Sample records for early triassic age

  1. New high precision U-Pb calibration of the late Early-Triassic (Smithian-Spathian Boundary, South China)

    NASA Astrophysics Data System (ADS)

    Widmann, Philipp; Leu, Marc; Goudemand, Nicolas; Schaltegger, Urs; Bucher, Hugo

    2017-04-01

    Following the Permian-Triassic mass extinction (PTME), the Early Triassic is characterized by large short-lived perturbations of the global carbon cycle associated with radiation and extinction pulses of the biota. More stable conditions resumed in the Middle Triassic (Anisian). The exact ages and duration of these short-lived but intense radiation-extinction events as well as carbon cycle perturbations are poorly constrained and a robust intercalibration of U-Pb dates, biochronozones and carbon isotope fluctuations is still lacking. An accurate and precise time frame is essential in order to quantify the dynamics of the underlying mechanistic processes and to assess the validity of the various explanatory scenarios. The most drastic Early Triassic extinction occurred at the Smithian-Spathian boundary (SSB) and is associated with a globally recognized sharp positive excursion of the marine d13C signal. Based on the most recently published ages for the Permian-Triassic boundary (251.938 ± 0.029 Ma, Baresel et al., 2016) and for the Early-Middle Triassic boundary (247.05 ± 0.16 Ma, Ovtcharova et al., 2015), we know the Early Triassic lasted 4.9 myr. However, neither the position of the SSB nor the durations of the major biotic and abiotic events around the SSB are constrained by radiometric dates. Here, we will present new high precision, chemical abrasion, isotope dilution, thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages from single zircon crystals, sampled from closely spaced volcanic ash layers that bracket the SSB in the Nanpanjiang Basin (Guizhou province, South China). These ash layers are found in a mixed carbonate-siliciclastic, conodont-rich sedimentary succession (Luolou Formation) that is well calibrated biochronologically. We obtained best estimates of the ages of the SSB and associated events by applying Bayesian age modelling. References: Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2016. Precise age

  2. Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay

    PubMed Central

    Velozo, Pablo; Meneghel, Melitta; Piñeiro, Graciela

    2015-01-01

    The Permo-Triassic archosauromorph record is crucial to understand the impact of the Permo-Triassic mass extinction on the early evolution of the group and its subsequent dominance in Mesozoic terrestrial ecosystems. However, the Permo-Triassic archosauromorph record is still very poor in most continents and hampers the identification of global macroevolutionary patterns. Here we describe cranial and postcranial bones from the Permo-Triassic Buena Vista Formation of northeastern Uruguay that contribute to increase the meagre early archosauromorph record from South America. A basioccipital fused to both partial exoccipitals and three cervical vertebrae are assigned to Archosauromorpha based on apomorphies or a unique combination of characters. The archosauromorph remains of the Buena Vista Formation probably represent a multi-taxonomic assemblage composed of non-archosauriform archosauromorphs and a ‘proterosuchid-grade’ animal. This assemblage does not contribute in the discussion of a Late Permian or Early Triassic age for the Buena Vista Formation, but reinforces the broad palaeobiogeographic distribution of ‘proterosuchid grade’ diapsids in Permo-Triassic beds worldwide. PMID:25737816

  3. New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Shubin, N. H.; Anders, M. H.

    1987-08-01

    The discovery of the first definitively correlated earliest Jurassic (200 million years before present) tetrapod assemblage (Fundy basin, Newark Supergroup, Nova Scotia) allows reevaluation of the duration of the Triassic-Jurassic tetrapod extinction event. Present are tritheledont and mammal-like reptiles, prosauropod, theropod, and ornithischian dinosaurs, protosuchian and sphenosuchian crocodylomorphs, sphenodontids, and hybodont, semionotid, and palaeonisciform fishes. All of the families are known from Late Triassic and Jurassic strata from elsewhere; however, pollen and spore, radiometric, and geochemical correlation indicate an early Hettangian age for these assemblages. Because all ``typical Triassic'' forms are absent from these assemblages, most Triassic-Jurassic tetrapod extinctions occurred before this time and without the introduction of new families. As was previously suggested by studies of marine invertebrates, this pattern is consistent with a global extinction event at the Triassic-Jurassic boundary. The Manicouagan impact structure of Quebec provides dates broadly compatible with the Triassic-Jurassic boundary and, following the impact theory of mass extinctions, may be implicated in the cause.

  4. The Middle Triassic insect radiation revealed by isotopic age and iconic fossils from NW China

    NASA Astrophysics Data System (ADS)

    Zheng, Daran; Chang, Su-Chin; Wang, He; Fang, Yan; Wang, Jun; Feng, Chongqing; Xie, Guwei; Jarzembowski, Edmund A.; Zhang, Haichun; Wang, Bo

    2017-04-01

    Following the end-Permian mass extinction, the Triassic represented an important period witnessing the recovery and radiation of marine and terrestrial ecosystems. Terrestrial plants and vertebrates have been widely investigated; however the insects, the most diverse organisms on earth, remain enigmatic due to the rarity of Early-Middle Triassic fossils. Here we report new fossils from a Ladinian deposit dated at 238-237 Ma and a Carnian deposit in northwestern China, including the earliest definite caddisfly cases (Trichoptera) and water boatmen (Hemiptera), diverse polyphagan beetles (Coleoptera) and scorpionflies (Mecoptera). Our findings suggest that the Holometabola, comprising the majority of modern-day insect species, experienced an extraordinary diversification in the Middle Triassic and was already been dominant in some Middle and Late Triassic insect faunas, after the extinction of several ecologically dominant, Paleozoic insect groups in the latest Permian and earliest Triassic. This turnover is perhaps related to notable episodes of extreme warming and drying, leading to the eventual demise of coal-swamp ecosystems, evidenced by floral turnover during this interval. The forest revival during the Middle Triassic probably stimulated the rapid radiation and evolution of insects including some key aquatic lineages which built new associations that persist to the present day. Our results provide not only new insights into the early evolution of insect diversity and ecology, but also robust evidence for the view that the Triassic is the "Dawn of the Modern World". Besides, LA-ICP-MS U-Pb dating initially gave a late Ladinian age for the Tongchuan entomnfauna after the results: 237.41 ± 0.91 Ma and 238 ± 0.97 Ma. The age is in agreement with that of the marine Ladinian-Carnian boundary, representing a novel age constraint for the terrestrial strata near this boundary. This age can provide a calibration for marine and terrestrial correlation near Ladinian

  5. Redescription of Bellerophon asiaticus Wirth (Early Triassic: Gastropoda) from China, and a survey of Triassic Bellerophontacea.

