radiation may arrive, causing a decrease in atmospheric ozone. Cosmic radiation from the supernova remnant will not intercept the earth for at least 1000 years at which time ozone will be seriously depleted. Supernova ultraviolet radiation increases column ozone and atomic oxygen. Atmospheric thermal structure is modified with a large temperature increase in the mesosphere and lower thermosphere and a decrease at higher altitudes caused by enhanced heat loss due to atomic oxygen radiation and conduction.

  1. Chinguetti - terrestrial age and pre-atmospheric size

    SciTech Connect

    Welten, K C; Masarik, J; Bland, P A; Caffee, M W; Russell, S S; Grady, M M; Denyer, I; Lloyd, J

    2000-01-14

    Chinguetti is a 4.5 kg mesosiderite find recovered from the Adra region of Mauretania. In this paper the authors analyse a portion of the recovered sample for cosmogenic radionuclides to determine its terrestrial age, and to determine its pre-atmospheric radius. They determined the terrestrial age of Chinguetti to be < 30 ky. They constrain the pre-atmospheric radius to 50--80 cm and the shielding depths of 15--25 cm. These data indicate that Chinguetti is a comparatively recent fall.

  2. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system

    SciTech Connect

    Bau, M.; Moeller, P. )

    1993-05-01

    The chemically precipitated component in Early Precambrian (> 2.3 Ga) iron formations (IFs) displays (Sm/Yb)[sub CN] < 1 and (Eu/Sm)[sub SN] > 1 which reflects the corresponding ratios of contemporaneous seawater. In conjunction with [epsilon][sub Nd-IF] > [epsilon][sub Nd-shale] this rare earth element (REE) signature reveals that the REE distribution in Early Precambrian IFs must be explained by mixing between a marine bottom and a surface water component, and that the REEs (and by analogy the Fe) cannot be derived from weathering of a continental source. Mixing calculations reveal that (Sm/Yb)[sub CN] in Early Precambrian marine surface waters was significantly lower than it is today. To explain this difference, two mechanisms are discussed on the basis of higher P[sub CO[sub 2

  3. To terrestrial planets upper atmosphere superrotation

    NASA Astrophysics Data System (ADS)

    Bespalov, Peter A.; Savina, Olga N.

    2010-05-01

    We considered the kinetics of a rarefied exosphere replenished by particles injected from a spherical surface inside which collisions are significant. As we have shown, peculiarities of the motion of a rarefied gas in the gravitational field of a slowly rotating planet, Venus, Earth and Mars, can give rise to superrotation. We have shown that one of the superrotation mechanisms for rarefied planetary atmospheres is the separation of particles: some of them fly away from the planet, while others become its satellites. Based on the proposed mechanism, we estimated the superrotation for the exospheres of Venus, Earth, and Mars. Our main results are as follows. 1) We found an exact solution of the boundary value problem for the two-dimensional collision less Boltzmann equation that includes particles with elliptical and hyperbolic orbits. 2) We obtained and analyzed the solution of the kinetic equation with weak elastic collisions. We determined the spatial distributions of the atmospheric-gas density and mean angular velocity and established the possibility of exospheric superrotation. In conclusion, it should be emphasized that the separation of particles with weak collisions is a universal, although, probably, not the only superrotation mechanism for an upper rarefied slowly rotating atmosphere.

  4. Terrestrial nitrous oxide cycles and atmospheric effects

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Lawless, J. G.; Banin, A.

    1984-01-01

    The basic processes that cause N2O emission from soils are briefly discussed, and the rate of the processes is shown to vary widely in space and time, depending on soil, climate, and agrotechnical conditions. Although significant amounts of N2O are indeed emitted from the land, the complexity of the soil processes involved and the wide variation of measured rates still prevents the quantitative evaluation, global budgeting, and reliable prediction of atmospheric N2O. Increased atmospheric N2O abundance increases the levels of odd-nitrogen in the stratosphere, which, in turn, decreases the stratospheric ozone density via a catalytic cycle. Using appropriate atmospheric models and current chemical kinetic data, it has been found that the dependence of ozone reduction on N2O increase is nearly linear; a simulated doubling of N2O leads to a predicted decrease of about 14 percent in total ozone column density. A 10 percent increase in N2O yields a predicted increase in nonmelanoma skin cancer of several percent, and a possible raising of surface temperature of 0.03 K.

  5. Space, Atmospheric, and Terrestrial Radiation Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.

    2003-01-01

    The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.

  6. Sulphur cycling between terrestrial agroecosystem and atmosphere.

    PubMed

    Zgorelec, Zeljka; Pehnec, Gordana; Bašić, Ferdo; Kisić, Ivica; Mesić, Milan; Zužul, Silva; Jurišić, Aleksandra; Sestak, Ivana; Vađić, Vladimira; Cačković, Mirjana

    2012-09-01

    Central gas station of the natural gas borehole system Podravina is located near the village Molve. It delivers more than a quarter of total energy used in Croatia to its consumers. Over the years, adapting technology to increasingly demanding and rigorous standards in environmental protection has become paramount. Yet, despite all the industry has undertaken to address the risk of harmful substances entering the food chain, a multidisciplinary research team of independent scientists monitors the content of specific substances in all components of the ecosystem. This paper presents measurements of total sulphur contents in soil surface [(0 to 3) cm] and subsurface [(3 to 8) cm] layers (study period: autumn 2006 - spring 2010) and in plants (study period: spring 2000 - spring 2010), and the concentration of gaseous sulphur compounds in the air. Concentrations of hydrogen sulphide (H2S) and mercaptans (RSH) were measured from the summer of 2002 until the autumn of 2010, while concentrations of sulphur dioxide (SO2) were measured from the spring of 2008 until the autumn of 2010. The paper also shows total annual atmospheric sulphur (S-SO4) deposition at Bilogora measuring station (study period: 2001 - 2010). Average monthly concentrations of H2S in air varied between 0.2 μg m-3 and 2.0 μg m-3, RSH between 0.1 μg m-3 and 24.5 μg m-3, and SO2 between 0.4 μg m-3 and 2.8 μg m-3 depending on the location and the season of sampling. Mean values of total sulphur in soil and in Plantago lanceolata plant ranged between 610 mg kg-1 and 1,599 mg kg-1 and between 3,614 mg kg-1 and 4,342 mg kg-1, respectively, depending on the soil type, location, and sampling depth. Average values of total sulphur mass ratio for all examined single soil samples (n=80) were 1,080 mg kg-1 for both studied layers, and 4,108 mg kg-1 for all analysed plant samples (n=85). Average total annual atmospheric sulphur deposition at Bilogora measuring station was 6.3 kg of S-SO4 per hectare.

  7. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  8. On the condensating species in terrestrial extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Patzer, A. B. C.; von Paris, P.; Kitzmann, D.; Rauer, H.; Grenfell, J. L.

    2008-09-01

    ABSTRACT The formation of liquid droplets and/or solid particles has a significant impact on the thermal, dynamic, and chemical structure of the planetary environments, in which they are formed. For example, the character and distribution of the atmospheric condensates determine the appearance of such objects. It is therefore important to know, which chemical species might condense under the atmospheric conditions of extrasolar planets and how the condensate, solid or maybe liquid, nucleate in detail to finally form cloudy structures in such planetary atmospheres. In this contribution the presence of particles of likely condensates under atmospheric conditions of extrasolar terrestrial planets is discussed. Consequences regarding the condensation of major gaseous constituents of the planetary atmospheres are considered in particular. Selected applications, especially in view of the recently discovered low mass planets - so called Super-Earths -, are presented and compared. Acknowledgement: This work has been partly supported by the Forschungsallianz Planetary Evolution and Life of the Helmholtz Gemeinschaft (HGF).

  9. Kinetics of Fast Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)

    2002-01-01

    This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.

  10. New constraints on terrestrial and oceanic sources of atmospheric methanol

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Jacob, D. J.; Custer, T. G.; de Gouw, J. A.; Goldstein, A. H.; Karl, T.; Singh, H. B.; Sive, B. C.; Talbot, R. W.; Warneke, C.; Williams, J.

    2008-04-01

    We use a global 3-D chemical transport model (GEOS-Chem) to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML) imply that in situ biological production must be the main methanol source in the OML, dominating over uptake from the atmosphere. It follows that oceanic emission and uptake must be viewed as independent terms in the atmospheric methanol budget. We deduce that the marine biosphere is a large primary source (85 Tg y-1) of methanol to the atmosphere and is also a large sink (101 Tg y-1), comparable in magnitude to atmospheric oxidation by OH (88 Tg y-1). The resulting atmospheric lifetime of methanol in the model is 4.7 days. Aircraft measurements in the North American boundary layer imply that terrestrial plants are a much weaker source than presently thought, likely reflecting an overestimate of broadleaf tree emissions, and this is also generally consistent with surface measurements. We deduce a terrestrial plant source of 80 Tg y-1, comparable in magnitude to the ocean source. The aircraft measurements show a strong correlation with CO (R2=0.51-0.61). We reproduce this correlation in the model with the reduced plant source, which also confirms that the anthropogenic source of methanol must be small. Our reduced plant source also provides a better simulation of methanol observations over tropical South America.

  11. Atmospheric circulation and climate of terrestrial exoplanets and super Earths

    NASA Astrophysics Data System (ADS)

    Showman, A. P.; Kaspi, Y.

    2014-03-01

    The recent discovery of super Earths and terrestrial exoplanets extending over a broad region of orbital and physical parameter space suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. In this presentation we will review how the planetary rotation rate, planetary mass, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We will elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we will discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  12. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    SciTech Connect

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{sub 3} alone cannot be regarded as robust signs of extraterrestrial life.

  13. New constraints on terrestrial and oceanic sources of atmospheric methanol

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Jacob, D. J.; Custer, T. G.; de Gouw, J. A.; Goldstein, A. H.; Karl, T.; Singh, H. B.; Sive, B. C.; Talbot, R. W.; Warneke, C.; Williams, J.

    2008-12-01

    We use a global 3-D chemical transport model (GEOS-Chem) to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML) imply that in situ biological production must be the main methanol source in the OML, dominating over uptake from the atmosphere. It follows that oceanic emission and uptake must be viewed as independent terms in the atmospheric methanol budget. We deduce that the marine biosphere is a large primary source (85 Tg a-1) of methanol to the atmosphere and is also a large sink (101 Tg a-1), comparable in magnitude to atmospheric oxidation by OH (88 Tg a-1). The resulting atmospheric lifetime of methanol in the model is 4.7 days. Aircraft measurements in the North American boundary layer imply that terrestrial plants are a much weaker source than presently thought, likely reflecting an overestimate of broadleaf tree emissions, and this is also generally consistent with surface measurements. We deduce a terrestrial plant source of 80 Tg a-1, comparable in magnitude to the ocean source. The aircraft measurements show a strong correlation with CO (R2=0.51-0.61) over North America during summer. We reproduce this correlation and slope in the model with the reduced plant source, which also confirms that the anthropogenic source of methanol must be small. Our reduced plant source also provides a better simulation of methanol observations over tropical South America.

  14. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  15. Data Assimilation and Transport Modeling in Terrestrial and Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Houben, Howard C.; Young, Richard E. (Technical Monitor)

    2002-01-01

    Data assimilation is a blanket term used to describe a number of techniques for retrieving important physical parameters from observational data, subject to constraints imposed by prior knowledge (such as, in the case of meteorology, the primitive equations that govern atmospheric motion). Since these newly developed methods make efficient use of computational resources, they are of great importance in the interpretation of the voluminous datasets that are now produced by satellite missions. As proposed, these techniques have been applied to the study of the Martian and terrestrial atmospheres based on available satellite observations. In addition, a sophisticated hydrodynamic model (non-hydrostatic, and therefore applicable to the study of the interiors of the giant planets) has also been developed and successfully applied to the study of tidally induced motions in Jupiter.

  16. Early terrestrial ecosystems: the animal evidence

    SciTech Connect

    Gray, J.

    1985-01-01

    Work on fossil spores indicates that plants at a level of vegetative organization comparable to bryophytes and vascular plants existed on land in the Early Silurian. Vascular plants, limnetic fishes, and probable Ascomycetes have Late Silurian records. Charophytes are known in the Late Silurian but may have been marine. The presence of microarthropods in the Ludlovian has been hypothesized from fungal masses in the Burgsvik Sandstone that closely resemble microarthropod frass. A number of microarthropods such as collembolans and mites are microphagous; these animals are among the earliest known from the Early Devonian. These fungal masses as animal traces have been given added credibility by the recovery of animal body fossils from basal Llandovery age fluvial deposits of the Central Appalachians that yield abundant plant spores but that lack marine invertebrates, phytoplankton or chitinozoans. The remains are abundant and sufficiently varied to suggest that they may represent a variety of organisms. Some are eurypterid-like, others grossly arthropod-like, although they may represent an unknown phylum or phyla. Many small invertebrates are associated with extant bryophytes, which have been viewed as stepping stones or halfway houses for them as they emerged from water onto land. The occurrence of these Early Silurian invertebrate remains with abundant spore tetrads, which Gray has hypothesized represent land plants at a bryophyte or hepatic grade of organization, is of great interest in trying to understand the early development of nonmarine ecosystems.

  17. Atmospheric Escape and Climate Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Tian, F.; Chassefière, E.; Leblanc, F.; Brain, D.

    The climate of a planet is primarily determined by its orbital distance from its star, the luminosity of the star, the existence of oceans, the pressure of its atmosphere, and the composition of its atmosphere. The last two components are what could be impacted by atmosphere escape. The Sun, as the dominant energy source driving the climate of terrestrial planets, was not always as bright as it is today. Stellar evolution theory predicts that the luminosity of the young Sun was 75% of its present luminosity, at approximately 4 b.y. ago (4 Ga) (Gough, 1981). Although the Sun could have lost some of its mass, thus making the very young Sun somewhat more massive than it is now and therefore could have emitted more energy, most of this mass loss was completed prior to 4 Ga (Wood et al., 2005). Thus the Sun has provided increasingly more energy to solar system planets during the past 4 b.y. Contrary to the evolutionary trend of the total luminosity increasing with time, the young Sun should have emitted much stronger EUV, soft X-ray, and far-UV photons than at present. These photons are from the upper atmosphere of the Sun and are linked to solar magnetic activity. Generally speaking, a young star rotates much faster and thus has stronger magnetic activity. Observations of solar-type stars with different ages show that the EUV energy flux from a 0.5-b.y.-old solar-type star could be as much as 20 times that of the present Sun (Ribas et al., 2005). Accompanying this much-enhanced solar extreme ultraviolet (XUV) radiation is a much stronger solar wind, with mass flux up to 1000 times more intense than the present solar wind flux (Wood et al., 2005). It can be expected that many more energetic-particle events were caused by the young Sun. The fate of the atmospheres of terrestrial planets in such an environment and the consequences for their climates are the focus of this chapter.

  18. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    SciTech Connect

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  19. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology

    NASA Astrophysics Data System (ADS)

    Schimel, David S.; Kittel, Timothy G. F.; Parton, William J.

    1991-08-01

    Ecosystem scientists have developed a body of theory to predict the behaviour of biogeochemical cycles when exchanges with other ecosystems are small or prescribed. Recent environmental changes make it clear that linkages between ecosystems via atmospheric and hydrological transport have large effects on ecosystem dynamics when considered over time periods of a decade to a century, time scales relevant to contemporary humankind. Our ability to predict behaviour of ecosystems coupled by transport is limited by our ability (1) to extrapolate biotic function to large spatial scales and (2) to measure and model transport. We review developments in ecosystem theory, remote sensing, and geographical information systems (GIS) that support new efforts in spatial modeling. A paradigm has emerged to predict behaviour of ecosystems based on understanding responses to multiple resources (e.g., water, nutrients, light). Several ecosystem models couple primary production to decomposition and nutrient availability using the above paradigm. These models require a fairly small set of environmental variables to simulate spatial and temporal variation in rates of biogeochemical cycling. Simultaneously, techniques for inferring ecosystem behaviour from remotely measured canopy light interception are improving our ability to infer plant activity from satellite observations. Efforts have begun to couple models of transport in air and water to models of ecosystem function. Preliminary work indicates that coupling of transport and ecosystem processes alters the behaviour of earth system components (hydrology, terrestrial ecosystems, and the atmosphere) from that of an uncoupled mode.

  20. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.

    PubMed

    Pound, Matthew J; Salzmann, Ulrich

    2017-02-24

    Rapid global cooling at the Eocene - Oligocene Transition (EOT), ~33.9-33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT.

  1. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition

    NASA Astrophysics Data System (ADS)

    Pound, Matthew J.; Salzmann, Ulrich

    2017-02-01

    Rapid global cooling at the Eocene – Oligocene Transition (EOT), ~33.9–33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT.

  2. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition

    PubMed Central

    Pound, Matthew J.; Salzmann, Ulrich

    2017-01-01

    Rapid global cooling at the Eocene – Oligocene Transition (EOT), ~33.9–33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT. PMID:28233862

  3. Origin of the atmosphere and hydrosphere of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Abe, Y.

    1985-01-01

    An early thermal evolution of a planet growing by planetesimal impacts was studied. An evolution of an impact induced atmosphere was considered. It is known that the surface of a growing planet is heated due to the blanketing effect of the atmosphere and exceeds the melting temperature, which means that the surface of a growing planet was entirely covered by a magma ocean. The amount of water in a proto-atmosphere is influenced by the formation of a magma ocean. It is suggested the solubility of water in silicate melt controls the water content in a proto-atmsphere. It is noted that irrespective of difference in initial water content of planetesimals the final water content in the atmosphere becomes almost constant and is about 10 to the 21st power kg which is almost identical with the present amount of the ocean. It is also shown that the water in a proto-atmosphere can be liquid for the Earth and becomes to be an ocean but this does not happen on Venus.

  4. Three dimensional atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Showman, A. P.

    2014-04-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone-including transitions to Snowballlike states and runaway-greenhouse feedbacks-depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  5. Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam

    2014-05-01

    The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters, suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star, atmospheric mass and optical thickness affect the atmospheric circulation and temperature distribution on such planets. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  6. Processes Impacting Atmosphere-Surface Exchanges at Arctic Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Grachev, Andrey; Konopleva, Elena; Cox, Chris; Stone, Robert; Crepinsek, Sara; Shupe, Matthew; Uttal, Taneil

    2015-04-01

    Surface energy fluxes are key to the annual cycle of near-surface and soil temperature and biologic activity in the Arctic. While these energy fluxes are undoubtedly changing to produce the changes observed in the Arctic ecosystem over the last few decades, measurements have generally not been available to quantify what processes are regulating these fluxes and what is determining the characteristics of these annual cycles. The U.S. National Oceanic and Atmospheric Administration has established, or contributed to the establishment of, several terrestrial "supersites" around the perimeter of the Arctic Ocean at which detailed measurements of atmospheric structure, surface fluxes, and soil thermal properties are being made. These sites include Barrow, Alaska; Eureka and Alert, Canada; and Tiksi, Russia. Atmospheric structure measurements vary, but include radiosoundings at all sites and remote sensing of clouds at two sites. Additionally, fluxes of sensible heat and momentum are made at all of the sites, while fluxes of moisture and CO2 are made at two of the sites. Soil temperatures are also measured in the upper 120 cm at all sites, which is deep enough to define the soil active layer. The sites have been operating between 3 years (Tiksi) and 24 years (Barrow). While all sites are located north of 71° N, the summer vegetation range from lush tundra grasses to rocky soils with little vegetation. This presentation will illustrate some of the atmospheric processes that are key for determining the annual energy and temperature cycles at these sites, and some of the key characteristics that lead to differences in, for instance, the length of the summer soil active layer between the sites. Atmospheric features and processes such as cloud characteristics, snowfall, downslope wind events, and sea-breezes have impacts on the annual energy cycle. The presence of a "zero curtain" period, when autumn surface temperature remains approximately constant at the freezing point

  7. The Huygens Atmospheric Structure Instrument (HASI): Expected Results at Titan and Performance Verification in Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Ferri, F.; Fulchignoni, M.; Colombatti, G.; Stoppato, P. F. Lion; Zarnecki, J. C.; Harri, A. M.; Schwingenschuh, K.; Hamelin, M.; Flamini, E.; Bianchini, G.; Angrilli, F.

    2005-01-01

    The Huygens ASI is a multi-sensor package resulting from an international cooperation, it has been designed to measure the physical quantities characterizing Titan's atmosphere during the Huygens probe mission. On 14th January, 2005, HASI will measure acceleration, pressure, temperature and electrical properties all along the Huygens probe descent on Titan in order to study Titan s atmospheric structure, dynamics and electric properties. Monitoring axial and normal accelerations and providing direct pressure and temperature measurements during the descent, HASI will mainly contribute to the Huygens probe entry and trajectory reconstruction. In order to simulate the Huygens probe descent and verify HASI sensors performance in terrestrial environment, stratospheric balloon flight experiment campaigns have been performed, in collaboration with the Italian Space Agency (ASI). The results of flight experiments have allowed to determine the atmospheric vertical profiles and to obtain a set of data for the analysis of probe trajectory and attitude reconstruction.

  8. Atmospheric Dynamics of Terrestrial Exoplanets over a Wide Range of Orbital and Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam P.

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  9. Atmospheric Dynamics of Terrestrial Exoplanets Over a Wide Range of Orbital and Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, Adam P.

    2014-11-01

    Since the mid-1990s, nearly 1800 exoplanets have been discovered around other stars. Exoplanet discovery and characterization began with giant planets, but as the observational techniques are advancing the emphasis is gradually shifting to smaller worlds. The recent discoveries of terrestrial exoplanets and super Earths extending over a broad range of orbital and physical parameters suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone---including transitions to Snowball-like states and runaway-greenhouse feedbacks---depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we discuss the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, planetary mass, surface gravity, heat flux from a parent star, optical thickness and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet stream, Hadley and Ferrel cells and latitudinal temperature differences. Finally, we will

  10. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    SciTech Connect

    Kaspi, Yohai; Showman, Adam P.

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  11. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ˜100 pc, consisting of two main events: one at 1.7-3.2 million years ago, and the other at 6.5-8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  12. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    DOE PAGES

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; ...

    2015-01-21

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North Americanmore » land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4

  13. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    USGS Publications Warehouse

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, Anthony; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  14. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    NASA Astrophysics Data System (ADS)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  15. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    SciTech Connect

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; Hafer, M.; Hayes, Daniel J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, Werner; McGuire, A. David; Vargas, Rodrigo; Wei, Yaxing; West, Tristram O.; Woodall, Chris W.

    2015-01-21

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the

  16. Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems.

    PubMed

    Körner, Christian

    2003-09-15

    Global change has many facets, of which land use and the change of atmospheric chemistry are unquestioned primary agents, which induce a suite of secondary effects, including climatic changes. The largest single contribution to the compositional change of the atmosphere, CO(2) enrichment, has (besides its influence on climate) immediate and direct effects on plants. Quantitatively, CO(2) is the plant 'food' number one, and the rate of photosynthetic CO(2) uptake by leaves is not yet CO(2)-saturated. This abrupt change of the biosphere's diet does and will affect all aspects of life, including our food. However, the plant and ecosystem responses are more subtle than had been assumed from the results of responses of isolated, well-fertilized and well-watered plants in greenhouses during the early days of CO(2)-enrichment research. In this article, I discuss potential responses of complex natural grassland and diverse forests, and address three key themes: CO(2) and nutrients; CO(2) and water; CO(2) and plant-animal interactions. Examples from a suite of climatic regions emphasize that the most important ecosystem level responses to elevated CO(2) will be introduced by differential responses of species. Atmospheric CO(2) enrichment is a biodiversity issue. Classical physiological baseline responses of leaves to elevated CO(2) can be overrun by biodiversity effects to such an extent that some of the traditional predictions may even become reversed. For instance, biodiversity effects may cause humid tropical forests (those which avoid destruction) to become more dynamic and store less, rather than more, carbon as CO(2) enrichment continues. The abundance of certain life forms and species and their lifespans exert major controls over the half-life of carbon stored in forest biomass, and there is evidence that elevated CO(2) can affect these controls and most likely does so already. Also, long-term hydrological consequences of atmospheric CO(2) enrichment will be driven

  17. Early Earth: Atmosphere's solar shock

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses

    2016-06-01

    Frequent storms on the young Sun would have ejected energetic particles and compressed Earth's magnetosphere. Simulations suggest that the particles penetrated the atmosphere and initiated reactions that warmed the planet and fertilized life.

  18. Early oxygenation of the terrestrial environment during the Mesoproterozoic.

    PubMed

    Parnell, John; Boyce, Adrian J; Mark, Darren; Bowden, Stephen; Spinks, Sam

    2010-11-11

    Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (∼2.3 billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8 Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S < 25‰ before 1 Gyr to ≥50‰ after 0.64 Gyr. This change in Δ(34)S has been interpreted to represent the evolution from single-step bacterial sulphate reduction to a combination of bacterial sulphate reduction and sulphide oxidation, largely bacterially mediated. This evolution is seen as marking the rise in atmospheric oxygen concentrations and the evolution of non-photosynthetic sulphide-oxidizing bacteria. Here we report Δ(34)S values exceeding 50‰ from a terrestrial Mesoproterozoic (1.18 Gyr old) succession in Scotland, a time period that is at present poorly characterized. This level of fractionation implies disproportionation in the sulphur cycle, probably involving sulphide-oxidizing bacteria, that is not evident from Δ(34)S data in the marine record. Disproportionation in both red beds and lacustrine black shales at our study site suggests that the Mesoproterozoic terrestrial environment was sufficiently oxygenated to support a biota that was adapted to an oxygen-rich atmosphere, but had also penetrated into subsurface sediment.

  19. A massive early atmosphere on Triton

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Nolan, Michael C.

    1992-01-01

    The idea of an early greenhouse atmosphere for Triton is presented and the conditions under which it may have been sustained are quantified. The volatile content of primordial Triton is modeled, and tidal heating rates are assessed to set bounds on the available energy. The atmospheric model formalism is presented, and it is shown how a massive atmosphere could have been raised by modest tidal heating fluxes. The implications of the model atmospheres for the atmospheric escape rates, the chemical evolution, and the cratering record are addressed.

  20. Lichen metabolism identified in Early Devonian terrestrial organisms

    NASA Astrophysics Data System (ADS)

    Jahren, A. Hope; Porter, Steven; Kuglitsch, Jeffrey J.

    2003-02-01

    We used δ13C values to identify lichen metabolism in the globally distributed Early Devonian (409 386 Ma) macrofossil Spongiophyton minutissimum, which had been alternatively interpreted as a green plant of bryophyte grade or as a lichen, based on its morphology. Extant mosses and hornworts exhibited a range of δ13Ctissue values that was discrete from that of extant lichens. The δ13Ctissue values of 96 S. minutissimum specimens coincided with δ13Ctissue values of extant lichens. In contrast, S. minutissimum δ13Ctissue values showed no similarity to bryophyte carbon isotope values. The identification of large global populations of lichens during the Early Devonian may indicate that lichen-accelerated soil formation fostered the development of Paleozoic terrestrial ecosystems.

  1. Contribution of the terrestrial biosphere to interannual variations in atmospheric CO{sub 2}

    SciTech Connect

    King, A.W.; Post, W.M.; Wullschleger, S.D.

    1995-06-01

    Interannual fluctuations in atmospheric CO{sub 2} concentration may reflect interannual variations in the CO{sub 2} source/sink strength of the terrestrial biosphere. Recurrent changes in climate like those associated with El Nino events and episodic changes like those associated with the Mt. Pinatubo eruption could alter the global balance between terrestrial net primary production and heterotrophic (decomposer) respiration and thus influence net CO{sub 2} exchange with the atmosphere. A georeferenced global terrestrial biosphere model (0.5{degrees} spatial resolution and monthly temporal resolution) was used to simulate interannual variations in net CO{sub 2} exchange with the atmosphere. The model was driven with monthly temperature and precipitation data for the period 1900 to present. Interannual variations in simulated net CO{sub 2} exchange were compared with historical records of atmospheric CO{sub 2}. Consecutive years of an enhanced terrestrial sink were associated with periods of declining atmospheric CO{sub 2} concentration; consecutive years of enhanced source strength were associated with positive atmospheric CO{sub 2} anomalies. We conclude that interannual variations in terrestrial biospheric carbon flux contribute significantly to interannual variations in atmospheric CO{sub 2}.

  2. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    PubMed Central

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-01-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  3. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    NASA Astrophysics Data System (ADS)

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-08-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change.

  4. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming.

    PubMed

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V

    2016-08-24

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change.

  5. Atmospheric transport of persistent pollutants governs uptake by holarctic terrestrial biota

    SciTech Connect

    Larsson, P.; Okla, L.; Woin, Per )

    1990-10-01

    The atmospheric deposition of PCBs, DDT, and lindane, governed uptake in terrestrial biota in the Scandinavian peninsula. Mammalian herbivores and predators as well as predatory insects contained higher levels of pollutants at locations where the fallout load was high than at stations where atmospheric deposition was lower, and the two variables were significantly correlated.

  6. The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA)

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Morris, Vernon R.

    1997-01-01

    The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) was established in 1992. The center began with 14 active Principal Investigators (PI's). The research of the Center's PIs has, for the most part, continued in the same four areas as presented in the original proposal: Remote Sensing, Atmospheric Chemistry, Sensors and Detectors, and Spacecraft Dynamics.

  7. On the (anticipated) diversity of terrestrial planet atmospheres

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy; Forget, François; Lammer, Helmut

    2015-12-01

    On our way toward the characterization of smaller and more temperate planets, missions dedicated to the spectroscopic observation of exoplanets will teach us about the wide diversity of classes of planetary atmospheres, many of them probably having no equivalent in the Solar System. But what kind of atmospheres can we expect? To start answering this question, many theoretical studies have tried to understand and model the various processes controlling the formation and evolution of planetary atmospheres, with some success in the Solar System. Here, we shortly review these processes and we try to give an idea of the various type of atmospheres that these processes can create. As will be made clear, current atmosphere evolution models have many shortcomings yet, and need heavy calibrations. With that in mind, we will thus discuss how observations with a mission similar to EChO would help us unravel the link between a planet's environment and its atmosphere.

  8. A hydrogen-rich early Earth atmosphere.

    PubMed

    Tian, Feng; Toon, Owen B; Pavlov, Alexander A; De Sterck, H

    2005-05-13

    We show that the escape of hydrogen from early Earth's atmosphere likely occurred at rates slower by two orders of magnitude than previously thought. The balance between slow hydrogen escape and volcanic outgassing could have maintained a hydrogen mixing ratio of more than 30%. The production of prebiotic organic compounds in such an atmosphere would have been more efficient than either exogenous delivery or synthesis in hydrothermal systems. The organic soup in the oceans and ponds on early Earth would have been a more favorable place for the origin of life than previously thought.

  9. Photochemistry of methane in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Zahnle, K J.; Walker, J. C. G.

    1983-01-01

    The photochemical behavior of methane in the early terrestrial atmosphere is investigated with a detailed model in order to determine how much CH4 might have been present and what types of higher hydroocarbons could have been formed. It is found that any primordial methane accumulated during the course of earth accretion would have been dissipated by photochemical reactions in the atmosphere in a geologically short period of time after the segregation of the core. Abiotic sources of methane are not likely to have been large enough to sustain CH4 mixing ratios as high as 10 to the -6th, the threshold for a possible methane greenhouse, with a CO-rich atmosphere being a possible exception. After the origin of life an increasing biogenic source of methane may have driven CH4 mixing ratios well above 10 to the 6th. The rise of atmospheric oxygen in the early Proterozoic may have led to a more rapid photochemical destruction of methane, lowering the mixing ratio to its present value.

  10. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  11. In situ observations of the atmospheres of terrestrial planetary bodies

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti

    2005-11-01

    Direct observations of planetary atmospheres are scarce and significantly more data are needed for the understanding of their behavior. The principal theme of this dissertation is the exploration of planetary atmospheres by means of in situ observations, focusing on investigations performed by payloads operating on the planetary surface. The contextual frame includes the whole palette of planetary exploration including definition of scientific objectives, observational strategies, scientific payload and data analysis, as well as development of technological solutions and simulation models for planetary missions. Thus approach also led to the initiation of the planetary missions MetNet and NetLander to Mars. This work contributes to both in situ atmospheric observations and atmospheric modeling, which are strongly intertwined. Modeling efforts require observations to give solid background and foundation for the simulations, and on the other hand, definition of observational strategies and instrumentation gets guidance from modeling efforts to optimize the use of mission resources, as is successfully demonstrated in this dissertation. The dissertation consists of Summary and nine original scientific publications. Publications 1 to 7 and Summary address the development of new atmospheric science payloads for exploration missions to Mars and Titan, a Saturnian moon. Actual and planned missions included are the Mars-96 Program and its Small Surface Stations and Penetrators during the years 1988-1996, PPI/HASI onboard the Cassini/Huygens spacecraft to Saturn and its moon Titan in 1989-2005, the MET-P payload onboard the Mars Polar Lander in 1997-1999, the BAROBIT instrument for the Beagle 2 lander in 2001-2003, the NetLander Mars Mission in 1997-2001 and the ongoing Mars MetNet Mission, started in 2000. Specifically, Publication 4 reviews the sensor qualification process that facilitated the use of new type of atmospheric sensors at Mars, while Publications 2 and 7, as

  12. Exploring Terrestrial Temperature Changes during the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Clyde, W. C.; Fricke, H. C.; Eiler, J. M.

    2012-12-01

    The Early Eocene is marked by a number of rapid global warming events called hyperthermals. These hyperthermals are associated with negative carbon isotope excursions (CIE) in both marine and terrestrial records. Multiple theories exist to explain the connection of these hyperthermals with the CIEs and each theory predicts different responses by the climate system. Characterizing the timing, duration and magnitude of temperature change that is associated with these hyperthermals is important for determining whether the hyperthermals are all driven by the same underlying climate dynamics or perhaps differ from one another in cause and climatic consequences. In the simplest case, all share a common underlying mechanism; this predicts that the associated temperature changes scale in a predictable way with the magnitude of the CIE (and perhaps exhibit other similarities, such as the relative amplitudes of marine and terrestrial temperature change). To our knowledge, however, the only hyperthermal with paleotemperature data from land is the Paleocene-Eocene Thermal Maximum (PETM). Here we present preliminary carbonate clumped isotope paleotemperature estimates for Early Eocene hyperthermal ETM2/H2 from paleosol carbonates from the Bighorn Basin in Wyoming, USA. We compare the results to existing clumped isotope paleotemperature estimates for the PETM in the Bighorn Basin. Temperatures recorded by paleosol carbonates (which likely reflect near-peak summer ground temperatures) prior to each CIE are ~30°C and increase to ~40-43°C during the apex of each CIE. Following both CIEs, temperatures drop back to pre-CIE values. In the case of ETM2/H2, temperatures begin to rise again immediately, possibly in association with a later hyperthermal, though further work needs to be done to establish this with certainty. These preliminary data suggest that both the absolute values and the magnitudes of temperature changes associated with the PETM and ETM2/H2 are similar; the

  13. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects

    USGS Publications Warehouse

    Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, J.S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2002-01-01

    An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.

  14. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    PubMed

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes.

  15. Chinguetti: Terrestrial Age and Pre-Atmospheric Radius

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Bland, P. A.; Caffee, M. W.; Masarik, J.; Russell, S. S.; Jull, A. J. T.; Denyer, I.; Grady, M. M.; Lloyd, J.

    2000-01-01

    The Chinguetti mesosiderite was found in the Adrar region of Mauretania in 1916. The finder claimed it be only a small fragment of a much larger mass, on the order of 10's of meters across. Our data indicate that, in fact, the pre-atmospheric size of the meteorite was < 1m.

  16. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    SciTech Connect

    Hu Renyu; Seager, Sara; Bains, William

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark

  17. Superrotation in terrestrial atmospheres and tropical wave-mean flow interaction

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Vallis, G. K.; Wang, P.; Dias Pinto, J. R.; Biello, J. A.

    2012-12-01

    Two out of the four terrestrial bodies in the Solar System with thick atmospheres, Titan and Venus, have superrotating atmospheres that spin faster than the underlying surface. Superrotating equatorial jets are also common to Jupiter and Saturn, but their formation and maintenance may involve a different mechanism. Earth develops a transient superrotating jet during the westward phase of the Madden-Julian Oscillation, which may have been a persistent feature during past climates, for example the Eocene. We use a hierarchy of numerical and analytical tools to isolate and describe the mechanism by which spontaneous superrotation of terrestrial atmospheres occur. Numerical simulations of high-Rossby-number atmospheres started from a state of rest robustly form superrotation provided thermal and frictional damping are sufficiently weak. Motivated by these numerical results, we demonstrate a linear instability of the shallow water system that resembles the spinup phase of the numerical simulations, and draw comparisons with phenomena on Titan, Venus and Earth.

  18. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    PubMed Central

    Keenan, Trevor F; Prentice, I. Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-01-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly. PMID:27824333

  19. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake.

    PubMed

    Keenan, Trevor F; Prentice, I Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G James

    2016-11-08

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  20. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; Williams, Christopher A.; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-11-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  1. The Martian atmospheric water cycle as viewed from a terrestrial perspective

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.

    1988-01-01

    It is noted that the conditions of temperature and pressure that characterize the atmosphere of Mars are similar to those found in the Earth's stratosphere. Of particular significance is the fact that liquid water is unstable in both environments. Thus, it is expected that terrestrial studies of the dynamical behavior of stratospheric water should benefit the understanding of water transport on Mars as well.

  2. Carbon in the atmosphere and terrestrial biosphere in the 21st century.

    PubMed

    Malhi, Yadvinder

    2002-12-15

    The release of carbon dioxide from fossil-fuel combustion and land-use change has caused a significant perturbation in the natural cycling of carbon between land, atmosphere and oceans. Understanding and managing the effects of this disruption on atmospheric composition and global climate are likely to be amongst the most pressing issues of the 21st century. However, the present-day carbon cycle is still poorly understood. One remarkable feature is that an increasing amount of atmospheric carbon dioxide appears to be being absorbed by terrestrial vegetation. I review the recent evidence for the magnitude and spatial distribution of this 'terrestrial carbon sink', drawing on current research on the global atmospheric distribution and transport of carbon dioxide, oxygen and their isotopes; direct measurement of CO(2) fluxes above various biomes; and inventories of forest biomass and composition. I review the likely causes of these carbon sinks and sources and their implications for the ecology and stability of these biomes. Finally, I examine prospects and key issues over coming decades. Within a few years, satellite measurements of atmospheric CO(2) and forest biomass, coupled with 'real-time' biosphere-atmosphere models, will revolutionize our understanding of the terrestrial carbon cycle. Controlling deforestation and managing forests has the potential to play a significant but limited part in reaching the goal of stabilizing atmospheric CO(2) concentrations. However, there are likely to be limits to the amount of carbon storage possible in natural vegetation, and, in the long term, terrestrial carbon storage may be unstable, with the potential to accelerate rather than brake global warming.

  3. Atmospheric circulations of terrestrial planets orbiting low mass stars

    NASA Astrophysics Data System (ADS)

    Edson, Adam Robert

    Atmospheres of planets orbiting low mass stars have properties unlike those typically studied by climatologists. One of the most glaring differences is that the rotation is "trapped" for planets orbiting within the habitable zone of the star. This lack of a typical "day" changes these planets' dynamics. Previous work includes that of Gareth Williams and Manoj Joshi. Joshi discussed planets with 10-day orbits only. Williams focused on planets with differing rotation rates, but still rotating relative to their star. Here, tidally locked planets with a variety of orbital periods ranging from 1 to 100 days are discussed. The GENESIS model is used to simulate these planets, and the data are analyzed for waves, energy fluxes, and habitability. The major components of the energy fluxes are the mean meridional circulation (i.e., the Hadley cell) and stationary eddies in the form of a wave number 1 stationary Rossby wave. A transition point in the atmospheric circulation is identified for orbital periods between 100 hours and 101 hours for dry planets. For the wet planets, the transition occurs near 96-hour rotation period. This transition occurs when the Rossby radius of deformation approaches the planet's radius and is associated with the increasing importance of the wave number two stationary eddy as the Rossby radius approaches the planetary radius. The most habitable dry planet is found to be the 2400-hour orbiter. For the wet planets, the 24-hour rotator is most habitable. The most habitable wet planet is the 24-hour rotator, with the least habitable wet planet being the 2400-hour rotator. The difference in the rotation period of the most habitable planets between the dry planets and the wet planets is caused by the availability of water vapor as a greenhouse gas, the added heat transport through sea ice movement, and the larger heat capacity for the wet planets. When realistic planets are modeled, the habitable surface area and average surface temperature is

  4. The Evolution of Stellar Rotation and the Hydrogen Atmospheres of Habitable-zone Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Johnstone, C. P.; Güdel, M.; Stökl, A.; Lammer, H.; Tu, L.; Kislyakova, K. G.; Lüftinger, T.; Odert, P.; Erkaev, N. V.; Dorfi, E. A.

