Science.gov

Sample records for early terrestrial atmosphere

  1. Fractionation of the Early Terrestrial Atmospheres: Dynamical Escape

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.

    2002-01-01

    Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the maximum mass of flowing gas constituents decreases until all gases become static. We show that fractionation can continue beyond this point when non-radial flow and dynamically enhanced Jeans escape are considered. For example, the early terrestrial atmospheres are thought to have had large hydrogen contents, resulting in exobase altitudes of a planetary radius or more. In this case, rotational speeds at the exobases of Earth and Mars would be large enough so that light constituents would "spin" off and fractionate, especially at equatorial latitudes. Also, in the presence of transonic flow of hydrogen only, non-radial expansion throws heavier gases to high altitudes in the exosphere, accompanied by strong bulk speeds at the exobase, which results in enhanced thermal escape fluxes and fractionation. flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the

  2. Wind and Rotation Enhanced Escape from the Early Terrestrial Atmospheres

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The earliest atmospheres of the terrestrial planets are thought to have been hotter, have stronger winds and rotate faster than atmospheres of today. Since these primitive atmospheres were weakly bound, they evolved rapidly because atmospheric escape was very strong, often referred to as "blowoff." Such escape has been treated as hydrodynamic, transonic flow; similar to solar wind flow dynamics. However, in many cases, although the outward flow is hydrodynamic at low altitudes, it becomes collisionless at higher altitudes, before sonic speeds are ever attained. Recent models dealing with the transition from fluid to kinetic flow have applied the Jeans escape flux at the exobase. This approach leads to escape rates that are too low, because thermospheric winds and planetary rotation are known to increase the escape flux above the corresponding Jeans flux. In particular, for a given density and temperature at the exobase, the escape flux increases as the wind speed and/or the rotation rate increase. Also, for a given wind speed and rotation rate, the escape flux enhancement over the Jeans flux increases as the mass of an escaping constituent increases, an important factor in isotope fractionation, especially the enrichment of deuterium on Mars. Accounting for a range of possible temperatures, thermospheric wind speeds and planetary rotation rates in the primitive atmospheres of the terrestrial planets, estimates are made of light constituent escape flux increases over the corresponding Jeans fluxes.

  3. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  4. Atmospheric oxygen levels affect mudskipper terrestrial performance: implications for early tetrapods.

    PubMed

    Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B

    2013-08-01

    The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.

  5. On the relationship between early solar activity and the evolution of terrestrial planet atmospheres

    NASA Technical Reports Server (NTRS)

    Repin, Robert O.

    1989-01-01

    Mass fractionation during hydrodynamic escape of hydrogen-rich primordial atmospheres form Venus, earth, and Mars can account for most of the salient features of mass distributions in their present-day atmospheres. The principal assumptions and results of an escape-fractionation model for the evolution of terrestrial planet atmospheres from primary to final states are qualitatively described, with emphasis on the astrophysical conditions needed to enable the loss process. A substantial and rapidly declining flux of energetic solar radiation into atmospheric exospheres is required, initially (at solar ages of about 1-10 million years) two to three orders of magnitude more intense than that supplied by extreme-ultraviolet emission from the contemporary sun. The solar accretion disk must have dissipated if such radiation is to penetrate the system midplane to planetray distances. On both criteria, hydrodynamic escape from planets appears plausible in the astrophysical environment of the naked T-Tauri stars.

  6. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota

    PubMed

    Ohmoto, H

    1996-12-01

    The loss of Fe from some pre-2.2 Ga paleosols has been considered by previous investigators as the best evidence for a reduced atmosphere prior to 2.2 Ga. I have examined the behavior of Fe in both pre- and post-2.2 Ga paleosols from depth profiles of Fe3+/Ti, Fe2+/Ti, and sigma Fe/Ti ratios, and Fe3+/Ti vs. Fe2+/Ti plots. This new approach reveals a previously unrecognized history of paleosols. Essentially all paleosols, regardless of age, retain some characteristics of soils formed under an oxic atmosphere, such as increased Fe3+/Ti ratios from their parental rocks. The minimum oxygen pressure (PO2) for the 3.0-2.2 Ga atmosphere is calculated to be about 1.5% of the present atmospheric level, which is the same as that for the post-1.9 Ga atmosphere. The loss of sigma Fe, common in paleosol sections of all ages, was not due to a reducing atmosphere, but to reductive dissolution of ferric hydroxides formed under an oxic atmosphere. This reductive dissolution of ferric hydroxides occurred either (1) after soil formation by hydrothermal fluids or (2) during and/or after soil formation by organic acids generated from the decay of terrestrial organic matter. Terrestrial biomass on the early continents may have been more extensive than previously recognized.

  7. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  8. Primitive Terrestrial Atmospheres

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin John

    1985-12-01

    A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation is interpreted as reflecting the climatic influence of the lunar nodal tide, the signature of which has been detected in the modern climate. The lunar distance is deduced to have been 52 Earth radii. The influence of the lunar nodal tide is also detected in varves dating to 680 million years B.P. The implied history of Precambrian tidal friction is in excellent agreement with both more recent paleontological evidence and the long -term stability of the lunar orbit. The solar semidiurnal thermal tide was resonant with the natural period of the atmosphere when the day was (TURN)21.3 hours. This took place at the end of the Precambrian. The resonant atmospheric tide would have been large enough (.01 bar at the surface) to have influenced the weather. In contrast to lunar oceanic tides, the gravitational torque on the thermal tide accelerates the Earth's rotation rate; near resonance the opposing torques were comparable, so that the day may have been stabilized near 21.3 hours for much of the Precambrian. A sustained resonance does not conflict with the available evidence. Methane photochemistry in the primitive terrestrial atmosphere is studied using a detailed numerical model. Methane is oxidized cleanly and efficiently provided CO(,2) is more abundant than CH(,4). If CH(,4) and CO(,2) abundances are comparable, a large fraction of the methane present is polymerized, forming alkanes in the troposphere and polyacetylenes and nitriles in the upper atmosphere. Production of HCN from CH(,4) and N(,2) in the anaerobic atmosphere and its subsequent removal in rainwater could have been efficient; net production varying from .01% to 10% of the methane consumed. In the absence of a magnetic field, high ancient solar EUV and X-ray fluxes would have permitted an ocean of hydrogen to escape as a transsonic wind from a primordial accretionary greenhouse atmosphere in as little as 25 million years

  9. Photochemistry of Terrestrial Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Seager, S.

    2013-01-01

    Terrestrial exoplanet atmospheres require photochemistry for their study. This is because the steady state composition depends critically on the component gas sources (surface emission) and sinks (chemical reactions initiated by UV photolysis). For my Ph.D. research I have developed a comprehensive photochemistry model for terrestrial exoplanet atmospheres from the ground up, which includes 111 molecules and aerosols made of C, H, O, N, S elements, and more than 800 chemical reactions linking them. With updated numerical algorithms, the photochemistry model has desirable features for exoplanet exploration, notably the capacity of treating both reduced and oxidized atmospheres, the elimination of the need of fine-tuned initial conditions, and the flexibility of choosing a subset of chemical species and chemical reactions for the computation. Using the photochemistry model, I provided benchmark atmospheric composition models for reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets; I systemized the short-lived nature of sulfur gases on virtually all types of terrestrial exoplanet atmospheres; I revisited O2 as the remote-sensing probe of biotic photosynthesis and found a potential false positive in high CO2 atmospheres without surface emission of reducing gases (e.g., H2 and CH4); and I provided atmosphere models to propose NH3 as a new biosignature gas in hydrogen-rich atmospheres. I have also extended the photochemistry model to the regime of thick atmospheres (at depths of which thermochemical equilibrium can be effectively achieved), and summarized a “zoo of super-Earths” including water planets, hydrocarbon planets, and even oxygen planets depending on the C-H-O elemental abundances of their atmospheres.

  10. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases.

    PubMed

    Schindler, T L; Kasting, J F

    2000-05-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life. PMID:11543302

  11. Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases

    NASA Technical Reports Server (NTRS)

    Schindler, T. L.; Kasting, J. F.

    2000-01-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  12. Synthetic Spectra of Simulated Terrestrial Atmospheres Containing Possible Biomarker Gases

    NASA Astrophysics Data System (ADS)

    Schindler, Trent L.; Kasting, James F.

    2000-05-01

    NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O 3 (and hence O 2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O 2 concentration in the planet's atmosphere is ≥200 ppm, or 10 -3 times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.

  13. Impact erosion of terrestrial planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1992-01-01

    I review current ideas about the nature of the planetesimals - composition, size distribution, and the planetary encounter velocity. Previous papers on accretion and erosion of planetary atmospheres as a result of multiple impacts are reviewed. Finally, the effects of blowing off a substantial fraction of the atmosphere from a terrestrial planet due to a single giant body impact are discussed.

  14. Nucleosynthesis in the terrestrial and solar atmospheres

    NASA Technical Reports Server (NTRS)

    Yu, C.; Zhou, R.; Zhan, S.

    1985-01-01

    Variations of Delta D, delta C-13, Delta C-14 and Delta O-18 with time were measured by a lot of experiments. Many abnormalities of isotope abundances in cosmic rays were found by balloons and satellites. It is suggested that these abnormalities are related to nuclearsynthesis in the terrestrial and solar atmospheres and are closely related to solar activities.

  15. Linkages between terrestrial ecosystems and the atmosphere

    NASA Technical Reports Server (NTRS)

    Bretherton, Francis; Dickinson, Robert E.; Fung, Inez; Moore, Berrien, III; Prather, Michael; Running, Steven W.; Tiessen, Holm

    1992-01-01

    The primary research issue in understanding the role of terrestrial ecosystems in global change is analyzing the coupling between processes with vastly differing rates of change, from photosynthesis to community change. Representing this coupling in models is the central challenge to modeling the terrestrial biosphere as part of the earth system. Terrestrial ecosystems participate in climate and in the biogeochemical cycles on several temporal scales. Some of the carbon fixed by photosynthesis is incorporated into plant tissue and is delayed from returning to the atmosphere until it is oxidized by decomposition or fire. This slower (i.e., days to months) carbon loop through the terrestrial component of the carbon cycle, which is matched by cycles of nutrients required by plants and decomposers, affects the increasing trend in atmospheric CO2 concentration and imposes a seasonal cycle on that trend. Moreover, this cycle includes key controls over biogenic trace gas production. The structure of terrestrial ecosystems, which responds on even longer time scales (annual to century), is the integrated response to the biogeochemical and environmental constraints that develop over the intermediate time scale. The loop is closed back to the climate system since it is the structure of ecosystems, including species composition, that sets the terrestrial boundary condition in the climate system through modification of surface roughness, albedo, and, to a great extent, latent heat exchange. These separate temporal scales contain explicit feedback loops which may modify ecosystem dynamics and linkages between ecosystems and the atmosphere. The long-term change in climate, resulting from increased atmospheric concentrations of greenhouse gases (e.g., CO2, CH4, and nitrous oxide (N2O)) will further modify the global environment and potentially induce further ecosystem change. Modeling these interactions requires coupling successional models to biogeochemical models to

  16. Solar-terrestrial relationships in atmospheric electricity

    SciTech Connect

    Roble, R.G.

    1985-06-30

    There are many suggested solar-terrestrial relationships in global atmospheric electricity. Of the various relationships, the downward mapping of ionospheric and magnetospheric electric fields, associated with the solar wind/magnetosphere and the ionosphere wind dynamos, is best understood theoretically and appears to be supported by the few available data. The solar cycle variations of ionospheric potential and air-earth current appear to be related to variations in galactic cosmic rays and perhaps to their effect on the current output from thunderstorms. The solar flare and solar magnetic sector boundary variations are not well understood but may be related to Forbush decreases in cosmic ray flux and/or effects resulting from energetic particle precipitation. The available data on auroral effects on atmospheric electricity are confusing and not understood at all. There is a clear need for further research to better define the physical mechanisms responsible for all of these solar-terrestrial relationships. The observed solar-terrestrial variations and the need for current closure in the global circuit suggest that the function of the equalization layer in the ''classical picture'' of atmospheric electricity should be revised to be consistent with our current knowledge of upper-atmospheric electrical processes.

  17. Solar-terrestrial coupling through atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.

  18. Were early pterosaurs inept terrestrial locomotors?

    PubMed

    Witton, Mark P

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual

  19. Were early pterosaurs inept terrestrial locomotors?

    PubMed Central

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual

  20. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  1. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds (e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  2. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    2008-06-01

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds ( e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  3. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  4. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated

  5. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system

    SciTech Connect

    Bau, M.; Moeller, P. )

    1993-05-01

    The chemically precipitated component in Early Precambrian (> 2.3 Ga) iron formations (IFs) displays (Sm/Yb)[sub CN] < 1 and (Eu/Sm)[sub SN] > 1 which reflects the corresponding ratios of contemporaneous seawater. In conjunction with [epsilon][sub Nd-IF] > [epsilon][sub Nd-shale] this rare earth element (REE) signature reveals that the REE distribution in Early Precambrian IFs must be explained by mixing between a marine bottom and a surface water component, and that the REEs (and by analogy the Fe) cannot be derived from weathering of a continental source. Mixing calculations reveal that (Sm/Yb)[sub CN] in Early Precambrian marine surface waters was significantly lower than it is today. To explain this difference, two mechanisms are discussed on the basis of higher P[sub CO[sub 2

  6. Chinguetti - terrestrial age and pre-atmospheric size

    SciTech Connect

    Welten, K C; Masarik, J; Bland, P A; Caffee, M W; Russell, S S; Grady, M M; Denyer, I; Lloyd, J

    2000-01-14

    Chinguetti is a 4.5 kg mesosiderite find recovered from the Adra region of Mauretania. In this paper the authors analyse a portion of the recovered sample for cosmogenic radionuclides to determine its terrestrial age, and to determine its pre-atmospheric radius. They determined the terrestrial age of Chinguetti to be < 30 ky. They constrain the pre-atmospheric radius to 50--80 cm and the shielding depths of 15--25 cm. These data indicate that Chinguetti is a comparatively recent fall.

  7. Terrestrial nitrous oxide cycles and atmospheric effects

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Lawless, J. G.; Banin, A.

    1984-01-01

    The basic processes that cause N2O emission from soils are briefly discussed, and the rate of the processes is shown to vary widely in space and time, depending on soil, climate, and agrotechnical conditions. Although significant amounts of N2O are indeed emitted from the land, the complexity of the soil processes involved and the wide variation of measured rates still prevents the quantitative evaluation, global budgeting, and reliable prediction of atmospheric N2O. Increased atmospheric N2O abundance increases the levels of odd-nitrogen in the stratosphere, which, in turn, decreases the stratospheric ozone density via a catalytic cycle. Using appropriate atmospheric models and current chemical kinetic data, it has been found that the dependence of ozone reduction on N2O increase is nearly linear; a simulated doubling of N2O leads to a predicted decrease of about 14 percent in total ozone column density. A 10 percent increase in N2O yields a predicted increase in nonmelanoma skin cancer of several percent, and a possible raising of surface temperature of 0.03 K.

  8. Space, Atmospheric, and Terrestrial Radiation Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.

    2003-01-01

    The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.

  9. The Atmospheric and Terrestrial Mobile Laboratory (ATML).

    SciTech Connect

    Zak, Bernard Daniel; Rahn, Thom; Nitschke, Kim; Ivey, Mark D.; Mora, Claudia; McDowell, Nate; Love, Steve; Dubey, M.; Michelsen, Hope A.; Guilderson, Tom; Schubert, William Kent; Costigan, Keeley; Chylek, Petr; Bambha, Ray P.; Roskovensky, John K.

    2010-04-01

    The ionospheric disturbance dynamo signature in geomagnetic variations is investigated using the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. The model results are tested against reference magnetically quiet time observations on 21 June 1993, and disturbance effects were observed on 11 June 1993. The model qualitatively reproduces the observed diurnal and latitude variations of the geomagnetic horizontal intensity and declination for the reference quiet day in midlatitude and low-latitude regions but underestimates their amplitudes. The patterns of the disturbance dynamo signature and its source 'anti-Sq' current system are well reproduced in the Northern Hemisphere. However, the model significantly underestimates the amplitude of disturbance dynamo effects when compared with observations. Furthermore, the largest simulated disturbances occur at different local times than the observations. The discrepancies suggest that the assumed high-latitude storm time energy inputs in the model were not quantitatively accurate for this storm.

  10. Sulphur cycling between terrestrial agroecosystem and atmosphere.

    PubMed

    Zgorelec, Zeljka; Pehnec, Gordana; Bašić, Ferdo; Kisić, Ivica; Mesić, Milan; Zužul, Silva; Jurišić, Aleksandra; Sestak, Ivana; Vađić, Vladimira; Cačković, Mirjana

    2012-09-01

    Central gas station of the natural gas borehole system Podravina is located near the village Molve. It delivers more than a quarter of total energy used in Croatia to its consumers. Over the years, adapting technology to increasingly demanding and rigorous standards in environmental protection has become paramount. Yet, despite all the industry has undertaken to address the risk of harmful substances entering the food chain, a multidisciplinary research team of independent scientists monitors the content of specific substances in all components of the ecosystem. This paper presents measurements of total sulphur contents in soil surface [(0 to 3) cm] and subsurface [(3 to 8) cm] layers (study period: autumn 2006 - spring 2010) and in plants (study period: spring 2000 - spring 2010), and the concentration of gaseous sulphur compounds in the air. Concentrations of hydrogen sulphide (H2S) and mercaptans (RSH) were measured from the summer of 2002 until the autumn of 2010, while concentrations of sulphur dioxide (SO2) were measured from the spring of 2008 until the autumn of 2010. The paper also shows total annual atmospheric sulphur (S-SO4) deposition at Bilogora measuring station (study period: 2001 - 2010). Average monthly concentrations of H2S in air varied between 0.2 μg m-3 and 2.0 μg m-3, RSH between 0.1 μg m-3 and 24.5 μg m-3, and SO2 between 0.4 μg m-3 and 2.8 μg m-3 depending on the location and the season of sampling. Mean values of total sulphur in soil and in Plantago lanceolata plant ranged between 610 mg kg-1 and 1,599 mg kg-1 and between 3,614 mg kg-1 and 4,342 mg kg-1, respectively, depending on the soil type, location, and sampling depth. Average values of total sulphur mass ratio for all examined single soil samples (n=80) were 1,080 mg kg-1 for both studied layers, and 4,108 mg kg-1 for all analysed plant samples (n=85). Average total annual atmospheric sulphur deposition at Bilogora measuring station was 6.3 kg of S-SO4 per hectare.

  11. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  12. Modelling meteor phenomena in the atmospheres of the Terrestrial planets.

    NASA Astrophysics Data System (ADS)

    McAuliffe, J.

    The results of a comparative study of meteor phenomena in the atmospheres of the Earth, Mars and Venus are presented. The study has sought to quantify the scientific potential of future off-Earth observational campaigns. A pseudo-thermal meteor ablation model has been developed and shown to be capable of reproducing observed terrestrial light curves. This model has been used to simulate the ablation of meteoroids of 10-9 to 10-1 kg in the atmospheres of the three planets, and the resulting differences in meteor brightness, ablation heights, and durations have been investigated. Cometary meteoroids are found to ablate 5-25 km higher up at Venus than at the Earth with this difference increasing to 15-35 km for dense asteroidal particles. The associated peak brightnesses are found to be on the order 1.0 to 1.5 magnitudes brighter at Venus. Furthermore, steeper atmospheric density gradients at Venusian ablation heights result in meteor visibility times at Venus being on the order of 0.75 times as long as for similar particles at the Earth. Actual visibility times range from 100 ms to 2 seconds. The similar density gradients of the Martian and Terrestrial atmospheres at ablation altitudes result in Martian meteors being only ˜0.1 magnitudes fainter than Terrestrial equivalents. Due to the downward shift of the ablative atmospheric density interval at Mars, cometary meteors reach maximum brightness at altitudes 10-15 km less than would identical particles at the Earth. For asteroidal meteoroids this downward shift in the Martian atmosphere is ˜20 km. Visibility times for identical meteors at the Earth and Mars are found to differ by no more than 0.2 seconds. Surface and orbital observational systems have been simulated in order to estimate the relative detectability of some 20 real, possible and hypothetical showers and storms in all three atmospheres. Mass distributions for Martian and Venusian showers were estimated from the observed characteristics of Terrestrial

  13. Kinetics of Fast Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)

    2002-01-01

    This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.

  14. Hydrogen and climate in primitive terrestrial and super-Earth atmospheres (Invited)

    NASA Astrophysics Data System (ADS)

    Wordsworth, R.

    2013-12-01

    For the three terrestrial planets with significant atmospheres in the Solar System (Earth, Venus and Mars), present-day conditions are oxidizing, with combinations of CO2, N2, O2 and H2O dominating by mass and in terms of the greenhouse effect. However, primitive terrestrial or ';super-Earth' exoplanet atmospheres may be much more reducing (i.e., hydrogen-rich), with major implications for climate, composition, and pre-biotic chemistry. Here I discuss recent work on the role of hydrogen in terrestrial planetary atmospheres, with a particular focus on the early Earth. I describe how collision-induced absorption (CIA) by hydrogen may have significantly warmed Earth's surface in the Archean and Hadean by blocking the critical water vapour absorption window at 800-1200 cm-1. This warming may have helped mitigate the faint young Sun effect early on. After the emergence of widespread methanogenesis, the consumption of H2 and CO2 should have led to a global shift in climate, with potentially observable consequences in the geological record. Because of variations in planetary mass, stellar XUV input and outgassing rates, hydrogen is also likely to be an important component of many super-Earth atmospheres. As I will discuss, this should have a significant effect on climate evolution and the carbon cycle on such planets, which should be considered in future predictions of atmospheric spectra and biosignatures.

  15. Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.

    1991-01-01

    A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.

  16. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    SciTech Connect

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{sub 3} alone cannot be regarded as robust signs of extraterrestrial life.

  17. The Atmospheric Signatures of Terrestrial Ecosystem Processes: Results From a Coupled Atmosphere-Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Moorcroft, P. R.

    2003-12-01

    Global-scale analyses of weekly CO2 flask samples have shown that a number of terrestrial regions are significantly affecting the rate at which carbon dioxide is building up in the atmosphere. However, the observations used in these studies come primarily from stations that sample the marine boundary layer in order to eliminate variance due to terrestrial fluxes, making it difficult to identify the processes responsible for the observed patterns of terrestrial CO2 flux. To address this issue, we have developed a regional-scale, coupled atmosphere-ecosystem model capable of assimilating observations from a diverse array of data sources, including eddy-flux measurements of surface CO2 fluxes, measurements of atmospheric CO2 concentrations obtained from aircraft and tall towers, and observations of canopy structure and dynamics obtained from satellite observations and forest inventory data. The model consists of a newly-developed, mass-conserving version of the mesoscale Regional Atmospheric Modeling System model (RAMS) coupled to the Ecosystem Demography Model (ED), which is able to represent the influence of both long-term and short-term processes on patterns of terrestrial CO2 flux. We are using the coupled RAMS-ED model to perform forward and inverse modeling studies of regional carbon budgets within the North American continent. Preliminary results highlight the model's ability to connect regional patterns of atmospheric CO2 to the underlying state of the ecosystems within a region.

  18. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  19. Early terrestrial ecosystems: the animal evidence

    SciTech Connect

    Gray, J.

    1985-01-01

    Work on fossil spores indicates that plants at a level of vegetative organization comparable to bryophytes and vascular plants existed on land in the Early Silurian. Vascular plants, limnetic fishes, and probable Ascomycetes have Late Silurian records. Charophytes are known in the Late Silurian but may have been marine. The presence of microarthropods in the Ludlovian has been hypothesized from fungal masses in the Burgsvik Sandstone that closely resemble microarthropod frass. A number of microarthropods such as collembolans and mites are microphagous; these animals are among the earliest known from the Early Devonian. These fungal masses as animal traces have been given added credibility by the recovery of animal body fossils from basal Llandovery age fluvial deposits of the Central Appalachians that yield abundant plant spores but that lack marine invertebrates, phytoplankton or chitinozoans. The remains are abundant and sufficiently varied to suggest that they may represent a variety of organisms. Some are eurypterid-like, others grossly arthropod-like, although they may represent an unknown phylum or phyla. Many small invertebrates are associated with extant bryophytes, which have been viewed as stepping stones or halfway houses for them as they emerged from water onto land. The occurrence of these Early Silurian invertebrate remains with abundant spore tetrads, which Gray has hypothesized represent land plants at a bryophyte or hepatic grade of organization, is of great interest in trying to understand the early development of nonmarine ecosystems.

  20. Terrestrial production vs. extraterrestrial delivery of prebiotic organics to the early Earth

    NASA Technical Reports Server (NTRS)

    Chyba, C. F.; Sagan, C.; Thomas, P. J.; Brookshaw, L.

    1991-01-01

    A comprehensive treatment of comet/asteroid interaction with the atmosphere, ensuring surface impact, and resulting organic pyrolysis is required to determine whether more than a negligible fraction of the organics in incident comets and asteroids actually survived collision with Earth. Results of such an investigation, using a smoothed particle hydrodynamic simulation of cometary and asteroidal impacts into both oceans and rock, demonstrate that organics will not survive impacts at velocities approx. greater than 10 km s(exp -1), and that even comets and asteroids as small as 100m in radius cannot be aerobraked to below this velocity in 1 bar atmospheres. However, for plausible dense (10 bar CO2) early atmospheres, there will be sufficient aerobraking during atmospheric passage for some organics to survive the ensuing impact. Combining these results with analytical fits to the lunar impact record shows that 4.5 Gyr ago Earth was accreting at least approx. 10(exp 6) kg yr(exp 1) of intact cometary organics, a flux which thereafter declined with a approx. 100 Myr half-life. The extent to which this influx was augmented by asteroid impacts, as well as the effect of more careful modelling of a variety of conservative approximations, is currently being quantified. These results may be placed in context by comparison with in situ organic production from a variety of terrestrial energy sources, as well as organic delivery by interplanetary dust. Which source dominated the early terrestrial prebiotic inventory is found to depend on the nature of the early terrestrial atmosphere. However, there is an intriguing symmetry: it is exactly those dense CO2 atmospheres where in situ atmospheric production of organic molecules should be the most difficult, in which intact cometary organics would be delivered in large amounts.

  1. Atmospheric Escape and Climate Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Tian, F.; Chassefière, E.; Leblanc, F.; Brain, D.

    The climate of a planet is primarily determined by its orbital distance from its star, the luminosity of the star, the existence of oceans, the pressure of its atmosphere, and the composition of its atmosphere. The last two components are what could be impacted by atmosphere escape. The Sun, as the dominant energy source driving the climate of terrestrial planets, was not always as bright as it is today. Stellar evolution theory predicts that the luminosity of the young Sun was 75% of its present luminosity, at approximately 4 b.y. ago (4 Ga) (Gough, 1981). Although the Sun could have lost some of its mass, thus making the very young Sun somewhat more massive than it is now and therefore could have emitted more energy, most of this mass loss was completed prior to 4 Ga (Wood et al., 2005). Thus the Sun has provided increasingly more energy to solar system planets during the past 4 b.y. Contrary to the evolutionary trend of the total luminosity increasing with time, the young Sun should have emitted much stronger EUV, soft X-ray, and far-UV photons than at present. These photons are from the upper atmosphere of the Sun and are linked to solar magnetic activity. Generally speaking, a young star rotates much faster and thus has stronger magnetic activity. Observations of solar-type stars with different ages show that the EUV energy flux from a 0.5-b.y.-old solar-type star could be as much as 20 times that of the present Sun (Ribas et al., 2005). Accompanying this much-enhanced solar extreme ultraviolet (XUV) radiation is a much stronger solar wind, with mass flux up to 1000 times more intense than the present solar wind flux (Wood et al., 2005). It can be expected that many more energetic-particle events were caused by the young Sun. The fate of the atmospheres of terrestrial planets in such an environment and the consequences for their climates are the focus of this chapter.

  2. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    SciTech Connect

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  3. Early Martian environments - The antarctic and other terrestrial analogs

    NASA Technical Reports Server (NTRS)

    Wharton, R. A., Jr.; Mckay, C. P.; Mancinelli, R. L.; Simmons, G. M., Jr.

    1989-01-01

    The comparability of the early environments of Mars and earth, and the biological evolution which occurred on early earth, motivates serious consideration of the possibility of an early Martian biota. Environments which could have contained this early Martian life and which may presently contain evidence of this former life include aquatic, ice, soil, and rock habitats. Several analogs of these potential early Martian environments, which can provide useful information in searching for extinct life on Mars, are currently available for study on earth. These terrestrial analogs include the perennially ice-covered lakes and sandstone rocks in the polar deserts of Antarctica, surface of snowfields and glaciers, desert soils, geothermal springs, and deep subsurface environments.

  4. Processes Impacting Atmosphere-Surface Exchanges at Arctic Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Grachev, Andrey; Konopleva, Elena; Cox, Chris; Stone, Robert; Crepinsek, Sara; Shupe, Matthew; Uttal, Taneil

    2015-04-01

    Surface energy fluxes are key to the annual cycle of near-surface and soil temperature and biologic activity in the Arctic. While these energy fluxes are undoubtedly changing to produce the changes observed in the Arctic ecosystem over the last few decades, measurements have generally not been available to quantify what processes are regulating these fluxes and what is determining the characteristics of these annual cycles. The U.S. National Oceanic and Atmospheric Administration has established, or contributed to the establishment of, several terrestrial "supersites" around the perimeter of the Arctic Ocean at which detailed measurements of atmospheric structure, surface fluxes, and soil thermal properties are being made. These sites include Barrow, Alaska; Eureka and Alert, Canada; and Tiksi, Russia. Atmospheric structure measurements vary, but include radiosoundings at all sites and remote sensing of clouds at two sites. Additionally, fluxes of sensible heat and momentum are made at all of the sites, while fluxes of moisture and CO2 are made at two of the sites. Soil temperatures are also measured in the upper 120 cm at all sites, which is deep enough to define the soil active layer. The sites have been operating between 3 years (Tiksi) and 24 years (Barrow). While all sites are located north of 71° N, the summer vegetation range from lush tundra grasses to rocky soils with little vegetation. This presentation will illustrate some of the atmospheric processes that are key for determining the annual energy and temperature cycles at these sites, and some of the key characteristics that lead to differences in, for instance, the length of the summer soil active layer between the sites. Atmospheric features and processes such as cloud characteristics, snowfall, downslope wind events, and sea-breezes have impacts on the annual energy cycle. The presence of a "zero curtain" period, when autumn surface temperature remains approximately constant at the freezing point

  5. North America's net terrestrial carbon exchange with the atmosphere 1990-2009

    NASA Astrophysics Data System (ADS)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2014-07-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil-fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America over the period (1990-2009). This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North America land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the atmospheric inversion estimate forms the lower bound of that range (a larger land-sink) and the inventory-based estimate the upper (a smaller land sink). Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil-fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. The continent's CO2 source to sink ratio for this time period was likely in the range of 4 : 1 to 3 : 1.

  6. The Huygens Atmospheric Structure Instrument (HASI): Expected Results at Titan and Performance Verification in Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Ferri, F.; Fulchignoni, M.; Colombatti, G.; Stoppato, P. F. Lion; Zarnecki, J. C.; Harri, A. M.; Schwingenschuh, K.; Hamelin, M.; Flamini, E.; Bianchini, G.; Angrilli, F.

    2005-01-01

    The Huygens ASI is a multi-sensor package resulting from an international cooperation, it has been designed to measure the physical quantities characterizing Titan's atmosphere during the Huygens probe mission. On 14th January, 2005, HASI will measure acceleration, pressure, temperature and electrical properties all along the Huygens probe descent on Titan in order to study Titan s atmospheric structure, dynamics and electric properties. Monitoring axial and normal accelerations and providing direct pressure and temperature measurements during the descent, HASI will mainly contribute to the Huygens probe entry and trajectory reconstruction. In order to simulate the Huygens probe descent and verify HASI sensors performance in terrestrial environment, stratospheric balloon flight experiment campaigns have been performed, in collaboration with the Italian Space Agency (ASI). The results of flight experiments have allowed to determine the atmospheric vertical profiles and to obtain a set of data for the analysis of probe trajectory and attitude reconstruction.

  7. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ˜100 pc, consisting of two main events: one at 1.7-3.2 million years ago, and the other at 6.5-8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  8. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ˜100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  9. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    SciTech Connect

    Kaspi, Yohai; Showman, Adam P.

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  10. Early Earth: Atmosphere's solar shock

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses

    2016-06-01

    Frequent storms on the young Sun would have ejected energetic particles and compressed Earth's magnetosphere. Simulations suggest that the particles penetrated the atmosphere and initiated reactions that warmed the planet and fertilized life.

  11. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    NASA Astrophysics Data System (ADS)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  12. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    USGS Publications Warehouse

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, Anthony; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  13. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    SciTech Connect

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; Hafer, M.; Hayes, Daniel J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, Werner; McGuire, A. David; Vargas, Rodrigo; Wei, Yaxing; West, Tristram O.; Woodall, Chris W.

    2015-01-21

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the

  14. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    DOE PAGES

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; Hafer, M.; Hayes, Daniel J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, Werner; McGuire, A. David; Vargas, Rodrigo; et al

    2015-01-21

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North Americanmore » land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4

  15. A massive early atmosphere on Triton

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Nolan, Michael C.

    1992-01-01

    The idea of an early greenhouse atmosphere for Triton is presented and the conditions under which it may have been sustained are quantified. The volatile content of primordial Triton is modeled, and tidal heating rates are assessed to set bounds on the available energy. The atmospheric model formalism is presented, and it is shown how a massive atmosphere could have been raised by modest tidal heating fluxes. The implications of the model atmospheres for the atmospheric escape rates, the chemical evolution, and the cratering record are addressed.

  16. Volcanic emissions and the early Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Mather, T. A.; Pyle, D. M.

    2007-08-01

    Despite uncertainties in our understanding of early Earth volcanism and atmospheric composition, thermodynamic modelling is able to offer estimates of the global production of reactive trace species (NO, OH, SO 3, Cl, Br and I) from early Earth volcanism, and thereby to shed light on processes which may have been different in Earth's early atmosphere. Model results show that thermal decomposition of magmatic H 2O, CO 2 and SO 2 in high- T mixtures of magmatic and atmospheric gases (at T > 1400 °C) generate high levels of reactive trace gas species. Production of these reactive trace species is insensitive to atmospheric CO 2 in mixtures where the atmospheric gas is the minor component and will hence continue during periods of low atmospheric CO 2. Fluxes of NO, OH, Cl, Br and I from early Earth volcanism are predicted to exceed those from modern Earth volcanism as the higher temperature of early Earth emissions compensates for lower levels of O 2 in the atmosphere, compared to the modern Earth. Under certain conditions, the volcanic NO flux from early Earth volcanism is found to be comparable to other sources of reactive N such as lightning NO and photochemical HCN. This is one possible source of fixed nitrogen which may alleviate any postulated Archean nitrogen crisis. Our thermodynamic model reveals that production of SO 3 (a potential precursor for near-source volcanic sulphate and hence 'primary' volcanic aerosol) is likely to be significantly lower from early Earth volcanism. Uncertainty in the pathway to near-source sulphate in modern volcanism (i.e., the reaction of SO 3 with water or direct emission) introduces a large uncertainty into the production rate of near-source volcanic sulphate on the early Earth.

  17. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    PubMed Central

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-01-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  18. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    NASA Astrophysics Data System (ADS)

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-08-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change.

  19. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming.

    PubMed

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V

    2016-01-01

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  20. A reduced atmosphere for early Mars?

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    One-dimensional, radiative-convective climate calculations indicate that the old model of a warm, dense, CO2 atmosphere on early Mars is no longer viable. The magnitude of the greenhouse effect in a CO2/H2O atmosphere is limited by condensation of CO2 clouds; this phenomenon is not important for Mars today, but has a pronounced cooling effect at the low solar luminosities thought to apply during early solar system history. The failure of this model indicates one of four things: (1) the new climate calculations are incorrect; (2) current solar evolution models are incorrect; (3) the idea that early Mars was warm and wet is incorrect; or (4) the atmosphere of early Mars contained other greenhouse gases (or particles) in addition to CO2 and H2O. Of these explanations, the most plausible is number (4) and the rest of the investigation is a further explanation of number (4).

  1. The Atmospheric Supply of Terrestrial Authigenic Phosphate Minerals to Open Marine Sediments

    NASA Astrophysics Data System (ADS)

    Flaum, J. A.; Jacobson, A. D.; Sageman, B. B.

    2007-12-01

    Authigenic P-bearing minerals (Pauth), such as carbonate fluorapatite, form within shallow marine sediments as biological processes degrade organic matter and release associated phosphate to the dissolved pool during early diagenesis. Thus, Pauth is commonly used as a proxy for productivity in modern and ancient marine depositional environments. To help refine this proxy and further improve understanding of the marine P cycle, we investigated if dust deposition could supply terrestrially derived Pauth and other P-bearing phases to modern marine sediments. We used the SEDEX sequential extraction procedure to quantify the occurrence of P in ten samples of loess from the Chinese Loess Plateau, a major source of dust to the North Pacific Ocean (NPO). On average, 40% of the total P within Chinese Loess occurs as Pauth, 33% as detrital apatite (Pdet), 17% in organic matter (Porg), and 10% bound to Fe-Al oxides (Pox). Using eolian dust and total P accumulation rates reported for core LL44-GC3 taken from the central NPO, we find that ~86% of the total P accumulation within the central NPO could originate from the atmospheric deposition of Pauth and Pdet. Hence, productivity estimates based upon total P accumulation for this site are likely lower than previously estimated. Our findings suggest that marine productivity studies predicated on the measurement of Pauth need to quantify the fraction of Pauth supplied from terrestrial sources. This may be even more significant along continental margins where rivers can supply sediments with high concentrations of Pauth minerals.

  2. Atmospheric transport of persistent pollutants governs uptake by holarctic terrestrial biota

    SciTech Connect

    Larsson, P.; Okla, L.; Woin, Per )

    1990-10-01

    The atmospheric deposition of PCBs, DDT, and lindane, governed uptake in terrestrial biota in the Scandinavian peninsula. Mammalian herbivores and predators as well as predatory insects contained higher levels of pollutants at locations where the fallout load was high than at stations where atmospheric deposition was lower, and the two variables were significantly correlated.

  3. The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA)

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Morris, Vernon R.

    1997-01-01

    The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) was established in 1992. The center began with 14 active Principal Investigators (PI's). The research of the Center's PIs has, for the most part, continued in the same four areas as presented in the original proposal: Remote Sensing, Atmospheric Chemistry, Sensors and Detectors, and Spacecraft Dynamics.

  4. A hydrogen-rich early Earth atmosphere.

    PubMed

    Tian, Feng; Toon, Owen B; Pavlov, Alexander A; De Sterck, H

    2005-05-13

    We show that the escape of hydrogen from early Earth's atmosphere likely occurred at rates slower by two orders of magnitude than previously thought. The balance between slow hydrogen escape and volcanic outgassing could have maintained a hydrogen mixing ratio of more than 30%. The production of prebiotic organic compounds in such an atmosphere would have been more efficient than either exogenous delivery or synthesis in hydrothermal systems. The organic soup in the oceans and ponds on early Earth would have been a more favorable place for the origin of life than previously thought.

  5. Exploring Terrestrial Temperature Changes during the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Clyde, W. C.; Fricke, H. C.; Eiler, J. M.

    2012-12-01

    The Early Eocene is marked by a number of rapid global warming events called hyperthermals. These hyperthermals are associated with negative carbon isotope excursions (CIE) in both marine and terrestrial records. Multiple theories exist to explain the connection of these hyperthermals with the CIEs and each theory predicts different responses by the climate system. Characterizing the timing, duration and magnitude of temperature change that is associated with these hyperthermals is important for determining whether the hyperthermals are all driven by the same underlying climate dynamics or perhaps differ from one another in cause and climatic consequences. In the simplest case, all share a common underlying mechanism; this predicts that the associated temperature changes scale in a predictable way with the magnitude of the CIE (and perhaps exhibit other similarities, such as the relative amplitudes of marine and terrestrial temperature change). To our knowledge, however, the only hyperthermal with paleotemperature data from land is the Paleocene-Eocene Thermal Maximum (PETM). Here we present preliminary carbonate clumped isotope paleotemperature estimates for Early Eocene hyperthermal ETM2/H2 from paleosol carbonates from the Bighorn Basin in Wyoming, USA. We compare the results to existing clumped isotope paleotemperature estimates for the PETM in the Bighorn Basin. Temperatures recorded by paleosol carbonates (which likely reflect near-peak summer ground temperatures) prior to each CIE are ~30°C and increase to ~40-43°C during the apex of each CIE. Following both CIEs, temperatures drop back to pre-CIE values. In the case of ETM2/H2, temperatures begin to rise again immediately, possibly in association with a later hyperthermal, though further work needs to be done to establish this with certainty. These preliminary data suggest that both the absolute values and the magnitudes of temperature changes associated with the PETM and ETM2/H2 are similar; the

  6. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  7. In situ observations of the atmospheres of terrestrial planetary bodies

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti

    2005-11-01

    Direct observations of planetary atmospheres are scarce and significantly more data are needed for the understanding of their behavior. The principal theme of this dissertation is the exploration of planetary atmospheres by means of in situ observations, focusing on investigations performed by payloads operating on the planetary surface. The contextual frame includes the whole palette of planetary exploration including definition of scientific objectives, observational strategies, scientific payload and data analysis, as well as development of technological solutions and simulation models for planetary missions. Thus approach also led to the initiation of the planetary missions MetNet and NetLander to Mars. This work contributes to both in situ atmospheric observations and atmospheric modeling, which are strongly intertwined. Modeling efforts require observations to give solid background and foundation for the simulations, and on the other hand, definition of observational strategies and instrumentation gets guidance from modeling efforts to optimize the use of mission resources, as is successfully demonstrated in this dissertation. The dissertation consists of Summary and nine original scientific publications. Publications 1 to 7 and Summary address the development of new atmospheric science payloads for exploration missions to Mars and Titan, a Saturnian moon. Actual and planned missions included are the Mars-96 Program and its Small Surface Stations and Penetrators during the years 1988-1996, PPI/HASI onboard the Cassini/Huygens spacecraft to Saturn and its moon Titan in 1989-2005, the MET-P payload onboard the Mars Polar Lander in 1997-1999, the BAROBIT instrument for the Beagle 2 lander in 2001-2003, the NetLander Mars Mission in 1997-2001 and the ongoing Mars MetNet Mission, started in 2000. Specifically, Publication 4 reviews the sensor qualification process that facilitated the use of new type of atmospheric sensors at Mars, while Publications 2 and 7, as

  8. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects

    USGS Publications Warehouse

    Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, J.S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2002-01-01

    An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.

  9. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    PubMed

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes.

  10. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    SciTech Connect

    Hu Renyu; Seager, Sara; Bains, William

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark

  11. Stability of ammonia in the primitive terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1982-01-01

    The rate at which ammonia would have been destroyed in the earth's atmosphere under assumed NH3 mixing ratio conditions of 10 to the -8th to 0.0001 is calculated by a one-dimensional photochemical model, and the destruction rates are compared with possible biotic and abiotic ammonia sources. It is found that, while the mixing ratio of 10 to the -8th needed for the evolution of life could have been maintained by abiotic sources, the value of 0.00001 needed for the production of significant greenhouse warming could not have been sustained abiotically. The increase of atmospheric ammonia due to biological activities during the Archean is also considered lower than the level required for the generation of measurable thermal effects.

  12. Superrotation in terrestrial atmospheres and tropical wave-mean flow interaction

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Vallis, G. K.; Wang, P.; Dias Pinto, J. R.; Biello, J. A.