    USGS Publications Warehouse

    Yochelson, E.Y.; Yin, Hongfu

    1985-01-01

    The bilaterally symmetrical gastropod Bellerophon asiaticus Wirth is redescribed from specimens collected in Guizhou Province, PRC. The species is reassigned to Retispira, a common late Paleozoic taxon. Retispira is another example of a Paleozoic gastropod genus that crossed the era boundary. Associated pelecypods that date these Guizhou occurrences as Early Triassic are well known species in PRC and are illustrated. Both Bellerophon and Euphemites probably occur in the Early Triassic, though the quality of illustrations leaves some uncertainty; the existence of Stachella in the Triassic is more problematic. There was no dramatic reduction of the Bellerophontacea from their abundance and diversity in the Permian. It may be a general phenomenon that most late Paleozoic family-level and many generic-level taxa of gastropods were unaffected by the late Permian 'crisis'. from Authors

  6. The lower Triassic microbiolites in Chaohu region, East China and their contribution to the early Triassic recovery

    NASA Astrophysics Data System (ADS)

    Jia, Zhihai; Zhang, Liwei; Hong, Tianqiu

    2010-05-01

    The lower Triassic is well preserved in Chaohu Region, Anhui Province, East China. It can be divided into Yinkeng Formation (80 meters thick, was formed during the Indian and early Smitian), Helongshan Formation (21 meters thick, was formed during the end Smithian) and Nanlinghu Formation (more than 157 meters thick, was formed during the Spathian) from bottom to top. It is mainly composed of carbonatites such as micrite limestones and nodular limestones, as well as shales and calcareous marls. The lower Triassic in this area has been well researched for more than a decade, and many fossils such as ammonites, bivalves, fishes, ichthyosaurus, conodonts, and ichnofossils have been found, but the microbiolites have been neglected. Microbiolites were mainly outcropped in the Helongshan Formaiton and the lower Nanlinghu Formation. In the lower Helongshan Formaiton, tens microbial mat layers and thin bedded calcareous marl layers formed cyclothems which have been named as nodular limstones. The thin-section observation of the microbial mats indicate that many films and thin-shell bivalve fragments deposited almost horizontally. In the upper Helongshan Formaiton, six microstromatolite bioherm layers were outcropped in the thin bedded calcareous marl layers. The diameter of the stromatolite column is about 2 millimeters, the bioherms are lenticular and no more than 3 centimeters thick in the central, their diameters change from 5 centimeters to 30 centimeters, calcareous marls were deposited around the bioherms, and many ammonoids, bivalves and burrows were found in such layers. The microfacies differentiation of the stromatolites such as the basement, reef core and the capping beds can be recognised clearly in thin sections. Several microstromatolite layers were outcropped in the micritic limestones with a stable thickness of 15 millimeters in the lower Nanlinghu Formation and the stromatolite column look like the ones in the Helongshan Formation. Few microbiolites have

  7. Lethally Hot Temperatures During the Early Triassic Greenhouse

    NASA Astrophysics Data System (ADS)

    Sun, Yadong; Joachimski, Michael M.; Wignall, Paul B.; Yan, Chunbo; Chen, Yanlong; Jiang, Haishui; Wang, Lina; Lai, Xulong

    2012-10-01

    Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.

  8. Early Triassic Marine Biotic Recovery: The Predators' Perspective

    PubMed Central

    Scheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent. PMID

  9. Early Triassic marine biotic recovery: the predators' perspective.

    PubMed

    Scheyer, Torsten M; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.

  10. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  11. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  12. Sandstone provenance and U-Pb ages of detrital zircons from Permian-Triassic forearc sediments within the Sukhothai Arc, northern Thailand: Record of volcanic-arc evolution in response to Paleo-Tethys subduction

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kunii, Miyuki; Miyake, Yoshihiro; Hisada, Ken-ichiro; Kamata, Yoshihito; Ueno, Katsumi; Kon, Yoshiaki; Kurihara, Toshiyuki; Ueda, Hayato; Assavapatchara, San; Treerotchananon, Anuwat; Charoentitirat, Thasinee; Charusiri, Punya

    2017-09-01

    Provenance analysis and U-Pb dating of detrital zircons in Permian-Triassic forearc sediments from the Sukhothai Arc in northern Thailand clarify the evolution of a missing arc system associated with Paleo-Tethys subduction. The turbidite-dominant formations within the forearc sediments include the Permian Ngao Group (Kiu Lom, Pha Huat, and Huai Thak formations), the Early to earliest Late Triassic Lampang Group (Phra That and Hong Hoi formations), and the Late Triassic Song Group (Pha Daeng and Wang Chin formations). The sandstones are quartzose in the Pha Huat, Huai Thak, and Wang Chin formations, and lithic wacke in the Kiu Lom, Phra That, Hong Hoi and Pha Daeng formations. The quartzose sandstones contain abundant quartz, felsic volcanic and plutonic fragments, whereas the lithic sandstones contain mainly basaltic to felsic volcanic fragments. The youngest single-grain (YSG) zircon U-Pb age generally approximates the depositional age in the study area, but in the case of the limestone-dominant Pha Huat Formation the YSG age is clearly older. On the other hand, the youngest cluster U-Pb age (YC1σ) represents the peak of igneous activity in the source area. Geological evidence, geochemical signatures, and the YC1σ ages of the sandstones have allowed us to reconstruct the Sukhothai arc evolution. The initial Sukhothai Arc (Late Carboniferous-Early Permian) developed as a continental island arc. Subsequently, there was general magmatic quiescence with minor I-type granitic activity during the Middle to early Late Permian. In the latest Permian to early Late Triassic, the Sukhothai Arc developed in tandem with Early to Middle Triassic I-type granitic activity, Middle to Late Triassic volcanism, evolution of an accretionary complex, and an abundant supply of sediments from the volcanic rocks to the trench through a forearc basin. Subsequently, the Sukhothai Arc became quiescent as the Paleo-Tethys closed after the Late Triassic. In addition, parts of sediments of

  13. Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Galin, Thomson; Hall, Robert

    2015-04-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan

  14. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic.