    2015-12-01

    Terrestrial planets formed within gaseous protoplanetary disks can accumulate significant hydrogen envelopes. The evolution of such an atmosphere due to XUV driven evaporation depends on the activity evolution of the host star, which itself depends sensitively on its rotational evolution, and therefore on its initial rotation rate. In this Letter, we derive an easily applicable method for calculating planetary atmosphere evaporation that combines models for a hydrostatic lower atmosphere and a hydrodynamic upper atmosphere. We show that the initial rotation rate of the central star is of critical importance for the evolution of planetary atmospheres and can determine if a planet keeps or loses its primordial hydrogen envelope. Our results highlight the need for a detailed treatment of stellar activity evolution when studying the evolution of planetary atmospheres.

  5. The Terrestrial Fossil Organic Matter Record of Global Carbon Cycling: A Late Paleozoic through Early Mesozoic Perspective

    NASA Astrophysics Data System (ADS)

    Montanez, I. P.

    2006-12-01

    plant growth, estimated from measured terrestrial δ13Corg values and contemporaneous marine carbonate δ13C values define a relatively consistent and narrow range (0.45 to 0.6) throughout the 150 million year interval within each depositional basin, regardless of landscape or stratigraphic position. Their narrow range in conjunction with the statistically significant long-term δ13Corg trend indicates that local to regional environmental effects on δ13Corg were secondary to extrabasinal influences such as the carbon isotopic composition of the paleo-atmosphere. This suggests that the long-term terrestrial δ13Corgrecord archives first-order variations in atmospheric δ13C throughout the Late Paleozoic and Early Mesozoic.

  6. The early atmosphere: a new picture.

    PubMed

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).

  7. Synchronized terrestrial-atmospheric deglacial records around the North Atlantic

    SciTech Connect

    Bjoerck, S.; Rasmussen, T.L.; Kromer, B.

    1996-11-15

    On the basis of synchronization of three carbon-14 ({sup 14}C)-dated lacustrine sequences from Sweden with tree ring and ice core records, the absolute age of the Younger Dryas-Preboreal climatic shift was determined to be 11,450 to 11,390 {plus_minus} 80 years before the present. A 150-year-long cooling in the early Preboreal, associated with rising {Delta} {sup 14}C values, is evident in all records and indicates an ocean ventilation change. This cooling is similar to earlier deglacial coolings, and box-model calculations suggest that they all may have been the result of increased freshwater forcing that inhibited the strength of the North Atlantic heat conveyor, although the Younger Dryas may have been begun as an anomalous meltwater event. 53 refs., 8 figs., 1 tab.

  8. An impact-induced terrestrial atmosphere and iron-water reactions during accretion of the Earth

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1985-01-01

    Shock wave data and theoretical calculations were used to derive models of an impact-generated terrestrial atmosphere during accretion of the Earth. The models showed that impacts of infalling planetesimals not only provided the entire budget of terrestrial water but also led to a continuous depletion of near-surface layers of water-bearing minerals of their structural water. This resulted in a final atmospheric water reservoir comparable to the present day total water budget of the Earth. The interaction of metallic iron with free water at the surface of the accreting Earth is considered. We carried out model calcualtions simulating these processes during accretion. It is assumed that these processes are the prime source of the terrestrial FeO component of silicates and oxides. It is demonstrated that the iron-water reaction would result in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed. In order to obtain the necessary amount of terrestrial water, slightly heterogeneous accretion with initially 36 wt% iron planetesimals, as compared with a homogeneous value of 34 wt% is required.

  9. Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.

    2014-12-01

    Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of

  10. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H{sub 2}S AND SO{sub 2} PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    SciTech Connect

    Hu Renyu; Seager, Sara; Bains, William

    2013-05-20

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H{sub 2}S and SO{sub 2}) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H{sub 2}S and SO{sub 2} are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H{sub 2}-dominated atmospheres for a wide range of particle diameters (0.1-1 {mu}m), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N{sub 2} and CO{sub 2}, optically thick haze, composed of elemental sulfur aerosols (S{sub 8}) or sulfuric acid aerosols (H{sub 2}SO{sub 4}), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H{sub 2}S and SO{sub 2} by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation space

  11. Mercury in terrestrial biomass and soils and factors determining atmospheric mercury sequestration

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Johnson, D. W.; Lindberg, S.; Luo, Y.

    2008-12-01

    Terrestrial carbon (C) pools play an important role in uptake, deposition, sequestration, and emission of atmospheric mercury (Hg). The objective of this study is to assess atmospheric Hg sequestration associated with vegetation and soil C pools in forest ecosystems. As part of an ongoing EPA STAR project, we are systematically evaluating Hg pools and fluxes associated with terrestrial C pools in all major ecosystem compartments (i.e., leaves, branches, bole, litter, soils) across selected US forest ecosystems. Results from the first five sites located in the remote western United States show that the dominant above-ground pool of mercury is associated with surface litter with smaller pools associated with leaves and branches. Mass concentrations greatly increase in the following order: green leaves, dry leaves, initial litter, partially decomposed litter, humus. Based on detailed comparison of stochiometric relationships (e.g., Hg/C and Hg/N ratios) we conclude that these concentration increases are dominated by additional atmospheric deposition retained in the decomposing plant material while exposed to the environment rather than by organic C losses during decomposition. The large majority of total ecosystem mercury, up to 98 percent, however, is sequestered belowground in the soils. Soil Hg accumulation across all sites is greatly determined by the availability of organic matter in these systems, with soil C and soil N explaining more than 90 percent of the variability in observed soil Hg stocks. Our results suggest that the availability of soil organic matter is the main determinant for retention of atmospheric inputs in soils and hence in terrestrial ecosystems. Ecosystem structure and soil organic accumulation hence determine the resilience of Hg in terrestrial ecosystems with important implication for the stability and runoff of atmospheric Hg deposition to surrounding waterbodies.

  12. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual

  13. Preliminary experiment requirements document for Solar and Terrestrial Atmospheres Spectrometer (STAS)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The principal scientific objective of the Solar and Terrestrial Atmospheres Spectrometer (STAS) project is the measurement of the absolute ultraviolet solar spectral irradiance with: (1) resolution of better than 15 mA, and (2) absolute irradiance uncertainty at the state of the art (less than or equal to 3%). High measurement accuracy coupled with high spectral resolution are necessary to identify the nature of the radiation, its variability, and to identify solar processes which may cause the changes. Solar radiation between 1200 and 3600 A dominates the photochemistry of the mesosphere and stratosphere. Some important minor species, such as NO, show very complex and fundamentally narrow structure in their photodestruction cross sections, especially in the region of the Schumann-Runge bands of O2. Understanding the photochemical processes in the terrestrial atmosphere requires knowledge of both the cross sections and of the solar spectrum with the highest possible resolution and accuracy.

  14. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems.

    PubMed

    Kürschner, Wolfram M; Kvacek, Zlatko; Dilcher, David L

    2008-01-15

    The Miocene is characterized by a series of key climatic events that led to the founding of the late Cenozoic icehouse mode and the dawn of modern biota. The processes that caused these developments, and particularly the role of atmospheric CO2 as a forcing factor, are poorly understood. Here we present a CO2 record based on stomatal frequency data from multiple tree species. Our data show striking CO2 fluctuations of approximately 600-300 parts per million by volume (ppmv). Periods of low CO2 are contemporaneous with major glaciations, whereas elevated CO2 of 500 ppmv coincides with the climatic optimum in the Miocene. Our data point to a long-term coupling between atmospheric CO2 and climate. Major changes in Miocene terrestrial ecosystems, such as the expansion of grasslands and radiations among terrestrial herbivores such as horses, can be linked to these marked fluctuations in CO2.

  15. Atmospheric circulation modeling of super Earths and terrestrial extrasolar planets using the SPARC/MITgcm

    NASA Astrophysics Data System (ADS)

    Kataria, T.; Showman, A. P.; Haberle, R. M.; Marley, M. S.; Fortney, J. J.; Freedman, R. S.

    2013-12-01

    The field of exoplanets continues to be a booming field of research in astronomy and planetary science, with numerous ground-based (e.g., SuperWASP, HARPS-N and S) and space-based surveys (e.g., Kepler) that detect and characterize planets ranging from hot Jupiters, Jovian-sized planets orbiting less than 0.1 AU from their star, to super Earths and terrestrial exoplanets, planets that have masses equal to or less than 10 times that of Earth with a range of orbital distances. Atmospheric circulation modeling plays an important role in the characterization of these planets, helping to constrain observations that probe their atmospheres. These models have proven successful in understanding observations of transiting exoplanets (when the planet passes in front of the star along our line of sight) particularly when the planet is passing through secondary eclipse (when the planet's dayside is visible). In modeling super Earths and terrestrial exoplanets, we must consider not only planets with thick fluid envelopes, but also traditional terrestrial planets with solid surfaces and thinner atmospheres. To that end, we present results from studies investigating the atmospheric circulation of these classes of planets using the SPARC/MITgcm, a state-of-the-art model which couples the MIT General Circulation Model with a plane-parallel, two-stream, non-gray radiative transfer model. We will present results from two studies, the first focusing on the circulation of GJ 1214b, a super-Earth detected by the MEarth ground-based survey, and a second study which explores the circulation of terrestrial exoplanets orbiting M-dwarfs.

  16. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  17. New Data for Early Earth Atmospheric Modelling

    NASA Astrophysics Data System (ADS)

    Blackie, D.; Stark, G.; Lyons, J. R.; Pickering, J.; Smith, P. L.; Thorne, A.

    2010-12-01

    The timing of the oxygenation of the Earth’s atmosphere is a central issue in understanding the Earth’s paleoclimate. The discovery of mass-independent fractionation (MIF) of sulphur isotopes deposited within Archean and Paleoproterozoic rock samples (> 2.4 Gyrs) and the transition to mass-dependent fractionation found in younger samples, could provide a marker for the rise in oxygen concentrations in the Earth’s atmosphere [1]. Laboratory experiments [2; 3] suggest isotopic self shielding during gas phase photolysis of SO2 present at wavelengths shorter than 220 nm as the dominant mechanism for MIF. The UV absorption of SO2 is dominated by the C1B2-X1A1 electronic system which comprises strong vibrational bands extending from 170 - 230 nm. Within an atmosphere consisting of low O2 and O3 concentrations, such as that predicted for the early Earth, UV radiation would penetrate deep into the ancient Earth’s atmosphere in the 180 - 220 nm range driving the photolysis of SO2. We have conducted the first ever high resolution measurements of the photo absorption cross sections of several isotopologues of SO2, namely 32SO2, 33SO2, 34SO2 and 36SO2, using the Imperial College UV Fourier transform spectrometer [4] which is ideal for high resolution, broad-band, VIS/UV measurements. The cross sections are being measured at Imperial College at initial resolutions of 1.0 cm-1 which will be increased to resolutions < 0.5 cm-1 for inclusion in photochemical models of the early Earth’s atmosphere in order to more reliably interpret the sulphur isotope ratios found in ancient rock samples [5]. For discussion and interpretation of the photochemical models see the abstract by Lyons et al.(this meeting). References [1] J. Farquhar and B.A. Wing. Earth and Planetary Science Letters, 213:1-13, 2003. [2] J. Farquhar, J. Savarino, S. Airieau, and M.H Thiemens. Journal of Geophysical Research,106:32829-32839, 2001. [3] A. Pen and R. N. Clayton.Geochimica et Cosmochimica Acta

  18. Retention of an atmosphere on early Mars

    USGS Publications Warehouse

    Carr, M.H.

    1999-01-01

    The presence of valley networks and indications of high erosion rates in ancient terrains on Mars suggest that Mars was warm and wet during heavy bombardment. Various processes that could occur on early Mars were integrated into a self-consistent model to determine what circumstances might lead to warm temperatures during and at the end of heavy bombardment. Included were weathering and burial of CO2 as carbonates, impact erosion, sputtering, and recycling of CO2 back into the atmosphere by burial and heating. The models suggest that despite losses from the atmosphere by weathering and impact erosion, Mars could retain a 0.5 to 1 bar atmosphere at the end of heavy bombardment partly because weathering temporarily sequesters CO2 in the ground and protects it from impact erosion while the impact rate is declining and impact erosion is becoming less effective. Because of the low output of the early Sun, surface temperatures can be above freezing only for a very efficient greenhouse, such as that suggested by Forget and Pierrehumbert [1997]. With weak greenhouse models, temperatures are below freezing throughout heavy bombardment, and such a large amount of CO2 is left in the atmosphere at the end of heavy bombardment that it is difficult to eliminate subsequently to arrive at the present surface inventory. With strong greenhouse models, temperatures are well above freezing during heavy bombardment and drop to close to freezing at the end of heavy bombardment, at which time the atmosphere contains 0.5 to 1 bar of CO2. This can be largely eliminated subsequently by sputtering and low-temperature weathering. Such a model is consistent with the change in erosion rate and the declining rate of valley formation at the end of heavy bombardment. Conditions that favor warm temperatures at the end of heavy bombardment are an efficient greenhouse, low weathering rates, low impact erosion rates, and a smaller fraction of heat lost by conduction as opposed to transport of lava to

  19. Leveraging atmospheric CO2 observations to constrain the climate sensitivity of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.

    2015-12-01

    A significant challenge in understanding, and therefore modeling, the response of terrestrial carbon cycling to climate and environmental drivers is that vegetation varies on spatial scales of order a few kilometers whereas Earth system models (ESMs) are run with characteristic length scales of order 100 km. Atmospheric CO2 provides a constraint on carbon fluxes at spatial scales compatible with the resolution of ESMs due to the fact that atmospheric mixing renders a single site representative of fluxes within a large spatial footprint. The variations in atmospheric CO2 at both seasonal and interannual timescales largely reflect terrestrial influence. I discuss the use of atmospheric CO2 observations to benchmark model carbon fluxes over a range of spatial scales. I also discuss how simple models can be used to test functional relationships between the CO2 growth rate and climate variations. In particular, I show how atmospheric CO2 provides constraints on ecosystem sensitivity to climate drivers in the tropics, where tropical forests and semi-arid ecosystems are thought to account for much of the variability in the contemporary carbon sink.

  20. Three-dimensional Atmospheric Circulation and Climate of Terrestrial Exoplanets and Super Earths

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Showman, A. P.

    2012-10-01

    The recent discovery of super Earths and terrestrial exoplanets extending over a broad region of orbital and physical parameter space suggests that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone--including transitions to Snowball-like states and runaway-greenhouse feedbacks--depend on the equator-to-pole temperature differences, pattern of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model (GCM) including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. In this presentation we will review how the planetary rotation rate, planetary mass, heat flux from a parent star and atmospheric mass affect the atmospheric circulation and temperature distribution on such planets. We will elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley cells, and the equator-to-pole temperature differences. Finally, we will discuss the implications for understanding how the atmospheric circulation influences the global-scale climate feedbacks that control the width of the habitable zone.

  1. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape

    PubMed Central

    Lammer, Helmut; Odert, Petra; Kulikov, Yuri N.; Kislyakova, Kristina G.; Khodachenko, Maxim L.; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-01-01

    Abstract The recently discovered low-density “super-Earths” Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 REarth and a mass of 10 MEarth. We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1011–1029. PMID:24251443

  2. Global Impacts of atmospheric nitrogen enrichment on carbon fluxes and storage in terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tian, H.; Yang, J.; Tao, B.; Huntzinger, D. N.; Schwalm, C. R.; Wei, Y.; Michalak, A. M.

    2013-12-01

    Atmospheric nitrogen (N) enrichment has been recognized as one of most important global changes and largely affected terrestrial carbon (C) dynamics over the past century. A wide range of scientific studies have focused on estimation of carbon sink resulting from N deposition at global scale, and confirmed that atmospheric N input has substantially stimulated terrestrial CO2 uptake, particularly in part of North America, western Europe, and East and Southeast Asia. However, ecosystem models have distinct strategies in partitioning and describing the pools/fluxes and C-N interactions, as well as in simulating 'N-saturated status'. Whether a model's representation of C-N coupling can truly reflect the C and N cycling in the real world is a hard nut to crack for most models involving C-N interactions. Little is known on how various C-N coupling processes represented by models have led to divergence in the estimated magnitude of N-induced C sink. Here we combine field observations and model ensembles from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to examine how enhanced N deposition affected global C fluxes and storage during the period 1860-2010, and what explore the major sources of uncertainty responsible for various modeling estimates. Model behavior in simulating key C-N coupling processes has been evaluated through data-model and model-model intercomparison. Future research needs for filling our knowledge gaps and for reducing uncertainties are discussed as well.

  3. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments.

    PubMed

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; González, Verónica; Nava, Herminio; Molina, Axayacatl; Llera, Eva; Fiedler, Hans-Peter; Rico, José M; García-Flórez, Lucía; Acuña, José L; García, Luis A; Blanco, Gloria

    2016-02-01

    Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments.

  4. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    PubMed

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.

  5. Steam Atmosphere — Magma Ocean Chemistry on the Early Earth

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Lodders, K.

    2016-08-01

    We use experimental data from the literature to calculate chemistry of the steam atmosphere — magma ocean system on the early Earth. Our results show partitioning of rocky elements into the steam atmosphere.

  6. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  7. Reconciling atmospheric temperatures in the early Archean

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Rosing, M.; Bird, D. K.; Albarede, F.

    2012-12-01

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic, and consider only one or two factors that drive Archean climate (e.g. a fainter young sun, a low albedo, the extent and effect of cloud cover, or the presence and abundance of a wide array of greenhouse and icehouse gasses). Compounded on the limitations of modeling is the sparse and often ambiguous Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate secular variation in δDSEAWATER which may fluctuate significantly due to hydrogen escape, continental growth and large-scale glaciation events. Further, ancient records of low-δD meteoric fluids signal both cooler temperatures and the emergence of large continents (increasing the effects of continental weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly

  8. Historical space psychology: Early terrestrial explorations as Mars analogues

    NASA Astrophysics Data System (ADS)

    Suedfeld, Peter

    2010-03-01

    The simulation and analogue environments used by psychologists to circumvent the difficulties of conducting research in space lack many of the unique characteristics of future explorations, especially the mission to Mars. This paper suggests that appropriate additional analogues would be the multi-year maritime and terrestrial explorations that mapped the surface of the Earth in previous centuries. These, like Mars, often involved a hazardous trek through unknown territory, flanked by extended, dangerous voyages to and from the exploration sites. Characteristic issues included interpersonal relationships under prolonged stress, stretches of boredom interspersed with intense work demands, the impossibility of rescue, resupply, or other help from home, chronic danger, physical discomfort and lack of privacy, and the crucial role of the leader. Illustrative examples of one important factor, leadership style, are discussed. The examination of such expeditions can help to identify the psychological stressors that are likely to be experienced by Mars explorers, and can also indicate countermeasures to reduce the damaging impact of those stressors.

  9. The thermodynamic effect of atmospheric mass on early Earth's temperature

    NASA Astrophysics Data System (ADS)

    Chemke, R.; Kaspi, Y.; Halevy, I.

    2016-11-01

    Observations suggest that Earth's early atmospheric mass differed from the present day. The effects of a different atmospheric mass on radiative forcing have been investigated in climate models of variable sophistication, but a mechanistic understanding of the thermodynamic component of the effect of atmospheric mass on early climate is missing. Using a 3-D idealized global circulation model (GCM), we systematically examine the thermodynamic effect of atmospheric mass on near-surface temperature. We find that higher atmospheric mass tends to increase the near-surface temperature mostly due to an increase in the heat capacity of the atmosphere, which decreases the net radiative cooling effect in the lower layers of the atmosphere. Additionally, the vertical advection of heat by eddies decreases with increasing atmospheric mass, resulting in further near-surface warming. As both net radiative cooling and vertical eddy heat fluxes are extratropical phenomena, higher atmospheric mass tends to flatten the meridional temperature gradient.

  10. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars

    PubMed Central

    Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.

    2010-01-01

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  11. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.

  12. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  13. Day-night Temperature Gradients and Atmospheric Collapse on Synchronously Rotating Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Koll, D. D. B.; Abbot, D. S.

    2015-12-01

    Terrestrial exoplanets orbiting small host stars are abundant and are also the most promising observational targets for finding life outside our Solar system. Due to their close-in orbits, these planets experience significant tidal interactions with their host stars and will tend to evolve towards spin-orbit resonances or synchronous rotation (=tidally locked). Synchronous rotation has a number of interesting implications for habitability, including the potential for atmospheric collapse on the night side if the surface temperature drops below the condensation point of the gases in the atmosphere. To understand the habitability of synchronously rotating planets, it is therefore important to work out a theory of their temperature and wind structure. Many of these planets will be rotating slowly enough that the well-known weak-temperature-gradient theory holds in the free atmosphere, but even for these planets this theory does not constrain the maximum surface temperature gradient, the planets' thermal phase curve signature, or the threshold for atmospheric collapse. Here we study tidally locked planets using theory and a large array of simulations in a global climate model (GCM) with grey radiative transfer and a full boundary layer scheme. We derive a theory for surface temperatures and atmospheric circulation on synchronously rotating planets that allows us to predict the night-side surface temperature and determine whether atmospheric collapse will occur. We find that atmospheric collapse is sensitive to both the ratio of the Rossby radius to the planetary radius and the ratio of the surface drag timescale to the radiative cooling timescale.

  14. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    NASA Astrophysics Data System (ADS)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R.; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R.; Wofsy, Steven C.

    2016-03-01

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  15. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    DOE PAGES

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; ...

    2016-03-09

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change2, 3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4, 5, 6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain.more » Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Lastly, our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.« less

  16. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    SciTech Connect

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Pan, Shufen; Saunois, Marielle; Schwalm, Christopher R.; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Poulter, Benjamin; Prinn, Ronald; Wofsy, Steven C.

    2016-03-09

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change2, 3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4, 5, 6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Lastly, our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  17. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    PubMed

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  18. Stability of CO2 Atmospheres on Terrestrial Exoplanets in the Proximity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Gao, P.; Hu, R.; Yung, Y. L.

    2013-12-01

    M dwarfs are promising targets for the search and characterization of terrestrial exoplanets that might be habitable, as the habitable planets around M dwarfs are in much more close-in orbits compared to their counterparts around Sun-like stars. CO2, one of the most important greenhouse gases on our planet, is conventionally adopted as a major greenhouse gas in studying the habitability of terrestrial exoplanets around M dwarfs. However, the stability of CO2 in terrestrial atmospheres has been called into question due to the high FUV/NUV flux ratio of some M dwarfs in comparison to that of Sun-like stars. While CO2 is photolyzed into CO and O by photons in the FUV, with O2 forming from the O atoms through third body catalytic reactions, NUV photons are able to photolyze water, producing HOx radicals which go on to catalytically recombine the relatively stable CO and O2 molecules back into CO2. The comparatively low NUV flux of some M dwarfs leads to a significantly reduced efficiency of catalytic recombination of CO and O2 and the possible net destruction of CO2 and the build up of CO and O2. In this work we test the above hypothesis using a 1D photochemical kinetics model for a Mars-sized planet with an initial atmospheric composition similar to that of Mars and the incoming stellar flux of a weakly active M dwarf, assuming the exoplanet is 0.1 AU away from its parent star, in proximity of its habitable zone. We show that a CO2-dominated atmosphere can be converted into a CO2/CO/O2-dominated atmosphere in 10^3-10^4 years by CO2 photolysis. This process is kept from running away by a combination of O2 photolysis, three body reactions of O, O2, and another species to form O3, and reactions of CO with OH to form CO2 and H. However, such a large amount of O2 and CO, combined with some amount of H and H2, may be susceptible to spontaneous combustion or detonation, and thus could prove to be an especially unstable state in itself. Thus there could arise a situation

  19. Trophic network models explain instability of Early Triassic terrestrial communities.

    PubMed

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-09-07

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction.

  20. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  1. Sulfur Chemistry in the Early and Present Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Summers, M. E.

    2011-01-01

    Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.

  2. The Heat-Pipe Hypothesis for Early Crustal Development of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.; Simon, J. I.

    2014-12-01

    Crusts of the terrestrial planets other than Earth are dominated by mafic / ultramafic volcanics, with some contractional tectonics and minor extension. This description may also fit the early Earth. Therefore, a single process may have controlled early crustal development. Here we explore the hypothesis that heat-pipe cooling mode dominates early phases of terrestrial planet evolution. Volcanism is the hallmark of heat-pipe cooling: hot magma moves through the lithosphere in narrow channels, then is deposited and cools at the surface. A heat-pipe planet develops a thick, cold, downward-advecting lithosphere dominated by mafic/ultra-mafic flows. Contractional deformation occurs throughout the lithosphere as the surface is buried and forced toward smaller radii. Geologies of the Solar system's terrestrial planets are consistent with early heat-pipe cooling. Mercury's surface evolution is dominated by low-viscosity volcanism until ~4.1-4.0 Ga, with little activity other than global contraction since. Similar, younger features at Venus are commonly interpreted in terms of catastrophic resurfacing events with ~0.5 billion-year periodicity, but early support of high topography suggests a transition from heat-pipe to rigid-lid tectonics. Thick heat-pipe lithosphere may preserve the crustal dichotomy between Mars' northern and southern hemispheres, and explain the range in trace element abundances and isotopic compositions of Martian meteorites. At the Moon, global serial volcanism can explain refinement of ferroan anorthite rich rocks and coeval production of the "Mg-suite" rocks. The Moon's shape is out of hydrostatic equilibrium; it may represent a fossil preserved by thick early lithosphere. Active development of Jupiter's moon Io, which is warmed by tidal heating, is widely interpreted in terms of heat-pipe cooling. Given its potential ubiquity in the Solar system, heat-pipe cooling may be a universal process experienced by all terrestrial bodies of sufficient size.

  3. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  4. CO 2Greenhouse in the Early Martian Atmosphere: SO 2Inhibits Condensation

    NASA Astrophysics Data System (ADS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-11-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J. B. Pollack, J. F. Kasting, S. M. Richardson, and K. Poliakoff 1987.Icarus71,203-224). However, J. F. Kasting (1991.Icarus94,1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2by itself is inadequate to warm the surface. SO2absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2in a 2 bar CO2atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1D model remains above the condensation temperature of CO2. In addition, this amount of SO2in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  5. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  6. On the persistence of memory: soft clocks and terrestrial biosphere-atmosphere interactions.

    PubMed

    Resco de Dios, Víctor

    2013-11-01

    The circadian clock is considered a central "orchestrator" of gene expression and metabolism. Concomitantly, the circadian clock is considered of negligible influence in the field and beyond leaf levels, where direct physiological responses to environmental cues are considered the main drivers of diel fluctuations. I propose to bridge the gap across scales by examining current evidence on whether circadian rhythmicity in gas exchange is relevant for field settings and at the ecosystem scale. Nocturnal stomatal conductance and water fluxes appear to be influenced by a "hard" clock that may override the direct physiological responses to the environment. Tests on potential clock controls over photosynthetic carbon assimilation and daytime transpiration are scant yet, if present, could have a large impact on our current understanding and modeling of the exchanges of carbon dioxide and water between terrestrial ecosystems and the atmosphere.

  7. Solar wind and terrestrial atmosphere effects on lunar sample surface composition

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Jones, B. R.; Buergel, W. G.; Stetter, J. R.

    1973-01-01

    Samples returned from the Apollo missions have been shown to have undergone a partial surface oxidation with the degree of oxidation being dependent on the intensity and duration of exposure to a terrestrial or other oxidizing atmosphere. Exposure to atomic hydrogen at room temperature, or molecular hydrogen above 100 C results in a surface reduction. The adsorption of water vapor on a test sample was found to be only slightly dependent on the state of surface oxidation, a situation consistent with the formation of hydroxyl groups on the surface when a sample is exposed to hydrogen. That hydroxyl groups are indeed formed is substantiated by the release of water vapor (and by release of heavy water following exposure to deuterium), indicating that water vapor can be synthesized from solar wind hydrogen and sample oxygen. Observations of trace amounts of methane indicate that the reduction process is by no means restricted to the formation of water vapor.

  8. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    NASA Astrophysics Data System (ADS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  9. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V; Lukenyuk, A.; Shymkiv, A.

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  10. Investigating the terrestrial-atmospheric water balance for the Tana River basin, East Africa

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2016-04-01

    The fully coupled atmospheric-hydrological WRF-Hydro modeling system is applied to the Tana River basin (TRB) in East Africa for the period 2011-2014 in order to analyze the terrestrial-atmospheric water balance components and their feedback mechanisms. The outputs from the fully coupled modeling system are compared to those of the WRF stand-alone model. The study area encompasses the Mathioya-Sagana subcatchment (3279 km²) in the upper TRB. Our model set up consists of two domains at 25 km and 5 km horizontal resolution covering East Africa and the study area, respectively. The WRF-Hydro inner domain is enhanced with hydrological routing at a 500 m horizontal grid resolution. The simulated monthly precipitation over the subcatchment compared with the Tropical Rainfall Measuring Mission (TRMM) satellite data gives an overall correlation coefficient of 0.8/0.7 for fully coupled/stand-alone model and a mean absolute error (MAE) of 1.5 mm/day for both models for the entire simulation period. Overall the models yield more annual total precipitation compared to TRMM. The two models are drier during the March, April, May (MAM) season and wetter during the October, November, December (OND) season. Compared to observation stations, both modeling systems provide a correlation coefficient of 0.6 for precipitation. The simulated and observed discharges at the Tana Rukanga gauge, located in the subcatchment, exhibit a correlation coefficient of 0.5 at daily resolution. The WRF-Hydro also overestimates the cumulated discharge (2011-2014) by about 50 %. The analysis of the atmospheric water balance in both WRF and WRF-Hydro simulation reveals a positive moisture divergence during the MAM and OND rainy seasons. Precipitation recycling and efficiency measures derived from the atmospheric water budget are also investigated.

  11. Does atmospheric scattering increase or decrease terrestrial photosynthesis? Strong constraints from sunlight observations

    NASA Astrophysics Data System (ADS)

    Stine, A.; Huybers, P. J.; Swann, A. L.

    2013-12-01

    Diffuse light tends to be more efficient than direct shortwave radiation in driving photosynthesis in closed canopy environments because it will penetrate more evenly into the forest canopy illuminating a greater effective surface area of leaves. Increased atmospheric column scattering will tend to both decrease the total light reaching the surface, and to convert direct light to diffuse light. These two mechanisms have opposing effects on the sensitivity of terrestrial photosynthesis to changes in atmospheric scattering. A debate exists in the literature as to which effect generally dominates on planetary scales, particularly in the context of interpretation of the anomalously large northern hemisphere summer draw-down in atmospheric carbon dioxide in 1991 -- the year of the Mount Pinatubo eruption. Here we take a fresh approach to this problem and directly examine a broad spatial network of surface observations of direct and diffuse solar radiation. We estimate the sensitivity of direct, diffuse and photosynthetically effective radiation (PER), which we define as direct + α*diffuse, to changes in scattering on a site-by-site basis from over 100 spatially distributed time series of radiation. We find that PER generally decreases with increasing intensity of diffusive light, even when assuming the upper range of published α values, from which we infer that increased scattering generally decreases PER. Positive sensitivity of PER to increases in scattering, again using high values for α, are primarily confined to relatively cloud-free arid regions -- regions which do not support a closed canopy and almost certainly actually have a lower α. This supports conclusions that other mechanisms than Pinatubo's direct influence on diffuse fractions likely accounted for the 1991 CO2 drawdown anomaly. We examine the implication of this result for modeling the response of the carbon cycle to atmospheric scattering in the context of a global carbon cycle model.

  12. Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses?

    PubMed

    Aboal, J R; Fernández, J A; Boquete, T; Carballeira, A

    2010-11-15

    Here we present a critical review of diverse research studies involving estimation of atmospheric deposition of heavy metals from the concentrations of the contaminants in terrestrial moss. The findings can be summarized as follows: i) significant correlations between the concentrations of contaminants in moss and bulk deposition were observed in only 40.1% of the cases in which the relationship was studied and in only 14.1% of the cases, the coefficient of correlation was >0.7; ii) some method-related problems were identified (i.e. small sample sizes, elimination of some data from the regression analyses, large distances between the moss sampling sites and the bulk precipitation collectors, differences in times of exposure of the moss samples and collection times for the bulk precipitation), so that the results of the studies may not be completely valid, and iii) evidence was found in the relevant literature that moss does not actually integrate the atmospheric deposition received. We also discuss the reason why, in accordance with the published data, bulk deposition cannot be correctly estimated by determination of the final concentrations of contaminants in the organism, such as the existence of different sources of contamination, the physicochemical characteristics of the sources of deposition, physicochemical processes to which the organism is subjected and the biological processes that take place in the moss. Taking into account the above findings, it was concluded that, except for certain elements and specific cases (i.e. Pb and Cd), atmospheric deposition of elements cannot be accurately estimated from the concentrations of metals and metalloids in moss tissues. However, the analysis of moss does provide information about the presence of contaminants in the atmosphere, their spatial and temporal patterns of distribution and how they are taken up by live organisms. Use of mosses is therefore recommended as a complementary (rather than an alternative

  13. Middle atmosphere electrodynamics: Report of the workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    NASA Technical Reports Server (NTRS)

    Maynard, N. C. (Editor)

    1979-01-01

    Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.

  14. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  15. Remote sensing of aerosol in the terrestrial atmosphere from space: "AEROSOL-UA" mission

    NASA Astrophysics Data System (ADS)

    Yatskiv, Yaroslav; Milinevsky, Gennadi; Degtyarev, Alexander

    2016-07-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project AEROSOL-UA that will obtain the data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The mission is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  16. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  17. The chemical composition and climatology of the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.

    1983-01-01

    The earth's climate as it relates to the evolution of life is discussed.. Seven fundamental characteristics of the early evolutionary environment are examined, including a carbon dioxide and water vapor atmosphere, atmospheric mass between 500 and 1000 mb, a global hydrosphere, lowered solar luminosity, hospitable average global temperatures, a convectively active atmosphere, and trace gases. The influence of the early earth's extensive hydrosphere on the origin of life is considered. The warming of that hydrosphere due to radiative fluxes and the greenhouse effect is examined, and the nature of the feedback between clouds and climate is addressed.

  18. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-12-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net carbon sources and sinks from 2000 to 2007 that are optimally consistent with observed CO2 concentrations. The a priori terrestrial Net Primary Productivity (NPP) and heterotrophic respiration (Rh) from SiBCASA assume steady state conditions for initial biomass, implying mature ecosystems with no disturbances where growth balances decay and the long-term, net carbon flux is zero. In reality, harvest, fires, and other disturbances reduce available biomass for decay, thus reducing Rh and resulting in a long-term carbon sink. The disequilibrium state is the ratio of Rh estimated from CarbonTracker to the steady state Rh from SiBCASA. Wood is the largest carbon pool in forest ecosystems and the dominant source of dead organic matter to the soil and litter pools. With much faster turnover times, the soil and litter pools reach equilibrium relative to the wood pool long before the wood pool itself reaches equilibrium. We take advantage of this quasi-steady state to estimate the size of the wood pool that will produce an Rh that corresponds to the net carbon sink from CarbonTracker. We then compare this estimated wood biomass to regional maps of observed above ground wood biomass from the US Forest Inventory Analysis.

  19. Atmospheric constraints for the CO2 partial pressure on terrestrial planets near the outer edge of the habitable zone

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Grenfell, J. L.; Hedelt, P.; Rauer, H.; Selsis, F.; Stracke, B.

    2013-01-01

    Context. In recent years, several potentially habitable, probably terrestrial exoplanets and exoplanet candidates have been discovered. The amount of CO2 in their atmosphere is of great importance for surface conditions and habitability. In the absence of detailed information on the geochemistry of the planet, this amount could be considered as a free parameter. Aims: Up to now, CO2 partial pressures for terrestrial planets have been obtained assuming an available volatile reservoir and outgassing scenarios. This study aims at calculating the allowed maximum CO2 pressure at the surface of terrestrial exoplanets orbiting near the outer boundary of the habitable zone by coupling the radiative effects of the CO2 and its condensation at the surface. These constraints might limit the permitted amount of atmospheric CO2, independent of the planetary reservoir. Methods: A 1D radiative-convective cloud-free atmospheric model was used to calculate surface conditions for hypothetical terrestrial exoplanets. CO2 partial pressures are fixed according to surface temperature and vapor pressure curve. Considered scenarios cover a wide range of parameters, such as gravity, central star type and orbital distance, atmospheric N2 content and surface albedo. Results: Results show that for planets in the habitable zone around K-, G-, and F-type stars the allowed CO2 pressure is limited by the vapor pressure curve and not by the planetary reservoir. The maximum CO2 pressure lies below the CO2 vapor pressure at the critical point of pcrit = 73.8 bar. For M-type stars, due to the stellar spectrum being shifted to the near-IR, CO2 pressures above pcrit are possible for almost all scenarios considered across the habitable zone. This implies that determining CO2 partial pressures for terrestrial planets by using only geological models is probably too simplified and might over-estimate atmospheric CO2 towards the outer edge of the habitable zone.

  20. Using Dimers to Measure Biosignatures and Atmospheric Pressure for Terrestrial Exoplanets

    PubMed Central

    Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-01-01

    Abstract We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging–reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required. Key Words: Remote sensing—Extrasolar terrestrial planets

  1. Understanding the early Mesozoic world: New geochronological data from terrestrial and marine strata

    NASA Astrophysics Data System (ADS)

    Mundil, Roland; Irmis, Randall B.; Ickert, Ryan B.

    2013-04-01

    The first ~50 Ma of the Mesozoic (the Triassic Period) are marked by two major mass extinctions at the end-Permian and end-Triassic, extensive flood volcanic events (the Siberian Traps and the Central Atlantic Magmatic Province), perturbations of the ocean chemistry, paleoenvironmental changes in a greenhouse world and the origin of modern terrestrial ecosystems. Marine records of events leading to the end-Permian extinction as well as subsequent recovery during the Early and Middle Triassic are now well understood in terms of their relative and absolute timing, mainly due to significant advances in both the quantity and quality of geochronological data. This includes a detailed understanding of the Middle and end-Permian extinction events and their potential causes, their aftermath, and also the timing of large scale perturbations of the global carbon cycle in the Early Triassic. For the remaining ~30 Ma of the Triassic, however, there was until recently virtually no chronostratigraphic framework, and hence there is a major lag in our understanding of major events such as the origin and early diversification of dinosaurs, major reef building episodes in marine ecosystems, paleoenvironmental changes (e.g., the Carnian Pluvial Event), and a large extraterrestrial bolide impact (the Manicouagan impact). In absence of high-resolution radioisotopic ages, assumptions about causal inference and the role of these events, remain poorly constrained. We have therefore started to build a chronostratigraphic framework by applying U-Pb CA-TIMS analyses to zircon from primary and redeposited volcanic strata within both marine and terrestrial sequences of Late Triassic age. In particular, the potential of geochronological techniques applied to redeposited volcanic layers has long been ignored because the time lag between zircon crystallization and deposition is unknown; however, our initial results calibrating terrestrial sequences in North and South America are very promising

  2. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    SciTech Connect

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  3. The origins and early histories of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Owen, T.

    1979-01-01

    Ancient dry river beds detected on Mars by the Viking spacecraft suggest that the early Martian atmosphere may have been much more massive than at present. Degassing of a late-accreting, volatile-rich veneer may account for the primitive atmosphere of both Mars and earth. The primitive earth atmosphere could have produced a greenhouse effect sufficient to maintain temperatures above 273 K without NH3 and with low solar luminosity. The Venutian veneer, according to preliminary Pioneer results, was probably richer in noble gases relative to carbon and nitrogen than were the Martian and earth veneers. The highly evolved atmosphere of Titan, the large satellite of Saturn, is also discussed.

  4. The possibility of catastrophic magma ocean degassing and implications for the formation of early planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Suckale, J.; Elkins-Tanton, L. T.

    2011-10-01

    The heat provided by accretion and differentiation is sufficient to melt the silicate mantle of a terrestrial planet or planetary embryo wholly or partially creating magma oceans that may span a wide range of depths. The solidification processes in these magma oceans create an important link between the properties of the solid mantle and the atmosphere: Depending on the ratio of volatiles retained in the mantle to the volatiles degassed to build the atmosphere, magma oceans with similar starting compositions may lead to planets with dry or wet mantles and substantial or minimal atmospheres. The build-up of an early atmosphere also sensitively affects the heat loss to space and thereby the solidification rate of the magma ocean The goal of this study is to constrain which factors determine magma ocean degassing and thereby the growth of an early planetary atmosphere and volatile retention in the mantle. Our model is based on a detailed analysis of bubble nucleation, growth and breakup during magma ocean solidification. We find that degassing does not necessarily occur continuously as commonly assumed. Instead, we suggest three end-member types of degassing histories ranging from continuous to catastrophic and negligible degassing and discuss how these depend on planetary and magma ocean properties.