    2012-12-01

    Two out of the four terrestrial bodies in the Solar System with thick atmospheres, Titan and Venus, have superrotating atmospheres that spin faster than the underlying surface. Superrotating equatorial jets are also common to Jupiter and Saturn, but their formation and maintenance may involve a different mechanism. Earth develops a transient superrotating jet during the westward phase of the Madden-Julian Oscillation, which may have been a persistent feature during past climates, for example the Eocene. We use a hierarchy of numerical and analytical tools to isolate and describe the mechanism by which spontaneous superrotation of terrestrial atmospheres occur. Numerical simulations of high-Rossby-number atmospheres started from a state of rest robustly form superrotation provided thermal and frictional damping are sufficiently weak. Motivated by these numerical results, we demonstrate a linear instability of the shallow water system that resembles the spinup phase of the numerical simulations, and draw comparisons with phenomena on Titan, Venus and Earth.

  13. The Martian atmospheric water cycle as viewed from a terrestrial perspective

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.

    1988-01-01

    It is noted that the conditions of temperature and pressure that characterize the atmosphere of Mars are similar to those found in the Earth's stratosphere. Of particular significance is the fact that liquid water is unstable in both environments. Thus, it is expected that terrestrial studies of the dynamical behavior of stratospheric water should benefit the understanding of water transport on Mars as well.

  14. The early atmosphere: a new picture.

    PubMed

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).

  15. The early atmosphere: a new picture.

    PubMed

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI). PMID:11542093

  16. Carbon in the atmosphere and terrestrial biosphere in the 21st century.

    PubMed

    Malhi, Yadvinder

    2002-12-15

    The release of carbon dioxide from fossil-fuel combustion and land-use change has caused a significant perturbation in the natural cycling of carbon between land, atmosphere and oceans. Understanding and managing the effects of this disruption on atmospheric composition and global climate are likely to be amongst the most pressing issues of the 21st century. However, the present-day carbon cycle is still poorly understood. One remarkable feature is that an increasing amount of atmospheric carbon dioxide appears to be being absorbed by terrestrial vegetation. I review the recent evidence for the magnitude and spatial distribution of this 'terrestrial carbon sink', drawing on current research on the global atmospheric distribution and transport of carbon dioxide, oxygen and their isotopes; direct measurement of CO(2) fluxes above various biomes; and inventories of forest biomass and composition. I review the likely causes of these carbon sinks and sources and their implications for the ecology and stability of these biomes. Finally, I examine prospects and key issues over coming decades. Within a few years, satellite measurements of atmospheric CO(2) and forest biomass, coupled with 'real-time' biosphere-atmosphere models, will revolutionize our understanding of the terrestrial carbon cycle. Controlling deforestation and managing forests has the potential to play a significant but limited part in reaching the goal of stabilizing atmospheric CO(2) concentrations. However, there are likely to be limits to the amount of carbon storage possible in natural vegetation, and, in the long term, terrestrial carbon storage may be unstable, with the potential to accelerate rather than brake global warming. PMID:12626274

  17. Carbon in the atmosphere and terrestrial biosphere in the 21st century.

    PubMed

    Malhi, Yadvinder

    2002-12-15

    The release of carbon dioxide from fossil-fuel combustion and land-use change has caused a significant perturbation in the natural cycling of carbon between land, atmosphere and oceans. Understanding and managing the effects of this disruption on atmospheric composition and global climate are likely to be amongst the most pressing issues of the 21st century. However, the present-day carbon cycle is still poorly understood. One remarkable feature is that an increasing amount of atmospheric carbon dioxide appears to be being absorbed by terrestrial vegetation. I review the recent evidence for the magnitude and spatial distribution of this 'terrestrial carbon sink', drawing on current research on the global atmospheric distribution and transport of carbon dioxide, oxygen and their isotopes; direct measurement of CO(2) fluxes above various biomes; and inventories of forest biomass and composition. I review the likely causes of these carbon sinks and sources and their implications for the ecology and stability of these biomes. Finally, I examine prospects and key issues over coming decades. Within a few years, satellite measurements of atmospheric CO(2) and forest biomass, coupled with 'real-time' biosphere-atmosphere models, will revolutionize our understanding of the terrestrial carbon cycle. Controlling deforestation and managing forests has the potential to play a significant but limited part in reaching the goal of stabilizing atmospheric CO(2) concentrations. However, there are likely to be limits to the amount of carbon storage possible in natural vegetation, and, in the long term, terrestrial carbon storage may be unstable, with the potential to accelerate rather than brake global warming.

  18. Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.

    2014-12-01

    Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of

  19. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H{sub 2}S AND SO{sub 2} PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    SciTech Connect

    Hu Renyu; Seager, Sara; Bains, William

    2013-05-20

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H{sub 2}S and SO{sub 2}) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H{sub 2}S and SO{sub 2} are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H{sub 2}-dominated atmospheres for a wide range of particle diameters (0.1-1 {mu}m), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N{sub 2} and CO{sub 2}, optically thick haze, composed of elemental sulfur aerosols (S{sub 8}) or sulfuric acid aerosols (H{sub 2}SO{sub 4}), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H{sub 2}S and SO{sub 2} by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation space

  20. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual

  1. Retention of an atmosphere on early Mars

    USGS Publications Warehouse

    Carr, M.H.

    1999-01-01

    The presence of valley networks and indications of high erosion rates in ancient terrains on Mars suggest that Mars was warm and wet during heavy bombardment. Various processes that could occur on early Mars were integrated into a self-consistent model to determine what circumstances might lead to warm temperatures during and at the end of heavy bombardment. Included were weathering and burial of CO2 as carbonates, impact erosion, sputtering, and recycling of CO2 back into the atmosphere by burial and heating. The models suggest that despite losses from the atmosphere by weathering and impact erosion, Mars could retain a 0.5 to 1 bar atmosphere at the end of heavy bombardment partly because weathering temporarily sequesters CO2 in the ground and protects it from impact erosion while the impact rate is declining and impact erosion is becoming less effective. Because of the low output of the early Sun, surface temperatures can be above freezing only for a very efficient greenhouse, such as that suggested by Forget and Pierrehumbert [1997]. With weak greenhouse models, temperatures are below freezing throughout heavy bombardment, and such a large amount of CO2 is left in the atmosphere at the end of heavy bombardment that it is difficult to eliminate subsequently to arrive at the present surface inventory. With strong greenhouse models, temperatures are well above freezing during heavy bombardment and drop to close to freezing at the end of heavy bombardment, at which time the atmosphere contains 0.5 to 1 bar of CO2. This can be largely eliminated subsequently by sputtering and low-temperature weathering. Such a model is consistent with the change in erosion rate and the declining rate of valley formation at the end of heavy bombardment. Conditions that favor warm temperatures at the end of heavy bombardment are an efficient greenhouse, low weathering rates, low impact erosion rates, and a smaller fraction of heat lost by conduction as opposed to transport of lava to

  2. Exploring the control of land-atmospheric oscillations over terrestrial vegetation productivity

    NASA Astrophysics Data System (ADS)

    Depoorter, Mathieu; Green, Julia; Gentine, Pierre; Liu, Yi; van Eck, Christel; Regnier, Pierre; Dorigo, Wouter; Verhoest, Niko; Miralles, Diego

    2015-04-01

    Vegetation dynamics play an important role in the climate system due to their control on the carbon, energy and water cycles. The spatiotemporal variability of vegetation is regulated by internal climate variability as well as natural and anthropogenic forcing mechanisms, including fires, land use, volcano eruptions or greenhouse gas emissions. Ocean-atmospheric oscillations, affect the fluxes of heat and water over continents, leading to anomalies in radiation, precipitation or temperature at widely separated locations (i.e. teleconnections); an effect of ocean-atmospheric oscillations on terrestrial primary productivity can therefore be expected. While different studies have shown the general importance of internal climate variability for global vegetation dynamics, the control by particular teleconnections over the regional growth and decay of vegetation is still poorly understood. At continental to global scales, satellite remote sensing offers a feasible approach to enhance our understanding of the main drivers of vegetation variability. Traditional studies of the multi-decadal variability of global vegetation have been usually based on the normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR), which extends back to the early '80s. There are, however, some limitations to NDVI observations; arguably the most important of these limitations is that from the plant physiology perspective the index does not have a well-defined meaning, appearing poorly correlated to vegetation productivity. On the other hand, recently developed records from other remotely-sensed properties of vegetation, like fluorescence or microwave vegetation optical depth, have proven a significantly better correspondence to above-ground biomass. To enhance our understanding of the controls of ocean-atmosphere oscillations over vegetation, we propose to explore the link between climate oscillation extremes and net primary productivity

  3. Preliminary experiment requirements document for Solar and Terrestrial Atmospheres Spectrometer (STAS)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The principal scientific objective of the Solar and Terrestrial Atmospheres Spectrometer (STAS) project is the measurement of the absolute ultraviolet solar spectral irradiance with: (1) resolution of better than 15 mA, and (2) absolute irradiance uncertainty at the state of the art (less than or equal to 3%). High measurement accuracy coupled with high spectral resolution are necessary to identify the nature of the radiation, its variability, and to identify solar processes which may cause the changes. Solar radiation between 1200 and 3600 A dominates the photochemistry of the mesosphere and stratosphere. Some important minor species, such as NO, show very complex and fundamentally narrow structure in their photodestruction cross sections, especially in the region of the Schumann-Runge bands of O2. Understanding the photochemical processes in the terrestrial atmosphere requires knowledge of both the cross sections and of the solar spectrum with the highest possible resolution and accuracy.

  4. Carbon Fluxes Between the Atmosphere, Terrestrial, and River Systems Across a Glacier-Dominated Landscape in Southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Zulueta, R. C.; Welker, J. M.; Tomco, P. L.

    2011-12-01

    The coastal Gulf of Alaska region is experiencing rapid and accelerating changes due to local and regional warming. Predicted high latitude warming may result in rapid recession of glaciers with subsequent changes in river discharge, nutrient fluxes into the rivers, shifts in landscape vegetation cover, and altered CO2 fluxes affecting the regional carbon balance. As glaciers recede an increase in glacier-dominated river discharge and a change in seasonality of the river discharge are expected. Recently deglaciated landscapes will, over time, be occupied by a succession of vegetation cover that are likely to alter the fluxes of carbon both between the atmosphere and terrestrial ecosystems, and between terrestrial ecosystems and stream and river systems. As the landscape evolves from deglaciated forelands it is expected that there is low to no CO2 fluxes between the atmosphere and the recently deglaciated landscape, as well as dissolved organic and inorganic carbon inputs into rivers and streams. These recently deglaciated landscapes will transition to early successional plant species and on towards mature spruce forests. Each transitional terrestrial ecosystem will have different carbon cycling between the atmosphere, terrestrial, and aquatic systems until the mature spruce forests which is expected to have high carbon uptake and sequestration as well as increased inputs of dissolved organic and inorganic carbon into the rivers and streams. A new research project was initiated in the summer of 2011 focusing on glacier-dominated landscapes within the Wrangell-St. Elias National Park and Preserve in southcentral Alaska with the objective to quantify how the transition from deglaciated forelands to mature spruce forests (a successional sequence) alters the patterns and magnitudes of CO2 exchange, the dissolved carbon inputs from terrestrial to aquatic systems and the extent to which these are manifested due to changes in glacier coverage. We seek to examine present

  5. Relevance of O2 and O3 as biomarkers in terrestrial exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Kieken, J.; Selsis, F.; Despois, D.; Billebaud, F.; Dobrijevic, M.; Parisot, J. P.; Bordeaux Observatory Team

    2001-11-01

    Darwin (ESA) and Terrestrial Planet Finder-TPF (NASA) are two projects of space interferometers aiming at the detection of extra-solar terrestrial planets and some of their atmospheric components. In particular, they will be sensitive to the 9.6 microns band of O3 which may be the signature of an O2-rich atmosphere produced by photosynthetic life forms. We point out that O2, and hence O3, can also be produced by photochemistry and investigate the risk of "false positive" detection of life incurred by these missions. We have developed a numerical model for the simulation of chemical and thermal evolution of terrestrial planet atmospheres, which also computes the thermal emission of the planet. Using this code for a large range of realistic atmospheres (including present and past Earth and Mars), we show that O2-rich atmospheres (up to 5 %) and IR absorbing O3 layers can build up without life from H2O and CO2 photolysis. However the two photochemical sources of O2 interfere with each other, and even when appreciable amounts of abiotic O2 are reached, the O3 feature is masked at CO2 pressure higher than 50 mbar, and the by-products of H2O photolysis destroy O3. As a result, whereas the unique detection of O2 remains ambiguous, the simultaneous infrared detection of O2, CO2 and H2O, provided by TPF and Darwin, is established to be a robust way to discriminate photochemical O2 production from biological photosynthesis: none of the atmospheres modelled exhibits this "triple signature" feature, even in the most extreme "high risk" cases.

  6. Atmospheric circulation modeling of super Earths and terrestrial extrasolar planets using the SPARC/MITgcm

    NASA Astrophysics Data System (ADS)

    Kataria, T.; Showman, A. P.; Haberle, R. M.; Marley, M. S.; Fortney, J. J.; Freedman, R. S.

    2013-12-01

    The field of exoplanets continues to be a booming field of research in astronomy and planetary science, with numerous ground-based (e.g., SuperWASP, HARPS-N and S) and space-based surveys (e.g., Kepler) that detect and characterize planets ranging from hot Jupiters, Jovian-sized planets orbiting less than 0.1 AU from their star, to super Earths and terrestrial exoplanets, planets that have masses equal to or less than 10 times that of Earth with a range of orbital distances. Atmospheric circulation modeling plays an important role in the characterization of these planets, helping to constrain observations that probe their atmospheres. These models have proven successful in understanding observations of transiting exoplanets (when the planet passes in front of the star along our line of sight) particularly when the planet is passing through secondary eclipse (when the planet's dayside is visible). In modeling super Earths and terrestrial exoplanets, we must consider not only planets with thick fluid envelopes, but also traditional terrestrial planets with solid surfaces and thinner atmospheres. To that end, we present results from studies investigating the atmospheric circulation of these classes of planets using the SPARC/MITgcm, a state-of-the-art model which couples the MIT General Circulation Model with a plane-parallel, two-stream, non-gray radiative transfer model. We will present results from two studies, the first focusing on the circulation of GJ 1214b, a super-Earth detected by the MEarth ground-based survey, and a second study which explores the circulation of terrestrial exoplanets orbiting M-dwarfs.

  7. The molecular composition of impact-generated atmospheres on terrestrial planets during the post-accretion stage

    NASA Astrophysics Data System (ADS)

    Kuwahara, Hideharu; Sugita, Seiji

    2015-09-01

    Both geochemical measurements and theoretical calculations suggest that impact degassing from meteoritic materials after the completion of main phase of planetary accretion may have produced a large fraction of the early terrestrial atmospheres. However, the molecular compositions of such impact-generated atmospheres are not well constrained because the thermodynamic cooling path, which controls the chemical reactions in impact-induced vapor, has not been investigated extensively. In this study, we theoretically assess the chemical reactions within impact-induced vapor that cools adiabatically until the pressure equilibrates with the ambient atmosphere. The calculation results indicate that there are two primary controlling factors for the cooling path: impact entropy gain and atmospheric pressure. The former is mainly determined by both impact velocity and the presence/absence of an ocean. The degree of atmospheric effect depends on vapor plume size. For large impacts, atmospheric containment of vapor expansion is inefficient. However, the expansion of small vapor plumes is contained by the pre-existing atmosphere and their terminal molecular composition is controlled by this process. This is because whether a chemical reaction quenches during adiabatic cooling or during subsequent radiative cooling would depend on the cooling transition temperature, at which adiabatic expansion stops and radiative cooling takes over. For high atmospheric pressures and/or the vapor generated by high-velocity impacts, adiabatic expansion will cease at higher temperatures than typical quenching temperatures. Thus, the molecular composition of the vapor will not greatly depend on the impact velocity. The calculation results suggest that the molecular composition of the impact-induced vapor would vary widely (i.e., CH4/CO ratios) even if the compositions of the impactors are the same. More specifically, the impact-induced vapor generated by lower velocity impacts may be rich in CH4

  8. Leveraging atmospheric CO2 observations to constrain the climate sensitivity of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Richter, A.; Franklin, O.; Evans, S. E.; Dieckmann, U.

    2014-12-01

    A significant challenge in understanding, and therefore modeling, the response of terrestrial carbon cycling to climate and environmental drivers is that vegetation varies on spatial scales of order a few kilometers whereas Earth system models (ESMs) are run with characteristic length scales of order 100 km. Atmospheric CO2 provides a constraint on carbon fluxes at spatial scales compatible with the resolution of ESMs due to the fact that atmospheric mixing renders a single site representative of fluxes within a large spatial footprint. The variations in atmospheric CO2 at both seasonal and interannual timescales largely reflect terrestrial influence. I discuss the use of atmospheric CO2 observations to benchmark model carbon fluxes over a range of spatial scales. I also discuss how simple models can be used to test functional relationships between the CO2 growth rate and climate variations. In particular, I show how atmospheric CO2 provides constraints on ecosystem sensitivity to climate drivers in the tropics, where tropical forests and semi-arid ecosystems are thought to account for much of the variability in the contemporary carbon sink.

  9. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape

    PubMed Central

    Lammer, Helmut; Odert, Petra; Kulikov, Yuri N.; Kislyakova, Kristina G.; Khodachenko, Maxim L.; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-01-01

    Abstract The recently discovered low-density “super-Earths” Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 REarth and a mass of 10 MEarth. We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1011–1029. PMID:24251443

  10. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments.

    PubMed

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; González, Verónica; Nava, Herminio; Molina, Axayacatl; Llera, Eva; Fiedler, Hans-Peter; Rico, José M; García-Flórez, Lucía; Acuña, José L; García, Luis A; Blanco, Gloria

    2016-02-01

    Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments.

  11. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments.

    PubMed

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; González, Verónica; Nava, Herminio; Molina, Axayacatl; Llera, Eva; Fiedler, Hans-Peter; Rico, José M; García-Flórez, Lucía; Acuña, José L; García, Luis A; Blanco, Gloria

    2016-02-01

    Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments. PMID:26224165

  12. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    PubMed

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3. PMID:23982822

  13. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    PubMed

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.

  14. Reconciling atmospheric temperatures in the early Archean

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Rosing, M.; Bird, D. K.; Albarede, F.

    2012-12-01

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic, and consider only one or two factors that drive Archean climate (e.g. a fainter young sun, a low albedo, the extent and effect of cloud cover, or the presence and abundance of a wide array of greenhouse and icehouse gasses). Compounded on the limitations of modeling is the sparse and often ambiguous Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate secular variation in δDSEAWATER which may fluctuate significantly due to hydrogen escape, continental growth and large-scale glaciation events. Further, ancient records of low-δD meteoric fluids signal both cooler temperatures and the emergence of large continents (increasing the effects of continental weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly

  15. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  16. Nitrogen Fixation on Early Mars and Other Terrestrial Planets: Experimental Demonstration of Abiotic Fixation Reactions to Nitrite and Nitrate

    NASA Astrophysics Data System (ADS)

    Summers, David P.; Khare, Bishun

    2007-05-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO2. Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO2 does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO2 reaction with ice, adsorbed water, etc.).

  17. Historical space psychology: Early terrestrial explorations as Mars analogues

    NASA Astrophysics Data System (ADS)

    Suedfeld, Peter

    2010-03-01

    The simulation and analogue environments used by psychologists to circumvent the difficulties of conducting research in space lack many of the unique characteristics of future explorations, especially the mission to Mars. This paper suggests that appropriate additional analogues would be the multi-year maritime and terrestrial explorations that mapped the surface of the Earth in previous centuries. These, like Mars, often involved a hazardous trek through unknown territory, flanked by extended, dangerous voyages to and from the exploration sites. Characteristic issues included interpersonal relationships under prolonged stress, stretches of boredom interspersed with intense work demands, the impossibility of rescue, resupply, or other help from home, chronic danger, physical discomfort and lack of privacy, and the crucial role of the leader. Illustrative examples of one important factor, leadership style, are discussed. The examination of such expeditions can help to identify the psychological stressors that are likely to be experienced by Mars explorers, and can also indicate countermeasures to reduce the damaging impact of those stressors.

  18. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  19. Modeling the terrestrial hydrology for the global atmosphere - The future role of satellite data

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Bock, P.; Alfano, J. J.

    1981-01-01

    A global terrestrial hydrology model has been developed for the transport and storage of moisture and heat in the ground surface layer where the hydrological parameters react to diurnal and seasonal changes in the atmosphere. The spatial and temporal variability of land surface features is considered in the model by means of large scale parameterizations. The model can be either forced by the atmosphere using conventional meteorological data or coupled to an atmospheric general circulation model (GCM) for interactive studies. The global surface is divided into 4 deg longitude by 5 deg latitude cells while the ground is represented by a thin surface layer, a bulk layer (the root zone), and a deep layer (the ground water zone). Results are presented from a seven-day global experiment which was conducted utilizing the GLAS GCM (NASA Goddard Laboratory for Atmospheric Sciences). The model has demonstrated its capability to predict, over a large region, the overall soil moisture storage and major flux exchanges with the atmosphere above and the ground water below.

  20. Increase of atmospheric CO2: response patterns of a simple terrestrial man-made ecosystem.

    PubMed

    Somova, L A; Pechurkin, N S; Pisman, T I

    2003-01-01

    Simple models of terrestrial ecosystems with a limited number of components are an efficient tool to study the main laws of functioning of populations, including microbial ones, and their communities, as components of natural ecosystems, under variable environmental conditions. Among other factors are the increase of carbon dioxide in the atmosphere and limitation of plants' growth by biogenic elements. The main types of ecosystems' responses to changes in environmental conditions (a change in CO2 concentration) have been demonstrated in a "plants-rhizospheric microorganisms-artificial soil" simple experimental system. The mathematical model of interactions between plants and microorganisms under normal and elevated atmospheric CO2 and limitation by nutrients (nitrogen and phosphorus) yielded a qualitative agreement between calculated and experimental values of limiting substances concentrations and release rates of exudates.

  1. Impact of nitrogen limitation on terrestrial carbon cycle responses to climate variations and atmosphere CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ji, D.; Dai, Y. J.

    2014-12-01

    The responses of the terrestrial carbon cycle to its natural and anthropogenic driving factors are considered to be altered substantially by nitrogen dynamics. In this study, we use a land surface model coupling the carbon (C) and nitrogen (N) cycles to quantify the effect of nitrogen cycle on the sensitivity of terrestrial carbon cycle to atmosphere CO2 and concurrent climatic change. The model is Common Land Model (CoLM) updated by adopting the plant and soil C and N scheme from the Dynamic Nitrogen Scheme (DyN). We forced the model with reconstructed historical climate fields of CRUNCEP data and observed rising atmospheric CO2 concentration from 1900 to 2012. The simulated sensitivity of carbon fluxes by our carbon only (CoLM-C) and carbon nitrogen cycles model (CoLM-CN) to climate variability and atmospheric CO2 trends are compared with other independent studies. Global-scale results of CoLM-CN show that the model produces realistic estimates of current period C and N stocks, despite some regional biases. In response to rising atmospheric CO2 concentration, the simulated Gross Primary Production (GPP) and Net Primary Production (NPP) increases are suppressed by N limitations by 30% and 20%, respectively. The relative response of NPP to CO2 (12% per 100 ppm) when N is accounted for compares well with the sensitivity derived from Free-Air CO2 Enrichment (FACE) experiments (13% per 100 ppm). For the last 30 years, N limitation decreases the Net Biosphere Production (NBP) sensitivity to atmosphere CO2 by 16%. In response to the climatic changes, our results show that the interannual variability of C fluxes (GPP, NPP, NBP) is more closed controlled by precipitation in tropical and temperate ecosystems, while temperature is more important in boreal ecosystems. Including N cycle did not change the phase but reduce the magnitude of interannual variability of these fluxes. Globally, the model simulated a positive correlation between NBP and precipitation (2.2±1.5 Pg C

  2. Sulfur Chemistry in the Early and Present Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Summers, M. E.

    2011-01-01

    Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.

  3. Trophic network models explain instability of Early Triassic terrestrial communities.

    PubMed

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-09-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction. PMID:17609191

  4. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars

    PubMed Central

    Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.

    2010-01-01

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  5. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  6. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth.

  7. Day-night Temperature Gradients and Atmospheric Collapse on Synchronously Rotating Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Koll, D. D. B.; Abbot, D. S.

    2015-12-01

    Terrestrial exoplanets orbiting small host stars are abundant and are also the most promising observational targets for finding life outside our Solar system. Due to their close-in orbits, these planets experience significant tidal interactions with their host stars and will tend to evolve towards spin-orbit resonances or synchronous rotation (=tidally locked). Synchronous rotation has a number of interesting implications for habitability, including the potential for atmospheric collapse on the night side if the surface temperature drops below the condensation point of the gases in the atmosphere. To understand the habitability of synchronously rotating planets, it is therefore important to work out a theory of their temperature and wind structure. Many of these planets will be rotating slowly enough that the well-known weak-temperature-gradient theory holds in the free atmosphere, but even for these planets this theory does not constrain the maximum surface temperature gradient, the planets' thermal phase curve signature, or the threshold for atmospheric collapse. Here we study tidally locked planets using theory and a large array of simulations in a global climate model (GCM) with grey radiative transfer and a full boundary layer scheme. We derive a theory for surface temperatures and atmospheric circulation on synchronously rotating planets that allows us to predict the night-side surface temperature and determine whether atmospheric collapse will occur. We find that atmospheric collapse is sensitive to both the ratio of the Rossby radius to the planetary radius and the ratio of the surface drag timescale to the radiative cooling timescale.

  8. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    NASA Astrophysics Data System (ADS)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R.; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R.; Wofsy, Steven C.

    2016-03-01

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  9. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    DOE PAGES

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; et al

    2016-03-09

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change2, 3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4, 5, 6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain.more » Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Lastly, our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.« less

  10. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    PubMed

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change. PMID:26961656

  11. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    PubMed

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  12. Stability of CO2 Atmospheres on Terrestrial Exoplanets in the Proximity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Gao, P.; Hu, R.; Yung, Y. L.

    2013-12-01

    M dwarfs are promising targets for the search and characterization of terrestrial exoplanets that might be habitable, as the habitable planets around M dwarfs are in much more close-in orbits compared to their counterparts around Sun-like stars. CO2, one of the most important greenhouse gases on our planet, is conventionally adopted as a major greenhouse gas in studying the habitability of terrestrial exoplanets around M dwarfs. However, the stability of CO2 in terrestrial atmospheres has been called into question due to the high FUV/NUV flux ratio of some M dwarfs in comparison to that of Sun-like stars. While CO2 is photolyzed into CO and O by photons in the FUV, with O2 forming from the O atoms through third body catalytic reactions, NUV photons are able to photolyze water, producing HOx radicals which go on to catalytically recombine the relatively stable CO and O2 molecules back into CO2. The comparatively low NUV flux of some M dwarfs leads to a significantly reduced efficiency of catalytic recombination of CO and O2 and the possible net destruction of CO2 and the build up of CO and O2. In this work we test the above hypothesis using a 1D photochemical kinetics model for a Mars-sized planet with an initial atmospheric composition similar to that of Mars and the incoming stellar flux of a weakly active M dwarf, assuming the exoplanet is 0.1 AU away from its parent star, in proximity of its habitable zone. We show that a CO2-dominated atmosphere can be converted into a CO2/CO/O2-dominated atmosphere in 10^3-10^4 years by CO2 photolysis. This process is kept from running away by a combination of O2 photolysis, three body reactions of O, O2, and another species to form O3, and reactions of CO with OH to form CO2 and H. However, such a large amount of O2 and CO, combined with some amount of H and H2, may be susceptible to spontaneous combustion or detonation, and thus could prove to be an especially unstable state in itself. Thus there could arise a situation

  13. Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.

    2014-09-01

    Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining

  14. The Heat-Pipe Hypothesis for Early Crustal Development of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.; Simon, J. I.

    2014-12-01

    Crusts of the terrestrial planets other than Earth are dominated by mafic / ultramafic volcanics, with some contractional tectonics and minor extension. This description may also fit the early Earth. Therefore, a single process may have controlled early crustal development. Here we explore the hypothesis that heat-pipe cooling mode dominates early phases of terrestrial planet evolution. Volcanism is the hallmark of heat-pipe cooling: hot magma moves through the lithosphere in narrow channels, then is deposited and cools at the surface. A heat-pipe planet develops a thick, cold, downward-advecting lithosphere dominated by mafic/ultra-mafic flows. Contractional deformation occurs throughout the lithosphere as the surface is buried and forced toward smaller radii. Geologies of the Solar system's terrestrial planets are consistent with early heat-pipe cooling. Mercury's surface evolution is dominated by low-viscosity volcanism until ~4.1-4.0 Ga, with little activity other than global contraction since. Similar, younger features at Venus are commonly interpreted in terms of catastrophic resurfacing events with ~0.5 billion-year periodicity, but early support of high topography suggests a transition from heat-pipe to rigid-lid tectonics. Thick heat-pipe lithosphere may preserve the crustal dichotomy between Mars' northern and southern hemispheres, and explain the range in trace element abundances and isotopic compositions of Martian meteorites. At the Moon, global serial volcanism can explain refinement of ferroan anorthite rich rocks and coeval production of the "Mg-suite" rocks. The Moon's shape is out of hydrostatic equilibrium; it may represent a fossil preserved by thick early lithosphere. Active development of Jupiter's moon Io, which is warmed by tidal heating, is widely interpreted in terms of heat-pipe cooling. Given its potential ubiquity in the Solar system, heat-pipe cooling may be a universal process experienced by all terrestrial bodies of sufficient size.

  15. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation.

    PubMed

    Yung, Y L; Nair, H; Gerstell, M F

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  16. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  17. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation.

    PubMed

    Yung, Y L; Nair, H; Gerstell, M F

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface. PMID:11541436

  18. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  19. On the persistence of memory: soft clocks and terrestrial biosphere-atmosphere interactions.

    PubMed

    Resco de Dios, Víctor

    2013-11-01

    The circadian clock is considered a central "orchestrator" of gene expression and metabolism. Concomitantly, the circadian clock is considered of negligible influence in the field and beyond leaf levels, where direct physiological responses to environmental cues are considered the main drivers of diel fluctuations. I propose to bridge the gap across scales by examining current evidence on whether circadian rhythmicity in gas exchange is relevant for field settings and at the ecosystem scale. Nocturnal stomatal conductance and water fluxes appear to be influenced by a "hard" clock that may override the direct physiological responses to the environment. Tests on potential clock controls over photosynthetic carbon assimilation and daytime transpiration are scant yet, if present, could have a large impact on our current understanding and modeling of the exchanges of carbon dioxide and water between terrestrial ecosystems and the atmosphere.

  20. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V; Lukenyuk, A.; Shymkiv, A.

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  1. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    NASA Astrophysics Data System (ADS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  2. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    NASA Astrophysics Data System (ADS)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  3. Investigating the terrestrial-atmospheric water balance for the Tana River basin, East Africa

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2016-04-01

    The fully coupled atmospheric-hydrological WRF-Hydro modeling system is applied to the Tana River basin (TRB) in East Africa for the period 2011-2014 in order to analyze the terrestrial-atmospheric water balance components and their feedback mechanisms. The outputs from the fully coupled modeling system are compared to those of the WRF stand-alone model. The study area encompasses the Mathioya-Sagana subcatchment (3279 km²) in the upper TRB. Our model set up consists of two domains at 25 km and 5 km horizontal resolution covering East Africa and the study area, respectively. The WRF-Hydro inner domain is enhanced with hydrological routing at a 500 m horizontal grid resolution. The simulated monthly precipitation over the subcatchment compared with the Tropical Rainfall Measuring Mission (TRMM) satellite data gives an overall correlation coefficient of 0.8/0.7 for fully coupled/stand-alone model and a mean absolute error (MAE) of 1.5 mm/day for both models for the entire simulation period. Overall the models yield more annual total precipitation compared to TRMM. The two models are drier during the March, April, May (MAM) season and wetter during the October, November, December (OND) season. Compared to observation stations, both modeling systems provide a correlation coefficient of 0.6 for precipitation. The simulated and observed discharges at the Tana Rukanga gauge, located in the subcatchment, exhibit a correlation coefficient of 0.5 at daily resolution. The WRF-Hydro also overestimates the cumulated discharge (2011-2014) by about 50 %. The analysis of the atmospheric water balance in both WRF and WRF-Hydro simulation reveals a positive moisture divergence during the MAM and OND rainy seasons. Precipitation recycling and efficiency measures derived from the atmospheric water budget are also investigated.

  4. Does atmospheric scattering increase or decrease terrestrial photosynthesis? Strong constraints from sunlight observations

    NASA Astrophysics Data System (ADS)

    Stine, A.; Huybers, P. J.; Swann, A. L.

    2013-12-01

    Diffuse light tends to be more efficient than direct shortwave radiation in driving photosynthesis in closed canopy environments because it will penetrate more evenly into the forest canopy illuminating a greater effective surface area of leaves. Increased atmospheric column scattering will tend to both decrease the total light reaching the surface, and to convert direct light to diffuse light. These two mechanisms have opposing effects on the sensitivity of terrestrial photosynthesis to changes in atmospheric scattering. A debate exists in the literature as to which effect generally dominates on planetary scales, particularly in the context of interpretation of the anomalously large northern hemisphere summer draw-down in atmospheric carbon dioxide in 1991 -- the year of the Mount Pinatubo eruption. Here we take a fresh approach to this problem and directly examine a broad spatial network of surface observations of direct and diffuse solar radiation. We estimate the sensitivity of direct, diffuse and photosynthetically effective radiation (PER), which we define as direct + α*diffuse, to changes in scattering on a site-by-site basis from over 100 spatially distributed time series of radiation. We find that PER generally decreases with increasing intensity of diffusive light, even when assuming the upper range of published α values, from which we infer that increased scattering generally decreases PER. Positive sensitivity of PER to increases in scattering, again using high values for α, are primarily confined to relatively cloud-free arid regions -- regions which do not support a closed canopy and almost certainly actually have a lower α. This supports conclusions that other mechanisms than Pinatubo's direct influence on diffuse fractions likely accounted for the 1991 CO2 drawdown anomaly. We examine the implication of this result for modeling the response of the carbon cycle to atmospheric scattering in the context of a global carbon cycle model.

  5. Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses?

    PubMed

    Aboal, J R; Fernández, J A; Boquete, T; Carballeira, A

    2010-11-15

    Here we present a critical review of diverse research studies involving estimation of atmospheric deposition of heavy metals from the concentrations of the contaminants in terrestrial moss. The findings can be summarized as follows: i) significant correlations between the concentrations of contaminants in moss and bulk deposition were observed in only 40.1% of the cases in which the relationship was studied and in only 14.1% of the cases, the coefficient of correlation was >0.7; ii) some method-related problems were identified (i.e. small sample sizes, elimination of some data from the regression analyses, large distances between the moss sampling sites and the bulk precipitation collectors, differences in times of exposure of the moss samples and collection times for the bulk precipitation), so that the results of the studies may not be completely valid, and iii) evidence was found in the relevant literature that moss does not actually integrate the atmospheric deposition received. We also discuss the reason why, in accordance with the published data, bulk deposition cannot be correctly estimated by determination of the final concentrations of contaminants in the organism, such as the existence of different sources of contamination, the physicochemical characteristics of the sources of deposition, physicochemical processes to which the organism is subjected and the biological processes that take place in the moss. Taking into account the above findings, it was concluded that, except for certain elements and specific cases (i.e. Pb and Cd), atmospheric deposition of elements cannot be accurately estimated from the concentrations of metals and metalloids in moss tissues. However, the analysis of moss does provide information about the presence of contaminants in the atmosphere, their spatial and temporal patterns of distribution and how they are taken up by live organisms. Use of mosses is therefore recommended as a complementary (rather than an alternative

  6. The chemical composition and climatology of the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.

    1983-01-01

    The earth's climate as it relates to the evolution of life is discussed.. Seven fundamental characteristics of the early evolutionary environment are examined, including a carbon dioxide and water vapor atmosphere, atmospheric mass between 500 and 1000 mb, a global hydrosphere, lowered solar luminosity, hospitable average global temperatures, a convectively active atmosphere, and trace gases. The influence of the early earth's extensive hydrosphere on the origin of life is considered. The warming of that hydrosphere due to radiative fluxes and the greenhouse effect is examined, and the nature of the feedback between clouds and climate is addressed.

  7. Middle atmosphere electrodynamics: Report of the workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    NASA Technical Reports Server (NTRS)

    Maynard, N. C. (Editor)

    1979-01-01

    Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.

  8. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    SciTech Connect

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  9. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  10. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere

    NASA Astrophysics Data System (ADS)

    Molot, Lewis A.; Dillon, Peter J.

    1996-09-01

    Carbon mass balance studies of 20 small, forested catchments and seven lakes on the Precambrian Shield in central Ontario during a 12-year period have shown that most carbon in the study lakes is derived from terrestrial sources, primarily peatlands, and that carbon retained by lakes (total inputs less loss via outflow from the lake) is partitioned between lake sediments and the atmosphere. The partitioning of retained carbon is a function of lake alkalinity: the ratio of evaded/sediment carbon increases with decreasing alkalinity. These carbon flux relationships were applied to the global boreal forest biome to evaluate the role of aquatic systems with respect to carbon fluxes and pools within the biome. We calculate that approximately 66 Tg of organic and inorganic carbon are exported annually from the boreal forest biome to adjacent surface waters of which 14 to 36 Tg reach coastal waters. The remainder is either evaded to the atmosphere (12 to 21 Tg yr-1) or stored in lake sediments (18 to 31 Tg yr-1). Approximately 120 Pg of carbon may be stored in boreal lake sediments, a conservative estimate based on an accumulation period of 5,000 years and a size comparable to recent boreal pool estimates of 419 Pg for peatlands and 64 Pg for plant biomass. Hence the amount of total carbon stored in the boreal forest biome may be significantly larger because of storage in lake sediments.

  11. Remote sensing of aerosol in the terrestrial atmosphere from space: "AEROSOL-UA" mission

    NASA Astrophysics Data System (ADS)

    Yatskiv, Yaroslav; Milinevsky, Gennadi; Degtyarev, Alexander

    2016-07-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project AEROSOL-UA that will obtain the data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The mission is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  12. Understanding the early Mesozoic world: New geochronological data from terrestrial and marine strata

    NASA Astrophysics Data System (ADS)

    Mundil, Roland; Irmis, Randall B.; Ickert, Ryan B.

    2013-04-01

    The first ~50 Ma of the Mesozoic (the Triassic Period) are marked by two major mass extinctions at the end-Permian and end-Triassic, extensive flood volcanic events (the Siberian Traps and the Central Atlantic Magmatic Province), perturbations of the ocean chemistry, paleoenvironmental changes in a greenhouse world and the origin of modern terrestrial ecosystems. Marine records of events leading to the end-Permian extinction as well as subsequent recovery during the Early and Middle Triassic are now well understood in terms of their relative and absolute timing, mainly due to significant advances in both the quantity and quality of geochronological data. This includes a detailed understanding of the Middle and end-Permian extinction events and their potential causes, their aftermath, and also the timing of large scale perturbations of the global carbon cycle in the Early Triassic. For the remaining ~30 Ma of the Triassic, however, there was until recently virtually no chronostratigraphic framework, and hence there is a major lag in our understanding of major events such as the origin and early diversification of dinosaurs, major reef building episodes in marine ecosystems, paleoenvironmental changes (e.g., the Carnian Pluvial Event), and a large extraterrestrial bolide impact (the Manicouagan impact). In absence of high-resolution radioisotopic ages, assumptions about causal inference and the role of these events, remain poorly constrained. We have therefore started to build a chronostratigraphic framework by applying U-Pb CA-TIMS analyses to zircon from primary and redeposited volcanic strata within both marine and terrestrial sequences of Late Triassic age. In particular, the potential of geochronological techniques applied to redeposited volcanic layers has long been ignored because the time lag between zircon crystallization and deposition is unknown; however, our initial results calibrating terrestrial sequences in North and South America are very promising

  13. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  14. Evidence for and implications of an Early Archean terrestrial impact record

    NASA Technical Reports Server (NTRS)

    Lowe, Donald R.; Byerly, Gary R.

    1988-01-01

    Early Archean, 3.5 to 3.2 Ga, greenstone sequences in South Africa and Western Australia contain a well-preserved record of early terrestrial meteorite impacts. The main impact-produced deposits are layers, 10 cm to over 1 m thick, composed largely of sand-sized spherules, 0.1 to 4 mm in diameter. The beds studied to date show an assemblage of features indicating formation by the fall of debris from impact-generated ejecta clouds. Some presented data effectively rule out normal magmatic or sedimentary processes in the origin of these units and provide substantial support for an origin by large impacts on the early earth. The presence of at least four, remarkably thick, nearly pure spherule layers suggests that smaller-scale impact deposits may be even more abundant in these sequences. The existence of a well-preserved Archean terrestrial impact record suggests that a direct source of evidence is available regarding a number of important aspects of early earth history.

  15. Using Dimers to Measure Biosignatures and Atmospheric Pressure for Terrestrial Exoplanets

    PubMed Central

    Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-01-01

    Abstract We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging–reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required. Key Words: Remote sensing—Extrasolar terrestrial planets

  16. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  17. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.

    1999-01-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17

  18. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review.

    PubMed

    Krupa, S V

    2003-01-01

    At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4

  19. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review.

    PubMed

    Krupa, S V

    2003-01-01

    At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4

  20. Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.; Taylor, Kyle W. R.; Inglis, Gordon N.; Kennedy, Elizabeth M.; Handley, Luke; Hollis, Christopher J.; Crouch, Erica M.; Pross, Jörg; Huber, Matthew; Schouten, Stefan; Pearson, Paul N.; Morgans, Hugh E. G.; Raine, J. Ian

    2013-12-01

    We present a long-term record of terrestrial climate change for the Early Paleogene of the Southern Hemisphere that complements previously reported marine temperature records. Using the MBT'-CBT proxy, based on the distribution of soil bacterial glycerol dialkyl glycerol tetraether lipids, we reconstructed mean annual air temperature (MAT) from the Middle Paleocene to Middle Eocene (62-42 Ma) for southern New Zealand. This record is consistent with temperature estimates derived from leaf fossils and palynology, as well as previously published MBT'-CBT records, which provides confidence in absolute temperature estimates. Our record indicates that through this interval, temperatures were typically 5°C warmer than those of today at such latitudes, with more pronounced warming during the Early Eocene Climate Optimum (EECO; ˜50 Ma) when MAT was ˜20°C. Moreover, the EECO MATs are similar to those determined for Antarctica, with a weak high-latitude terrestrial temperature gradient (˜5°C) developing by the Middle Eocene. We also document a short-lived cooling episode in the early Late Paleocene when MAT was comparable to present. This record corroborates the trends documented by sea surface temperature (SST) proxies, although absolute SSTs are up to 6°C warmer than MATs. Although the high-calibration error of the MBT'-CBT proxy dictates caution, the good match between our MAT results and modeled temperatures supports the suggestion that SST records suffer from a warm (summer?) bias, particularly during times of peak warming.

  1. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  2. The rise of oxygen in Earth's early ocean and atmosphere

    NASA Astrophysics Data System (ADS)

    Lyons, Timothy W.; Reinhard, Christopher T.; Planavsky, Noah J.

    2014-02-01

    The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.

  3. The rise of oxygen in Earth's early ocean and atmosphere.

    PubMed

    Lyons, Timothy W; Reinhard, Christopher T; Planavsky, Noah J

    2014-02-20

    The rapid increase of carbon dioxide concentration in Earth's modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth's history.