    PubMed

    Brusatte, Stephen L; Niedźwiedzki, Grzegorz; Butler, Richard J

    2011-04-07

    The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.

  15. An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula).

    PubMed

    Mujal, Eudald; Fortuny, Josep; Bolet, Arnau; Oms, Oriol; López, José Ángel

    2017-01-01

    The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic.

  16. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Ogg, James; Zhang, Yang; Huang, Chunju; Hinnov, Linda; Chen, Zhong-Qiang; Zou, Zhuoyan

    2016-05-01

    The timing of the end-Permian mass extinction and subsequent prolonged recovery during the Early Triassic Epoch can be established from astronomically controlled climate cycles recorded in continuous marine sedimentary sections. Astronomical-cycle tuning of spectral gamma-ray logs from biostratigraphically-constrained cyclic stratigraphy through marine sections at Meishan, Chaohu, Daxiakou and Guandao in South China yields an integrated time scale for the Early Triassic, which is consistent with scaling of magnetostratigraphy from climatic cycles in continental deposits of the Germanic Basin. The main marine mass extinction interval at Meishan is constrained to less than 40% of a 100-kyr (kilo-year) cycle (i.e., <40 kyr) and the sharp negative excursion in δ13C is estimated to have lasted <6 kyr. The sharp positive shift in δ13C from - 2 ‰ to 4‰ across the Smithian-Spathian boundary at Chaohu was completed in 50 kyr. The earliest marine reptiles in the Mesozoic at Chaohu that are considered to represent a significant recovery of marine ecosystems did not appear until 4.7 myr (million years) after the end-Permian extinction. The durations of the Griesbachian, Dienerian, Smithian and Spathian substages, including the uncertainty in placement of widely used conodont biostratigraphic datums for their boundaries, are 1.4 ± 0.1, 0.6 ± 0.1, 1.7 ± 0.1 and 1.4 ± 0.1 myr, implying a total span for the Early Triassic of 5.1 ± 0.1 myr. Therefore, relative to an assigned 251.902 ± 0.024 Ma for the Permian-Triassic boundary from the Meishan GSSP, the ages for these substage boundaries are 250.5 ± 0.1 Ma for base Dienerian, 249.9 ± 0.1 Ma for base Smithian (base of Olenekian stage), 248.2 ± 0.1 Ma for base Spathian, and 246.8 ± 0.1 Ma for the base of the Anisian Stage. This astronomical-calibrated timescale provides rates for the recurrent carbon isotope excursions and for trends in sedimentation accumulation through the Early Triassic of studied sections in South

  17. Early Triassic development of a foreland basin in the Canadian high Arctic: Implications for a Pangean Rim of Fire

    NASA Astrophysics Data System (ADS)

    Hadlari, Thomas; Dewing, Keith; Matthews, William A.; Alonso-Torres, Daniel; Midwinter, Derrick

    2018-06-01

    Following the amalgamation of Laurasia and Gondwana to form Pangea, some Triassic tectonic models show an encircling arc system called the "Pangean Rim of Fire". Here we show that the stratigraphy and Early Triassic detrital zircon provenance of the Sverdrup Basin in the Canadian Arctic is most consistent with deposition in a retro-arc foreland basin. Late Permian and Early Triassic volcanism was accompanied by relatively high rates of subsidence leading to a starved basin with volcanic input from a magmatic arc to the northwest. The mostly starved basin persisted through the Middle and Late Triassic with nearly continuous input of volcanic ash recorded as bentonites on the northwestern edge of the basin. In the latest Triassic it is interpreted that decreasing subsidence and a significant influx of sand-grade sediment when the arc was exhumed led to filling of the basin at the end of an orogenic cycle. Combined with other hints of Early Triassic arc activity along the western margin of Laurentia we propose that the Pangean Rim of Fire configuration spanned the entire Triassic. This proposed configuration represents the ring of external subduction zones that some models suggest are necessary for the breakup of supercontinents such as Pangea.

  18. An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula)

    PubMed Central

    Fortuny, Josep; Bolet, Arnau; Oms, Oriol; López, José Ángel

    2017-01-01

    The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic. PMID:28423005

  19. The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    PubMed Central

    Butler, Richard J.; Brusatte, Stephen L.; Reich, Mike; Nesbitt, Sterling J.; Schoch, Rainer R.; Hornung, Jahn J.

    2011-01-01

    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which

  20. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Reich, Mike; Nesbitt, Sterling J; Schoch, Rainer R; Hornung, Jahn J

    2011-01-01

    Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3-247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the 'sail' of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian-Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs.

  1. Triassic arc-derived detritus in the Triassic Karakaya accretionary complex was not derived from either the S Eurasian margin (Istanbul terrane) or the N Gondwana margin (Taurides)

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair H. F.; Gerdes, Axel; Zulauf, Gernold