  5. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.

    1999-01-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17

  6. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  7. Mobile sampler for use in acquiring samples of terrestrial atmospheric gases

    NASA Technical Reports Server (NTRS)

    Tucker, C. E.; Holway, H. P. (Inventor)

    1981-01-01

    Samples of terrestrial atmospheric gasses from a free body of such gasses using a device characterized by a plurality of tubular bodies adapted to be mounted in side by side relation on a motorized highway vehicle in mutual parallelism with the axis of the normal path of travel for the vehicles. Each of the bodies is of a cylindrical configuration and has an axial opening at each of its opposite ends through which a linear flow path is defined. A pair of pivotally supported, spring-biased sealing caps is mounted adjacent to the ends of the body and continuously urged into a hermetic sealing relationship. A restraint for securing the caps against spring-urged pivotal displacement, includes a separable, normally tensioned line interconnecting the caps and an operable release mechanism for simultaneously releasing the caps for spring-urged displacement. A hot wire cutter is included for separating the line, whereby samples of air are trapped in the body as the caps are spring-driven to assume an hermetically sealed relation with the openings defined in each of the opposite ends of the body.

  8. Possible terrestrial effects of a nearby supernova explosion—Atmosphere's response

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki K. M.

    2006-08-01

    We estimated nearby supernova (SN) rate and its associated increase in the intensity of galactic cosmic ray (GCR) by constructing a simple diffusion and density model, and compared with the simulated concentrations of total condensation nuclei (CN) for various ionization rates. GCRs in the energy range of 10 100 GeV control the ionization rate at lower altitudes [Tanaka, H.K.M., 2005. Journal of Atmospheric and Solar-Terrestrial Physics 67, 1544]. A nearby SN explosion occurring at distance of 12⩽d⩽15 pc increases the GCR in this energy range by a factor of 4 8. On the other hand, concentrations of total CN at lower altitudes reach maximum at 8 16 ion-pairs/cm3 [Yu, F., 2002. Journal of Geophysical Research 107, A78], which is higher than the present ionization rate (˜2 ion pairs/cm3) by a factor of 4 8. Thus, nearby SN occurring at 12⩽d⩽15 pc maximizes the CN formation at lower altitudes. We find that there is a coincidence in time intervals between SNe occurring in this region and ice ages.

  9. Increased delivery of condensation nuclei during the Late Heavy Bombardment to the terrestrial and martian atmospheres

    NASA Astrophysics Data System (ADS)

    Losiak, Anna

    2014-05-01

    During the period of the Late Heavy Bombardment (LHB), between 4.1 and 3.8 Ga, the impact rate within the entire Solar System was up to a few thousand times higher than the current value (Ryder 2002, Bottke et al. 2012, Fassett and Minton 2013). Multiple basin-forming events on inner planets that occurred during this time had a strong but short-lasting (up to few thousands of years) effect on atmospheres of Earth and Mars (Sleep et al. 1989, Segura et al. 2002, 2012). However, the role of the continuous flux of smaller impactors has not been assessed so far. We calculated the amount of meteoric material in the 10^-3 kg to 106 kg size range delivered to Earth and Mars during the LHB based on the impact flux at the top of the Earth's atmosphere based on results from Bland and Artemieva (2006). Those values were recalculated for Mars based on Ivanov and Hartmann (2009) and then recalculated to the LHB peak based on estimates from Ryder (2002), Bottke et al. (2012), Fassett and Minton (2013). During the LHB, the amount of meteoritic material within this size range delivered to Earth was up to ~1.7*10^10 kg/year and 1.4*10^10 kg/year for Mars. The impactors that ablate and are disrupted during atmospheric entry can serve as cloud condensation nuclei (Rosen 1968, Hunten et al. 1980, Ogurtsov and Raspopov 2011). The amount of material delivered during LHB to the upper stratosphere and lower mezosphere (Hunten et al. 1980, Bland and Artemieva 2006) is comparable to the current terrestrial annual emission of mineral cloud condensation nuclei of 0.5-8*10^12 kg/year (Tegen 2003). On Mars, the availability of condensation nuclei is one of the main factors guiding water-ice cloud formation (Montmessin et al. 2004), which is in turn one of the main climatic factors influencing the hydrological cycle (Michaels et al. 2006) and radiative balance of the planet (Haberle et al. 1999, Wordsworth et al. 2013, Urata and Toon 2013). Increased delivery of condensation nuclei during the

  10. Testing a Simple Recipe for Estimating Thermal Hydrodynamic Escape Rates in Primitive Terrestrial Atmospheres

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.; Yung, Y. L.; Chen, P.

    2014-12-01

    During the first billion years of the Sun's history, the emission of ultraviolet and X-ray radiation varied from ~100 to ~6 times greater than its present level. The absorption of this intense radiation in the upper atmospheres of the terrestrial planets is believed to have driven rapid hydrodynamic escape, either in the form of energy-limited escape or transonic blow-off. The calculation of escape rates under these circumstances, and in particular the nature of the correct condition to apply at the upper boundary, depends on whether or not the flow remains subsonic below the exobase. If the flow remains subsonic, the kinetic Jeans equations may be applied at the exobase; otherwise, the radius of the sonic point must be located and then appropriate boundary conditions applied at this radius. This seems to suggest that the full hydrodynamic escape problem needs to be solved iteratively to determine where the sonic radius falls and the type of boundary conditions that should be applied. Such an arduous undertaking is generally impractical for standard application in chemical evolution models or related studies. Fortunately, a much easier but still accurate approach to determining whether the flow remains subsonic below the exobase for a given amount of energy deposition has been provided by Johnson et al. (2013, Ap. J. Lett. 768:L4), who base their results on rigorous Discrete Simulation Monte Carlo models. Their model provides the ratio of the escape rate to the energy-limited value as a function of the total XUV heating. The XUV heating, however, is itself coupled to the escape rate through the radial structure of the upper atmosphere, which can become greatly distended for large heating rates. Here we present a simple recipe for estimating the hydrodynamic escape rate that includes the coupling between the escape rate, the radial structure, and the XUV heating while avoiding the use of demanding numerical calculations. The approach involves an iterative semi

  11. Simulation of atmospheric and terrestrial background signatures for detection and tracking scenarios

    NASA Astrophysics Data System (ADS)

    Schweitzer, Caroline; Stein, Karin

    2015-10-01

    In the fields of early warning, one is depending on reliable image exploitation: Only if the applied detection and tracking algorithms work efficiently, the threat approach alert can be given fast enough to ensure an automatic initiation of the countermeasure. In order to evaluate the performance of those algorithms for a certain electro-optical (EO) sensor system, test sequences need to be created as realistic and comprehensive as possible. Since both, background and target signature, depend on the environmental conditions, a detailed knowledge of the meteorology and climatology is necessary. Trials for measuring these environmental characteristics serve as a solid basis, but might only constitute the conditions during a rather short period of time. To represent the entire variation of meteorology and climatology that the future system will be exposed to, the application of comprehensive atmospheric modelling tools is essential. This paper gives an introduction of the atmospheric modelling tools that are currently used at Fraunhofer IOSB to simulate spectral background signatures in the infrared (IR) range. It is also demonstrated, how those signatures are affected by changing atmospheric and climatic conditions. In conclusion - and with a special focus on the modelling of different cloud types - sources of error and limits are discussed.

  12. The rise of oxygen in Earth's early ocean and atmosphere.

    PubMed

    Lyons, Timothy W; Reinhard, Christopher T; Planavsky, Noah J

    2014-02-20

    The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.

  13. A terrestrial vegetation turnover in the middle of the Early Triassic

    NASA Astrophysics Data System (ADS)

    Saito, Ryosuke; Kaiho, Kunio; Oba, Masahiro; Takahashi, Satoshi; Chen, Zhong-Qiang; Tong, Jinnan

    2013-06-01

    Land-plant productivity was greatly reduced after the end-Permian mass extinction, causing a pronounced "coal gap" worldwide during the Early Triassic. Newly obtained organic geochemistry data from the Chaohu area, south China, indicated an abrupt and profound terrestrial vegetation change over the middle part of the Early Triassic Smithian-Spathian (S-S) interval. Herbaceous lycopsids and/or bryophytes dominated terrestrial vegetation from Griesbachian to Smithian times. The terrestrial ecosystem underwent an abrupt change, and woody conifers became dominant over the S-S interval. Several important biomarkers, namely retene, simonellite, and dehydroabietane (with multiple sources: conifer, lycopsid, and/or herbaceous bryophyte), were relatively abundant during Griesbachian, Dienerian, and Smithian times. The relatively low C/N ratio values during the Griesbachian-Smithian interval indicate that these biomarkers were likely sourced from herbaceous lycopsids and/or bryophytes. The extremely abundant conifer-sourced pimanthrene, combined with relatively high C/N ratio values, suggested the recovery of woody conifers after the S-S boundary. The new data revealed that the switch from herbaceous vegetation to woody coniferous vegetation marked a terrestrial plant recovery, which occurred globally within 3 million years after the end-Permian crisis rather than at a later date estimated in previous studies. In Chaohu, the S-S terrestrial event was marked by a reappearance of woody vegetation, while the S-S marine event was marked by an increase in ichnodiversity, trace complexity, burrow size, infaunal tiering level, and bioturbation level, and a possible intense upwelling event indicated by the extended tricyclic terpane ratios (ETR). Coeval vegetation changes with comparable patterns have also been documented in Europe and Pakistan based on palynologic studies. The S-S boundaries in Asia and Europe are associated with a positive δ13C excursion, the rebound of woody

  14. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition

    NASA Astrophysics Data System (ADS)

    Sabo, Robert D.; Scanga, Sara E.; Lawrence, Gregory B.; Nelson, David M.; Eshleman, Keith N.; Zabala, Gabriel A.; Alinea, Alexandria A.; Schirmer, Charles D.

    2016-12-01

    Recent reports suggest that decreases in atmospheric nitrogen (N) deposition throughout Europe and North America may have resulted in declining nitrate export in surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was affected. During a period of decreased atmospheric N deposition, we assessed changes in forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention of atmospherically-deposited N (between 2000 and 2011) in the North and South Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, USA. We hypothesized that tree-ring δ15N values would decline following decreases in atmospheric N deposition (after approximately 1995), and that trends in stream nitrate export and retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. Three of the six sampled tree species and the majority of individual trees showed declining linear trends in δ15N for the period 1980-2010; only two individual trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed scale (R = -0.35 and p = 0.001 in the North and R = -0.37 and p <0.001 in the South). The decreasing δ15N trend in the North was associated with declining stream nitrate concentrations (-0.009 mg N L-1 yr-1, p = 0.02), but no change in the retention of atmospherically deposited N was observed. In contrast, nitrate yields in the South did not exhibit a trend, and the watershed became less retentive of atmospherically deposited N (-7.3% yr-1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in both watersheds prior to decreases in atmospheric N deposition, suggesting that decreased atmospheric N deposition was not the sole driver of tree-ring δ15N values at these

  15. Comparative analysis of the atmospheres of early earth and early Mars

    NASA Technical Reports Server (NTRS)

    Durham, R.; Schmunk, R. B.; Chamberlain, J. W.

    1989-01-01

    Assuming that the primitive atmospheres of Mars and earth were similar and that present differences in atmospheres of earth and Mars are a result of their different distances from the sun and their different masses, the atmospheres of the early earth and early Mars were analyzed. A one-dimensional radiative-convective model derived from that of Kasting et al. (1984) and Kasting and Ackerman (1986) was then used to determine if a 1.3-bar CO2 partial pressure on Mars (which is equivalent to about 9 bars on earth) is consistent with the climatic conditions thought to have existed on earth four billion years ago. Results indicate that a dense CO2 atmosphere on early Mars at perihelion is consistent with conditions expected to have existed four billion years ago on earth. Earth would then have had a stable atmosphere with temperatures warm enough to support liquid water on the surface.

  16. An approach to balancing the positive and negative effects of elevated nitrogen oxides in the lower atmosphere on terrestrial plants.

    PubMed

    Semenov, S

    2001-09-24

    Elevated NOx in the lower atmosphere has three major effects on terrestrial plants. On the one hand, it causes an increase in surface ozone concentration. This reduces plant growth rate. On the other hand, elevated NOx causes an increase in the flux of oxidized N compounds from the atmosphere to the land surface. This plays a dual role in the life of terrestrial plants. Additional N in soils stimulates plant growth (N-fertilization effect), whereas soil acidification may negatively affect plants. A simple empirical model for calculating the overall effect of anthropogenic increase in NOx level has been developed. The model is based on experimental "cause-response" data presented in world scientific literature. Calculations showed that at the large scale, among the above-mentioned changes, elevated O3 plays a major and negative role in plant life. Its negative effect on plants is partly compensated by N fertilization in unmanaged ecosystems. Such compensation appears to be negligible in agricultural lands. There are vast territories in Euro--Asia--for instance, a territory of Russia--in which acid atmospheric deposition has no significant effect on terrestrial plants.

  17. Land Use Effects on Atmospheric C-13 Imply a Sizable Terrestrial CO2 Sink in Tropical Latitudes

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Tans, Pieter P.; White, James W. C.

    2000-01-01

    Records of atmospheric CO2 and 13-CO2, can be used to distinguish terrestrial vs. oceanic exchanges of CO2 with the atmosphere. However, this approach has proven difficult in the tropics, partly due to extensive land conversion from C-3 to C-4 vegetation. We estimated the effects of such conversion on biosphere-atmosphere C-13 exchange for 1991 through 1999, and then explored how this 'land-use disequilibrium' altered the partitioning of net atmospheric CO2 exchanges between ocean and land using NOAA-CMDL data and a 2D, zonally averaged atmospheric transport model. Our results show sizable CO2 uptake in C-3-dominated tropical regions in seven of the nine years; 1997 and 1998, which included a strong ENSO event, are near neutral. Since these fluxes include any deforestation source, our findings imply either that such sources are smaller than previously estimated, and/or the existence of a large terrestrial CO2 sink in equatorial latitudes.

  18. The early Earth atmosphere and early life catalysts.

    PubMed

    Ramírez Jiménez, Sandra Ignacia

    2014-01-01

    Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.

  19. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis.

    PubMed

    Janis, Christine M; Devlin, Kelly; Warren, Daniel E; Witzmann, Florian

    2012-08-07

    The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange.

  20. Early tetrapod evolution and the progressive integration of Permo-Carboniferous terrestrial ecosystems

    SciTech Connect

    Beerbower, J.R. . Dept. of Geological Science); Olson, E.C. . Dept. of Biology); Hotton, N. III . Dept. of Paleobiology)

    1992-01-01

    Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fiber tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.

  1. Comment on "A hydrogen-rich early Earth atmosphere".

    PubMed

    Catling, David C

    2006-01-06

    Tian et al. (Reports, 13 May 2005, p. 1014) proposed a hydrogen-rich early atmosphere with slow hydrogen escape from a cold thermosphere. However, their model neglects the ultraviolet absorption of all gases other than H2. The model also neglects Earth's magnetic field, which affects the temperature and density of ions and promotes nonthermal escape of neutral hydrogen.

  2. The Role of Hydrogen in Determining the Stability of CO2 Atmospheres of Terrestrial Exoplanets Around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Hu, Renyu; Robinson, Tyler D.; Yung, Yuk L.

    2014-11-01

    The recent discovery of terrestrial worlds in the Habitable Zones of M Dwarfs necessitates a more intensive investigation of the properties of these planets. One major feature of certain M Dwarfs is their high fluxes of EUV radiation, which photolyzes CO2, an important greenhouse gas that should be abundant on rocky worlds. This photolytic destruction of CO2 can be countered by HOx chemistry: photolysis of HOx species by NUV radiation generates OH, which reacts with CO to regenerate CO2. These processes are balanced around Sun-like stars such that Venus and Mars can maintain CO2-dominated atmospheres. However, M Dwarfs tend to have much lower NUV/EUV flux ratios, which could prevent the formation of significant CO2 atmospheres on any planets they may host. In this study, we evaluate the properties of CO2 atmospheres surrounding an Earth-massed, Earth-sized exoplanet in orbit of an M Dwarf using a 1D photochemical kinetics model. We consider an atmosphere similar in composition to that of Mars, but scaled to have a surface pressure of 1 bar. We choose to focus on Mars-like atmospheres rather than Earth-like ones, as Earth's atmosphere has been altered through biological sources and sinks and the presence of a large liquid water ocean, which are not necessarily present on terrestrial exoplanets. Our preliminary results show that the hydrogen content of the atmosphere is crucial in determining the ratio of CO2 to CO and O2. In particular, for a H2 mixing ratio identical to that of Mars 20-30 ppm), a steady state atmosphere is reached after 10 Gyr consisting of ~85% CO2, ~10% CO, and ~5% O2, with an ozone mixing ratio of ~0.01 ppm. In the extreme case where all hydrogen is lost to space, an atmosphere consisting of ~64% CO2, ~24% CO, and 12% O2 results, while ozone levels reach ~10 ppm. Finally, for H2 mixing ratios similar to that of Earth 0.5 ppm) and no atmospheric escape, a 49% CO2, 34% CO, 17% O2, and 0.1 ppm O3 atmosphere is possible. This not only points to the

  3. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  4. Simultaneous Assimilation of FAPAR and Atmospheric CO2 into a Terrestrial Vegetation Model

    NASA Astrophysics Data System (ADS)

    Kaminski, T.; Knorr, W.; Scholze, M.; Gobron, N.; Pinty, B.; Giering, R.; Mathieu, P. P.

    2012-04-01

    Tackling the possible severe impacts of climate change on the carbon cycle and land water resources requires further development of simulation models and monitoring capabilities. Carbon cycle impacts can lead to further climate change through releases of CO2, and impacts on water resources are critical for human survival. A rapidly increasing monitoring capability is Earth Observation (EO) by satellites. Usually, EO by its very nature focuses on diagnosing the current state of the planet. However, it is possible to use EO products in data assimilation systems to improve not only the diagnostics of the current state, but also the accuracy of future predictions. This study investigates the simultaneous assimilation of ground-based atmospheric CO2 concentration data and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from measurements made by the MERIS sensor on-board ENVISAT and to what extent these data can be used to improve models of terrestrial ecosystems, carbon cycling and hydrology. Further development of the Carbon Cycle Data Assimilation System (CCDAS, see http://CCDAS.org) for the purpose of simultaneous assimilation of FAPAR and atmospheric carbon dioxide measurements showed that the design of the ecosystem model is critical for successful implementation of highly efficient variational data assimilation schemes. This is important, because each newly added data stream will typically require a separate observational operator. In the case of this study, it was the leaf development (phenology) sub-model that needed to be developed. As a variational data assimilation scheme, CCDAS relies on first and second derivatives of the underlying model for estimating process parameters with uncertainty ranges. In a subsequent step these parameter uncertainties are mapped forward onto uncertainty ranges for predicted carbon and water fluxes. We present assimilation experiments of MERIS FAPAR at the global scale together with in situ observations

  5. Using atmospheric observations to evaluate the spatiotemporal variability of CO2 fluxes simulated by terrestrial biospheric models

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Michalak, A. M.; Shiga, Y. P.; Yadav, V.

    2014-12-01

    Terrestrial biospheric models (TBMs) are used to extrapolate local observations and process-level understanding of land-atmosphere carbon exchange to larger regions, and serve as predictive tools for examining carbon-climate interactions. Understanding the performance of TBMs is thus crucial to the carbon cycle and climate science communities. In this study, we present and assess an approach to evaluating the spatiotemporal patterns, rather than aggregated magnitudes, of net ecosystem exchange (NEE) simulated by TBMs using atmospheric CO2 measurements. The approach is based on statistical model selection implemented within a high-resolution atmospheric inverse model. Using synthetic data experiments, we find that current atmospheric observations are sensitive to the underlying spatiotemporal flux variability at sub-biome scales for a large portion of North America, and that atmospheric observations can therefore be used to evaluate simulated spatiotemporal flux patterns as well as to differentiate between multiple competing TBMs. Experiments using real atmospheric observations and four prototypical TBMs further confirm the applicability of the method, and demonstrate that the performance of TBMs in simulating the spatiotemporal patterns of NEE varies substantially across seasons, with best performance during the growing season and more limited skill during transition seasons. This result is consistent with previous work showing that the ability of TBMs to model flux magnitudes is also seasonally-dependent. Overall, the proposed approach provides a new avenue for evaluating TBM performance based on sub-biome-scale flux patterns, presenting an opportunity for assessing and informing model development using atmospheric observations.

  6. A carbon dioxide/methane greenhouse atmosphere on early Mars

    NASA Technical Reports Server (NTRS)

    Brown, L. L.; Kasting, J. F.

    1993-01-01

    One explanation for the formation of fluvial surface features on early Mars is that the global average surface temperature was maintained at or above the freezing point of water by the greenhouse warming of a dense CO2 atmosphere; however, Kasting has shown that CO2 alone is insufficient because the formation of CO2 clouds reduces the magnitude of the greenhouse effect. It is possible that other gases, such as NH3 and CH4, were present in the early atmosphere of Mars and contributed to the greenhouse effect. Kasting et al. investigated the effect of NH3 in a CO2 atmosphere and calculated that an NH3 mixing ratio of approximately 5 x 10 (exp -4) by volume, combined with a CO2 partial pressure of 4-5 bar, could generate a global average surface temperature of 273 K near 3.8 b.y. ago when the fluvial features are believed to have formed. Atmospheric NH3 is photochemically converted to N2 by ultraviolet radiation at wavelengths shortward of 230 nm; maintenance of sufficient NH3 concentrations would therefore require a source of NH3 to balance the photolytic destruction. We have used a one-dimensional photochemical model to estimate the magnitude of the NH3 source required to maintain a given NH3 concentration in a dense CO2 atmosphere. We calculate that an NH3 mixing ratio of 10(exp -4) requires a flux of NH3 on the order of 10(exp 12) molecules /cm-s. This figure is several orders of magnitude greater than estimates of the NH3 flux on early Mars; thus it appears that NH3 with CO2 is not enough to keep early Mars warm.

  7. The Martian paleo-magnetosphere during the early Naochian and its implication for the early Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Khodachenko, Maxim L.; Scherf, Manuel; Amerstorfer, Ute; Alexeev, Igor; Johnstone, Colin; Belenkaya, Elena; Tu, Lin; Lichtenegger, Herbert; Guedel, Manuel; Lammer, Helmut

    2016-10-01

    During the late 1990's the Mars Global Surveyor MAG/ER experiment detected crustal remanent magnetization at Mars indicating an ancient internal magnetic dynamo. The location of this remanent magnetization and in particular its absence at the large Martian impact craters like Hellas suggests a cessation of the dynamo during the early Naochian epoch, i.e. ~ 4.1 to 4 billion years ago. The strength of the remanent magnetization together with dynamo theory are indicating an ancient dipole field strength lying in the range of ~0.1 and ~1.0 of the present-day dipole field of the Earth, making the Martian paleo-magnetosphere comparable with the terrestrial paleo-magnetosphere. This also has implication for the early Martian atmosphere.In this poster we will present simulations of the paleo-magnetosphere of Mars for the early Naochian, just before cessation (i.e. for ~4.1 to ~4.0 billion years ago). These were performed with an adapted version of the Paraboloid Magnetospheric Model (PMM) of the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, which serves as an ISO standard for the magnetosphere. Here the ancient magnetic field was assumed to be a dipole field (with dipole tilt ψ=0). The ancient solar wind ram pressure as important input parameter was derived from a newly developed solar/stellar wind evolution model, which is strongly dependent on the rotation rate of the early Sun. These simulations show that for the most extreme case of a fast rotating Sun and a paleomagnetic field strength of 0.1 of the present-day Earth value, the Martian magnetopause was located at ~5.5 RM (i.e. ~2.9 RE) above the Martian surface. Assuming a strong dipole field (i.e. 1.0 of present-day Earth) and a slow rotating Sun - our least extreme case - would lead to a standoff-distance of rs~16 RM (i.e. ~8.5 RE).Our simulations also have implications for the early Martian atmosphere, which will be demonstrated within this poster. These first results on the erosion of

  8. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    SciTech Connect

    Hu, Renyu; Seager, Sara

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 μm in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  9. Atmospheric composition and climate on the early Earth.

    PubMed

    Kasting, James F; Howard, M Tazewell

    2006-10-29

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85 degrees C. We argue, following others, that this interpretation is incorrect-the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot.A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere.

  10. Atmospheric composition and climate on the early Earth

    PubMed Central

    Kasting, James F; Howard, M. Tazewell

    2006-01-01

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85°C. We argue, following others, that this interpretation is incorrect—the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot. A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4 Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9 Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere. PMID:17008214

  11. Identification of Lichen Metabolism in an Early Devonian Terrestrial Fossil using Carbon Stable Isotope Signature

    NASA Astrophysics Data System (ADS)

    Porter, S.; Jahren, H.

    2002-05-01

    The fossil organismSpongiophyton minutissimum is commonly found in early terrestrial assemblages (Devonian age, 430-340 Ma). Suites of morphological descriptions of this fossil have been published, starting in 1954, and have led to two competing hypotheses: 1.) that this early colonizer of land was a primitive bryophyte, and therefore a precursor to modern plant organisms, and 2.) thatS. minutissimum was a lichen: a close association between an alga and a fungus. Because the ultimate mechanisms for carbon supply to the carboxylating enzyme in bryophytes and lichens differ fundamentally, we expect these two types of organisms to exhibit separate ranges of δ 13Ctissue value. In bryophytes, gaseous carbon dioxide diffuses through perforations in cuticle (resulting in δ 13Catmosphere - δ 13Cbryophyte = ~20 ‰ ). Within the lichen, carbon is supplied to the carboxylating enzyme of the photobiont as carbon dioxide dissolved in fungal cell fluids (resulting in δ 13Catmosphere - δ 13Clichen = ~15 ‰ ). By comparing the δ 13Ctissue value ofS. minutissimum (mean = -23 ‰ ;n = 75) with δ 13Ctissue values in twenty-five lichens, representative of the four different phylogenetic clades (mean = -23 ‰ ;n = 25) and thirty different genera of bryophytes including mosses, liverworts, and hornworts (mean = -28 ‰ ;n = 30), we conclude thatS. minutissimum was cycling carbon via processes that much more closely resembled those of lichens, and not bryophytes. We discuss the general strategies associated with lichen biology, such as the ability to withstand dessication during reproduction, and how they may have contributed to the successful colonization of terrestrial environments.

  12. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.

    PubMed

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-04

    Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.

  13. Early Action on Hfcs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-01-01

    As countries take action to mitigate global warming, both by ratifying theUNFCCCParis Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid- 21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 Kat 80 hPa. The HFCmitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  14. Early action on HFCs mitigates future atmospheric change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-11-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 K at 80 hPa. The HFC mitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  15. Spectral identification of abiotic O2 buildup from early runaways and rarefied atmospheres

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Domagal-Goldman, Shawn; Arney, Giada; Luger, Rodrigo; Barnes, Rory

    2015-11-01

    The spectral detection of oxygen (O2) in a planetary atmosphere has been considered a robust signature of life because O2 is highly reactive on planets with Earth-like redox buffers and because significant continuous abiotic sources were thought to be implausible. However, recent work has revealed the possibility that significant O2 may build-up in terrestrial planet atmospheres through (1) photochemical channels or (2) through massive hydrogen escape. We focus on the latter category here. Significant amounts of abiotic O2 could remain in the atmospheres of planets in the habitable zones of late type stars, where an early runaway greenhouse and massive hydrogen escape during the pre-main-sequence phase could have irreversibly oxidized the crust and mantle (Luger & Barnes 2015). Additionally, it has been hypothesized that O2 could accumulate in the atmospheres of planets with sufficiently low abundances of noncondensable gases such as N2 where water would not be cold trapped in the troposphere, leading to H-escape from UV photolysis in a wet stratosphere (Wordsworth & Pierrehumbert 2014). We self-consistently model the climate, photochemistry, and spectra of both rarefied and post-runaway, high-O2 atmospheres. Because an early runaway might not have lasted long enough for the entire water inventory to have escaped, we explore both completely desiccated scenarios and cases where a surface ocean remains. We find “habitable” surface conditions for a wide variety of oxygen abundances, atmospheric masses, and CO2 mixing ratios. If O2 builds up from H escape, the O2 abundance should be very high, and could be spectrally indicated by the presence of O2 collisionally-induced absorption (CIA) features. We generate synthetic direct-imaging and transit transmission spectra of these atmospheres and calculate the strength of the UV/Visible and NIR O2 CIA features. We find that while both the UV/Visible and NIR O2 CIA features are strong in the direct-imaging spectra of very

  16. Spectral identification of abiotic O2 buildup from early runaways and rarefied atmospheres

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Domagal-Goldman, Shawn; Arney, Giada; Robinson, Tyler D.; Luger, Rodrigo; Barnes, Rory

    2016-01-01

    The spectral detection of oxygen (O2) in a planetary atmosphere has been considered a robust signature of life because O2 is highly reactive on planets with Earth-like redox buffers and because significant continuous abiotic sources were thought to be implausible. However, recent work has revealed the possibility that significant O2 may build-up in terrestrial atmospheres through (1) photochemical channels or (2) through the escape of hydrogen. We focus on the latter category here. Significant amounts of abiotic O2 could remain in the atmospheres of planets in the habitable zones of late type stars, where an early runaway greenhouse and massive hydrogen escape during the pre-main-sequence phase could have irreversibly oxidized the crust and mantle (Luger & Barnes 2015). Additionally, it has been hypothesized that O2 could accumulate in the atmospheres of planets with sufficiently low abundances of non-condensable gases such as N2 where water would not be cold trapped in the troposphere, leading to H-escape from UV photolysis in a wet stratosphere (Wordsworth & Pierrehumbert 2014). We self-consistently model the climate, photochemistry, and spectra of both rarefied and post-runaway, high-O2 atmospheres. Because an early runaway might not have lasted long enough for the entire water inventory to escape, we explore both completely desiccated scenarios and cases where a surface ocean remains. We find "habitable" surface conditions for a wide variety of oxygen abundances, atmospheric masses, and CO2 mixing ratios. If O2 builds up from massive or sustained H escape, the O2 abundance should be very high, and could be spectrally indicated by the presence of O2-O2 (O4) collisionally-induced absorption (CIA) features. We generate synthetic direct-imaging and transit transmission spectra of these atmospheres and calculate the strength of the UV/Visible and NIR O4 features. We find that while both the UV/Visible and NIR O4 features are strong in the radiance spectra of very

  17. Climatological features of atmospheric and terrestrial water cycles in the three great Siberian rivers based on six atmospheric reanalyses and observed river discharges

    NASA Astrophysics Data System (ADS)

    Oshima, K.; Tachibana, Y.; Hiyama, T.

    2013-12-01

    The three great Siberian rivers: Lena, Yenisei and Ob Rivers, are top three discharges (R) among all rivers flowing into the Arctic Ocean and play a role as a large source of freshwater inflow. This study revealed the regional differences in some climatological features of the atmospheric and terrestrial water cycles in the Siberian rivers on the basis of the Rs observed at the mouth of the rivers and net precipitations (precipitation minus evapotranspiration, P-E) estimated from six atmospheric reanalyses. As pointed out in previous studies, it is obvious that the precipitation is a key player in the water cycles, but also the east-west contrast of evapotranspicarion over Siberia affects the climatological mean and seasonal cycle of P-E and R in each of the Siberian river basins. The moisture transports associated with the P-E are also different among the rivers. The transient (stationary) flux associated with cyclone activity (mean atmospheric flow) dominates over the Lena (Ob) River basin in the east (west). In addition to the climatological distributions of SAT, humidity and atmospheric circulation over Siberia, the geographical and terrestrial conditions of this region such as topography, distance from the ocean, mainstream of the river, permafrost and vegetation type make the unique features of the water cycles in the individual Siberian rivers. Comparison of the six atmospheric reanalyses indicated that the estimations of P-E by using the reanalyses are reasonable compared to the observed R, and that is an effective way to evaluate and quantify the water cycles in the Lena, Yenisei and Ob Rivers.

  18. New estimates of variations in atmospheric-terrestrial flux of water over Europe, based on regional reanalysis and multi-sensor observations

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Springer, A.; Hartung, K.; Ohlwein, C.; Longuevergne, L.

    2013-12-01

    Precipitation minus evapotranspiration, the flux of water between the atmosphere and the Earth's surface, provides important information regarding the interaction of the atmosphere with the land surface. It links atmospheric and terrestrial water budgets and, thus, realizes an important boundary condition for both climate modeling and hydrological studies. Yet, due to a general lack of unbiased measurements, the atmospheric-terrestrial flux of water is poorly constrained by direct observations and rather, usually, reconstructed from data-assimilating atmospheric reanalyses. Via the terrestrial water budget equation, water storage derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission combined with runoff data, can be used to assess the realism of atmospheric-terrestrial flux of water in atmospheric models. A number of studies have applied this method to global reanalysis products, with good results only for large river basins. In this study, we first assess the closure of the terrestrial water budget over a number of European river basins from the new release 5 GRACE products, after careful postprocessing and in combination with GRDC and BfG discharge data, and from precipitation minus evapotranspiration obtained from the operational analysis of the regional high-resolution NWP models COSMO-DE and -EU, a new COSMO-based reanalysis for the European CORDEX domain, the global reanalyses ERA-INTERIM and MERRA, as well as few observation-based data sets (E-OBS, GPCC, upscaled FLUXNET observations from Jung et al., 2010). This allows us to identify biases of up to 20 mm/month in the different data products, at different spatial scales down to the Oder catchment (110.000 km2). Among the atmospheric (re-) analyses, we find COSMO-EU atmosphere-terrestrial flux of water almost unbiased over Central Europe. Finally, we assess bias-corrected flux and reconstructed multi-sensor water storage variations.

  19. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  20. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  1. Long-range atmospheric transport and deposition of anthropogenic contaminants and their potential effects on terrestrial ecosystems. Book chapter

    SciTech Connect

    Moser, T.J.; Barker, J.R.; Tingey, D.T.

    1991-01-01

    Through the processes of atmospheric transport and deposition, many anthropogenic contaminants such as industrial organics, pesticides, and trace metals have become widely distributed around the globe. Due to the phenomenon of long-range atmospheric transport, even the most remote areas of the plant are not out of range of contaminants emitted from distant anthropogenic sources. Many of these airborne contaminants are toxic and persistent, can bioaccumulate, and may remain biologically harmful for long periods of time. Although airborne contaminants are considered primarily a human health problem, there is increasing concern that they may have deleterious ecological consequences. When sensitive terrestrial plants and other biota experience chronic exposure to low concentrations of airborne toxic chemicals, sublethal effects may occur, with subsequent impacts on ecosystem structure and function.

  2. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir

    PubMed Central

    Macario, Kita D.; Alves, Eduardo Q.; Carvalho, Carla; Oliveira, Fabiana M.; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L.; Cavallari, Daniel C.

    2016-01-01

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America. PMID:27271349

  3. Changes in the terrestrial atmosphere-ionosphere-magnetosphere system due to ion propulsion for solar power satellite placement

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Grebowsky, J. M.

    1979-01-01

    Preliminary estimates of the effects massive Ar(+) injections on the ionosphere-plasmasphere system with specific emphasis on potential communications disruptions are given. The effects stem from direct Ar(+) precipitation into the atmosphere and from Ar(+) beam induced precipitation of MeV radiation belt protons. These injections result from the construction of Solar Power Satellites using earth-based materials in which sections of a satellite must be lifted from low earth to geosynchronous orbit by means of ion propulsion based on the relatively abundant terrestrial atmospheric component, Ar. The total amount of Ar(+) injected in transporting the components for each Solar Power Satellite is comparable to the total ion content of the ionosphere-plasmasphere system while the total energy injected is larger than that of this system. It is suggested that such effects may be largely eliminated by using lunar-based rather than earth-based satellite construction materials.

  4. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir.

    PubMed

    Macario, Kita D; Alves, Eduardo Q; Carvalho, Carla; Oliveira, Fabiana M; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L; Cavallari, Daniel C

    2016-06-08

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America.

  5. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir

    NASA Astrophysics Data System (ADS)

    Macario, Kita D.; Alves, Eduardo Q.; Carvalho, Carla; Oliveira, Fabiana M.; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L.; Cavallari, Daniel C.

    2016-06-01

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America.

  6. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  7. Mentors, networks, and resources for early career female atmospheric scientists

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  8. Heat flow vs. atmospheric greenhouse on early Mars

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Postawko, S. E.

    1991-01-01

    Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.

  9. A proposal on the study of solar-terrestrial coupling processes with atmospheric radars and ground-based observation network

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshitaka; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Shiokawa, Kazuo; Ogawa, Yasunobu; Nozawa, Satonori; Miyaoka, Hiroshi; Yoshikawa, Akimasa

    2016-09-01

    The solar energy can mainly be divided into two categories: the solar radiation and the solar wind. The former maximizes at the equator, generating various disturbances over a wide height range and causing vertical coupling processes of the atmosphere between the troposphere and middle and upper atmospheres by upward propagating atmospheric waves. The energy and material flows that occur in all height regions of the equatorial atmosphere are named as "Equatorial Fountain." These processes from the bottom also cause various space weather effects, such as satellite communication and Global Navigation Satellite System positioning. While, the electromagnetic energy and high-energy plasma particles in the solar wind converge into the polar region through geomagnetic fields. These energy/particle inflow results in auroral Joule heating and ion drag of the atmosphere particularly during geomagnetic storms and substorms. The ion outflow from the polar ionosphere controls ambient plasma constituents in the magnetosphere and may cause long-term variation of the atmosphere. We propose to clarify these overall coupling processes in the solar-terrestrial system from the bottom and from above through high-resolution observations at key latitudes in the equator and in the polar region. We will establish a large radar with active phased array antenna, called the Equatorial Middle and Upper atmosphere radar, in west Sumatra, Indonesia. We will participate in construction of the EISCAT_3D radar in northern Scandinavia. These radars will enhance the existing international radar network. We will also develop a global observation network of compact radio and optical remote sensing equipment from the equator to polar region.

  10. The Net Exchange Between Terrestrial Ecosystems and the Atmosphere as a Result of Changes in Land Use

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.

    1998-01-01

    The general purpose of this research was to improve and update (to 1990) estimates of the net flux of carbon between the world's terrestrial ecosystems and the atmosphere from changes in land use (e.g., deforestation and reforestation). The estimates are important for understanding the global carbon cycle, and for predicting future concentrations of atmospheric CO2 that will result from emissions. The emphasis of the first year's research was on the northern temperate zone and boreal forests, where the greatest discrepancy exists between estimates of flux. Forest inventories suggest net sinks of 0.6 PgC/yr; inversion analyses based on atmospheric data and models suggest much larger sinks 2-3.6 PgC/yr (e.g., Tans et al. 1990, Ciais et al. 1995). The work carried out with this grant calculated the flux attributable to changes in land use. The estimated flux was somewhat smaller than the flux calculated from inventory data suggesting that environmental changes have led to a small accumulation of carbon in forests that exceeds the accumulation expected from past rates of harvest. Two publications have described these results (Houghton 1996, 1998). The large difference between these estimates and those obtained with atmospheric data and models remains unexplained. The recent estimate of a 1.7 PgC/yr sink in North America, alone (Fan et al. 1998), is particularly difficult to explain. That part of the sink attributable to land-use change, however, is defined as a result of this grant.

  11. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1991-01-01

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  12. Differentiation of crusts and cores of the terrestrial planets - Lessons for the early earth

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The extent and mechanisms of global differentiation and the early thermal and tectonic histories of the terrestrial planets are surveyed in order to provide constraints on the first billion years of earth history. Indirect and direct seismic evidence for crusts on the moon, Mars and Venus is presented, and it is pointed out that substantial portions of these crusts have been in place since the cessation of heavy bombardment of the inner solar system four billion years ago. Evidence for sizable cores on Mars and Mercury and a small core on the moon is also discussed, and the heat involved in core formation is pointed out. Examination of the volcanic and tectonic histories of planets lacking plate tectonics indicates that core formation was not closely linked to crust formation on the moon or Mars, with chemical differentiation restricted to shallow regions, and was much more extensive on Mercury. Extension of these considerations to the earth results in a model of a hot and vigorously convecting mantle with an easily deformable crust immediately following core formation, and the gradual development of a lithosphere and plates.

  13. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity

    NASA Astrophysics Data System (ADS)

    Strassmann, K. M.; Joos, F.; Fischer, G.