  4. A terrestrial vegetation turnover in the middle of the Early Triassic

    NASA Astrophysics Data System (ADS)

    Saito, Ryosuke; Kaiho, Kunio; Oba, Masahiro; Takahashi, Satoshi; Chen, Zhong-Qiang; Tong, Jinnan

    2013-06-01

    Land-plant productivity was greatly reduced after the end-Permian mass extinction, causing a pronounced "coal gap" worldwide during the Early Triassic. Newly obtained organic geochemistry data from the Chaohu area, south China, indicated an abrupt and profound terrestrial vegetation change over the middle part of the Early Triassic Smithian-Spathian (S-S) interval. Herbaceous lycopsids and/or bryophytes dominated terrestrial vegetation from Griesbachian to Smithian times. The terrestrial ecosystem underwent an abrupt change, and woody conifers became dominant over the S-S interval. Several important biomarkers, namely retene, simonellite, and dehydroabietane (with multiple sources: conifer, lycopsid, and/or herbaceous bryophyte), were relatively abundant during Griesbachian, Dienerian, and Smithian times. The relatively low C/N ratio values during the Griesbachian-Smithian interval indicate that these biomarkers were likely sourced from herbaceous lycopsids and/or bryophytes. The extremely abundant conifer-sourced pimanthrene, combined with relatively high C/N ratio values, suggested the recovery of woody conifers after the S-S boundary. The new data revealed that the switch from herbaceous vegetation to woody coniferous vegetation marked a terrestrial plant recovery, which occurred globally within 3 million years after the end-Permian crisis rather than at a later date estimated in previous studies. In Chaohu, the S-S terrestrial event was marked by a reappearance of woody vegetation, while the S-S marine event was marked by an increase in ichnodiversity, trace complexity, burrow size, infaunal tiering level, and bioturbation level, and a possible intense upwelling event indicated by the extended tricyclic terpane ratios (ETR). Coeval vegetation changes with comparable patterns have also been documented in Europe and Pakistan based on palynologic studies. The S-S boundaries in Asia and Europe are associated with a positive δ13C excursion, the rebound of woody

  5. The early Earth atmosphere and early life catalysts.

    PubMed

    Ramírez Jiménez, Sandra Ignacia

    2014-01-01

    Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.

  6. Increased delivery of condensation nuclei during the Late Heavy Bombardment to the terrestrial and martian atmospheres

    NASA Astrophysics Data System (ADS)

    Losiak, Anna

    2014-05-01

    During the period of the Late Heavy Bombardment (LHB), between 4.1 and 3.8 Ga, the impact rate within the entire Solar System was up to a few thousand times higher than the current value (Ryder 2002, Bottke et al. 2012, Fassett and Minton 2013). Multiple basin-forming events on inner planets that occurred during this time had a strong but short-lasting (up to few thousands of years) effect on atmospheres of Earth and Mars (Sleep et al. 1989, Segura et al. 2002, 2012). However, the role of the continuous flux of smaller impactors has not been assessed so far. We calculated the amount of meteoric material in the 10^-3 kg to 106 kg size range delivered to Earth and Mars during the LHB based on the impact flux at the top of the Earth's atmosphere based on results from Bland and Artemieva (2006). Those values were recalculated for Mars based on Ivanov and Hartmann (2009) and then recalculated to the LHB peak based on estimates from Ryder (2002), Bottke et al. (2012), Fassett and Minton (2013). During the LHB, the amount of meteoritic material within this size range delivered to Earth was up to ~1.7*10^10 kg/year and 1.4*10^10 kg/year for Mars. The impactors that ablate and are disrupted during atmospheric entry can serve as cloud condensation nuclei (Rosen 1968, Hunten et al. 1980, Ogurtsov and Raspopov 2011). The amount of material delivered during LHB to the upper stratosphere and lower mezosphere (Hunten et al. 1980, Bland and Artemieva 2006) is comparable to the current terrestrial annual emission of mineral cloud condensation nuclei of 0.5-8*10^12 kg/year (Tegen 2003). On Mars, the availability of condensation nuclei is one of the main factors guiding water-ice cloud formation (Montmessin et al. 2004), which is in turn one of the main climatic factors influencing the hydrological cycle (Michaels et al. 2006) and radiative balance of the planet (Haberle et al. 1999, Wordsworth et al. 2013, Urata and Toon 2013). Increased delivery of condensation nuclei during the

  7. Testing a Simple Recipe for Estimating Thermal Hydrodynamic Escape Rates in Primitive Terrestrial Atmospheres

    NASA Astrophysics Data System (ADS)

    Friedson, A. J.; Yung, Y. L.; Chen, P.

    2014-12-01

    During the first billion years of the Sun's history, the emission of ultraviolet and X-ray radiation varied from ~100 to ~6 times greater than its present level. The absorption of this intense radiation in the upper atmospheres of the terrestrial planets is believed to have driven rapid hydrodynamic escape, either in the form of energy-limited escape or transonic blow-off. The calculation of escape rates under these circumstances, and in particular the nature of the correct condition to apply at the upper boundary, depends on whether or not the flow remains subsonic below the exobase. If the flow remains subsonic, the kinetic Jeans equations may be applied at the exobase; otherwise, the radius of the sonic point must be located and then appropriate boundary conditions applied at this radius. This seems to suggest that the full hydrodynamic escape problem needs to be solved iteratively to determine where the sonic radius falls and the type of boundary conditions that should be applied. Such an arduous undertaking is generally impractical for standard application in chemical evolution models or related studies. Fortunately, a much easier but still accurate approach to determining whether the flow remains subsonic below the exobase for a given amount of energy deposition has been provided by Johnson et al. (2013, Ap. J. Lett. 768:L4), who base their results on rigorous Discrete Simulation Monte Carlo models. Their model provides the ratio of the escape rate to the energy-limited value as a function of the total XUV heating. The XUV heating, however, is itself coupled to the escape rate through the radial structure of the upper atmosphere, which can become greatly distended for large heating rates. Here we present a simple recipe for estimating the hydrodynamic escape rate that includes the coupling between the escape rate, the radial structure, and the XUV heating while avoiding the use of demanding numerical calculations. The approach involves an iterative semi

  8. Simulation of atmospheric and terrestrial background signatures for detection and tracking scenarios

    NASA Astrophysics Data System (ADS)

    Schweitzer, Caroline; Stein, Karin

    2015-10-01

    In the fields of early warning, one is depending on reliable image exploitation: Only if the applied detection and tracking algorithms work efficiently, the threat approach alert can be given fast enough to ensure an automatic initiation of the countermeasure. In order to evaluate the performance of those algorithms for a certain electro-optical (EO) sensor system, test sequences need to be created as realistic and comprehensive as possible. Since both, background and target signature, depend on the environmental conditions, a detailed knowledge of the meteorology and climatology is necessary. Trials for measuring these environmental characteristics serve as a solid basis, but might only constitute the conditions during a rather short period of time. To represent the entire variation of meteorology and climatology that the future system will be exposed to, the application of comprehensive atmospheric modelling tools is essential. This paper gives an introduction of the atmospheric modelling tools that are currently used at Fraunhofer IOSB to simulate spectral background signatures in the infrared (IR) range. It is also demonstrated, how those signatures are affected by changing atmospheric and climatic conditions. In conclusion - and with a special focus on the modelling of different cloud types - sources of error and limits are discussed.

  9. Comment on "A hydrogen-rich early Earth atmosphere".

    PubMed

    Catling, David C

    2006-01-01

    Tian et al. (Reports, 13 May 2005, p. 1014) proposed a hydrogen-rich early atmosphere with slow hydrogen escape from a cold thermosphere. However, their model neglects the ultraviolet absorption of all gases other than H2. The model also neglects Earth's magnetic field, which affects the temperature and density of ions and promotes nonthermal escape of neutral hydrogen.

  10. Early tetrapod evolution and the progressive integration of Permo-Carboniferous terrestrial ecosystems

    SciTech Connect

    Beerbower, J.R. . Dept. of Geological Science); Olson, E.C. . Dept. of Biology); Hotton, N. III . Dept. of Paleobiology)

    1992-01-01

    Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fiber tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.

  11. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  12. An approach to balancing the positive and negative effects of elevated nitrogen oxides in the lower atmosphere on terrestrial plants.

    PubMed

    Semenov, S

    2001-09-24

    Elevated NOx in the lower atmosphere has three major effects on terrestrial plants. On the one hand, it causes an increase in surface ozone concentration. This reduces plant growth rate. On the other hand, elevated NOx causes an increase in the flux of oxidized N compounds from the atmosphere to the land surface. This plays a dual role in the life of terrestrial plants. Additional N in soils stimulates plant growth (N-fertilization effect), whereas soil acidification may negatively affect plants. A simple empirical model for calculating the overall effect of anthropogenic increase in NOx level has been developed. The model is based on experimental "cause-response" data presented in world scientific literature. Calculations showed that at the large scale, among the above-mentioned changes, elevated O3 plays a major and negative role in plant life. Its negative effect on plants is partly compensated by N fertilization in unmanaged ecosystems. Such compensation appears to be negligible in agricultural lands. There are vast territories in Euro--Asia--for instance, a territory of Russia--in which acid atmospheric deposition has no significant effect on terrestrial plants.

  13. Heterogeneous Reactions of Polycyclic Aromatic Hydrocarbons on Atmospheric and Terrestrial Surfaces

    NASA Astrophysics Data System (ADS)

    Simonich, S. L.

    2014-12-01

    formation of 2-nitrofluoranthene or 2-nitropyrene, suggesting that heterogeneous reactions predominated. The importance of this research with respect to atmospheric long-range transport of PM-bound PAHs and heterogeneous reaction of PAHs on terrestrial surfaces will be discussed.

  14. Land Use Effects on Atmospheric C-13 Imply a Sizable Terrestrial CO2 Sink in Tropical Latitudes

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Tans, Pieter P.; White, James W. C.

    2000-01-01

    Records of atmospheric CO2 and 13-CO2, can be used to distinguish terrestrial vs. oceanic exchanges of CO2 with the atmosphere. However, this approach has proven difficult in the tropics, partly due to extensive land conversion from C-3 to C-4 vegetation. We estimated the effects of such conversion on biosphere-atmosphere C-13 exchange for 1991 through 1999, and then explored how this 'land-use disequilibrium' altered the partitioning of net atmospheric CO2 exchanges between ocean and land using NOAA-CMDL data and a 2D, zonally averaged atmospheric transport model. Our results show sizable CO2 uptake in C-3-dominated tropical regions in seven of the nine years; 1997 and 1998, which included a strong ENSO event, are near neutral. Since these fluxes include any deforestation source, our findings imply either that such sources are smaller than previously estimated, and/or the existence of a large terrestrial CO2 sink in equatorial latitudes.

  15. A carbon dioxide/methane greenhouse atmosphere on early Mars

    NASA Technical Reports Server (NTRS)

    Brown, L. L.; Kasting, J. F.

    1993-01-01

    One explanation for the formation of fluvial surface features on early Mars is that the global average surface temperature was maintained at or above the freezing point of water by the greenhouse warming of a dense CO2 atmosphere; however, Kasting has shown that CO2 alone is insufficient because the formation of CO2 clouds reduces the magnitude of the greenhouse effect. It is possible that other gases, such as NH3 and CH4, were present in the early atmosphere of Mars and contributed to the greenhouse effect. Kasting et al. investigated the effect of NH3 in a CO2 atmosphere and calculated that an NH3 mixing ratio of approximately 5 x 10 (exp -4) by volume, combined with a CO2 partial pressure of 4-5 bar, could generate a global average surface temperature of 273 K near 3.8 b.y. ago when the fluvial features are believed to have formed. Atmospheric NH3 is photochemically converted to N2 by ultraviolet radiation at wavelengths shortward of 230 nm; maintenance of sufficient NH3 concentrations would therefore require a source of NH3 to balance the photolytic destruction. We have used a one-dimensional photochemical model to estimate the magnitude of the NH3 source required to maintain a given NH3 concentration in a dense CO2 atmosphere. We calculate that an NH3 mixing ratio of 10(exp -4) requires a flux of NH3 on the order of 10(exp 12) molecules /cm-s. This figure is several orders of magnitude greater than estimates of the NH3 flux on early Mars; thus it appears that NH3 with CO2 is not enough to keep early Mars warm.

  16. The Martian paleo-magnetosphere during the early Naochian and its implication for the early Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Khodachenko, Maxim L.; Scherf, Manuel; Amerstorfer, Ute; Alexeev, Igor; Johnstone, Colin; Belenkaya, Elena; Tu, Lin; Lichtenegger, Herbert; Guedel, Manuel; Lammer, Helmut

    2016-10-01

    During the late 1990's the Mars Global Surveyor MAG/ER experiment detected crustal remanent magnetization at Mars indicating an ancient internal magnetic dynamo. The location of this remanent magnetization and in particular its absence at the large Martian impact craters like Hellas suggests a cessation of the dynamo during the early Naochian epoch, i.e. ~ 4.1 to 4 billion years ago. The strength of the remanent magnetization together with dynamo theory are indicating an ancient dipole field strength lying in the range of ~0.1 and ~1.0 of the present-day dipole field of the Earth, making the Martian paleo-magnetosphere comparable with the terrestrial paleo-magnetosphere. This also has implication for the early Martian atmosphere.In this poster we will present simulations of the paleo-magnetosphere of Mars for the early Naochian, just before cessation (i.e. for ~4.1 to ~4.0 billion years ago). These were performed with an adapted version of the Paraboloid Magnetospheric Model (PMM) of the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, which serves as an ISO standard for the magnetosphere. Here the ancient magnetic field was assumed to be a dipole field (with dipole tilt ψ=0). The ancient solar wind ram pressure as important input parameter was derived from a newly developed solar/stellar wind evolution model, which is strongly dependent on the rotation rate of the early Sun. These simulations show that for the most extreme case of a fast rotating Sun and a paleomagnetic field strength of 0.1 of the present-day Earth value, the Martian magnetopause was located at ~5.5 RM (i.e. ~2.9 RE) above the Martian surface. Assuming a strong dipole field (i.e. 1.0 of present-day Earth) and a slow rotating Sun – our least extreme case - would lead to a standoff-distance of rs~16 RM (i.e. ~8.5 RE).Our simulations also have implications for the early Martian atmosphere, which will be demonstrated within this poster. These first results on the erosion of

  17. Requirements for the early atmosphere of Mars from nitrogen isotope ratios

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1993-01-01

    The N escape models of Fox and Dalgarno and Fox required the presence of a dense, early CO2 atmosphere to inhibit fractionation of the N isotopes N-15 and N-14. The computed photochemical escape fluxes are so large at the present that the isotope ratio measured by Viking (about 1.62x terrestrial) can be produced in about 1.5 b.y. This model was refined in several ways. It was updated to incorporate the variation of the escape fluxes with increases in the solar fluxes at earlier times according to the model of Zahnle and Walker. As expected, this exacerbates the problem with overfractionation, but not greatly. Most of the escape and fractionation of the N occurs in the last 1.5 b.y., when the solar flux was only slightly different from the present. The dense early atmosphere must persist only a bit longer in order to reproduce the measured isotope ratio. The model was also modified to take into account changes in the O mixing ratio with time in the past, assuming that the O abundance is proportional to the square root of the solar flux. Although the production rate of O from photodissociation of CO2 scales as the solar flux, the strength of the winds and other mixing processes also increases with the solar flux, resulting in possibly more effective transport of O to the lower atmosphere where it is destroyed by catalytic and three-body recombination mechanisms.

  18. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish.

    PubMed

    Dahl, Tais W; Hammarlund, Emma U; Anbar, Ariel D; Bond, David P G; Gill, Benjamin C; Gordon, Gwyneth W; Knoll, Andrew H; Nielsen, Arne T; Schovsbo, Niels H; Canfield, Donald E

    2010-10-19

    The evolution of Earth's biota is intimately linked to the oxygenation of the oceans and atmosphere. We use the isotopic composition and concentration of molybdenum (Mo) in sedimentary rocks to explore this relationship. Our results indicate two episodes of global ocean oxygenation. The first coincides with the emergence of the Ediacaran fauna, including large, motile bilaterian animals, ca. 550-560 million year ago (Ma), reinforcing previous geochemical indications that Earth surface oxygenation facilitated this radiation. The second, perhaps larger, oxygenation took place around 400 Ma, well after the initial rise of animals and, therefore, suggesting that early metazoans evolved in a relatively low oxygen environment. This later oxygenation correlates with the diversification of vascular plants, which likely contributed to increased oxygenation through the enhanced burial of organic carbon in sediments. It also correlates with a pronounced radiation of large predatory fish, animals with high oxygen demand. We thereby couple the redox history of the atmosphere and oceans to major events in animal evolution. PMID:20884852

  19. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish

    PubMed Central

    Dahl, Tais W.; Hammarlund, Emma U.; Anbar, Ariel D.; Bond, David P. G.; Gill, Benjamin C.; Gordon, Gwyneth W.; Knoll, Andrew H.; Nielsen, Arne T.; Schovsbo, Niels H.; Canfield, Donald E.

    2010-01-01

    The evolution of Earth’s biota is intimately linked to the oxygenation of the oceans and atmosphere. We use the isotopic composition and concentration of molybdenum (Mo) in sedimentary rocks to explore this relationship. Our results indicate two episodes of global ocean oxygenation. The first coincides with the emergence of the Ediacaran fauna, including large, motile bilaterian animals, ca. 550–560 million year ago (Ma), reinforcing previous geochemical indications that Earth surface oxygenation facilitated this radiation. The second, perhaps larger, oxygenation took place around 400 Ma, well after the initial rise of animals and, therefore, suggesting that early metazoans evolved in a relatively low oxygen environment. This later oxygenation correlates with the diversification of vascular plants, which likely contributed to increased oxygenation through the enhanced burial of organic carbon in sediments. It also correlates with a pronounced radiation of large predatory fish, animals with high oxygen demand. We thereby couple the redox history of the atmosphere and oceans to major events in animal evolution. PMID:20884852

  20. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish.

    PubMed

    Dahl, Tais W; Hammarlund, Emma U; Anbar, Ariel D; Bond, David P G; Gill, Benjamin C; Gordon, Gwyneth W; Knoll, Andrew H; Nielsen, Arne T; Schovsbo, Niels H; Canfield, Donald E

    2010-10-19

    The evolution of Earth's biota is intimately linked to the oxygenation of the oceans and atmosphere. We use the isotopic composition and concentration of molybdenum (Mo) in sedimentary rocks to explore this relationship. Our results indicate two episodes of global ocean oxygenation. The first coincides with the emergence of the Ediacaran fauna, including large, motile bilaterian animals, ca. 550-560 million year ago (Ma), reinforcing previous geochemical indications that Earth surface oxygenation facilitated this radiation. The second, perhaps larger, oxygenation took place around 400 Ma, well after the initial rise of animals and, therefore, suggesting that early metazoans evolved in a relatively low oxygen environment. This later oxygenation correlates with the diversification of vascular plants, which likely contributed to increased oxygenation through the enhanced burial of organic carbon in sediments. It also correlates with a pronounced radiation of large predatory fish, animals with high oxygen demand. We thereby couple the redox history of the atmosphere and oceans to major events in animal evolution.

  1. The Role of Hydrogen in Determining the Stability of CO2 Atmospheres of Terrestrial Exoplanets Around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Hu, Renyu; Robinson, Tyler D.; Yung, Yuk L.

    2014-11-01

    The recent discovery of terrestrial worlds in the Habitable Zones of M Dwarfs necessitates a more intensive investigation of the properties of these planets. One major feature of certain M Dwarfs is their high fluxes of EUV radiation, which photolyzes CO2, an important greenhouse gas that should be abundant on rocky worlds. This photolytic destruction of CO2 can be countered by HOx chemistry: photolysis of HOx species by NUV radiation generates OH, which reacts with CO to regenerate CO2. These processes are balanced around Sun-like stars such that Venus and Mars can maintain CO2-dominated atmospheres. However, M Dwarfs tend to have much lower NUV/EUV flux ratios, which could prevent the formation of significant CO2 atmospheres on any planets they may host. In this study, we evaluate the properties of CO2 atmospheres surrounding an Earth-massed, Earth-sized exoplanet in orbit of an M Dwarf using a 1D photochemical kinetics model. We consider an atmosphere similar in composition to that of Mars, but scaled to have a surface pressure of 1 bar. We choose to focus on Mars-like atmospheres rather than Earth-like ones, as Earth's atmosphere has been altered through biological sources and sinks and the presence of a large liquid water ocean, which are not necessarily present on terrestrial exoplanets. Our preliminary results show that the hydrogen content of the atmosphere is crucial in determining the ratio of CO2 to CO and O2. In particular, for a H2 mixing ratio identical to that of Mars 20-30 ppm), a steady state atmosphere is reached after 10 Gyr consisting of ~85% CO2, ~10% CO, and ~5% O2, with an ozone mixing ratio of ~0.01 ppm. In the extreme case where all hydrogen is lost to space, an atmosphere consisting of ~64% CO2, ~24% CO, and 12% O2 results, while ozone levels reach ~10 ppm. Finally, for H2 mixing ratios similar to that of Earth 0.5 ppm) and no atmospheric escape, a 49% CO2, 34% CO, 17% O2, and 0.1 ppm O3 atmosphere is possible. This not only points to the

  2. Contrasting roles of interception and transpiration in the hydrological cycle - Part 1: Simple Terrestrial Evaporation to Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, L.; van der Ent, R. J.; Gordon, L. J.; Savenije, H. H. G.

    2014-03-01

    Terrestrial evaporation consists of biophysical (i.e., transpiration) and physical fluxes (i.e., interception, soil moisture, and open water). The partitioning between them depends on both climate and the land surface, and determines the time scale of evaporation. However, few land-surface models have analysed and evaluated evaporative partitioning based on land use, and no studies have examined their subsequent paths in the atmosphere. This paper constitutes the first of two companion papers that investigate the contrasting effects of interception and transpiration in the hydrological cycle. Here, we present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) used to produce partitioned evaporation and analyse the characteristics of different evaporation fluxes on land. STEAM represents 19 land-use types (including irrigated land) at sub-grid level with a limited set of parameters, and includes phenology and stress functions to respond to changes in climate conditions. Using ERA-Interim reanalysis forcing for the years 1999-2008, STEAM estimates a mean global terrestrial evaporation of 73 800 km3 year-1, with a transpiration ratio of 59%. We show that the terrestrial residence time scale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). Furthermore, results from an offline land-use change experiment illustrate that land-use change may lead to significant changes in evaporative partitioning even when total evaporation remains similar. In agreement with previous research, our simulations suggest that the vegetation's ability to transpire by retaining and accessing soil moisture at greater depth is critical for sustained evaporation during the dry season. Despite a relatively simple model structure, validation shows that STEAM produces realistic evaporative partitioning and hydrological fluxes that compare well with other global estimates over different locations, seasons and

  3. Ice-atmosphere interactions in the Canadian High Arctic: Implications for the thermo-mechanical evolution of terrestrial ice masses

    NASA Astrophysics Data System (ADS)

    Wohlleben, Trudy M. H.

    Canadian High Arctic terrestrial ice masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/ice-albedo feedback (where area changes in snow and/or ice cause changes in surface albedo and surface air temperatures, leading to further area changes in snow/ice); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial ice masses cause changes to atmospheric circulation and precipitation patterns, leading to further ice thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial ice masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for ice flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/ice-albedo feedback can locally exceed that of sea ice on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and ice cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon Ice Cap, observed mass gains in the northwest sector of the ice cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the

  4. Photochemistry in Terrestrial Exoplanet Atmospheres. III. Photochemistry and Thermochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Seager, Sara

    2014-03-01

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO2 rather than CH4 or CO in a H2-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C2H2 and C2H4). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C2H2 features at 1.0 and 1.5 μm in transmission and C2H2 and C2H4 features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  5. Atmospheric composition and climate on the early Earth.

    PubMed

    Kasting, James F; Howard, M Tazewell

    2006-10-29

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85 degrees C. We argue, following others, that this interpretation is incorrect-the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot.A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere.

  6. Atmospheric composition and climate on the early Earth

    PubMed Central

    Kasting, James F; Howard, M. Tazewell

    2006-01-01

    Oxygen isotope data from ancient sedimentary rocks appear to suggest that the early Earth was significantly warmer than today, with estimates of surface temperatures between 45 and 85°C. We argue, following others, that this interpretation is incorrect—the same data can be explained via a change in isotopic composition of seawater with time. These changes in the isotopic composition could result from an increase in mean depth of the mid-ocean ridges caused by a decrease in geothermal heat flow with time. All this implies that the early Earth was warm, not hot. A more temperate early Earth is also easier to reconcile with the long-term glacial record. However, what triggered these early glaciations is still under debate. The Paleoproterozoic glaciations at approximately 2.4 Ga were probably caused by the rise of atmospheric O2 and a concomitant decrease in greenhouse warming by CH4. Glaciation might have occurred in the Mid-Archaean as well, at approximately 2.9 Ga, perhaps as a consequence of anti-greenhouse cooling by hydrocarbon haze. Both glaciations are linked to decreases in the magnitude of mass-independent sulphur isotope fractionation in ancient rocks. Studying both the oxygen and sulphur isotopic records has thus proved useful in probing the composition of the early atmosphere. PMID:17008214

  7. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.

    PubMed

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-01

    Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.

  8. Identification of Lichen Metabolism in an Early Devonian Terrestrial Fossil using Carbon Stable Isotope Signature

    NASA Astrophysics Data System (ADS)

    Porter, S.; Jahren, H.

    2002-05-01

    The fossil organismSpongiophyton minutissimum is commonly found in early terrestrial assemblages (Devonian age, 430-340 Ma). Suites of morphological descriptions of this fossil have been published, starting in 1954, and have led to two competing hypotheses: 1.) that this early colonizer of land was a primitive bryophyte, and therefore a precursor to modern plant organisms, and 2.) thatS. minutissimum was a lichen: a close association between an alga and a fungus. Because the ultimate mechanisms for carbon supply to the carboxylating enzyme in bryophytes and lichens differ fundamentally, we expect these two types of organisms to exhibit separate ranges of δ 13Ctissue value. In bryophytes, gaseous carbon dioxide diffuses through perforations in cuticle (resulting in δ 13Catmosphere - δ 13Cbryophyte = ~20 ‰ ). Within the lichen, carbon is supplied to the carboxylating enzyme of the photobiont as carbon dioxide dissolved in fungal cell fluids (resulting in δ 13Catmosphere - δ 13Clichen = ~15 ‰ ). By comparing the δ 13Ctissue value ofS. minutissimum (mean = -23 ‰ ;n = 75) with δ 13Ctissue values in twenty-five lichens, representative of the four different phylogenetic clades (mean = -23 ‰ ;n = 25) and thirty different genera of bryophytes including mosses, liverworts, and hornworts (mean = -28 ‰ ;n = 30), we conclude thatS. minutissimum was cycling carbon via processes that much more closely resembled those of lichens, and not bryophytes. We discuss the general strategies associated with lichen biology, such as the ability to withstand dessication during reproduction, and how they may have contributed to the successful colonization of terrestrial environments.

  9. Spectral identification of abiotic O2 buildup from early runaways and rarefied atmospheres

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Domagal-Goldman, Shawn; Arney, Giada; Robinson, Tyler D.; Luger, Rodrigo; Barnes, Rory

    2016-01-01

    The spectral detection of oxygen (O2) in a planetary atmosphere has been considered a robust signature of life because O2 is highly reactive on planets with Earth-like redox buffers and because significant continuous abiotic sources were thought to be implausible. However, recent work has revealed the possibility that significant O2 may build-up in terrestrial atmospheres through (1) photochemical channels or (2) through the escape of hydrogen. We focus on the latter category here. Significant amounts of abiotic O2 could remain in the atmospheres of planets in the habitable zones of late type stars, where an early runaway greenhouse and massive hydrogen escape during the pre-main-sequence phase could have irreversibly oxidized the crust and mantle (Luger & Barnes 2015). Additionally, it has been hypothesized that O2 could accumulate in the atmospheres of planets with sufficiently low abundances of non-condensable gases such as N2 where water would not be cold trapped in the troposphere, leading to H-escape from UV photolysis in a wet stratosphere (Wordsworth & Pierrehumbert 2014). We self-consistently model the climate, photochemistry, and spectra of both rarefied and post-runaway, high-O2 atmospheres. Because an early runaway might not have lasted long enough for the entire water inventory to escape, we explore both completely desiccated scenarios and cases where a surface ocean remains. We find "habitable" surface conditions for a wide variety of oxygen abundances, atmospheric masses, and CO2 mixing ratios. If O2 builds up from massive or sustained H escape, the O2 abundance should be very high, and could be spectrally indicated by the presence of O2-O2 (O4) collisionally-induced absorption (CIA) features. We generate synthetic direct-imaging and transit transmission spectra of these atmospheres and calculate the strength of the UV/Visible and NIR O4 features. We find that while both the UV/Visible and NIR O4 features are strong in the radiance spectra of very

  10. Spectral identification of abiotic O2 buildup from early runaways and rarefied atmospheres

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Domagal-Goldman, Shawn; Arney, Giada; Luger, Rodrigo; Barnes, Rory

    2015-11-01

    The spectral detection of oxygen (O2) in a planetary atmosphere has been considered a robust signature of life because O2 is highly reactive on planets with Earth-like redox buffers and because significant continuous abiotic sources were thought to be implausible. However, recent work has revealed the possibility that significant O2 may build-up in terrestrial planet atmospheres through (1) photochemical channels or (2) through massive hydrogen escape. We focus on the latter category here. Significant amounts of abiotic O2 could remain in the atmospheres of planets in the habitable zones of late type stars, where an early runaway greenhouse and massive hydrogen escape during the pre-main-sequence phase could have irreversibly oxidized the crust and mantle (Luger & Barnes 2015). Additionally, it has been hypothesized that O2 could accumulate in the atmospheres of planets with sufficiently low abundances of noncondensable gases such as N2 where water would not be cold trapped in the troposphere, leading to H-escape from UV photolysis in a wet stratosphere (Wordsworth & Pierrehumbert 2014). We self-consistently model the climate, photochemistry, and spectra of both rarefied and post-runaway, high-O2 atmospheres. Because an early runaway might not have lasted long enough for the entire water inventory to have escaped, we explore both completely desiccated scenarios and cases where a surface ocean remains. We find “habitable” surface conditions for a wide variety of oxygen abundances, atmospheric masses, and CO2 mixing ratios. If O2 builds up from H escape, the O2 abundance should be very high, and could be spectrally indicated by the presence of O2 collisionally-induced absorption (CIA) features. We generate synthetic direct-imaging and transit transmission spectra of these atmospheres and calculate the strength of the UV/Visible and NIR O2 CIA features. We find that while both the UV/Visible and NIR O2 CIA features are strong in the direct-imaging spectra of very

  11. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    SciTech Connect

    Hu, Renyu; Seager, Sara

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 μm in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  12. New detections of O III lines in the UV and visible ranges in the terrestrial upper atmosphere

    NASA Astrophysics Data System (ADS)

    Witasse, O. G.; Slanger, T. G.; Thissen, R.

    2011-12-01

    Doubly-charged ions are peculiar atmospheric species interesting to study due to their exotic or unexpected photo-chemistry and their high reactivity. We focus here on the O++ doubly-charged ion, which was detected in the terrestrial atmosphere in 1967 by mass spectrometry. Its photochemistry has been characterized in a number of studies. Excited state fluorescence of this ion is well known, since its doublet centered around 500 nm has been used as a tracer of electron densities and temperatures in gaseous nebulae since the 1940's. O III emissions have been observed in the terrestrial atmosphere in the extreme ultraviolet region. We report here the new and unambiguous detection of two emission lines of O III at 495.8911 and 500.6843 nm, with the Ultraviolet and Visible Echelle Spectrograph (UVES) mounted on UT2 of the Very Large Telescope (VLT) in Chile. The measurements were performed after sunset, October 30, 2003 during the so-called "Halloween" storm. The intensities of these emissions are ~70 mRayleigh, and ~260 mRayleigh, respectively. We discuss the possible methods of production of the ion. We also discuss the potential identification of O III emission near 166 nm in a spectrum acquired with the Hopkins Ultraviolet Telescope (HUT) telescope on the dayside, in December 1990. These emissions constitute a new diagnostic of the state of the ionosphere, with potentially interesting applications to Venus and Mars.

  13. Implications of isotopic signatures of noble gases for the origin and evolution of terrestrial atmospheres

    NASA Technical Reports Server (NTRS)

    Rao, A. S. P.

    1987-01-01

    It is contented that the initial quantities of noble gases present in planetesimals were controlled by the sizes and masses of the planets, and fit with a model of successive accretion. The successive accretion model proposed for the origin of terrestrial planets is based upon: (1) the sequence of zones of condensation of solar nebula, (2) the condensation sequence of minerals, iron and nickel in different P-T regimes of the solar nebula, and (3) the sequence in the nucleation of iron cores of the terrestrial planets.

  14. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  15. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  16. Mentors, networks, and resources for early career female atmospheric scientists

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  17. Heat flow vs. atmospheric greenhouse on early Mars

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Postawko, S. E.

    1991-01-01

    Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.

  18. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    NASA Astrophysics Data System (ADS)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    humidity (<20%) combined with elevated temperatures (>25°C) could cause sufficient cavitation to reduce hydraulic conductivity by 50%. This suggests that the Early Devonian environments that supported the earliest vascular plants were not subject to prolonged midseason droughts, or, alternatively, that the growing season was short. This places minimum constraints on water availability (e.g., groundwater hydration, relative humidity) in locations where Asteroxylon fossils are found; these environments must have had high relative humidities, comparable to tropical riparian environments. Given these constraints, biome-scale paleovegetation models that place early vascular plants distal to water sources can be revised to account for reduced drought tolerance. Paleoclimate proxies that treat early terrestrial plants as functionally interchangeable can incorporate physiological differences in a quantitatively meaningful way. Application of hydraulic models to fossil plants provides an additional perspective on the 475 million-year history of terrestrial photosynthetic environments and has potential to corroborate other plant-based paleoclimate proxies.

  19. New estimates of variations in atmospheric-terrestrial flux of water over Europe, based on regional reanalysis and multi-sensor observations

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Springer, A.; Hartung, K.; Ohlwein, C.; Longuevergne, L.

    2013-12-01

    Precipitation minus evapotranspiration, the flux of water between the atmosphere and the Earth's surface, provides important information regarding the interaction of the atmosphere with the land surface. It links atmospheric and terrestrial water budgets and, thus, realizes an important boundary condition for both climate modeling and hydrological studies. Yet, due to a general lack of unbiased measurements, the atmospheric-terrestrial flux of water is poorly constrained by direct observations and rather, usually, reconstructed from data-assimilating atmospheric reanalyses. Via the terrestrial water budget equation, water storage derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission combined with runoff data, can be used to assess the realism of atmospheric-terrestrial flux of water in atmospheric models. A number of studies have applied this method to global reanalysis products, with good results only for large river basins. In this study, we first assess the closure of the terrestrial water budget over a number of European river basins from the new release 5 GRACE products, after careful postprocessing and in combination with GRDC and BfG discharge data, and from precipitation minus evapotranspiration obtained from the operational analysis of the regional high-resolution NWP models COSMO-DE and -EU, a new COSMO-based reanalysis for the European CORDEX domain, the global reanalyses ERA-INTERIM and MERRA, as well as few observation-based data sets (E-OBS, GPCC, upscaled FLUXNET observations from Jung et al., 2010). This allows us to identify biases of up to 20 mm/month in the different data products, at different spatial scales down to the Oder catchment (110.000 km2). Among the atmospheric (re-) analyses, we find COSMO-EU atmosphere-terrestrial flux of water almost unbiased over Central Europe. Finally, we assess bias-corrected flux and reconstructed multi-sensor water storage variations.

  20. Developing a Metal Proxy for the Rise of Early Terrestrial Life

    NASA Astrophysics Data System (ADS)

    Rochelle, S. P.; Anbar, A. D.; Hartnett, H. E.; Romaniello, S. J.; Poret-Peterson, A. T.

    2015-12-01

    Previous work has shown that the presence of biological soil crusts (BSCs) may affect the concentrations of uranium and other transition metals by influencing metal dissolution, solubility, and transport.(1) These effects may provide a proxy for the presence of microbial mat communities in paleosols, possibly constraining the timing of the rise of early terrestrial ecosystems. Thus, in an effort to uncover possible biosignatures, this study examines metal abundances in modern desert BSCs as a possible analogue for early terrestrial life.We present results from a preliminary study comparing crusted and uncrusted soils from a low-desert site near Casa Grande, Arizona. Seventeen 5-cm soil cores were collected and the bulk elemental composition of the top 1 cm of crusted (9 samples) and non-crusted (8 samples) soils were analyzed by quadrupole ICP-MS with a typical measurement precision between 2-5%. Metal concentrations were normalized to aluminum (Al) to minimize dilution effects due to variations in carbonate and quartz content.Although the mean concentrations of nearly all elements were similar in crusted and uncrusted sites, the variability in the normalized concentrations of some of the elements, such as uranium, were different between crusted and uncrusted sites. The average U/Al ratio at the crusted site was 25 ± 1 μg U/ g Al and the average U/Al ratio at the uncrusted site was 27 ± 4 µg U/ g Al. Bartlett's and Levene's tests were used to confirm that the U/Al ratio was significantly more variable in the uncrusted sites as compared to the crusted sites. Iron (Fe), vanadium (V) and cesium (Cs) showed a similar pattern which was significant under Bartlett's but not Levene's test.As U, Fe, and V solubility and transport are redox-sensitive, we hypothesize that their aqueous mobility could have been impacted by diurnal redox swings in the photosynthetic crusts, possibly resulting in the homogenization of local cm-scale variations in background soil

  1. Integration of ice core, marine and terrestrial records: new insights into Holocene atmospheric circulation dynamics over NW Europe

    NASA Astrophysics Data System (ADS)

    Muschitiello, F.; Hammarlund, D.; Wohlfarth, B.

    2012-12-01

    We analyzed the oxygen (δ18O) and carbon (δ13C) isotope composition of lacustrine carbonates (Chara sp. and Bithynia tentaculata) from a lake sediment sequence (Lake Bjärsträsk) on the island of Gotland, southern Sweden. Our new isotopic records show a significant consistency with existing regional climatic reconstructions, as well as with paleorecords reflecting large-scale circulation dynamics. By comparing our data to ice core records from Greenland and to regional- and global-scale terrestrial and marine climate records, we explore potential couplings of Mid- and Late Holocene extreme summer climate conditions in northwestern Europe to orbital forcing and low-latitude atmospheric circulation dynamics. Specifically, we discuss the relationship between long-term changes in the position of the North Atlantic subtropical front and the frequency of summer blocking anticyclones over southern Sweden. Furthermore, we tentatively outline the spatial structure of predominant modes of atmospheric variability over the North Atlantic sector throughout the Holocene.

  2. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir.

    PubMed

    Macario, Kita D; Alves, Eduardo Q; Carvalho, Carla; Oliveira, Fabiana M; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L; Cavallari, Daniel C

    2016-01-01

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America. PMID:27271349

  3. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir

    PubMed Central

    Macario, Kita D.; Alves, Eduardo Q.; Carvalho, Carla; Oliveira, Fabiana M.; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L.; Cavallari, Daniel C.

    2016-01-01

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America. PMID:27271349

  4. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir

    NASA Astrophysics Data System (ADS)

    Macario, Kita D.; Alves, Eduardo Q.; Carvalho, Carla; Oliveira, Fabiana M.; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L.; Cavallari, Daniel C.

    2016-06-01

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America.

  5. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir.

    PubMed

    Macario, Kita D; Alves, Eduardo Q; Carvalho, Carla; Oliveira, Fabiana M; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L; Cavallari, Daniel C

    2016-06-08

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America.

  6. Changes in the terrestrial atmosphere-ionosphere-magnetosphere system due to ion propulsion for solar power satellite placement

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Grebowsky, J. M.

    1979-01-01

    Preliminary estimates of the effects massive Ar(+) injections on the ionosphere-plasmasphere system with specific emphasis on potential communications disruptions are given. The effects stem from direct Ar(+) precipitation into the atmosphere and from Ar(+) beam induced precipitation of MeV radiation belt protons. These injections result from the construction of Solar Power Satellites using earth-based materials in which sections of a satellite must be lifted from low earth to geosynchronous orbit by means of ion propulsion based on the relatively abundant terrestrial atmospheric component, Ar. The total amount of Ar(+) injected in transporting the components for each Solar Power Satellite is comparable to the total ion content of the ionosphere-plasmasphere system while the total energy injected is larger than that of this system. It is suggested that such effects may be largely eliminated by using lunar-based rather than earth-based satellite construction materials.

  7. Late Paleocene-early Eocene carbon isotope stratigraphy from a near-terrestrial tropical section and antiquity of Indian mammals

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Sarkar, A.; Bera, M. K.; Rai, Jyotsana; Rathore, S. S.

    2013-02-01

    Late Paleocene to early Eocene (~56 to 51 Ma) interval is characterized by five distinct transient warming (hyperthermal) events (Paleocene-Eocene thermal maximum (PETM), H1/ETM2/ELMO, H2, I1 and I2) in a super greenhouse globe associated with negative carbon isotope excursions (CIEs). Although well-documented marine records exist at different latitudes, terrestrial PETM sections are rare. In particular, almost no terrestrial records of either the PETM or early Eocene hyperthermals (EEHs) are yet available from the tropics. Further, evolution of modern order of mammals near the PETM has been recorded in many northern continents; however, the response of mammals in the tropics to these warming events is unknown. A tropical terrestrial record of these hyperthermal/CIE events, encompassing the earliest modern order mammal bearing horizon from India, can therefore be vital in understanding climatic and biotic evolution during the earliest Cenozoic time. Here, for the first time, we report high resolution carbon isotope ( δ 13C) stratigraphy, nannofossil, and Sr isotope ratio of marine fossil carbonate from the Cambay Shale Formation of Western India. The record shows complete preservation of all the above CIE events, including the PETM, hitherto unknown from the equatorial terrestrial records. δ 13C chemostratigraphy further suggests that at least the present early Eocene mammal-bearing horizon, recently discovered at Vastan, does not support the `out of India' hypothesis of earliest appearance of modern mammals and subsequent dispersal to the Holarctic continents.

  8. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. PMID:24251443

  9. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  10. Differentiation of crusts and cores of the terrestrial planets - Lessons for the early earth

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The extent and mechanisms of global differentiation and the early thermal and tectonic histories of the terrestrial planets are surveyed in order to provide constraints on the first billion years of earth history. Indirect and direct seismic evidence for crusts on the moon, Mars and Venus is presented, and it is pointed out that substantial portions of these crusts have been in place since the cessation of heavy bombardment of the inner solar system four billion years ago. Evidence for sizable cores on Mars and Mercury and a small core on the moon is also discussed, and the heat involved in core formation is pointed out. Examination of the volcanic and tectonic histories of planets lacking plate tectonics indicates that core formation was not closely linked to crust formation on the moon or Mars, with chemical differentiation restricted to shallow regions, and was much more extensive on Mercury. Extension of these considerations to the earth results in a model of a hot and vigorously convecting mantle with an easily deformable crust immediately following core formation, and the gradual development of a lithosphere and plates.

  11. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  12. How do Early Impacts Modulate the Tectonic, Magnetic and Climatic Evolutions of Terrestrial Planets?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Jackson, M. G.; Lenardic, A.; Weller, M. B.

    2015-12-01

    The landmark discovery showing that the 142Nd/144Nd ratio of the accessible modern terrestrial mantle is greater than ordinary-chondrites has remarkable implications for the formation, as well as the geodynamic, magnetic and climatic histories of Earth. If Earth is derived from ordinary chondrite precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20-30 Myr following accretion. Critically for Earth evolution, this reservoir hosts the equivalent of the modern continents' budget of radioactive heat-producing elements (U, Th and K). If this reservoir was lost to space through mechanical erosion by early impactors, the planet's radiogenic heat generation is 18-45% lower than chondrite-based compositional estimates. Recent geodynamic calculations suggest that this reduced heat production will favor the emergence of Earth-like plate tectonics. However, parameterized thermal history calculations favor a relatively recent transition from mostly Atlantic-sized plates to the current plate tectonic mode characterized predominantly by the subduction of Pacific-sized plates. Such a transition in the style of Earth's plate tectonics is also consistent with a delayed dynamo and an evolving rate of volcanic outgassing that ultimately favors Earth's long-term clement climate. By contrast, relatively enhanced radiogenic heat production related to a less early impact erosion reduces the likelihood of present day plate tectonics: A chondritic Earth has a stronger likelihood to evolve as a Venus-like planet characterized by potentially wild swings in tectonic and climatic regime. Indeed, differences in internal heat production related to varying extents of impact erosion may exert strong control over Earth's climate and explain aspects of the differences among the current climatic regimes of Earth, Venus and Mars.