    2014-05-01

    We present new U-Pb zircon source age data for Upper Triassic sandstones of the Istanbul Terrane (S Eurasian margin) and also for Triassic sandstones of the Taurides (N Gondwana margin). The main aim is to detect and quantify the contribution of Triassic magmatism as detritus to either of these crustal blocks. This follows the recent discovery of a Triassic magmatic arc source for the Triassic sandstones of the Palaeotethyan Karakaya subduction-accretion complex (Ustaömer et al. 2013; this meeting). Carboniferous (Variscan) zircon grains also form a significant detrital population, plus several more minor populations. Six sandstone samples were studied, two from the İstanbul Terrane (Bakırlıkıran Formation of the Kocaeli Triassic Basin) and four from the Tauride Autochthon (latest Triassic Üzümdere Formation and Mid-Triassic Kasımlar Formations; Beyşehir region). Detrital zircon grains were dated by the laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) U-Pb method at Goethe University, Frankfurt. Our results do not reveal Triassic detritus in the Üzümdere Formation. The U-Pb age of the analysed zircon grains ranges from 267 Ma to 3.2 Ga. A small fraction of Palaeozoic zircons are Permian (267 to 296 Ma), whereas the remainder are Early Palaeozoic. Ordovician grains (4%) form two age clusters, one at ca. 450 Ma and the other at ca. 474 Ma. Cambrian-aged grains dominate the zircon population, while the second largest population is Ediacaran (576 to 642 Ma). Smaller populations occur at 909-997 Ma, 827-839 Ma, 1.8-2.0 Ga and 2.4-2.6 Ga. The sandstones of the Kasımlar Formation have similar zircon age cluster to those of the somewhat younger Üzümdere Formation, ranging from 239 Ma to 2.9 Ga. A few grains gave Anisian ages. Cambrian zircon grains are less pronounced than in the Kasımlar Formation compared to the Üzümdere Formation. The detrital zircon record of Tauride sandstones, therefore, not indicates significant contribution

  2. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Lehrmann, D.; van de Schootbrugge, B.; Payne, J. L.

    2013-01-01

    Large δ13C excursions, anomalous carbonate precipitates, low diversity assemblages of small fossils, and evidence for marine euxinia in uppermost Permian and Lower Triassic strata bear more similarity to Neoproterozoic carbonates than to the remainders of the Permian and Triassic systems. Middle Triassic diversification of marine ecosystems coincided with the waning of anoxia and stabilization of the global carbon cycle, suggesting that environment-ecosystem linkages were important to biological recovery. However, the Earth system behavior responsible for these large δ13C excursions remains poorly constrained. Here we present a continuous Early Triassic δ13Corg record from south China and use it to test the extent to which Early Triassic excursions in δ13Ccarb record changes in the δ13C of marine dissolved inorganic carbon (DIC). Regression analysis demonstrates a significant positive correlation between δ13Corg and δ13Ccarb across multiple sections that span a paleoenvironmental gradient. Such a correlation is incompatible with diagenetic alteration because no likely mechanism will alter both δ13Corg and δ13Ccarb records in parallel and therefore strongly indicates a primary depositional origin. A simple explanation for this correlation is that a substantial portion of the preserved Corg was derived from the contemporaneous DIC pool, implying that the observed excursions reflect variation in the δ13C of the exogenic carbon reservoir (ocean, atmosphere, biomass). These findings support existing evidence that large δ13C excursions are primary and therefore strengthen the case that large-scale changes to the carbon cycle were mechanistically linked to the low diversity and small size of Early Triassic fossils. Associated sedimentary and biogeochemical phenomena further suggest that similar associations in Neoproterozoic and Cambrian strata may reflect the same underlying controls.

  3. The Early to Middle Triassic continental-marine transition of NW Bulgaria: sedimentology, palynology and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Ajdanlijsky, George; Götz, Annette E.; Strasser, André

    2018-04-01

    Sedimentary facies and cycles of the Triassic continental-marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria.

  4. Oceanographic Changes through the Early Triassic Crisis Interval

    NASA Astrophysics Data System (ADS)

    Algeo, T. J.

    2013-12-01

    Recent studies of diverse paleoceanographic proxies have provided the basis for reconstructing in some detail oceanographic changes during the end-Permian mass extinction and through the ~5-million-year-long Early Triassic crisis interval. Conodont δ18O records have demonstrated strong warming, to tropical sea-surface temperatures as high as 40oC, during the Griesbachian to Dienerian substages1-2. The crisis interval also was associated with major perturbations in the marine carbon and sulfur cycles. Three episodes of strong warming coincided with decreases in marine carbonate δ13C and marine sulfate δ34S 3, as well as increases in Δδ13Cvert4 and enhanced subaerial weathering fluxes5-6. Lower δ13Ccarb and δ34Ssulf values are indicative of more limited burial of reduced C and S in organic carbon and pyrite, consistent with declines in marine productivity and bacterial sulfate reduction3. Increased Δδ13Cvert is indicative of intensified stratification of the oceanic water column4, and increased subaerial weathering fluxes probably reflect higher soil reaction rates and possibly an intensified hydrologic cycle5-6. Collectively, these patterns are indicative of the globally integrated response of marine and terrestrial regimes to episodic perturbations in the form of extreme warming events1-2,7. These warming events may have been triggered by major volcanic eruptions8, as suggested by recent studies of volcanic ash layers9-10 and rare earth elements11 in South China P-Tr boundary sections. The ~2-million-year-long Early Triassic interval of extreme sea-surface temperatures came to an abrupt end around the Smithian-Spathian boundary1-2. Cooling coincided with a sharp decline in Δδ13Cvert due to stronger vertical overturning circulation4 and a major positive excursion in δ13Ccarb due to increased marine productivity related to greater mixing of nutrients into the ocean-surface layer12. The late Spathian was characterized by a final, weaker episode of sea

  5. Recovery vs. Restructuring: Establishing Ecologic Patterns in Early and Middle Triassic Paleocommunities (Invited)

    NASA Astrophysics Data System (ADS)

    Fraiser, M.; Dineen, A.; Sheehan, P.