    2008-09-01

    The impact of land use on the global carbon cycle and climate is assessed. The Bern carbon cycle-climate model was used with land use maps from HYDE3.0 for 1700 to 2000 A.D. and from post-SRES scenarios for this century. Cropland and pasture expansion each cause about half of the simulated net carbon emissions of 188 GtC over the industrial period and 1.1 GtC yr-1 in the 1990s, implying a residual terrestrial sink of 113 GtC and of 1.8 GtC yr-1, respectively. Direct CO2 emissions due to land conversion as simulated in book-keeping models dominate carbon fluxes due to land use in the past. They are, however, mitigated by 25% through the feedback of increased atmospheric CO2 stimulating uptake. CO2 stimulated sinks are largely lost when natural lands are converted. Past land use change has eliminated potential future carbon sinks equivalent to emissions of 80-150 GtC over this century. They represent a commitment of past land use change, which accounts for 70% of the future land use flux in the scenarios considered. Pre-industrial land use emissions are estimated to 45 GtC at most, implying a maximum change in Holocene atmospheric CO2 of 3 ppm. This is not compatible with the hypothesis that early anthropogenic CO2 emissions prevented a new glacial period.

  14. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  15. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-06

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  16. The "terminal Triassic catastrophic extinction event" in perspective: a review of carboniferous through Early Jurassic terrestrial vertebrate extinction patterns

    USGS Publications Warehouse

    Weems, R.E.

    1992-01-01

    A catastrophic terminal Triassic extinction event among terrestrial vertebrates is not supported by available evidence. The current model for such an extinction is based on at least eight weak or untenable assumptions: (1) a terminal Triassic extinction-inducing asteroid impact occurred, (2) a terminal Triassic synchronous mass extinction of terrestrial vertebrates occurred, (3) a concurrent terminal Triassic marine extinction occurred, (4) all terrestrial vertebrate families have similar diversities and ecologies, (5) changes in familial diversity can be gauged accurately from the known fossil record, (6) extinction of families can be compared through time without normalizing for changes in familial diversity through time, (7) extinction rates can be compared without normalizing for differing lengths of geologic stages, and (8) catastrophic mass extinctions do not select for small size. These assumptions have resulted in unsupportable and (or) erroneous conclusions. Carboniferous through Early Jurassic terrestrial vertebrate families mostly have evolution and extinction patterns unlike the vertebrate evolution and extinction patterns during the terminal Cretaceous event. Only the Serpukhovian (mid Carboniferous) extinction event shows strong analogy to the terminal Cretaceous event. Available data suggest no terminal Triassic extinction anomaly, but rather a prolonged and nearly steady decline in the global terrestrial vertebrate extinction rate throughout the Triassic and earliest Jurassic. ?? 1992.

  17. Evolution and variation of atmospheric carbon dioxide concentration over terrestrial ecosystems as derived from eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Liu, Min; Wu, Jiabing; Zhu, Xudong; He, Honglin; Jia, Wenxiao; Xiang, Weining

    2015-08-01

    Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas contributing to global climate change. Understanding the temporal and spatial variations of CO2 concentration over terrestrial ecosystems provides additional insight into global atmospheric variability of CO2 concentration. Using 355 site-years of CO2 concentration observations at 104 eddy-covariance flux tower sites in Northern Hemisphere, we presented a comprehensive analysis of evolution and variation of atmospheric CO2 concentration over terrestrial ecosystem (ACTE) for the period of 1997-2006. Our results showed that ACTE exhibited a strong seasonal variations, with an average seaonsal amplitude (peak-trough difference) of 14.8 ppm, which was approximately threefold that global mean CO2 observed in Mauna Loa in the United States (MLO). The seasonal variation of CO2 were mostly dominant by terrestrial carbon fluxes, i.e., net ecosystem procution (NEP) and gross primary produciton (GPP), with correlation coefficient(r) were -0.55 and -0.60 for NEP and GPP, respectively. However, the influence of carbon fluxes on CO2 were not significant at interannual scale, which implyed that the inter-annual changing trends of atmospheric CO2 in Northern Hemisphere were likely to depend more on anthropogenic CO2 emissions sources than on ecosystem change. It was estimated, by fitting a harmonic model to monthly-mean ACTE, that both annual mean and seasonal amplitude of ACTE increased over the 10-year period at rates of 2.04 and 0.60 ppm yr-1, respectively. The uptrend of annual ACTE could be attributed to the dramatic global increase of CO2 emissions during the study period, whereas the increasing amplitude could be related to the increases in Northern Hemisphere biospheric activity. This study also found that the annual CO2 concentration showed large variation among ecosystems, with the high value appeared in deciduous broadleaf forest, evergreen broadleaf forest and cropland. We attribute these

  18. Increasing retention of early career female atmospheric scientists

    NASA Astrophysics Data System (ADS)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  19. Using atmospheric observations to evaluate the spatiotemporal variability of CO2 fluxes simulated by terrestrial biospheric models

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Michalak, A. M.; Shiga, Y. P.; Yadav, V.

    2014-06-01

    Terrestrial biospheric models (TBMs) are used to extrapolate local observations and process-level understanding of land-atmosphere carbon exchange to larger regions, and serve as a predictive tool for examining carbon-climate interactions. Understanding the performance of TBMs is thus crucial to the carbon cycle and climate science. In this study, we propose a statistical model selection approach for evaluating the spatiotemporal patterns of net ecosystem exchange (NEE) simulated by TBMs using atmospheric CO2 measurements. We find that current atmospheric observations are sensitive to the underlying spatiotemporal flux variability at sub-biome scales for a large portion of the North American continent, and that atmospheric observations can therefore be used to evaluate simulated spatiotemporal flux patterns, rather than focusing solely on flux magnitudes at aggregated scales. Results show that the proposed approach can be used to assess whether a TBM represents a substantial portion of the underlying flux variability as well as to differentiate among multiple competing TBMs. When applying the proposed approach to four prototypical TBMs, we find that the performance of TBMs varies substantially across seasons, with best performance during the growing season and limited skill during transition seasons. This seasonal difference in the ability of TBMs to represent the spatiotemporal flux variability may reflect the models' capability to represent the seasonally-varying influence of environmental drivers on fluxes. While none of the TBMs consistently outperforms the others, differences among the examined models are at least partially attributable to their internal structures. Overall, the proposed approach provides a new avenue for evaluating TBM performance based on sub-biome scale flux patterns, presenting an opportunity for assessing and informing model development using atmospheric observations.

  20. The armoured dissorophid Cacops from the Early Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians.

    PubMed

    Reisz, Robert R; Schoch, Rainer R; Anderson, Jason S

    2009-07-01

    Cacops, one of the most distinctive Paleozoic amphibians, is part of a clade of dissorophoid temnospondyls that diversified in the equatorial region of Pangea during the Late Carboniferous and Early Permian, persisting into the Late Permian in Central Russia and China. Dissorophids were a successful group of fully terrestrial, often spectacularly armoured predators, the only amphibians apparently able to coexist with amniotes when the latter started to dominate terrestrial ecosystems. In this paper, we describe excellent new skulls from the Early Permian of Oklahoma attributed to Cacops, Cacops morrisi sp. nov. and provide for the first time detailed information about this iconic dissorophid. These specimens show anatomical and ontogenetic features that will impact on future studies on the evolution of terrestriality in tetrapods. For example, the large, posteriorly closed tympanic embayment has fine striations on an otherwise smooth surface, documenting the oldest known clear evidence for the presence of a tympanic membrane in the fossil record, a structure that is used for hearing airborne sound in extant tetrapods. The skull of C. morrisi also has several features associated with predatory behaviour, indicating that this dissorophid may have been one of the top terrestrial predators of its time.

  1. The coupled 182W-142Nd record of early terrestrial mantle differentiation

    NASA Astrophysics Data System (ADS)

    Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Horan, Mary F.; Walker, Richard J.

    2016-06-01

    New Sm-Nd, Lu-Hf, Hf-W, and Re-Os isotope data, in combination with highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) and W abundances, are reported for the 3.55 Ga Schapenburg komatiites, South Africa. The Schapenburg komatiites define a Re-Os isochron with an age of 3550 ± 87 Ma and initial γ187Os = +3.7 ± 0.2 (2SD). The absolute HSE abundances in the mantle source of the Schapenburg komatiite system are estimated to be only 29 ± 5% of those in the present-day bulk silicate Earth (BSE). The komatiites were derived from mantle enriched in the decay products of the long-lived 147Sm and 176Lu nuclides (initial ɛ143Nd = +2.4 ± 0.1, ɛ176Hf = +5.7 ± 0.3, 2SD). By contrast, the komatiites are depleted, relative to the modern mantle, in 142Nd and 182W (μ182W = -8.4 ± 4.5, μ142Nd = -4.9 ± 2.8, 2SD). These results constitute the first observation in terrestrial rocks of coupled depletions in 142Nd and 182W. Such isotopic depletions require derivation of the komatiites from a mantle domain that formed within the first ˜30 Ma of Solar System history and was initially geochemically enriched in highly incompatible trace elements as a result of crystal-liquid fractionation in an early magma ocean. This mantle domain further must have experienced subsequent melt depletion, after 182Hf had gone extinct, to account for the observed initial excesses in 143Nd and 176Hf. The survival of early-formed 182W and 142Nd anomalies in the mantle until at least 3.55 Ga indicates that the products of early planetary differentiation survived both later planetary accretion and convective mantle mixing during the Hadean. This work moreover renders unlikely that variable late accretion, by itself, can account for all of the observed W isotope variations in Archean rocks.

  2. Development of a model of atmospheric oxygen variations to estimate terrestrial carbon storage and release

    NASA Technical Reports Server (NTRS)

    Najjar, Raymond G.; Keeling, Ralph F.; Erickson, David J., III

    1995-01-01

    Two years of work has been completed towards the development of a model of atmospheric oxygen variations on seasonal to decadal timescales. During the first year we (1) constructed a preliminary monthly-mean climatology of surface ocean oxygen anomalies, (2) began modeling studies to assess the importance of short term variability on the monthly-mean oxygen flux, and (3) conducted preliminary simulations of the annual mean cycle of oxygen in the atmosphere. Most of the second year was devoted to improving the monthly mean climatology of oxygen in the surface ocean.

  3. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  4. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Meyerholt, J.; Zaehle, S.; Smith, M. J.

    2015-12-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important, but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty, and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity (NPP) and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 95 to 134 Tg N yr-1 (median 119 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon storage (+281 to +353 Pg C, or +13 to +16 %), as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  5. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Meyerholt, Johannes; Zaehle, Sönke; Smith, Matthew J.

    2016-03-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 108 to 148 Tg N yr-1 (median: 128 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median: 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon (C) storage (+281 to +353 Pg C, or +13 to +16 %) as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  6. Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere

    PubMed Central

    Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L.

    2009-01-01

    Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO2) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO2 concentration will reach levels too low for C3 and C4 photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets. PMID:19487662

  7. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  8. Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere.

    PubMed

    Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L; Yung, Yuk L

    2009-06-16

    Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO(2)) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO(2) concentration will reach levels too low for C(3) and C(4) photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets.

  9. The role of gravity waves in solar-terrestrial atmosphere coupling and severe storm detection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1979-01-01

    The role that gravity waves play in the coupling of the solar wind and the ionosphere, the coupling of high and low latitude ionospheres, and the coupling of the ionosphere and the neutral atmosphere are discussed. Examples are given of the detection of tornado touchdowns from locating the sources of the gravity waves.

  10. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  11. A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars

    NASA Astrophysics Data System (ADS)

    Kulikov, Yuri N.; Lammer, Helmut; Lichtenegger, Herbert I. M.; Penz, Thomas; Breuer, Doris; Spohn, Tilman; Lundin, Rickard; Biernat, Helfried K.

    2007-03-01

    Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ˜100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters

  12. A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars

    NASA Astrophysics Data System (ADS)

    Kulikov, Yuri N.; Lammer, Helmut; Lichtenegger, Herbert I. M.; Penz, Thomas; Breuer, Doris; Spohn, Tilman; Lundin, Rickard; Biernat, Helfried K.

    Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans' escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ˜100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters

  13. Verification of Atmospheric Signals Associated with Major Seismicity by Space and Terrestrial Observations

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick

    2008-01-01

    Observations from the last twenty years suggest the existence of electromagnetic (EM) phenomena during or preceding some earthquakes [Haykawa et a!, 2004; Pulinets at al, 1999,2004, 2006, Ouzounov et all 2007 and Liu et all 20041. Both our previous studies [Pulinets at al, 2005, 2006, Ouzounov et al, 2006, 20071 and the latest review by the Earthquake Remote Precursor Sensing panel [ERPS; 2003- 20051; have shown that there were precursory atmospheric TIR signals observed on the ground and in space associated with several recent earthquakes. [Tramutoli at al, 2005, 2006, Cervone et al, 2006, Ouzounov et all 2004,2006JT.o study these signals, we applied both multi parameter statistical analysis and data mining methods that require systematic measurements from an Integrated Sensor Web of observations of several physical and environmental parameters. These include long wave earth infra-red radiation, ionospheric electrical and magnetic parameters, temperature and humidity of the boundary layer, seismicity and may be associated with major earthquakes. Our goal is to verify the earthquake atmospheric correlation in two cases: (i) backward analysis - 2000-2008 hindcast monitoring of multi atmospheric parameters over the Kamchatka region, Russia ; and (ii) forward real-time alert analysis over different seismo-tectonic regions for California, Turkey, Taiwan and Japan. Our latest results, from several post-earthquake independent analyses of more then 100 major earthquakes, show that joint satellite and some ground measurements, using an integrated web, could provide a capability for observing pre-earthquake atmospheric signals by combining the information from multiple sensors into a common framework. Using our methodology, we evaluated and compared the observed signals preceding the latest M7.9 Sichuan earthquake (0511212008), M8.0 earthquake in Peru (0811512007), M7.6 Kashmir earthquake (1010812005) and M9.0 Sumatra earthquake (1212812004). We found evidence of the

  14. Early warning of atmospheric regime transitions using transfer operators

    NASA Astrophysics Data System (ADS)

    Tantet, Alexis; Dijkstra, Henk

    2015-04-01

    The existence of persistent midlatitude atmospheric regimes, such as blocking events, with time scales larger than 5-10 days and indications of preferred transition paths between them motivates the development of early-warning indicators of regime transitions. Here, we use a barotropic model of the northern midlatitudes winter flow to study such meta-stable regimes. We look at estimates of transfer operators acting on densities evolving on a reduced phase space spanned by the first Empirical Orthogonal Functions of the streamfunction and develop an early-warning indicator of zonal to blocked flow transition. The study of the spectra of transfer operators estimated for different lags reveals a multi-level structure in the flow as well as the effect of memory on the reduced dynamics due to past interactions between the resolved and unresolved variables. The slowest motions in the reduced phase space are thereby found to have time scales larger than 8 days and to behave as Markovian for larger lags. These motions are associated with meta-stable regimes and their transitions and can be detected as almost-invariant sets of the transfer operator. The early-warning indicator is based on the action on an initial density of products of the transfer operators estimated for sufficiently long lags, making use of the semi-group property of these operators and shows relatively good Peirce skill score. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths as the manifestation of barotropic instability. Finally, even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  15. A sensitivity study of the obliquity of the early Earth with the ECHAM/MESSy Atmospheric Chemistry model

    NASA Astrophysics Data System (ADS)

    Hamann-Reinus, Anke; Kunze, Markus; Langematz, Ulrike; Godolt, Mareike; Jöckel, Patrick; Rauer, Heike

    Studying the evolution of early Earth's atmosphere is of crucial importance for the understand-ing of the habitability of the terrestrial planets and, in the end, the development of life. In this contribution we investigate the influence of the Earth's obliquity on atmospheric dynam-ics. For this parameter study of obliquity we use here the Chemistry Climate model EMAC (ECHAM/MESSy Atmospheric Chemistry model). According to Ito and Hamano (1995), the obliquity of the Earth's axis was only 19.5 at the age of 2.5 Gyr. To analyse in particular the sen-sitivity of the model dynamics we selected therefore three representative obliquity values: 23.5 (control run), 19.5 (lowered obliquity, see Ito and Hamano (1995)), 27.5 (increased obliquity-comparative study). For our numerical experiments we use the present day atmospheric compo-sition, land-mask, and solar luminosity. We present results regarding the atmospheric dynamics and circulation focussing thereby on the middle atmosphere.

  16. Dynamic oxygenation of the early atmosphere and oceans

    NASA Astrophysics Data System (ADS)

    Lyons, Timothy W.; Planavsky, Noah J.; Reinhard, Christopher T.

    2014-05-01

    The traditional view of the oxygenation of the early atmosphere and oceans depicts irreversibly rising abundances in two large steps: one at the Great Oxidation Event (GOE) ca. 2.3-2.4 billion years ago (Ga) and another near the end of the Neoproterozoic. This talk will explore how the latest data challenge this paradigm. Recent results reveal a far more dynamic history of early oxygenation, one with both rising and falling levels, long periods of sustained low concentrations even after the GOE, complex feedback relationships that likely coupled nutrients and ocean redox, and dramatic changes tied through still-emerging cause-and-effect relationships to first-order tectonic, climatic, and evolutionary events. In the face of increasing doubt about the robustness of organic biomarker records from the Archean, researchers are increasingly reliant on inorganic geochemical proxies for the earliest records of oxygenic photosynthesis. Proxy data now suggest oxygenesis at ca. 3.0 Ga with a likelihood of local oxygen build up in the surface ocean long before the GOE, as well as low (and perhaps transient) accumulation in the atmosphere against a backdrop of mostly less than ca. 0.001% of the present atmospheric concentration. By the GOE, the balance between oxygen sources and sinks shifted in favor of persistent accumulation, although sedimentary recycling of non-mass-dependent sulfur isotope signatures allows for the possibility of rising and falling atmospheric oxygen before the GOE as traditionally defined by the sulfur isotope record. Recycling may also hinder our ability to precisely date the transition to permanent oxygen accumulation beyond trace levels. Diverse data point to a dramatic increase in biospheric oxygen following the GOE, coincident with the largest positive carbon isotope excursion in Earth history, followed by an equally dramatic drop. This decline in Earth surface redox potential ushered in more than a billion years of dominantly low oxygen levels in

  17. Modeling the atmospheric and terrestrial water and energy cycles in the ScaleX experiment through a fully-coupled atmosphere-hydrology model

    NASA Astrophysics Data System (ADS)

    Senatore, Alfonso; Benjamin, Fersch; Thomas, Rummler; Caroline, Brosy; Christian, Chwala; Junkermann, Wolfgang; Ingo, Völksch; Harald, Kunstmann

    2016-04-01

    The TERENO preAlpine Observatory, comprising a series of observatory sites along an altitudinal gradient within the Ammer catchment (southern Bavaria, Germany), has been designed as an international research platform, open for participation and integration, and has been provided with comprehensive technical infrastructure to allow joint analyses of water-, energy- and nutrient fluxes. In June and July 2015 the operational monitoring has been complemented by the ScaleX intensive measurement campaign, where additional precipitation and soil moisture measurements, remote sensing measurements of atmospheric wind, humidity and temperature profiles have been performed, complemented by micro-light aircraft- and UAV-based remote sensing for three-dimensional pattern information. The comprehensive observations serve as validation and evaluation basis for compartment-crossing modeling systems. Specifically, the fully two-way dynamically coupled atmosphere-hydrology modeling system WRF-Hydro has been used to investigate the interplay of energy and water cycles at the regional scale and across the compartments atmosphere, stream, vadose zone and groundwater during the ScaleX campaign and to assess the closure of the budgets involved. Here, several high-resolution modeled hydro-meteorological variables, such as precipitation, soil moisture, river discharge and air moisture and temperature along vertical profiles are compared with observations from multiple sources, such as rain gauges and soil moisture networks, rain radars, stream gauges, UAV and a micro-light aircraft. Results achieved contribute to the objective of addressing questions on energy- and water-cycling within the TERENO-Ammer region at a very high scale and degree of integration, and provides hints on how well can observations constrain uncertainties associated with the modeling of atmospheric and terrestrial water and energy balances.

  18. Impact of Aquatic and Terrestrial Emissions on Atmospheric N2O Variability

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Riddick, S. N.; Saikawa, E.; Hess, P. G.

    2013-12-01

    Atmospheric concentrations of the greenhouse gas nitrous oxide (N2O) have increased by about 20% since the preindustrial era, an increase that has been driven largely by use of anthropogenic nitrogen fertilizers. The N2O source associated with agriculture was historically underestimated by assessments that considered only direct emissions from fertilized fields, but more recently it has been recognized that 'indirect' emissions associated with N leaching and runoff to rivers and may account for as much as half of total agricultural N2O emissions. Meanwhile, recent regional atmospheric N2O inversions have inferred large North American agricultural N2O sources that are difficult to reconcile with global budget constraints. At the same time, it is not clear whether the inversions can detect indirect N2O emissions associated with nitrogen leaching and runoff. Here, we will present forward model simulations aimed at quantifying the relative magnitude, spatial distribution and timing of direct and indirect agricultural N2O emissions. The model simulations will be based on the Community Land Model (CLM), with new agricultural and trace N gas parameterizations, coupled to the River Transport Model (RTM), with a module for estimating river N transport and N2O production associated with in-stream sediment denitrification. The coupled CLM-RTM N2O fluxes will be used to force atmospheric chemistry tracer transport model (ACTM) simulations, with direct and indirect emissions carried as separate tracers. The ACTM results will be used to evaluate the impact of both types of emissions on site-specific variability in atmospheric N2O at United States monitoring sites and to assess the likelihood that current atmospheric monitoring networks can detect these signals. Locations of selected NOAA monitoring sites for atmospheric N2O over the continental United States, showing both aircraft (triangles) and surface flask or tower sites (filled circles). Site locations are superimposed on a

  19. Global N/sub 2/O cycles - Terrestrial emissions, atmospheric accumulation and biospheric effects

    SciTech Connect

    Banin, A.; Lawless, J.G.; Whitten, R.C.; Oser, H.; Oro, J.; Macelroy, R.D.; Klein, H.P.; Devincenzi, D.L.; Young, R.S.

    1984-01-01

    Recent findings concerning the budget and cycles of nitrous oxide on earth are summarized, and the sources and sinks for N/sub 2/O on land, in the ocean, and in the atmosphere are examined in view of the N/sub 2/O concentration increase of 0.2-0.4 percent per year, observed over the period of 1975-1982. Possible atmospheric and biospheric consequences of the N/sub 2/O concentration increase are evaluated. N/sub 2/O emission values are given for several major ecosystem types, such as forest, desert, cultivated land; values from different sources are compared and discussed. Analysis shows an excess of documented sources over sinks by 0-51 Tg N/sub 2/O-N/yr. 63 references.

  20. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  1. Sensors to record atmospheric and terrestrial information - Principles of collection and analysis

    NASA Astrophysics Data System (ADS)

    Duggin, M. J.

    The general principles and current status of staring and scanning sensors for satellite remote sensing of land and sea surfaces and atmospheric parameters are reviewed. The types of information obtainable in the different spectral bands are indicated; the common characteristics and specific features of sensors are listed in extensive tables and discussed; and a chronological diagram of U.S. meteorological and earth-resources satellites is provided.

  2. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    PubMed

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  3. Verification of Atmospheric Signals Associated with Major Seismicity by Space and Terrestrial Observations

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S.; Taylor, P.; Bryant, N.; Cervone, G.; Kafatos, M.; Habib, S.

    2008-12-01

    Observations from the last twenty years suggest the existence of electromagnetic (EM) phenomena during or preceding some earthquakes [Hayakawa et al, 2004; Pulinets at al, 1999,2004, 2006, Ouzounov et al, 2007 and Liu et al, 2004]. Both our previous studies [Pulinets at al, 2005, 2006, Ouzounov et al, 2006, 2007] and the latest review by the Earthquake Remote Precursor Sensing panel [ERPS; 2003-2005]; have shown that there were precursory atmospheric TIR signals observed on the ground and in space associated with several recent earthquakes. [Tramutoli et al, 2005, 2006, Cervone et al, 2006, Ouzounov et al, 2004,2006]. To study these signals, we applied both multi parameter statistical analysis and data mining methods that require systematic measurements from an Integrated Sensor Web of observations of several physical and environmental parameters. These include long wave earth infra-red radiation, ionospheric electrical and magnetic parameters, temperature and humidity of the boundary layer, seismicity and may be associated with major earthquakes. Our goal is to verify the earthquake atmospheric correlation in two cases: (i) backward analysis - 2000-2008 hindcast monitoring of multi atmospheric parameters over the Kamchatka region, Russia ; and (ii) forward real-time alert analysis over different seismo-tectonic regions for California, Turkey, Taiwan and Japan. Our latest results, from several post-earthquake independent analyses of more then 100 major earthquakes, show that joint satellite and some ground measurements, using an integrated web, could provide a capability for observing pre-earthquake atmospheric signals by combining the information from multiple sensors into a common framework. Using our methodology, we evaluated and compared the observed signals preceding the latest M7.9 Sichuan earthquake (05/12/2008), M8.0 earthquake in Peru (08/15/2007), M7.6 Kashmir earthquake (10/08/2005) and M9.0 Sumatra earthquake (12/26/2004). We found evidence of the

  4. Observed and Modeled Tritium Concentrations in the Terrestrial Food Chain near a Continuous Atmospheric Source

    SciTech Connect

    Davis, P.A.; Kim, S.B.; Chouhan, S.L.; Workman, W.J.G.

    2005-07-15

    Tritium concentrations were measured in a large number of environmental and biological samples collected during 2002 at two dairy farms and a hobby farm near Pickering Nuclear Generating Station in Ontario, Canada. The data cover most compartments of the terrestrial food chain in an agricultural setting and include detailed information on the diets of the local farm animals. Ratios of plant OBT concentration to air moisture HTO varied between 0.12 and 0.56, and were generally higher for the forage crops collected at the dairy farms than for the garden vegetables sampled at the hobby farm. Animal OBT to air HTO ratios were more uniform, ranging from 0.18 to 0.45, and were generally higher for the milk and beef samples from the dairy farms than for the chicken products from the hobby farm. The observed OBT concentrations in plants and animals were compared with predictions of IMPACT, the model used by the Canadian nuclear industry to calculate annual average doses due to routine releases. The model performed well on average for the animal endpoints but overestimated concentrations in plants by a factor of 2.

  5. The seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere: Extrapolation from site-specific models to regional models

    SciTech Connect

    King, A.W.; DeAngelis, D.L.; Post, W.M.

    1987-12-01

    Ecological models of the seasonal exchange of carbon dioxide (CO/sub 2/) between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. The primary disadvantage of this approach is the problem of extrapolating the site-specific models across large regions having considerable biotic, climatic, and edaphic heterogeneity. Two methods of extrapolation were tested. 142 refs., 59 figs., 47 tabs

  6. GRACE-based validation of terrestrial water storage variations as simulated by 4 different hydrological models under WFDEI atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjing; Dobslaw, Henryk; Stacke, Tobias; Güntner, Andreas; Dill, Robert; Thomas, Maik

    2016-04-01

    Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) mission provides a unique way to monitor the terrestrial water storage (TWS) variations at large spatial scale (>300km) by measuring month-to-month changes of the Earth's gravity field. We apply TWS variations estimated from GRACE to assess the ability of four hydrological and land surface models to simulate the continental branch of the global water cycle. Based on four different validation metrics that focus on variability on sub-seasonal to inter-annual time scales, we demonstrate that for the 31 largest discharge basins worldwide all model runs agree with the observations to a very limited degree only, together with large spreads among the models themselves. In particular, we focus on selected basins with very different climatic conditions and discuss time series of individual water storage components such as surface water, soil moisture, and snow depth. Since we are applying a common atmospheric forcing data-set to all models considered, we conclude that the discrepancies found are not due to differences in the forcing, but are mainly related to the model structure and parametrization. By investigating the relative performance of these different models, we attempt to give directions for further development of global numerical models in the areas of large-scale hydrology and land-atmosphere interactions.

  7. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.

    PubMed

    Wilson, J P; Fischer, W W

    2011-03-01

    The core of plant physiology is a set of functional solutions to a tradeoff between CO(2) acquisition and water loss. To provide an important evolutionary perspective on how the earliest land plants met this tradeoff, we constructed a mathematical model (constrained geometrically with measurements of fossils) of the hydraulic resistance of Asteroxylon, an Early Devonian plant. The model results illuminate the water transport physiology of one of the earliest vascular plants. Results show that Asteroxylon's vascular system contains cells with low hydraulic resistances; these resistances are low because cells were covered by scalariform pits, elliptical structures that permit individual cells to have large areas for water to pass from one cell to another. Asteroxylon could move a large amount of water quickly given its large pit areas; however, this would have left these plants particularly vulnerable to damage from excessive evapotranspiration. These results highlight a repeated pattern in plant evolution, wherein the evolution of highly conductive vascular tissue precedes the appearance of adaptations to increase water transport safety. Quantitative insight into the vascular transport of Asteroxylon also allows us to reflect on the quality of CO(2) proxy estimates based on early land plant fossils. Because Asteroxylon's vascular tissue lacked any safety features to prevent permanent damage, it probably used stomatal abundance and behavior to prevent desiccation. If correct, low stomatal frequencies in Asteroxylon reflect the need to limit evapotranspiration, rather than adaptation to high CO(2) concentrations in the atmosphere. More broadly, methods to reveal and understand water transport in extinct plants have a clear use in testing and bolstering fossil plant-based paleoclimate proxies.

  8. Variations in Solar Activity and Irradiance and Their Implications for Energy Input Into the Terrestrial Atmosphere

    NASA Astrophysics Data System (ADS)

    Parker, Daryl Gray

    This dissertation presents research into the question of how variations in the physical properties of resolved solar magnetic surface features combine to produce variations in the physical properties of the integrated Sun and the possible impacts of those variations on the terrestrial climate system. The core approach to the research was development of techniques to apply automated Bayesian statistical pattern recognition methods as implemented in the AutoClass software to magnetic and intensity-like solar images from the Mount Wilson Solar Observatory (MWO) 150 Foot Solar Telescope. The goals were to: (1) identify in an objective and quantifiable manner the solar surface features responsible for changes in solar irradiance, (2) enhance understanding of the evolution of these features and the resultant solar irradiance variations over the most recent solar cycles, (3) develop methods to identify the specific features responsible for variations in specific wavelengths, (4) use global observations of global solar irradiance indices to identify the spatially resolved features which contribute to them, (5) attempt to apply these results to specific topics of current interest in solar-stellar astronomy. Using these techniques, a method was developed to identify classes of features from thousands of MWO solar images based on the per pixel values of absolute magnetic field strength and an intensity measure known as a "ratio-gram" in MWO images. Using these classes along with observations from independent, usually satellite based, sources in different wavelengths, models were constructed of total solar irradiance (TSI) and solar UV indices. These models were able to reproduce with high correlations solar observations in a number of different solar wavelengths. These classes were also used to construct images mapping different wavelength emissions to the areas to the solar surface features from which they originated. These techniques proved able to reproduce with high

  9. The National Ecological Observatory Network's Atmospheric and Terrestrial Instrumentation: Quality Control Approaches

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Luo, H.; Ayres, E.; Metzger, S. R.; Loescher, H. W.

    2012-12-01

    The National Ecological Observatory Network's Fundamental Instrument Unit (NEON-FIU) is responsible for making automated terrestrial observations at 60 different sites across the continent. FIU will provide data on key local physical, chemical, and climate forcing, as well as associated biotic responses (CO2, H2O, and energy exchanges). The sheer volume of data that will be generated far exceeds that of any other observatory network or agency, (i.e., > 45 Tb/year from 10's of thousands of remotely deployed sensors). We address the question of how to develop and implement a large ecological observatory that can accommodate such a large volume of data while maintaining high quality. Here, we describe our quality assurance and quality control (QA/QC) program to produce quality data while leveraging cyber infrastructure tools and optimizing technician time. Results focus on novel approaches that advance the quality control techniques that have been historically employed in other networks (DOE-ARM, AmeriFlux, USDA ARS, OK Mesonet) to new state-of-the-art functionality. These automated and semi-automated approaches are also used to inform automated problem tracking to efficiently deploy field staff. Ultimately, NEON will define its own standards for QA/QC and maintenance by building upon these existing frameworks. The overarching philosophy relies on attaining the highest levels of accuracy, precision, and operational time, while efficiently optimizing the effort needed to produce quality data products. Our preliminary results address the challenges associated with automated implementation of sensor command/control, plausibility testing, despiking, and data verification of FIU observations.

  10. On the emission of amines from terrestrial vegetation in the context of atmospheric new particle formation

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Sintermann, Jörg

    2015-04-01

    Airborne amines, specifically methylamines (MAs), play a key role in atmospheric new particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NFP events observed in remote regions. High MA contents as well as emissions by plants have already been described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions, and the decomposition of organic material could constitute another source for airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited and thus it is also an open question how Global Change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  11. The calculation of vibrational populations of O2 Herzberg states in the atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Kirillov, Andrey S.

    The calculated quenching rate constants of the c1, A'3, A3 states of O2 by molecules in [Kirillov, 2014, Chem. Phys. Lett., v.592, p.103] are applied in the simulation of vibrational populations of the Herzberg states in the nightglow of upper atmosphere of Venus and Mars where carbon dioxide is the main gas and in the mixture of molecular oxygen with CO2, CO, N2 gases for laboratory conditions. The results of the simulation show very important role of electronic-vibrational (EV) energy transfer processes in the redistribution of electronic excitation energy on vibrational levels of the states. The main aim of the simulation is an attempt to explain the high intensities of the Herzberg II band system observed in laboratory experiments with high CO2 concentrations [Lawrence et al., 1977, Science, v.195, p.573; Slanger, 1978, J. Chem. Phys., v.69, p.4779] and registered with spacecraft spectrometers in the nightglow of the Venus atmosphere [Krasnopolsky et al., 1977, Cosmic Res., v.14, p.687; Gerard et al., 2013, Icarus, v.223, p.602].

  12. Oxygen Isotopic Anomaly in Terrestrial Atmospheric Carbonates and its Implications to Understand the Role of Water on Mars

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Shaheen, R.

    2010-12-01

    Mineral aerosols produced from wind-blown soils are an important component of the earth system and comprise about 1000-3000 Tg.yr-1 compared to 400 Tg.yr-1 of secondary aerosols (e.g. carbonaceous substances, organics, sulfate and nitrates). Aerosols have important consequences for health, visibility and the hydrological cycle as they provide reactive surfaces for heterogeneous chemical transformation that may influence gas phase chemistry in the atmosphere. Tropospheric ozone produced in a cascade of chemical reactions involving NOx and VOC’s, can interact with aerosol surfaces to produce new compounds. Oxygen triple isotopic compositions of atmospheric carbonates have been used for the first time to track heterogeneous chemistry at the aerosol surfaces and to resolve a chemical mechanism that only occurs on particle surfaces. Fine and coarse aerosol samples were collected on filter papers in La Jolla, CA for one week. Aerosol samples were digested with phosphoric acid and released CO2 was purified chromatographically and analyzed for O isotopes after fluorination. Data indicated oxygen isotopic anomaly (Δ17O = δ17O - 0.524 δ18O) ranging from 0.9 to 3.9 per mill. Laboratory experiments revealed that adsorbed water on particle surfaces facilitates the interaction of the gaseous CO2 and O3 with formation of anomalous hydrogen peroxide and carbonates. This newly identified chemical reaction scenario provides a new explanation for production of the isotopically anomalous carbonates found in the SNC Martian meteorites and terrestrial atmospheric carbonates and it also amplifies understanding of water related processes on the surface of Mars. The formation of peroxide via this heterogeneous reaction on aerosols surface suggests a new oxidative process of utility in understanding ozone and oxygen chemistry both at Mars and Earth.

  13. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: model description.

    PubMed

    Nikolov, Ned; Zeller, Karl F

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.

  14. Transit Observations of Venus's Atmosphere in 2012 from Terrestrial and Space Telescopes as Exoplanet Analogs

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Penn, M. J.; Jaeggli, S. A.; Galayda, E.; Reardon, K. P.; Widemann, T.; Tanga, P.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson, P. D.; Dantowitz, R.

    2013-06-01

    We extensively observed the 8 June 2012 transit of Venus from several sites on Earth; we provide this interim status report about this and about two subsequent ToVs observed from space. From Haleakala Obs., we observed the entire June transit over almost 7 h with a coronagraph of the Venus Twilight Experiment B filter) and with a RED Epic camera to compare with simultaneous data from ESA's Venus Express, to study the Cytherean mesosphere; from Kitt Peak, we have near-IR spectropolarimetry at 1.6 µm from the aureole and during the disk crossing that compare well with carbon dioxide spectral models; from Sac Peak/IBIS we have high-resolution imaging of the Cytherean aureole for 22 min, starting even before 1st contact; from Big Bear, we have high-resolution imaging of Venus's atmosphere and the black-drop effect through 2nd contact; and we had 8 other coronagraphs around the world. For the Sept 21 ToV as seen from Jupiter, we had 14 orbits of HST to use Jupiter's clouds as a reflecting surface to search for an 0.01% diminution in light and a differential drop that would result from Venus's atmosphere by observing in both IR/UV, for which we have 170 HST exposures. As of this writing, preliminary data reduction indicates that variations in Jovian clouds and the two periods of Jupiter's rotation will be too great to allow extraction of the transit signal. For the December 20 ToV as seen from Saturn, we had 22 hours of observing time with VIMS on Cassini, for which we are looking for a signal of the 10-hr transit in total solar irradiance and of Venus's atmosphere in IR as an exoplanet-transit analog. Our Maui & Sac Peak expedition was sponsored by National Geographic Society's Committee for Research and Exploration; HST data reduction by NASA: HST-GO-13067. Some of the funds for the carbon dioxide filter for Sac Peak provided by NASA through AAS's Small Research Grant Program. We thank Rob Ratkowski of Haleakala Amateur Astronomers; Rob Lucas, Aram Friedman, Eric

  15. Solar terrestrial influences on the D region as shown by the level of atmospheric radio noise

    NASA Astrophysics Data System (ADS)

    Satori, G.; Schaning, B.

    1984-05-01

    Measurements of the integrated atmospheric radio noise field strength at 27 kHz, used here, were made from 1965 to 1975 at Uppsala, Kuhlungsborn, and Prague-Panska Ves. The large scale meteorological situation was considered by comparing solar disturbed and undisturbed periods under similar weather situations. In order to show the effects of the precipitating high energy particle (HEP) flux and of the Forbush decrease on the noise level between pairs of stations were computed as deviations from the monthly median. Delta E (dB), day by day for all six periods was studied. The correlation coefficients for noon as well as for night values were computed. The correlation coefficients were compared with those for solar undisturbed periods.

  16. Early Giant Planet Migration in the Solar System: Geochemical and Cosmochemical Implications for Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.; Walsh, K. J.; Morbidelli, A.; Raymond, S. N.; Mandell, A. M.; Bond, J. C.

    2010-10-01

    A new terrestrial planet formation model (Walsh et al., this meeting) explores the effects of a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation (Masset & Snellgrove 2001, Morbidelli & Crida 2007, Pierens & Nelson 2008). Walsh et al. show that the inward migration of Jupiter truncates the disk of planetesimals and embryos in the terrestrial planet region. Subsequent accretion in that region then forms a realistic system of terrestrial planets, in particular giving a low-mass Mars, which has been difficult to reproduce in simulations with a self-consistent set of initial conditions (see, eg. Raymond et al. 2009). Additionally, the outward migration of the giant planets populates the asteroid belt with distinct populations of bodies, with the inner belt filled by bodies originating inside of 3 AU, and the outer belt filled with bodies originating from beyond the giant planets. From a geochemical and cosmochemical point of view, this scenario differs significantly from the "standard model" in which essentially all of the material in the inner Solar System initially formed there. Specifically, the assumption that the current radial distribution of material in the inner Solar System is reflective of the primordial distribution of material in that region is no longer necessary. This is important for understanding the chemical and isotopic diversity of the inner Solar System as inferred from studies of the terrestrial planets, asteroids, and meteorites, as well as for understanding the origin of Earth's water. We will discuss the geochemical and cosmochemical implications of this model in relation to available constraints, as well as to previous models of terrestrial planet formation. Masset & Snellgrove (2001), MNRAS 320, L55. Morbidelli & Crida (2007), Icarus 191, 158. Pierens & Nelson (2008), A&A 482, 333. Raymond et al. (2009), Icarus 203, 644.

  17. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  18. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    PubMed

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-04

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  19. A Condensation–coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    NASA Astrophysics Data System (ADS)

    Ohno, Kazumasa; Okuzumi, Satoshi

    2017-02-01

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.