  13. Multiple Tectonic Regimes and Diverging Geologic Histories of Terrestrial Planets: The Importance of the Early Years

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2013-12-01

    We use 3D mantle convection and planetary tectonics simulations to explore the links between tectonic regimes, the age of a planet, and its surface evolution. We demonstrate that the tectonic regime of a planet is dependant on its thermal and climatic evolution. A young planet with a high degree of internal heating has a strong susceptibility to climate-induced transitions in tectonic styles. The amplitude of a long lived surface temperature perturbation needed to initiate a transition from a mobile- to a stagnant-lid mode of tectonics decreases with increasing degrees of internal heating. As surface temperatures increase, episodic convection occurs over a larger range of lid strengths, suggesting that young and high temperature planetary bodies have a higher potential to exist in a long-lived mode of episodic tectonics. Once the system transitions into a stagnant-lid, the reverse transition is not attainable by a return to the original surface temperature, which indicates that the climate-tectonic system is bi-stable [multiple tectonic states are possible for the same parameter values]. As a planet ages, the system becomes increasingly insensitive to surface temperature induced transitions after ~30 - 50% of the original radiogenics decay. For a planet to transition from mobile- into episodic-, or stagnant-lid modes through the mechanism of increasing surface temperatures, the implication is that the change would have to occur early in its evolution, within the first 1-2 giga years. While the sensitivity to climatic perturbations decreases with the age of the planet, decreasing internal heat production can usher in a transition in tectonic regimes from a stagnant-lid state, into an episodic- and finally mobile-/sluggish-lid regimes. The implications are that terrestrial worlds can alternate between multiple tectonic states over giga-year timescales. The implications for the early Earth and Earth-Venus differences will be discussed.

  14. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-01

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  15. Increasing retention of early career female atmospheric scientists

    NASA Astrophysics Data System (ADS)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  16. The Net Exchange Between Terrestrial Ecosystems and the Atmosphere as a Result of Changes in Land Use

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.

    1998-01-01

    The general purpose of this research was to improve and update (to 1990) estimates of the net flux of carbon between the world's terrestrial ecosystems and the atmosphere from changes in land use (e.g., deforestation and reforestation). The estimates are important for understanding the global carbon cycle, and for predicting future concentrations of atmospheric CO2 that will result from emissions. The emphasis of the first year's research was on the northern temperate zone and boreal forests, where the greatest discrepancy exists between estimates of flux. Forest inventories suggest net sinks of 0.6 PgC/yr; inversion analyses based on atmospheric data and models suggest much larger sinks 2-3.6 PgC/yr (e.g., Tans et al. 1990, Ciais et al. 1995). The work carried out with this grant calculated the flux attributable to changes in land use. The estimated flux was somewhat smaller than the flux calculated from inventory data suggesting that environmental changes have led to a small accumulation of carbon in forests that exceeds the accumulation expected from past rates of harvest. Two publications have described these results (Houghton 1996, 1998). The large difference between these estimates and those obtained with atmospheric data and models remains unexplained. The recent estimate of a 1.7 PgC/yr sink in North America, alone (Fan et al. 1998), is particularly difficult to explain. That part of the sink attributable to land-use change, however, is defined as a result of this grant.

  17. Speciation of C-O-H volatiles in reduced magmas applicable to early terrestrial and planetary deep volatile cycles

    NASA Astrophysics Data System (ADS)

    Armstrong, Lora; Hirschmann, Marc

    2014-05-01

    The speciation and solubility of C-O-H volatiles in reduced magmas are of great importance for volatile behavior in the early Earth and other planets determining partitioning between Earth's earliest atmospheres, mantle, and cores, as well as influencing volcanogenic degassing on reduced planetary bodies such as Mars and the Moon. In mafic and ultramafic magmas, C is soluble chiefly as carbonate under oxidizing conditions, but when fO2 is below that required for graphite (or diamond) saturation, carbonate solubility diminishes severely. This has left the question as to what, if any, species may host dissolved C in magmas under reducing conditions. Initial results suggested that the principle species may be CH4 (Mysen et al. 2009), but experiments at well-defined thermodynamic conditions have shown that CH4 solubility is very small except under conditions of very high H2 fugacity (Ardia et al. 2012). More recent experiments (Wetzel et al. 2013; Stanley et al. 2014) have identified Fe-carbonyl-like species as possibly the most stable. To clarify the relative stability of these species, we have conducted additional high pressure experiments at 1.2 GPa and 1400°C with graphite-saturated martian and terrestrial (MORB) basalt compositions, over a range of oxygen fugacities, paying careful attention to the availability of H2O. FTIR and Raman analyses reveal a range of distinct species that predominate as a function of fO2 and availability of H2O. At comparatively oxidizing conditions, carbonate is the most abundant species but within 1 log unit of iron wustite (IW), carbonyl-like species predominate, provided that conditions are comparatively dry. At yet more reducing conditions, carbonyl is absent and instead N-H associated species (perhaps amides?) are more important. Methane is observed only when quenched glasses have appreciable H2O (approaching ~ 1 wt.%). In all cases, solubilities are small when conditions are reduced, with <100 ppm C at IW or below.

  18. Reproducing Experiment in the Shock-Induced Removal of CO2 From the Atmosphere on the Early Mars

    NASA Astrophysics Data System (ADS)

    Ikeda, K.; Isobe, H.

    2005-12-01

    The evolution of the Mars is one of the most important problems on the environmental issues of terrestrial planets. The early Martian atmosphere was formed by degassing and it consisted thick CO2. Most of the CO2 must have been removed from the early Martian atmosphere in order to change to the present thin atmosphere. Heavy bombardment of planetesimals had been one of the important high energy processes on the primitive Mars. In this study, we experiment to reproduce the reaction between the early Martian atmosphere and the minerals in the high temperature condition caused by the shock-induced heating and discuss its effect of CO2 removal from the atmosphere. Reaction experiments were carried out with CO2 or CO2- H2O fluid at the pressure of 100MPa or 50MPa. A range of the temperature is 200-650°C and run duration is 7 days. Starting materials was the mixture of olivine, orthopyroxene, diopside, and plagioclase represented the main mineral phases of the early Mars. After the experiment, the reacted CO2 was weighed by CO2 mass remained in the experimental capsule. CO2 reactivity increased with decreasing temperature. If removed CO2 fixed as carbonate minerals in the run products, abundance of the carbonate minerals may be as much as 10% of the run products. Presence of H2O has no remarkable effect on CO2 reactivity. A Martian meteorite, ALH84001 includes approximately 1% of carbonate. Large-scale impact on the Martian surface brought shock-induced heating up to several hundred degrees C at several kilometers in depth. Accessory carbonate minerals in Martian rocks may be formed by reactions of CO2 atmosphere and brecciated rocks under craters. A layer of 1% carbonate-bearing rocks with 5km in thickness at Martian surface can settle 0.5MPa of CO2 (1MPa equivalent at the terrestrial gravity) from the Martian atmosphere. Carbonate formation by the shock-induced heating may have played a significant role in the evolution of the primitive Martian atmosphere.

  19. The "terminal Triassic catastrophic extinction event" in perspective: a review of carboniferous through Early Jurassic terrestrial vertebrate extinction patterns

    USGS Publications Warehouse

    Weems, R.E.

    1992-01-01

    A catastrophic terminal Triassic extinction event among terrestrial vertebrates is not supported by available evidence. The current model for such an extinction is based on at least eight weak or untenable assumptions: (1) a terminal Triassic extinction-inducing asteroid impact occurred, (2) a terminal Triassic synchronous mass extinction of terrestrial vertebrates occurred, (3) a concurrent terminal Triassic marine extinction occurred, (4) all terrestrial vertebrate families have similar diversities and ecologies, (5) changes in familial diversity can be gauged accurately from the known fossil record, (6) extinction of families can be compared through time without normalizing for changes in familial diversity through time, (7) extinction rates can be compared without normalizing for differing lengths of geologic stages, and (8) catastrophic mass extinctions do not select for small size. These assumptions have resulted in unsupportable and (or) erroneous conclusions. Carboniferous through Early Jurassic terrestrial vertebrate families mostly have evolution and extinction patterns unlike the vertebrate evolution and extinction patterns during the terminal Cretaceous event. Only the Serpukhovian (mid Carboniferous) extinction event shows strong analogy to the terminal Cretaceous event. Available data suggest no terminal Triassic extinction anomaly, but rather a prolonged and nearly steady decline in the global terrestrial vertebrate extinction rate throughout the Triassic and earliest Jurassic. ?? 1992.

  20. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1991-01-01

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  1. The armoured dissorophid Cacops from the Early Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians.

    PubMed

    Reisz, Robert R; Schoch, Rainer R; Anderson, Jason S

    2009-07-01

    Cacops, one of the most distinctive Paleozoic amphibians, is part of a clade of dissorophoid temnospondyls that diversified in the equatorial region of Pangea during the Late Carboniferous and Early Permian, persisting into the Late Permian in Central Russia and China. Dissorophids were a successful group of fully terrestrial, often spectacularly armoured predators, the only amphibians apparently able to coexist with amniotes when the latter started to dominate terrestrial ecosystems. In this paper, we describe excellent new skulls from the Early Permian of Oklahoma attributed to Cacops, Cacops morrisi sp. nov. and provide for the first time detailed information about this iconic dissorophid. These specimens show anatomical and ontogenetic features that will impact on future studies on the evolution of terrestriality in tetrapods. For example, the large, posteriorly closed tympanic embayment has fine striations on an otherwise smooth surface, documenting the oldest known clear evidence for the presence of a tympanic membrane in the fossil record, a structure that is used for hearing airborne sound in extant tetrapods. The skull of C. morrisi also has several features associated with predatory behaviour, indicating that this dissorophid may have been one of the top terrestrial predators of its time.

  2. The coupled 182W-142Nd record of early terrestrial mantle differentiation

    NASA Astrophysics Data System (ADS)

    Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Horan, Mary F.; Walker, Richard J.

    2016-06-01

    New Sm-Nd, Lu-Hf, Hf-W, and Re-Os isotope data, in combination with highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) and W abundances, are reported for the 3.55 Ga Schapenburg komatiites, South Africa. The Schapenburg komatiites define a Re-Os isochron with an age of 3550 ± 87 Ma and initial γ187Os = +3.7 ± 0.2 (2SD). The absolute HSE abundances in the mantle source of the Schapenburg komatiite system are estimated to be only 29 ± 5% of those in the present-day bulk silicate Earth (BSE). The komatiites were derived from mantle enriched in the decay products of the long-lived 147Sm and 176Lu nuclides (initial ɛ143Nd = +2.4 ± 0.1, ɛ176Hf = +5.7 ± 0.3, 2SD). By contrast, the komatiites are depleted, relative to the modern mantle, in 142Nd and 182W (μ182W = -8.4 ± 4.5, μ142Nd = -4.9 ± 2.8, 2SD). These results constitute the first observation in terrestrial rocks of coupled depletions in 142Nd and 182W. Such isotopic depletions require derivation of the komatiites from a mantle domain that formed within the first ˜30 Ma of Solar System history and was initially geochemically enriched in highly incompatible trace elements as a result of crystal-liquid fractionation in an early magma ocean. This mantle domain further must have experienced subsequent melt depletion, after 182Hf had gone extinct, to account for the observed initial excesses in 143Nd and 176Hf. The survival of early-formed 182W and 142Nd anomalies in the mantle until at least 3.55 Ga indicates that the products of early planetary differentiation survived both later planetary accretion and convective mantle mixing during the Hadean. This work moreover renders unlikely that variable late accretion, by itself, can account for all of the observed W isotope variations in Archean rocks.

  3. Relating terrestrial atmospheric circulation to solar disturbances. [angular momentum transfer from ionosphere to tropopause

    NASA Technical Reports Server (NTRS)

    Hines, C. O.

    1974-01-01

    Presented are models of two proposed mechanisms for transferring angular momentum from ionospheric heights to the vicinity of the tropopause. The first mechanism consist of a vicious coupling of the upper atmosphere to the troposphere and the second requires changes in the reflection of planetary waves by the thermosphere. This second mechanism is very appealing because it makes use only of energy derived from the lower atmosphere itself, with solar activity directly modifying only the thermospheric reflectivity.

  4. Evolution and variation of atmospheric carbon dioxide concentration over terrestrial ecosystems as derived from eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Liu, Min; Wu, Jiabing; Zhu, Xudong; He, Honglin; Jia, Wenxiao; Xiang, Weining

    2015-08-01

    Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas contributing to global climate change. Understanding the temporal and spatial variations of CO2 concentration over terrestrial ecosystems provides additional insight into global atmospheric variability of CO2 concentration. Using 355 site-years of CO2 concentration observations at 104 eddy-covariance flux tower sites in Northern Hemisphere, we presented a comprehensive analysis of evolution and variation of atmospheric CO2 concentration over terrestrial ecosystem (ACTE) for the period of 1997-2006. Our results showed that ACTE exhibited a strong seasonal variations, with an average seaonsal amplitude (peak-trough difference) of 14.8 ppm, which was approximately threefold that global mean CO2 observed in Mauna Loa in the United States (MLO). The seasonal variation of CO2 were mostly dominant by terrestrial carbon fluxes, i.e., net ecosystem procution (NEP) and gross primary produciton (GPP), with correlation coefficient(r) were -0.55 and -0.60 for NEP and GPP, respectively. However, the influence of carbon fluxes on CO2 were not significant at interannual scale, which implyed that the inter-annual changing trends of atmospheric CO2 in Northern Hemisphere were likely to depend more on anthropogenic CO2 emissions sources than on ecosystem change. It was estimated, by fitting a harmonic model to monthly-mean ACTE, that both annual mean and seasonal amplitude of ACTE increased over the 10-year period at rates of 2.04 and 0.60 ppm yr-1, respectively. The uptrend of annual ACTE could be attributed to the dramatic global increase of CO2 emissions during the study period, whereas the increasing amplitude could be related to the increases in Northern Hemisphere biospheric activity. This study also found that the annual CO2 concentration showed large variation among ecosystems, with the high value appeared in deciduous broadleaf forest, evergreen broadleaf forest and cropland. We attribute these

  5. Early warning of atmospheric regime transitions using transfer operators

    NASA Astrophysics Data System (ADS)

    Tantet, Alexis; Dijkstra, Henk

    2015-04-01

    The existence of persistent midlatitude atmospheric regimes, such as blocking events, with time scales larger than 5-10 days and indications of preferred transition paths between them motivates the development of early-warning indicators of regime transitions. Here, we use a barotropic model of the northern midlatitudes winter flow to study such meta-stable regimes. We look at estimates of transfer operators acting on densities evolving on a reduced phase space spanned by the first Empirical Orthogonal Functions of the streamfunction and develop an early-warning indicator of zonal to blocked flow transition. The study of the spectra of transfer operators estimated for different lags reveals a multi-level structure in the flow as well as the effect of memory on the reduced dynamics due to past interactions between the resolved and unresolved variables. The slowest motions in the reduced phase space are thereby found to have time scales larger than 8 days and to behave as Markovian for larger lags. These motions are associated with meta-stable regimes and their transitions and can be detected as almost-invariant sets of the transfer operator. The early-warning indicator is based on the action on an initial density of products of the transfer operators estimated for sufficiently long lags, making use of the semi-group property of these operators and shows relatively good Peirce skill score. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths as the manifestation of barotropic instability. Finally, even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  6. Dynamic oxygenation of the early atmosphere and oceans

    NASA Astrophysics Data System (ADS)

    Lyons, Timothy W.; Planavsky, Noah J.; Reinhard, Christopher T.

    2014-05-01

    The traditional view of the oxygenation of the early atmosphere and oceans depicts irreversibly rising abundances in two large steps: one at the Great Oxidation Event (GOE) ca. 2.3-2.4 billion years ago (Ga) and another near the end of the Neoproterozoic. This talk will explore how the latest data challenge this paradigm. Recent results reveal a far more dynamic history of early oxygenation, one with both rising and falling levels, long periods of sustained low concentrations even after the GOE, complex feedback relationships that likely coupled nutrients and ocean redox, and dramatic changes tied through still-emerging cause-and-effect relationships to first-order tectonic, climatic, and evolutionary events. In the face of increasing doubt about the robustness of organic biomarker records from the Archean, researchers are increasingly reliant on inorganic geochemical proxies for the earliest records of oxygenic photosynthesis. Proxy data now suggest oxygenesis at ca. 3.0 Ga with a likelihood of local oxygen build up in the surface ocean long before the GOE, as well as low (and perhaps transient) accumulation in the atmosphere against a backdrop of mostly less than ca. 0.001% of the present atmospheric concentration. By the GOE, the balance between oxygen sources and sinks shifted in favor of persistent accumulation, although sedimentary recycling of non-mass-dependent sulfur isotope signatures allows for the possibility of rising and falling atmospheric oxygen before the GOE as traditionally defined by the sulfur isotope record. Recycling may also hinder our ability to precisely date the transition to permanent oxygen accumulation beyond trace levels. Diverse data point to a dramatic increase in biospheric oxygen following the GOE, coincident with the largest positive carbon isotope excursion in Earth history, followed by an equally dramatic drop. This decline in Earth surface redox potential ushered in more than a billion years of dominantly low oxygen levels in

  7. Volatile Acquisition During Early Terrestrial Accretion — Constraints from Implanted Solar Neon in Cosmic Dust

    NASA Astrophysics Data System (ADS)

    Vogt, M.; Gail, H.-P.; Hopp, J.; Ott, U.; Trieloff, M.

    2016-08-01

    Implanted Ne-B in particles with large surface/volume ratio has to be considered as source for terrestrial noble gases. Significant contributions of irradiated dust during Earth's accretion possibly explain the solar Ne signature of Earth's mantle.

  8. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  9. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Meyerholt, J.; Zaehle, S.; Smith, M. J.

    2015-12-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important, but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty, and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity (NPP) and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 95 to 134 Tg N yr-1 (median 119 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon storage (+281 to +353 Pg C, or +13 to +16 %), as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  10. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Meyerholt, Johannes; Zaehle, Sönke; Smith, Matthew J.

    2016-03-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 108 to 148 Tg N yr-1 (median: 128 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median: 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon (C) storage (+281 to +353 Pg C, or +13 to +16 %) as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  11. Giant Impacts on Terrestrial Planets: A High-Resolution 3D Study of Magma Ocean Formation and Atmospheric Blowoff

    NASA Astrophysics Data System (ADS)

    Stewart-Mukhopadhyay, Sarah

    The end stages of terrestrial planet formation are dominated by giant impact events, which may significantly affect the final composition of a planet. The physical changes from giant impacts include formation of magma oceans and atmospheric blowoff. We propose to conduct unique numerical experiments to investigate the physics of giant impacts in order to determine their effect on the thermal state and volatile budget of terrestrial planets (0.1 to 10 Earth masses). Proposed work: High-resolution 3D giant impacts between differentiated silicate-iron and ice-silicate planets will be modeled with both the widely-used CTH shock physics code and a new second-order Godunov finite-volume hydrocode called AREPO. AREPO's powerful arbitrary Lagrangian-Eulerian grid and computational efficiency allows for unprecedented resolution of planetary structure (e.g., crust and ocean). Expected results: (1) We will calculate the amount of melt generated and fraction of atmosphere lost during different classes of giant impacts (merging, graze and merge, hit and run, and erosion/disruption). (2) We will derive general scaling laws to describe these complicated phenomena. (3) We will consider the effect of re-accretion of ejected material at late times on the total thermal input of giant impact events. (4) And we will test the giant impact hypothesis for the high bulk density of Mercury by conducting orbital integrations of ejected debris to determine the amount of re-accreted mantle material for different impact orientations. The science team has an established collaborative body of work in giant impact simulations and hydrocode development. As in previous studies, the simulation results will be generalized into sets of simple equations describing collision outcomes that are suitable for N-body planet formation models. The proposed work supports the goals of the Origins of Solar Systems program by conducting a fundamental theoretical investigation of a key stage of planet formation

  12. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  13. Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere

    PubMed Central

    Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L.

    2009-01-01

    Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO2) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO2 concentration will reach levels too low for C3 and C4 photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets. PMID:19487662

  14. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  15. Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere.

    PubMed

    Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L; Yung, Yuk L

    2009-06-16

    Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO(2)) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO(2) concentration will reach levels too low for C(3) and C(4) photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets.

  16. Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere.

    PubMed

    Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L; Yung, Yuk L

    2009-06-16

    Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO(2)) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO(2) concentration will reach levels too low for C(3) and C(4) photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets. PMID:19487662

  17. Verification of Atmospheric Signals Associated with Major Seismicity by Space and Terrestrial Observations

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick

    2008-01-01

    Observations from the last twenty years suggest the existence of electromagnetic (EM) phenomena during or preceding some earthquakes [Haykawa et a!, 2004; Pulinets at al, 1999,2004, 2006, Ouzounov et all 2007 and Liu et all 20041. Both our previous studies [Pulinets at al, 2005, 2006, Ouzounov et al, 2006, 20071 and the latest review by the Earthquake Remote Precursor Sensing panel [ERPS; 2003- 20051; have shown that there were precursory atmospheric TIR signals observed on the ground and in space associated with several recent earthquakes. [Tramutoli at al, 2005, 2006, Cervone et al, 2006, Ouzounov et all 2004,2006JT.o study these signals, we applied both multi parameter statistical analysis and data mining methods that require systematic measurements from an Integrated Sensor Web of observations of several physical and environmental parameters. These include long wave earth infra-red radiation, ionospheric electrical and magnetic parameters, temperature and humidity of the boundary layer, seismicity and may be associated with major earthquakes. Our goal is to verify the earthquake atmospheric correlation in two cases: (i) backward analysis - 2000-2008 hindcast monitoring of multi atmospheric parameters over the Kamchatka region, Russia ; and (ii) forward real-time alert analysis over different seismo-tectonic regions for California, Turkey, Taiwan and Japan. Our latest results, from several post-earthquake independent analyses of more then 100 major earthquakes, show that joint satellite and some ground measurements, using an integrated web, could provide a capability for observing pre-earthquake atmospheric signals by combining the information from multiple sensors into a common framework. Using our methodology, we evaluated and compared the observed signals preceding the latest M7.9 Sichuan earthquake (0511212008), M8.0 earthquake in Peru (0811512007), M7.6 Kashmir earthquake (1010812005) and M9.0 Sumatra earthquake (1212812004). We found evidence of the

  18. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.

    PubMed

    Wilson, J P; Fischer, W W

    2011-03-01

    The core of plant physiology is a set of functional solutions to a tradeoff between CO(2) acquisition and water loss. To provide an important evolutionary perspective on how the earliest land plants met this tradeoff, we constructed a mathematical model (constrained geometrically with measurements of fossils) of the hydraulic resistance of Asteroxylon, an Early Devonian plant. The model results illuminate the water transport physiology of one of the earliest vascular plants. Results show that Asteroxylon's vascular system contains cells with low hydraulic resistances; these resistances are low because cells were covered by scalariform pits, elliptical structures that permit individual cells to have large areas for water to pass from one cell to another. Asteroxylon could move a large amount of water quickly given its large pit areas; however, this would have left these plants particularly vulnerable to damage from excessive evapotranspiration. These results highlight a repeated pattern in plant evolution, wherein the evolution of highly conductive vascular tissue precedes the appearance of adaptations to increase water transport safety. Quantitative insight into the vascular transport of Asteroxylon also allows us to reflect on the quality of CO(2) proxy estimates based on early land plant fossils. Because Asteroxylon's vascular tissue lacked any safety features to prevent permanent damage, it probably used stomatal abundance and behavior to prevent desiccation. If correct, low stomatal frequencies in Asteroxylon reflect the need to limit evapotranspiration, rather than adaptation to high CO(2) concentrations in the atmosphere. More broadly, methods to reveal and understand water transport in extinct plants have a clear use in testing and bolstering fossil plant-based paleoclimate proxies.

  19. Modeling the atmospheric and terrestrial water and energy cycles in the ScaleX experiment through a fully-coupled atmosphere-hydrology model

    NASA Astrophysics Data System (ADS)

    Senatore, Alfonso; Benjamin, Fersch; Thomas, Rummler; Caroline, Brosy; Christian, Chwala; Junkermann, Wolfgang; Ingo, Völksch; Harald, Kunstmann

    2016-04-01

    The TERENO preAlpine Observatory, comprising a series of observatory sites along an altitudinal gradient within the Ammer catchment (southern Bavaria, Germany), has been designed as an international research platform, open for participation and integration, and has been provided with comprehensive technical infrastructure to allow joint analyses of water-, energy- and nutrient fluxes. In June and July 2015 the operational monitoring has been complemented by the ScaleX intensive measurement campaign, where additional precipitation and soil moisture measurements, remote sensing measurements of atmospheric wind, humidity and temperature profiles have been performed, complemented by micro-light aircraft- and UAV-based remote sensing for three-dimensional pattern information. The comprehensive observations serve as validation and evaluation basis for compartment-crossing modeling systems. Specifically, the fully two-way dynamically coupled atmosphere-hydrology modeling system WRF-Hydro has been used to investigate the interplay of energy and water cycles at the regional scale and across the compartments atmosphere, stream, vadose zone and groundwater during the ScaleX campaign and to assess the closure of the budgets involved. Here, several high-resolution modeled hydro-meteorological variables, such as precipitation, soil moisture, river discharge and air moisture and temperature along vertical profiles are compared with observations from multiple sources, such as rain gauges and soil moisture networks, rain radars, stream gauges, UAV and a micro-light aircraft. Results achieved contribute to the objective of addressing questions on energy- and water-cycling within the TERENO-Ammer region at a very high scale and degree of integration, and provides hints on how well can observations constrain uncertainties associated with the modeling of atmospheric and terrestrial water and energy balances.

  20. Effects of long-period solar activity fluctuation on temperature and pressure of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Rubashev, B. M.

    1978-01-01

    The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.

  1. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    PubMed

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  2. Verification of Atmospheric Signals Associated with Major Seismicity by Space and Terrestrial Observations

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S.; Taylor, P.; Bryant, N.; Cervone, G.; Kafatos, M.; Habib, S.

    2008-12-01

    Observations from the last twenty years suggest the existence of electromagnetic (EM) phenomena during or preceding some earthquakes [Hayakawa et al, 2004; Pulinets at al, 1999,2004, 2006, Ouzounov et al, 2007 and Liu et al, 2004]. Both our previous studies [Pulinets at al, 2005, 2006, Ouzounov et al, 2006, 2007] and the latest review by the Earthquake Remote Precursor Sensing panel [ERPS; 2003-2005]; have shown that there were precursory atmospheric TIR signals observed on the ground and in space associated with several recent earthquakes. [Tramutoli et al, 2005, 2006, Cervone et al, 2006, Ouzounov et al, 2004,2006]. To study these signals, we applied both multi parameter statistical analysis and data mining methods that require systematic measurements from an Integrated Sensor Web of observations of several physical and environmental parameters. These include long wave earth infra-red radiation, ionospheric electrical and magnetic parameters, temperature and humidity of the boundary layer, seismicity and may be associated with major earthquakes. Our goal is to verify the earthquake atmospheric correlation in two cases: (i) backward analysis - 2000-2008 hindcast monitoring of multi atmospheric parameters over the Kamchatka region, Russia ; and (ii) forward real-time alert analysis over different seismo-tectonic regions for California, Turkey, Taiwan and Japan. Our latest results, from several post-earthquake independent analyses of more then 100 major earthquakes, show that joint satellite and some ground measurements, using an integrated web, could provide a capability for observing pre-earthquake atmospheric signals by combining the information from multiple sensors into a common framework. Using our methodology, we evaluated and compared the observed signals preceding the latest M7.9 Sichuan earthquake (05/12/2008), M8.0 earthquake in Peru (08/15/2007), M7.6 Kashmir earthquake (10/08/2005) and M9.0 Sumatra earthquake (12/26/2004). We found evidence of the

  3. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    PubMed

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required. PMID:24432758

  4. Observed and Modeled Tritium Concentrations in the Terrestrial Food Chain near a Continuous Atmospheric Source

    SciTech Connect

    Davis, P.A.; Kim, S.B.; Chouhan, S.L.; Workman, W.J.G.

    2005-07-15

    Tritium concentrations were measured in a large number of environmental and biological samples collected during 2002 at two dairy farms and a hobby farm near Pickering Nuclear Generating Station in Ontario, Canada. The data cover most compartments of the terrestrial food chain in an agricultural setting and include detailed information on the diets of the local farm animals. Ratios of plant OBT concentration to air moisture HTO varied between 0.12 and 0.56, and were generally higher for the forage crops collected at the dairy farms than for the garden vegetables sampled at the hobby farm. Animal OBT to air HTO ratios were more uniform, ranging from 0.18 to 0.45, and were generally higher for the milk and beef samples from the dairy farms than for the chicken products from the hobby farm. The observed OBT concentrations in plants and animals were compared with predictions of IMPACT, the model used by the Canadian nuclear industry to calculate annual average doses due to routine releases. The model performed well on average for the animal endpoints but overestimated concentrations in plants by a factor of 2.

  5. The seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere: Extrapolation from site-specific models to regional models

    SciTech Connect

    King, A.W.; DeAngelis, D.L.; Post, W.M.

    1987-12-01

    Ecological models of the seasonal exchange of carbon dioxide (CO/sub 2/) between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. The primary disadvantage of this approach is the problem of extrapolating the site-specific models across large regions having considerable biotic, climatic, and edaphic heterogeneity. Two methods of extrapolation were tested. 142 refs., 59 figs., 47 tabs

  6. Variations in Solar Activity and Irradiance and Their Implications for Energy Input Into the Terrestrial Atmosphere

    NASA Astrophysics Data System (ADS)

    Parker, Daryl Gray

    This dissertation presents research into the question of how variations in the physical properties of resolved solar magnetic surface features combine to produce variations in the physical properties of the integrated Sun and the possible impacts of those variations on the terrestrial climate system. The core approach to the research was development of techniques to apply automated Bayesian statistical pattern recognition methods as implemented in the AutoClass software to magnetic and intensity-like solar images from the Mount Wilson Solar Observatory (MWO) 150 Foot Solar Telescope. The goals were to: (1) identify in an objective and quantifiable manner the solar surface features responsible for changes in solar irradiance, (2) enhance understanding of the evolution of these features and the resultant solar irradiance variations over the most recent solar cycles, (3) develop methods to identify the specific features responsible for variations in specific wavelengths, (4) use global observations of global solar irradiance indices to identify the spatially resolved features which contribute to them, (5) attempt to apply these results to specific topics of current interest in solar-stellar astronomy. Using these techniques, a method was developed to identify classes of features from thousands of MWO solar images based on the per pixel values of absolute magnetic field strength and an intensity measure known as a "ratio-gram" in MWO images. Using these classes along with observations from independent, usually satellite based, sources in different wavelengths, models were constructed of total solar irradiance (TSI) and solar UV indices. These models were able to reproduce with high correlations solar observations in a number of different solar wavelengths. These classes were also used to construct images mapping different wavelength emissions to the areas to the solar surface features from which they originated. These techniques proved able to reproduce with high

  7. On the emission of amines from terrestrial vegetation in the context of atmospheric new particle formation

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Sintermann, Jörg

    2015-04-01

    Airborne amines, specifically methylamines (MAs), play a key role in atmospheric new particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NFP events observed in remote regions. High MA contents as well as emissions by plants have already been described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions, and the decomposition of organic material could constitute another source for airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited and thus it is also an open question how Global Change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  8. Oxygen Isotopic Anomaly in Terrestrial Atmospheric Carbonates and its Implications to Understand the Role of Water on Mars

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Shaheen, R.

    2010-12-01

    Mineral aerosols produced from wind-blown soils are an important component of the earth system and comprise about 1000-3000 Tg.yr-1 compared to 400 Tg.yr-1 of secondary aerosols (e.g. carbonaceous substances, organics, sulfate and nitrates). Aerosols have important consequences for health, visibility and the hydrological cycle as they provide reactive surfaces for heterogeneous chemical transformation that may influence gas phase chemistry in the atmosphere. Tropospheric ozone produced in a cascade of chemical reactions involving NOx and VOC’s, can interact with aerosol surfaces to produce new compounds. Oxygen triple isotopic compositions of atmospheric carbonates have been used for the first time to track heterogeneous chemistry at the aerosol surfaces and to resolve a chemical mechanism that only occurs on particle surfaces. Fine and coarse aerosol samples were collected on filter papers in La Jolla, CA for one week. Aerosol samples were digested with phosphoric acid and released CO2 was purified chromatographically and analyzed for O isotopes after fluorination. Data indicated oxygen isotopic anomaly (Δ17O = δ17O - 0.524 δ18O) ranging from 0.9 to 3.9 per mill. Laboratory experiments revealed that adsorbed water on particle surfaces facilitates the interaction of the gaseous CO2 and O3 with formation of anomalous hydrogen peroxide and carbonates. This newly identified chemical reaction scenario provides a new explanation for production of the isotopically anomalous carbonates found in the SNC Martian meteorites and terrestrial atmospheric carbonates and it also amplifies understanding of water related processes on the surface of Mars. The formation of peroxide via this heterogeneous reaction on aerosols surface suggests a new oxidative process of utility in understanding ozone and oxygen chemistry both at Mars and Earth.

  9. Transit Observations of Venus's Atmosphere in 2012 from Terrestrial and Space Telescopes as Exoplanet Analogs

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Penn, M. J.; Jaeggli, S. A.; Galayda, E.; Reardon, K. P.; Widemann, T.; Tanga, P.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson, P. D.; Dantowitz, R.

    2013-06-01

    We extensively observed the 8 June 2012 transit of Venus from several sites on Earth; we provide this interim status report about this and about two subsequent ToVs observed from space. From Haleakala Obs., we observed the entire June transit over almost 7 h with a coronagraph of the Venus Twilight Experiment B filter) and with a RED Epic camera to compare with simultaneous data from ESA's Venus Express, to study the Cytherean mesosphere; from Kitt Peak, we have near-IR spectropolarimetry at 1.6 µm from the aureole and during the disk crossing that compare well with carbon dioxide spectral models; from Sac Peak/IBIS we have high-resolution imaging of the Cytherean aureole for 22 min, starting even before 1st contact; from Big Bear, we have high-resolution imaging of Venus's atmosphere and the black-drop effect through 2nd contact; and we had 8 other coronagraphs around the world. For the Sept 21 ToV as seen from Jupiter, we had 14 orbits of HST to use Jupiter's clouds as a reflecting surface to search for an 0.01% diminution in light and a differential drop that would result from Venus's atmosphere by observing in both IR/UV, for which we have 170 HST exposures. As of this writing, preliminary data reduction indicates that variations in Jovian clouds and the two periods of Jupiter's rotation will be too great to allow extraction of the transit signal. For the December 20 ToV as seen from Saturn, we had 22 hours of observing time with VIMS on Cassini, for which we are looking for a signal of the 10-hr transit in total solar irradiance and of Venus's atmosphere in IR as an exoplanet-transit analog. Our Maui & Sac Peak expedition was sponsored by National Geographic Society's Committee for Research and Exploration; HST data reduction by NASA: HST-GO-13067. Some of the funds for the carbon dioxide filter for Sac Peak provided by NASA through AAS's Small Research Grant Program. We thank Rob Ratkowski of Haleakala Amateur Astronomers; Rob Lucas, Aram Friedman, Eric

  10. Solar Terrestrial Influences on the D Region as Shown by the Level of Atmospheric Radio Noise

    NASA Technical Reports Server (NTRS)

    Satori, G.; Schaning, B.

    1984-01-01

    Measurements of the integrated atmospheric radio noise field strength at 27 kHz, used here, were made from 1965 to 1975 at Uppsala, Kuhlungsborn, and Prague-Panska Ves. The large scale meteorological situation was considered by comparing solar disturbed and undisturbed periods under similar weather situations. In order to show the effects of the precipitating high energy particle (HEP) flux and of the Forbush decrease on the noise level between pairs of stations were computed as deviations from the monthly median. Delta E (dB), day by day for all six periods was studied. The correlation coefficients for noon as well as for night values were computed. The correlation coefficients were compared with those for solar undisturbed periods.

  11. Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting?

    SciTech Connect

    Ciais, Philippe; Luyssaert, Sebastiaan; Chevallier, Fredric; Poussi, Zegbeu; Peylin, Philippe; Breon, Francois-Marie; Canadell, J.G.; Shvidenko, Anatoly; Jonas, Matthias; King, Anthony Wayne; Schulze, E.-D.; Roedenbeck, Christian; Piao, Shilong; Peters, Wouter

    2010-10-01

    We estimatethenorthernhemisphere(NH)terrestrialcarbon sink bycomparingfourrecentatmosphericinversionswith land-based Caccountingdataforsixlargenorthernregions. The meanNHterrestrialCO2 sink fromtheinversionmodelsis 1.7 PgCyear1 over theperiod2000 2004. Theuncertaintyof this estimateisbasedonthetypicalindividual(1-sigma) precision ofoneinversion(0.9PgCyear1) andisconsistent with themin max rangeofthefourinversionmeanestimates (0.8 PgCyear1). Inversionsagreewithintheiruncertaintyfor the distributionoftheNHsinkofCO2 in longitude,withRussia being thelargestsink.Theland-basedaccountingestimateof NH carbonsinkis1.7PgCyear1 for thesumofthesixregions studied. The1-sigmauncertaintyoftheland-basedestimate (0.3 PgCyear1) issmallerthanthatofatmosphericinversions, but noindependentland-basedfluxestimateisavailableto derive a betweenaccountingmodel uncertainty. Encouragingly, thetop-downatmosphericandthebottom-up land-based methodsconvergetoconsistentmeanestimates within theirrespectiveerrors,increasingtheconfidenceinthe overall budget.Theseresultsalsoconfirmthecontinuedcritical role ofNHterrestrialecosystemsinslowingdownthe atmospheric accumulationofanthropogenicCO2

  12. Intercomparison of atmospheric reanalysis data in the Arctic region: To derive site-specific forcing data for terrestrial models

    NASA Astrophysics Data System (ADS)

    Mori, J.; Saito, K.; Machiya, H.; Yabuki, H.; Ikawa, H.; Ohta, T.; Iijima, Y.; Kotani, A.; Suzuki, R.; Miyazaki, S.; Sato, A.; Hajima, T.; Sueyoshi, T.

    2015-12-01

    An intercomparison project for the Arctic terrestrial (physical and ecosystem) models, GTMIP, is conducted, targeting at improvements in the existing terrestrial schemes, as an activity of the Terrestrial Ecosystem research group in the Arctic of Japan GRENE Arctic Climate Change Research Project (GRENE-TEA). For site simulations for four GRENE-TEA sites (i.e., Fairbanks/AK, Kevo/Finland, Tiksi and Yakutsk/Siberia), we needed to prepare continuous, site-fit forcing data ready to drive the models. Due to scarcity of site observations in the region, however, it was difficult to make such data directly from the observations. Therefore, we decided to create a backbone dataset (Level 0 or Lv0) first by utilizing the reanalysis data to derive the site-specific data (Level 1 or Lv1). For selection of the best dataset for our purpose, we compared four atmospheric reanalysis datasets, i.e., ERA Interim, JRA-55, NCEP/NCAR Reanalysis 1, and NCEP-DOE Reanalysis 2, in terms of the climatic reproducibility (w.r.t. temperature at 2 m and precipitation) in the region north of 60°N. CRU for temperature and GPCP for precipitation were also used for monthly-mean ground-level climate. As we will show ERA-Interim showed the smallest bias for both the parameters in terms of RMSE. Especially, air temperature in the cold period was reproduced better in ERA-Interim than is in JRA-55 or other reanalysis products. Therefore, we created Lv0 from ERA-Interim. Comparison between the site observations and Lv0 showed good agreement except for wind speed at all sites and air temperature at Tiksi, a coastal site in the eastern Siberia. Air temperature of ERA-Interim showed significantly continental characteristics while the site observation more coastal. The 34-year-long, hourly, site-fit continuous data (Lv1) for each of the GRENE-TEA sites was then created from the Lv0 values at the grid point closest to the site, by merging with the observations.

  13. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-11-30

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

  14. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-12-01

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere. PMID:22129728

  15. From trihydrogen interstellar ion to hydrogen-oxygen reaction networks in terrestrial middle atmosphere

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.

    After a brief overview on the generalized Born-Oppenheimer approximation and global modelling of electronic manifolds, we focus on two case histories. In the first, we report an accurate double-sheet potential energy surface1 and ro-vibrational calculations1,2 for the H3+(3A') ion which is of relevance in interstellar and plasma chemistries. In the second, we examine odd-hydrogen systems with up to five oxygen atoms which play a crucial role in the chemistry of the middle atmosphere. The premise will then be that all processes occur adiabatically on the relevant ground state potential energy surface, with the emphasis being on our recent observation that highly vibrationally excited spaecies such as O2(v) and OH (v) can hardly thermalize at such altitudes3, thus offering4 within this situation of local thermodynamic disequilibrium a possible clue for know mesospheric mysteries such as the ``ozone deficit problem'' and ``HOx dilemma''. We conclude with some remarks on continuing challenges and planned work.

  16. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2

    PubMed Central

    Friend, Andrew D.; Lucht, Wolfgang; Rademacher, Tim T.; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Dankers, Rutger; Falloon, Pete D.; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R.; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F. Ian

    2014-01-01

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO2), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended. PMID:24344265

  17. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  18. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    PubMed

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-01

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  19. The production of trace gases by photochemistry and lightning in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Tennille, G. M.; Towe, K. M.; Khanna, R. K.

    1986-01-01

    Recent atmospheric calculation suggest that the prebiological atmosphere was most probably composed of nitrogen, carbon dioxide, and water vapor, resulting from volatile outgassing, as opposed to the older view of a strongly reducing early atmosphere composed of methane, ammonia, and hydrogen. Photochemical calculations indicate that methane would have been readily destroyed via reaction with the hydroxyl radical produced from water vapor and that ammonia would have been readily lost via photolysis and rainout. The rapid loss of methane and ammonia, coupled with the absence of a significant source of these gases, suggest that atmospheric methane and ammonia were very short lived, if they were present at all. An early atmosphere of N2, CO2, and H2O is stable and leads to the chemical production of a number of atmospheric species of biological significance, including oxygen, ozone, carbon monoxide, formaldehyde, and hydrogen cyanide. Using a photochemical model of the early atmosphere, the chemical productionof these species over a wide range of atmospheric parameters were investigated. These calculations indicate that early atmospheric levels of O3 were significantly below the levels needed to provide UV shielding. The fate of volcanically emitted sulfur species, e.g., sulfur dioxide and hydrogen sulfide, was investigated in the early atmosphere to assess their UV shielding properties. The photochemical calculations show that these species were of insufficient levels, due in part to their short photochemical lifetimes, to provide UV shielding.

  20. The terrestrial plant and herbivore arms race -- A major control of Phanerozoic atmospheric CO[sub 2

    SciTech Connect

    Olsen, P.E. )

    1993-03-01

    Much recent work points to chemical weathering of continental silicates as the principal control of atmospheric CO[sub 2]. Presently, chemical weathering is mediated by plants. Vascular plants increase chemical weathering by drastically increasing acid leaching through respiration, decay, and microbial symbionts. Through the Phanerozoic the continuing evolution of terrestrial plant communities must have had a major effect on weathering rates. However, the efficacy of plant-induced-weathering is decreased by herbivory, which in turn decreases the invasion of soil by roots and leads to increased physical weathering. The author proposes that the major ice house--hot house cycles of the Devonian-Quaternary were caused by the lag between plant innovations and complete compensation by herbivore-detritivore response. In this way, it seems possible that: (1) the Carboniferous coals are a consequence of limited herbivory and soil litter decomposition and the Permo-Carboniferous glaciations were caused by dramatically increased chemical weathering caused by the previous global spread of vascular plants; (2) the Mesozoic hot house was brought on by massive increases in megaherbivores and litter decomposers; and (3) Cenozoic cooling and Quaternary glaciations resulted from the spread of herbaceous angiosperms and most recently grasslands. Earth's own superherbivory, if continued for tens of millions of years, will brings one back to mid-Mesozoic hot house conditions, not by the burning of fossil fuels, but rather by a global increase in physical over chemical weathering.