    2013-12-01

    Published data has been interpreted as indicating that marine ecological devastation following the end-Permian mass extinction was protracted and may have lasted 5 million years into the Middle Triassic (Anisian). However, a review of previous literature shows that understanding of biotic recovery is typically based on only a few components of the ecosystem, such as on taxonomic diversity, a single genus/phylum, or facies. Typically, paleocommunities are considered fully recovered when dominance and diversity are regained and normal ecosystem functioning has resumed. However, in addition to the biodiversity crash at the end of the Permian, taxonomic and ecologic structure also changed,with the extinction marking the faunal shift from brachiopod-rich Paleozoic Evolutionary Fauna (EF) to the mollusc-rich Modern EF. This suggests that the extreme reorganizational nature of the Triassic does not adhere to the standard definition of recovery, which is a return to previous conditions. Thus, we propose the term 'restructuring' to describe this interval, as Early and Middle Triassic communities might not exhibit the typical characteristics of a 'normal' Permian one. To more fully characterize Triassic ecologic restructuring, paleoecologists should take into account functional diversity and redundancy. We quantified functional richness and regularity in four different paleocommunities from classic Permian and Triassic sections. Functional richness was low in paleocommunities after the end-Permian mass extinction, but increased to high levels by the Middle Triassic. In contrast, functional regularity was low in the Middle Permian, but high in all the Triassic paleocommunities. The change from low to high functional regularity/redundancy at the P/T boundary may be a factor of the highly stressful Triassic environmental conditions (i.e. anoxia, hypercapnia), as high regularity in a community can boost survival in harsh environments. Parameters such as these will more

  6. Discovery of a Triassic magmatic arc source for the Permo-Triassic Karakaya subduction complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ayda Ustaömer, Petek; Ustaömer, Timur; Gerdes, Axel; Robertson, Alastair H. F.; Zulauf, Gernold

    2014-05-01

    The Permo-Triassic Karakaya Complex is well explained by northward subduction of Palaeotethys but until now no corresponding magmatic arc has been identified in the region. With the aim of determining the compositions and ages of the source units, ten sandstone samples were collected from the mappably distinct Ortaoba, Hodul, Kendirli and Orhanlar Units. Zircon grains were extracted from these sandstones and >1300 were dated by the U-Pb method and subsequently analysed for the Lu-Hf isotopic compositions by LA-MC-ICPMS at Goethe University, Frankfurt. The U-Pb-Hf isotope systematics are indicative of two different sediment provenances. The first, represented by the Ortaoba, Hodul and Kendirli Units, is dominated by igneous rocks of Triassic (250-220 Ma), Early Carboniferous-Early Permian (290-340 Ma) and Early to Mid-Devonian (385-400 Ma) ages. The second provenance, represented by the Orhanlar Unit, is indicative of derivation from a peri-Gondwanan terrane. In case of the first provenance, the Devonian and Carboniferous source rocks exibit intermediate eHf(t) values (-11 to -3), consistent with the formation at a continental margin where juvenile mantle-derived magmas mixed with (recycled) old crust having Palaeoproterozoic Hf model ages. In contrast, the Triassic arc magma exhibits higher eHf(t) values (-6 to +6), consistent with the mixing of juvenile mantle-derived melts with (recycled) old crust perhaps somewhat rejuvanated during the Cadomian period. We have therefore identified a Triassic magmatic arc as predicted by the interpretation of the Karakaya Complex as an accretionary complex related to northward subduction (Carboniferous and Devonian granites are already well documented in NW Turkey). Possible explanations for the lack of any outcrop of the source magmatic arc are that it was later subducted or the Karakaya Complex was displaced laterally from its source arc (both post 220 Ma). Strike-slip displacement (driven by oblique subduction?) can also

  7. Triassic tetrapods from antarctica: evidence for continental drift.

    PubMed

    Elliot, D H; Colbert, E H; Breed, W J; Jensen, J A; Powell, J S

    1970-09-18

    During the austral summer of 1969-1970 bones of Lower Triassic vertebrates were excavated from coarse quartzose sandstones forming stream channel deposits of the Fremouw Formation at Coalsack Bluff, in the Transantarctic Mountains of Antarctica. This is the first assemblage of fossil tetrapods of significant geologic age to be found on the Antarctic Continent. The fossils include labyrinthodont amphibians, presumed thecodont reptiles, and therapsid reptiles, including the definitive genus, Lystrosaurus. This genus is typical of the Lower Triassic of southern Africa, and is also found in India and China. Lystrosaurus and associated vertebrates found in Antarctica were land-living animals: therefore their presence on the South Polar Continent would seem to indicate the contiguity of Antarctica, Africa, and India in Early Triassic times.

  8. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  9. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery.

    PubMed

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J; Kelley, Neil P; Aitchison, Jonathan C; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-27

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  10. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    PubMed Central

    Liu, Jun; Hu, Shi-xue; Rieppel, Olivier; Jiang, Da-yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-yong; Wen, Wen; Huang, Jin-yuan; Xie, Tao; Lv, Tao

    2014-01-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic. PMID:25429609

  11. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  12. Dobrogeria aegyssensis, a new early Spathian (Early Triassic) coelacanth from North Dobrogea (Romania)

    NASA Astrophysics Data System (ADS)

    Cavin, Lionel; Grădinaru, Eugen

    2014-06-01

    The Early Triassic witnessed the highest taxic diversity of coelacanths (or Actinistia), a clade with a single living genus today. This peak of diversity is accentuated here with the description of a new coelacanth discovered in the lower Spathian (Upper Olenekian, Lower Triassic) cropping out in the Tulcea Veche (Old Tulcea) promontory, in the city of Tulcea, in North Dobrogea, Romania. The bone remains were preserved in a block of limestone, which was chemically dissolved. The resulting 3D and matrix-free ossifications correspond mostly to elements of the skull and branchial apparatus. Posterior parietals, postparietal with associated prootic and basisphenoid allow a precise description of the neurocranium. Ossifications of the lower jaw, together with branchial and pectoral elements, complete the description of this coelacanth and support the coining of a new generic and specific name, Dobrogeria aegyssensis. A phylogenetic analysis of actinistians with the new species recovers clades which were found in most recent analyses, i.e. the Sasseniidae, the Laugiidae, the Coelacanthiformes, the Latimerioidei, the Mawsoniidae and the Latimeriidae, and identifies the new taxon as a non-latimerioid coelacanthiform.

  13. A new Late Triassic age for the Puesto Viejo Group (San Rafael depocenter, Argentina): SHRIMP U-Pb zircon dating and biostratigraphic correlations across southern Gondwana

    NASA Astrophysics Data System (ADS)

    Ottone, Eduardo G.; Monti, Mariana; Marsicano, Claudia A.; de la Fuente, Marcelo S.; Naipauer, Maximiliano; Armstrong, Richard; Mancuso, Adriana C.