  20. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-11-30

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

  1. Nonlinear Interactions between Climate and Atmospheric Carbon Dioxide Drivers of Terrestrial and Marine Carbon Cycle Changes from 1850 to 2300

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Moore, J. K.; Goulden, M.; Lindsay, K. T.; Munoz, E.; Fu, W.; Swann, A. L. S.; Koven, C. D.; Mahowald, N. M.; Bonan, G. B.

    2015-12-01

    Quantifying feedbacks between the global carbon cycle and Earth's climate system is important for predicting future atmospheric CO2 levels and informing carbon management and energy policies. We applied a feedback analysis framework to three sets of Historical (1850-2005), Representative Concentration Pathway 8.5 (2006-2100), and its extension (2101-2300) simulations from the Community Earth System Model version 1.0 (CESM1(BGC)) to quantify drivers of terrestrial and ocean responses of carbon uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization and nitrogen deposition influenced marine and terrestrial carbon cycling. In the radiatively coupled simulation (RAD), the effects of rising temperature and circulation changes due to radiative forcing from CO2, other greenhouse gases, and aerosols were the sole drivers of carbon cycle changes. In the third, fully coupled simulation (FC), both the biogeochemical and radiative coupling effects acted simultaneously. We found that climate-carbon sensitivities derived from RAD simulations produced a net ocean carbon storage climate sensitivity that was weaker and a net land carbon storage climate sensitivity that was stronger than those diagnosed from the FC and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced weakening of ocean circulation and mixing that limited exchange of dissolved inorganic carbon between surface and deeper water masses. For the land, this nonlinearity was associated with strong gains in gross primary production in the FC simulation, driven by enhancements in the hydrological cycle and increased nutrient availability. We developed and applied a nonlinearity metric to rank model responses and driver variables. The climate-carbon cycle feedback gain at 2300 was 42% higher when estimated from climate-carbon sensitivities derived from the difference between FC and BGC than when derived from RAD. These differences are important to

  2. The production of trace gases by photochemistry and lightning in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.

    1986-01-01

    Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.

  3. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  4. A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content

    NASA Astrophysics Data System (ADS)

    Gillmann, Cédric; Chassefière, Eric; Lognonné, Philippe

    2009-09-01

    A time dependent model of hydrogen hydrodynamic escape powered by solar EUV flux and solar wind, and accounting for oxygen frictional escape, has been implemented in primitive Venus conditions. The model is constrained by the present 20Ne/ 22Ne and 36Ar/ 38Ar ratios in Venus atmosphere. It suggests that the net total amount of water delivered to the planet during accretion (≈ 10-100 Myr) is not in excess of the content of ≈ 5 Terrestrial Oceans (5 TO). In our preferred scenario, 60% of the oxygen (3 TO) is left behind the hydrogen during the first 100 Myr. From a comparison with Earth's case, we suggest that hydrodynamic escape has dried up Venus atmosphere early in its history (≈ 70 Myr), triggering the crystallization of the magma ocean, and leaving no available water in the atmosphere to condense out and form an Earth-size water ocean. On the contrary, Earth, possibly endowed with more water, and subject to a weaker hydrodynamic escape, would have remained wet after the crystallization of its magma ocean. We suggest that the oxygen left behind the escaping hydrogen during the main hydrodynamic phase on Venus has been dissolved in the magma ocean, and lost through oxidation. In the proposed scenario, the dense Venus CO 2 atmosphere doesn't result from an initial episode of runaway (or moist) greenhouse, but has been formed during the crystallization of the magma ocean, by progressive exsolution of carbon dioxide, at a time when the atmospheric partial pressure of water was of a few hundred bar. In the subsequent period, from ≈ 100 to ≈ 500 Myr, the hydrogen of the water delivered by comets may have been removed by continuing thermal escape, resulting at 500 Myr in a water global equivalent layer (GEL) of a few meters depth (or less), probably under the form of water vapor in the atmosphere, and a molecular oxygen atmosphere of ≈ 10 bar or so. At later times, pick-up ion escape may have removed most of the remaining water, and led to the present D/ H

  5. Seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere: extrapolation from site-specific models to regional models

    SciTech Connect

    King, A.W.

    1986-01-01

    Ecological models of the seasonal exchange of carbon dioxide (CO/sub 2/) between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. The primary disadvantage of this approach is the problem of extrapolating the site-specific models across large regions having considerable biotic, climatic, and edaphic heterogeneity. Two methods of extrapolation were tested. The first approach was a simple extrapolation that assumed relative within-biome homogeneity, and generated CO/sub 2/ source functions that differed dramatically from published estimates of CO/sub 2/ exchange. The second extrapolation explicitly incorporated within-biome variability in the abiotic variables that drive seasonal biosphere-atmosphere CO/sub 2/ exchange.

  6. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  7. Removal of CO2 from the terrestrial atmosphere to curtail global warming: From methodology to laboratory prototype

    NASA Astrophysics Data System (ADS)

    Orton, Andrea E.

    This research has focused on the initial phase of required investigations in pursuit of a global scale methodology for reduction of CO 2 in terrestrial air for the purpose of curtailment of global warming. This methodology was initially presented by Agee, Orton, and Rogers (2013), and has provided the basis for pursuing this thesis research. The first objective of the research project was to design and build a laboratory prototype system, capable of depleting CO2 from terrestrial air at 1 bar of pressure through LN2 refrigeration. Design considerations included a 26.5L cylindrical Pyrex glass sequestration chamber, a container to hold a reservoir of LN2 and an interface between the two to allow for cooling and instrumentation ports for measurements inside the sequestration chamber. Further, consideration was given to the need for appropriate insulating material to enclose the assembled apparatus to help achieve efficient cooling and the threshold depositional temperature of 135 K. The Amy Facility in the Department of Chemistry provided critical expertise to machine the apparatus to specifications, especially the stainless steel interface plate. Research into available insulating materials resulted in the adaption of TRYMER RTM 2500 Polyisocyanurate, effective down to 90 K. The above described DAC prototype designed for CO2 sequestration accomplished two of the initial research objectives investigated: 1) conduct refrigeration experiments to achieve CO2 terrestrial deposition temperature of 135 K (uniformly) and 2) deplete CO2 from the chamber air at 1 bar of pressure, documented by appropriate measurements. It took approximately 5.5 hours for the chamber to be completely uniform in temperature of 135 K (and below) through the use of LN2 poured into the container sitting on an aluminum interface on top of the sequestration Pyrex chamber. As expected, Rayleigh-Taylor instability (more dense fluid over less dense fluid) was observed through the duration of the

  8. A Molecular Approach to the Study of Green Algal Evolution and Early Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Kodner, R. B.; Summons, R. E.; Knoll, A. H.

    2004-12-01

    The biological nature of pre-land plant terrestrial ecosystems remains an enigmatic chapter of the history of life on earth due to lack of fossil evidence. Molecular phylogenies have shown that Charophycean green algae are the closest relatives of the bryophytes, which have been hypothesized to be the earliest divergent land plants. However, there is no fossil evidence to support this relationship nor is there a reliable fossil record of the earliest land plants. Microfossils representing the earliest land plants appear to have a bryophytes affinity based on limited morphological comparisons but this remains controversial. We are applying a biomolecular approach to study both green algal evolution and its relation to bryophytes using the resistant biopolymer algaenan and phytosterols as biological markers. Algaenan has been shown to have high preservation potential and may be the primary component of enigmatic microfossils assumed to be of algal origin. Algaenan and the green algal sterols, stigmasterol and sitosterol, may also be the precursors of n-alkanes and the hydrocarbon stigmastane that are major components of many Neoproterozoic bitumens. The biological nature and phylogenetic distribution of algaenan is still not well understood. Here we explore the presence and structure of algaenans in terrestrial green algae and bryophytes in relation to their phylogenetic distributions.

  9. Early terrestrial impact events: Archean spherule layers in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Schulz, Toni; Reimold, W. Uwe; Hofmann, Axel

    2015-04-01

    In addition to the oldest known impact structure on Earth, the 2.02-billion-year-old Vredefort Structure in South Africa, the evidence of Early Earth impact events are Archean spherule beds in South Africa and Australia. These spherules have been interpreted as condensation products from impact plumes and molten impact ejecta or/and impact ejecta that were melted during atmospheric re-entry [e.g., 1,2]. The 3.2-3.5 Ga spherule layers in the Barberton Greenstone Belt in South Africa currently represent the oldest known remnants of impact deposits on Earth. Aiming at identification of extraterrestrial components and to determine the diagenetic and metamorphic history of spherule layer intersections recently recovered in the CT3 drill core from the northeastern part of the Barberton Greenstone Belt, we have studied samples from these layers in terms of petrography and geochemistry. All samples, including spherule layer intersections and intercalating country rocks, were studied for mineral identification by optical and electron microscopy, as well as electron microprobe analysis (EPMA) at Natural History Museum Vienna and Museum für Naturkunde Berlin (MfN). Major and trace element compositions were determined via X-ray fluorescence spectrometry at MfN and instrumental neutron activation analysis (INAA) at University of Vienna. Os isotopes were measured by thermal ionization mass spectrometry (N-TIMS) at University of Vienna. Eighteen spherule beds are distributed over 150 meter drill core in CT3. Spherules are variably, deformed or undeformed. The high number of these layers may have been caused by tectonic duplication. Spherule beds are intercalated with shale, chert, carbonate, and/or sulfide deposits (country rocks). The size range of spherules is 0.5 to 2 mm, and some layers exhibit gradation. Shapes of spherules differ from spherical to ovoid, as well as teardrops, and spherules commonly show off-center vesicles, which have been interpreted as a primary

  10. Composition of early planetary atmospheres - I. Connecting disc astrochemistry to the formation of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, R. E.; Alessi, M.

    2016-09-01

    We present a model of the early chemical composition and elemental abundances of planetary atmospheres based on the cumulative gaseous chemical species that are accreted on to planets forming by core accretion from evolving protoplanetary discs. The astrochemistry of the host disc is computed using an ionization-driven, non-equilibrium chemistry network within viscously evolving disc models. We accrete gas giant planets whose orbital evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted on to the protoplanet. We choose a fiducial disc model and evolve planets in three traps - water ice line, dead zone and heat transition. For a disc with a lifetime of 4.1 Myr, we produce two hot Jupiters (M = 1.43, 2.67 MJupiter, r = 0.15, 0.11 au) in the heat transition and ice line trap and one failed core (M = 0.003 MJupiter, r = 3.7 au) in the dead zone. These planets are found with mixing ratios for CO and H2O of 1.99 × 10-4 and 5.0 × 10-4, respectively, for both hot Jupiters. Additionally, for these planets we find CO2 and CH4, with mixing ratios of 1.8 × 10-6 → 9.8 × 10-10 and 1.1 × 10-8 → 2.3 × 10-10, respectively. These ranges correspond well with the mixing ratio ranges that have been inferred through the detection of emission spectra from hot Jupiters by multiple authors. We compute a carbon-to-oxygen ratio of 0.227 for the ice line planet and 0.279 for the heat transition planet. These planets accreted their gas inside the ice line, hence the sub-solar C/O.

  11. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    1986-01-01

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  12. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.; Ackerman, Thomas P.

    1986-01-01

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 to 110 C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse.

  13. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere.

    PubMed

    Kasting, J F; Ackerman, T P

    1986-12-12

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 degrees to 110 degrees C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse.

  14. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  15. Biological modulation of planetary atmospheres: The early Earth scenario

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  16. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  17. Water loss from Venus: Implications for the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Richardson, S. M.; Pollack, J. B.; Reynolds, R. T.

    1985-01-01

    The atmosphere of Venus outgassed rapidly as a result of planetary heating during accretion, resulting in massive water loss. The processes affecting atmospheric chemistry following accretion have consisted largely of hydrogen escape and internal re-equilibrium. The initial bulk composition of Venus and Earth are assumed to have been roughly similar. Chemical speciation on Venus was controlled by the temperature and oxygen buffering capacity of the surface magma. It is also assumed that the surfaces of planetary bodies of the inner solar system were partly or wholly molten during accretion with a temperature estimated at 1273 to 1573 K. To investigate the range of reasonable initial atmospheric compositions on Venus, limits have to be set for the proportion of total hydrogen and the buffered fugacity of oxygen. Using the C/H ratio of 0.033 set for Earth, virtually all of the water generated during outgassing must later have been lost in order to bring the current CO2/H2O ratio for Venus up to its observed value of 10 sup 4 to 10 sup 5. The proportion of H2O decreases in model atmospheres with successfully higher C/H values, ultimately approaching the depleted values currently observed on Venus. Increasing C/H also results in a rapid increase in CO/H2O and provides an efficient mechanism for water loss by the reaction CO+H2O = CO2 + H2. This reaction, plus water loss mechanisms involving crustal iron, could have removed a very large volume of water from the Venusian atmosphere, even at a low C/H value.

  18. Atmospheric carbon dioxide as a driver for deglaciation during the Mi-1 event: new evidence from terrestrial Southern Hemisphere proxies

    NASA Astrophysics Data System (ADS)

    Fox, B.; Wilson, G. S.; Lee, D.; Haworth, M.; Wartho, J.; Kaulfuss, U.; Bannister, J.; Gorman, A. R.; Jones, D. A.; Lindqvist, J.

    2011-12-01

    Foulden Maar is an annually-resolved maar lake deposit dating from the Oligocene/Miocene boundary. The deposit, from the South Island of New Zealand, is the first high-resolution terrestrial record of the O/M boundary and the rapid deglaciation of Antarctica that occurred during the second half of the Mi-1 event. A ~180 m core from the centre of the lake bed comprises ~60 m of basal graded breccias, sands and muds overlain by ~120 m of diatomite punctuated by volcanogenic horizons. The basal siliciclastic sediments contain clasts of basalt and country rock and are interpreted as diatreme breccias coeval with the formation of the maar. The diatomite succession consists of mm-scale light-dark couplets and diatomaceous turbidites. Radiometric dates were obtained from basaltic clasts found at ~110 m depth (close to the base of the diatomite sucession) in a slump deposit of crater wall material. These give ages of 23.45 ± 0.25 Ma and 23.68 ± 0.36 Ma. A nearby basaltic dyke formed during the same episode of volcanism as the maar crater gives a date of 23.17 ± 0.17 Ma. A magnetic reversal occurs at ~106 m depth in the core, constraining the age of this point to 23.34 Ma (the base of chron C6Cn.3n) or 23.03 Ma (the base of chron C6Cn.2n). Spectral analysis of physical properties measurements of the diatomite section of the core reveals obliquity and precessional frequencies. An age model based on these frequencies shows that individual light-dark couplets of diatomite represent annual varves and that the normally magnetised section from ~106 m depth to the top of the core covers ~100,000 years. This rules out C6Cn.3n, which is only 50,000 years long, placing the base of the diatomite succession at the Oligocene-Miocene boundary and the peak of the Mi-1 event. We have collected stomatal index values from Litsea and Podocarpus leaves found in the succession. The Podocarpus values are calibrated using Podocarpus plants grown at various concentrations of carbon dioxide from

  19. Contributions of icy planetesimals to the Earth's early atmosphere.

    PubMed

    Owen, T C; Bar-Nun, A

    2001-01-01

    Laboratory experiments on the trapping of gases by ice forming at low temperatures implicate comets as major carriers of the heavy noble gases to the inner planets. These icy planetesimals may also have brought the nitrogen compounds that ultimately produced atmospheric N2. However, if the sample of three comets analyzed so far is typical, the Earth's oceans cannot have been produced by comets alone, they require an additional source of water with low D/H. The highly fractionated neon in the Earth's atmosphere may also indicate the importance of non-icy carriers of volatiles. The most important additional carrier is probably the rocky material comprising the bulk of the mass of these planets. Venus may require a contribution from icy planetesimals formed at the low temperatures characteristic of the Kuiper Belt.

  20. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, Sukrit; Sasselov, Dimitar D.

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of NCO2, meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels.

  1. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.

    PubMed

    Ranjan, Sukrit; Sasselov, Dimitar D

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels. Key Words: Radiative transfer-Origin of life

  2. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and

  3. Early results from a terrestrial-marine BGC coupling study in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Vermilyea, A.; Spencer, R. G.; Hood, E. W.; Stubbins, A.

    2010-12-01

    In 2010 we began a long-term comparative study of watershed contributions to coastal marine nutrients in the northeast Pacific from a modest deployment of sensors combined with sample analysis. The preliminary results presented here establish a baseline for defining and subsequently tracking physical system parameters relevant to marine productivity over two decades, in two contexts: First in the context of research by Hood and others: Comparing glacier-covered to un-glaciated watershed output in a Lagrangian sense of particle and parcel transport. Second, in a more Eulerian sense: How will impact on coastal marine ecosystems from changing terrestrial freshwater input compare over decades to that of changes in physical parameters like pH, upwelling nutrient supply along the continental shelf and temperature? In our initial efforts we trolled two estuary plumes pulling samples for laboratory analysis and operating in situ sensors in tandem with GPS while other in situ sensors collected data from within source rivers (Eagle River and Peterson Creek near Juneau, AK, in respectively glaciated and forested watersheds). The strategy is to produce comparable synoptic datasets across the freshwater-marine mixing regime of the plume using salinity as a mixing proxy. Initial datasets include CDOM, dissolved oxygen, turbidity, chlorophyll-A, and (from samples) total organic carbon, total nitrogen, absorption spectra and excitation-emission matrices. Future work will expand this list to include mass spectrometer and NMR data. In working with this synoptic dataset we are faced with both curation and interpretation challenges; hence a primary objective of the project is to use the trans-disciplinary and data-intensive nature of the research problem set to motivate technology adoption. We have in mind here the notion of electronic publication (exemplified in this AGU poster) that permits collaborators and readers to reach back into source data and trace the origins and processes

  4. Faunal reorganisation in terrestrial mammalian communities: evidence from France during the Lateglacial-Early Holocene transition

    NASA Astrophysics Data System (ADS)

    Bridault, Anne

    2010-05-01

    The Lateglacial-Early Holocene transition is characterized by rapid oscillations between warm and cold episodes. Their impact on ecosystem dynamics was particularly pronounced in north-western Europe where hunter-gatherer societies experienced a succession of environmental transformations, including the expansion and dispersal of biotic communities and changing herbivore habitats. Recent archaeozoological studies and AMS direct dating on mammalian bones/or bone collagen allow to map and precise this process at a supra-regional scale (France). At regional scales (i.e. Paris Basin & Jura-Northern French Alps), results indicate a rapid faunal reorganisation at the end of Lateglacial that will be presented in detail. Composition of faunal assemblages remains then unchanged during the Early Holocene. By contrast, significant herbivore habitat changes are recorded during the Early Holocene by other proxies (pollen data and isotopic data) and a decrease in Red Deer size through time is evidenced by osteometrical analyses. Hypotheses regarding the kind of adaptation process experienced by the faunal communities through time will be presented. Factors that may have controlled the observed changes will be discussed.

  5. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  6. Seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere: extrapolation from site-specific models to regional models

    SciTech Connect

    King, A.W.

    1986-01-01

    Ecological models of the seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. Two methods of extrapolation were tested. The first approach was a simple extrapolation that assumed relative within-biome homogeneity, and generated CO/sub 2/ source functions that differed dramatically from published estimates of CO/sub 2/ exchange. The differences were so great that the simple extrapolation was rejected as a means of incorporating site-specific models in a global CO/sub 2/ source function. The second extrapolation explicitly incorporated within-biome variability in the abiotic variables that drive seasonal biosphere-atmosphere CO/sub 2/ exchange. Simulated site-specific CO/sub 2/ dynamics were treated as a function of multiple random variables. The predicated regional CO/sub 2/ exchange is the computed expected value of simulated site-specific exchanges for that region times the area of the region. The test involved the regional extrapolation of tundra and a coniferous forest carbon exchange model. Comparisons between the CO/sub 2/ exchange estimated by extrapolation and published estimates of regional exchange for the latitude belt support the appropriateness of extrapolation by expected value.

  7. TERENO ("Terrestrial Environmental Observatories"): Establishment and Upgrading of a Terrestrial Observatory "Alpine upland" for Long Term Observations of the Impact of Global Change Factors on Biosphere-Hydrosphere-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Kunstmann, H.; Papen, H.; Butterbach-Bahl, K.; Kiese, R.; Marx, A.; Schmid, H.

    2007-12-01

    Long term observations are an indispensable pre-requisite to improve our knowledge of the complex biosphere- hydrosphere-atmosphere (BHA)-interactions and to detect and analyze the impact of Global Change parameters on these interactions as well as to develop, improve and validate BHA model systems. As an integral part of the Helmholtz initiative TERENO to establish/upgrade and equip terrestrial observatories for long term observations (> 10 years) on the effects of Global Change on complex terrestrial ecosystems, an observatory "Alpine Upland", operated jointly by the research centers FZK (Forschungszentrum Karlsruhe) and GSF (National Research Center for Environment and Health) is established. The central objectives of the scientific work performed by Forschungszentrum Karlsruhe within this observatory are: Characterization and quantification of changes of the (a) coupled C-/N-cycles and C-/N-storage (b)biosphere-atmosphere exchange (trace gases/energy flux/albedo) (c)vegetation and microbial biodiversity and of the temporal dynamics of matter- turnover and -exchange coupled to this change in biodiversity (d)terrestrial hydrology (alpine water budget, precipitation variability, extreme hydrometeorological events, seapage water quality/quantity, water retention capacity) in important climate- and use-sensitive ecosystem types within the pre-alpine region (e.g. alpine meadows, forests) under changing conditions of climate, management and nutrient deposition (atmospheric N-input). Besides upgrading of the already existing long term observation stations in the pre-alpine region ("The Höglwald Forest" (FZK) and the agricultural long term observation station "Scheyern" (for details see separate contribution of GSF) FZK will establish a "Climate-Feedback Observatory" at which the effects of predicted future changes in temperature and precipitation amount/distribution within the pre-alpine region on the complex BHA interactions will be studied applying a long term in

  8. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  9. Early public impressions of terrestrial carbon capture and storage in a coal-intensive state.

    PubMed

    Carley, Sanya R; Krause, Rachel M; Warren, David C; Rupp, John A; Graham, John D

    2012-07-03

    While carbon capture and storage (CCS) is considered to be critical to achieving long-term climate-protection goals, public concerns about the CCS practice could pose significant obstacles to its deployment. This study reports findings from the first state-wide survey of public perceptions of CCS in a coal-intensive state, with an analysis of which factors predict early attitudes toward CCS. Nearly three-quarters of an Indiana sample (N = 1001) agree that storing carbon underground is a good approach to protecting the environment, despite 80% of the sample being unaware of CCS prior to participation in the two-wave survey. The majority of respondents do not hold strong opinions about CCS technology. Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. Knowledge about early impressions of CCS can help inform near-term technology decisions at state regulatory agencies, utilities, and pipeline companies, but follow-up surveys are necessary to assess how public sentiments evolve in response to image-building efforts with different positions on coal and CCS.

  10. Hf-Nd isotope evidence for a transient dynamic regime in the early terrestrial mantle

    PubMed

    Albarede; Blichert-Toft; Vervoort; Gleason; Rosing

    2000-03-30

    Modern basalts have seemingly lost all 'memory' of the primitive Earth's mantle except for an ambiguous isotopic signal observed in some rare gases. Although the Earth is expected to have reached a thermal steady state within several hundred million years of accretion, it is not known how and when the initial chemical fractionations left over from planetary accretion (and perhaps a stage involving a magma ocean) were overshadowed by fractionations imposed by modern-style geodynamics. Because of the lack of samples older than 4 Gyr, this early dynamic regime of the Earth is poorly understood. Here we compare published Hf-Nd isotope data on supracrustals from Isua, Greenland, with similar data on lunar rocks and the SNC (martian) meteorites, and show that, about 3.8 Gyr ago, the geochemical signature of the Archaean mantle was partly inherited from the initial differentiation of the Earth. The observed features seem to indicate that the planet at that time was still losing a substantial amount of primordial heat. The survival of remnants from an early layering in the modern deep mantle may account for some unexplained seismological, thermal and geochemical characteristics of the Earth as observed today.

  11. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  12. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  13. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  14. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  15. Greenhouse gases balances in the terrestrial ecosystems of North America: patterns and contributions of individual gases to the radiative forcing of the atmosphere

    NASA Astrophysics Data System (ADS)

    Tian, H.; Chen, G.; Lu, C.; Ren, W.; Tao, B.; Pan, S.; Yang, J.; Hayes, D. J.; Wei, Y.

    2012-12-01

    The terrestrial ecosystem in North America has been identified as a sink of atmospheric CO2 though there is no consensus on the carbon sink strength. However, changes in non-CO2 greenhouse gas (GHG) (i.e., CH4 and N2O) emissions may offset or even turnover this trend. We first simultaneously estimated the contemporary CO2, CH4, N2O balances and their overall global warming potential. Then we identified the contributions of multiple environmental factors to the changes of global warming potential. Finally, we presented an uncertainty range for contemporary global warming potential based on data compilation from inventory, forward modeling, and inverse modeling approaches. Overall, the terrestrial ecosystem in North America reduced global warming potential by -0.50 Pg CO2 eq/yr in terms of combined CO2, CH4 and N2O fluxes during 2000-2010. This region could also increase warming potential during some years (e.g., 1994 and 2002) with extreme drought events. CH4 and N2O emissions could offset 73% (57~138%) of the carbon sinks. All the biome types except wetland had the potential to reduce climate warming potential in North America. Climate change and elevated tropospheric O3 concentration contributed the most to the increased global warming potential, while elevated atmospheric CO2 concentration contributed the most to decreased global warming potential during 1979-2010. Combining the predicted increasing CH4 emission in the high-latitude permafrost zone and elevated N2O emission due to increasing nitrogen fertilizer amounts in intensive managed forests, climate warming could be greatly accelerated by the environmental changes in the terrestrial ecosystems of North America in the future.

  16. Greenhouse warming by CH4 in the atmosphere of early Earth.

    PubMed

    Pavlov, A A; Kasting, J F; Brown, L L; Rages, K A; Freedman, R

    2000-05-25

    Earth appears to have been warm during its early history despite the faintness of the young Sun. Greenhouse warming by gaseous CO2 and H2O by itself is in conflict with constraints on atmospheric CO2 levels derived from paleosols for early Earth. Here we explore whether greenhouse warming by methane could have been important. We find that a CH4 mixing ratio of 10(-4) (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.8 Ga. Such a CH4 concentration could have been readily maintained by methanogenic bacteria, which are thought to have been an important component of the biota at that time. Elimination of the methane component of the greenhouse by oxidation of the atmosphere at about 2.3-2.4 Ga could have triggered the Earth's first widespread glaciation.

  17. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya

    PubMed Central

    Braun, David R.; Harris, John W. K.; Levin, Naomi E.; McCoy, Jack T.; Herries, Andy I. R.; Bamford, Marion K.; Bishop, Laura C.; Richmond, Brian G.; Kibunjia, Mzalendo

    2010-01-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  18. A reappraisal of the stratigraphy and chronology of Early Pliocene palaeontological sites from Lanzarote Island containing fossil terrestrial animals

    NASA Astrophysics Data System (ADS)

    Lomoschitz, Alejandro; Sánchez Marco, Antonio; Huertas, María José; Betancort, Juan F.; Isern, Arnau; Sanz, Elena; Meco, Joaquín

    2016-11-01

    The Famara massif, in the north of Lanzarote Island, constitutes the remains of a former island inhabited by the oldest known vertebrate fauna of the Canary archipelago off the coast of Africa. In this study, new ages are offered for the underlying and overlying basaltic lava flows of two paleontological sites. The island's three major palaeontological sites, which contain remains of this ancient fauna (Valle Grande, Valle Chico and Fuente de Gusa), are intercorrelated according to their lithologies, sedimentology, palaeontological content and geochronology. The new K/Ar age interval for the fossiliferous sedimentary deposits ranges between 4.3 ± 0.7 and 3.78 ± 0.71 Ma, within the Early Pliocene, and shows that the first known terrestrial animals in Lanzarote were present on the island for about 500 ka. The principal component of the deposits is a bioclastic calcarenite of aeolian origin (sand sheet deposits), which is present in all three sites and constitutes 65% of the beds. The remaining 35% is of fluvial-aeolian origin (mainly stream deposits). All the beds contain the same fossils (insect egg pods, land snails, avian eggshells and tortoise eggshells). The local palaeogeography and the formation of the deposits were conditioned by a flat plain, larger than 16 km2, over which aeolian sands moved freely with a prevailing NNE-WSW wind direction. In agreement with previous investigations, the palaeoclimate in this interval (ca. 4.3 to 3.8 Ma) must have been mainly dry with some rainy episodes.

  19. What we could learn from observations of terrestrial exoplanets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Schwieterman, Edward; Arney, Giada; Lustig-Yaeger, Jacob; Lincowski, Andrew; Robinson, Tyler D.; Deming, Drake; NASA Astrobiology Institute - Virtual Planetary Laboratory

    2016-10-01

    Observations of terrestrial exoplanet environments remain an important frontier in comparative planetology. Studies of habitable zone terrestrial planets will set our own Earth in a broader context. Hot, post-runaway terrestrial exoplanets can provide insights into terrestrial planet evolution - and may reveal planetary processes that could mimic signs of life, such as photochemically-produced oxygen. While transmission spectroscopy observations of terrestrial planet atmospheres with JWST will be extremely challenging, they will afford our first chance to characterize the atmospheres of planets orbiting in the habitable zone of M dwarfs. However, due to the effects of refraction, clouds and hazes, JWST will likely sample the stratospheres of habitable zone terrestrial planets, and will not be able to observe the planetary surface or near-surface atmosphere. These limitations will hamper the search for signs of habitability and life, by precluding detection of water vapor in the deep atmosphere, and confining biosignature searches to gases that are prevalent in the stratosphere, such as evenly-mixed O2, or photochemical byproducts of biogenic gases. In contrast, direct imaging missions can potentially probe the entire atmospheric column and planetary surface, and can typically obtain broader wavelength coverage for habitable zone planets orbiting more Sun-like stars, complementing the M dwarf planet observations favored by transmission spectroscopy. In this presentation we will show results from theoretical modeling of terrestrial exoplanet environments for habitable Earth-like, early Earth and highly-evolved hot terrestrial planets - with photochemistry and climates that are driven by host stars of different spectral types. We will also present simulated observations of these planets for both transmission (JWST) and direct imaging (LUVOIR-class) observations. These photometric measurements and spectra help us identify the most - and least - observable features of

  20. Different representations of biological nitrogen fixation cause major variation in projected terrestrial biosphere responses to elevated levels of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Meyerholt, J.; Zaehle, S.; Smith, M. J.

    2015-12-01

    Including a land nitrogen (N) cycle in current Earth system models has led to substantial attenuation of predicted land-climate feedbacks, but the magnitude of this N effect remains highly uncertain. The current magnitude and global change responses of major land N cycle processes are still not well understood. Biological nitrogen fixation (BNF) is one particularly important process, being the largest natural land input of N. However, global terrestrial BNF rates are highly uncertain and models lack observations on which to base their predictions. The current variety of terrestrial biosphere models use a wide array of differing, largely untested BNF representations. We tested the six most widely used formulations within the O-CN model and examined the resulting differences in model predictions both under current atmospheric [CO2], as well as under future scenarios of elevated atmospheric [CO2]: a prescribed global map of static BNF rates, two simple empirical relationships between BNF and other ecosystem variables (net primary production and evapotranspiration), two process-based formulations based on plant N status, and an approach following a basic form of optimality of plant N acquisition. We found that the predicted global BNF rates for current conditions were fairly comparable, ranging from 93 to 134 Tg N yr-1 (median 118 Tg N yr-1). However, at 587 ppm atmospheric [CO2], model responses in BNF rates ranged from -5 Tg N yr-1 (-4 %) to 113 Tg N yr-1 (+88 %) (median 14 Tg N yr-1 (+15 %)). As a consequence, future projections of global net primary productivity and carbon storage (increases of different magnitudes), as well as N2O emission (negative responses or unchanged) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change induced perturbations; particularly through new empirical perturbation experiments.

  1. MODIS-Derived Terrestrial Primary Production

    NASA Astrophysics Data System (ADS)

    Zhao, Maosheng; Running, Steven; Heinsch, Faith Ann; Nemani, Ramakrishna

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of all the acronyms is available in the appendix at the end of the chapter) by the human population accounts for about 14-26% of global NPP (Imhoff et al. 2004). Rapid global climate change is induced by increased atmospheric greenhouse gas concentration, especially CO2, which results from human activities such as fossil fuel combustion and deforestation. This directly impacts terrestrial NPP, which continues to change in both space and time (Melillo et al. 1993; Prentice et al. 2001; Nemani et al. 2003), and ultimately impacts the well-being of human society (Milesi et al. 2005). Additionally, substantial evidence show that the oceans and the biosphere, especially terrestrial ecosystems, currently play a major role in reducing the rate of the atmospheric CO2 increase (Prentice et al. 2001; Schimel et al. 2001). NPP is the first step needed to quantify the amount of atmospheric carbon fixed by plants and accumulated as biomass. Continuous and accurate measurements of terrestrial NPP at the global scale are possible using satellite data. Since early 2000, for the first time, the MODIS sensors onboard the Terra and Aqua satellites, have operationally provided scientists with near real-time global terrestrial gross primary production (GPP) and net photosynthesis (PsnNet) data. These data are provided at 1 km spatial resolution and an 8-day interval, and annual NPP covers 109,782,756 km2 of vegetated land. These GPP, PsnNet and NPP products are collectively known as MOD17 and are part of a larger suite of MODIS land products (Justice et al. 2002), one of the core Earth System or Climate Data Records (ESDR or

  2. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    PubMed

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing

  3. Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

    PubMed Central

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and

  4. Role of land atmosphere interactions in WCRP - overview of the terrestrial component of GEWEX and the observing networks and field campaigns

    NASA Astrophysics Data System (ADS)

    Try, P.

    2002-06-01

    ). A West African campaign is also in the planning stages. All of these GEWEX components have elements that consider and address the carbon aspects of the land-atmosphere interactions and GEWEX has two integrating projects to facilitate these activities: the International Satellite Land Surface Climatology Project (ISLSCP) and the Global Land Atmosphere System Study (GLASS). ISLSCP focuses on the field campaigns, data sets and role of carbon exchange in the land-atmosphere coupling while GLASS focuses on the integration and parameterization of key land-atmosphere features in the full range of modelling activities. The major focus of ISLSCP is to improve our understanding of how carbon, energy and water are exchanged between the atmosphere and the terrestrial biosphere as an important component in understanding and predicting climate change. This is done by ISLSCP with the following objectives: -- Demonstrate the types of surface and near-surface satellite measurements that are relevant to climate and global change studies. -- Develop and improve algorithms for the interpretation of satellite measurements of land-surface features. -- Develop methods to validate area-averaged quantities derived from satellite measurements for climate simulation models. -- Prepare the groundwork for future operational production of landsurface data sets, which can be directly applied to climate problems. GEWEX also plays a vital role in the new WCRP-IGBP-IHDP joint Carbon Initiative and there are a series of new developments that impact the new carbon studies related to the interdisciplinary aspects of coupled land-atmosphere-ocean modelling and global observations. The new satellite spectrometer-interferometer instrumentation, improved land-atmosphere coupling in models and new carbon treatment and transport within global atmospheric models, all relate to the overall need for an improved integrated view of the global carbon-ocean-land-atmosphere interactions based on new observations and

  5. Stability of the Early Mars Atmosphere to Collapse into Permanent Polar Caps

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Kahre, M. A.; Wordsworth, R.; Forget, F.

    2016-09-01

    Snowfall from CO2 ice clouds on early Mars can affect the formation of permanent polar caps. We use a GCM to study the influence of CO2 cloud microphysics on the stability of thick CO2 atmospheres against collapse into permanent polar caps.

  6. Photochemical consequences of enhanced CO2 levels in earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Greatly enhanced atmospheric CO2 concentrations are the most likely mechanism for offsetting the effects of reduced solar luminosity early in the earth's history. CO2 levels of 80 to 600 times the present value could have maintained a mean surface temperature of 0 C to 15 C, given a 25 percent decrease in solar output. Such high CO2 levels are at least qualitatively consistent with the present understanding of the carbonate-silicate geochemical cycle. The presence of large amounts of CO2 has important implications for the composition of the earth's prebiotic atmosphere. The hydrogen budget of a high-CO2 primitive atmosphere would have been strongly influenced by rainout of H2O2 and H2CO. The reaction of H2O2 with dissolved ferrous iron in the early oceans could have been a major sink for atmospheric oxygen. The requirement that this loss of oxygen be balanced by a corresponding loss of hydrogen (by escape to space and rainout of H2CO) implies that the atmospheric H2 mixing ratio was greater than 2 x 10 to the -5th and the ground level O2 mixing ratio was below 10 to the -12th, even if other surface sources of H2 were small. These results are only weakly dependent on changes in solar UV flux, rainout rates, and vertical mixing rates in the primitive atmosphere.

  7. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  8. Regional climate simulations with moisture tracers to investigate land-atmosphere interactions in the terrestrial water cycle over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Rios-Entenza, Alexandre; Dominguez, Francina

    2013-04-01

    In the semiarid interior of the Iberian Peninsula, the topographic insulation from the surrounding seas promotes the role of internal sources of moisture and water recycling in the rainfall regime. Within the inland portions of the Iberian Peninsula, the annual cycle of precipitation often has a distinctive peak in the springtime, when evapotranspiration is the highest, in contrast to the coastal areas, where it follows more external moisture availability and synoptic forcing, with a maximum in winter-autumn and a pronounced minimum in the summer. We present here regional climate simulations using the WRF model, with the new added capability of moisture tracers as a tool to explicitly investigate the sources and pathways of humidity in the terrestrial water cycle over the Iberian Peninsula and explicitly calculate the recycling ratio, as an indicator of land-atmosphere coupling. Six new prognostic variables were added in the WRF model corresponding to tracers for water vapor and other moisture species (cloud water, ice, snow, rain and graupel) originating from moisture evapotranspired in the selected region (the land mass of the Iberian Peninsula). The new moisture variables are advected, diffused, and convectively and turbulently mixed identically to the full moisture species including all humidity sources (terrestrial, maritime and lateral boundaries). In addition, the convective scheme (Kain-Fritsch) and the microphysics scheme (WSM6) are modified to account for generation and depletion among the different tracer species, assuming that within one model layer in a grid cell moisture of all origins is well mixed. With these modifications we are able to explicitly track the cycle of water of terrestrial origin and exactly measure its contribution to rainfall with high resolution within our region of interest. We contrast our results with diagnostic estimates of the recycling ratio following the method of Schär and of Eltahir and Bras.

  9. The UV-B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins.

    PubMed

    Ehling-Schulz, Monika; Schulz, Stefan; Wait, Robin; Görg, Angelika; Scherer, Siegfried

    2002-11-01

    The UV-B and desiccation-tolerant terrestrial cyanobacterium Nostoc commune was grown under defined UV irradiation. Proteome changes were monitored in the membrane and the cytosolic and the extracellular fractions. Tools were developed to separate stress-triggered from growth stage-dependent changes. UV-B changed the relative cellular concentration of 493 out of 1,350 protein spots at least by a factor of three, rendering the UV-B stimulon of N. commune the most complex one described so far. It comprises two different parts: an early shock response influencing 214 proteins and a late acclimation response involving 279 proteins. The shock response comprised many membrane or membrane-associated proteins, whereas the acclimation response mainly changed cytosolic proteins. Most of the shock-induced changes were transient and did not overlap with the acclimation response. In the extracellular fraction, UV irradiation induced superoxide dismutase and the water stress protein. In total, 27 intracellular, UV-B-induced proteins were partially sequenced by electrospray ionization tandem mass spectrometry. Three functional classes were identified: proteins involved in lipid metabolism, in carbohydrate metabolism and in regulatory pathways. About 50% of the sequenced proteins were homologous to cyanobacterial database entries with un-known function. Interestingly, all of these proteins belong to the UV-B acclimation response. We conclude that the UV-B shock response and the UV-B acclimation response represent two completely different and remarkably complex strategies of N. commune to protect itself against UV-B radiation in its natural environment.

  10. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.

    2010-11-01

    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density < 2 kg/m3 and probably > 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a

  11. Immune response of earthworms (Lumbricus terrestris, Eisenia andrei and Aporrectodea tuberculata) following in situ soil exposure to atmospheric deposition from a cement factory.