  1. Biospheric-atmospheric coupling on the early Earth

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1991-01-01

    Theoretical calculations performed with a one-dimensional photochemical model have been performed to assess the biospheric-atmospheric transfer of gases. Ozone reached levels to shield the Earth from biologically lethal solar ultraviolet radiation (220-300 nm) when atmospheric oxygen reached about 1/10 of its present atmospheric level. In the present atmosphere, about 90 percent of atmospheric nitrous oxide is destroyed via solar photolysis in the stratosphere with about 10 percent destroyed via reaction with excited oxygen atoms. The reaction between nitrous oxide and excited oxygen atoms leads to the production of nitric oxide in the stratosphere, which is responsible for about 70 percent of the global destruction of oxygen in the stratosphere. In the oxygen/ozone deficient atmosphere, solar photolysis destroyed about 100 percent of the atmospheric nitrous oxide, relegating the production of nitric oxide via reaction with excited oxygen to zero. Our laboratory and field measurements indicate that atmospheric oxygen promotes the biogenic production of N2O and NO via denitrification and the biogenic production of methane by methanogenesis.

  2. Nonlinear Interactions between Climate and Atmospheric Carbon Dioxide Drivers of Terrestrial and Marine Carbon Cycle Changes from 1850 to 2300

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Moore, J. K.; Goulden, M.; Lindsay, K. T.; Munoz, E.; Fu, W.; Swann, A. L. S.; Koven, C. D.; Mahowald, N. M.; Bonan, G. B.

    2015-12-01

    Quantifying feedbacks between the global carbon cycle and Earth's climate system is important for predicting future atmospheric CO2 levels and informing carbon management and energy policies. We applied a feedback analysis framework to three sets of Historical (1850-2005), Representative Concentration Pathway 8.5 (2006-2100), and its extension (2101-2300) simulations from the Community Earth System Model version 1.0 (CESM1(BGC)) to quantify drivers of terrestrial and ocean responses of carbon uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization and nitrogen deposition influenced marine and terrestrial carbon cycling. In the radiatively coupled simulation (RAD), the effects of rising temperature and circulation changes due to radiative forcing from CO2, other greenhouse gases, and aerosols were the sole drivers of carbon cycle changes. In the third, fully coupled simulation (FC), both the biogeochemical and radiative coupling effects acted simultaneously. We found that climate-carbon sensitivities derived from RAD simulations produced a net ocean carbon storage climate sensitivity that was weaker and a net land carbon storage climate sensitivity that was stronger than those diagnosed from the FC and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced weakening of ocean circulation and mixing that limited exchange of dissolved inorganic carbon between surface and deeper water masses. For the land, this nonlinearity was associated with strong gains in gross primary production in the FC simulation, driven by enhancements in the hydrological cycle and increased nutrient availability. We developed and applied a nonlinearity metric to rank model responses and driver variables. The climate-carbon cycle feedback gain at 2300 was 42% higher when estimated from climate-carbon sensitivities derived from the difference between FC and BGC than when derived from RAD. These differences are important to

  3. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  4. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  5. Early terrestrial impact events: Archean spherule layers in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Koeberl, Christian; Schulz, Toni; Reimold, W. Uwe; Hofmann, Axel

    2015-04-01

    In addition to the oldest known impact structure on Earth, the 2.02-billion-year-old Vredefort Structure in South Africa, the evidence of Early Earth impact events are Archean spherule beds in South Africa and Australia. These spherules have been interpreted as condensation products from impact plumes and molten impact ejecta or/and impact ejecta that were melted during atmospheric re-entry [e.g., 1,2]. The 3.2-3.5 Ga spherule layers in the Barberton Greenstone Belt in South Africa currently represent the oldest known remnants of impact deposits on Earth. Aiming at identification of extraterrestrial components and to determine the diagenetic and metamorphic history of spherule layer intersections recently recovered in the CT3 drill core from the northeastern part of the Barberton Greenstone Belt, we have studied samples from these layers in terms of petrography and geochemistry. All samples, including spherule layer intersections and intercalating country rocks, were studied for mineral identification by optical and electron microscopy, as well as electron microprobe analysis (EPMA) at Natural History Museum Vienna and Museum für Naturkunde Berlin (MfN). Major and trace element compositions were determined via X-ray fluorescence spectrometry at MfN and instrumental neutron activation analysis (INAA) at University of Vienna. Os isotopes were measured by thermal ionization mass spectrometry (N-TIMS) at University of Vienna. Eighteen spherule beds are distributed over 150 meter drill core in CT3. Spherules are variably, deformed or undeformed. The high number of these layers may have been caused by tectonic duplication. Spherule beds are intercalated with shale, chert, carbonate, and/or sulfide deposits (country rocks). The size range of spherules is 0.5 to 2 mm, and some layers exhibit gradation. Shapes of spherules differ from spherical to ovoid, as well as teardrops, and spherules commonly show off-center vesicles, which have been interpreted as a primary

  6. Composition of early planetary atmospheres - I. Connecting disc astrochemistry to the formation of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, R. E.; Alessi, M.

    2016-09-01

    We present a model of the early chemical composition and elemental abundances of planetary atmospheres based on the cumulative gaseous chemical species that are accreted on to planets forming by core accretion from evolving protoplanetary discs. The astrochemistry of the host disc is computed using an ionization-driven, non-equilibrium chemistry network within viscously evolving disc models. We accrete gas giant planets whose orbital evolution is controlled by planet traps using the standard core accretion model and track the chemical composition of the material that is accreted on to the protoplanet. We choose a fiducial disc model and evolve planets in three traps - water ice line, dead zone and heat transition. For a disc with a lifetime of 4.1 Myr, we produce two hot Jupiters (M = 1.43, 2.67 MJupiter, r = 0.15, 0.11 au) in the heat transition and ice line trap and one failed core (M = 0.003 MJupiter, r = 3.7 au) in the dead zone. These planets are found with mixing ratios for CO and H2O of 1.99 × 10-4 and 5.0 × 10-4, respectively, for both hot Jupiters. Additionally, for these planets we find CO2 and CH4, with mixing ratios of 1.8 × 10-6 → 9.8 × 10-10 and 1.1 × 10-8 → 2.3 × 10-10, respectively. These ranges correspond well with the mixing ratio ranges that have been inferred through the detection of emission spectra from hot Jupiters by multiple authors. We compute a carbon-to-oxygen ratio of 0.227 for the ice line planet and 0.279 for the heat transition planet. These planets accreted their gas inside the ice line, hence the sub-solar C/O.

  7. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    1986-01-01

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  8. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.; Ackerman, Thomas P.

    1986-01-01

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 to 110 C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse.

  9. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  10. Water loss from Venus: Implications for the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Richardson, S. M.; Pollack, J. B.; Reynolds, R. T.

    1985-01-01

    The atmosphere of Venus outgassed rapidly as a result of planetary heating during accretion, resulting in massive water loss. The processes affecting atmospheric chemistry following accretion have consisted largely of hydrogen escape and internal re-equilibrium. The initial bulk composition of Venus and Earth are assumed to have been roughly similar. Chemical speciation on Venus was controlled by the temperature and oxygen buffering capacity of the surface magma. It is also assumed that the surfaces of planetary bodies of the inner solar system were partly or wholly molten during accretion with a temperature estimated at 1273 to 1573 K. To investigate the range of reasonable initial atmospheric compositions on Venus, limits have to be set for the proportion of total hydrogen and the buffered fugacity of oxygen. Using the C/H ratio of 0.033 set for Earth, virtually all of the water generated during outgassing must later have been lost in order to bring the current CO2/H2O ratio for Venus up to its observed value of 10 sup 4 to 10 sup 5. The proportion of H2O decreases in model atmospheres with successfully higher C/H values, ultimately approaching the depleted values currently observed on Venus. Increasing C/H also results in a rapid increase in CO/H2O and provides an efficient mechanism for water loss by the reaction CO+H2O = CO2 + H2. This reaction, plus water loss mechanisms involving crustal iron, could have removed a very large volume of water from the Venusian atmosphere, even at a low C/H value.

  11. Contributions of icy planetesimals to the Earth's early atmosphere.

    PubMed

    Owen, T C; Bar-Nun, A

    2001-01-01

    Laboratory experiments on the trapping of gases by ice forming at low temperatures implicate comets as major carriers of the heavy noble gases to the inner planets. These icy planetesimals may also have brought the nitrogen compounds that ultimately produced atmospheric N2. However, if the sample of three comets analyzed so far is typical, the Earth's oceans cannot have been produced by comets alone, they require an additional source of water with low D/H. The highly fractionated neon in the Earth's atmosphere may also indicate the importance of non-icy carriers of volatiles. The most important additional carrier is probably the rocky material comprising the bulk of the mass of these planets. Venus may require a contribution from icy planetesimals formed at the low temperatures characteristic of the Kuiper Belt. PMID:11599179

  12. Modeling Soil Climate Controls on the Exchange of Trace Gases Between the Terrestrial Biosphere and the Atmosphere

    NASA Astrophysics Data System (ADS)

    Frolking, Stephen Edward

    Soil temperature and moisture profiles (soil climate) have a strong influence on the rate of trace gas exchange between the terrestrial biosphere and the atmosphere through the controls exerted on microbial processes and the physical exchange of gases. Principal controls of biological denitrification in mineral soils are the availability of carbon and nitrogen substrates and the soil anaerobic status. A process-oriented model of decomposition and denitrification in soils (DNDC) was modified to have a more detailed portrayal of these controls. In particular, a diffusive soil gas phase was added, along with a method for determining anaerobic and aerobic fractional volume within a soil profile. The model generally overestimated N2O fluxes when compared to field data from a sandy soil in Costa Rica, but captured the timing and shape of the brief flux episodes. Several modeling shortcomings are discussed, including the nature of the carbon substrates and the nature and dynamics of soil anaerobic fractional volume. Methane flux from wetland soils is generally correlated with soil temperature and depth to water table. A model of peat soil climate was developed and applied to a small, poor fen in southern New Hampshire. Temperature profiles and ice depth are in good agreement with field data, but depth to water table is more problematic. Field-based flux correlations to soil temperature, depth to water table, and weighted recent precipitation were developed. When used with the wetland soil climate model, much of the seasonal and shorter period flux variability was captured. The model was then driven by local weather data for 1926-1986; flux variability was dependent on both summer season temperatures and summer precipitation patterns. It is estimated that a five-year field study would capture most of the inter -annual variability. Sensitivity of northern peatland methane flux to climate variability was studied by combining data on flux rates, inundation areas, and summer

  13. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and

  14. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  15. Faunal reorganisation in terrestrial mammalian communities: evidence from France during the Lateglacial-Early Holocene transition

    NASA Astrophysics Data System (ADS)

    Bridault, Anne

    2010-05-01

    The Lateglacial-Early Holocene transition is characterized by rapid oscillations between warm and cold episodes. Their impact on ecosystem dynamics was particularly pronounced in north-western Europe where hunter-gatherer societies experienced a succession of environmental transformations, including the expansion and dispersal of biotic communities and changing herbivore habitats. Recent archaeozoological studies and AMS direct dating on mammalian bones/or bone collagen allow to map and precise this process at a supra-regional scale (France). At regional scales (i.e. Paris Basin & Jura-Northern French Alps), results indicate a rapid faunal reorganisation at the end of Lateglacial that will be presented in detail. Composition of faunal assemblages remains then unchanged during the Early Holocene. By contrast, significant herbivore habitat changes are recorded during the Early Holocene by other proxies (pollen data and isotopic data) and a decrease in Red Deer size through time is evidenced by osteometrical analyses. Hypotheses regarding the kind of adaptation process experienced by the faunal communities through time will be presented. Factors that may have controlled the observed changes will be discussed.

  16. Thermal expansion and thermal stress in the moon and terrestrial planets - Clues to early thermal history

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Chaiken, J.

    1976-01-01

    The paper discusses how features of the surface geology of the moon and also Mars and Mercury impose constraints on the volumetric expansion or contraction of a planet and consequently provide a test of thermal history models. The moon has changed very little in volume over the last 3.8 b.y. Thermal models satisfying this constraint involve early heating and perhaps melting of the outer 200 km of the moon and an initially cold interior. Mercury has contracted by about 2 km in radius since emplacement of its present surface, so core formation must predate that surface. A hot initial temperature distribution is implied.

  17. Early public impressions of terrestrial carbon capture and storage in a coal-intensive state.

    PubMed

    Carley, Sanya R; Krause, Rachel M; Warren, David C; Rupp, John A; Graham, John D

    2012-07-01

    While carbon capture and storage (CCS) is considered to be critical to achieving long-term climate-protection goals, public concerns about the CCS practice could pose significant obstacles to its deployment. This study reports findings from the first state-wide survey of public perceptions of CCS in a coal-intensive state, with an analysis of which factors predict early attitudes toward CCS. Nearly three-quarters of an Indiana sample (N = 1001) agree that storing carbon underground is a good approach to protecting the environment, despite 80% of the sample being unaware of CCS prior to participation in the two-wave survey. The majority of respondents do not hold strong opinions about CCS technology. Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. Knowledge about early impressions of CCS can help inform near-term technology decisions at state regulatory agencies, utilities, and pipeline companies, but follow-up surveys are necessary to assess how public sentiments evolve in response to image-building efforts with different positions on coal and CCS.

  18. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  19. Greenhouse warming by CH4 in the atmosphere of early Earth.

    PubMed

    Pavlov, A A; Kasting, J F; Brown, L L; Rages, K A; Freedman, R

    2000-05-25

    Earth appears to have been warm during its early history despite the faintness of the young Sun. Greenhouse warming by gaseous CO2 and H2O by itself is in conflict with constraints on atmospheric CO2 levels derived from paleosols for early Earth. Here we explore whether greenhouse warming by methane could have been important. We find that a CH4 mixing ratio of 10(-4) (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.8 Ga. Such a CH4 concentration could have been readily maintained by methanogenic bacteria, which are thought to have been an important component of the biota at that time. Elimination of the methane component of the greenhouse by oxidation of the atmosphere at about 2.3-2.4 Ga could have triggered the Earth's first widespread glaciation.

  20. The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.

    2013-12-01

    Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.

  1. Climatic effects of enhanced CO2 levels in Mars early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1987-01-01

    Results are presented of one-dimensional radiation convection modeling of the early Mars atmosphere. Up to 5 bars of CO2 would have been required to raise the surface temperature (orbitally and globally averaged) above the freezing point, although at the equator at perihelion, 1 bar would have sufficed. Such an atmospheric CO2 invertory, the author argued, is not inconsistent with any known constraint on Mars' degassed volatile inventory.

  2. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  3. A reappraisal of the stratigraphy and chronology of Early Pliocene palaeontological sites from Lanzarote Island containing fossil terrestrial animals

    NASA Astrophysics Data System (ADS)

    Lomoschitz, Alejandro; Sánchez Marco, Antonio; Huertas, María José; Betancort, Juan F.; Isern, Arnau; Sanz, Elena; Meco, Joaquín

    2016-11-01

    The Famara massif, in the north of Lanzarote Island, constitutes the remains of a former island inhabited by the oldest known vertebrate fauna of the Canary archipelago off the coast of Africa. In this study, new ages are offered for the underlying and overlying basaltic lava flows of two paleontological sites. The island's three major palaeontological sites, which contain remains of this ancient fauna (Valle Grande, Valle Chico and Fuente de Gusa), are intercorrelated according to their lithologies, sedimentology, palaeontological content and geochronology. The new K/Ar age interval for the fossiliferous sedimentary deposits ranges between 4.3 ± 0.7 and 3.78 ± 0.71 Ma, within the Early Pliocene, and shows that the first known terrestrial animals in Lanzarote were present on the island for about 500 ka. The principal component of the deposits is a bioclastic calcarenite of aeolian origin (sand sheet deposits), which is present in all three sites and constitutes 65% of the beds. The remaining 35% is of fluvial-aeolian origin (mainly stream deposits). All the beds contain the same fossils (insect egg pods, land snails, avian eggshells and tortoise eggshells). The local palaeogeography and the formation of the deposits were conditioned by a flat plain, larger than 16 km2, over which aeolian sands moved freely with a prevailing NNE-WSW wind direction. In agreement with previous investigations, the palaeoclimate in this interval (ca. 4.3 to 3.8 Ma) must have been mainly dry with some rainy episodes.

  4. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya

    PubMed Central

    Braun, David R.; Harris, John W. K.; Levin, Naomi E.; McCoy, Jack T.; Herries, Andy I. R.; Bamford, Marion K.; Bishop, Laura C.; Richmond, Brian G.; Kibunjia, Mzalendo

    2010-01-01

    The manufacture of stone tools and their use to access animal tissues by Pliocene hominins marks the origin of a key adaptation in human evolutionary history. Here we report an in situ archaeological assemblage from the Koobi Fora Formation in northern Kenya that provides a unique combination of faunal remains, some with direct evidence of butchery, and Oldowan artifacts, which are well dated to 1.95 Ma. This site provides the oldest in situ evidence that hominins, predating Homo erectus, enjoyed access to carcasses of terrestrial and aquatic animals that they butchered in a well-watered habitat. It also provides the earliest definitive evidence of the incorporation into the hominin diet of various aquatic animals including turtles, crocodiles, and fish, which are rich sources of specific nutrients needed in human brain growth. The evidence here shows that these critical brain-growth compounds were part of the diets of hominins before the appearance of Homo ergaster/erectus and could have played an important role in the evolution of larger brains in the early history of our lineage. PMID:20534571

  5. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  6. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  7. Integrated Estimates of Global Terrestrial Carbon Sequestration

    SciTech Connect

    Thomson, Allison M.; Izaurralde, R Cesar; Smith, Steven J.; Clarke, Leon E.

    2008-02-01

    Assessing the contribution of terrestrial carbon sequestration to international climate change mitigation requires integration across scientific and disciplinary boundaries. As part of a scenario analysis for the US Climate Change Technology Program, measurements and geographic data were used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were then applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric CO2 stabilization by 2100. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. Terrestrial sequestration reach a peak combined rate of 0.5 to 0.7 Gt carbon yr-1 in mid-century with contributions from agricultural soil (0.21 Gt carbon yr-1), reforestation (0.31 Gt carbon yr-1) and pasture (0.15 Gt carbon yr-1). Sequestration rates vary over time period and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 31 to 41 GtC. The contribution of terrestrial sequestration to mitigation is highest early in the century, reaching up to 20% of total carbon mitigation. This analysis provides insight into the behavior of terrestrial carbon mitigation options in the presence and absence of climate change mitigation policies.

  8. Production of nitrogen oxides by lightning in a methane-rich early atmosphere

    NASA Astrophysics Data System (ADS)

    Navarro, Karina; Navarro-Gonzalez, Rafael; McKay, Christopher

    2013-04-01

    The composition of the early Earth's atmosphere is not known. Assuming that rapid weathering of fragments from impacts took placed and efficient sequestration of carbon occurred in the Earth's mantle, the early atmosphere would have been mostly composed of molecular nitrogen with low concentrations of carbon dioxide (less than percent). In order preserve the existence of oceans, it is required to warm up the atmosphere almost exclusively with methane [1]. Predicted methane concentrations in the distant past range from few ppm to several thousand ppm. Photochemical models predict a production rate of hydrogen cyanide of the order of 6 Tg/yr in a 3 percent carbon dioxide atmosphere with 1000 ppm of methane [2]. When the atmospheric levels of carbon dioxide dropped to 0.3 percent but with the methane levels of 1000 ppm, the production rate of hydrogen cyanide increased up to 20 Tg/yr [2]. The nitrogen fixation rate by lightning in atmospheres dominated bymolecula nitrogen, less than 10 percent carbon dioxide, and the absence of methane has been reported by Navarro-Gonzalez et al. [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.5percent of carbon dioxide with methane concentrations from 0 to 10,000 ppm in molecular nitrogen. Our results show that the main nitrogen fixation products by lightning are nitric oxide, nitrous oxide and methyl nitrite. Preliminary estimates indicate that the production of nitric oxide is not dependent on the initial concentration of methane and that its production rate decreases from about 0.02 Tg/yr to about 0.003 Tg/yr in atmospheres ranging from 10 to 0.5 percent of carbon dioxide, respectively. Nitrous oxide is produced by lightning is the contemporaneous oxygenated Earth's atmosphere [4], but has not been detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [5]. This is the first report for the

  9. What we could learn from observations of terrestrial exoplanets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Schwieterman, Edward; Arney, Giada; Lustig-Yaeger, Jacob; Lincowski, Andrew; Robinson, Tyler D.; Deming, Drake; NASA Astrobiology Institute - Virtual Planetary Laboratory

    2016-10-01

    Observations of terrestrial exoplanet environments remain an important frontier in comparative planetology. Studies of habitable zone terrestrial planets will set our own Earth in a broader context. Hot, post-runaway terrestrial exoplanets can provide insights into terrestrial planet evolution - and may reveal planetary processes that could mimic signs of life, such as photochemically-produced oxygen. While transmission spectroscopy observations of terrestrial planet atmospheres with JWST will be extremely challenging, they will afford our first chance to characterize the atmospheres of planets orbiting in the habitable zone of M dwarfs. However, due to the effects of refraction, clouds and hazes, JWST will likely sample the stratospheres of habitable zone terrestrial planets, and will not be able to observe the planetary surface or near-surface atmosphere. These limitations will hamper the search for signs of habitability and life, by precluding detection of water vapor in the deep atmosphere, and confining biosignature searches to gases that are prevalent in the stratosphere, such as evenly-mixed O2, or photochemical byproducts of biogenic gases. In contrast, direct imaging missions can potentially probe the entire atmospheric column and planetary surface, and can typically obtain broader wavelength coverage for habitable zone planets orbiting more Sun-like stars, complementing the M dwarf planet observations favored by transmission spectroscopy. In this presentation we will show results from theoretical modeling of terrestrial exoplanet environments for habitable Earth-like, early Earth and highly-evolved hot terrestrial planets - with photochemistry and climates that are driven by host stars of different spectral types. We will also present simulated observations of these planets for both transmission (JWST) and direct imaging (LUVOIR-class) observations. These photometric measurements and spectra help us identify the most - and least - observable features of

  10. Stability of the Early Mars Atmosphere to Collapse into Permanent Polar Caps

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Kahre, M. A.; Wordsworth, R.; Forget, F.

    2016-09-01

    Snowfall from CO2 ice clouds on early Mars can affect the formation of permanent polar caps. We use a GCM to study the influence of CO2 cloud microphysics on the stability of thick CO2 atmospheres against collapse into permanent polar caps.

  11. Mass-independent isotope effects in planetary atmospheres and the early solar system.

    PubMed

    Thiemens, M H

    1999-01-15

    A class of isotope effects that alters isotope ratios on a mass-independent basis provides a tool for studying a wide range of processes in atmospheres of Earth and other planets as well as early processes in the solar nebula. The mechanism for the effect remains uncertain. Mass-independent isotopic compositions have been observed in O3, CO2, N2O, and CO in Earth's atmosphere and in carbonate from a martian meteorite, which suggests a role for mass-independent processes in the atmosphere of Mars. Observed mass-independent meteoritic oxygen and sulfur isotopic compositions may derive from chemical processes in the presolar nebula, and their distributions could provide insight into early solar system evolution.

  12. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  13. Photochemical consequences of enhanced CO2 levels in earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Greatly enhanced atmospheric CO2 concentrations are the most likely mechanism for offsetting the effects of reduced solar luminosity early in the earth's history. CO2 levels of 80 to 600 times the present value could have maintained a mean surface temperature of 0 C to 15 C, given a 25 percent decrease in solar output. Such high CO2 levels are at least qualitatively consistent with the present understanding of the carbonate-silicate geochemical cycle. The presence of large amounts of CO2 has important implications for the composition of the earth's prebiotic atmosphere. The hydrogen budget of a high-CO2 primitive atmosphere would have been strongly influenced by rainout of H2O2 and H2CO. The reaction of H2O2 with dissolved ferrous iron in the early oceans could have been a major sink for atmospheric oxygen. The requirement that this loss of oxygen be balanced by a corresponding loss of hydrogen (by escape to space and rainout of H2CO) implies that the atmospheric H2 mixing ratio was greater than 2 x 10 to the -5th and the ground level O2 mixing ratio was below 10 to the -12th, even if other surface sources of H2 were small. These results are only weakly dependent on changes in solar UV flux, rainout rates, and vertical mixing rates in the primitive atmosphere.

  14. Different representations of biological nitrogen fixation cause major variation in projected terrestrial biosphere responses to elevated levels of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Meyerholt, J.; Zaehle, S.; Smith, M. J.

    2015-12-01

    Including a land nitrogen (N) cycle in current Earth system models has led to substantial attenuation of predicted land-climate feedbacks, but the magnitude of this N effect remains highly uncertain. The current magnitude and global change responses of major land N cycle processes are still not well understood. Biological nitrogen fixation (BNF) is one particularly important process, being the largest natural land input of N. However, global terrestrial BNF rates are highly uncertain and models lack observations on which to base their predictions. The current variety of terrestrial biosphere models use a wide array of differing, largely untested BNF representations. We tested the six most widely used formulations within the O-CN model and examined the resulting differences in model predictions both under current atmospheric [CO2], as well as under future scenarios of elevated atmospheric [CO2]: a prescribed global map of static BNF rates, two simple empirical relationships between BNF and other ecosystem variables (net primary production and evapotranspiration), two process-based formulations based on plant N status, and an approach following a basic form of optimality of plant N acquisition. We found that the predicted global BNF rates for current conditions were fairly comparable, ranging from 93 to 134 Tg N yr-1 (median 118 Tg N yr-1). However, at 587 ppm atmospheric [CO2], model responses in BNF rates ranged from -5 Tg N yr-1 (-4 %) to 113 Tg N yr-1 (+88 %) (median 14 Tg N yr-1 (+15 %)). As a consequence, future projections of global net primary productivity and carbon storage (increases of different magnitudes), as well as N2O emission (negative responses or unchanged) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change induced perturbations; particularly through new empirical perturbation experiments.

  15. MODIS-Derived Terrestrial Primary Production

    NASA Astrophysics Data System (ADS)

    Zhao, Maosheng; Running, Steven; Heinsch, Faith Ann; Nemani, Ramakrishna

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of all the acronyms is available in the appendix at the end of the chapter) by the human population accounts for about 14-26% of global NPP (Imhoff et al. 2004). Rapid global climate change is induced by increased atmospheric greenhouse gas concentration, especially CO2, which results from human activities such as fossil fuel combustion and deforestation. This directly impacts terrestrial NPP, which continues to change in both space and time (Melillo et al. 1993; Prentice et al. 2001; Nemani et al. 2003), and ultimately impacts the well-being of human society (Milesi et al. 2005). Additionally, substantial evidence show that the oceans and the biosphere, especially terrestrial ecosystems, currently play a major role in reducing the rate of the atmospheric CO2 increase (Prentice et al. 2001; Schimel et al. 2001). NPP is the first step needed to quantify the amount of atmospheric carbon fixed by plants and accumulated as biomass. Continuous and accurate measurements of terrestrial NPP at the global scale are possible using satellite data. Since early 2000, for the first time, the MODIS sensors onboard the Terra and Aqua satellites, have operationally provided scientists with near real-time global terrestrial gross primary production (GPP) and net photosynthesis (PsnNet) data. These data are provided at 1 km spatial resolution and an 8-day interval, and annual NPP covers 109,782,756 km2 of vegetated land. These GPP, PsnNet and NPP products are collectively known as MOD17 and are part of a larger suite of MODIS land products (Justice et al. 2002), one of the core Earth System or Climate Data Records (ESDR or

  16. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.

    2010-11-01

    The discovery of a habitable Earth-like planet beyond our solar-system will be remembered as one of the major breakthroughs of 21st century science, and of the same magnitude as Copernicus' heliocentric model dating from the mid 16th century. The real astrobiological breakthrough will be the added results from atmospheric remote sensing of such planets to determine habitability. Atmospheres, in both concentration and composition are suggestive of processes occurring at the planetary surface and upper crust. Unfortunately, only the modern Earth's atmosphere is known to be habitable. I investigate the density and pressure of our planet's early atmosphere before the rise of oxygen 2.5 billion years ago, because our planet was very much alive microbially. Such knowledge gives us another example of a habitable atmosphere. I also investigates the atmosphere of early Mars, as geomorphic signatures on its surface are suggestive of a past where liquid water may have present in a warmer climate, conditions suitable for the emergence of life, compared with today's 6 mbar CO2-dominated atmosphere. Using tools of fluvial geomorphology, I find that the largest river-valleys on Mars do not record a signature of a sustained hydrological cycle, in which precipitation onto a drainage basin induces many cycles of water flow, substrate incision, water ponding, and return to the atmosphere via evaporation. Rather, I conclude that while episodes of flow did occur in perhaps warmer environments, those periods were short-lived and overprinted onto a dominantly cold and dry planet. For Earth, I develop a new method of investigating atmospheric density and pressure using the size of raindrop imprints, and find that raindrop imprints preserved in the 2.7 billion year old Ventersdorp Supergroup of South Africa are consistent with precipitation falling in an atmosphere of near-surface density < 2 kg/m3 and probably > 0.1 kg/m3, compared to a modern value of 1.2 kg/m3, further suggesting a

  17. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    PubMed

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing

  18. Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

    PubMed Central

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and

  19. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  20. Influence of Carbonic Anhydrase Activity in Terrestrial Vegetation on the 18O Content of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Gillon, Jim; Yakir, Dan

    2001-03-01

    The oxygen-18 (18O) content of atmospheric carbon dioxide (CO2) is an important indicator of CO2 uptake on land. It has generally been assumed that during photosynthesis, oxygen in CO2 reaches isotopic equilibrium with oxygen in 18O-enriched water in leaves. We show, however, large differences in the activity of carbonic anhydrase (which catalyzes CO2 hydration and 18O exchange in leaves) among major plant groups that cause variations in the extent of 18O equilibrium (θeq). A clear distinction in θeq between C3 trees and shrubs, and C4 grasses makes atmospheric C18OO a potentially sensitive indicator to changes in C3 and C4 productivity. We estimate a global mean θeq value of ~0.8, which reasonably reconciles inconsistencies between 18O budgets of atmospheric O2 (Dole effect) and CO2.

  1. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    USGS Publications Warehouse

    Carr, Michael H.

    1989-01-01

    Channels on the Martian surface suggest that Mars had an early, relatively thick atmosphere. If the atmosphere was thick enough for water to be stable at the surface, CO2 in the atmosphere would have been fixed as carbonates on a relatively short time scale, previously estimated to be 1 bar every 107 years. This loss must have been offset by some replenishment mechanism to account for the numerous valley networks in the oldest surviving terrains. Impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by addition of carbon to Mars from the impacting bolides. Depending on the relationship between the transient cavity diameter and the diameter of the resulting crater, burial rates as a result of impact gardening at the end of heavy bombardment are estimated to range from 20 to 45 m/106 years, on the assumption that cratering rates in Mars were similar to those of the Nectarian Period on the Moon. At these rates 0.1-0.2 bar of CO2 could have been released every 107 years as a result of burial to depths where dissociation temperatures of carbonates were reached. Modeling of large impacts suggests that an additional 0.01 to 0.02 bar of CO2 could have been released every 107 years during the actual impacts. In the unlikely event that all the impacting material was composed of carbonaceous chondrites, a further 0.3 bar of CO2 could have been added to the atmosphere every 107 years by oxidation of meteoritic carbon. Even when supplemented by the volcanically induced release of CO2, these release rates are barely sufficient to sustain an early atmosphere if water were continuously present at the surface. The results suggest that water may have been only intermittently present on the surface early in the planet's history.

  2. Loss of Water in Early Earth's Atmosphere and Its Effects on Habitability

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Khazanov, George

    2015-08-01

    The short wavelength emission from the Sun has a profound impact on the Earth’s atmosphere. High energy photons ionize the atmosphere and produce photoelectrons. This process provides a major contribution to the acceleration of atmospheric ions due to the vertical separation of ions and electrons, and the formation of the resulting ambipolar electric field. Observations and theory suggest that even a relatively small fraction of super-thermal electrons (photoelectrons) produced due to photoionization can drive the ”polar wind” that is responsible for the transport of ionospheric constituents to the Earth’s magnetosphere.The young Sun was a magnetically active star generating powerful radiative output from its chromosphere, transition region and corona which was a few hundred times greater than that observed today. What effects would the photoionization processes due to the X-ray-UV solar flux from early Sun have on the loss of water from the early Earth?We use the Fokker-Plank code coupled with 1D hydrodynamic code to model the effect of intensive short-wavelength (X-rays to UV band) emission from the young Sun (3.8 and 4.4 Ga) on Earth's atmosphere. Our simulations include the photoionization processes of the Earth’s atmosphere forming a population of photoelectrons (E<600 eV), the kinetic effects of their propagation associated and their contribution in ionosphere - magnetosphere energy redistribution. Our coupled simulations show that the ambipolar electric field can drag atmospheric ions of oxygen and hydrogen to the magnetosphere and produce significant mass loss that can affect the loss of water from the early Earth in the first half a billion years. This process became less efficient in the next 0.2-0.3 Ga that could have provided a window of opportunity for origin of life.

  3. Immune response of earthworms (Lumbricus terrestris, Eisenia andrei and Aporrectodea tuberculata) following in situ soil exposure to atmospheric deposition from a cement factory.

    PubMed

    Massicotte, Richard; Robidoux, Pierre Yves; Sauvé, Sébastien; Flipo, Denis; Fournier, Michel; Trottier, Bertin

    2003-10-01

    In order to reduce their energy costs, many cement plants use fuel product substitutes (old tyres and used oil). The combustion of these products generates a metal increase (e.g. Cu, Cd, Pb and Zn) in the atmospheric emissions. After their release, these elements are deposited into the environment and could eventually accumulate up to concentrations of concern. At the Saint-Laurent cement factory (Joliette, QC, Canada), maximum deposition of these elements occurs in the direction of prevailing winds (North-East). We evaluated the potential impact of these depositions upon the immune system of three earthworm species (Lumbricus terrestris, Eisenia andrei and Aporrectodea tuberculata) exposed in a natural environment. The exposure sites were 0.5, 1.0, and 2.0 km downwind from the cement factory, along with an upwind reference site. The immune parameters studied were the cell viability and phagocytic potential of the immune cells (coelomocytes). For both L. terrestris and E. andrei, after 7 d exposure, none of the measured parameters showed significant differences among the sites. On the other hand, for the indigenous worm A. tuberculata, in the most exposed zone (at 0.5 km), we observed an increase in cell viability and phagocytic potential. This increase could possibly be attributed to physicochemical effects such as the alkaline pH of the soil, or alternatively, it could result from beneficial effects induced by an increased calcium supply.

  4. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    NASA Astrophysics Data System (ADS)

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is

  5. Habitability of terrestrial-mass planets in the HZ of M Dwarfs - I. H/He-dominated atmospheres

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Mohanty, Subhanjoy

    2016-07-01

    The ubiquity of M dwarfs, combined with the relative ease of detecting terrestrial-mass planets around them, has made them prime targets for finding and characterizing planets in the `habitable zone' (HZ). However, Kepler finds that terrestrial-mass exoplanets are often born with voluminous H/He envelopes, comprising mass-fractions (Menv/Mcore) ≳1 per cent. If these planets retain such envelopes over Gyr time-scales, they will not be `habitable' even within the HZ. Given the strong X-ray/UV fluxes of M dwarfs, we study whether sufficient envelope mass can be photoevaporated away for these planets to become habitable. We improve upon previous work by using hydrodynamic models that account for radiative cooling as well as the transition from hydrodynamic to ballistic escape. Adopting a template active M dwarf XUV spectrum, including stellar evolution, and considering both evaporation and thermal evolution, we show that: (1) the mass-loss is (considerably) lower than previous estimates that use an `energy-limited' formalism and ignore the transition to Jeans escape; (2) at the inner edge of the HZ, planets with core mass ≲ 0.9 M⊕ can lose enough H/He to become habitable if their initial envelope mass-fraction is ˜1 per cent; (3) at the outer edge of the HZ, evaporation cannot remove a ˜1 per cent H/He envelope even from cores down to 0.8 M⊕. Thus, if planets form with bulky H/He envelopes, only those with low-mass cores may eventually be habitable. Cores ≳1 M⊕, with ≳1 per cent natal H/He envelopes, will not be habitable in the HZ of M dwarfs.

  6. Synthesis of nitrous oxide by lightning in the early anoxic Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Navarro, K. F.; Navarro-Gonzalez, R.; McKay, C. P.

    2013-12-01

    Carbon dioxide (CO2) was the main atmospheric component of the early Earth's atmosphere and exerted a key role in climate by maintaining a hydrosphere during a primitive faint Sun [1]; however, CO2 was eventually removed from the atmosphere by rock weathering and sequestered in the Earth's crust and mantle [1]. Nitric oxide (NO) was fixed by lightning discharges at a rate of 1×1016 molecules J-1 in CO2 (50-80%) rich atmospheres [2]. As the levels of atmospheric CO2 dropped to 20%, the production rate of NO by lightning rapidly decreased to 2×1014 molecules J-1 and then slowly diminished to 1×1014 molecules J-1 at CO2 levels of about 2.5% [2]. In order to maintain the existence of liquid water in the early Earth, it is required to warm up the planet with other greenhouse gases such as methane (CH4) [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.8 percent of carbon dioxide with methane concentrations from 0 to 1,000 ppm in molecular nitrogen. Lightning was simulated in the laboratory by a plasma generated with a pulsed Nd-YAG laser [2]. Our results show that the production of NO by lightning is independent of the presence of methane but drops from 3×1014 molecules J-1 in 10% CO2 to 5×1013 molecules J-1 in 1% CO2. Surprisingly, nitrous oxide (N2O) is also produced at a rate of 4×1013 molecules J-1 independent of the levels of CH4 and CO2. N2O is produced by lightning in the contemporaneous oxygenated Earth's atmosphere at a comparable rate of (0.4-1.5)×1013 molecules J-1 [4, 5], but was not detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [6]. The only previously reported abiotic synthesis of N2O was by corona discharges in rich CO2 atmospheres (20-80%) with a production rate of 8×1012 molecules J-1 [6]; however at lower CO2 (<20%) levels, N2O is no longer produced. Therefore, lightning in the early Earth

  7. Terrestrial atmospheric responses on Svalbard to the 20 March 2015 Arctic total solar eclipse under extreme conditions.

    PubMed

    Pasachoff, J M; Peñaloza-Murillo, M A; Carter, A L; Roman, M T

    2016-09-28

    This article reports on the near-surface atmospheric response at the High Arctic site of Svalbard, latitude 78° N, as a result of abrupt changes in solar insolation during the 20 March 2015 equinox total solar eclipse and notifies the atmospheric science community of the availability of a rare dataset. Svalbard was central in the path of totality, and had completely clear skies. Measurements of shaded air temperature and atmospheric pressure show only weak, if any, responses to the reduced insolation. A minimum in the air temperature at 1.5 m above the ground occurred starting 2 min following the end of totality, though this drop was only slightly beyond the observed variability for the midday period. Eclipse-produced variations in surface pressure, if present, were less than 0.3 hPa.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  8. Terrestrial atmospheric responses on Svalbard to the 20 March 2015 Arctic total solar eclipse under extreme conditions.

    PubMed

    Pasachoff, J M; Peñaloza-Murillo, M A; Carter, A L; Roman, M T

    2016-09-28

    This article reports on the near-surface atmospheric response at the High Arctic site of Svalbard, latitude 78° N, as a result of abrupt changes in solar insolation during the 20 March 2015 equinox total solar eclipse and notifies the atmospheric science community of the availability of a rare dataset. Svalbard was central in the path of totality, and had completely clear skies. Measurements of shaded air temperature and atmospheric pressure show only weak, if any, responses to the reduced insolation. A minimum in the air temperature at 1.5 m above the ground occurred starting 2 min following the end of totality, though this drop was only slightly beyond the observed variability for the midday period. Eclipse-produced variations in surface pressure, if present, were less than 0.3 hPa.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550756

  9. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    EPA Science Inventory

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  10. Studies of the airglow, the aurora, the ion and neutral composition, and the chemistry of the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Zipf, E. C., Jr.

    1974-01-01

    Results obtained by rocket-borne optical spectrometry are presented. Composition measurements and auroral studies are reported. The production of N (D-2) atoms by photo-absorption processes, and by electron impact excitation of N2 are discussed along with vibrationally excited CO2(+) ions in planetary atmospheres.

  11. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  12. Solar XUV and ENA-driven water loss from early Venus' steam atmosphere

    NASA Astrophysics Data System (ADS)

    Lichtenegger, H. I. M.; Kislyakova, K. G.; Odert, P.; Erkaev, N. V.; Lammer, H.; Gröller, H.; Johnstone, C. P.; Elkins-Tanton, L.; Tu, L.; Güdel, M.; Holmström, M.

    2016-05-01

    We present a study on the influence of the upper atmosphere hydrodynamic escape of hydrogen, driven by the solar soft X-ray and extreme ultraviolet radiation (XUV), on an expected outgassed steam atmosphere of early Venus. By assuming that the young Sun was either a weak or moderately active young G star, we estimated the water loss from a hydrogen dominated thermosphere due to the absorption of the solar XUV flux and the precipitation of solar wind produced energetic hydrogen atoms (ENAs). The production of ENAs and their interaction with the hydrodynamic extended upper atmosphere, including collision-related feedback processes, have been calculated by means of Monte Carlo models. ENAs that collide in the upper atmosphere deposit their energy and heat the surrounding atmosphere mainly above the main XUV energy deposition layer. It is shown that precipitating ENAs modify the thermal structure of the upper atmosphere, but the enhancement of the thermal escape rates caused by these energetic hydrogen atoms is negligible. Our results also indicate that the majority of oxygen arising from dissociated H2O molecules is left behind during the first 100 Myr. It is thus suggested that the main part of the remaining oxygen has been absorbed by crustal oxidation.

  13. Latitudinal distribution of terrestrial lipid biomarkers and n-alkane compound-specific stable carbon isotope ratios in the atmosphere over the western Pacific and Southern Ocean

    NASA Astrophysics Data System (ADS)

    Bendle, James; Kawamura, Kimitaka; Yamazaki, Koji; Niwai, Takeji

    2007-12-01

    We investigated the latitudinal changes in atmospheric transport of organic matter to the western Pacific and Southern Ocean (27.58°N-64.70°S). Molecular distributions of lipid compound classes (homologous series of C 15 to C 35n-alkanes, C 8 to C 34n-alkanoic acids, C 12 to C 30n-alkanols) and compound-specific stable isotopes (δ 13C of C 29 and C 31n-alkanes) were measured in marine aerosol filter samples collected during a cruise by the R/V Hakuho Maru. The geographical source areas for each sample were estimated from air-mass back-trajectory computations. Concentrations of TC and lipid compound classes were several orders of magnitude lower than observations from urban sites in Asia. A stronger signature of terrestrial higher plant inputs was apparent in three samples collected under conditions of strong terrestrial winds. Unresolved complex mixtures (UCM) showed increasing values in the North Pacific, highlighting the influence of the plume of polluted air exported from East Asia. n-Alkane average chain length (ACL) distribution had two clusters, with samples showing a relation to latitude between 28°N and 47°S (highest ACL values in the tropics), whilst a subset of southern samples had anomalously high ACL values. Compound-specific carbon isotopic analysis of the C 29 (-25.6‰ to -34.5‰) and C 31n-alkanes (-28.3‰ to -37‰) revealed heavier δ 13C values in the northern latitudes with a transition to lighter values in the Southern Ocean. By comparing the isotopic measurements with back-trajectory analysis it was generally possible to discriminate between different source areas. The terrestrial vegetation source for a subset of the southernmost Southern Ocean is enigmatic; the back-trajectories indicate eastern Antarctica as the only intercepted terrestrial source area. These samples may represent a southern hemisphere background of well mixed and very long range transported higher plant organic material.