    2014-12-01

    The Puesto Viejo Group crops out in the San Rafael Block, southwest Mendoza, at approximately 35° S and 68°20‧ W. It consists of the basal mainly grayish Quebrada de los Fósiles Formation (QF) overlying by the reddish Río Seco de la Quebrada Formation (RSQ). The basal unit includes both plant remains (pleuromeians and sphenopsids) and vertebrates (scattered fish scales, dicynodont synapsids and remains of an archosauriform). In contrast, the RSQ beds have yielded only tetrapods, although a more diverse fauna. The latter includes cynodonts as Cynognathus, Pascualognathus and Diademodon, and also dicynodonts (Vinceria and Kannemeyeria). Based on the assemblage of tetrapod taxa the bearing levels were correlated to the Cynognathus AZ of South Africa and thus referred to the Middle Triassic (Anisian). We obtained a SHRIMP 238U/206Pb age of 235.8 ± 2.0 Ma from a rhyolitic ignimbrite interdigitated between the QF and RSQ formations at the Quebrada de los Fósiles section. This new radiometric date for the Puesto Viejo Group suggests that the tetrapod fauna in the RSQ beds existed, instead, during the Late Triassic (early Carnian) some 10 Ma later than the currently accepted age. Two scenarios might explain our results: first, the Cynognathus AZ of South Africa is wrongly assigned to the lower Middle Triassic (Anisan) and should be considered younger in age, Late Triassic (Carnian); second, the relative age of the Cynognathus AZ of South Africa is correct but the inferred range of Cynognathus and Diademodon is incorrect as they were present during the Late Triassic (Carnian) at least in South America. In any case, this new date pose serious doubts about the validity of biostratigraphic correlations based solely on tetrapod taxa, a common practice for Triassic continental successions across Gondwana.

  14. Pollen and spores date origin of rift basins from Texas to nova scotia as early late triassic.

    PubMed

    Traverse, A

    1987-06-12

    Palynological studies of the nonmarine Newark Supergroup of eastern North America and of rift basins in the northern Gulf of Mexico facilitate correlation with well-dated marine sections of Europe. New information emphasizes the chronological link between the Newark basins and a Gulf of Mexico basin and their common history in the rifting of North America from Pangea. Shales from the subsurface South Georgia Basin are shown to be of late Karnian age (early Late Triassic). The known time of earliest sedimentation in the Culpeper Basin is extended from Norian (late Late Triassic) to mid-Karnian, and the date of earliest sedimentation in the Richmond and Deep River basins is moved to at least earliest Karnian, perhaps Ladinian. The subsurface Eagle Mills Formation in Texas and Arkansas has been dated palynologically as mid- to late Karnian. The oldest parts of the Newark Supergroup, and the Eagle Mills Formation, mostly began deposition in precursor rift basins that formed in Ladinian to early Karnian time. In the southern Newark basins, sedimentation apparently ceased in late Karnian but continued in the northern basins well into the Jurassic, until genesis of the Atlantic ended basin sedimentation.

  15. Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA)

    NASA Astrophysics Data System (ADS)

    Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud

    2018-01-01

    The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.

  16. Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Martin, Silvana; Toffolo, Luca; Moroni, Marilena; Montorfano, Carlo; Secco, Luciano; Agnini, Claudia; Nimis, Paolo; Tumiati, Simone

    2017-07-01

    We present a minero-petrographic, geochemical and geochronological study of siderite orebodies from different localities of the Southern Alps (northern Italy). Siderite occurs as veins cutting the Variscan basement and the overlying Lower Permian volcano-sedimentary cover (Collio Fm.), and as both veins and conformable stratabound orebodies in the Upper Permian (Verrucano Lombardo and Bellerophon Fms.) and Lower Triassic (Servino and Werfen Fms.) sedimentary sequences of the Lombardian and the Venetian Alps. All types of deposits show similar major- and rare-earth (REE)-element patterns, suggesting a common iron-mineralizing event. The compositions of coexisting siderite, Fe-rich dolomite and calcite suggest formation from hydrothermal fluids at relatively high temperature conditions (≥ 250 °C). Geochemical modelling, supported by REE analyses and by literature and new δ13C and δ18O isotopic data, suggests that fluids responsible for the formation of siderite in the Variscan basement and in the overlying Lower Permian cover were derived from dominant fresh water, which leached Fe and C from volcanic rocks (mainly rhyolites/rhyodacites) and organic carbon-bearing continental sediments. On the basis of U-Th-Pb microchemical dating of uraninite associated with siderite in the Val Vedello and Novazza deposits (Lombardian Alps), the onset of hydrothermalism is constrained to 275 ± 13 Ma (Early-Mid Permian), i.e., it was virtually contemporaneous to the plutonism and the volcanic-sedimentary cycle reported in the same area (Orobic Basin). The youngest iron-mineralizing event is represented by siderite veins and conformable orebodies hosted in Lower Triassic shallow-marine carbonatic successions. In this case, the siderite-forming fluids contained a seawater component, interacted with the underlying Permian successions and eventually replaced the marine carbonates at temperatures of ≥ 250 °C. The absence of siderite in younger rocks suggests an Early Triassic

  17. Synchrotron Reveals Early Triassic Odd Couple: Injured Amphibian and Aestivating Therapsid Share Burrow

    PubMed Central

    Fernandez, Vincent; Abdala, Fernando; Carlson, Kristian J.; Cook, Della Collins; Rubidge, Bruce S.; Yates, Adam; Tafforeau, Paul

    2013-01-01

    Fossorialism is a beneficial adaptation for brooding, predator avoidance and protection from extreme climate. The abundance of fossilised burrow casts from the Early Triassic of southern Africa is viewed as a behavioural response by many tetrapods to the harsh conditions following the Permo-Triassic mass-extinction event. However, scarcity of vertebrate remains associated with these burrows leaves many ecological questions unanswered. Synchrotron scanning of a lithified burrow cast from the Early Triassic of the Karoo unveiled a unique mixed-species association: an injured temnospondyl amphibian (Broomistega) that sheltered in a burrow occupied by an aestivating therapsid (Thrinaxodon). The discovery of this rare rhinesuchid represents the first occurrence in the fossil record of a temnospondyl in a burrow. The amphibian skeleton shows signs of a crushing trauma with partially healed fractures on several consecutive ribs. The presence of a relatively large intruder in what is interpreted to be a Thrinaxodon burrow implies that the therapsid tolerated the amphibian’s presence. Among possible explanations for such unlikely cohabitation, Thrinaxodon aestivation is most plausible, an interpretation supported by the numerous Thrinaxodon specimens fossilised in curled-up postures. Recent advances in synchrotron imaging have enabled visualization of the contents of burrow casts, thus providing a novel tool to elucidate not only anatomy but also ecology and biology of ancient tetrapods. PMID:23805181