    PubMed

    Massicotte, Richard; Robidoux, Pierre Yves; Sauvé, Sébastien; Flipo, Denis; Fournier, Michel; Trottier, Bertin

    2003-10-01

    In order to reduce their energy costs, many cement plants use fuel product substitutes (old tyres and used oil). The combustion of these products generates a metal increase (e.g. Cu, Cd, Pb and Zn) in the atmospheric emissions. After their release, these elements are deposited into the environment and could eventually accumulate up to concentrations of concern. At the Saint-Laurent cement factory (Joliette, QC, Canada), maximum deposition of these elements occurs in the direction of prevailing winds (North-East). We evaluated the potential impact of these depositions upon the immune system of three earthworm species (Lumbricus terrestris, Eisenia andrei and Aporrectodea tuberculata) exposed in a natural environment. The exposure sites were 0.5, 1.0, and 2.0 km downwind from the cement factory, along with an upwind reference site. The immune parameters studied were the cell viability and phagocytic potential of the immune cells (coelomocytes). For both L. terrestris and E. andrei, after 7 d exposure, none of the measured parameters showed significant differences among the sites. On the other hand, for the indigenous worm A. tuberculata, in the most exposed zone (at 0.5 km), we observed an increase in cell viability and phagocytic potential. This increase could possibly be attributed to physicochemical effects such as the alkaline pH of the soil, or alternatively, it could result from beneficial effects induced by an increased calcium supply.

  12. Multiple States in the Vegetation-Atmosphere System during the Early Eocene

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.

    2014-12-01

    Model simulations suggest that different initial conditions can lead to multiple stable vegetation-atmosphere states in the present-day Sahara. Here, we explore the stability of the vegetation-atmosphere system in the warm, nearly ice-free early Eocene climate. Using the MPI-ESM, we simulate the early Eocene vegetation starting from two different states: Continents are either completely covered by forest or completely barren, devoid of any vegetation. The soil albedo is similar to vegetation albedo. Hence, the albedo effect of vegetation is negligible. Without the albedo effect, the Charney effect which is suggested to cause multiple stable vegetation states in the present-day Sahara is absent. In our simulations, the hydrological effect of vegetation plays the major role. We perform the same simulations with preindustrial conditions to compare the stability of the vegetation-atmosphere system in both climate states. A desert evolves in Central Asia in both early Eocene simulations. This Asian desert is larger when the simulation starts from bare soil instead forest. Bare soil causes a dry climate in Central Asia in the beginning of the simulation. In the dry climate, vegetation does not establish. Forest enhances evaporation relative to bare soil leading to a stronger Asian monsoon and higher precipitation rates. The increased precipitation sustains plant growth and a smaller Asian desert evolves than in the simulation started from bare soil. Moreover, the stronger Asian monsoon affects global climate. Therefore, the two vegetation states in Central Asia accompany two globally different vegetation-atmosphere states. In the preindustrial climate, the Sahara is larger when the initial vegetation is bare soil instead of forest. The same hydrological effect causes the multiple vegetation states the Sahara as in the early Eocene Asian desert. However, the multiple stable vegetation states in the Sahara do not affect the global climate. This result emphasises that the

  13. Habitability of terrestrial-mass planets in the HZ of M Dwarfs - I. H/He-dominated atmospheres

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Mohanty, Subhanjoy

    2016-07-01

    The ubiquity of M dwarfs, combined with the relative ease of detecting terrestrial-mass planets around them, has made them prime targets for finding and characterizing planets in the `habitable zone' (HZ). However, Kepler finds that terrestrial-mass exoplanets are often born with voluminous H/He envelopes, comprising mass-fractions (Menv/Mcore) ≳1 per cent. If these planets retain such envelopes over Gyr time-scales, they will not be `habitable' even within the HZ. Given the strong X-ray/UV fluxes of M dwarfs, we study whether sufficient envelope mass can be photoevaporated away for these planets to become habitable. We improve upon previous work by using hydrodynamic models that account for radiative cooling as well as the transition from hydrodynamic to ballistic escape. Adopting a template active M dwarf XUV spectrum, including stellar evolution, and considering both evaporation and thermal evolution, we show that: (1) the mass-loss is (considerably) lower than previous estimates that use an `energy-limited' formalism and ignore the transition to Jeans escape; (2) at the inner edge of the HZ, planets with core mass ≲ 0.9 M⊕ can lose enough H/He to become habitable if their initial envelope mass-fraction is ˜1 per cent; (3) at the outer edge of the HZ, evaporation cannot remove a ˜1 per cent H/He envelope even from cores down to 0.8 M⊕. Thus, if planets form with bulky H/He envelopes, only those with low-mass cores may eventually be habitable. Cores ≳1 M⊕, with ≳1 per cent natal H/He envelopes, will not be habitable in the HZ of M dwarfs.

  14. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah; Arnault, Joel; Laux, Patrick; Wagner, Sven; Kitheka, Johnson; Kunstmann, Harald

    2017-02-01

    For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water balances are investigated. This is achieved through the application of the Weather Research and Forecasting (WRF) and the fully coupled WRF-Hydro modeling system over the Mathioya-Sagana subcatchment (3279 km2) and its surroundings in the upper Tana River basin for 4 years (2011-2014). The model setup consists of an outer domain at 25 km (East Africa) and an inner one at 5-km (Mathioya-Sagana subcatchment) horizontal resolution. The WRF-Hydro inner domain is enhanced with hydrological routing at 500-m horizontal resolution. The results from the fully coupled modeling system are compared to those of the WRF-only model. The coupled WRF-Hydro slightly reduces precipitation, evapotranspiration, and the soil water storage but increases runoff. The total precipitation from March to May and October to December for WRF-only (974 mm/year) and coupled WRF-Hydro (940 mm/year) is closer to that derived from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data (989 mm/year) than from the TRMM (795 mm/year) precipitation product. The coupled WRF-Hydro-accumulated discharge (323 mm/year) is close to that observed (333 mm/year). However, the coupled WRF-Hydro underestimates the observed peak flows registering low but acceptable NSE (0.02) and RSR (0.99) at daily time step. The precipitation recycling and efficiency measures between WRF-only and coupled WRF-Hydro are very close and small. This suggests that most of precipitation in the region comes from moisture advection from the outside of the analysis domain, indicating a minor impact of potential land-precipitation feedback mechanisms in this case. The coupled WRF-Hydro nonetheless serves as a tool in quantifying the atmospheric-terrestrial water balance in this region.

  15. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model

    NASA Astrophysics Data System (ADS)

    Stocker, B. D.; Strassmann, K.; Joos, F.

    2011-01-01

    A Dynamic Global Vegetation model coupled to a simplified Earth system model is used to simulate the impact of anthropogenic land cover changes (ALCC) on Holocene atmospheric CO2 and the contemporary carbon cycle. The model results suggest that early agricultural activities cannot explain the mid to late Holocene CO2 rise of 20 ppm measured on ice cores and that proposed upward revisions of Holocene ALCC imply a smaller contemporary terrestrial carbon sink. A set of illustrative scenarios is applied to test the robustness of these conclusions and to address the large discrepancies between published ALCC reconstructions. Simulated changes in atmospheric CO2 due to ALCC are less than 1 ppm before 1000 AD and 30 ppm at 2004 AD when the HYDE 3.1 ALCC reconstruction is prescribed for the past 12 000 years. Cumulative emissions of 69 GtC at 1850 and 233 GtC at 2004 AD are comparable to earlier estimates. CO2 changes due to ALCC exceed the simulated natural interannual variability only after 1000 AD. To consider evidence that land area used per person was higher before than during early industrialisation, agricultural areas from HYDE 3.1 were increased by a factor of two prior to 1700 AD (scenario H2). For the H2 scenario, the contemporary terrestrial carbon sink required to close the atmospheric CO2 budget is reduced by 0.5 GtC yr-1. Simulated CO2 remains small even in scenarios where average land use per person is increased beyond the range of published estimates. Even extreme assumptions for preindustrial land conversion and high per-capita land use do not result in simulated CO2 emissions that are sufficient to explain the magnitude and the timing of the late Holocene CO2 increase.

  16. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    EPA Science Inventory

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  17. Studies of the airglow, the aurora, the ion and neutral composition, and the chemistry of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Zipf, E. C., Jr.

    1974-01-01

    Results obtained by rocket-borne optical spectrometry are presented. Composition measurements and auroral studies are reported. The production of N (D-2) atoms by photo-absorption processes, and by electron impact excitation of N2 are discussed along with vibrationally excited CO2(+) ions in planetary atmospheres.

  18. Terrestrial atmospheric responses on Svalbard to the 20 March 2015 Arctic total solar eclipse under extreme conditions.

    PubMed

    Pasachoff, J M; Peñaloza-Murillo, M A; Carter, A L; Roman, M T

    2016-09-28

    This article reports on the near-surface atmospheric response at the High Arctic site of Svalbard, latitude 78° N, as a result of abrupt changes in solar insolation during the 20 March 2015 equinox total solar eclipse and notifies the atmospheric science community of the availability of a rare dataset. Svalbard was central in the path of totality, and had completely clear skies. Measurements of shaded air temperature and atmospheric pressure show only weak, if any, responses to the reduced insolation. A minimum in the air temperature at 1.5 m above the ground occurred starting 2 min following the end of totality, though this drop was only slightly beyond the observed variability for the midday period. Eclipse-produced variations in surface pressure, if present, were less than 0.3 hPa.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  19. Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO2 concentration, climate, and land use

    NASA Astrophysics Data System (ADS)

    LathièRe, J.; Hewitt, C. N.; Beerling, D. J.

    2010-03-01

    We describe the development and analysis of a global model based on Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006) for estimating isoprene emissions from terrestrial vegetation. The sensitivity of calculated isoprene emissions to descriptors including leaf age, soil moisture, atmospheric CO2 concentration, and regional variability of emission factors is analyzed. The validity of the results is evaluated by comparison with compilations of published field-based canopy-scale observations. Calculated isoprene emissions reproduce above-canopy flux measurements and the site-to-site variability across a wide range of latitudes, with the model explaining 60% of the variance. Although the model underestimates isoprene emissions, especially in northern latitude localities, this disagreement is significantly corrected when regional variability of emission factors for particular plant functional types is considered (r2 = 0.78). At the global scale, we estimate a terrestrial biosphere isoprene flux of 413 TgC yr-1 using the present-day climate, atmospheric CO2 concentration, and vegetation distribution, and this compares with other published estimates from global modeling studies of 402 to 660 TgC yr-1. The validated model was used to calculate changes in isoprene emissions in response to atmospheric CO2 increase, climate change, and land use change during the 20th century (1901-2002). Changes in all of these factors are found to impact significantly on isoprene emissions over the course of the 20th century. Between 1901 and 2002, we estimate that at the global scale, climate change was responsible for a 7% increase in isoprene emissions, and rising atmospheric CO2 caused a 21% reduction. However, by the end of the 20th century (2002), anthropogenic cropland expansion has the largest impact reducing isoprene emissions by 15%. Overall, these factors combined to cause a 24% decrease in global isoprene emissions during the 20th century. It

  20. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  1. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  2. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity

  3. Photochemical and thermal modeling in the early atmosphere of the earth

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    1988-01-01

    The simplest carbon compounds, present in the terrestrial and planetary atmospheres, exhibit a wide range of oxidation states, carbon dioxide and methane being the most oxidized and the most reduced form of carbon, respectively. The question arises as to the origin and the interconversion among the carbon species. The chemical pathways for the conversion of CH4 to CO and CO2 are for the most part known. The reverse process, the reduction of CO to CH4 is however, poorly understood. A new reaction is proposed, H2CO + H + M yields CH3O + M, which might play a fundamental role in the reduction of CO or CH4. An update is presented of nitrile photochemistry on Titan.

  4. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  5. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    USGS Publications Warehouse

    Carr, Michael H.

    1989-01-01

    Channels on the Martian surface suggest that Mars had an early, relatively thick atmosphere. If the atmosphere was thick enough for water to be stable at the surface, CO2 in the atmosphere would have been fixed as carbonates on a relatively short time scale, previously estimated to be 1 bar every 107 years. This loss must have been offset by some replenishment mechanism to account for the numerous valley networks in the oldest surviving terrains. Impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by addition of carbon to Mars from the impacting bolides. Depending on the relationship between the transient cavity diameter and the diameter of the resulting crater, burial rates as a result of impact gardening at the end of heavy bombardment are estimated to range from 20 to 45 m/106 years, on the assumption that cratering rates in Mars were similar to those of the Nectarian Period on the Moon. At these rates 0.1-0.2 bar of CO2 could have been released every 107 years as a result of burial to depths where dissociation temperatures of carbonates were reached. Modeling of large impacts suggests that an additional 0.01 to 0.02 bar of CO2 could have been released every 107 years during the actual impacts. In the unlikely event that all the impacting material was composed of carbonaceous chondrites, a further 0.3 bar of CO2 could have been added to the atmosphere every 107 years by oxidation of meteoritic carbon. Even when supplemented by the volcanically induced release of CO2, these release rates are barely sufficient to sustain an early atmosphere if water were continuously present at the surface. The results suggest that water may have been only intermittently present on the surface early in the planet's history.

  6. Loss of Water in Early Earth's Atmosphere and Its Effects on Habitability

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Khazanov, George

    2015-08-01

    The short wavelength emission from the Sun has a profound impact on the Earth’s atmosphere. High energy photons ionize the atmosphere and produce photoelectrons. This process provides a major contribution to the acceleration of atmospheric ions due to the vertical separation of ions and electrons, and the formation of the resulting ambipolar electric field. Observations and theory suggest that even a relatively small fraction of super-thermal electrons (photoelectrons) produced due to photoionization can drive the ”polar wind” that is responsible for the transport of ionospheric constituents to the Earth’s magnetosphere.The young Sun was a magnetically active star generating powerful radiative output from its chromosphere, transition region and corona which was a few hundred times greater than that observed today. What effects would the photoionization processes due to the X-ray-UV solar flux from early Sun have on the loss of water from the early Earth?We use the Fokker-Plank code coupled with 1D hydrodynamic code to model the effect of intensive short-wavelength (X-rays to UV band) emission from the young Sun (3.8 and 4.4 Ga) on Earth's atmosphere. Our simulations include the photoionization processes of the Earth’s atmosphere forming a population of photoelectrons (E<600 eV), the kinetic effects of their propagation associated and their contribution in ionosphere - magnetosphere energy redistribution. Our coupled simulations show that the ambipolar electric field can drag atmospheric ions of oxygen and hydrogen to the magnetosphere and produce significant mass loss that can affect the loss of water from the early Earth in the first half a billion years. This process became less efficient in the next 0.2-0.3 Ga that could have provided a window of opportunity for origin of life.

  7. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James; Webb, Michael E.

    2016-04-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. However, the identities, sources and abundances of airborne particles capable of efficiently nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. Recently, several studies have suggested that unidentified biogenic residues in soil dusts are likely to be an important source of these efficient atmospheric INPs. While it has been shown that cell-free proteins produced by common soil-borne fungi are exceptional INPs, whether these fungi are a source of ice-nucleating biogenic residues in soils has yet to be shown. In particular, it is unclear whether upon adsorption to soil mineral particles, the activity of fungal ice-nucleating proteins is retained or is reduced, as observed for other soil enzymes. Here we show that proteins from a common soil fungus (Fusarium avenaceum) do in fact preferentially bind to and impart their ice-nucleating properties to the common clay mineral kaolinite. The ice-nucleating activity of the proteinaceous INPs is found to be unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of their activity even after multiple washings with pure water. The atmospheric implications of the finding that nanoscale fungal INPs can effectively determine the nucleating abilities of lofted soil dusts are discussed.

  8. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James F.; Webb, Michael E.

    2016-06-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. To date, the identities, sources and abundances of particles capable of nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. While biomolecules such as proteins and carbohydrates have been implicated as important high-temperature INPs, the lack of knowledge on the environmental fates of these species makes it difficult to assess their potential atmospheric impacts. Here we show that such nanoscale ice-nucleating proteins from a common soil-borne fungus (Fusarium avenaceum) preferentially bind to and confer their ice-nucleating properties to kaolinite. The ice-nucleating activity of the proteinaceous INPs is unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of the activity even after multiple washings with pure water. The atmospheric implications of the finding that biological residues can confer their ice-nucleating ability to dust particles are discussed.

  9. Two high resolution terrestrial records of atmospheric Pb deposition from New Brunswick, Canada, and Loch Laxford, Scotland.

    PubMed

    Kylander, Malin E; Weiss, Domink J; Kober, Bernd

    2009-02-15

    Environmental archives like peat deposits allow for the reconstruction of both naturally and anthropogenically forced changes in the biogeochemical cycle of Pb as well as the quantification of past and present atmospheric Pb pollution. However, records of atmospheric Pb deposition from pre-industrial times are lacking. In a publication by Weiss et al. [Weiss, D., Shotyk, W., Boyle, E.A., Kramers, J.D., Appleby, P.G., Cheburkin, A.K., Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat bogs. Sci Total Environ 2002;292:7-18]. Pb isotopes data measured by Q-ICP-MS and TIMS, concentration and enrichment data was presented for sites in eastern Canada (PeW1) and northwestern Scotland (LL7c), dating to 1586 A.D and 715 A.D., respectively. Here these same cores are re-analysed for Pb isotopes by MC-ICP-MS thereby acquiring 204Pb data and improving on the original data in terms of resolution and temporal coverage. Significant differences were found between the Q-ICP-MS/TIMS and MC-ICP-MS measurements, particularly at PeW1. These discrepancies are attributed to the problematic presence of organic matter during sample preparation and analysis complicated by the heterogeneity of the organic compounds that survived sample preparation steps. The precision and accuracy of Pb isotopes in complex matrices like peat is not always well estimated by industrial standards like NIST-SRM 981 Pb. Lead pollution histories at each site were constructed using the MC-ICP-MS data. The entire LL7c record is likely subject to anthropogenic additions. Contributions from local mining were detected in Medieval times. Later, coal use and mining in Scotland, Wales and England became important. After industrialization (ca. 1885 A.D.) contributions from Broken Hill type ores and hence, leaded petrol, dominate atmospheric Pb signatures right up to modern times. At PeW1 anthropogenic impacts are first distinguishable in the late 17th

  10. Synthesis of nitrous oxide by lightning in the early anoxic Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Navarro, K. F.; Navarro-Gonzalez, R.; McKay, C. P.

    2013-12-01

    Carbon dioxide (CO2) was the main atmospheric component of the early Earth's atmosphere and exerted a key role in climate by maintaining a hydrosphere during a primitive faint Sun [1]; however, CO2 was eventually removed from the atmosphere by rock weathering and sequestered in the Earth's crust and mantle [1]. Nitric oxide (NO) was fixed by lightning discharges at a rate of 1×1016 molecules J-1 in CO2 (50-80%) rich atmospheres [2]. As the levels of atmospheric CO2 dropped to 20%, the production rate of NO by lightning rapidly decreased to 2×1014 molecules J-1 and then slowly diminished to 1×1014 molecules J-1 at CO2 levels of about 2.5% [2]. In order to maintain the existence of liquid water in the early Earth, it is required to warm up the planet with other greenhouse gases such as methane (CH4) [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.8 percent of carbon dioxide with methane concentrations from 0 to 1,000 ppm in molecular nitrogen. Lightning was simulated in the laboratory by a plasma generated with a pulsed Nd-YAG laser [2]. Our results show that the production of NO by lightning is independent of the presence of methane but drops from 3×1014 molecules J-1 in 10% CO2 to 5×1013 molecules J-1 in 1% CO2. Surprisingly, nitrous oxide (N2O) is also produced at a rate of 4×1013 molecules J-1 independent of the levels of CH4 and CO2. N2O is produced by lightning in the contemporaneous oxygenated Earth's atmosphere at a comparable rate of (0.4-1.5)×1013 molecules J-1 [4, 5], but was not detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [6]. The only previously reported abiotic synthesis of N2O was by corona discharges in rich CO2 atmospheres (20-80%) with a production rate of 8×1012 molecules J-1 [6]; however at lower CO2 (<20%) levels, N2O is no longer produced. Therefore, lightning in the early Earth

  11. A process-level evaluation of the spatiotemporal variability of CO2 fluxes predicted by terrestrial biosphere models using atmospheric data

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Michalak, A. M.; Shiga, Y. P.; Yadav, V.

    2013-12-01

    Terrestrial biosphere models (TBMs) are used to extrapolate local observations and process-level understanding of land-atmosphere carbon exchange to larger regions, and can serve as a predictive tool for examining carbon-climate interactions and global change. Understanding and improving the performance of TBMs is thus crucial to the carbon cycle research community. In this work, we evaluate the spatiotemporal patterns of net ecosystem exchange (NEE) simulated by TBMs using atmospheric CO2 observations and a Geostatistical Inverse Modeling (GIM) framework. The evaluation methodology is based on the ability (or inability) of the spatiotemporal patterns in NEE estimates to explain the variability observed in atmospheric CO2 distribution. More simply, we examine whether the spatiotemporal patterns of NEE simulated by TBMs (including CASA-GFED, ORCHIDEE, VEGAS2 and SiB3) are consistent with the variations observed in the atmosphere. A similar GIM methodology is also applied using environmental variables (such as water availability, temperature, radiation, etc.) rather than TBMs, to explore the environmental processes associated with the variability of NEE, and determine which processes are associated with good/poor performance in TBMs. We find that NEE simulated by TBMs is consistent with that seen by atmospheric measurements more often during growing season months (Apr-Sept) than during the non-growing season. Over Temperate Broadleaf and Mixed Forests, Temperate Coniferous Forests and Temperate Grasslands, Savannas and Shrublands, atmospheric measurements are sufficiently sensitive to NEE fluxes to constrain the evaluation of model performance during the majority of the year (about 7-8 months in a year, mostly in growing season). For these regions and months, at least one of the TBMs is found to be able to reproduce the observed variability, but the most representative TBM varies by region and month. For the remaining months, none of the TBMs are able to reproduce

  12. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model

    USGS Publications Warehouse

    Zhuang, Q.; Melillo, J.M.; Kicklighter, D.W.; Prinn, R.G.; McGuire, A.D.; Steudler, P.A.; Felzer, B.S.; Hu, S.

    2004-01-01

    We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century in response to observed changes in the region's climate. We estimate that the net emissions of CH4 (emissions minus consumption) from these soils have increased by an average 0.08 Tg CH4 yr-1 during the twentieth century. Our estimate of the annual net emission rate at the end of the century for the region is 51 Tg CH4 yr-1. Russia, Canada, and Alaska are the major CH4 regional sources to the atmosphere, responsible for 64%, 11%, and 7% of these net emissions, respectively. Our simulations indicate that large interannual variability in net CH4 emissions occurred over the last century. Our analyses of the responses of net CH4 emissions to the past climate change suggest that future global warming will increase net CH4 emissions from the Pan-Arctic region. The higher net CH4 emissions may increase atmospheric CH 4 concentrations to provide a major positive feedback to the climate system. Copyright 2004 by the American Geophysical Union.

  13. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)

    USGS Publications Warehouse

    Pan, Y.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Pitelka, L.F.; Hibbard, K.; Pierce, L.L.; Running, S.W.; Ojima, D.S.; Parton, W.J.; Schimel, D.S.; Borchers, J.; Neilson, R.; Fisher, H.H.; Kittel, T.G.F.; Rossenbloom, N.A.; Fox, S.; Haxeltine, A.; Prentice, I.C.; Sitch, S.; Janetos, A.; McKeown, R.; Nemani, R.; Painter, T.; Rizzo, B.; Smith, T.; Woodward, F.I.

    1998-01-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In

  14. Solubility and Partitioning of Noble Gases in Anorthite, Diopside, Forsterite, Spinel, and Synthetic Basaltic Melts: Implications for the Origin and Evolution of Terrestrial Planet Atmospheres.

    NASA Astrophysics Data System (ADS)

    Broadhurst, Catherine Leigh

    The noble gas abundances and isotopic ratios of the terrestrial planets differ from each other and from the average of chondritic meteorites. These different abundance patterns result from primordial heterogeneities or different degassing histories. Magmatic transport is the only degassing mechanism that can be demonstrated to occur on Venus, Earth, and Mars, and is presently the dominant form of volatile transport to a planet's free surface. An alternative technique was developed to determine the partitioning and solubility of noble gases in mineral/melt systems. Natural end member minerals and synthetic melts known to be in equilibrium were held in separate crucibles in a one bar flowing noble gas atmosphere. Experiments were run 7-18 days at 1300 or 1332^circ C, in 99.95% Ar or a Ne-Ar-Kr-Xe mix. Gas concentrations were measured by mass spectrometry. The solubility of noble gases in minerals was surprisingly high, and individual samples of a particular mineral composition are distinct in their behavior. The data is consistent with lattice vacancy defect siting. Noble gas solubility in the minerals increases with increasing atomic number; this may be related to polarizability. Noble gas solubilities in melts decrease with increasing atomic number. Solubility is directly proportional to melt molar volume; values overlap the lower end of the range defined for natural basalts. The lower solubilities are related to the higher MgO and CaO concentrations and lower degree of polymerization and Fe^{3+ } concentration in synthetic vs. natural melts. Partition coefficient patterns show a clear trend of increasing compatibility with increasing noble gas atomic number, but many individual values are >1. Calculations show that the terrestrial planet atmospheres cannot have formed from partial melting of a common chondritic source. When results are examined with isotopic constraints and MOR and hot-spot activities, there is no compelling evidence that the Earth is

  15. Improving a process-based biogeochemistry model using an atmospheric transport chemistry model and in-situ and remotely-sensed terrestrial and atmospheric data

    NASA Astrophysics Data System (ADS)

    Tang, Jinyun

    To improve the quantification of methane emissions from natural wetlands, an integrated framework was developed. It includes an improved process-based model and a 4-D VAR inversion algorithm implemented with the adjoint GEOS-Chem model. The new process-based model was tested comprehensively at two temperate peatlands in Michigan, USA, with historical measurement data for a 3-year period. The results showed that (1) the ebullition can be modeled as a mechanical process that is controlled by the atmospheric pressure, water table level and total pressure of the various dissolved gases; (2) the four-substance structure is the appropriate choice to correctly model the transport pathways to release wetland methane into the atmosphere; and (3) the estimated methane emission is very sensitive to the hydrological forcing used to drive the model and can be seriously biased due to an improper modeling of water tables. The wetland emission from wetland in 45°N north was thence quantified with the one-substance model, and was fed into the GEOS-Chem model for an assessment of forward transport and flux inversion for the year 2004. The forward simulations were evaluated using observations including low frequency flask measurement, high frequency in-situ time series, atmospheric methane profiles from aircraft campaigns and retrievals from space instruments SCIMACHY and AIRS. It was found that simulations with the anthropogenic emission datasets compiled based on EDGAR4 dataset resulted in better agreement with the high precision surface measurements. The use of GFED2 and GFED3 datasets for methane fluxes from biomass burning lead to small differences in the forward simulations. Overall, the seasonal error characteristics of the model-AIRS misfit, and model-SCIAMACHY misfit, are around 1%-2% in most of the grid cells at the grid resolution for year 2004. 4D-Var inversions were conducted using the adjoint GEOS-Chem to obtain an improved estimation of the surface fluxes. The

  16. Middle atmosphere electrodynamics: Report of the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The middle atmosphere (MA), which is defined as the region bounded below by the tropopause near 10 km and above by the mesopause near 90 to 100 km, is regarded as a passive medium through which electric fields and currents are transmitted from sources above and below. A scientific background is given for: sources of MA electric fields; MA conductivity and currents; and MA plasma characteristics. Recommendations are given for research in MA electrodynamics in the following areas: (1) MA electrodynamical parameters; (2) models and supportive laboratory measurements; and (3) investigation of specific problems in the coupled systems.

  17. The young sun and the atmosphere and photochemistry of the early earth

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampapa, M. S.

    1983-01-01

    The origin and evolution of the earth's early atmosphere depend crucially on the dissipation time of the primitive solar nebula (SN). Using different theories of turbulence, the dissipation time of an SN of 0.1 solar mass is estimated as 2.5-8.3 Myr. Because accretion times are usually much longer, it is concluded that most planetary accretion must have occurred in a gas-free environment. Using new IUE data, a wavelength-dependent UV flux is constructed for the young sun which is then used to study the photochemistry and concentrations of O, O2, O3, OH, H, HCO and formaldehyde H2CO in the earth's early prebiological atmosphere.

  18. Martian supergene enrichment in Shalbatana Valley: Implications for Mars Early atmosphere

    NASA Astrophysics Data System (ADS)

    Popa, Ciprian; Carrozzo, Giacomo; DiAchille, Gaetano; Silvestro, Simone; Espostio, Francesca; Mennella, Vito

    2015-04-01

    The present work focuses on the detailed description of the first ever-identified supergene enrichment zone on Mars. The mineral paragenesis present at the site sets constrains on the characteristics of early Martian atmosphere. A chrysocolla/malachite bearing unit in the largest of Shalbatana Valley paleolacustrine sediment accumulation constitutes the proof for this process. The water permanence at the formation time is the main implication of this finding. Furthermore, the potential biogenic involvement at the mineralization stage adds scientific importance to the site. The latter implication could set the site as a high priority choice for future Martian in-situ robotic roving/sample-return missions. The relative age of the area (˜3.7 Ba) adds weight to this finding for purposes of planetary atmosphere evolution comparison. No Earth supergene deposit has survived that long, making this site extremely important to address the problem of the oxidative conditions of the primordial Earth and Mars atmospheres.

  19. The solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.

    1978-01-01

    The larger system of the earth environment is controlled externally by electromagnetic and particle energy from the sun. Recent studies have shown that the sun is a variable star with changes in its radiation which produce significant effects in the earth's climate and weather. The study of the solar-terrestrial system requires simultaneous, long-duration observations of the different elements or 'links' in the solar-terrestrial chain. Many investigations must be conducted in space from a vantage point above the earth's atmosphere where all of the sun's emissions can be observed free from atmospheric distortion, where the magnetospheric particles and fields can be measured directly, and where the atmosphere can be observed on a global scale. The extension of the Shuttle on-orbit capability in connection with the development of the power module will offer an important near-term step in an evolutionary process leading toward a permanent manned Solar Terrestrial Observatory capability in low-earth orbit. Attention is given to the required solar-terrestrial measurements, the operation of the Solar Terrestrial Observatory, and an evolutionary approach to the Solar Terrestrial Observatory.

  20. Turbulent atmospheric plumes above line sources with an application to volcanic fissure eruptions on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The theory of turbulent plumes maintained above steady line sources of buoyancy is worked out in detail within the limitations of Taylor's entrainment assumption. It is applied to the structure of a pure plume injected into a stably stratified atmosphere. Volcanic basalt eruptions that develop from long, narrow vents create line source plumes, which rise well above the magmatic fire fountains playing near the ground level. The eruption of Laki in 1783 may provide an example of this style of eruption. Flood basalts are more ancient examples. Evidence of enormous fissure eruptions that occurred in the past on Mars and Venus also exists. Owing to the different properties of the atmospheres on these two planets from those on the earth, heights of line source plumes are expected to vary in the ratios 1:6:0.6 (earth:Mars:Venus). It is very unlikely that the observed increase of sulfur dioxide above the Venusian cloud deck in 1978 could have been due to a line source volcanic eruption, even if it had been a flood basalt eruption.

  1. Ideas and Perspectives: On the emission of amines from terrestrial vegetation in the context of atmospheric new particle formation

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.

    2015-02-01

    In this article we summarise recent science, which shows how airborne amines, specifically methylamines (MAs), play a key role in atmospheric new particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NFP events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants have already been described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions, and the decomposition of organic material could constitute another source for airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited and thus it is also an open question how Global Change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  2. Ideas and perspectives: on the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.

    2015-06-01

    In this article we summarise recent science which shows how airborne amines, specifically methylamines (MAs), play a key role in new atmospheric particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NPF events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants was already described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species-specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions. The decomposition of organic material constitutes another, potentially ubiquitous, source of airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited, and thus it is also an open question how global change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  3. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    PubMed

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  4. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    NASA Astrophysics Data System (ADS)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco; SMS Science Team; Acton, Gary; Askin, Rosemary; Atkins, Clifford; Bassett, Kari; Beu, Alan; Blackstone, Brian; Browne, Gregory; Ceregato, Alessandro; Cody, Rosemary; Cornamusini, Gianluca; Corrado, Sveva; DeConto, Robert; Del Carlo, Paola; Di Vincenzo, Gianfranco; Dunbar, Gavin; Falk, Candice; Field, Brad; Fielding, Christopher; Florindo, Fabio; Frank, Tracy; Giorgetti, Giovanna; Grelle, Thomas; Gui, Zi; Handwerger, David; Hannah, Michael; Harwood, David M.; Hauptvogel, Dan; Hayden, Travis; Henrys, Stuart; Hoffmann, Stefan; Iacoviello, Francesco; Ishman, Scott; Jarrard, Richard; Johnson, Katherine; Jovane, Luigi; Judge, Shelley; Kominz, Michelle; Konfirst, Matthew; Krissek, Lawrence; Kuhn, Gerhard; Lacy, Laura; Levy, Richard; Maffioli, Paola; Magens, Diana; Marcano, Maria C.; Millan, Cristina; Mohr, Barbara; Montone, Paola; Mukasa, Samuel; Naish, Timothy; Niessen, Frank; Ohneiser, Christian; Olney, Mathew; Panter, Kurt; Passchier, Sandra; Patterson, Molly; Paulsen, Timothy; Pekar, Stephen; Pierdominici, Simona; Pollard, David; Raine, Ian; Reed, Joshua; Reichelt, Lucia; Riesselman, Christina; Rocchi, Sergio; Sagnotti, Leonardo; Sandroni, Sonia; Sangiorgi, Francesca; Schmitt, Douglas; Speece, Marvin; Storey, Bryan; Strada, Eleonora; Talarico, Franco; Taviani, Marco; Tuzzi, Eva; Verosub, Kenneth; von Eynatten, Hilmar; Warny, Sophie; Wilson, Gary; Wilson, Terry; Wonik, Thomas; Zattin, Massimiliano

    2016-03-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (˜280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (˜500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  5. Haze aerosols in the atmosphere of early Earth: manna from heaven.

    PubMed

    Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A

    2004-01-01

    An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.

  6. Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology

    PubMed Central

    Markey, Molly J.; Marshall, Charles R.

    2007-01-01

    There is no consensus on when in the fish-tetrapod transition suction feeding, the primary method of prey capture in the aquatic realm, evolved into the direct biting on prey typical of terrestrial animals. Here, we show that differences in the morphology of selected cranial sutures between species that span the fish–tetrapod transition (the Devonian osteolepiform fish Eusthenopteron, the aquatic Devonian tetrapod Acanthostega, and the Permian terrestrial tetrapod Phonerpeton) can be used to infer when terrestrial feeding first appeared. Our approach consists of defining a sutural morphospace, assigning functional fields to that morphospace based on our previous measurements of suture function made during feeding in the living fish Polypterus, inferring the functions of the fossil sutures based on where they fall in the morphospace, and then using the correlation between feeding mode and the patterns of inferred suture function across the skull roof in taxa where feeding mode is unambiguous to infer the feeding mode practiced by Acanthostega. Using this procedure, we find that the suture morphologies of Acanthostega are inconsistent with the hypothesis that it captured prey primarily by means of suction, which suggests that it may have bitten directly on prey at or near the water's edge. Thus, our data strongly support the hypothesis that the terrestrial mode of feeding first emerged in aquatic taxa. PMID:17438285

  7. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill--Part III: Atmospheric deposition rates (pilot test).

    PubMed

    Thomas, P A

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated 226Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m2) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, 226Ra, and 210Pb than rainfall, while more 210Po was deposited with rainfall.

  8. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  9. Atmospheric COS measurements and satellite-derived vegetation fluorescence data to evaluate the terrestrial gross primary productivity of CMIP5 model

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; MacBean, Natasha; Launois, Thomas; Belviso, Sauveur; Cadule, Patricia; Maignan, Fabienne

    2016-04-01

    Predicting the fate of the ecosystem carbon stocks and their sensitivity to climate change strongly relies on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. The Gross Primary Productivity (GPP) simulated by the different terrestrial models used in CMIP5 show large differences however, not only in terms of mean value but also in terms of phase and amplitude, thus hampering accurate investigations into carbon-climate feedbacks. While the net C flux of an ecosystem (NEE) can be measured in situ with the eddy covariance technique, the GPP is not directly accessible at larger scales and usually estimates are based on indirect measurements combining different tracers. Recent measurements of a new atmospheric tracer, the Carbonyl sulphide (COS), as well as the global measurement of Solar Induced Fluorescence (SIF) from satellite instruments (GOSAT, GOME2) open a new window for evaluating the GPP of earth system models. The use of COS relies on the fact that it is absorbed by the leaves in a similar manner to CO2, while there seems to be nothing equivalent to respiration for COS. Following recent work by Launois et al. (ACP, 2015), there is a potential to evaluate model GPP from atmospheric COS and CO2 measurements, using a transport model and recent parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of COS. Vegetation uptake of COS is modeled as a linear function of GPP and the ratio of COS to CO2 rate of uptake by plants. For the fluorescence, recent measurements of SIF from space appear to be highly correlated with monthly variations of data-driven GPP estimates (Guanter et al., 2012), following a strong dependence of vegetation SIF on photosynthetic activity. These global measurements thus provide new indications on the timing of canopy carbon uptake. In this work, we propose a dual approach that combines the strength of both COS and SIF

  10. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    PubMed

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first < or =150 million years, which is about 10(4) times greater than today and corresponds to a water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  11. Stability of the Early Mars Atmosphere to Collapse into Permanent Polarcaps

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Kahre, M. A.; Wordsworth, R.; Forget, F.

    2016-01-01

    The presence of a permanent CO2 polar ice cap on Mars has important consequences for the planet's climate system. The heat balance of such a cap, which is determined mainly by atmospheric heat transport, and the downward solar in infrared radiative fluxes, determines its surface temperature, which through the vapor pressure relation sets the mean annual surface pressure. On Mars today, for example, the south residual CO2 cap is present year-round with a mean annual temperature of approximately 145 K which corresponds to a mean annual CO2 vapor pressure of approximately 600 Pa. On early Mars, permanent polar caps are also possible especially since the sun was less luminous 3.5-4.0 Gya. Thus, the existence of permanent polar caps on early Mars is central to understanding the nature of the planets climate system in those ancient times and whether or not the atmosphere might have been capable of sustaining conditions suitable for liquid water flowing over the surface as is indicated in the geological record. Forget et al [1] showed that for present orbital properties atmospheric collapse into permanent polar caps could only be prevented for surface pressures roughly between 500 - 3000 hPa. Though follow-on studies confirm and extend the Forget et al. results [2], the full sensitivity of this "window" of stability has not been explored. There are many factors to consider such the albedo of the caps, dust content of the atmosphere, and the presence of water ice clouds. However, we begin our exploration of the stability of the early Martian atmosphere by focusing on the role of CO2 ice clouds. In some preliminary simulations with the Ames Mars General Circulation Model (GCM) we found that atmospheric collapse depends on assumptions regarding the fate of CO2 ice clouds. If, for example, we assume the clouds immediately fall to the surface, then in some cases collapse is favored. On the other hand if the clouds are allowed to fall and evaporate, collapse can be averted

  12. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; Martin-Torres, F. J.; Zorzano, M.

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  13. Leaf fossil record suggests limited influence of atmospheric CO2 on terrestrial productivity prior to angiosperm evolution

    PubMed Central

    Boyce, C. Kevin; Zwieniecki, Maciej A.

    2012-01-01

    Declining CO2 over the Cretaceous has been suggested as an evolutionary driver of the high leaf vein densities (7–28 mm mm−2) that are unique to the angiosperms throughout all of Earth history. Photosynthetic modeling indicated the link between high vein density and productivity documented in the modern low-CO2 regime would be lost as CO2 concentrations increased but also implied that plants with very low vein densities (less than 3 mm mm−2) should experience substantial disadvantages with high CO2. Thus, the hypothesized relationship between CO2 and plant evolution can be tested through analysis of the concurrent histories of alternative lineages, because an extrinsic driver like atmospheric CO2 should affect all plants and not just the flowering plants. No such relationship is seen. Regardless of CO2 concentrations, low vein densities are equally common among nonangiosperms throughout history and common enough to include forest canopies and not just obligate shade species that will always be of limited productivity. Modeling results can be reconciled with the fossil record if maximum assimilation rates of nonflowering plants are capped well below those of flowering plants, capturing biochemical and physiological differences that would be consistent with extant plants but previously unrecognized in the fossil record. Although previous photosynthetic modeling suggested that productivity would double or triple with each Phanerozoic transition from low to high CO2, productivity changes are likely to have been limited before a substantial increase accompanying the evolution of flowering plants. PMID:22689947

  14. Antarctic Ice Sheet Sensitivity to Atmospheric CO2 Variations During the Early to Mid-Miocene

    NASA Astrophysics Data System (ADS)

    Levy, R. H.; Harwood, D. M.; Florindo, F.; Sangiorgi, F.; Eagle, R.; von Eynatten, H.; Gasson, E.; Kuhn, G.; Tripati, A.; Deconto, R. M.; Fielding, C. R.; Field, B.; Golledge, N. R.; Mckay, R. M.; Naish, T.; Olney, M.; Pollard, D.; Schouten, S.; Talarico, F. M.; Warny, S.; Willmott, V.