  14. Marine and terrestrial foods as a source of brain-selective nutrients for early modern humans in the southwestern Cape, South Africa.

    PubMed

    Kyriacou, K; Blackhurst, D M; Parkington, J E; Marais, A D

    2016-08-01

    Many attempts have been made to define and reconstruct the most plausible ecological and dietary niche of the earliest members of the human species. While earlier models emphasise big-game hunting in terrestrial, largely savannah environments, more recent scenarios consider the role of marine and aquatic foods as a source of polyunsaturated fatty acids (PUFA) and other brain-selective nutrients. Along the coast of southern Africa, there appears to be an association between the emergence of anatomically modern humans and accumulation of some of the earliest shell middens during the Middle Stone Age (200-40 ka). Fragmentary fossil remains classified as those of anatomically modern humans, along with marine food residues and numerous material cultural indicators of increased social and behavioural complexity have been recovered from coastal sites. In this paper, new information on the nutrient content of marine and terrestrial foods available to early modern humans in the southwestern Cape is presented and compared with existing data on the nutritional value of some wild plant and animal foods in Africa. The results suggest that coastal foraging, particularly the collection of abundant and predictable marine molluscs, would have allowed early modern humans to exploit some of the richest and most accessible sources of protein, micronutrients and longer-chain omega-6 and omega-3 fatty acids. Reliable and accessible sources of omega-3 eicosapentaenoic and docosahexaenoic acid are considerably more restricted in terrestrial foods. PMID:27457547

  15. Marine and terrestrial foods as a source of brain-selective nutrients for early modern humans in the southwestern Cape, South Africa.

    PubMed

    Kyriacou, K; Blackhurst, D M; Parkington, J E; Marais, A D

    2016-08-01

    Many attempts have been made to define and reconstruct the most plausible ecological and dietary niche of the earliest members of the human species. While earlier models emphasise big-game hunting in terrestrial, largely savannah environments, more recent scenarios consider the role of marine and aquatic foods as a source of polyunsaturated fatty acids (PUFA) and other brain-selective nutrients. Along the coast of southern Africa, there appears to be an association between the emergence of anatomically modern humans and accumulation of some of the earliest shell middens during the Middle Stone Age (200-40 ka). Fragmentary fossil remains classified as those of anatomically modern humans, along with marine food residues and numerous material cultural indicators of increased social and behavioural complexity have been recovered from coastal sites. In this paper, new information on the nutrient content of marine and terrestrial foods available to early modern humans in the southwestern Cape is presented and compared with existing data on the nutritional value of some wild plant and animal foods in Africa. The results suggest that coastal foraging, particularly the collection of abundant and predictable marine molluscs, would have allowed early modern humans to exploit some of the richest and most accessible sources of protein, micronutrients and longer-chain omega-6 and omega-3 fatty acids. Reliable and accessible sources of omega-3 eicosapentaenoic and docosahexaenoic acid are considerably more restricted in terrestrial foods.

  16. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity

  17. The young sun and the atmosphere and photochemistry of the early earth

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampapa, M. S.

    1983-01-01

    The origin and evolution of the earth's early atmosphere depend crucially on the dissipation time of the primitive solar nebula (SN). Using different theories of turbulence, the dissipation time of an SN of 0.1 solar mass is estimated as 2.5-8.3 Myr. Because accretion times are usually much longer, it is concluded that most planetary accretion must have occurred in a gas-free environment. Using new IUE data, a wavelength-dependent UV flux is constructed for the young sun which is then used to study the photochemistry and concentrations of O, O2, O3, OH, H, HCO and formaldehyde H2CO in the earth's early prebiological atmosphere.

  18. Early Eocene carbon isotope excursions: Evidence from the terrestrial coal seam in the Fushun Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Tang, Zihua; Wang, Xu; Yang, Shiling

    2014-05-01

    A series of transient global warming events between 56 and 50 Ma are characterized by a pronounced negative carbon isotope excursion (CIE). However, the documents of these hyperthermals, such as Eocene Thermal Maximum 2 and H2 events, have come chiefly from marine sediments, and their expression in terrestrial organic carbon is still poorly constrained. Here we yield a high-resolution carbon isotope record of terrestrial organic material from the Fushun Basin, which displays four prominent CIEs with magnitudes larger than 2.5‰. Based on age constraint and comparisons with deep-sea records, our data provide the first evidence of the four hyperthermals in coal seams and suggest a global significance of these events. Moreover, the difference of CIE magnitudes between marine and terrestrial records shows a significant linear correlation with the marine carbonate CIE, implying that these events are likely attributable to recurring injections of 13C-depleted carbon from submarine methane hydrates and/or permafrost.

  19. Martian supergene enrichment in Shalbatana Valley: Implications for Mars Early atmosphere

    NASA Astrophysics Data System (ADS)

    Popa, Ciprian; Carrozzo, Giacomo; DiAchille, Gaetano; Silvestro, Simone; Espostio, Francesca; Mennella, Vito

    2015-04-01

    The present work focuses on the detailed description of the first ever-identified supergene enrichment zone on Mars. The mineral paragenesis present at the site sets constrains on the characteristics of early Martian atmosphere. A chrysocolla/malachite bearing unit in the largest of Shalbatana Valley paleolacustrine sediment accumulation constitutes the proof for this process. The water permanence at the formation time is the main implication of this finding. Furthermore, the potential biogenic involvement at the mineralization stage adds scientific importance to the site. The latter implication could set the site as a high priority choice for future Martian in-situ robotic roving/sample-return missions. The relative age of the area (˜3.7 Ba) adds weight to this finding for purposes of planetary atmosphere evolution comparison. No Earth supergene deposit has survived that long, making this site extremely important to address the problem of the oxidative conditions of the primordial Earth and Mars atmospheres.

  20. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James; Webb, Michael E.

    2016-04-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. However, the identities, sources and abundances of airborne particles capable of efficiently nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. Recently, several studies have suggested that unidentified biogenic residues in soil dusts are likely to be an important source of these efficient atmospheric INPs. While it has been shown that cell-free proteins produced by common soil-borne fungi are exceptional INPs, whether these fungi are a source of ice-nucleating biogenic residues in soils has yet to be shown. In particular, it is unclear whether upon adsorption to soil mineral particles, the activity of fungal ice-nucleating proteins is retained or is reduced, as observed for other soil enzymes. Here we show that proteins from a common soil fungus (Fusarium avenaceum) do in fact preferentially bind to and impart their ice-nucleating properties to the common clay mineral kaolinite. The ice-nucleating activity of the proteinaceous INPs is found to be unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of their activity even after multiple washings with pure water. The atmospheric implications of the finding that nanoscale fungal INPs can effectively determine the nucleating abilities of lofted soil dusts are discussed.

  1. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James F.; Webb, Michael E.

    2016-06-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. To date, the identities, sources and abundances of particles capable of nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. While biomolecules such as proteins and carbohydrates have been implicated as important high-temperature INPs, the lack of knowledge on the environmental fates of these species makes it difficult to assess their potential atmospheric impacts. Here we show that such nanoscale ice-nucleating proteins from a common soil-borne fungus (Fusarium avenaceum) preferentially bind to and confer their ice-nucleating properties to kaolinite. The ice-nucleating activity of the proteinaceous INPs is unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of the activity even after multiple washings with pure water. The atmospheric implications of the finding that biological residues can confer their ice-nucleating ability to dust particles are discussed.

  2. Atmospheric 14C variations derived from tree rings during the early Younger Dryas

    NASA Astrophysics Data System (ADS)

    Hua, Quan; Barbetti, Mike; Fink, David; Kaiser, Klaus Felix; Friedrich, Michael; Kromer, Bernd; Levchenko, Vladimir A.; Zoppi, Ugo; Smith, Andrew M.; Bertuch, Fiona

    2009-12-01

    Atmospheric radiocarbon variations over the Younger Dryas interval, from ˜13,000 to 11,600 cal yr BP, are of immense scientific interest because they reveal crucial information about the linkages between climate, ocean circulation and the carbon cycle. However, no direct and reliable atmospheric 14C records based on tree rings for the entire Younger Dryas have been available. In this paper, we present (1) high-precision 14C measurements on the extension of absolute tree-ring chronology from 12,400 to 12,560 cal yr BP and (2) high-precision, high-resolution atmospheric 14C record derived from a 617-yr-long tree-ring chronology of Huon pine from Tasmania, Australia, spanning the early Younger Dryas. The new tree-ring 14C records bridge the current gap in European tree-ring radiocarbon chronologies during the early Younger Dryas, linking the floating Lateglacial Pine record to the absolute tree-ring timescale. A continuous and reliable atmospheric 14C record for the past 14,000 cal yr BP including the Younger Dryas is now available. The new records indicate that the abrupt rise in atmospheric Δ 14C associated with the Younger Dryas onset occurs at ˜12,760 cal yr BP, ˜240 yrs later than that recorded in Cariaco varves, with a smaller magnitude of ˜40‰ followed by several centennial Δ 14C variations of 20-25‰. Comparing the tree-ring Δ 14C to marine-derived Δ 14C and modelled Δ 14C based on ice-core 10Be fluxes, we conclude that changes in ocean circulation were mainly responsible for the Younger Dryas onset, while a combination of changes in ocean circulation and 14C production rate were responsible for atmospheric Δ 14C variations for the remainder of the Younger Dryas.

  3. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    PubMed

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  4. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    NASA Astrophysics Data System (ADS)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco; SMS Science Team; Acton, Gary; Askin, Rosemary; Atkins, Clifford; Bassett, Kari; Beu, Alan; Blackstone, Brian; Browne, Gregory; Ceregato, Alessandro; Cody, Rosemary; Cornamusini, Gianluca; Corrado, Sveva; DeConto, Robert; Del Carlo, Paola; Di Vincenzo, Gianfranco; Dunbar, Gavin; Falk, Candice; Field, Brad; Fielding, Christopher; Florindo, Fabio; Frank, Tracy; Giorgetti, Giovanna; Grelle, Thomas; Gui, Zi; Handwerger, David; Hannah, Michael; Harwood, David M.; Hauptvogel, Dan; Hayden, Travis; Henrys, Stuart; Hoffmann, Stefan; Iacoviello, Francesco; Ishman, Scott; Jarrard, Richard; Johnson, Katherine; Jovane, Luigi; Judge, Shelley; Kominz, Michelle; Konfirst, Matthew; Krissek, Lawrence; Kuhn, Gerhard; Lacy, Laura; Levy, Richard; Maffioli, Paola; Magens, Diana; Marcano, Maria C.; Millan, Cristina; Mohr, Barbara; Montone, Paola; Mukasa, Samuel; Naish, Timothy; Niessen, Frank; Ohneiser, Christian; Olney, Mathew; Panter, Kurt; Passchier, Sandra; Patterson, Molly; Paulsen, Timothy; Pekar, Stephen; Pierdominici, Simona; Pollard, David; Raine, Ian; Reed, Joshua; Reichelt, Lucia; Riesselman, Christina; Rocchi, Sergio; Sagnotti, Leonardo; Sandroni, Sonia; Sangiorgi, Francesca; Schmitt, Douglas; Speece, Marvin; Storey, Bryan; Strada, Eleonora; Talarico, Franco; Taviani, Marco; Tuzzi, Eva; Verosub, Kenneth; von Eynatten, Hilmar; Warny, Sophie; Wilson, Gary; Wilson, Terry; Wonik, Thomas; Zattin, Massimiliano

    2016-03-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (˜280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (˜500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  5. Haze aerosols in the atmosphere of early Earth: manna from heaven.

    PubMed

    Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A

    2004-01-01

    An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.

  6. Haze aerosols in the atmosphere of early Earth: manna from heaven.

    PubMed

    Trainer, Melissa G; Pavlov, Alexander A; Curtis, Daniel B; McKay, Christopher P; Worsnop, Douglas R; Delia, Alice E; Toohey, Darin W; Toon, Owen B; Tolbert, Margaret A

    2004-01-01

    An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota. PMID:15684721

  7. Two high resolution terrestrial records of atmospheric Pb deposition from New Brunswick, Canada, and Loch Laxford, Scotland.

    PubMed

    Kylander, Malin E; Weiss, Domink J; Kober, Bernd

    2009-02-15

    Environmental archives like peat deposits allow for the reconstruction of both naturally and anthropogenically forced changes in the biogeochemical cycle of Pb as well as the quantification of past and present atmospheric Pb pollution. However, records of atmospheric Pb deposition from pre-industrial times are lacking. In a publication by Weiss et al. [Weiss, D., Shotyk, W., Boyle, E.A., Kramers, J.D., Appleby, P.G., Cheburkin, A.K., Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat bogs. Sci Total Environ 2002;292:7-18]. Pb isotopes data measured by Q-ICP-MS and TIMS, concentration and enrichment data was presented for sites in eastern Canada (PeW1) and northwestern Scotland (LL7c), dating to 1586 A.D and 715 A.D., respectively. Here these same cores are re-analysed for Pb isotopes by MC-ICP-MS thereby acquiring 204Pb data and improving on the original data in terms of resolution and temporal coverage. Significant differences were found between the Q-ICP-MS/TIMS and MC-ICP-MS measurements, particularly at PeW1. These discrepancies are attributed to the problematic presence of organic matter during sample preparation and analysis complicated by the heterogeneity of the organic compounds that survived sample preparation steps. The precision and accuracy of Pb isotopes in complex matrices like peat is not always well estimated by industrial standards like NIST-SRM 981 Pb. Lead pollution histories at each site were constructed using the MC-ICP-MS data. The entire LL7c record is likely subject to anthropogenic additions. Contributions from local mining were detected in Medieval times. Later, coal use and mining in Scotland, Wales and England became important. After industrialization (ca. 1885 A.D.) contributions from Broken Hill type ores and hence, leaded petrol, dominate atmospheric Pb signatures right up to modern times. At PeW1 anthropogenic impacts are first distinguishable in the late 17th

  8. A process-level evaluation of the spatiotemporal variability of CO2 fluxes predicted by terrestrial biosphere models using atmospheric data

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Michalak, A. M.; Shiga, Y. P.; Yadav, V.

    2013-12-01

    Terrestrial biosphere models (TBMs) are used to extrapolate local observations and process-level understanding of land-atmosphere carbon exchange to larger regions, and can serve as a predictive tool for examining carbon-climate interactions and global change. Understanding and improving the performance of TBMs is thus crucial to the carbon cycle research community. In this work, we evaluate the spatiotemporal patterns of net ecosystem exchange (NEE) simulated by TBMs using atmospheric CO2 observations and a Geostatistical Inverse Modeling (GIM) framework. The evaluation methodology is based on the ability (or inability) of the spatiotemporal patterns in NEE estimates to explain the variability observed in atmospheric CO2 distribution. More simply, we examine whether the spatiotemporal patterns of NEE simulated by TBMs (including CASA-GFED, ORCHIDEE, VEGAS2 and SiB3) are consistent with the variations observed in the atmosphere. A similar GIM methodology is also applied using environmental variables (such as water availability, temperature, radiation, etc.) rather than TBMs, to explore the environmental processes associated with the variability of NEE, and determine which processes are associated with good/poor performance in TBMs. We find that NEE simulated by TBMs is consistent with that seen by atmospheric measurements more often during growing season months (Apr-Sept) than during the non-growing season. Over Temperate Broadleaf and Mixed Forests, Temperate Coniferous Forests and Temperate Grasslands, Savannas and Shrublands, atmospheric measurements are sufficiently sensitive to NEE fluxes to constrain the evaluation of model performance during the majority of the year (about 7-8 months in a year, mostly in growing season). For these regions and months, at least one of the TBMs is found to be able to reproduce the observed variability, but the most representative TBM varies by region and month. For the remaining months, none of the TBMs are able to reproduce

  9. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model

    USGS Publications Warehouse

    Zhuang, Q.; Melillo, J.M.; Kicklighter, D.W.; Prinn, R.G.; McGuire, A.D.; Steudler, P.A.; Felzer, B.S.; Hu, S.

    2004-01-01

    We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century in response to observed changes in the region's climate. We estimate that the net emissions of CH4 (emissions minus consumption) from these soils have increased by an average 0.08 Tg CH4 yr-1 during the twentieth century. Our estimate of the annual net emission rate at the end of the century for the region is 51 Tg CH4 yr-1. Russia, Canada, and Alaska are the major CH4 regional sources to the atmosphere, responsible for 64%, 11%, and 7% of these net emissions, respectively. Our simulations indicate that large interannual variability in net CH4 emissions occurred over the last century. Our analyses of the responses of net CH4 emissions to the past climate change suggest that future global warming will increase net CH4 emissions from the Pan-Arctic region. The higher net CH4 emissions may increase atmospheric CH 4 concentrations to provide a major positive feedback to the climate system. Copyright 2004 by the American Geophysical Union.

  10. Changes in freshwater carbon exports from Canadian terrestrial basins to lakes and estuaries under a 2×CO2 atmospheric scenario

    NASA Astrophysics Data System (ADS)

    Clair, T. A.; Ehrman, J. M.; Higuchi, K.

    1999-12-01

    Rain water running through soils and wetlands will leach decomposing plant organic matter into streams and lakes in the form of dissolved organic carbon (DOC). In streams, lakes and eventually estuaries, DOC can be mineralized to CO2, precipitated to sediments or taken up in biological matter, and is thus an important part of many aquatic ecosystems. Using hydrological, climatological and geographical data from 32 sites located in Canada, we developed a neural network model which allowed us to estimate DOC export from the Canadian land mass. We reapplied the model to the 32 sites plus a further 43 basins to estimate area normalized exports for various regions of the country. We estimated that 14.3×106 t of DOC are currently exported from Canadian terrestrial ecosystems. We then modified climatological inputs to the model to reflect the predicted temperature and precipitation conditions under a doubled atmospheric CO2 regime. Our model suggests that DOC exports will increase by approximately 14% under a doubled CO2 atmosphere, mostly owing to increases in runoff. Our analysis also shows that DOC export is greatest in the spring in southern Canada and summer in the north.

  11. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)

    USGS Publications Warehouse

    Pan, Y.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Pitelka, L.F.; Hibbard, K.; Pierce, L.L.; Running, S.W.; Ojima, D.S.; Parton, W.J.; Schimel, D.S.; Borchers, J.; Neilson, R.; Fisher, H.H.; Kittel, T.G.F.; Rossenbloom, N.A.; Fox, S.; Haxeltine, A.; Prentice, I.C.; Sitch, S.; Janetos, A.; McKeown, R.; Nemani, R.; Painter, T.; Rizzo, B.; Smith, T.; Woodward, F.I.

    1998-01-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In

  12. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    PubMed

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first < or =150 million years, which is about 10(4) times greater than today and corresponds to a water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  13. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    PubMed

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first < or =150 million years, which is about 10(4) times greater than today and corresponds to a water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS. PMID:19216683

  14. The Solubility of Rock in Steam Atmospheres of the Early Earth and Hot Rocky Exoplanets

    NASA Astrophysics Data System (ADS)

    Fegley, Bruce

    2016-07-01

    Extensive experimental studies show all major rock-forming elements (e.g., Si, Mg, Fe, Ca, Al, Na, K) dissolve in steam to a greater or lesser extent. We use these results to compute chemical equilibrium abundances of rocky element - bearing gases in steam atmospheres equilibrated with silicate magma oceans. Rocky elements partition into steam atmospheres as volatile hydroxide gases (e.g., Si(OH)4, Mg(OH)2, Fe(OH)2, Ni(OH)2, Al(OH)3, Ca(OH)2, NaOH, KOH) and via reaction with HF and HCl as volatile halide gases (e.g., NaCl, KCl, CaFOH, CaClOH, FAl(OH)2) in much larger amounts than expected from their vapor pressures over volatile-free solid or molten rock at high temperatures expected for steam atmospheres on the early Earth and hot rocky exoplanets. We quantitatively compute the extent of fractional vaporization by defining gas/magma distribution coefficients and show Earth's sub-solar Si/Mg ratio may be due to loss of a primordial steam atmosphere. We conclude hot rocky exoplanets that are undergoing or have undergone escape of steam-bearing atmospheres may experience fractional vaporization and loss of Si, Mg, Fe, Ni, Al, Ca, Na, and K. This loss can modify their bulk composition, density, heat balance, and interior structure. This work was supported by NSF Astronomy Program Grant AST-1412175.

  15. Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere

    NASA Astrophysics Data System (ADS)

    Bouquet, Alexis; Baratoux, David; Vaubaillon, Jérémie; Gritsevich, Maria I.; Mimoun, David; Mousis, Olivier; Bouley, Sylvain

    2014-11-01

    In comparison with existing ground-based camera networks for meteors monitoring, a space-based optical system would escape dependency on weather and atmospheric conditions and would offer a wide spatial coverage and an unrestricted and extinction-free spectral domain. The potential rates of meteor detections by such systems are evaluated in this paper as a function of observations parameters (optical system capabilities, orbital parameters) and considering a reasonable range of meteoroids properties (e.g., mass, velocity, composition) determining their luminosity. A numerical tool called SWARMS (Simulator for Wide Area Recording of Meteors from Space) has been developed. SWARMS is also intended to be used in an operational phase to facilitate the comparison of observations with up-do-date constraints on the flux and characteristics of the interplanetary matter entering our planet's atmosphere. The laws governing the conversion of a fraction of the meteor kinetic energy into radiation during atmospheric entry have been revisited and evaluated based on an analysis of previously published meteor trajectories. Rates of detection were simulated for two different systems: the SPOSH (Smart Panoramic Optical Sensor Head) camera optimized for the observation of transient luminous events, and the JEM-EUSO (Japanese Experiment Module-Extreme Universe Space Observatory) experiment on the ISS (International Space Station). We conclude that up to 6 events per hour in the case of SPOSH, and up to 0.67 events in the case of JEM-EUSO may be detected. The optimal orbit for achieving such rates of detections depends on the mass index of the meteoroid populations. The determination of this parameter appears therefore critical before an optimal orbiting system might be designed for meteors monitoring.

  16. Ideas and perspectives: on the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.

    2015-06-01

    In this article we summarise recent science which shows how airborne amines, specifically methylamines (MAs), play a key role in new atmospheric particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NPF events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants was already described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species-specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions. The decomposition of organic material constitutes another, potentially ubiquitous, source of airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited, and thus it is also an open question how global change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  17. Ideas and Perspectives: On the emission of amines from terrestrial vegetation in the context of atmospheric new particle formation

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.

    2015-02-01

    In this article we summarise recent science, which shows how airborne amines, specifically methylamines (MAs), play a key role in atmospheric new particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NFP events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants have already been described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions, and the decomposition of organic material could constitute another source for airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited and thus it is also an open question how Global Change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  18. Spectral Characteristic of Tholin Produced from Possible Early Earth Atmospheres and its Role in Antigreenhouse Effect on Early Earth

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Imanaka, H.; Wilhite, P.; McKay, C.; Bakes, E.; Cruikshank, D. P.; Arakawa, E. T.

    2003-01-01

    We have produced organic material simulating a methane photochemical haze in a CO2- rich atmosphere of the early Earth by irradiating gas mixtures in an inductively coupled cold plasma chamber with pressure approx. 0.25 mbar at 100 W total power. The flow rate was 24 cm3 min. We added progressively higher levels of CH, by combining gas mixtures of N2/CH4 (9/1) and N2/CO2 (9/1) to change the ratio of CH4/CO2. Tholin was accumulated for 5 hours in each experiment; the onset of tholin formation is in the range CH4/CO2 = 0.5 to 1. As the mixing ratio of CH, is increased, the production rate of the brownish tholin film increases. IR spectra showed the C-H and N-H bands similar to that of Titan tholin and closely resemble Titan tholin made at 0.13 mbar pressure. A decrease in the CH bonds on decreasing CH4/CO2 is noted. Ether bands (-(2-O-C) were tentatively detected, but no detectable carbonyl (C=O) band was found. The absorption in the UV region for the early Earth tholin is found to be substantially greater than the Titan tholin. Quantitative values of the optical constants of early Earth tholin are currently being measured.

  19. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; Martin-Torres, F. J.; Zorzano, M.

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  20. Antarctic Ice Sheet Sensitivity to Atmospheric CO2 Variations During the Early to Mid-Miocene

    NASA Astrophysics Data System (ADS)

    Levy, R. H.; Harwood, D. M.; Florindo, F.; Sangiorgi, F.; Eagle, R.; von Eynatten, H.; Gasson, E.; Kuhn, G.; Tripati, A.; Deconto, R. M.; Fielding, C. R.; Field, B.; Golledge, N. R.; Mckay, R. M.; Naish, T.; Olney, M.; Pollard, D.; Schouten, S.; Talarico, F. M.; Warny, S.; Willmott, V.

    2015-12-01

    The Early to mid-Miocene (23 to 14 million years ago) is a compelling interval to study Antarctic ice sheet sensitivity to changes in atmospheric CO2 as oceanic and atmospheric circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. This time interval includes the Miocene Climatic Optimum (MCO), a period of global warmth during which average surface temperatures were 3 to 4°C higher than today. Miocene sediments in the AND-2A drill core from the Western Ross Sea, Antarctica provide direct information regarding ice sheet variability through this key time interval and offer insight into the potential Antarctic contribution to future sea level rise. A multi-proxy dataset derived from AND-2A identifies four distinct environmental "motifs" based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of marine-based ice across the Ross Sea. They all correlate with major positive shifts in benthic oxygen isotope records and episodes of sea-level fall, and generally coincide with intervals when atmospheric CO2 concentrations were below current levels (~400 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for significant ice mass loss during episodes of high (>400 ppm) atmospheric CO2. These results suggest that polar climate and the Antarctic Ice Sheet (AIS) were highly sensitive to relatively small changes in CO2 during the early to mid-Miocene, which is supported by numerical ice sheet and climate modelling.

  1. Drip Magmatism: Intra-Plate Volcanism and Its Importance to the Early Earth and Other Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.

    2014-12-01

    In the present neither Mars nor Venus has Earth-like plate tectonics, though both are likely still volcanically active. Volcanism on Mars and Venus most resembles intra-plate volcanism on Earth, where magmatism occurs through intact lithospheric plates, away from plate boundaries. On Earth intra-plate magmatism has long been proposed to be the result of lithospheric thinning through delamination or ductile dripping. Exactly how these processes create volcanism, however, has remained obscure; particularly in the case of ductile dripping, which does not produce significant topography in the lithosphere-asthenosphere boundary. Though its fall may not trigger significant asthenospheric upwelling, the sinking drip itself will heat conductively as it enters the asthenosphere, and may itself melt, depending upon its solidus temperature and the temperature of the asthenosphere. We refer to this as "drip magmatism," following the hypothesis of Elkins-Tanton (2007). This model produces testable predictions for the resulting magmatic compositions. Drip magmatism was tested by Ducea (2013) for the Altiplano Plateau in the central Andes, by Holbig and Grove (2008) for magmas from Tibet, by Elkins-Tanton (2014) for the Sierra Nevada, and by Furman et al. (2014) for the central African rift; geochemistry in all these localities confirm drip magmatism. Drip magmatism provides a quantifiable mechanism for slow but regular recycling of volatiles into a planetary atmosphere. Further, it could be driven primarily by carbon, or halogens, or other incompatible and volatile elements, in addition to water. Thus, volcanism on one-plate planets, or during a putative "hot" or "slow" tectonics phase on the early Earth, may provide sufficient volatile recycling for habitability.

  2. Centennial to millennial variations of atmospheric methane during the early Holocene

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Woong; Ahn, Jinho; Brook, Edward

    2015-04-01

    Atmospheric CH4 is one of the most important greenhouse gases. Ice core studies revealed strong correlations between millennial CH4 variations and Greenland climate during the last glacial period. However, millennial to sub-millennial CH4 variations during interglacial periods are not well studied. Recently, several high-resolution data sets have been produced for the late Holocene, but it is difficult to distinguish natural- from anthropogenic changes. In contrast, the methane budget of the early Holocene is not affected by anthropogenic disturbances, thus may help us better understand natural CH4 control mechanisms under interglacial climate boundary conditions. Here we present our new high-precision and high-resolution atmospheric CH4 record from Siple Dome ice core, Antarctica that covers the early Holocene. We used our new wet extraction system at Seoul National University that shows a good precision of ~1 ppb. Our data show several tens of ppb of centennial- to millennial CH4 variations and an anti-correlative evolution with Greenland climate on the millennial time scale. The CH4 record could have been affected by many different types of forcing, including temperature, precipitation (monsoon intensity), biomass burning, sea surface temperature, and solar activity. According to our data, early Holocene CH4 is well correlated with records of hematite stained grains (HSG) in North Atlantic sediment records, within age uncertainties. A red-noise spectral analysis yields peaks at frequencies of ~1270 and ~80 years, which are similar to solar frequencies, but further investigations are needed to determine major controlling factor of atmospheric CH4during the early Holocene.

  3. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  4. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): Net loss of terrestrial C and diagenetic fractionation of C isotopes

    NASA Astrophysics Data System (ADS)

    Aller, Robert C.; Blair, Neal E.

    2004-04-01

    Oceania supplies ˜40% of the global riverine flux of organic carbon, approximately half of which is injected onto broad continental shelves and processed in shallow deltaic systems. The Gulf of Papua, on the south coast of the large island of New Guinea, is one such deltaic clinoform complex. It receives ˜4 Mt yr -1 particulate terrestrial organic carbon with initial particle C org loading ˜0.7 mg m -2. C org loading is reduced to ˜0.3 mg m -2 in the topset-upper foreset zones of the delta despite additional inputs of mangrove and planktonic detritus, and high net sediment accumulation rates of 1-4 cm yr -1. Carbon isotopic analyses (δ 13C, Δ 14C) of ΣCO 2 and C org demonstrate rapid (<100 yr) remineralization of both terrestrial (δ 13C <-28.6) and marine C org (δ 13C ˜-20.5) ranging in average age from modern (bomb) (Δ 14C ˜60) to ˜1000 yr (Δ 14C ˜-140). Efficient and rapid remineralization in the topset-upper foreset zone is promoted by frequent physical reworking, bioturbation, exposure, and reoxidation of deposits. The seafloor in these regions, particularly <20 m, apparently functions as a periodically mixed, suboxic batch reactor dominated by microbial biomass. Although terrestrial sources can be the primary metabolic substrates at inshore sites, relatively young marine C org often preferentially dominates pore water ΣCO 2 relative to bulk C org in the upper foreset. Thus a small quantity of young, rapidly recycled marine organic material is often superimposed on a generally older, less reactive terrestrial background. Whereas the pore water ΣCO 2 reflects both rapidly cycled marine and terrestrial sources, terrestrial material dominates the slower overall net loss of C org from particles in the topset-upper foreset zone (i.e. recycled marine C org leaves little residue). Preferential utilization of C org subpools and diagenetic fractionation of C isotopes supports the reactive continuum model as a conceptual basis for net decomposition

  5. Atmospheric COS measurements and satellite-derived vegetation fluorescence data to evaluate the terrestrial gross primary productivity of CMIP5 model

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; MacBean, Natasha; Launois, Thomas; Belviso, Sauveur; Cadule, Patricia; Maignan, Fabienne

    2016-04-01

    Predicting the fate of the ecosystem carbon stocks and their sensitivity to climate change strongly relies on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. The Gross Primary Productivity (GPP) simulated by the different terrestrial models used in CMIP5 show large differences however, not only in terms of mean value but also in terms of phase and amplitude, thus hampering accurate investigations into carbon-climate feedbacks. While the net C flux of an ecosystem (NEE) can be measured in situ with the eddy covariance technique, the GPP is not directly accessible at larger scales and usually estimates are based on indirect measurements combining different tracers. Recent measurements of a new atmospheric tracer, the Carbonyl sulphide (COS), as well as the global measurement of Solar Induced Fluorescence (SIF) from satellite instruments (GOSAT, GOME2) open a new window for evaluating the GPP of earth system models. The use of COS relies on the fact that it is absorbed by the leaves in a similar manner to CO2, while there seems to be nothing equivalent to respiration for COS. Following recent work by Launois et al. (ACP, 2015), there is a potential to evaluate model GPP from atmospheric COS and CO2 measurements, using a transport model and recent parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of COS. Vegetation uptake of COS is modeled as a linear function of GPP and the ratio of COS to CO2 rate of uptake by plants. For the fluorescence, recent measurements of SIF from space appear to be highly correlated with monthly variations of data-driven GPP estimates (Guanter et al., 2012), following a strong dependence of vegetation SIF on photosynthetic activity. These global measurements thus provide new indications on the timing of canopy carbon uptake. In this work, we propose a dual approach that combines the strength of both COS and SIF

  6. Stability of the vegetation-atmosphere system in the early Eocene climate

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.

    2015-05-01

    We explore the stability of the atmosphere-vegetation system in the warm, almost ice-free early Eocene climate and in the interglacial, pre-industrial climate by analysing the dependence of the system on the initial vegetation cover. The Earth system model of the Max Planck Institute for Meteorology is initialised with either dense forests or bare deserts on all continents. Starting with desert continents, an extended desert remains in Central Asia in early Eocene climate. Starting with dense forest coverage, this desert is much smaller because the initially dense vegetation cover enhances water recycling in Central Asia relative to the simulation with initial deserts. With a smaller Asian desert, the Asian monsoon is stronger than in the case with a larger desert. The stronger Asian monsoon shifts the global tropical circulation leading to coastal subtropical deserts in North and South America which are significantly larger than with a large Asian desert. This result indicates a global teleconnection of the vegetation cover in several regions. In present-day climate, a bi-stability of the atmosphere-vegetation system is found for Northern Africa only. A global teleconnection of bi-stabilities in several regions is absent highlighting that the stability of the vegetation-atmosphere system depends on climatic and tectonic boundary conditions.

  7. The young sun, the early earth and the photochemistry of oxygen, ozone and formaldehyde in the early atmosphere

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Goldman, I.; Hubickyj, O.

    1986-01-01

    Recent work on the evolution of the solar nebula and the subsequent formation of planets is reviewed, and the stages of star formation thought to lead to a protosun and an accompanying solar nebula are considered. Photochemical results suggest that concentrations of O2, O3, and H2CO, and the ratio of CO/CO2 in the prebiological paleoatmosphere are very sensitive to atmospheric levels of H2O and CO2 and to the flux of incident solar ultraviolet. For enhanced levels of CO2 and solar UV, surface levels of O2 may have approached the parts per billion level in the prebiological paleoatmosphere. It is suggested that 10 percent or more of the enhanced H2CO production could have been rained out of the atmosphere into the early oceans where synthesis into more complex organic molecules could have taken place. CO/CO2 values of greater than unity could have been possible for enhanced levels of solar UV flux.

  8. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  9. The "Meteor - 3M" Satellite No.1 Observations of Electron Precipitation Events to Outer Terrestrial Atmosphere for 2002-2005.

    NASA Astrophysics Data System (ADS)

    Zinkina, Marina

    National meteorological "Meteor - 3M" satellite No. 1 operated on the polar quasi-circular orbit at the altitude of about 1000 km during 2002-2005 years. The Geiger counter was included in the payload to register >100 keV electron flux. The counter has registered more than 1000 electron precipitation events from the outer radiation belt into the atmosphere. Constructed were histograms of the precipitation event number in dependence on the Mac-Ilwain parameter (L). According to the histograms, precipitations occurred most often on L-shells from 3.1 to 3.9 and from 5.1 to 5.9 during 2002-2005. For both intervals constructed were histograms for the electron precipitation event appearance frequency in dependence on the device count rate: the frequency of weak events is always much greater than the frequency of strong events, i.e. the dependence can be approximated by an exponential function. This allows estimating the probability of predetermined rate electron precipitation. Exponential distribution law means that the current precipitation event intensity does not depend on the intensity of previous events so that the sequence of events is the Markov random process in the view sample (2002-2005).

  10. Early Validation Analyses of Atmospheric Profiles from EOS MLS on the Aura Satellite

    NASA Technical Reports Server (NTRS)

    Froidevaux, Lucien; Livesey, Nathaniel J.; Read, William G.; Jiang, Yibo B.; Jimenez, Carlos; Filipiak, Mark J.; Schwartz, Michael J.; Santee, Michelle L.; Pumphrey, Hugh C.; Jiang, Jonathan H.; Wu, Dong L.; Manney, Gloria L.; Drouin, Brian J.; Waters, Joe W.; Fetzer, Eric J.; Bernath, Peter F.; Boone, Chris D.; Walker, Kaley A.; Jucks, Kenneth W.; Geoffrey, C. Toon; Margitan, James J.; Sen, Bhaswar; Webster, Christopher R.; Christensen, Lance E.; Elkins, James W.

    2006-01-01

    We present results of early validation studies using retrieved atmospheric profiles from the Earth Observing System Microwave Limb Sounder (MLS) instrument on the Aura satellite. 'Global' results are presented for MLS measurements of atmospheric temperature, ozone, water vapor, hydrogen chloride, nitrous oxide, nitric acid, and carbon monoxide, with a focus on the January-March 2005 time period. These global comparisons are made using long-standing global satellites and meteorological datasets, as well as some measurements from more recently launched satellites. Comparisons of MLS data with measurements from the Ft. Sumner, NM, September 2004 balloon flights are also presented. Overall, good agreeement is obtained, often within 5% to 10%, but we point out certain issues to resolve and some larger systematic differences; some artifacts in the first publicly released MLS (version 1.5) dataset are noted.We comment briefly on future plans for validation and software improvements.

  11. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  12. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    PubMed

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. PMID:26903644

  13. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    PubMed Central

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-01-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23–14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. PMID:26903644

  14. Large-scale travelling atmospheric disturbances in the night ionosphere during the solar terrestrial event of 23 May 2002

    NASA Astrophysics Data System (ADS)

    Lynn, K. J. W.; Gardiner-Garden, R.; Sjarifudin, M.; Terkildsen, M.; Shi, J.; Harris, T. J.

    2008-12-01

    This paper examines the night of 23 May 2002 as observed by a large number of Australian ionosondes (19) as well as others situated in New Guinea, Indonesia and China. The arrival of a solar Coronal Mass Ejection (CME) and subsequent negative Bz turnings in the solar wind resulted in a magnetic storm with two bursts of energy inputs into the auroral zones. The energy depositions produced two successive rise and falls in ionospheric height over a 300 km height range within the period 12.30-21.00 UT. The two events were seen in the night-side hemisphere by all ionosondes at Southeast Asian longitudes in the southern hemisphere, as well as in the northern hemisphere. In this paper, the simultaneity and spatial variability of these events is investigated. The first event, after an initial expansion towards the equator, ended with a retreat in the area of height rise back towards the auroral zone. The second event was of greater complexity and did not show such a steady variation in rise and fall times with latitude. Such events are often described as large-scale travelling atmospheric/ionospheric disturbances (LTADs or LTIDs). In the southern hemisphere, the front of the initial height rise was found to move at a speed up to 1300 m/s as was also measured by Tsugawa et al. [2006. Geomagnetic conjugate observations of large-scale travelling ionospheric disturbances using GPS networks in Japan and Australia. Journal of Geophysical Research 111, A02302] from small changes in GPS TEC. The front was uniform across the widest longitudinal range of observation (52° or 5360 km).The relationship between the subsequent fall in ionospheric height and an associated temporary increase in foF2 was found to be consistent with previous observations. Ionospheric drivers that move ionization up and down magnetic field lines are suggested as the common cause of the relationship between foF2 and height.

  15. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  16. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Angst, D.; Lécuyer, C.; Amiot, R.; Buffetaut, E.; Fourel, F.; Martineau, F.; Legendre, S.; Abourachid, A.; Herrel, A.

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

  17. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. implications for the structure of Paleocene terrestrial ecosystems.

    PubMed

    Angst, D; Lécuyer, C; Amiot, R; Buffetaut, E; Fourel, F; Martineau, F; Legendre, S; Abourachid, A; Herrel, A

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on (13)C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ(13)C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans. PMID:24563098

  18. Friis Hills Drilling Project - Coring an Early to mid-Miocene terrestrial sequence in the Transantarctic Mountains to examine climate gradients and ice sheet variability along an inland-to-offshore transect

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.

    2015-12-01

    The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain

  19. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  20. An analytic approach to estimate global terrestrial carbon influx and storage associated with an increase in atmospheric CO{sub 2} concentration

    SciTech Connect

    Luo, Y.; Sims, D.A.; Ball, J.T.

    1995-06-01

    We derived a leaf-level factor (L) from a mechanistic model of C{sub 3} photosynthesis: the relative photosynthetic response to a small change in atmospheric CO{sub 2} concentration (C{sub a}). The mathematical derivation suggests that L is insensitive to either abiotic or biotic variables but a function of C{sub a}. We used seven sets of experimental data to test this proposition. Despite wide variation in photosynthesis with growth and measurement light levels, growth and measurement temperatures, nitrogen availability, growth CO{sub 2} concentration, and various species, derived values of the L factor converged into a narrow band, confirming that L is an approximate constant at a given C{sub a}. Since C{sub 3} plants are the vast majority in the earth system, the L factor enables us to cut across spatial heterogeneities to bound the increment of global photosynthetic carbon influx (P{sub G}) as stimulated by a C{sub a} increase. We estimated that the increment was between 0.21 and 0.45 Gt (1 Gt = 10{sup 15} g) in 1993, given P{sub G} = 120 Gt yr{sup -1}, due to a 1.5-ppm C{sub a} increase in that year. Using global mean residence time and the increment of P{sub G} we are able to estimate potential global terrestrial carbon sequestration.

  1. Regional atmospheric deposition patterns of Ag, As, Bi, Cd, Hg, Mo, Sb and Tl in a 188,000 km 2 area in the European arctic as displayed by terrestrial moss samples-long-range atmospheric transport vs local impact

    NASA Astrophysics Data System (ADS)

    Reimann, Clemens; De Caritat, Patrice; Halleraker, Jo H.; Finne, Tor Erik; Boyd, Rognvald; Jæger, Øystein; Volden, Tore; Kashulina, Galina; Bogatyrev, Igor; Chekushin, Viktor; Pavlov, Vladimir; Äyräs, Matti; Räisänen, Marja Liisa; Niskavaara, Heikki

    The regional atmospheric deposition patterns of Ag, As, Bi, Cd, Hg, Mo, Sb and Tl have been mapped in a 188,000 km2 area of the European Arctic (N Finland, N Norway, NW Russia) using the moss technique. The Russian nickel mining and smelting industry (Nikel and Zapoljarnij (Pechenganikel) and Monchegorsk (Severonikel)) in the eastern part of the survey area represents two of the largest point sources for S0 2 and metal emissions on a world wide basis. In contrast, parts of northern Finland and northern Norway represent still some of the most pristine areas in Europe. The terrestrial mosses Hylocomium splendens and Pleurozium schreberi were used as monitors of airborne deposition. Samples in all three countries were collected during the summer of 1995 and analysed in one laboratory using ICP-MS. Maps for most elements clearly show elevated element concentrations near the industrial sites and delineate the extent of contamination. Pollution follows the main wind and topographical directions in the area (N-S). The gradients of deposition are rather steep. Background levels for all the elements are reached within 150-200 km from the industrial plants. The relative importance of long-range atmospheric transport of air pollutants from industrial point sources on the world wide increase of heavy metals observed in the atmosphere is thus debatable for many elements. Increasing population and traffic density, accompanied by increasing local dust levels, may play a much more important role than industrial emissions. The regional distribution patterns as displayed in the maps show some striking differences between the elements. The regional distribution of Hg and TI in the survey area is completely dominated by sources other than industry.

  2. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT <5°C) than recorded for most of the middle to late Eocene record (CMMT >5°C). Plant groups sensitive to freezing such

  3. Hot Oxygen and Carbon Escape from the Early Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Amerstorfer, U.; Gröller, H.; Lichtenegger, H.; Lammer, H.; Tian, F.