  18. A New Species of Garjainia Ochev, 1958 (Diapsida: Archosauriformes: Erythrosuchidae) from the Early Triassic of South Africa

    PubMed Central

    Gower, David J.; Hancox, P. John; Botha-Brink, Jennifer; Sennikov, Andrey G.; Butler, Richard J.

    2014-01-01

    A new species of the erythrosuchid archosauriform reptile Garjainia Ochev, 1958 is described on the basis of disarticulated but abundant and well-preserved cranial and postcranial material from the late Early Triassic (late Olenekian) Subzone A of the Cynognathus Assemblage Zone of the Burgersdorp Formation (Beaufort Group) of the Karoo Basin of South Africa. The new species, G. madiba, differs from its unique congener, G. prima from the late Olenekian of European Russia, most notably in having large bony bosses on the lateral surfaces of the jugals and postorbitals. The new species also has more teeth and a proportionately longer postacetabular process of the ilium than G. prima. Analysis of G. madiba bone histology reveals thick compact cortices comprised of highly vascularized, rapidly forming fibro-lamellar bone tissue, similar to Erythrosuchus africanus from Subzone B of the Cynognathus Assemblage Zone. The most notable differences between the two taxa are the predominance of a radiating vascular network and presence of annuli in the limb bones of G. madiba. These features indicate rapid growth rates, consistent with data for many other Triassic archosauriforms, but also a high degree of developmental plasticity as growth remained flexible. The diagnoses of Garjainia and of Erythrosuchidae are addressed and revised. Garjainia madiba is the geologically oldest erythrosuchid known from the Southern Hemisphere, and demonstrates that erythrosuchids achieved a cosmopolitan biogeographical distribution by the end of the Early Triassic, within five million years of the end-Permian mass extinction event. It provides new insights into the diversity of the Subzone A vertebrate assemblage, which partially fills a major gap between classic ‘faunal’ assemblages from the older Lystrosaurus Assemblage Zone (earliest Triassic) and the younger Subzone B of the Cynognathus Assemblage Zone (early Middle Triassic). PMID:25386937

  19. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili

    2018-01-01

    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and

  20. Permo-Triassic radiolaria from the Semanggol Formation, northwest Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jasin, Basir

    1997-02-01

    A total of 32 species of radiolaria were identified from 20 chert samples at eight localities of the Semanggol Formation in north and south Kedah. Three assemblages of Radiolaria were recognised representing the Early Permian Pseudoalbaillella scalprata m. rhombothoracata. Late Permian Albaillella levis, and Middle Triassic Triassocampe deweveri Assemblage-Zone. The Pseudoalbaillella scalprata m. rhombothoracata Assemblage-Zone is discovered from Bukit Kampung Yoi and Bukit Larek, north Kedah. The Albaillella levis Assemblage-Zone is recorded from Bukit Tok Bertanduk, north Kedah and Merbau Palas, south Kedah. The Triassocampe deweveri Assemblage-Zone is found from the Lanjut Malau area, north Kedah. The radiolarian assemblages indicate that the age of the chert sequence in the Semanggol Formation ranges from Early permian to Middle Triassic.

  1. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Benton, Michael J.; Zhang, Qiyue; Hu, Shixue; Chen, Zhong-Qiang; Wen, Wen; Liu, Jun; Huang, Jinyuan; Zhou, Changyong; Xie, Tao; Tong, Jinnan; Choo, Brian

    2013-10-01

    The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared stratigraphic units, and their palaeoenvironments reconstructed. The Luoping and Panxian biotas, both from the Guanling Formation, are dated as Anisian (Pelsonian) on the basis of conodonts and radiometric dates, the former being slightly older than the latter. The Xingyi biota is from the Zhuganpo Formation, and is Ladinian or early Carnian, while the Guanling biota is from the overlying Xiaowa Formation, dated as Carnian. The first three biotas include extensive benthos and burrowing in the sediments, and they were located in restricted basins close to shore. Further, even though the Luoping and Panxian biotas are of similar age, their faunas differ significantly, reflecting perhaps palaeogeographically isolated basins. Between the time of the Xingyi and Guanling biotas, there was a major transgression, and the Guanling biota is entirely different in character from the other three, being dominated by pelagic forms such as large floating crinoids attached to logs, very large ichthyosaurs and thalattosaurs, and pseudoplanktonic bivalves, with no benthos and no burrowing. Phylogenetic study of the fishes and marine reptiles shows apparently explosive diversification among 20 actinopterygian lineages very early in the Early Triassic

  2. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic

    NASA Astrophysics Data System (ADS)

    Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei

    2015-08-01

    New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

  3. Early Late Triassic Subduction in the Northern Branch of Neotethys?: Petrological and Paleontological Constraints from the middle Carnian basalts in the Lycian Nappes

    NASA Astrophysics Data System (ADS)

    Sayit, K.; Göncüoglu, M. C.; Tekin, U. K.