    2015-12-01

    The Early to mid-Miocene (23 to 14 million years ago) is a compelling interval to study Antarctic ice sheet sensitivity to changes in atmospheric CO2 as oceanic and atmospheric circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. This time interval includes the Miocene Climatic Optimum (MCO), a period of global warmth during which average surface temperatures were 3 to 4°C higher than today. Miocene sediments in the AND-2A drill core from the Western Ross Sea, Antarctica provide direct information regarding ice sheet variability through this key time interval and offer insight into the potential Antarctic contribution to future sea level rise. A multi-proxy dataset derived from AND-2A identifies four distinct environmental "motifs" based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of marine-based ice across the Ross Sea. They all correlate with major positive shifts in benthic oxygen isotope records and episodes of sea-level fall, and generally coincide with intervals when atmospheric CO2 concentrations were below current levels (~400 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for significant ice mass loss during episodes of high (>400 ppm) atmospheric CO2. These results suggest that polar climate and the Antarctic Ice Sheet (AIS) were highly sensitive to relatively small changes in CO2 during the early to mid-Miocene, which is supported by numerical ice sheet and climate modelling.

  15. Spectral Characteristic of Tholin Produced from Possible Early Earth Atmospheres and its Role in Antigreenhouse Effect on Early Earth

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Imanaka, H.; Wilhite, P.; McKay, C.; Bakes, E.; Cruikshank, D. P.; Arakawa, E. T.

    2003-01-01

    We have produced organic material simulating a methane photochemical haze in a CO2- rich atmosphere of the early Earth by irradiating gas mixtures in an inductively coupled cold plasma chamber with pressure approx. 0.25 mbar at 100 W total power. The flow rate was 24 cm3 min. We added progressively higher levels of CH, by combining gas mixtures of N2/CH4 (9/1) and N2/CO2 (9/1) to change the ratio of CH4/CO2. Tholin was accumulated for 5 hours in each experiment; the onset of tholin formation is in the range CH4/CO2 = 0.5 to 1. As the mixing ratio of CH, is increased, the production rate of the brownish tholin film increases. IR spectra showed the C-H and N-H bands similar to that of Titan tholin and closely resemble Titan tholin made at 0.13 mbar pressure. A decrease in the CH bonds on decreasing CH4/CO2 is noted. Ether bands (-(2-O-C) were tentatively detected, but no detectable carbonyl (C=O) band was found. The absorption in the UV region for the early Earth tholin is found to be substantially greater than the Titan tholin. Quantitative values of the optical constants of early Earth tholin are currently being measured.

  16. Centennial to millennial variations of atmospheric methane during the early Holocene

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Woong; Ahn, Jinho; Brook, Edward

    2015-04-01

    Atmospheric CH4 is one of the most important greenhouse gases. Ice core studies revealed strong correlations between millennial CH4 variations and Greenland climate during the last glacial period. However, millennial to sub-millennial CH4 variations during interglacial periods are not well studied. Recently, several high-resolution data sets have been produced for the late Holocene, but it is difficult to distinguish natural- from anthropogenic changes. In contrast, the methane budget of the early Holocene is not affected by anthropogenic disturbances, thus may help us better understand natural CH4 control mechanisms under interglacial climate boundary conditions. Here we present our new high-precision and high-resolution atmospheric CH4 record from Siple Dome ice core, Antarctica that covers the early Holocene. We used our new wet extraction system at Seoul National University that shows a good precision of ~1 ppb. Our data show several tens of ppb of centennial- to millennial CH4 variations and an anti-correlative evolution with Greenland climate on the millennial time scale. The CH4 record could have been affected by many different types of forcing, including temperature, precipitation (monsoon intensity), biomass burning, sea surface temperature, and solar activity. According to our data, early Holocene CH4 is well correlated with records of hematite stained grains (HSG) in North Atlantic sediment records, within age uncertainties. A red-noise spectral analysis yields peaks at frequencies of ~1270 and ~80 years, which are similar to solar frequencies, but further investigations are needed to determine major controlling factor of atmospheric CH4during the early Holocene.

  17. Reconciling estimates of the contemporary North American carbon balance among an inventory-based approach, terrestrial biosphere models, and atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Hayes, D. J.; Turner, D. P.; Stinson, G.; McGuire, A. D.; Wei, Y.; West, T. O.; Heath, L. S.; De Jong, B. H.; McConkey, B. G.; Birdsey, R.; Kurz, W. A.; Jacobson, A. R.; Huntzinger, D. N.; Pan, Y.; Post, W. M.; Cook, R. B.

    2011-12-01

    Although the exact contribution is uncertain, North American (NA) ecosystems are thought to have a significant influence on the global carbon budget by acting as a large sink of atmospheric CO2 in recent decades. Assessments of the continental carbon balance have been based on various scaling approaches, including top-down atmospheric inverse models (AIMs) and bottom-up terrestrial biosphere models (TBMs), which vary widely in their estimates of the magnitude, timing and spatial pattern of sources and sinks of atmospheric CO2. A suite of results on NA ecosystem carbon flux from extant model simulations (based on both AIMs and TBMs) have been organized by the North American Carbon Program (NACP). Here, we assemble and analyze available inventory-based data on NA ecosystem carbon cycle components as an additional perspective alongside the NACP models. We develop an inventory-based approach for estimating net ecosystem exchange (NEE) over NA that notably retains information on the spatial distribution of the vertical fluxes as well as accounting for lateral transfers. The total inventory-based NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands (-248 TgC yr-1) and in the Crop Lands (-297 TgC yr-1) sectors. These sinks are counteracted by the CO2 source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are returned to the atmosphere through consumption and decay. The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change. We compare these inventory-based estimates with results from the TBMs and AIMs, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. Additional fluxes not measured by the inventories, though highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches

  18. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere

    NASA Astrophysics Data System (ADS)

    Farquhar, James; Savarino, Joel; Airieau, Sabine; Thiemens, Mark H.

    2001-12-01

    Mass-independent isotopic signatures for δ33S, δ34S, and δ36S produced in the photolysis of sulfur dioxide exhibit a strong wavelength dependence. Photolysis experiments with three light sources (ArF excimer laser (193 nm), mercury resonance lamp (184.9 and 253.7 nm), and KrF excimer laser (248 nm) are presented. Products of sulfur dioxide photolysis undertaken with 193-nm radiation exhibit characteristics that are similar to sulfur multiple-isotope data for terrestrial sedimentary rock samples older than 2450 Ma (reported by Farquhar et al. [2000a]), while photolysis experiments undertaken with radiation at other wavelengths (longer than 220 nm and at 184.9 nm) exhibit different characteristics. The spectral window between 190 and 220 nm falls between the Schumann-Runge bands of oxygen and the Hartley bands of ozone, and its absorption is therefore more sensitive to changes in altitude and atmospheric oxygen content than neighboring wavelengths. These two observations are used to suggest a link between sulfur dioxide photolysis at 193 nm and sulfur isotope anomalies in Archean rocks. This hypothesis includes the suggestion that UV wavelengths shorter than 200 nm penetrated deep in the Earth's atmosphere during the Archean. Potential implications of this hypothesis for the chemistry, composition, and UV absorption of the atmosphere are explored. We also explore the implications of these observations for documentation of bacterial sulfur metabolisms early in Earth's history.

  19. Modeling early Paleogene climate: From the top of the atmosphere to the bottom of the ocean

    NASA Astrophysics Data System (ADS)

    Huber, Matthew

    This dissertation addresses critical issues in early Paleogene paleoclimatology. This study's goal is to develop a more general and deeper understanding of climate by focusing on a time interval for which climate proxies and models have consistently disagreed. Climate proxies provide intriguing evidence of a ``greenhouse'' early Paleogene world: greenhouse gas (GHG) concentrations were higher than modern, midlatitude continental interiors were above freezing year-round, crocodiles lived at high latitudes, and vertical and meridional oceanic thermal gradients were small. The geologic record indicates that the climate system's response to increased GHG concentrations is to warm the poles and deep oceans and increase winter temperatures without raising tropical sea surface temperatures (SSTs), counter to every existing theory and model. Results from the uncoupled atmospheric general circulation model (GCM) experiments described in Part I demonstrate that (1)changes to land surface characteristics have important consequences at regional but not larger scales; (2)specification of warm polar SSTs implies approximately double modern ocean heat transport and does little to warm continental interiors during winter; (3)midlatitude continental interior temperatures are at least as sensitive-if not more-to changes in tropical SSTs as to extratropical SSTs; (4)testable predictions for past wind-driven ocean currents can be made from existing atmospheric GCM output. Results from Part II demonstrate that (1)a fully coupled GCM can be efficiently integrated to equilibrium for both a ``degraded'' modern case and an early Paleogene case; (2)the early Paleogene simulation produces temperature gradients very similar to modern, suggesting that it is unlikely that increased meridional heat transport caused early Paleogene small temperature gradients; (3)this simulation produces unrealistically cold continental interior temperatures, showing that a complete treatment of the ocean does

  20. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  1. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  2. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    SciTech Connect

    Pan, Y.

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  3. Quantifying Net Carbon Exchanges Between the Atmosphere and Terrestrial Biosphere in the Arctic: What Have We Learned through Decade Regional Modeling Studies?

    NASA Astrophysics Data System (ADS)

    Zhuang, Q.

    2014-12-01

    Observed Arctic warming has been projected to continue in this century. Permafrost degradation is thus expected to continue, exposing large amounts of carbon for decomposition. Dynamics of Arctic landscape and hydrology are complicated due to changing climate and thawing permafrost, affecting the carbon biogeochemical cycling in the region. Further, human activities together with changing climate transform the regional land use and land cover, including wildfires, logging, and agricultural land conversion. This presentation will review the effects of factors, controls, and processes as well as landscape types (e.g., forests vs. lakes) on carbon biogeochemistry based on regional modeling studies and observations. Specific effects on carbon dynamics to be discussed will include: 1) thawing permafrost; 2) fire disturbances; 2) atmospheric carbon dioxide; 3) inorganic and organic nitrogen uptake by plants; 4) priming; 5) aerobic and anaerobic organic matter decomposition; and 6) various complexities of microbial physiology of soils. Partitioning the contribution of these processes to regional carbon dynamics shall help us improve the terrestrial biogeochemistry models, an important component of Earth System Models that are used to project our future climate.

  4. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  5. Climatic consequences of very high CO2 levels in Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Katsing, J. F.

    1986-01-01

    Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of the atmosphere of Venus. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of thes CO2 may have resided in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises is whether this much CO2 would have resulted in a runaway greenhouse effect. One dimensional radiative/convective model calculations presented showed that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 was less than 100 C; thus no runaway greenhouse effect would have occurred. The climatic stability of the early atmosphere is a consequence of three factors: reduced solar luminosity at that time, an increase in planetary albedo caused by Rayleigh scattering by CO2, and the stabilizing effects of a moist convection. The latter two factors are sufficient to prevent a CO2 induced runaway greenhouse effect on the present Earth as well, for CO2 levels up to 100 bars. Further studies are being undertaken to determine whether a runaway greenhouse effect could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed one the influx of material slowed down.

  6. Climatic consequences of very high CO2 levels in Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of Venus' atmosphere. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of this CO2 may have resulted in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises concerning this hypothesis is whether this would have resulted in a runaway greenhouse affect. One-dimensional radiative/convective model calculations show that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 would have been less than 100C and no runaway greenhouse should have occurred. The climatic stability of the early atmosphere is a consequence of three factors: (1) reduced solar luminosity at that time; (2) an increase in planetary albedo caused by Rayleigh scattering by CO2; and (3) the stabilizing effects of moist convection. The latter two factors are sufficient to prevent a CO2-induced runaway greenhouse on the present Earth and for CO2 levels up to 100 bars. It is determined whether a runaway greenhouse could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed once the influx of material slowed down.

  7. Early Validation Analyses of Atmospheric Profiles from EOS MLS on the Aura Satellite

    NASA Technical Reports Server (NTRS)

    Froidevaux, Lucien; Livesey, Nathaniel J.; Read, William G.; Jiang, Yibo B.; Jimenez, Carlos; Filipiak, Mark J.; Schwartz, Michael J.; Santee, Michelle L.; Pumphrey, Hugh C.; Jiang, Jonathan H.; Wu, Dong L.; Manney, Gloria L.; Drouin, Brian J.; Waters, Joe W.; Fetzer, Eric J.; Bernath, Peter F.; Boone, Chris D.; Walker, Kaley A.; Jucks, Kenneth W.; Geoffrey, C. Toon; Margitan, James J.; Sen, Bhaswar; Webster, Christopher R.; Christensen, Lance E.; Elkins, James W.

    2006-01-01

    We present results of early validation studies using retrieved atmospheric profiles from the Earth Observing System Microwave Limb Sounder (MLS) instrument on the Aura satellite. 'Global' results are presented for MLS measurements of atmospheric temperature, ozone, water vapor, hydrogen chloride, nitrous oxide, nitric acid, and carbon monoxide, with a focus on the January-March 2005 time period. These global comparisons are made using long-standing global satellites and meteorological datasets, as well as some measurements from more recently launched satellites. Comparisons of MLS data with measurements from the Ft. Sumner, NM, September 2004 balloon flights are also presented. Overall, good agreeement is obtained, often within 5% to 10%, but we point out certain issues to resolve and some larger systematic differences; some artifacts in the first publicly released MLS (version 1.5) dataset are noted.We comment briefly on future plans for validation and software improvements.

  8. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  9. A model atmosphere analysis of the faint early-type halo star PHL 346

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Lennon, D. J.; Brown, P. J. F.; Dufton, P. L.

    1986-08-01

    Stellar equivalent widths and hydrogen line profiles, measured from high-resolution optical spectra obtained with the 2.5 m Issac Newton Telescope, are used in conjunction with model atmosphere calculations to determine the atmospheric parameters and chemical composition of the faint, high galactic latitude early-type star PHL 346. The effective temperature (Teff = 22,600 + or - 1000 K) and surface gravity (log g = 3.6 + or - 0.2), as well as the chemical composition, are found to be similar to those of normal OB stars. Therefore, it is concluded that PHL 346 is an ordinary Population I object, at a z distance of 8.7 + or - 1.5 kpc. The relatively small stellar velocity in the z-direction (Vz = +56 + or - 10 km/s) then implies that PHL 346 must have been formed in the halo, possibly from galactic fountain material at a z distance of about 6 kpc.

  10. The young sun, the early earth and the photochemistry of oxygen, ozone and formaldehyde in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Goldman, I.; Hubickyj, O.

    1986-01-01

    Recent work on the evolution of the solar nebula and the subsequent formation of planets is reviewed, and the stages of star formation thought to lead to a protosun and an accompanying solar nebula are considered. Photochemical results suggest that concentrations of O2, O3, and H2CO, and the ratio of CO/CO2 in the prebiological paleoatmosphere are very sensitive to atmospheric levels of H2O and CO2 and to the flux of incident solar ultraviolet. For enhanced levels of CO2 and solar UV, surface levels of O2 may have approached the parts per billion level in the prebiological paleoatmosphere. It is suggested that 10 percent or more of the enhanced H2CO production could have been rained out of the atmosphere into the early oceans where synthesis into more complex organic molecules could have taken place. CO/CO2 values of greater than unity could have been possible for enhanced levels of solar UV flux.

  11. Friis Hills Drilling Project - Coring an Early to mid-Miocene terrestrial sequence in the Transantarctic Mountains to examine climate gradients and ice sheet variability along an inland-to-offshore transect

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.

    2015-12-01

    The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain

  12. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    PubMed Central

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-01-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23–14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. PMID:26903644

  13. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Angst, D.; Lécuyer, C.; Amiot, R.; Buffetaut, E.; Fourel, F.; Martineau, F.; Legendre, S.; Abourachid, A.; Herrel, A.

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

  14. High but not Super High Atmospheric CO2 During the Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Anagnostou, E.; John, E. H.; Edgar, K. M.; Pearson, P. N.; Ridgwell, A. J.; Palike, H.; Foster, G. L.

    2014-12-01

    The early Cenozoic (~53-33Ma) marks the most recent climatic shift in Earth's history from a greenhouse to an icehouse world. This interval is characterized by a gradual deep-sea [1] and high-latitude [2, 3] cooling of ~10oC, and only moderate cooling of the tropics [e.g. 2] leading to the Eocene/Oligocene transition (EOT) marked by widespread continental Antarctic glaciation. The cause of long-term Eocene cooling is currently poorly known but a gradual decline in the concentration of atmospheric CO2 is most frequently invoked. However, the majority of available early Eocene CO2 records are uncertain and only weakly correlated with climate variability. The exception to that is the final transition into the icehouse [4] where a decline in the CO2 content of the atmosphere has been suggested as the trigger. Therefore we generated new records of boron isotopes (δ11B) in planktonic foraminifera, a proven proxy of seawater pH [e.g. 5], using multicollector ICPMS [6]. We utilised depth profiles of very well preserved multi-species planktonic foraminifera recovered by the Tanzanian Drilling Project for five time slices spanning 53-37 Ma. Additionlly, we generated approximately 0.8My resolution planktonic foraminifera δ11B records from the Ocean Drilling Program (ODP) Sites 865 and 1258/1260. Our new records show consistent results of elevated atmospheric CO2 in the early Eocene that decreases through to the late Eocene. We will discuss our new reconstructions of seawater pH and derived atmospheric CO2 concentrations, not only in view of diagenesis, but also of estimates of seawater δ11B composition and alkalinity and their significance for Eocene Antarctic glaciation, in light of potential mechanisms for modulating climate. [1] Zachos et al. (2001) Science 292. [2] Bijl et al. (2009) Nature 461. [3] Brassell (2014) Paleoceanography 29. [4] Pearson et al. (2009) Nature 461. [5] Sanyal et al. (1996) Paleoceanography 11. [6] Foster (2008) EPSL 271.

  15. Abiotic production of NO3 in the atmosphere of Early Mars

    NASA Astrophysics Data System (ADS)

    Gronoff, Guillaume; Airapetian, Vladimir; Hebrard, Eric

    2015-11-01

    Recent Curiosity/SAM measurements of Martian sediments have shown the presence of NO3 trapped in the samples. The ratio of nitrate to perchlorate has been suggested to be an indicator for habitability (Stern et al. 2015). However, the efficiency of the production of nitrate in the atmosphere has never been studied for the case of the active young Sun. To evaluate the effect of the abiotic production of nitrates, we apply our 1D atmospheric photochemical collisional model for the nitrogen-rich and CO2 atmosphere of early Mars, and calculate the production rate of NO3 mediated by the precipitation of energetic particles associated with the coronal mass ejections from the young Sun.We propose a method to check the hypothesis of the abiotic production: if the production is driven by the precipitating particles, then the magnetic shielding would reduce the NO3 production at the equator. Thus, samples collected at high latitudes should contain greater concentration of nitrates if the weathering did not homogenize it.

  16. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  17. Filling-In of Broad Far-Red Solar Lines by Terrestrial Fluorescence and Atmospheric Raman Scattering as Detected by SCIAMACHY Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Yoshida, Y.; Kuze, A.; Corp, L. A.

    2011-01-01

    Global mapping of terrestrial vegetation fluorescence from space has recently been accomplished with high spectral resolution measurements from the Japanese Greenhouse gases Observing SATellite (GOSAT). These data are of interest because they can potentially provide global information on the functional status of vegetation including light use efficiency and global primary productivity that can be used for global carbon cycle modeling. Quantifying the impact of fluorescence on the O2-A band is important as this band is used for cloud- and aerosol-characterization for other trace-gas retrievals including CO2. Here, we demonstrate that fluorescence information can be derived from space using potentially lower-cost hyperspectral instrumentation, i.e., more than an order of magnitude less spectral resolution than GOSAT, with a relatively simple algorithm. As a demonstration, we use the filling-in of one of the few wide and deep solar Fraunhofer lines in the red and far-red chlorophylla fluorescence bands, the calcium II line near 866 nm, to retrieve fluorescence with the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) satellite instrument. Although the signal from vegetation fluorescence is extremely weak at 866 nm, our results suggest that useful information may be obtained after adjustments are made to the observed spectra to correct for instrumental artifacts. We compare fluorescence from SCIAMACHY with that retrieved at 758 and 770 nm from similarly-corrected GOSAT data as well with the Enhanced Vegetation Index (EVI) from the MODerate-resolution Imaging Spectroradiometer (MODIS). We also show that filling-in occurs at 866 nm over barren areas, possibly originating from luminescent minerals in rock and soil.

  18. Sulfur in the Early Martian Atmosphere Revisited: Experiments with a 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kerber, L.; Forget, F.; Wordsworth, R.

    2013-09-01

    Data returned from the surface of Mars during the 1970s revealed intriguing geological evidence for a warmer and wetter early martian climate. Dendritic valley networks were discovered by Mariner 9 on ancient Noachian terrain [1], indicating that liquid water had flowed across the surface in the distant past. Since this time, geological investigations into early Martian history have attempted to ascertain the nature and level of activity of the early Martian hydrological cycle [e.g. 2-5] while atmospheric modeling efforts have focused on how the atmosphere could be warmed to temperatures great enough to sustain such activity [see 6-7 for reviews]. Geological and spectroscopic investigations have refined the history and chronology of Noachian Mars over time, and circulation of liquid water has been invoked to explain several spatially and temporally distinct morphological and chemical signatures found in the geological record. Detections of iron and magnesium-rich clays are widespread in the oldest Martian terrains, suggesting a period of pH-neutral aqueous alteration [e.g., 8]. Valley network incision also took place during the Noachian period [9]. Some chains of river valleys and craters lakes extend for thousands of kilometers, suggesting temperatures at least clement enough for sustained ice-covered flow [3,10]. The commencement of valley network incision is not well constrained, but the period of Mg/Fe clay formation appears to have ended before the termination of valley network formation, as the visible fluvial systems appear to have remobilized existing clays rather than forming them [5,8]. There is also evidence that the cessation of valley network formation was abrupt [11]. Towards the end of the Noachian, erosion rates appear to have been significantly higher than during subsequent periods, a process that has also been attributed to aqueous processes [12]. A period of sulfate formation followed, likely characterized by acidic, evaporitic playa environments

  19. Terrestrial sequestration

    SciTech Connect

    Charlie Byrer

    2008-03-10

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  20. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2016-07-12

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  1. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  2. An early warning indicator for atmospheric blocking events using transfer operators

    SciTech Connect

    Tantet, Alexis Burgt, Fiona R. van der; Dijkstra, Henk A.

    2015-03-15

    The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5–10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  3. In-situ Measurements of Sedimentary Graphites and Sulfides in Early Archean (>3.7 Ga) Banded Iron-Formations from West Greenland: Biological and Atmospheric Influences

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.

    2001-05-01

    Stable isotopes of carbon [13C, 12C] and sulfur [32S, 33S, 34S and 36S] are used as tracers for igneous, hydrothermal and biological processes on Earth. Carbon and sulfur are abundant in marine systems and they have been utilized as biomarkers in ancient sediments. Kinetic isotope fractionations between inorganic and bioorganic carbon and sulfur during metabolic cycling results in a marked enrichment of the light isotope in the biological component by several percent. Graphitic inclusions from early Archean banded iron-formations are isotopically light [range δ 13CVPDB = -20 to -50‰ ]; these results are consistent with a biological origin. Bacterial sulfate reduction has been linked to the range of over 150‰ in δ 34S from sulfate and sulfide in the rock record. Mass-dependent sulfur isotope fractionations, commonly expressed as δ 34SCDT values for sulfur-containing minerals, exhibit a small range centered at ~0‰ for terrestrial igneous [0+/-5‰ ] and hydrothermal [0+/-10‰ ] systems. Atmospheric chemical reactions on the low pO2 early Earth are implicated in non-mass-dependent sulfur isotope anomalies [expressed as: Δ 33S=δ 33S-0.520δ 34S] reported from whole-rock analyses of sulfur-containing phases in Precambrian sediments. Only atmospheric processes in planetary environments, and nucleosynthetic, spallation or ion-molecule reactions in the stellar or near-stellar environment, appear capable of producing non-mass-dependent isotope fractionations. To explore how sulfur signatures are preserved in early Archean BIFs new techniques have been developed to obtain precise 32S, 33S and 34S measurements in situ of sulfide grains from sedimentary rocks ranging in age from early Archean [ ~3.83 Ga] to Proterozoic [ ~1.8 Ga]. High-precision simultaneous measurements of multiple sulfur isotopes enable Δ 33S to be evaluated at the sub-grain scale [<30 μm ]. These results may then be compared with previous carbon isotope measurements from the same rocks. How

  4. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  5. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral

  6. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  7. Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens.

    PubMed

    Agnan, Y; Séjalon-Delmas, N; Probst, A

    2013-01-01

    Lichens have long been known to be good indicators of air quality and atmospheric deposition. Xanthoria parietina was selected to investigate past (sourced from a herbarium) and present-day trace metal pollution in four sites from South-West France (close to Albi). Enrichment factors, relationships between elements and hierarchical classification indicated that the atmosphere was mainly impacted by coal combustion (as shown by As, Pb or Cd contamination) during the early twentieth century, whereas more recently, another mixture of pollutants (e.g. Sb, Sn, Pb and Cu) from local factories and car traffic has emerged. The Rare Earth Elements (REE) and other lithogenic elements indicated a higher dust content in the atmosphere in the early twentieth century and a specific lithological local signature. In addition to long-range atmospheric transport, local urban emissions had a strong impact on trace element contamination registered in lichens, particularly for contemporary data.

  8. Speciation and solubility of reduced C-O-H-N volatiles in mafic melt: Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Armstrong, Lora S.; Hirschmann, Marc M.; Stanley, Ben D.; Falksen, Emily G.; Jacobsen, Steven D.

    2015-12-01

    Using vibrational spectroscopy and SIMS, we determined the solubility and speciation of C-O-H-N dissolved volatiles in mafic glasses quenched from high pressure under reduced conditions, with fO2 from -3.65 to +1.46 relative to the iron-wüstite buffer (IW). Experiments were performed on martian and terrestrial basalts at 1.2 GPa and 1400 °C in graphite containers with variable availability of H2O, and in the presence of FePt alloys or Fe-C liquids. The dominant C-O-H-N species varies systematically with fO2 and H2O content: the carbonate ion prevails above IW + 1, but for dry conditions between IW-2 and IW + 1, Ctbnd O species are most important. Below IW, reduced NH-bearing species are present. At the most reducing and hydrous (∼0.5 wt% H2O) conditions, small amounts of CH4 are present. Concentrations of C diminish as conditions become more reduced, amounting to 10 s to ∼100 ppm in the interval ∼IW-2 to IW + 1 where Ctbnd O species dominate, and as little as 1-3 ppm at more reduced conditions. Concentrations of non-carbonate carbon, dominated by Ctbnd O species, correlate with CO fugacities along a trend implying that the species stoichiometry has just one Ctbnd O group and suggesting that carbonyl complexes (transition metals with multiple carbon monoxide ligands) are not important species under these conditions. C partition coefficients between Fe-C liquid and silicate melt increase with decreasing fO2 , becoming as great as 104 for the most reducing conditions investigated. The low solubility of C in silicate liquids under reducing conditions means that most C during the magma ocean stage of planetary differentiation is either segregated to the core or in the overlying atmosphere. Precipitation of C-rich phases in a carbon-saturated magma ocean is also possible, and is one mechanism by which some C can be retained in the mantle of a planet. The predominant magmatic carbonaceous species for both martian and lunar volcanism is likely Ctbnd O.

  9. Filling-in of Far-Red and Near-Infrared Solar Lines by Terrestrial and Atmospheric Effects: Simulations and Space-Based Observations from SCIAMACHY and GOSAT

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Yoshida, Y.; Kuse, A.; Corp, L. A.

    2012-01-01

    Mapping of terrestrial vegetation fluorescence from space is of interest because it can potentially provide global information on the functional status of vegetation including light use efficiency and global primary productivity that can be used for global carbon cycle modeling. Space-based measurement of solar-induced chlorophyll fluorescence is challenging, because its signal is small as compared with the much larger reflectance signal. Ground- and aircraft-based approaches have made use of the dark and spectrally-wide O2-A ( approx 760 nm) and O2-B (approx 690 nm) atmospheric features to detect the weak fluorescence signal. More recently, Joiner et al. and Frankenberg et al. focused on longer-wavelength solar Fraunhofer lines that can be observed with space-based instruments such as the currently operational GOSAT. They showed that fluorescence can be detected using Fraunhofer lines away from the far-red chlorophyll-a fluorescence peak even when the surface is relatively bright. Here, we build on that work by developing methodology to correct for instrumental artifacts that produce false filling-in signals that can bias fluorescence retrievals. We also examine other potential sources of filling-in at far-red and NIR wavelengths. Another objective is to explore the possibility of making fluorescence measurements from space with lower spectral resolution instrumentation than the GOSAT interferometer. We focus on the 866nm Ca II solar Fraunhofer line. Very few laboratory and ground-based measurements of vegetation fluorescence have been reported at wavelengths longer than 800 nm. Some results of fluorescence measurements of corn leaves acquired in the laboratory using polychromatic excitation at wavelengths shorter than 665nm show that at 866 nm, the measured signal is of the order of 0.1-0.2 mW/sq m/nm/sr. In this work, we use the following satellite observations: We use SCIAMACHY channel 5 in nadir mode that covers wavelengths between 773 and 1063nm at a spectral

  10. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    PubMed Central

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset time of the geomagnetic field, the appearance of an oxygen atmosphere, and the secular variation of an Earth–Moon dynamical system. PMID:19001263

  11. Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    2004-01-01

    This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.

  12. Atmospheric CO2 Amplification of Orbitally Forced Changes in the Hydrological Cycle in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Schaller, M. F.; Kent, D. V.

    2015-12-01

    Models of increasing atmospheric CO2 predict an intensification of the hydrological cycle coupled with warming, possibly amplifying effects of orbitally-forced fluctuations. While there is some Pleistocene evidence of this, CO2 concentrations were much lower than projected for the future. For the potentially more relevant Early Mesozoic, with CO2 >1000 ppm, we observe that both the soil carbonate and stomatal proxies for CO2 strongly and positively correlate with climatic-precession variance in correlative continental and marine strata of both eastern North America and Europe with temporal correlation robustly supported by magneto-, astro-, and U-Pb zircon geochronology. Eastern North American lacustrine and paleosol strata are generally characterized by >3000 ppm CO2 over most of the Norian (228-207 Ma) dropping to ~1000-3000 ppm during the succeeding latest Norian to late Rhaetian (207 to 201.6 Ma) correlative with a dramatic drop in the amplitude of the response to orbital forcing. This is followed by an extraordinary doubling to nearly tripling of CO2 (~2000-5000 ppm) in the latest Rhaetian to Early Jurassic (201.6 to 200.6 Ma) and a concurrent profound increase in the amplitude of the apparent climatic-precession variance during the eruption of the massive Central Atlantic Magmatic Province. Decreasing CO2 (~1000-2000 ppm) afterward is tracked by decreasing amplitude in the orbitally-paced cyclicity. Likewise, in the UK, high amplitude cyclicity in the lacustrine to paralic Twyning Md. Fm. gives way upward into the paralic Blue Anchor and marine Rhaetian Westbury fms in which lithological cyclicity is muted. Again, the amplitude of the orbitially-paced lithological cyclicity dramatically increases into the paralic to marine late Rhaetian Lilstock Fm. and marine latest Rhaetian to Early Jurassic Blue Lias. Parallel and correlative transitions are seen in at least western Germany. The agreement between the continental eastern US and paralic to marine European

  13. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  14. Satellite derived 30-year trends in terrestrial frozen and non-frozen seasons and associated impacts to vegetation and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kimball, J. S.; McDonald, K. C.; Glassy, J. M.

    2010-12-01

    Approximately 66 million km2 (52.5 %) of the global vegetated land area experiences seasonally frozen temperatures as a major constraint to ecosystem processes. The freeze-thaw (F/T) status of the landscape as derived from satellite microwave remote sensing is closely linked to surface energy budget and hydrological activity, vegetation phenology, terrestrial carbon budgets and land-atmosphere trace gas exchange. We utilized a seasonal threshold algorithm based temporal change classification of 37GHz frequency, vertically polarized brightness temperatures (Tb) from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) pathfinder and Special Sensor Microwave Imager (SSM/I) to classify daily F/T status for all global land areas where seasonal frozen temperatures are a major constraint to ecosystem processes. A temporally consistent, long-term (30 year) daily F/T record was created by pixel-wise correction of the SMMR Tb record based on empirical analyses of overlapping SMMR and SSM/I measurements acquired during 1987. The resulting combined F/T record was validated against in situ temperature measurements from the global weather station network and applied to quantify regional patterns and trends in timing and length of frozen and non-frozen seasons. The F/T results were compared against other surrogate measures of biosphere activity including satellite AVHRR (GIMMS) based vegetation greenness (NDVI) and atmospheric CO2 concentrations over northern (>50N) land areas. The resulting F/T record showed mean annual classification accuracies of 91 (+/-1.0) and 84 (+/- 0.9) percent for PM and AM overpass retrievals relative to in situ weather station records. The F/T record showed significant (P=0.008) long-term trends in non-frozen period (0.207 days/yr) that were largely driven by earlier onset of spring thaw (-0.121 days/yr) and a small, delayed trend the arrival of the frozen period (0.107 days/yr). These results coincide with 0.025 C/yr warming trends in

  15. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry

    USGS Publications Warehouse

    Driese, S.G.; Jirsa, M.A.; Ren, M.; Brantley, S.L.; Sheldon, N.D.; Parker, Dana C.; Schmitz, M.

    2011-01-01

    primitive microbial community) during weathering. Cu metal in the profile may document lower pO2 than present day at the surface. Comparison with previous studies of weathered tonalite and basalt (Denison, 2.45-2.22Ga) in Ontario, Canada, reveal general similarities in paleoweathering with our study, as well as important differences related to lower paleoatmospheric pO2 and terrestrial biosignature for the older Minnesota profile. A falling water table in the Alpine Lake locality is presumed to have promoted formation of this gossan-like deep-weathering system that extends to 50-m depth. ?? 2011 Elsevier B.V.

  16. The (146,147)Sm-(142,143)Nd systematics of early terrestrial differentiation and the lost continents of the early Earth

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    The very early history of the Earth has been one of the great enduring puzzles in the history of geology. We report evidence which clearly can be described as a vestige of a beginning, because the evidence that we report cannot be interpreted in any other way except as a geochemical signal of processes active in the very early history of the Earth. The evidence itself is a very small anomaly in the abundance of SM-146. The primary aims of this study were to: (1) verify the existence of the 'lost continents' of the Hadean era; and (2) determine their mean age.

  17. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  18. Feldspar palaeo-isochrons from early Archaean TTGs: Pb-isotope evidence for a high U/Pb terrestrial Hadean crust

    NASA Astrophysics Data System (ADS)

    Kamber, B. S.; Whitehouse, M. J.; Moorbath, S.; Collerson, K. D.

    2001-12-01

    Feldspar lead-isotope data for 22 early Archaean (3.80-3.82 Ga) tonalitic gneisses from an area south of the Isua greenstone belt (IGB),West Greenland, define a steep linear trend in common Pb-isotope space with an apparent age of 4480+/-77 Ma. Feldspars from interleaved amphibolites yield a similar array corresponding to a date of 4455+/-540 Ma. These regression lines are palaeo-isochrons that formed during feldspar-whole rock Pb-isotope homogenisation a long time (1.8 Ga) after rock formation but confirm the extreme antiquity (3.81 Ga) of the gneissic protoliths [1; this study]. Unlike their whole-rock counterparts, feldspar palaeo-isochrons are immune to rotational effects caused by the vagaries of U/Pb fractionation. Hence, comparison of their intercept with mantle Pb-isotope evolution models yields meaningful information regarding the source history of the magmatic precursors. The locus of intersection between the palaeo-isochrons and terrestrial mantle Pb-isotope evolution lines shows that the gneissic precursors of these 3.81 Ga gneisses were derived from a source with a substantially higher time-integrated U/Pb ratio than the mantle. Similar requirements for a high U/Pb source have been found for IGB BIF [2], IGB carbonate [3], and particularly IGB galenas [4]. Significantly, a single high U/Pb source that separated from the MORB-source mantle at ca. 4.3 Ga with a 238U/204Pb of ca. 10.5 provides a good fit to all these observations. In contrast to many previous models based on Nd and Hf-isotope evidence we propose that this reservoir was not a mantle source but the Hadean basaltic crust which, in the absence of an operating subduction process, encased the early Earth. Differentiation of the early high U/Pb basaltic crust could have occurred in response to gravitational sinking of cold mantle material or meteorite impact, and produced zircon-bearing magmatic rocks. The subchondritic Hf-isotope ratios of ca. 3.8 Ga zircons support this model [5] provided that

  19. The proto-terrestrial mechanism of the appearance of water and early genesis of the global ocean

    NASA Astrophysics Data System (ADS)

    Sergin, S. Ya.

    2016-08-01

    We consider chemical reactions for the appearance of water during the formation of the planet from cosmic gas and dust material to explain the early geological existence of the Earth's hydrosphere. This process is fully supported by the resources of the initial substances and thermal energy. Thus, the concept of V.I. Vernadsly about the geological eternity of the World Ocean and ancient age of the oceanic lithosphere is supported. The identical high location of the ancient and modern continental platforms under the conditions of continual isostatical equilibrium in the asthenosphere-lithosphere-hydrosphere gives grounds to conclude that the ocean water depth is stable. Taking this into account, we can consider that the geological evolution of the Earth began in the conditions of the existence of the World Ocean when the mass of the hydrosphere only slightly exceeded the modern one.

  20. Combined147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Bourdon, Bernard; Mojzsis, Stephen J.; Rudge, John F.; Guitreau, Martin; Blichert-Toft, Janne

    2014-06-01

    silicate differentiation controlled the composition of Earth's oldest crust. Inherited 142Nd anomalies in Archean rocks are vestiges of the mantle-crust differentiation before ca. 4300 Ma. Here we report new whole-rock 147,146Sm-143,142Nd data for the Acasta Gneiss Complex (AGC; Northwest Territories, Canada). Our 147Sm-143Nd data combined with literature data define an age of 3371 ± 141 Ma (2 SD) and yield an initial ɛ143Nd of -5.6 ± 2.1. These results are at odds with the Acasta zircon U-Pb record, which comprises emplacement ages of 3920-3960 Ma. Ten of our thirteen samples show 142Nd deficits of -9.6 ± 4.8 ppm (2 SD) relative to the modern Earth. The discrepancy between 142Nd anomalies and a mid-Archean 147Sm-143Nd age can be reconciled with Nd isotope reequilibration of the AGC during metamorphic perturbations at ca. 3400 Ma. A model age of ca. 4310 Ma is derived for the early enrichment of the Acasta source. Two compositional end-members can be identified: a felsic component with 142Nd/144Nd identical to the modern Earth and a mafic component with 142Nd/144Nd as low as -14.1 ppm. The ca. 4310 Ma AGC source is ˜200 Myr younger than those estimated for Nuvvuagittuq (northern Québec) and Isua (Itsaq Gneiss Complex, West Greenland). The AGC does not have the same decoupled Nd-Hf isotope systematics as these other two terranes, which have been attributed to the crystallization of an early magma ocean. The Acasta signature rather is ascribed to the formation of Hadean crust that was preserved for several hundred Myr. Its longevity can be linked to 142Nd evolution in the mantle and does not require slow mantle stirring times nor modification of its convective mode.

  1. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  2. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  3. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  4. Arctic terrestrial ecosystem contamination.

    PubMed

    Thomas, D J; Tracey, B; Marshall, H; Norstrom, R J

    1992-07-15

    Limited data have been collected on the presence of contaminants in the Arctic terrestrial ecosystem, with the exception of radioactive fallout from atmospheric weapons testing. Although southern and temperate biological systems have largely cleansed themselves of radioactive fallout deposited during the 1950s and 1960s, Arctic environments have not. Lichens accumulate radioactivity more than many other plants because of their large surface area and long life span; the presence and persistence of radioisotopes in the Arctic is of concern because of the lichen----reindeer----human ecosystem. Effective biological half-life of cesium 137 is reckoned to be substantially less than its physical half-life. The database on organochlorines in Canadian Arctic terrestrial mammals and birds is very limited, but indications are that the air/plant/animal contaminant pathway is the major route of these compounds into the terrestrial food chain. For terrestrial herbivores, the most abundant organochlorine is usually hexachlorobenzene followed by hexachlorocyclohexane isomers. PCB accumulation favours the hexachlorobiphenyl, pentachlorobiphenyl and heptachlorobiphenyl homologous series. The concentrations of the various classes of organochlorine compounds are substantially lower in terrestrial herbivore tissues than in marine mammal tissues. PCBs and DDT are the most abundant residues in peregrine falcons (a terrestrial carnivore) reaching average levels of 9.2 and 10.4 micrograms.g-1, respectively, more than 10 times higher than other organochlorines and higher than in marine mammals, including the polar bear. Contaminants from local sources include metals from mining activities, hydrocarbons and waste drilling fluids from oil and gas exploration and production, wastes from DEW line sites, naturally occurring radionuclides associated with uranium mineralization, and smoke containing SO2 and H2SO4 aerosol from the Smoking Hills at Cape Bathurst, N.W.T.