    2015-12-01

    Nowadays, the atmosphere of Mars is commonly assumed to be much different than in the early times of its evolution. Especially, the escape of water and carbon dioxide is thought to have formed its shape during millions of years. Also the Sun emitted a higher EUV flux in former times, influencing the particle environment around Mars.We study the escape of oxygen and carbon from the early Martian atmosphere for different EUV fluxes with a Monte-Carlo model. We consider different possible sources of hot oxygen and carbon atoms in the thermosphere, e.g. dissociative recombination of O2+ , CO+ and CO2+ , photodissociation of O2 and CO, and other reactions like charge transfer. From the calculated production rate profiles we can get insights into the importance of the different source reactions. The resulting energy distribution functions at the exobase level are used to study the exospheric densities and the escape of hot oxygen and carbon. We discuss the escape rates of those atoms and the importance of different source processes compared to the present situation at Mars.This work receives funding from the Austrian Science Fund (FWF): P 24247.

  4. Abiotic production of NO3 in the atmosphere of Early Mars

    NASA Astrophysics Data System (ADS)

    Gronoff, Guillaume; Airapetian, Vladimir; Hebrard, Eric

    2015-11-01

    Recent Curiosity/SAM measurements of Martian sediments have shown the presence of NO3 trapped in the samples. The ratio of nitrate to perchlorate has been suggested to be an indicator for habitability (Stern et al. 2015). However, the efficiency of the production of nitrate in the atmosphere has never been studied for the case of the active young Sun. To evaluate the effect of the abiotic production of nitrates, we apply our 1D atmospheric photochemical collisional model for the nitrogen-rich and CO2 atmosphere of early Mars, and calculate the production rate of NO3 mediated by the precipitation of energetic particles associated with the coronal mass ejections from the young Sun.We propose a method to check the hypothesis of the abiotic production: if the production is driven by the precipitating particles, then the magnetic shielding would reduce the NO3 production at the equator. Thus, samples collected at high latitudes should contain greater concentration of nitrates if the weathering did not homogenize it.

  5. Early stages in the evolution of the atmosphere and climate on the Earth-group planets

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Mukhin, L. M.

    1977-01-01

    The early evolution of the atmospheres and climate of the Earth, Mars and Venus is discussed, based on a concept of common initial conditions and main processes (besides known differences in chemical composition and outgassing rate). It is concluded that: (1) liquid water appeared on the surface of the earth in the first few hundred million years; the average surface temperature was near the melting point for about the first two eons; CO2 was the main component of the atmosphere in the first 100-500 million years; (2) much more temperate outgassing and low solar heating led to the much later appearance of liquid water on the Martian surface, only one to two billion years ago; the Martian era of rivers, relatively dense atmosphere and warm climate ended as a result of irreversible chemical bonding of CO2 by Urey equilibrium processes; (3) a great lack of water in the primordial material of Venus is proposed; liquid water never was present on the surface of the planet, and there was practically no chemical bonding of CO2; the surface temperature was over 600 K four billion years ago.

  6. The Chlorine Abundance of Earth: Evidence for Early Atmospheric Loss and Creation of a Life-Supporting Planet

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Draper, D. S.

    2009-12-01

    The Earth abundance of the heavier halogens, Cl, Br and I, are significantly depleted relative to expected values based on CI chondrites and solar abundances. The cause of these ‘selective’ depletions may be related to 1) far greater volatility than previously assumed; 2) a hidden reservoir on Earth; 3) selective loss of the halogens during planetary accretion. The volatility of an element is related to its temperature of condensation from the cooling solar nebula. The high condensation temperature of Cl is based on sodalite crystallization at ~800 K (10-4 bar), but even if sodalite formation is kinetically impeded at such low pressures, NaCl (g) should condense to NaCl (s) at only slightly lower temperatures. An unreasonably low condensation temperature of ~200 K would be needed to explain Earth’s concentration of halogens. A second possibility for the apparent Earth depletion is that Cl is strongly partitioned into the core. We tested this hypothesis by experimentally measuring Cl partitioning between basalt and Fe (and Fe95.5S4.5) at high pressures and temperatures. Samples were doped with trace FeCl2 as a Cl source. The measured D (Cl) metal-basalt is less than 0.01 under all conditions, ruling out the possibility of a Cl sink in the core. We propose instead that the halogens were lost during the late giant bombardment stage of planetary accretion. The selective loss of the halogens relative to other elements with similar condensation temperatures is explained by their unique hydrophilic character. Early in Earth’s history, halogens were strongly partitioned into the ocean/surficial environment. They were then removed by atmospheric erosion associated with giant impacts towards the end of planetary accretion. Our results provide independent evidence for multiple atmospheric-loss events, a controversial conclusion that is at odds with some geophysical studies. Over 90% of Cl was lost in early Earth history. Today, the oceans host nearly half of Earth

  7. Sulfur in the Early Martian Atmosphere Revisited: Experiments with a 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kerber, L.; Forget, F.; Wordsworth, R.

    2013-09-01

    Data returned from the surface of Mars during the 1970s revealed intriguing geological evidence for a warmer and wetter early martian climate. Dendritic valley networks were discovered by Mariner 9 on ancient Noachian terrain [1], indicating that liquid water had flowed across the surface in the distant past. Since this time, geological investigations into early Martian history have attempted to ascertain the nature and level of activity of the early Martian hydrological cycle [e.g. 2-5] while atmospheric modeling efforts have focused on how the atmosphere could be warmed to temperatures great enough to sustain such activity [see 6-7 for reviews]. Geological and spectroscopic investigations have refined the history and chronology of Noachian Mars over time, and circulation of liquid water has been invoked to explain several spatially and temporally distinct morphological and chemical signatures found in the geological record. Detections of iron and magnesium-rich clays are widespread in the oldest Martian terrains, suggesting a period of pH-neutral aqueous alteration [e.g., 8]. Valley network incision also took place during the Noachian period [9]. Some chains of river valleys and craters lakes extend for thousands of kilometers, suggesting temperatures at least clement enough for sustained ice-covered flow [3,10]. The commencement of valley network incision is not well constrained, but the period of Mg/Fe clay formation appears to have ended before the termination of valley network formation, as the visible fluvial systems appear to have remobilized existing clays rather than forming them [5,8]. There is also evidence that the cessation of valley network formation was abrupt [11]. Towards the end of the Noachian, erosion rates appear to have been significantly higher than during subsequent periods, a process that has also been attributed to aqueous processes [12]. A period of sulfate formation followed, likely characterized by acidic, evaporitic playa environments

  8. How do we solve the Faint Young Sun Paradox? Examining diverse proposed atmospheres for Early Earth

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.

    2010-12-01

    The canonical problem in Early Earth climatology is the Faint Young Sun Paradox (FYSP): despite receiving much less energy from the Sun than today, the Earth was at least as warm during the Archean Eon as it is today. Clearly, Early Earth had stronger greenhouse effect or lower albedo, yet despite four decades of study, there is no consensus on the solution. The FYSP requires consideration of very different climate regimes to the present day, so provides a great learning tool for diverse and undiscovered climates in Earth's past and future. I will discuss old and new ideas of enhanced greenhouse gas solutions, present a recent proposal that pressure broadening by a thicker nitrogen atmosphere contributed to the solution [1], and a new analysis of what role clouds could have in resolving the FYSP [2]. Various strong greenhouse gas enhancements have been suggested, but all are subject to some problems. A nitrogen inventory greater than the present level was likely in the Archean atmosphere. This would have given a temperature increase of 3 to 8°C by pressure broadening the absorption lines of greenhouse gases. Cloud changes are evaluated relative to the required radiative forcing of +50 Wm-2 to resolve the FYSP. Plausible changes to low clouds (reducing albedo) or high cloud (strengthening the greenhouse effect) could both contribute at most +15Wm-2, so neither fewer low clouds nor more high clouds can provide enough forcing to resolve the FYSP. Decreased surface albedo can contribute no more than +5 Wm-2 forcing. [1] Goldblatt, C. et al., 2009, Nitrogen-enhanced greenhouse warming on early Earth, Nature Geosci., 2, 891 - 896. doi:10.1038/ngeo692 [2] Goldblatt, C. and Zahnle, K. J., 2010, Clouds and the Faint Young Sun Paradox, Clim. Past Discuss., 6, 1337-1350. doi:10.5194/cpd-6-1337-2010

  9. Deficit irrigation strategies combined with controlled atmosphere preserve quality in early peaches.

    PubMed

    Falagán, Natalia; Artés, Francisco; Gómez, Perla A; Artés-Hernández, Francisco; Conejero, Wenceslao; Aguayo, Encarna

    2015-10-01

    Due to the water scarcity in the Mediterranean countries, irrigation must be optimized while keeping fruit quality. The effect of deficit irrigation strategies on changes in quality parameters of the early "Flordastar" peaches was studied. The deficit irrigation was programmed according to signal intensity of the maximum daily trunk shrinkage; deficit irrigation plants were irrigated to maintain maximum daily trunk shrinkage signal intensity values close to 1.4 or 1.3 in the case of DI1 or DI2 plants, respectively. Results were compared to a control watered at 150% crop evapotranspiration. Fruits were stored up to 14 days at 0 ℃ and 95% Relative Humidity (RH) in air or in controlled atmosphere (controlled atmosphere; 3-4 kPa O2 and 12-14 kPa CO2), followed by a retail sale period of 4 days at 15 ℃ and 90-95% Relative Humidity in air. Weight losses were lower in controlled atmosphere stored peaches from deficit irrigation. Air-stored fruits developed a more intense red color due to a faster ripening, which was not affected by the type of watering. At harvest, deficit irrigation peaches showed higher soluble solids content, which provided a better sensory evaluation. The soluble phenolic content was initially higher (55.26 ± 0.18 mg gallic acid equivalents/100 g fresh weight) and more stable throughout postharvest life in DI1 fruits than in those from the other irrigation treatments. Concerning vitamin C, control fruits at harvest showed higher ascorbic acid than dehydroascorbic acid content (5.43 versus 2.43 mg/100 g fresh weight, respectively), while water stressed peaches showed the opposite results. The combination of DI2 and controlled atmosphere storage allowed saving a significant amount of water and provided peaches with good overall quality, maintaining the bioactive compounds analyzed. PMID:25280939

  10. Deficit irrigation strategies combined with controlled atmosphere preserve quality in early peaches.

    PubMed

    Falagán, Natalia; Artés, Francisco; Gómez, Perla A; Artés-Hernández, Francisco; Conejero, Wenceslao; Aguayo, Encarna

    2015-10-01

    Due to the water scarcity in the Mediterranean countries, irrigation must be optimized while keeping fruit quality. The effect of deficit irrigation strategies on changes in quality parameters of the early "Flordastar" peaches was studied. The deficit irrigation was programmed according to signal intensity of the maximum daily trunk shrinkage; deficit irrigation plants were irrigated to maintain maximum daily trunk shrinkage signal intensity values close to 1.4 or 1.3 in the case of DI1 or DI2 plants, respectively. Results were compared to a control watered at 150% crop evapotranspiration. Fruits were stored up to 14 days at 0 ℃ and 95% Relative Humidity (RH) in air or in controlled atmosphere (controlled atmosphere; 3-4 kPa O2 and 12-14 kPa CO2), followed by a retail sale period of 4 days at 15 ℃ and 90-95% Relative Humidity in air. Weight losses were lower in controlled atmosphere stored peaches from deficit irrigation. Air-stored fruits developed a more intense red color due to a faster ripening, which was not affected by the type of watering. At harvest, deficit irrigation peaches showed higher soluble solids content, which provided a better sensory evaluation. The soluble phenolic content was initially higher (55.26 ± 0.18 mg gallic acid equivalents/100 g fresh weight) and more stable throughout postharvest life in DI1 fruits than in those from the other irrigation treatments. Concerning vitamin C, control fruits at harvest showed higher ascorbic acid than dehydroascorbic acid content (5.43 versus 2.43 mg/100 g fresh weight, respectively), while water stressed peaches showed the opposite results. The combination of DI2 and controlled atmosphere storage allowed saving a significant amount of water and provided peaches with good overall quality, maintaining the bioactive compounds analyzed.

  11. An early warning indicator for atmospheric blocking events using transfer operators

    SciTech Connect

    Tantet, Alexis Burgt, Fiona R. van der; Dijkstra, Henk A.

    2015-03-15

    The existence of persistent midlatitude atmospheric flow regimes with time-scales larger than 5–10 days and indications of preferred transitions between them motivates to develop early warning indicators for such regime transitions. In this paper, we use a hemispheric barotropic model together with estimates of transfer operators on a reduced phase space to develop an early warning indicator of the zonal to blocked flow transition in this model. It is shown that the spectrum of the transfer operators can be used to study the slow dynamics of the flow as well as the non-Markovian character of the reduction. The slowest motions are thereby found to have time scales of three to six weeks and to be associated with meta-stable regimes (and their transitions) which can be detected as almost-invariant sets of the transfer operator. From the energy budget of the model, we are able to explain the meta-stability of the regimes and the existence of preferred transition paths. Even though the model is highly simplified, the skill of the early warning indicator is promising, suggesting that the transfer operator approach can be used in parallel to an operational deterministic model for stochastic prediction or to assess forecast uncertainty.

  12. A new plant assemblage (microfossil and megafossil) from the Lower Old Red Sandstone of the Anglo-Welsh Basin: its implications for the palaeoecology of early terrestrial ecosystems.

    PubMed

    Wellman; Habgood; Jenkins; Richardson

    2000-05-01

    Lower Old Red Sandstone deposits penetrated by a series of cored boreholes near Newport (South Wales) have been sedimentologically logged, and recovered plant assemblages (microfossil and megafossil) investigated. Sedimentological logging indicates that the deposits are typical of the extensive terrestrial-fluviatile floodplain deposits of the Anglo-Welsh Basin. Palynomorph assemblages have been recovered from a number of horizons and comprise entirely terrestrial forms (spores and phytodebris). They essentially represent a single assemblage, belonging to the middle subzone of the micrornatus-newportensis sporomorph assemblage biozone, and indicate an Early Devonian (mid-Lochkovian) age. The new biostratigraphical data enables correlation with other Lower Old Red Sandstone deposits of the Anglo-Welsh Basin, and the deposits are assigned to the lower part of the St. Maughan's Group. A plant megafossil/mesofossil assemblage recovered from one of the spore-bearing horizons includes a zosterophyll assigned to Zosterophyllum cf. fertile. This is the earliest reported zosterophyll from the Anglo-Welsh Basin. The new palynological/palaeobotanical data provide important information on the palaeoecology and palaeobiogeography of the vegetation of the southeastern margin of the Old Red Sandstone continent during Lochkovian times. Palaeogeographical variation in the distribution of plant microfossils and megafossils is interpreted as reflecting differences between the flora of the lowland floodplain and inland intermontaine basins, although this is to a certain extent overprinted by variation due to localized differences in environmental conditions.

  13. Filling-In of Broad Far-Red Solar Lines by Terrestrial Fluorescence and Atmospheric Raman Scattering as Detected by SCIAMACHY Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Yoshida, Y.; Kuze, A.; Corp, L. A.

    2011-01-01

    Global mapping of terrestrial vegetation fluorescence from space has recently been accomplished with high spectral resolution measurements from the Japanese Greenhouse gases Observing SATellite (GOSAT). These data are of interest because they can potentially provide global information on the functional status of vegetation including light use efficiency and global primary productivity that can be used for global carbon cycle modeling. Quantifying the impact of fluorescence on the O2-A band is important as this band is used for cloud- and aerosol-characterization for other trace-gas retrievals including CO2. Here, we demonstrate that fluorescence information can be derived from space using potentially lower-cost hyperspectral instrumentation, i.e., more than an order of magnitude less spectral resolution than GOSAT, with a relatively simple algorithm. As a demonstration, we use the filling-in of one of the few wide and deep solar Fraunhofer lines in the red and far-red chlorophylla fluorescence bands, the calcium II line near 866 nm, to retrieve fluorescence with the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) satellite instrument. Although the signal from vegetation fluorescence is extremely weak at 866 nm, our results suggest that useful information may be obtained after adjustments are made to the observed spectra to correct for instrumental artifacts. We compare fluorescence from SCIAMACHY with that retrieved at 758 and 770 nm from similarly-corrected GOSAT data as well with the Enhanced Vegetation Index (EVI) from the MODerate-resolution Imaging Spectroradiometer (MODIS). We also show that filling-in occurs at 866 nm over barren areas, possibly originating from luminescent minerals in rock and soil.

  14. Transient Simulation of the Evolution and Abrupt Change of Northern Africa Atmosphere-Ocean-Terrestrial Ecosystem in the Holocene: What causes the abrupt change?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Wang, Y.; Gallimore, R.; Gasse, F.; Johnson, T.; Demenocal, P.; Adkins, J.; Notaro, M.; Prentice, C.; Kutzbach, J.; Jacob, R.; Behling, P.; Ong, E.; Wang, L.

    2006-12-01

    We present the first synchronously coupled transient simulation of the evolution of northern Africa climate- ecosystem for the last 6500 years in a global general circulation ocean-atmosphere-terrestrial ecosystem model. The model successfully simulated the major abrupt vegetation collapse in the southern Sahara at about 5ka, consistent with the proxy records. Local precipitation, however, shows a much more gradual decline with time. The vegetation change in northern Africa is clearly driven by local precipitation decline and strong precipitation variability. In contrast, the change of precipitation is dominated by internal climate variability and a gradual monsoonal climate response to orbital forcing. In addition, some minor vegetation changes are also simulated in different regions across northern Africa. The model simulated a reduced seasonal cycle of SST and a gradual annual mean surface cooling in the subtropical North Atlantic towards the latest Holocene. The SST response is caused largely by the insolation forcing, while the annual mean cooling is also reinforced by the increased coastal upwelling near the east boundary. The increased upwelling results from a southward retreat of the North Africa monsoon system, and, in turn, an increased northeasterly trade wind. The simulated changes of SST and upwelling are also largely consistent with recent marine proxy records, albeit with a weaker magnitude in the model. A further analysis of the mechanism of the abrupt vegetation collapse suggests that the abrupt vegetation collapse is caused by a strong decadal climate variability in a stable climate-ecosystem, rather than a positive vegetation-climate feedback on a multi-equilibrium system. We propose that strong climate variability can induce a dramatic vegetation collapse with a gradual reduction in precipitation during the mid-Holocene. Our study highlights climate variability as a critical forcing for the vegetation collapse in both models and the real world.

  15. Modeling soil climate controls on the exchange of trace gases between the terrestrial biosphere and the atmosphere. Ph.D. Thesis

    SciTech Connect

    Frolking, S.E.

    1993-12-31

    Soil temperature and moisture profiles (soil climate) have a strong influence on the rate of trace gas exchange between the terrestrial biosphere and the atmosphere through the controls exerted on microbial processes and the physical exchange of gases. Principal controls of biological denitrification in mineral soils are the availability of carbon and nitrogen substrates and the soil anaerobic status. A process-oriented model of decomposition and denitrification in soils (DNDC) was modified to have a more detailed portrayal of these controls. In particular, a diffusive soil gas phase was added, along with a method for determining anaerobic and aerobic fractional volume within a soil profile. The model generally overestimated N2O fluxes when compared to field data from a sandy soil in Costa Rica, but captured the timing and shape of the brief flux episodes. Several modelling shortcomings are discussed, including the nature of the carbon substrates and the nature and dynamics of soil anaerobic fractional volume. Methane flux from wetland soils is generally correlated with soil temperature and depth to water table. A model of peat soil climate was developed and applied to a small, poor fen in southern New Hampshire. Temperature profiles and ice depth are in good agreement with field data, but depth to water table is more problematic. Field-based flux correlations to soil temperature, depth to water table, and weighted recent precipitation were developed. When used with the wetland soil climate model, much of the seasonal and shorter period flux variability was captured. The model was then driven by local weather data for 1926-1986; flux variability was dependent on both summer season temperatures and summer precipitation patterns. It is estimated that a five-year field study would capture most of the inter-annual variability.

  16. Terrestrial sequestration

    SciTech Connect

    Charlie Byrer

    2008-03-10

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  17. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2016-07-12

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  18. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10‑23 Hz‑1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  19. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  20. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  1. Aqueous Chemical Modeling of Sedimentation on Early Mars with Application to Surface-Atmosphere Evolution

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    2004-01-01

    This project was to investigate models for aqueous sedimentation on early Mars from fluid evaporation. Results focused on three specific areas: (1) First, a fluid evaporation model incorporating iron minerals was developed to compute the evaporation of a likely solution on early Mars derived from the weathering of mafic rock. (2) Second, the fluid evaporation model was applied to salts within Martian meteorites, specifically salts in the nakhlites and ALH84001. Evaporation models were found to be consistent with the mineralogy of salt assemblages-anhydrite, gypsum, Fe-Mg-Ca carbonates, halite, clays-- and the concentric chemical fractionation of Ca-to Mg-rich carbonate rosettes in ALH84001. We made progress in further developing our models of fluid concentration by contributing to updating the FREZCHEM model. (3) Third, theoretical investigation was done to determine the thermodynamics and kinetics involved in the formation of gray, crystalline hematite. This mineral, of probable ancient aqueous origin, has been observed in several areas on the surface of Mars by the Thermal Emission Spectrometer on Mars Global Surveyor. The "Opportunity" Mars Exploration Rover has also detected gray hematite at its landing site in Meridiani Planum. We investigated how gray hematite can be formed via atmospheric oxidation, aqueous precipitation and subsequent diagenesis, or hydrothermal processes. We also studied the geomorphology of the Aram Chaos hematite region using Mars Orbiter Camera (MOC) images.

  2. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    SciTech Connect

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-11-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences.

  3. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    PubMed Central

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset time of the geomagnetic field, the appearance of an oxygen atmosphere, and the secular variation of an Earth–Moon dynamical system. PMID:19001263

  4. Atmospheric CO2 Amplification of Orbitally Forced Changes in the Hydrological Cycle in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Schaller, M. F.; Kent, D. V.

    2015-12-01

    Models of increasing atmospheric CO2 predict an intensification of the hydrological cycle coupled with warming, possibly amplifying effects of orbitally-forced fluctuations. While there is some Pleistocene evidence of this, CO2 concentrations were much lower than projected for the future. For the potentially more relevant Early Mesozoic, with CO2 >1000 ppm, we observe that both the soil carbonate and stomatal proxies for CO2 strongly and positively correlate with climatic-precession variance in correlative continental and marine strata of both eastern North America and Europe with temporal correlation robustly supported by magneto-, astro-, and U-Pb zircon geochronology. Eastern North American lacustrine and paleosol strata are generally characterized by >3000 ppm CO2 over most of the Norian (228-207 Ma) dropping to ~1000-3000 ppm during the succeeding latest Norian to late Rhaetian (207 to 201.6 Ma) correlative with a dramatic drop in the amplitude of the response to orbital forcing. This is followed by an extraordinary doubling to nearly tripling of CO2 (~2000-5000 ppm) in the latest Rhaetian to Early Jurassic (201.6 to 200.6 Ma) and a concurrent profound increase in the amplitude of the apparent climatic-precession variance during the eruption of the massive Central Atlantic Magmatic Province. Decreasing CO2 (~1000-2000 ppm) afterward is tracked by decreasing amplitude in the orbitally-paced cyclicity. Likewise, in the UK, high amplitude cyclicity in the lacustrine to paralic Twyning Md. Fm. gives way upward into the paralic Blue Anchor and marine Rhaetian Westbury fms in which lithological cyclicity is muted. Again, the amplitude of the orbitially-paced lithological cyclicity dramatically increases into the paralic to marine late Rhaetian Lilstock Fm. and marine latest Rhaetian to Early Jurassic Blue Lias. Parallel and correlative transitions are seen in at least western Germany. The agreement between the continental eastern US and paralic to marine European

  5. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  6. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral

  7. The (146,147)Sm-(142,143)Nd systematics of early terrestrial differentiation and the lost continents of the early Earth

    NASA Technical Reports Server (NTRS)

    Harper, Charles L., Jr.; Jacobsen, Stein B.

    1992-01-01

    The very early history of the Earth has been one of the great enduring puzzles in the history of geology. We report evidence which clearly can be described as a vestige of a beginning, because the evidence that we report cannot be interpreted in any other way except as a geochemical signal of processes active in the very early history of the Earth. The evidence itself is a very small anomaly in the abundance of SM-146. The primary aims of this study were to: (1) verify the existence of the 'lost continents' of the Hadean era; and (2) determine their mean age.

  8. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry

    USGS Publications Warehouse

    Driese, S.G.; Jirsa, M.A.; Ren, M.; Brantley, S.L.; Sheldon, N.D.; Parker, Dana C.; Schmitz, M.

    2011-01-01

    primitive microbial community) during weathering. Cu metal in the profile may document lower pO2 than present day at the surface. Comparison with previous studies of weathered tonalite and basalt (Denison, 2.45-2.22Ga) in Ontario, Canada, reveal general similarities in paleoweathering with our study, as well as important differences related to lower paleoatmospheric pO2 and terrestrial biosignature for the older Minnesota profile. A falling water table in the Alpine Lake locality is presumed to have promoted formation of this gossan-like deep-weathering system that extends to 50-m depth. ?? 2011 Elsevier B.V.

  9. Filling-in of Far-Red and Near-Infrared Solar Lines by Terrestrial and Atmospheric Effects: Simulations and Space-Based Observations from SCHIAMACHY and GOSAT

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Kuze, A.; Corp, L. A.

    2012-01-01

    Mapping of terrestrial vegetation fluorescence from space is of interest because it can potentially provide global information on the functional status of vegetation including light use efficiency and global primary productivity that can be used for global carbon cycle modeling. Space-based measurement of solar-induced chlorophyll fluorescence is challenging, because its signal is small as compared with the much larger reflectance signal. Ground- and aircraft-based approaches have made use of the dark and spectrally-wide 02-A (approx 760 nm) and O2-B (approx 690 nm) atmospheric features to detect the weak fluorescence signal. More recently, Joiner et a1. and Frankenberg et a1. focused on longer-wavelength solar Fraunhofer lines that can be observed with space-based instruments such as the currently operational GOSAT. They showed that fluorescence can be detected using Fraunhofer lines away from the far-red chlorophyll-a fluorescence peak even when the surface is relatively bright. Here, we build on that work by developing methodology to correct for instrumental artifacts that produce false filling-in signals that can bias fluorescence retrievals. We also examine other potential sources of filling-in at far-red and NIR wavelengths. Another objective is to explore the possibility of making fluorescence measurements from space with lower spectral resolution instrumentation than the GOSAT interferometer. We focus on the 866 nm Ca II solar Fraunhofer line. Very few laboratory and ground-based measurements of vegetation fluorescence have been reported at wavelengths longer than 800 mn. Some results of fluorescence measurements of corn leaves acquired in the laboratory using polychromatic excitation at wavelengths shorter than 665 nm show that at 866 nm, the measured signal is of the order of 0.1-0.2 mw/sq m/nm/sr. In this work we use the following satellite observations: We use SCIAMACHY channel 5 in nadir mode that covers wavelengths between 773 and 1063 nm at a

  10. Speciation and solubility of reduced C-O-H-N volatiles in mafic melt: Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Armstrong, Lora S.; Hirschmann, Marc M.; Stanley, Ben D.; Falksen, Emily G.; Jacobsen, Steven D.

    2015-12-01

    Using vibrational spectroscopy and SIMS, we determined the solubility and speciation of C-O-H-N dissolved volatiles in mafic glasses quenched from high pressure under reduced conditions, with fO2 from -3.65 to +1.46 relative to the iron-wüstite buffer (IW). Experiments were performed on martian and terrestrial basalts at 1.2 GPa and 1400 °C in graphite containers with variable availability of H2O, and in the presence of FePt alloys or Fe-C liquids. The dominant C-O-H-N species varies systematically with fO2 and H2O content: the carbonate ion prevails above IW + 1, but for dry conditions between IW-2 and IW + 1, Ctbnd O species are most important. Below IW, reduced NH-bearing species are present. At the most reducing and hydrous (∼0.5 wt% H2O) conditions, small amounts of CH4 are present. Concentrations of C diminish as conditions become more reduced, amounting to 10 s to ∼100 ppm in the interval ∼IW-2 to IW + 1 where Ctbnd O species dominate, and as little as 1-3 ppm at more reduced conditions. Concentrations of non-carbonate carbon, dominated by Ctbnd O species, correlate with CO fugacities along a trend implying that the species stoichiometry has just one Ctbnd O group and suggesting that carbonyl complexes (transition metals with multiple carbon monoxide ligands) are not important species under these conditions. C partition coefficients between Fe-C liquid and silicate melt increase with decreasing fO2 , becoming as great as 104 for the most reducing conditions investigated. The low solubility of C in silicate liquids under reducing conditions means that most C during the magma ocean stage of planetary differentiation is either segregated to the core or in the overlying atmosphere. Precipitation of C-rich phases in a carbon-saturated magma ocean is also possible, and is one mechanism by which some C can be retained in the mantle of a planet. The predominant magmatic carbonaceous species for both martian and lunar volcanism is likely Ctbnd O.

  11. Filling-in of Far-Red and Near-Infrared Solar Lines by Terrestrial and Atmospheric Effects: Simulations and Space-Based Observations from SCIAMACHY and GOSAT

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Yoshida, Y.; Kuse, A.; Corp, L. A.

    2012-01-01

    Mapping of terrestrial vegetation fluorescence from space is of interest because it can potentially provide global information on the functional status of vegetation including light use efficiency and global primary productivity that can be used for global carbon cycle modeling. Space-based measurement of solar-induced chlorophyll fluorescence is challenging, because its signal is small as compared with the much larger reflectance signal. Ground- and aircraft-based approaches have made use of the dark and spectrally-wide O2-A ( approx 760 nm) and O2-B (approx 690 nm) atmospheric features to detect the weak fluorescence signal. More recently, Joiner et al. and Frankenberg et al. focused on longer-wavelength solar Fraunhofer lines that can be observed with space-based instruments such as the currently operational GOSAT. They showed that fluorescence can be detected using Fraunhofer lines away from the far-red chlorophyll-a fluorescence peak even when the surface is relatively bright. Here, we build on that work by developing methodology to correct for instrumental artifacts that produce false filling-in signals that can bias fluorescence retrievals. We also examine other potential sources of filling-in at far-red and NIR wavelengths. Another objective is to explore the possibility of making fluorescence measurements from space with lower spectral resolution instrumentation than the GOSAT interferometer. We focus on the 866nm Ca II solar Fraunhofer line. Very few laboratory and ground-based measurements of vegetation fluorescence have been reported at wavelengths longer than 800 nm. Some results of fluorescence measurements of corn leaves acquired in the laboratory using polychromatic excitation at wavelengths shorter than 665nm show that at 866 nm, the measured signal is of the order of 0.1-0.2 mW/sq m/nm/sr. In this work, we use the following satellite observations: We use SCIAMACHY channel 5 in nadir mode that covers wavelengths between 773 and 1063nm at a spectral

  12. The terrestrial silica pump.

    PubMed

    Carey, Joanna C; Fulweiler, Robinson W

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO(2) concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1), accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1)) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2) levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  13. The proto-terrestrial mechanism of the appearance of water and early genesis of the global ocean

    NASA Astrophysics Data System (ADS)

    Sergin, S. Ya.

    2016-08-01

    We consider chemical reactions for the appearance of water during the formation of the planet from cosmic gas and dust material to explain the early geological existence of the Earth's hydrosphere. This process is fully supported by the resources of the initial substances and thermal energy. Thus, the concept of V.I. Vernadsly about the geological eternity of the World Ocean and ancient age of the oceanic lithosphere is supported. The identical high location of the ancient and modern continental platforms under the conditions of continual isostatical equilibrium in the asthenosphere-lithosphere-hydrosphere gives grounds to conclude that the ocean water depth is stable. Taking this into account, we can consider that the geological evolution of the Earth began in the conditions of the existence of the World Ocean when the mass of the hydrosphere only slightly exceeded the modern one.

  14. Combined147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Bourdon, Bernard; Mojzsis, Stephen J.; Rudge, John F.; Guitreau, Martin; Blichert-Toft, Janne

    2014-06-01

    silicate differentiation controlled the composition of Earth's oldest crust. Inherited 142Nd anomalies in Archean rocks are vestiges of the mantle-crust differentiation before ca. 4300 Ma. Here we report new whole-rock 147,146Sm-143,142Nd data for the Acasta Gneiss Complex (AGC; Northwest Territories, Canada). Our 147Sm-143Nd data combined with literature data define an age of 3371 ± 141 Ma (2 SD) and yield an initial ɛ143Nd of -5.6 ± 2.1. These results are at odds with the Acasta zircon U-Pb record, which comprises emplacement ages of 3920-3960 Ma. Ten of our thirteen samples show 142Nd deficits of -9.6 ± 4.8 ppm (2 SD) relative to the modern Earth. The discrepancy between 142Nd anomalies and a mid-Archean 147Sm-143Nd age can be reconciled with Nd isotope reequilibration of the AGC during metamorphic perturbations at ca. 3400 Ma. A model age of ca. 4310 Ma is derived for the early enrichment of the Acasta source. Two compositional end-members can be identified: a felsic component with 142Nd/144Nd identical to the modern Earth and a mafic component with 142Nd/144Nd as low as -14.1 ppm. The ca. 4310 Ma AGC source is ˜200 Myr younger than those estimated for Nuvvuagittuq (northern Québec) and Isua (Itsaq Gneiss Complex, West Greenland). The AGC does not have the same decoupled Nd-Hf isotope systematics as these other two terranes, which have been attributed to the crystallization of an early magma ocean. The Acasta signature rather is ascribed to the formation of Hadean crust that was preserved for several hundred Myr. Its longevity can be linked to 142Nd evolution in the mantle and does not require slow mantle stirring times nor modification of its convective mode.

  15. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-04-25

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  16. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  17. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  18. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  19. Chemical exchanges between a global ocean and an atmosphere on early Titan

    NASA Astrophysics Data System (ADS)

    Marounina, N.; Grasset, O.; Tobie, G.; Carpy, S.

    2015-10-01

    Saturn's largest satellite Titan is the only satellite in the Solar System possessing a dense atmosphere, which origin is still uncertain. The present-day N2- dominated atmosphere is likely the remnant of a more massive atmosphere formed during the accretion from degassing of volatile species brought by Titan's building blocks and released upon impact-induced melting and vaporization [1, 2]. Here, we model chemical exchanges between a global surface ocean produced by accretional melting and a primitive atmosphere are modeled for exploring the mass and composition of Titan's primitive atmosphere and its subsequent evolution during the post-accretional cooling.

  20. Paleoclimatic and paleoecological reconstruction of early Miocene terrestrial equatorial deposits, Rusinga and Mfangano Islands, Lake Victoria, Kenya

    NASA Astrophysics Data System (ADS)

    Michel, L. A.; Peppe, D. J.; McNulty, K. P.; Driese, S. G.; Lutz, J.; Nightingale, S.; Maxbauer, D. P.; Horner, W. H.; DiPietro, L. M.; Lehmann, T.; Dunsworth, H. M.; Harcourt-Smith, W. E.; Ogondo, J.

    2012-12-01

    Biological responses to climatic shifts are often studied to inform us on future anthropogenic-driven climate change. However, few of these climatic shifts occur over time scales appropriate to modern change and few occur with biota similar to modern. The Miocene Climatic Optimum is an ideal interval to study because of its rapid duration and because it occurred during the rise and proliferation of apes. The sediments on Rusinga and Mfangano Islands, Lake Victoria, Kenya were deposited between 18 and 20 Ma and record a changing equatorial climate just prior to the Miocene Climate Optimum. This location also offers an opportunity to use multiple proxies to constrain climate and landscape, including paleosol geochemistry, paleobotany and paleontology. Additionally, due to the rich fossil preservation on the islands, climatic shifts are framed within the context of early caterrhine evolution. Here, we report a climate shift recorded through three time slices spanning two formations over ~2 myr. The oldest unit, the Wayando Formation, records an arid, probably open ecosystem with pedogenic calcite rhizoliths, a high groundwater table, poorly-formed paleosols and permineralized sedges. The middle time slice, the Grit Member-Fossil Bed Member contact of the Hiwegi Formation, shows evidence of a local saline lake, with desiccation features, satin-spar after gypsum deposits and salt hoppers. Paleobotanical and sedimentological data from roughly contemporaneous strata indicate a warm, highly seasonal environment that supported a mixture of woodland and forested elements across the landscape. The youngest unit, which is within the Kibanga Member of the Hiwegi Formation, displays demonstrable evidence for a closed-canopy multistoried forest with the presence of tree-stump casts and permineralized root systems within a red-brown paleosol. Within the same paleosol horizon, the dental remains of the catarrhines Proconsul and Dendropithecus have been discovered in situ. This

  1. The lifetime of excess atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Moore, Berrien; Braswell, B. H.

    1994-03-01

    We explore the effects of a changing terrestrial biosphere on the atmospheric residence time of CO2 using three simple ocean carbon cycle models and a model of global terrestrial carbon cycling. We find differences in model behavior associated with the assumption of an active terrestrial biosphere (forest regrowth) and significant differences if we assume a donor-dependent flux from the atmosphere to the terrestrial component (e.g., a hypothetical terrestrial fertilization flux). To avoid numerical difficulties associated with treating the atmospheric CO2 decay (relaxation) curve as being well approximated by a weighted sum of exponential functions, we define the single half-life as the time it takes for a model atmosphere to relax from its present-day value half way to its equilibrium pCO2 value. This scenario-based approach also avoids the use of unit pulse (Dirac Delta) functions which can prove troublesome or unrealistic in the context of a terrestrial fertilization assumption. We also discuss some of the numerical problems associated with a conventional lifetime calculation which is based on an exponential model. We connect our analysis of the residence time of CO2 and the concept of single half-life to the residence time calculations which are based on using weighted sums of exponentials. We note that the single half-life concept focuses upon the early decline of CO2 under a cutoff/decay scenario. If one assumes a terrestrial biosphere with a fertilization flux, then our best estimate is that the single half-life for excess CO2 lies within the range of 19 to 49 years, with a reasonable average being 31 years. If we assume only regrowth, then the average value for the single half-life for excess CO2 increases to 72 years, and if we remove the terrestrial component completely, then it increases further to 92 years.

  2. Clouds and Aerosols on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Colaprete, A.; English, J. M.; Haberle, R. M.; Kahre, M. A.

    Clouds and aerosols are common on the terrestrial planets, highly variable on Earth and Mars, and completely covering Venus. Clouds form by condensation and photochemical processes. Nucleation of cloud droplets by certain aerosols provides an indirect linkage. Earth clouds cover over half of the planet, are composed of mainly liquid water or ice, and are a significant component of Earth's surface and top of atmosphere energy balance. On Venus, H2SO4 is the dominant cloud constituent, produced by chemical cycles operating on SO2, likely produced from geologic activity. Martian water ice clouds generally have smaller particles than on Earth, although they form by the same processes. Mars clouds affect the deposition of radiation, drive photochemical reactions, and couple to the dust cycle. In the past, Mars clouds may have produced a significant greenhouse effect at times of high obliquity and early in its history. Mars atmospheric dust has both a seasonal cycle and great dust storms. Dust significantly influences the thermal and dynamical structure of the martian atmosphere. Mars CO2 clouds provide both latent heat and radiative effects on the atmosphere, possibly more important on the early, wet, and warmer Mars climate.

  3. Early evolution of the continental crust, the oxygenated atmosphere and oceans, and the heterogeneous mantle

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.

    2011-12-01

    The current paradigm for the evolution of early Earth is that, only since ~2.5 Ga ago, the Earth began to: (a) form a large granitic continental crust; (b) form an oxygenated atmosphere; (c) operate oxidative weathering of rocks on land; (d) form Fe-poor, but S-, U- and Mo-rich, oceans; (e) operate large-scale transfers of elements between oceans and oceanic crust at MORs; (f) subduct the altered oceanic crust; (g) create the mantle heterogeneity, especially in the concentrations and isotopic compositions of Fe(III), Fe(II), U, Pb, alkali elements, C, S, REEs, and many other elements; (h) create chemical and isotopic variations among OIB-, OPB-, and MORB magmas, and between I- and S-type granitoid magmas; and (i) create variations in the chemical and isotopic compositions of volcanic gas. Submarine hydrothermal fluids have typically developed from seawater-rock interactions during deep (>2 km) circulation of seawater through underlying hot volcanic rocks. When the heated hydrothermal fluids ascend toward the seafloor, they mix with local bottom seawater to precipitate a variety of minerals on and beneath the seafloor. Thus, the mineralogy and geochemistry of submarine hydrothermal deposits and associated volcanic rocks can be used to decipher the chemistry of the contemporaneous seawater, which in turn indicate the chemistry of the atmosphere and the compositions and size of the continental crust. The results of mineralogical and geochemical investigations by our and other research groups on submarine hydrothermal deposits (VMS and BIF) and hydrothermally-altered submarine volcanic rocks in Australia, South Africa, and Canada, ~3.5-2.5 Ga in ages, suggest that the above processes (a)-(i) had began by ~3.5 Ga ago. Supportive evidence includes, but not restricted to, the similarities between Archean submarine rocks and modern ones in: (1) the abundance of ferric oxides; (2) the Fe(III)/Fe(I) ratios; (3) the abundance of barite; (4) the increased Li contents; (5) the

  4. Atmosphere-ocean linkages in the eastern equatorial Pacific over the early Pleistocene

    NASA Astrophysics Data System (ADS)

    Povea, Patricia; Cacho, Isabel; Moreno, Ana; Pena, Leopoldo D.; Menéndez, Melisa; Calvo, Eva; Canals, Miquel; Robinson, Rebecca S.; Méndez, Fernando J.; Flores, Jose-Abel

    2016-05-01

    Here we present a new set of high-resolution early Pleistocene records from the eastern equatorial Pacific (EEP). Sediment composition from Ocean Drilling Program Sites 1240 and 1238 is used to reconstruct past changes in the atmosphere-ocean system. Particularly remarkable is the presence of laminated diatom oozes (LDOs) during glacial periods between 1.85 and 2.25 Ma coinciding with high fluxes of opal and total organic carbon. Relatively low lithic particles (coarse and poorly sorted) and iron fluxes during these glacial periods indicate that the increased diatom productivity did not result from dust-stimulated fertilization events. We argue that glacial fertilization occurred through the advection of nutrient-rich waters from the Southern Ocean. In contrast, glacial periods after 1.85 Ma are characterized by enhanced dust transport of finer lithic particles acting as a new source of nutrients in the EEP. The benthic ecosystem shows dissimilar responses to the high productivity recorded during glacial periods before and after 1.85 Ma, which suggests that the transport processes delivering organic matter to the deep sea also changed. Different depositional processes are interpreted to be the result of two distinct glacial positions of the Intertropical Convergence Zone (ITCZ). Before 1.85 Ma, the ITCZ was above the equator, with weak local winds and enhanced wet deposition of dust. After 1.85 Ma, the glacial ITCZ was displaced northward, thus bringing stronger winds and stimulating upwelling in the EEP. The glacial period at 1.65 Ma with the most intense LDOs supports a rapid southward migration of the ITCZ comparable to those glacial periods before 1.85 Ma.

  5. TERRESTRIAL ECOTOXICOLOGY

    EPA Science Inventory

    Terrestrial ecotoxicology is the study of how environmental pollutants affect land-dependent organisms and their environment. It requires three elements: (1) a source, (2) a receptor, and (3) an exposure pathway. This article reviews the basic principles of each of each element...

  6. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  7. Terrestrial Biomarkers for Early Life on Earth as Analogs for Possible Martian Life Forms: Examples of Minerally Replaced Bacteria and Biofilms From the 3.5 - 3.3-Ga Barberton Greenstone Belt, South Africa

    NASA Technical Reports Server (NTRS)

    Westall, F.; McKay, D. S.; Gibson, E. K.; deWit, M. J.; Dann, J.; Gerneke, D.; deRonde, C. E. J.