  5. On the early processing of terrestrial organic matter released to (sub-)Arctic coastal waters as deduced from biomarkers, isotopes and a simple model

    NASA Astrophysics Data System (ADS)

    Gustafsson, Örjan; Vonk, Jorien; van Dongen, Bart; Dudarev, Oleg; Semiletov, Igor

    2010-05-01

    The surface layer of the vast sub-Arctic and Arctic tundra and taiga holds over a third of the global soil carbon and this area is now experiencing among the largest climate warming of anywhere on Earth. Yet, there is a shortage of investigations of the biogeochemical fate of coastally exported terrestrial organic matter (terrOM) from these systems, in part due to the inaccessibility of the large Eurasian-Arctic shelves. This paper seeks to synthesize initial findings from a large-scale survey of single surface sediments outside the five Great Russian Arctic Rivers (GRARs; Ob,Yenisey, Lena, Kolyma and Indigirka) and from detailed process-studies of a water column and surface sediment transect off pristine sub-Arctic Kalix River, one of the largest unregulated rivers in Europe draining into the northernmost Baltic Sea. There is at present a discrepancy in the literature of how the early (water column) fate of terrestrial organic matter is believed to occur between the northern Baltic Sea and the Eurasian Arctic shelf seas. For the Baltic, one suggests substantial DOC degradation but no consideration of POC degradation. For the Arctic, terrestrial DOC is believed to be conservatively mixed while POC is assumed to follow a generic "global" average degradation. Our studies to date show that terrOM entering sub-Arctic Baltic and Eurasian-Arctic seas follows continent-scale trends in molecular and isotopic composition. Sphagnum is a key contributor to the pre-aged (1000s of 14C years) terrOM in these coastal waters with greatest Sphagnum contribution but youngest terrOM toward the west. The Kalix-Baltic transect revealed rapid degradation of acyl lipids along the 80 km distance from river mouth to the open bay. For instance, the ratio of HMW n-alkanoic acids to HMW n-alkanes in surface water suspended particles dropped from 2.7 to 1.2. There was also rapid degradation during settling and in the surface sediment as the same ratio in sediments dropped between the estuary

  6. On the early processing of terrestrial organic matter released to (sub-)Arctic coastal waters as deduced from biomarkers, isotopes and a simple model

    NASA Astrophysics Data System (ADS)

    Gustafsson, Ö.; Vonk, J.; van Dongen, B.; Dudarev, O.; Semiletov, I.

    2009-04-01

    The surface layer of the vast sub-Arctic and Arctic tundra and taiga holds over a third of the global soil carbon and this area is now experiencing among the largest climate warming of anywhere on Earth. Yet, there is a shortage of investigations of the biogeochemical fate of coastally exported terrestrial organic matter (terrOM) from these systems, in part due to the inaccessibility of the large Eurasian-Arctic shelves. This paper seeks to synthesize initial findings from a large-scale survey of single surface sediments outside the five Great Russian Arctic Rivers (GRARs; Ob,Yenisey, Lena, Kolyma and Indigirka) and from detailed process-studies of a water column and surface sediment transect off pristine sub-Arctic Kalix River, one of the largest unregulated rivers in Europe draining into the northernmost Baltic Sea. There is at present a discrepancy in the literature of how the early (water column) fate of terrestrial organic matter is believed to occur between the northern Baltic Sea and the Eurasian Arctic shelf seas. For the Baltic, one suggests substantial DOC degradation but no consideration of POC degradation. For the Arctic, terrestrial DOC is believed to be conservatively mixed while POC is assumed to follow a "global" average degradation. Our studies to date show that terrOM entering sub-Arctic Baltic and Eurasian-Arctic seas follows continent-scale trends in molecular and isotopic composition. Sphagnum is a key contributor to the pre-aged (1000s of 14C years) terrOM in these coastal waters with greatest Sphagnum contribution but youngest terrOM toward the west. The Kalix-Baltic transect revealed rapid degradation of acyl lipids along the 80 km distance from river mouth to the open bay. For instance, the ratio of HMW n-alkanoic acids to HMW n-alkanes in surface water suspended particles dropped from 2.7 to 1.2. There was also rapid degradation during settling and in the surface sediment as the same ratio in sediments dropped between the estuary - open

  7. TERRESTRIAL ECOTOXICOLOGY

    EPA Science Inventory

    Terrestrial ecotoxicology is the study of how environmental pollutants affect land-dependent organisms and their environment. It requires three elements: (1) a source, (2) a receptor, and (3) an exposure pathway. This article reviews the basic principles of each of each element...

  8. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    SciTech Connect

    Hayes, D. J.; Turner, D. P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, L.; deJong, B.; McConkey, Brian; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andy; Huntzinger, Deborah N.; Pan, Y.; Post, W. M.; Cook, R. B.

    2012-04-02

    While fossil fuel emissions are calculated with relatively high precision, understanding the fate of those emissions with respect to sequestration in terrestrial ecosystems requires data and methods that can reduce uncertainties in the diagnosis of land-based CO2 sinks. The wide range in the land surface flux estimates is related to a number of factors, but most generally because of the different methodologies used to develop estimates of carbon stocks and flux, and the uncertainties inherent in each approach. The alternative approaches to estimating continental scale carbon fluxes that we explored here can be broadly classified as applying a top-down or bottom-up perspective. Top-down approaches calculate land-atmosphere carbon fluxes based on atmospheric budgets and inverse modeling. Bottom-up approaches rely primarily on measurements of carbon stock changes (the inventory approach) or on spatially distributed simulations of carbon stocks and/or fluxes using process-based modeling (the forward modelapproach).

  9. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  10. Depositional styles of Early Ediacaran terrestrial volcanosedimentary succession in Gebel El Urf area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Eliwa, Hassan; Breitkreuz, Christoph; Khalaf, Ibrahim; Gameel, Khaled El

    2010-06-01

    Located 100 km northwest of Hurghada, the volcanosedimentary successions of Gebel El Urf is exposed between latitude 27° 45' 30″ and 27° 51' 00″ N and longitude 32° 49' 00″ and 32° 59' 00″ E. The volcanosedimentary successions of Gebel El Urf crop out in an area dominated by different Late Proterozoic plutonic complexes. Both, erosional and intrusive contacts with different granitoid units have been identified. Two SHRIMP ages have been obtained from crystal-rich and lithic-poor ignimbrites yielding 615 ± 4 and 616.0 ± 5.4 Ma placing the evolution of the inter-montane basins, described here, into the Early Ediacaran. In the Gebel El Urf area, a southeastward dipping succession (Gebel El Urf Succession, GUS) of ca. 2000 m thickness rests on coarse-grained granite with an erosional unconformity. Another succession present in the area (Wadi Kefri Succession, WKS) represents volcanogenic sediments which exhibit degrees of metamorphic overprint. In places, it is presumed to be older than GUS. For the GUS, 14 lithofacies types have been differentiated and grouped to seven lithofacies associations. Subdivided into four depositional phases, GUS starts with a thick, massive and clast-supported conglomerate of alluvial fan facies (well-rounded clasts up to 100 cm). GUS continues with pelitic to sandy-turbiditic lacustrine and sandy braided river deposits with occasional volcanic glassy fragments (now illite) (Phase 2). The upper half of the GUS is dominated by volcanic deposits, starting with a 50 m thick package of alternating ignimbrites and synvolcanic sedimentary mass flow deposits, the latter related to phreatomagmatic vents (Phase 3). A thick succession of welded to non-welded ignimbrites follows, with one 20 m intercalation of coarse well-rounded conglomerates (Phase 4). Numerous SiO 2-rich and - poor dykes and sills emplaced into GUS. The GUS development displays a cycle from high to low energy sedimentation and back, under humid climatic conditions

  11. Paleoclimatic and paleoecological reconstruction of early Miocene terrestrial equatorial deposits, Rusinga and Mfangano Islands, Lake Victoria, Kenya

    NASA Astrophysics Data System (ADS)

    Michel, L. A.; Peppe, D. J.; McNulty, K. P.; Driese, S. G.; Lutz, J.; Nightingale, S.; Maxbauer, D. P.; Horner, W. H.; DiPietro, L. M.; Lehmann, T.; Dunsworth, H. M.; Harcourt-Smith, W. E.; Ogondo, J.

    2012-12-01

    Biological responses to climatic shifts are often studied to inform us on future anthropogenic-driven climate change. However, few of these climatic shifts occur over time scales appropriate to modern change and few occur with biota similar to modern. The Miocene Climatic Optimum is an ideal interval to study because of its rapid duration and because it occurred during the rise and proliferation of apes. The sediments on Rusinga and Mfangano Islands, Lake Victoria, Kenya were deposited between 18 and 20 Ma and record a changing equatorial climate just prior to the Miocene Climate Optimum. This location also offers an opportunity to use multiple proxies to constrain climate and landscape, including paleosol geochemistry, paleobotany and paleontology. Additionally, due to the rich fossil preservation on the islands, climatic shifts are framed within the context of early caterrhine evolution. Here, we report a climate shift recorded through three time slices spanning two formations over ~2 myr. The oldest unit, the Wayando Formation, records an arid, probably open ecosystem with pedogenic calcite rhizoliths, a high groundwater table, poorly-formed paleosols and permineralized sedges. The middle time slice, the Grit Member-Fossil Bed Member contact of the Hiwegi Formation, shows evidence of a local saline lake, with desiccation features, satin-spar after gypsum deposits and salt hoppers. Paleobotanical and sedimentological data from roughly contemporaneous strata indicate a warm, highly seasonal environment that supported a mixture of woodland and forested elements across the landscape. The youngest unit, which is within the Kibanga Member of the Hiwegi Formation, displays demonstrable evidence for a closed-canopy multistoried forest with the presence of tree-stump casts and permineralized root systems within a red-brown paleosol. Within the same paleosol horizon, the dental remains of the catarrhines Proconsul and Dendropithecus have been discovered in situ. This

  12. The Martian atmosphere above great volcanoes: Early planetary Fourier spectrometer observations

    NASA Astrophysics Data System (ADS)

    Grassi, D.; Fiorenza, C.; Zasova, L. V.; Ignatiev, N. I.; Maturilli, A.; Formisano, V.; Giuranna, M.

    2005-08-01

    This work reports the first observations of the Martian atmosphere returned by the planetary Fourier spectrometer (PFS) on board of Mars express (MEX) satellite in the vicinity of the greatest volcanic domes of the planet. Two of the early MEX orbits have already covered the region of Olympus Mons and Ascraeus Mons. These measurements are very similar in terms of local time (14LT) and season ( L=337 and 342, respectively). The long wavelength channel (LWC) of the instrument works in the thermal IR (300-1500 cm -1); its data allow the simultaneous retrieval of surface temperature, integrated content of water ice and dust suspended in the atmosphere and air thermal field up to an altitude of about 50 km. Results of the code described in the companion paper by Grassi et al. for the two orbits are presented and compared with the state expected by the European Martian climate dataset v3.1. The parent global circulation model LMD-Oxford-AAS is able to take into account a wide number of physical phenomena, but the results included in EMCD are affected by a relatively coarse spatial resolution, that does not properly describe the great volcanic domes. The comparison demonstrated that observed data follow quite strictly the trends foreseen by the model in low altitude regions, while the behavior shows remarkable differences above the relief, where orography likely plays an important role. Namely, extended mid-altitude minima in air temperature fields above the summit of volcanic domes are observed. The integrated content of dust shows a minima above Olympus, as expected for a dust particle concentration that decays with height. Measurements are consistent with an exponential decay characterized by a scale height of ˜10 km. Consistently, the surface temperature presents a maxima over the dome, as expected for conditions of clearer sky. Water ice clouds are clearly detected around Ascreus Mons, with a strong asymmetry in latitude. Further comparison with the results of the

  13. Net exchanges of CO2, CH4 and N2O between the terrestrial ecosystems and the atmosphere in boreal and arctic region: Towards a full greenhouse gas budget

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Kamaljit, K.; Pan, S.

    2014-12-01

    Boreal and arctic terrestrial ecosystem is a unique ecological region due to large portion of wetland and permafrost distribution. Increasing disturbances, like permafrost-thaw, fire event, climate extreme, would greatly change the patterns and variations of greenhouse gas emission and further affect the feedback between terrestrial ecosystem and climate change. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) accounted for more than 85% of the radioactive forcing (RF) due to long-lived greenhouse gases. However, few studies have considered the full budget of three gases together in this region. In this study, we used a process-based model (Dynamic Land Ecosystem Model), driven by multiple global change factors, to quantify the magnitude, spatial and temporal variation of CO2, CH4 and N2O across the boreal and arctic regions. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of factorial simulations, we further quantify the relative contribution of climate, atmospheric composition, fire to the CO2, CH4 and N2O fluxes. Continued warming climate potentially could shift the inter-annual and intra-annual variation of greenhouse gases fluxes. The understanding of full budget in this region could provide insights for reasonable future projection, which is also crucial for developing effective mitigation strategies.

  14. Magnetostratigraphy of the Lowermost Paleocene Fort Union Formation in the Williston Basin of North Dakota: Base of a Terrestrial Reference Section for Early Cenozoic Global Change

    NASA Astrophysics Data System (ADS)

    Peppe, D. J.; Evans, D. D.

    2006-05-01

    lead to more accurate and detailed correlations of the terrestrial and marine climate records through the early Cenozoic.

  15. Solution of the comoving-frame equation of transfer in spherically symmetric flows. V - Multilevel atoms. [in early star atmospheres

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Kunasz, P. B.

    1978-01-01

    The coupled radiative transfer and statistical equilibrium equations for multilevel ionic structures in the atmospheres of early-type stars are solved. Both lines and continua are treated consistently; the treatment is applicable throughout a transonic wind, and allows for the presence of background continuum sources and sinks in the transfer. An equivalent-two-level-atoms approach provides the solution for the equations. Calculations for simplified He (+)-like model atoms in parameterized isothermal wind models indicate that subordinate line profiles are sensitive to the assumed mass-loss rate, and to the assumed structure of the velocity law in the atmospheres.

  16. Terrestrial Biomarkers for Early Life on Earth as Analogs for Possible Martian Life Forms: Examples of Minerally Replaced Bacteria and Biofilms From the 3.5 - 3.3-Ga Barberton Greenstone Belt, South Africa

    NASA Technical Reports Server (NTRS)

    Westall, F.; McKay, D. S.; Gibson, E. K.; deWit, M. J.; Dann, J.; Gerneke, D.; deRonde, C. E. J.

    1998-01-01

    The search for extraterrestrial life and especially martian life hinges on a variety of methods used to identify vestiges of what we could recognize as life, including chemical signatures, morphological fossils, and biogenic precipitates. Although the possibility of extant life on Mars (subsurface) is being considered, most exploration efforts may be directed toward the search for fossil life. Geomorphological evidence points to a warmer and wetter Mars early on in its history, a scenario that encourages comparison with the early Earth. For this reason, study of the early terrestrial life forms and environment in which they lived may provide clues as to how to search for extinct martian life. As a contribution to the early Archean database of terrestrial microfossils, we present new data on morphological fossils from the 3.5-3.3-Ga Barberton greenstone belt (BGB), South Africa. This study underlines the variety of fossil types already present in some of the oldest, best-preserved terrestrial sediments, ranging from minerally replaced bacteria and bacteria molds of vaRious morphologies (coccoid, coccobacillus, bacillus) to minerally replaced biofilm. Biofilm or extracellular polymeric substance (EPS) is produced by bacteria and appears to be more readily fossilisable than bacteria themselves. The BGB fossils occur in shallow water to subaerial sediments interbedded with volcanic lavas, the whole being deposited on oceanic crust. Penecontemporaneous silicification of sediments and volcanics resulted in the chertification of the rocks, which were later subjected to low-grade metamorphism (lower greenschist).

  17. Evidence for a (15)N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment.

    PubMed

    Bocherens, Hervé; Drucker, Dorothée G; Madelaine, Stéphane

    2014-04-01

    The Middle to Upper Palaeolithic transition around 35,000 years ago coincides with the replacement of Neanderthals by anatomically modern humans in Europe. Several hypotheses have been suggested to explain this replacement, one of them being the ability of anatomically modern humans to broaden their dietary spectrum beyond the large ungulate prey that Neanderthals consumed exclusively. This scenario is notably based on higher nitrogen-15 amounts in early Upper Palaeolithic anatomically modern human bone collagen compared with late Neanderthals. In this paper, we document a clear increase of nitrogen-15 in bone collagen of terrestrial herbivores during the early Aurignacian associated with anatomically modern humans compared with the stratigraphically older Châtelperronian and late Mousterian fauna associated with Neanderthals. Carnivores such as wolves also exhibit a significant increase in nitrogen-15, which is similar to that documented for early anatomically modern humans compared with Neanderthals in Europe. A shift in nitrogen-15 at the base of the terrestrial foodweb is responsible for such a pattern, with a preserved foodweb structure before and after the Middle to Upper Palaeolithic transition in south-western France. Such an isotopic shift in the terrestrial ecosystem may be due to an increase in aridity during the time of deposition of the early Aurignacian layers. If it occurred across Europe, such a shift in nitrogen-15 in terrestrial foodwebs would be enough to explain the observed isotopic trend between late Neanderthals and early anatomically modern humans, without any significant change in the diet composition at the Middle to Upper Palaeolithic transition.

  18. Atmosphere-ocean linkages in the eastern equatorial Pacific over the early Pleistocene

    NASA Astrophysics Data System (ADS)

    Povea, Patricia; Cacho, Isabel; Moreno, Ana; Pena, Leopoldo D.; Menéndez, Melisa; Calvo, Eva; Canals, Miquel; Robinson, Rebecca S.; Méndez, Fernando J.; Flores, Jose-Abel

    2016-05-01

    Here we present a new set of high-resolution early Pleistocene records from the eastern equatorial Pacific (EEP). Sediment composition from Ocean Drilling Program Sites 1240 and 1238 is used to reconstruct past changes in the atmosphere-ocean system. Particularly remarkable is the presence of laminated diatom oozes (LDOs) during glacial periods between 1.85 and 2.25 Ma coinciding with high fluxes of opal and total organic carbon. Relatively low lithic particles (coarse and poorly sorted) and iron fluxes during these glacial periods indicate that the increased diatom productivity did not result from dust-stimulated fertilization events. We argue that glacial fertilization occurred through the advection of nutrient-rich waters from the Southern Ocean. In contrast, glacial periods after 1.85 Ma are characterized by enhanced dust transport of finer lithic particles acting as a new source of nutrients in the EEP. The benthic ecosystem shows dissimilar responses to the high productivity recorded during glacial periods before and after 1.85 Ma, which suggests that the transport processes delivering organic matter to the deep sea also changed. Different depositional processes are interpreted to be the result of two distinct glacial positions of the Intertropical Convergence Zone (ITCZ). Before 1.85 Ma, the ITCZ was above the equator, with weak local winds and enhanced wet deposition of dust. After 1.85 Ma, the glacial ITCZ was displaced northward, thus bringing stronger winds and stimulating upwelling in the EEP. The glacial period at 1.65 Ma with the most intense LDOs supports a rapid southward migration of the ITCZ comparable to those glacial periods before 1.85 Ma.

  19. Mercury in the Canadian Arctic terrestrial environment: an update.

    PubMed

    Gamberg, Mary; Chételat, John; Poulain, Alexandre J; Zdanowicz, Christian; Zheng, Jiancheng

    2015-03-15

    Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposition and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accumulation and storage of Hg in the cryosphere. Concentrations of total Hg (THg) in terrestrial snow are highly variable but on average, relatively low (<5 ng L(-1)), and methylmercury (MeHg) levels in terrestrial snow are also generally low (<0.1 ng L(-1)). On average, THg concentrations in snow on Canadian Arctic glaciers are much lower than those reported on terrestrial lowlands or sea ice. Hg in snow may be affected by photochemical exchanges with the atmosphere mediated by marine aerosols and halogens, and by post-depositional redistribution within the snow pack. Regional accumulation rates of THg in Canadian Arctic glaciers varied little during the past century but show evidence of an increasing north-to-south gradient. Temporal trends of THg in glacier cores indicate an abrupt increase in the early 1990 s, possibly due to volcanic emissions, followed by more stable, but relatively elevated levels. Little information is available on Hg concentrations and processes in Arctic soils. Terrestrial Arctic wildlife typically have low levels of THg (<5 μg g(-1) dry weight) in their tissues, although caribou (Rangifer tarandus) can have higher Hg because they consume large amounts of lichen. THg concentrations in the Yukon's Porcupine caribou herd vary among years but there has been no significant increase or decrease over the last two decades.

  20. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  1. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  2. Forsterite/melt partitioning of argon and iodine: Implications for atmosphere formation by outgassing of an early Martian magma ocean

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1992-01-01

    Argon and Xe in the Martian atmosphere are radiogenic relative to the Martian mantle if the SNC meteorites are from Mars. Decay of the short lived isotope I-129 to Xe-129 (t sub 1/2 = 16 m.y.) is the most plausible source of the radiogenic Xe. This short half life constrains any process responsible for the elevated Xe-129/Xe-132 ratio of the Martian atmosphere to occur very early in solar system history. Musselwhite et al. proposed that the differential solubility of I and Xe in liquid water played a key role in producing the radiogenic signature in the Martian atmosphere. Here we explore an alternative hypothesis involving purely igneous processes, and motivated in part by new experimental results on the partitioning of I and Xe between minerals and melt.

  3. Carbon Storage and Isotopes in the Terrestrial Biosphere Over the last 21000 Years

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.; Prentice, I. C.; Knorr, W.

    2001-12-01

    Analysis of ice-core [CO2] and \\delta13C indicates that the terrestrial biosphere may be in part responsible for variability in atmospheric composition over the Holocene. We performed a series of experiments with a dynamic global vegetation model (DGVM) to simulate global terrestrial carbon storage, vegetation distribution, and carbon isotope composition for the last 21000 years. The DGVM experiments were driven by an atmospheric GCM climatology at 1000 year intervals, and also interpolated through time to make a continuous simulation. At the Last Glacial Maximum C4 vegetation dominated tropical and subtropical latitudes and terrestrial carbon storage was approximately 700 Gt smaller than today. Terrestrial NPP was ca. 30% less than present. The isotopic composition of global terrestrial carbon was enriched by ca. 1 per mil compared to present because of increased aridity and greater C4 plant cover. In the late Pleistocene and early Holocene, vegetation expanded rapidly into formerly glaciated areas. Terrestrial NPP increased to near present levels, sustaining a steady increase in terrestrial carbon storage which persisted throughout the Holocene. The isotopic composition of carbon in tropics was most depleted in 13C in the early Holocene (ca. 10 kya) and later became slightly more enriched as C4 dominated grasslands and savannas expanded in response to climate changes. However northern hemisphere isotopic composition become more depleted throughout the Holocene and global isotopic composition changed little. These results cannot account for the Holocene changes in atmospheric [CO2] and 13C observed in ice cores, which may instead be driven by very slow changes in ocean chemistry.

  4. Geochemical and biologic constraints on the Archaean atmosphere and climate - A possible solution to the faint early Sun paradox.

    NASA Astrophysics Data System (ADS)

    Rosing, Minik T.; Bird, Dennis K.; Sleep, Norman H.; Bjerrum, Christian J.

    2010-05-01

    There is ample geological evidence that Earth's climate resembled the present during the Archaean, despite a much lower solar luminosity. This was cast as a paradox by Sagan and Mullen in 1972. Several solutions to the paradox have been suggested, mostly focusing on adjustments of the radiative properties of Earth's atmosphere e.g. Kasting (1993), by increasing the mixing ratio of CO2 and/or adding various other greenhouse gasses. We have used banded iron formation (BIF), which are chemical sediments precipitated out of the Archaean ocean to characterize the composition of the atmosphere. The stability relations of magnetite, which is ubiquitous in Archaean BIFs, preclude CO2 mixing ratios much higher than the present atmospheric level. Likewise, magnetite stability is consistent with atmospheric H2 controlled at the lower limit for H2 metabolism by methanogenic phototrophic organisms. In the absence of substantial compensation for the lower solar irradiance by greenhouse gasses in the atmosphere, we have examined the factors that controlled Earth's albedo. These are primarily the surface albedo of Earth and the abundance and properties of clouds. We have applied a model that takes into account the apparent growth of Earth continents (Collerson and Kamber 1999) and the absence of land vegetation during the Precambrian for the evolution of the surface albedo, and a model for the abundance and properties of clouds that takes into account the lower abundance of biogenic cloud condensation nuclei in a less productive prokaryotic world. The higher transparency of the atmosphere for short wave incoming solar radiation and the lower surface albedo on an early Earth dominated by oceans, provided sufficient compensation for the lower solar irradiance to allow the presence of liquid oceans, even at greenhouse gas concentrations broadly similar to the present day values. We therefore suggest that the thermostasis during Earth geologic record, is not paradoxical, but is the

  5. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  6. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  7. Pathways to Earth-Like Atmospheres. Extreme Ultraviolet (EUV)-Powered Escape of Hydrogen-Rich Protoatmospheres

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Kislyakova, K. G.; Odert, P.; Leitzinger, M.; Schwarz, R.; Pilat-Lohinger, E.; Kulikov, Yu. N.; Khodachenko, M. L.; Güdel, M.; Hanslmeier, A.

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  8. Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres.

    PubMed

    Lammer, Helmut; Kislyakova, K G; Odert, P; Leitzinger, M; Schwarz, R; Pilat-Lohinger, E; Kulikov, Yu N; Khodachenko, M L; Güdel, M; Hanslmeier, M

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  9. Local response to warm Antarctic terrestrial temperatures in the Eocene: evidence from terrestrial biomarkers

    NASA Astrophysics Data System (ADS)

    Toney, J. L.; Bendle, J. A.; Inglis, G.; Bijl, P.; Pross, J.; Contreras, L.; van de Flierdt, T.; Huck, C. E.; Jamieson, S.; Huber, M.; Schouten, S.; Roehl, U.; Bohaty, S. M.; Brinkhuis, H.

    2011-12-01

    The early Eocene (~55 to 49 Ma) was characterized by long-term, high global temperatures and elevated atmospheric pCO2 levels (ca. 1000 ppm to more than 2000 ppm). Superimposed on top of this long-term warmth were a series of abrupt high pCO2 (>2000 ppm) and high temperature events. This greenhouse world may be used as an analogue for the future response of the biosphere and global carbon cycle to recent anthropogenic, atmospheric CO2 emissions. A major uncertainty, however, is the response of high polar latitudes to these climate conditions. Here we show evidence of early Eocene warmth measured from terrestrial, bacteria-derived tetraethers at IODP Site U1356, situated along the Wilkes Land margin in East Antarctica. The presence of soil bacteria-derived hopanes and higher plant n-alkanes in drillcores obtained from this site are also used to help understand the terrestrial Antarctic climate evolution in a warmer world. Methyl-branched and cyclised tetraether compounds are derived from terrestrial, soil bacteria. The number of branches and cycles are related directly to the environmental temperature and pH. These compounds indicate that temperatures on Eastern Antarctica likely exceeded 22°C during the Eocene. These temperatures reflect locally sourced terrestrial material input from a variety of elevations along the coastal plain and from the hinterland. A local source region is supported by the palynological and neodymium isotope records and by the presence of hopanes that suggest input from terrigenous soil and/or wetland environments. In particular, the existence of the C31 (17α,21β) homohopane within a relatively immature hopane assemblage is reported at Site U1356 and suggests the presence of methane-producing, wetland environments on Antarctica. Compound-specific carbon isotopes analyzed on the bacterial derived hopanes are used to characterize changes in wetland carbon cycling and methanogenesis. Local adiabatic lapse rate and precipitation amount

  10. Titan's surface and atmosphere

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  11. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Lunar Metal Grains: Solar, Lunar or Terrestrial Origin? 22) Isotopic Zoning in the Inner Solar System; 23) Redox Conditions on Small Bodies; 24) Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update; 25) Mantle Redox Evolution and the Rise of Atmospheric O2; 26) Variation of Kd for Fe-Mg Exchange Between Olivine and Melt for Compositions Ranging from Alkaline Basalt to Rhyolite; 27) Determining the Partial Pressure of Oxygen (PO,) in Solutions on Mars; 28) The Influence of Oxygen Environment on Kinetic Properties of Silicate Rocks and Minerals; 29) Redox Evolution of Magmatic Systems; 30) The Constancy of Upper Mantlefo, Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric 0 2; 31) Nitrogen Solubility in Basaltic Melt. Effects of Oxygen Fugacity, Melt Composition and Gas Speciation; 32) Oxygen Isotope Anomalies in the Atmospheres of Earth and Mars; 33) The Effect of Oxygen Fugacity on Interdiffusion of Iron and Magnesium in Magnesiowiistite 34) The Calibration of the Pyroxene Eu-Oxybarometer for the Martian Meteorites; 35) The Europium Oxybarometer: Power and Pitfalls; 36) Oxygen Fugacity of the Martian Mantle from PigeoniteMelt Partitioning of Samarium, Europium and Gadolinium; 37) Oxidation-Reduction Processes on the Moon: Experimental Verification of Graphite Oxidation in the Apollo 17 Orange Glasses; 38) Oxygen and Core Formation in the Earth; 39) Geologic Record of the Atmospheric Sulfur Chemistry Before the Oxygenation of the Early Earth s Atmosphere; 40) Comparative Planetary Mineralogy: V/(CrCAl) Systematics in Chromite as an Indicator of Relative Oxygen Fugacity; 41) How Well do Sulfur Isotopes Constrain Oxygen Abundance in the Ancient Atmospheres? 42) Experimental Constraints on the Oxygen Isotope (O-18/ O-16) Fractionation in the Ice vapor and Adsorbant vapor Systems of CO2 at Conditions Relevant to the Surface of Mars; 43) Micro-XANES Measurements on Experimental Spinels andhe

  12. Early Mars volcanic sulfur storage in the upper cryosphere and formation of transient SO2-rich atmospheres during the Hesperian

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Chassefière, E.; Tian, F.; Dartois, E.; Herri, J.-M.; Mousis, O.

    2016-11-01

    In a previous paper (Chassefière et al.), we have shown that most volcanic sulfur released to the early Mars atmosphere could have been trapped in the upper cryosphere under the form of CO2-SO2 clathrates. Huge amounts of sulfur, up to the equivalent of an 1 bar atmosphere of SO2, would have been stored in the Noachian upper cryosphere, then massively released to the atmosphere during the Hesperian due to rapidly decreasing CO2 pressure. It could have resulted in the formation of the large sulfate deposits observed mainly in Hesperian terrains, whereas no or little sulfates are found at the Noachian. In the present paper, we first clarify some aspects of our previous work. We discuss the possibility of a smaller cooling effect of sulfur particles, or even of a net warming effect. We point out the fact that CO2-SO2 clathrates formed through a progressive enrichment of a pre-existing reservoir of CO2 clathrates and discuss processes potentially involved in the slow formation of a SO2-rich upper cryosphere. We show that episodes of sudden destabilization at the Hesperian may generate 1000 ppmv of SO2 in the atmosphere and contribute to maintaining the surface temperature above the water freezing point.

  13. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  14. Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2001-01-01

    We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.

  15. Nature and evolution of the early Martian atmosphere: Evidence from highland crater populations

    NASA Technical Reports Server (NTRS)

    Craddock, Robert A.; Maxwell, Ted A.

    1992-01-01

    Release of water in a CO2 rich atmosphere by precipitation and channel forming processes has led to speculation on the creation of Martian carbonate deposits. On Mars water probably was not on the surface long enough to allow eroded material to concentrate, raise the pH, and induce the formation of carbonates. This suggests that the Martian primordial atmosphere could be thinner (approximately 5 bars) and still allow highland degradation to occur over a long period of time (.45 to 1.2 billion years).

  16. New insight into the physics of atmospheres of early type stars

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.

    1981-01-01

    The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested.

  17. FINAL REPORT: A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the GCC

    SciTech Connect

    Keeling, R. F.; Piper, S. C.

    2008-12-23

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic composition. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. The program also included the development of methods for measuring radiocarbon content in the collected CO2 samples and carrying out radiocarbon measurements in collaboration with Tom Guilderson of Lawrence Berkeley National Laboratory (LLNL). The radiocarbon measurements can provide complementary information on carbon exchange rates with the land and oceans and emissions from fossil-fuel burning. Using models of varying complexity, the concentration and isotopic measurements were used to establish estimates of the spatial and temporal variations in the net CO2 exchange with the atmosphere, the storage of carbon in the land and oceans, and variable isotopic discrimination of land plants.

  18. Bolide impacts and the oxidation state of carbon in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1990-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.

  19. Cooperative research in terrestrial planetary geology and geophysics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This final report for the period of July 1991 to August 1994 covered a variety of topics concerning the study of Earth and Mars. The Earth studies stressed the interpretation of the MAGSAT crustal magnetic anomalies in order to determine the geological structure, mineralogical composition, magnetic nature, and the historical background of submarine features, and also featured work in the area of terrestrial remote sensing. Mars research included the early evolution of the Martian atmosphere and hydrosphere and the investigations of the large Martian impact basins. Detailed summaries of the research is included, along with lists of the publications resulting from this research.

  20. Changes in IDP mineralogy and composition by terrestrial factors

    NASA Technical Reports Server (NTRS)

    Flynn, George J.

    1994-01-01

    Major objectives in the study of interplanetary dust particles (IDP's) are to constrain the physical and chemical conditions in the early solar system, to characterize the particles making up the zodiacal cloud, and to infer the physical, chemical, mineralogical, and isotopic properties of IDP parent bodies: the comets and the asteroids. However, the effects of terrestrial interactions alter the properties of some IDP's from those of the zodiacal cloud particles. The interactions can be separated into four distinct phases: near-earth gravitational segregation, atmospheric entry deceleration, stratospheric residence, and the collection/curation process.

  1. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    PubMed Central

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-01-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between −1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  2. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non-33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  3. Early Holocene Change in Atmospheric Circulation in the North-Central USA

    NASA Astrophysics Data System (ADS)

    Dean, W. E.

    2005-12-01

    Numerous proxies in cores from Elk Lake, northwestern Minnesota, have provided a record of climatic and environmental change with annual resolution for the last 10,000 years. The proxies that allow reconstruction of the lake's physical and chemical paleolimnology (diatoms, redox-sensitive trace metals, and 18O values) show that that prior to about 8.2 cal ka the lake was a stable, dimictic lake that was strongly stratified. The same proxies show that after 8.2 cal. ka the lake was turbulent, well-mixed and shallower. The proxies that are related to climate factors external to the lake (dust as % Al and % Si, varve thickness, and pollen) show that prior to 8.2 cal. ka the lake was receiving relatively little dust, implying little wind activity. After 8.2 cal ka, there was a marked increase in the influx of dust indicating an increase in westerly winds. Lastly, the ostracode faunal assemblages, which provide information about the limnology and watershed characteristics, indicate that, for 1000 years prior to 8.2 cal. ka, the lake was stable and dilute with characteristics typical of lakes in boreal forests. At 8.2 cal. ka, the ostracode assemblage abruptly shifted to an assemblage typical of Canadian prairie lakes that exhibit large seasonal variability in physical characteristics. This marks the northward displacement of the polar front and beginning of westerlies. The Elk Lake record further shows that the so-called 8.2 cal. yr cold event, recognized in ice-core and other records from the circum-North Atlantic, and thought by some to be caused by catastrophic drainage of freshwater from proglacial lakes Agassiz and Ojibway, was but a brief manifestation of a more fundamental and lasting change in the climate of North America. This fundamental climate change was the result of changes in atmospheric circulation in response to marked changes in the relative proportions of land, water, and, especially, glacial ice in North America during the early Holocene, the

  4. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  5. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  6. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  7. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Astrophysics Data System (ADS)

    Bada, J. L.; Miller, S. L.

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  8. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  9. Sources of atmospheric CH{sub 4} in early postglacial time

    SciTech Connect

    Nisbet, E.G.

    1992-08-20

    This paper looks the the dramatic changes in methane levels in the atmosphere following the end of the last glacial period, and during the Oldest and Younger Dryas. Levels are inferred from measurements made on ice core samples. The rate of changes required to account for the dramatic increase seems unlikely to be explainable based on biologic sources. The author argues that releases from fossil sources may have been a major contributor to the dramatic shifts recorded in the ice core records.

  10. The corrosion of weathering steel by SO2 polluted atmospheres at its very early stages

    NASA Astrophysics Data System (ADS)

    Marco, J. F.; Dávalos, J.; Gracia, M.; Gancedo, J. R.

    1990-07-01

    CEMS was used in conjunction with AES to study the protective film formed on a weathering steel by exposure to a highly SO2-polluted atmosphere. Ferrous species (sulphite) and ferric oxyhydroxides (ferrihydrite and α-FeOOH) were identified as corrosion products. From the correlation of CEMS and AES results the evolution with time of the different compounds is obtained, and a possible reaction sequence is outlined.

  11. Smoke Plumes from Kuwaiti Oil Fires as Atmospheric Experiment of Opportunity: An Early Look

    DTIC Science & Technology

    1991-10-01

    1991 Final--March - October 1991 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Smoke Plumes From Kuwaiti Oil Fires as Atmospheric - MDA...phenomenology associated with the large number of oil fires lit by the Iraqi military in Kuwait in February 1991 , and which are probably the worst man-made air...Kuwaiti Oil Fires from Space Shuttle Photographs, 5-8 April 1991 (Source: Lulla and Helfert, 1991 ) 3 IRA 30ON I lo KUWAIT ’

  12. Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Hine, B.; Delory, G. T.; Mahaffy, Paul; Benna, Mehdi; Horanyi, Mihaly; Colaprete, Anthony; Noble, Sarah

    2014-01-01

    On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013.

  13. Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Astrophysics Data System (ADS)

    Elphic, Richard C.; Hine, Butler; Delory, Gregory T.; Mahaffy, Paul; Benna, Mehdi; Horanyi, Mihaly; Colaprete, Anthony; Noble, Sarah

    2014-05-01

    On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket success-fully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013.

  14. Measurements of the CO_2 15 μm Band System Broadened by Air, N_2 and CO_2 at Terrestrial Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Blake, T. A.; Sams, R. L.

    2009-06-01

    In earth remote sensing, retrievals of atmospheric temperature profiles are often based on observed radiances in infrared spectral regions where emission from atmospheric CO_2 predominates. To achieve improved retrieval accuracy, systematic errors in the forward model must be reduced, especially those associated with errors in the spectroscopic line calculation. We have recorded more than 110 new high-resolution infrared spectra of the 15-μm band system of CO_2 to accurately determine line intensities, self-, air- and N_2-broadened widths and pressure-induced line shifts, along with their temperature dependences. The spectra were recorded with the Bruker IFS 120 HR Fourier transform spectrometer at Pacific Northwest National Laboratory (PNNL) and temperature-controlled sample cells. Sample temperatures were between 206K and 298K. Maximum total pressures were 15 Torr for self-broadening and 613 Torr for air- and N_2-broadening. Analysis is done using a multispectrum fitting technique to retrieve the spectroscopic parameters. Line mixing and other non-Lorentz, non-Voigt line shapes are also assessed. The resulting line parameters are compared with the HITRAN database and with other measurements. D. Chris Benner, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, and D. Atkins, J. Quant. Spectrosc. Radiat. Transfer 53, 705-721 (1995) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005) L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, in press (2009)

  15. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    SciTech Connect

    Hayes, Daniel J; Turner, David P; Stinson, Graham; Mcguire, David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; De Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andrew; Huntzinger, Deborah; Pan, Yude; Post, Wilfred M; Cook, Robert B

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  16. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    USGS Publications Warehouse

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  17. Spherically symmetric, expanding, non-LTE model atmospheres for novae during their early stages

    NASA Technical Reports Server (NTRS)

    Hauschildt, P. H.; Wehrse, R.; Starrfield, S.; Shaviv, G.

    1992-01-01

    In the continuum and line-blanketed models presented here, nova atmospheres are characterized by a very slow decrease of density with increasing radius. This feature leads to very large geometrical extensions so that there are large temperature differences between the inner and outer parts of the line-forming regions. The theoretical spectra show a large IR excess and a small Balmer jump which may be either in absorption or in emission. For the parameters