    1998-01-01

    The search for extraterrestrial life and especially martian life hinges on a variety of methods used to identify vestiges of what we could recognize as life, including chemical signatures, morphological fossils, and biogenic precipitates. Although the possibility of extant life on Mars (subsurface) is being considered, most exploration efforts may be directed toward the search for fossil life. Geomorphological evidence points to a warmer and wetter Mars early on in its history, a scenario that encourages comparison with the early Earth. For this reason, study of the early terrestrial life forms and environment in which they lived may provide clues as to how to search for extinct martian life. As a contribution to the early Archean database of terrestrial microfossils, we present new data on morphological fossils from the 3.5-3.3-Ga Barberton greenstone belt (BGB), South Africa. This study underlines the variety of fossil types already present in some of the oldest, best-preserved terrestrial sediments, ranging from minerally replaced bacteria and bacteria molds of vaRious morphologies (coccoid, coccobacillus, bacillus) to minerally replaced biofilm. Biofilm or extracellular polymeric substance (EPS) is produced by bacteria and appears to be more readily fossilisable than bacteria themselves. The BGB fossils occur in shallow water to subaerial sediments interbedded with volcanic lavas, the whole being deposited on oceanic crust. Penecontemporaneous silicification of sediments and volcanics resulted in the chertification of the rocks, which were later subjected to low-grade metamorphism (lower greenschist).

  8. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    SciTech Connect

    Hayes, D. J.; Turner, D. P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, L.; deJong, B.; McConkey, Brian; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andy; Huntzinger, Deborah N.; Pan, Y.; Post, W. M.; Cook, R. B.

    2012-04-02

    While fossil fuel emissions are calculated with relatively high precision, understanding the fate of those emissions with respect to sequestration in terrestrial ecosystems requires data and methods that can reduce uncertainties in the diagnosis of land-based CO2 sinks. The wide range in the land surface flux estimates is related to a number of factors, but most generally because of the different methodologies used to develop estimates of carbon stocks and flux, and the uncertainties inherent in each approach. The alternative approaches to estimating continental scale carbon fluxes that we explored here can be broadly classified as applying a top-down or bottom-up perspective. Top-down approaches calculate land-atmosphere carbon fluxes based on atmospheric budgets and inverse modeling. Bottom-up approaches rely primarily on measurements of carbon stock changes (the inventory approach) or on spatially distributed simulations of carbon stocks and/or fluxes using process-based modeling (the forward modelapproach).

  9. Evidence for a (15)N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment.

    PubMed

    Bocherens, Hervé; Drucker, Dorothée G; Madelaine, Stéphane

    2014-04-01

    The Middle to Upper Palaeolithic transition around 35,000 years ago coincides with the replacement of Neanderthals by anatomically modern humans in Europe. Several hypotheses have been suggested to explain this replacement, one of them being the ability of anatomically modern humans to broaden their dietary spectrum beyond the large ungulate prey that Neanderthals consumed exclusively. This scenario is notably based on higher nitrogen-15 amounts in early Upper Palaeolithic anatomically modern human bone collagen compared with late Neanderthals. In this paper, we document a clear increase of nitrogen-15 in bone collagen of terrestrial herbivores during the early Aurignacian associated with anatomically modern humans compared with the stratigraphically older Châtelperronian and late Mousterian fauna associated with Neanderthals. Carnivores such as wolves also exhibit a significant increase in nitrogen-15, which is similar to that documented for early anatomically modern humans compared with Neanderthals in Europe. A shift in nitrogen-15 at the base of the terrestrial foodweb is responsible for such a pattern, with a preserved foodweb structure before and after the Middle to Upper Palaeolithic transition in south-western France. Such an isotopic shift in the terrestrial ecosystem may be due to an increase in aridity during the time of deposition of the early Aurignacian layers. If it occurred across Europe, such a shift in nitrogen-15 in terrestrial foodwebs would be enough to explain the observed isotopic trend between late Neanderthals and early anatomically modern humans, without any significant change in the diet composition at the Middle to Upper Palaeolithic transition. PMID:24630359

  10. Evidence for a (15)N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment.

    PubMed

    Bocherens, Hervé; Drucker, Dorothée G; Madelaine, Stéphane

    2014-04-01

    The Middle to Upper Palaeolithic transition around 35,000 years ago coincides with the replacement of Neanderthals by anatomically modern humans in Europe. Several hypotheses have been suggested to explain this replacement, one of them being the ability of anatomically modern humans to broaden their dietary spectrum beyond the large ungulate prey that Neanderthals consumed exclusively. This scenario is notably based on higher nitrogen-15 amounts in early Upper Palaeolithic anatomically modern human bone collagen compared with late Neanderthals. In this paper, we document a clear increase of nitrogen-15 in bone collagen of terrestrial herbivores during the early Aurignacian associated with anatomically modern humans compared with the stratigraphically older Châtelperronian and late Mousterian fauna associated with Neanderthals. Carnivores such as wolves also exhibit a significant increase in nitrogen-15, which is similar to that documented for early anatomically modern humans compared with Neanderthals in Europe. A shift in nitrogen-15 at the base of the terrestrial foodweb is responsible for such a pattern, with a preserved foodweb structure before and after the Middle to Upper Palaeolithic transition in south-western France. Such an isotopic shift in the terrestrial ecosystem may be due to an increase in aridity during the time of deposition of the early Aurignacian layers. If it occurred across Europe, such a shift in nitrogen-15 in terrestrial foodwebs would be enough to explain the observed isotopic trend between late Neanderthals and early anatomically modern humans, without any significant change in the diet composition at the Middle to Upper Palaeolithic transition.

  11. Forsterite/melt partitioning of argon and iodine: Implications for atmosphere formation by outgassing of an early Martian magma ocean

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1992-01-01

    Argon and Xe in the Martian atmosphere are radiogenic relative to the Martian mantle if the SNC meteorites are from Mars. Decay of the short lived isotope I-129 to Xe-129 (t sub 1/2 = 16 m.y.) is the most plausible source of the radiogenic Xe. This short half life constrains any process responsible for the elevated Xe-129/Xe-132 ratio of the Martian atmosphere to occur very early in solar system history. Musselwhite et al. proposed that the differential solubility of I and Xe in liquid water played a key role in producing the radiogenic signature in the Martian atmosphere. Here we explore an alternative hypothesis involving purely igneous processes, and motivated in part by new experimental results on the partitioning of I and Xe between minerals and melt.

  12. Geochemical and biologic constraints on the Archaean atmosphere and climate - A possible solution to the faint early Sun paradox.

    NASA Astrophysics Data System (ADS)

    Rosing, Minik T.; Bird, Dennis K.; Sleep, Norman H.; Bjerrum, Christian J.

    2010-05-01

    There is ample geological evidence that Earth's climate resembled the present during the Archaean, despite a much lower solar luminosity. This was cast as a paradox by Sagan and Mullen in 1972. Several solutions to the paradox have been suggested, mostly focusing on adjustments of the radiative properties of Earth's atmosphere e.g. Kasting (1993), by increasing the mixing ratio of CO2 and/or adding various other greenhouse gasses. We have used banded iron formation (BIF), which are chemical sediments precipitated out of the Archaean ocean to characterize the composition of the atmosphere. The stability relations of magnetite, which is ubiquitous in Archaean BIFs, preclude CO2 mixing ratios much higher than the present atmospheric level. Likewise, magnetite stability is consistent with atmospheric H2 controlled at the lower limit for H2 metabolism by methanogenic phototrophic organisms. In the absence of substantial compensation for the lower solar irradiance by greenhouse gasses in the atmosphere, we have examined the factors that controlled Earth's albedo. These are primarily the surface albedo of Earth and the abundance and properties of clouds. We have applied a model that takes into account the apparent growth of Earth continents (Collerson and Kamber 1999) and the absence of land vegetation during the Precambrian for the evolution of the surface albedo, and a model for the abundance and properties of clouds that takes into account the lower abundance of biogenic cloud condensation nuclei in a less productive prokaryotic world. The higher transparency of the atmosphere for short wave incoming solar radiation and the lower surface albedo on an early Earth dominated by oceans, provided sufficient compensation for the lower solar irradiance to allow the presence of liquid oceans, even at greenhouse gas concentrations broadly similar to the present day values. We therefore suggest that the thermostasis during Earth geologic record, is not paradoxical, but is the

  13. Mercury in the Canadian Arctic terrestrial environment: an update.

    PubMed

    Gamberg, Mary; Chételat, John; Poulain, Alexandre J; Zdanowicz, Christian; Zheng, Jiancheng

    2015-03-15

    Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposition and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accumulation and storage of Hg in the cryosphere. Concentrations of total Hg (THg) in terrestrial snow are highly variable but on average, relatively low (<5 ng L(-1)), and methylmercury (MeHg) levels in terrestrial snow are also generally low (<0.1 ng L(-1)). On average, THg concentrations in snow on Canadian Arctic glaciers are much lower than those reported on terrestrial lowlands or sea ice. Hg in snow may be affected by photochemical exchanges with the atmosphere mediated by marine aerosols and halogens, and by post-depositional redistribution within the snow pack. Regional accumulation rates of THg in Canadian Arctic glaciers varied little during the past century but show evidence of an increasing north-to-south gradient. Temporal trends of THg in glacier cores indicate an abrupt increase in the early 1990 s, possibly due to volcanic emissions, followed by more stable, but relatively elevated levels. Little information is available on Hg concentrations and processes in Arctic soils. Terrestrial Arctic wildlife typically have low levels of THg (<5 μg g(-1) dry weight) in their tissues, although caribou (Rangifer tarandus) can have higher Hg because they consume large amounts of lichen. THg concentrations in the Yukon's Porcupine caribou herd vary among years but there has been no significant increase or decrease over the last two decades. PMID:24861531

  14. Mercury in the Canadian Arctic terrestrial environment: an update.

    PubMed

    Gamberg, Mary; Chételat, John; Poulain, Alexandre J; Zdanowicz, Christian; Zheng, Jiancheng

    2015-03-15

    Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposition and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accumulation and storage of Hg in the cryosphere. Concentrations of total Hg (THg) in terrestrial snow are highly variable but on average, relatively low (<5 ng L(-1)), and methylmercury (MeHg) levels in terrestrial snow are also generally low (<0.1 ng L(-1)). On average, THg concentrations in snow on Canadian Arctic glaciers are much lower than those reported on terrestrial lowlands or sea ice. Hg in snow may be affected by photochemical exchanges with the atmosphere mediated by marine aerosols and halogens, and by post-depositional redistribution within the snow pack. Regional accumulation rates of THg in Canadian Arctic glaciers varied little during the past century but show evidence of an increasing north-to-south gradient. Temporal trends of THg in glacier cores indicate an abrupt increase in the early 1990 s, possibly due to volcanic emissions, followed by more stable, but relatively elevated levels. Little information is available on Hg concentrations and processes in Arctic soils. Terrestrial Arctic wildlife typically have low levels of THg (<5 μg g(-1) dry weight) in their tissues, although caribou (Rangifer tarandus) can have higher Hg because they consume large amounts of lichen. THg concentrations in the Yukon's Porcupine caribou herd vary among years but there has been no significant increase or decrease over the last two decades.

  15. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  16. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  17. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  18. Terrestrial ecosystems and climatic change

    SciTech Connect

    Emanuel, W.R. ); Schimel, D.S. . Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  19. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    NASA Astrophysics Data System (ADS)

    Forget, F.; Wordsworth, R.; Millour, E.; Madeleine, J.-B.; Kerber, L.; Leconte, J.; Marcq, E.; Haberle, R. M.

    2013-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO2 atmosphere with surface pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet. Previous studies had suggested that they could have warmed the planet thanks to their scattering greenhouse effect. However, even assuming parameters that maximize this effect, it does not exceed +15 K. Combined with the revised CO2 spectroscopy and the impact of surface CO2 ice on the planetary albedo, we find that a CO2 atmosphere could not have raised the annual mean temperature above 0 °C anywhere on the planet. The collapse of the atmosphere into permanent CO2 ice caps is predicted for pressures higher than 3 bar, or conversely at pressure lower than 1 bar if the obliquity is low enough. Summertime diurnal mean surface temperatures above 0 °C (a condition which could have allowed rivers and lakes to form) are predicted for obliquity larger than 40° at high latitudes but not in locations where most valley networks or layered sedimentary units are observed. In the absence of other warming mechanisms, our climate model results are thus consistent

  20. The effects of zonal atmospheric currents on the spectra of rotating early-type stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Collins, George W., II

    1993-01-01

    We suggest the existence of zonal currents in the atmospheres of rapidly rotating stars analogous to those found in planetary atmospheres. The zonal flow is assumed to be characterized by 'thin' atmospheric, nearly geostrophic flow which does not change the gravity darkening and stellar shape determined by the underlying uniformly rotating model. The contribution that such flows make to the continuum spectra of such stars is investigated. The additional rotationally induced Doppler displacement resulting from such zonal wind belts can distort the rotationally broadened stellar lines leading to significant departures from the line profiles predicted by the classical model of rotating stars. Our estimates of the zonal flow velocity stem from the assumption of a relation between it and the latitudinal wavenumber of the zonal velocity field. It is thus possible to create barotropic atmosphere models which, in turn, enable the modeling of the stellar spectrum including important spectral lines. In addition, the radiative transfer equations for the Stokes parameters I and Q are solved for the locally plane-parallel atmospheres so that the polarization structure of the radiation field is determined. We find that the presence of zonal wind belts leads to significant changes in the photospheric polarization from those characteristic of a uniformly rotating model.

  1. Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres.

    PubMed

    Lammer, Helmut; Kislyakova, K G; Odert, P; Leitzinger, M; Schwarz, R; Pilat-Lohinger, E; Kulikov, Yu N; Khodachenko, M L; Güdel, M; Hanslmeier, M

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  2. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  3. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  4. Thermal evolution of an early magma ocean in interaction with the atmosphere

    NASA Astrophysics Data System (ADS)

    Lebrun, T.; Massol, H.; Chassefiere, E.; Davaille, A. B.; Marcq, E.; Sarda, P.; Leblanc, F.; Brandeis, G.

    2012-12-01

    Thermal evolution of magma oceans produced by collision with giant impactors late in accretion is expected to depend on the composition and structure of the atmosphere through the greenhouse effect of CO2 and H2O released from the magma during its crystallization. In order to constrain the various cooling timescales of the system, we developed a 1D parameterized convection model of the thermal evolution of a magma ocean coupled with a 1D radiative-convective model of a primitive atmosphere. We conducted a parametric study and depicted the influence of various parameters such as the initial volatile inventories, the initial depth of the magma ocean or the radiogenic heat production rate on the cooling sequence. Our results show that the presence of a convective-radiative steam atmosphere has a strong influence on the duration of the magma ocean phase varying from a few thousand years without atmosphere to typically 1 Myr when a steam atmosphere is present. The time required for the formation of a water ocean is respectively 0.1 Myr, 1.5 Myr and 10 Myr for Mars, Earth and Venus. This time would be virtually infinite for an Earth-sized planet located closer than 0.66 AU from the Sun. Because for Mars and Earth, these times are definitely shorter than the average time between major impacts, successive water oceans could have developed on Earth and Mars during accretion, making easier the loss of their atmospheres by impact erosion. On the contrary, Venus could have remained in the magma ocean stage for most of its accretion.

  5. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  6. Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2001-01-01

    We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.

  7. Local response to warm Antarctic terrestrial temperatures in the Eocene: evidence from terrestrial biomarkers

    NASA Astrophysics Data System (ADS)

    Toney, J. L.; Bendle, J. A.; Inglis, G.; Bijl, P.; Pross, J.; Contreras, L.; van de Flierdt, T.; Huck, C. E.; Jamieson, S.; Huber, M.; Schouten, S.; Roehl, U.; Bohaty, S. M.; Brinkhuis, H.

    2011-12-01

    The early Eocene (~55 to 49 Ma) was characterized by long-term, high global temperatures and elevated atmospheric pCO2 levels (ca. 1000 ppm to more than 2000 ppm). Superimposed on top of this long-term warmth were a series of abrupt high pCO2 (>2000 ppm) and high temperature events. This greenhouse world may be used as an analogue for the future response of the biosphere and global carbon cycle to recent anthropogenic, atmospheric CO2 emissions. A major uncertainty, however, is the response of high polar latitudes to these climate conditions. Here we show evidence of early Eocene warmth measured from terrestrial, bacteria-derived tetraethers at IODP Site U1356, situated along the Wilkes Land margin in East Antarctica. The presence of soil bacteria-derived hopanes and higher plant n-alkanes in drillcores obtained from this site are also used to help understand the terrestrial Antarctic climate evolution in a warmer world. Methyl-branched and cyclised tetraether compounds are derived from terrestrial, soil bacteria. The number of branches and cycles are related directly to the environmental temperature and pH. These compounds indicate that temperatures on Eastern Antarctica likely exceeded 22°C during the Eocene. These temperatures reflect locally sourced terrestrial material input from a variety of elevations along the coastal plain and from the hinterland. A local source region is supported by the palynological and neodymium isotope records and by the presence of hopanes that suggest input from terrigenous soil and/or wetland environments. In particular, the existence of the C31 (17α,21β) homohopane within a relatively immature hopane assemblage is reported at Site U1356 and suggests the presence of methane-producing, wetland environments on Antarctica. Compound-specific carbon isotopes analyzed on the bacterial derived hopanes are used to characterize changes in wetland carbon cycling and methanogenesis. Local adiabatic lapse rate and precipitation amount

  8. Bolide impacts and the oxidation state of carbon in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1990-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.

  9. Titan's surface and atmosphere

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  10. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Lunar Metal Grains: Solar, Lunar or Terrestrial Origin? 22) Isotopic Zoning in the Inner Solar System; 23) Redox Conditions on Small Bodies; 24) Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update; 25) Mantle Redox Evolution and the Rise of Atmospheric O2; 26) Variation of Kd for Fe-Mg Exchange Between Olivine and Melt for Compositions Ranging from Alkaline Basalt to Rhyolite; 27) Determining the Partial Pressure of Oxygen (PO,) in Solutions on Mars; 28) The Influence of Oxygen Environment on Kinetic Properties of Silicate Rocks and Minerals; 29) Redox Evolution of Magmatic Systems; 30) The Constancy of Upper Mantlefo, Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric 0 2; 31) Nitrogen Solubility in Basaltic Melt. Effects of Oxygen Fugacity, Melt Composition and Gas Speciation; 32) Oxygen Isotope Anomalies in the Atmospheres of Earth and Mars; 33) The Effect of Oxygen Fugacity on Interdiffusion of Iron and Magnesium in Magnesiowiistite 34) The Calibration of the Pyroxene Eu-Oxybarometer for the Martian Meteorites; 35) The Europium Oxybarometer: Power and Pitfalls; 36) Oxygen Fugacity of the Martian Mantle from PigeoniteMelt Partitioning of Samarium, Europium and Gadolinium; 37) Oxidation-Reduction Processes on the Moon: Experimental Verification of Graphite Oxidation in the Apollo 17 Orange Glasses; 38) Oxygen and Core Formation in the Earth; 39) Geologic Record of the Atmospheric Sulfur Chemistry Before the Oxygenation of the Early Earth s Atmosphere; 40) Comparative Planetary Mineralogy: V/(CrCAl) Systematics in Chromite as an Indicator of Relative Oxygen Fugacity; 41) How Well do Sulfur Isotopes Constrain Oxygen Abundance in the Ancient Atmospheres? 42) Experimental Constraints on the Oxygen Isotope (O-18/ O-16) Fractionation in the Ice vapor and Adsorbant vapor Systems of CO2 at Conditions Relevant to the Surface of Mars; 43) Micro-XANES Measurements on Experimental Spinels andhe

  11. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    PubMed

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  12. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    PubMed

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  13. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non-33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  14. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between ‑1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  15. Early Holocene Change in Atmospheric Circulation in the North-Central USA

    NASA Astrophysics Data System (ADS)

    Dean, W. E.

    2005-12-01

    Numerous proxies in cores from Elk Lake, northwestern Minnesota, have provided a record of climatic and environmental change with annual resolution for the last 10,000 years. The proxies that allow reconstruction of the lake's physical and chemical paleolimnology (diatoms, redox-sensitive trace metals, and 18O values) show that that prior to about 8.2 cal ka the lake was a stable, dimictic lake that was strongly stratified. The same proxies show that after 8.2 cal. ka the lake was turbulent, well-mixed and shallower. The proxies that are related to climate factors external to the lake (dust as % Al and % Si, varve thickness, and pollen) show that prior to 8.2 cal. ka the lake was receiving relatively little dust, implying little wind activity. After 8.2 cal ka, there was a marked increase in the influx of dust indicating an increase in westerly winds. Lastly, the ostracode faunal assemblages, which provide information about the limnology and watershed characteristics, indicate that, for 1000 years prior to 8.2 cal. ka, the lake was stable and dilute with characteristics typical of lakes in boreal forests. At 8.2 cal. ka, the ostracode assemblage abruptly shifted to an assemblage typical of Canadian prairie lakes that exhibit large seasonal variability in physical characteristics. This marks the northward displacement of the polar front and beginning of westerlies. The Elk Lake record further shows that the so-called 8.2 cal. yr cold event, recognized in ice-core and other records from the circum-North Atlantic, and thought by some to be caused by catastrophic drainage of freshwater from proglacial lakes Agassiz and Ojibway, was but a brief manifestation of a more fundamental and lasting change in the climate of North America. This fundamental climate change was the result of changes in atmospheric circulation in response to marked changes in the relative proportions of land, water, and, especially, glacial ice in North America during the early Holocene, the

  16. Terrestrial carbon cycle responses to drought and climate stress: New insights using atmospheric observations of CO2 and delta13C

    NASA Astrophysics Data System (ADS)

    Alden, Caroline B.

    Atmospheric concentrations of carbon dioxide (CO2) continue to rise well into the second decade of the new millennium, in spite of broad-scale human understanding of the impacts of fossil fuel emissions on the earth's climate. Natural sinks for CO2 that are relevant on human time scales---the world's oceans and land biosphere---appear to have kept pace with emissions. The continuously increasing strength of the land biosphere sink for CO2 is surpassing expectations given our understanding of the CO2 fertilization and warming effects on the balance between photosynthesis and respiration, especially in the face of ongoing forest degradation. The climate and carbon cycle links between the atmosphere and land biosphere are not well understood, especially at regional (100 km to 10,000 km) scales. The climate modulating effects of changing plant stomatal conductance in response to temperature and water availability is a key area of uncertainty. Further, the differential response to climate change of C3 and C4 plant functional types is not well known at regional scales. This work outlines the development of a novel application of atmospheric observations of delta13C of CO2 to investigate the links between climate and water and carbon cycling and the integrated responses of C3 and C4 ecosystems to climate variables. A two-step Bayesian batch inversion for 3-hourly, 1x1º CO2 fluxes (step one), and for 3-hourly 1x1º delta13C of recently assimilated carbon (step two) is created here for the first time, and is used to investigate links between regional climate indicators and changes in delta13C of the biosphere. Results show that predictable responses of regional-scale, integrated plant discrimination to temperature, precipitation and relative humidity anomalies can be recovered from atmospheric signals. Model development, synthetic data simulations to test sensitivity, and results for the year 2010 are presented here. This dissertation also includes two other applications

  17. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  18. Thermal evolution of an early magma ocean in interaction with the atmosphere

    NASA Astrophysics Data System (ADS)

    Lebrun, T.; Massol, H.; ChassefièRe, E.; Davaille, A.; Marcq, E.; Sarda, P.; Leblanc, F.; Brandeis, G.

    2013-06-01

    The thermal evolution of magma oceans produced by collision with giant impactors late in accretion is expected to depend on the composition and structure of the atmosphere through the greenhouse effect of CO2 and H2O released from the magma during its crystallization. In order to constrain the various cooling timescales of the system, we developed a 1-D parameterized convection model of a magma ocean coupled with a 1-D radiative-convective model of the atmosphere. We conducted a parametric study and described the influences of the initial volatile inventories, the initial depth of the magma ocean, and the Sun-planet distance. Our results suggest that a steam atmosphere delays the end of the magma ocean phase by typically 1 Myr. Water vapor condenses to an ocean after 0.1, 1.5, and 10 Myr for, respectively, Mars, Earth, and Venus. This time would be virtually infinite for an Earth-sized planet located at less than 0.66 AU from the Sun. Using a more accurate calculation of opacities, we show that Venus is much closer to this threshold distance than in previous models. So there are conditions such as no water ocean is formed on Venus. Moreover, for Mars and Earth, water ocean formation timescales are shorter than typical time gaps between major impacts. This implies that successive water oceans may have developed during accretion, making easier the loss of their atmospheres by impact erosion. On the other hand, Venus could have remained in the magma ocean stage for most of its accretion.

  19. Cooperative research in terrestrial planetary geology and geophysics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This final report for the period of July 1991 to August 1994 covered a variety of topics concerning the study of Earth and Mars. The Earth studies stressed the interpretation of the MAGSAT crustal magnetic anomalies in order to determine the geological structure, mineralogical composition, magnetic nature, and the historical background of submarine features, and also featured work in the area of terrestrial remote sensing. Mars research included the early evolution of the Martian atmosphere and hydrosphere and the investigations of the large Martian impact basins. Detailed summaries of the research is included, along with lists of the publications resulting from this research.

  20. Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California

    USGS Publications Warehouse

    Dettinger, Michael D.; Cayan, Daniel R.

    1995-01-01

    Weather stations in central California, including the central Sierra Nevada, have shown trends toward warmer winters since the 1940s. A series of regression analyses indicate that runoff timing responds equally to the observed decadal-scale trends in winter temperature and interannual temperature variations of the same magnitude, suggesting that the temperature trend is sufficient to explain the runoff-timing trends. The immediate cause of the trend toward warmer winters in California is a concurrent, long-term fluctuation in winter atmospheric circulations over the North Pacific Ocean and North America that is not immediately distinguishable from natural atmospheric variability. The fluctuation began to affect California in the 1940s, when the region of strongest low-frequency variation of winter circulations shifted to a part of the central North Pacific Ocean that is teleconnected to California temperatures. Since the late 1940s, winter wind fields have been displaced progressively southward over the central North Pacific and northward over the west coast of North America. These shifts in atmospheric circulations are associated with concurrent shifts in both West Coast air temperatures and North Pacific sea surface temperatures.

  1. Recent increases in trifluoromethane (HFC-23) global emissions and early atmospheric changes observed for other hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.; Miller, B. R.; Battle, M. O.; Aydin, K. M.; Fahey, D. W.; Hall, B. D.; Miller, L.; Verhulst, K. R.; Saltzman, E.; McFarland, M.

    2009-12-01

    Trifluoromethane (HFC-23) is an unintended by-product of chlorodifluoromethane (HCFC-22) production and has a 100-yr global warming potential of 14,800. Firn-air and ambient air measurements of HFC-23 from three firn sampling excursions to Antarctica between 2001 and 2009 are used to construct a consistent atmospheric history for this chemical in the Southern Hemisphere. The results show continued increases in the atmospheric abundance of HFC-23 and imply substantial increases in HFC-23 global emissions since 2003. These emission increases are coincident with rapidly increasing HCFC-22 production in developing countries and are observed despite efforts in recent years to limit emissions of HFC-23 through the Kyoto Protocol’s Clean Development Mechanism. These results will be considered along with new observations of additional HFCs from archived air, firn air, and ongoing flask-air measurements. Considered together, atmospheric increases observed for hydrochlorofluorocarbons and hydrofluorocarbons accounted for ~9% of the increase in total direct radiative forcing from anthropogenic gases during 2003-2008, an addition that was slightly larger than attributable to N2O over this same period.

  2. Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Hine, B.; Delory, G. T.; Mahaffy, Paul; Benna, Mehdi; Horanyi, Mihaly; Colaprete, Anthony; Noble, Sarah

    2014-01-01

    On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013.

  3. FINAL REPORT: A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the GCC

    SciTech Connect

    Keeling, R. F.; Piper, S. C.

    2008-12-23

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic composition. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. The program also included the development of methods for measuring radiocarbon content in the collected CO2 samples and carrying out radiocarbon measurements in collaboration with Tom Guilderson of Lawrence Berkeley National Laboratory (LLNL). The radiocarbon measurements can provide complementary information on carbon exchange rates with the land and oceans and emissions from fossil-fuel burning. Using models of varying complexity, the concentration and isotopic measurements were used to establish estimates of the spatial and temporal variations in the net CO2 exchange with the atmosphere, the storage of carbon in the land and oceans, and variable isotopic discrimination of land plants.

  4. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  5. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  6. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates. PMID:24283926

  7. Atmospheric and terrestrial water budgets: sensitivity and performance of configurations and global driving data for long term continental scale WRF simulations

    NASA Astrophysics Data System (ADS)

    Fersch, Benjamin; Kunstmann, Harald

    2014-05-01

    Driving data and physical parametrizations can significantly impact the performance of regional dynamical atmospheric models in reproducing hydrometeorologically relevant variables. Our study addresses the water budget sensitivity of the Weather Research and Forecasting Model System WRF (WRF-ARW) with respect to two cumulus parametrizations (Kain-Fritsch, Betts-Miller-Janjić), two global driving reanalyses (ECMWF ERA-INTERIM and NCAR/NCEP NNRP), time variant and invariant sea surface temperature and optional gridded nudging. The skill of global and downscaled models is evaluated against different gridded observations for precipitation, 2 m-temperature, evapotranspiration, and against measured discharge time-series on a monthly basis. Multi-year spatial deviation patterns and basin aggregated time series are examined for four globally distributed regions with different climatic characteristics: Siberia, Northern and Western Africa, the Central Australian Plane, and the Amazonian tropics. The simulations cover the period from 2003 to 2006 with a horizontal mesh of 30 km. The results suggest a high sensitivity of the physical parametrizations and the driving data on the water budgets of the regional atmospheric simulations. While the global reanalyses tend to underestimate 2 m-temperature by 0.2-2 K, the regional simulations are typically 0.5-3 K warmer than observed. Many configurations show difficulties in reproducing the water budget terms, e.g. with long-term mean precipitation biases of 150 mm month-1 and higher. Nevertheless, with the water budget analysis viable setups can be deduced for all four study regions.

  8. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    USGS Publications Warehouse

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  9. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    SciTech Connect

    Hayes, Daniel J; Turner, David P; Stinson, Graham; Mcguire, David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; De Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andrew; Huntzinger, Deborah; Pan, Yude; Post, Wilfred M; Cook, Robert B

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  10. Terrestrial soil pH and MAAT records based on the MBT/CBT in the southern South China Sea: implications for the atmospheric CO2 evolution in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Dong, L.; Li, L.; Li, Q.; Zhang, C.

    2013-12-01

    Liang Dong1, Li Li1, Qianyu Li1,2, Chuanlun L. Zhang1,3 1State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China 2School of Earth and Environment Sciences, University of Adelaide, SA 5005, Australia 3Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA The methylation index of branched tetraethers (MBT) and/or the cyclization ratio of branched tetraethers (CBT) are derived from the branched glycerol dialkyl Glycerol tetraethers (GDGTs) of bacterial origin and are widely used to reconstruct the terrestrial soil pH and mean annual air temperature (MAAT); however, these proxies are less frequently used in the oceanic settings. Here we provide the first high resolution records of soil pH and MAAT since the last glacial maximum based on the sedimentary core of MD05-2896 in the southern South China Sea. The MAAT record exhibited typical glacial and interglacial cycles and was consistent with the winter insolation variation. The pH values were lower (6.4-7) in the glacial time and higher (7-8.4) in the interglacial time. Changes in soil pH allowed the evaluation of changes in soil CO2 based on the atmosphere-soil CO2 balance. The results imply that the lower winter MAAT variation with a lower winter atmospheric CO2 concentration might have resulted in a higher pH in the interglacial period. Our records provide a new insight into the evolution of atmospheric CO2 between glacial and interglacial cycles in East Asia. Key words: South China Sea, MBT/CBT, b-GDGTs, MAAT, pH

  11. Evaporative Control on Soil Water Isotope Ratios: Implications for Atmosphere-Land Surface Water Fluxes and Interpretation of Terrestrial Proxy Records

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Noone, D. C.; Berkelhammer, M. B.; O'Neill, M.

    2014-12-01

    The moisture balance of the continental boundary layer plays an important role in regulating the exchange of water and energy between the land surface and atmosphere. Near-surface moisture balance is controlled by a number of factors including precipitation, infiltration and evapotranspiration. Measurements of stable isotope ratios in water can be exploited to better understand the mechanisms controlling atmosphere-land surface water fluxes. Understanding the processes that set sub-surface water isotope ratios can prove useful for refining paleoclimate interpretations of stable oxygen and hydrogen isotope-based proxies. We present in situ tower-based measurements of stable isotope ratios of water (δD and δ18O) in vapor, precipitation and soil from the Boulder Atmospheric Observatory, a semi-arid tall-tower site in Erie, Colorado, from July 2012 to September 2014. Near surface profiles from 0 to 10 m were measured approximately every ninety minutes. Soil profiles from 0 to 30 cm, the region of maximum variability, were sampled on a weekly basis and cryogenically extracted for stable water isotope measurement. Evaporation-proof bulk rain collectors provided precipitation samples at this site. Results show disequilibrium exists between surface vapor and soil water isotopes, with the top 10 cm of soil water approaching equilibrium with the surface vapor right after a rain event because of high infiltration and saturation at the surface. At this semi-arid site with little vegetation, evaporative exchange is the main driver for soil water fluxes as the soil dries, corroborated by soil Dexcess profiles showing progressive enrichment through evaporation. In addition, when nighttime surface temperatures are cooler than deep soil, as is the case in many arid and semi-arid environments, upward vapor diffusion from the soil leads to dew formation at the surface which then contributes to surface vapor values. We use these observations to constrain a Craig-Gordon evaporation

  12. Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe.

    PubMed

    Martínez Cortizas, Antonio; López-Merino, Lourdes; Bindler, Richard; Mighall, Tim; Kylander, Malin E

    2016-03-01

    Although archaeological research suggests that mining/metallurgy already started in the Chalcolithic (3rd millennium BC), the earliest atmospheric metal pollution in SW Europe has thus far been dated to ~3500-3200 cal.yr. BP in paleo-environmental archives. A low intensity, non-extensive mining/metallurgy and the lack of appropriately located archives may be responsible for this mismatch. We have analysed the older section (>2100 cal.yr. BP) of a peat record from La Molina (Asturias, Spain), a mire located in the proximity (35-100 km) of mines which were exploited in the Chalcolithic/Bronze Age, with the aim of assessing evidence of this early mining/metallurgy. Analyses included the determination of C as a proxy for organic matter content, lithogenic elements (Si, Al, Ti) as markers of mineral matter, and trace metals (Cr, Cu, Zn, Pb) and stable Pb isotopes as tracers of atmospheric metal pollution. From ~8000 to ~4980 cal.yr. BP the Pb composition is similar to that of the underlying sediments (Pb 15 ± 4 μg g(-1); (206)Pb/(207)Pb 1.204 ± 0.002). A sustained period of low (206)Pb/(207)Pb ratios occurred from ~4980 to ~2470 cal.yr. BP, which can be divided into four phases: Chalcolithic (~4980-3700 cal.yr. BP), (206)Pb/(207)Pb ratios decline to 1.175 and Pb/Al ratios increase; Early Bronze Age (~3700-3500 cal.yr. BP), (206)Pb/(207)Pb increase to 1.192 and metal/Al ratios remain stable; Late Bronze Age (~3500-2800 cal.yr. BP), (206)Pb/(207)Pb decline to their lowest values (1.167) while Pb/Al and Zn/Al increase; and Early Iron Age (~2800-2470 cal.yr. BP), (206)Pb/(207)Pb increase to 1.186, most metal/Al ratios decrease but Zn/Al shows a peak. At the beginning of the Late Iron Age, (206)Pb/(207)Pb ratios and metal enrichments show a rapid return to pre-anthropogenic values. These results provide evidence of regional/local atmospheric metal pollution triggered by the earliest phases of mining/metallurgy in the area, and reconcile paleo-environmental and

  13. Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe.

    PubMed

    Martínez Cortizas, Antonio; López-Merino, Lourdes; Bindler, Richard; Mighall, Tim; Kylander, Malin E

    2016-03-01

    Although archaeological research suggests that mining/metallurgy already started in the Chalcolithic (3rd millennium BC), the earliest atmospheric metal pollution in SW Europe has thus far been dated to ~3500-3200 cal.yr. BP in paleo-environmental archives. A low intensity, non-extensive mining/metallurgy and the lack of appropriately located archives may be responsible for this mismatch. We have analysed the older section (>2100 cal.yr. BP) of a peat record from La Molina (Asturias, Spain), a mire located in the proximity (35-100 km) of mines which were exploited in the Chalcolithic/Bronze Age, with the aim of assessing evidence of this early mining/metallurgy. Analyses included the determination of C as a proxy for organic matter content, lithogenic elements (Si, Al, Ti) as markers of mineral matter, and trace metals (Cr, Cu, Zn, Pb) and stable Pb isotopes as tracers of atmospheric metal pollution. From ~8000 to ~4980 cal.yr. BP the Pb composition is similar to that of the underlying sediments (Pb 15 ± 4 μg g(-1); (206)Pb/(207)Pb 1.204 ± 0.002). A sustained period of low (206)Pb/(207)Pb ratios occurred from ~4980 to ~2470 cal.yr. BP, which can be divided into four phases: Chalcolithic (~4980-3700 cal.yr. BP), (206)Pb/(207)Pb ratios decline to 1.175 and Pb/Al ratios increase; Early Bronze Age (~3700-3500 cal.yr. BP), (206)Pb/(207)Pb increase to 1.192 and metal/Al ratios remain stable; Late Bronze Age (~3500-2800 cal.yr. BP), (206)Pb/(207)Pb decline to their lowest values (1.167) while Pb/Al and Zn/Al increase; and Early Iron Age (~2800-2470 cal.yr. BP), (206)Pb/(207)Pb increase to 1.186, most metal/Al ratios decrease but Zn/Al shows a peak. At the beginning of the Late Iron Age, (206)Pb/(207)Pb ratios and metal enrichments show a rapid return to pre-anthropogenic values. These results provide evidence of regional/local atmospheric metal pollution triggered by the earliest phases of mining/metallurgy in the area, and reconcile paleo-environmental and

  14. Statistical equilibrium calculations for silicon in early-type model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1976-01-01

    Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of our range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0-B5, luminosity classes III, IV, and V.

  15. Venus: A search for clues to early biological possibilities

    NASA Technical Reports Server (NTRS)

    Colin, Larry; Kasting, James F.

    1992-01-01

    The extensive evidence that there is no extant life on Venus is summarized. The current atmospheric environment, which is far too hostile by terrestrial standards to support life, is described. However, exobiologists are interested in the possibility of extinct life on Venus. The early history of Venus is discussed in terms of its ability to sustain life that may now be extinct.

  16. The Boreal Ecosystem-Atmosphere Study (BOREAS): An Overview and Early Results from the 1994 Field Year.

    NASA Astrophysics Data System (ADS)

    Sellers, Piers; Hall, Forrest; Ranson, K. Jon; Margolis, Hank; Kelly, Bob; Baldocchi, Dennis; den Hartog, Gerry; Cihlar, Josef; Ryan, Michael G.; Goodison, Barry; Crill, Patrick; Lettenmaier, Dennis; Wickland, Diane E.

    1995-09-01

    area). The strong sensible fluxes generated as a result of this often lead to the development of a deep dry planetary boundary layer over the forest, particularly during the spring and early summer. The effects of frozen soils and the strong physiological control of evapotranspiration in the biome do not seem to be well represented in most operational general circulation models of the atmosphere.Analyses of the data will continue through 1995 and 1996. Some limited revisits to the field are anticipated.

  17. Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition

    NASA Technical Reports Server (NTRS)

    Tornow, C.; Kupper, S.; Ilgner, M.; Kuehrt, E.; Motschmann, U.

    2011-01-01

    Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species.

  18. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early earth

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Pollack, J. B.; Crisp, D.

    1984-01-01

    One-dimensional radiative and photochemical models are used to determine how much CO2 must have been present to maintain a temperate early climate and to examine the consequences that are implied for the controls on atmospheric oxidation state. It is shown that CO2 concentrations of the order of 1000 PAL are required to keep the average surface temperature close to the present value, if albedo changes and heating by reduced greenhouse gases were relatively unimportant. The oxidation state of such a high-CO2, prebiotic atmosphere should have been largely determined by the balance between the H2O2 rainout rate and the rate at which hydrogen escaped to space, with only a weak dependence on the volcanic outgassing rate or on other speculative sources of H2. The implied upper limit on the ground-level O2 mixing ratio is approximately 10 to the -11th and is subject to less uncertainty than the results of previous models.

  19. Unusually strong nitric oxide descent in the Arctic middle atmosphere in early 2013 as observed by Odin/SMR

    NASA Astrophysics Data System (ADS)

    Pérot, K.; Urban, J.; Murtagh, D. P.

    2014-08-01

    The middle atmosphere was affected by an exceptionally strong midwinter stratospheric sudden warming (SSW) during the Arctic winter 2012/2013. These unusual meteorological conditions led to a breakdown of the polar vortex, followed by the reformation of a strong upper stratospheric vortex associated with particularly efficient descent of air. Measurements by the submillimetre radiometer (SMR), on board the Odin satellite, show that very large amounts of nitric oxide (NO), produced by energetic particle precipitation (EPP) in the mesosphere/lower thermosphere (MLT), could thus enter the polar stratosphere in early 2013. The mechanism referring to the downward transport of EPP-generated NOx during winter is generally called the EPP indirect effect. SMR observed up to 20 times more NO in the upper stratosphere than the average NO measured at the same latitude, pressure and time during three previous winters where no mixing between mesospheric and stratospheric air was noticeable. This event turned out to be the strongest in the aeronomy-only period of SMR (2007-present). Our study is based on a comparison with the Arctic winter 2008/2009, when a similar situation was observed. This outstanding situation is the result of the combination of a relatively high geomagnetic activity and an unusually high dynamical activity, which makes this case a prime example to study the EPP impacts on the atmospheric composition.

  20. Unusually strong nitric oxide descent in the Arctic middle atmosphere in early 2013 as observed by Odin/SMR

    NASA Astrophysics Data System (ADS)

    Pérot, K.; Urban, J.; Murtagh, D. P.

    2014-02-01

    The middle atmosphere has been affected by an exceptionally strong midwinter stratospheric sudden warming (SSW) during the Arctic winter 2012/2013. These unusual meteorological conditions led to a breakdown of the polar vortex, followed by the reformation of a strong upper stratospheric vortex associated with particularly efficient descent of air. Measurements by the Sub-Millimetre Radiometer (SMR), on board the Odin satellite, show that very large amounts of nitric oxide (NO), produced by Energetic Particle Precipitation (EPP) in the mesosphere/lower thermosphere (MLT), could thus enter the polar stratosphere in early 2013. The mechanism referring to the downward transport of EPP generated-NOx during winter is generally called the EPP indirect effect. SMR observed up to 20 times more NO in the upper stratosphere than the average NO measured at the same latitude, pressure and time during three previous winters where no mixing between mesospheric and stratospheric air was noticeable. This event turned out to be an unprecedently strong case of this effect. Our study is based on a comparison with the Arctic winter 2008/2009, when a similar situation was observed and which was so far considered as a record-breaking winter for this kind of events. This outstanding situation is the result of the combination between a relatively high geomagnetic activity and an unusually high dynamical activity, which makes this case a prime example to study the EPP impacts on the atmospheric composition.

  1. Spaceborne Microwave Remote Sensing of Seasonal Freeze-Thaw Processes in the Terrestrial High Latitudes: Relationships with Land-Atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  2. Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-cretaceous mass extinction.

    PubMed

    Chin, Karen; Pearson, Dean; Ekdale, A A

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms.

  3. Fossil Worm Burrows Reveal Very Early Terrestrial Animal Activity and Shed Light on Trophic Resources after the End-Cretaceous Mass Extinction

    PubMed Central

    Chin, Karen; Pearson, Dean; Ekdale, A. A.

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  4. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    NASA Astrophysics Data System (ADS)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response