    2015-12-01

    The Lycian Nappes, SW Anatolia, are represented by a stack of thrust sheets derived from the northern branch of Neotethys (i.e. Izmir-Ankara Ocean) and the northern margin of the Tauride-Anatolide platform. The Turunç Unit, which is now preserved within a tectonic slice of the Lycian Nappes, includes among others the Neotethys-derived basalt blocks with pelagic intra-pillow carbonate infillings of middle Carnian age (early Late Triassic). Here, we focus on the geochemistry of the Turunç basalts to shed light into their petrogenetic evolution within the Neotethyan framework. Immobile trace element systematics indicate that the Turunç lavas are sub-alkaline basalts, with geochemical signatures resembling to those generated above subduction zones. Detailed examination of the Turunç volcanics reveals two chemical groups. Both groups are variably enriched in Th and La relative to Nb, and exhibit depleted Zr and Hf contents relative to N-MORB. Of the two groups, however, Group 2 is more enriched in Th, but with a similar Nb content, which results in higher Th/Nb ratios (0.21-0.27) compared to those of Group 1 (0.08-0.11). Both groups reflect similar REE systematics; they display marked enrichment in LREE relative to HREE ([La/Yb]N = 4.8-8.9). Trace element characteristics of the Turunç basalts indicate that their mantle source has been modified by slab-derived component(s). Taking into account that the Turunc Unit includes no continent-derived detritus, we suggest that the Turunç lavas represent fragments of a Late Triassic island arc formed on the Neotethyan oceanic lithosphere. This may further imply that the Neotethyan oceanic lithosphere had already been formed by the early Late Triassic, thus suggesting a pre-early Late Triassic oceanization of the northern branch of Neotethys.

  4. Associated skeletons of a new middle Triassic "Rauisuchia" from Brazil.

    PubMed

    França, Marco Aurélio G; Ferigolo, Jorge; Langer, Max C

    2011-05-01

    For more than 30 million years, in early Mesozoic Pangea, "rauisuchian" archosaurs were the apex predators in most terrestrial ecosystems, but their biology and evolutionary history remain poorly understood. We describe a new "rauisuchian" based on ten individuals found in a single locality from the Middle Triassic (Ladinian) Santa Maria Formation of southern Brazil. Nine articulated and associated skeletons were discovered, three of which have nearly complete skulls. Along with sedimentological and taphonomic data, this suggests that those highly successful predators exhibited some kind of intraspecific interaction. Other monotaxic assemblages of Triassic archosaurs are Late Triassic (Norian-Rhaetian) in age, approximately 10 million years younger than the material described here. Indeed, the studied assemblage may represent the earliest evidence of gregariousness among archosaurs, adding to our knowledge on the origin of a behavior pattern typical of extant taxa.

  5. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  6. Milankovitch and sub-Milankovitch cycles of the Early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Wu, H.; Zhang, S.; Feng, Q.; Jiang, G.; Li, H.; Yang, T.

    2011-12-01

    The most profound mass extinction in the Phanerozoic occurred at the end of the Permian, with global loss of nearly 90% of marine invertebrate species and 70% of terrestrial vertebrate genera. Recent studies suggested that volcanisms represented by the Siberian Trap were most likely cause of the end-Permian extinction. The post-extinction periods in the Early Triassic was characterized by low biodiversity, reduced abundance and size of invertebrates, hiatus in coal deposition, anomalously high sediment fluxes, and large perturbations of the carbon cycle, which have been interpreted as the consequence of persistently unfavorable environmental conditions. However, the time framework for the Early Triassic geological, biological and geochemical events is traditionally established by conodont biostratigraphy, but the absolute duration of condont biozones are not well constrained. In this study, a rock magnetic cyclostratigraphy, based on high-resolution analysis (2440 samples) of magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) intensity variations, was developed for the 55.1-m-thick, Early Triassic Daye Formation at the Daxiakou section, Hubei province in South China. The Daye Formation shows exceptionally well-preserved lithological cycles with alternations of thin-bedded mudstone, marl and limestone, which are closely tracked by the MS and ARM variations. Power spectral, wavelet and amplitude modulation (AM) analysis of the ARM and MS series reveal strong evidence for the presence of Milankovitch to sub-Milankovitch frequencies dominated by precession index signal and 4-5 ka cycles. Cycles expressed by variations in MS and ARM were likely controlled by the input of fine-grained detrital magnetite, which in turn may be driven by astronomically induced changes in monsoon intensity in the equatorial eastern Tethys during the Early Triassic greenhouse period. On the basis of the 100-ka tuning results, the astronomically constrained duration of

  7. Upper triassic continental margin strata of the central alaska range: Implications for paleogeographic reconstruction

    USGS Publications Warehouse

    Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M.

    2007-01-01

    Reexamination of existing conodont collections from the central Alaska Range indicates that Upper Triassic marine slope and basin rocks range in age from at least as old as the late Carnian to the early middle Norian. The conodont assemblages typical of these rocks are generally cosmopolitan and do not define a distinct paleogeographic faunal realm. One collection, however, containsEpigondolella multidentata sensu Orchard 1991c, which appears to be restricted to western North American autochthonous rocks. Although paleogeographic relations cannot be determined with specificity, the present distribution of biofaces within the Upper Triassic sequence could not have been the result of simple accordion-style collapse of the Late Triassic margin.

  8. A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria.

    PubMed

    Stocker, Michelle R; Zhao, Li-Jun; Nesbitt, Sterling J; Wu, Xiao-Chun; Li, Chun

    2017-04-10

    Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys.

  9. A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria

    PubMed Central

    Stocker, Michelle R.; Zhao, Li-Jun; Nesbitt, Sterling J.; Wu, Xiao-Chun; Li, Chun

    2017-01-01

    Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys. PMID:28393843

  10. The beginning of the Buntsandstein cycle (Early-Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Galán-Abellán, Belén; López-Gómez, José; Barrenechea, José F.; Marzo, Mariano; De la Horra, Raúl; Arche, Alfredo

    2013-10-01

    The Early-Middle Triassic siliciclastic deposits of the Catalan Ranges, NE Spain, are dominated by aeolian sediments indicating a predominance of arid climate during this time span, in sharp contrast with the coeval fluvial sediments found in the Castilian Branch of the Iberian Ranges, 300 km to the SW. The NE-SW-oriented Catalan Basin evolved during the Middle-Late Permian as the result of widespread extension in the Iberian plate. This rift basin was bounded by the Pyrenees, Ebro and Montalbán-Oropesa highs. The Permian-Early Triassic-age sediments of the Catalan Basin were deposited in three isolated subbasins (Montseny, Garraf, Prades), separated by intrabasinal highs, but linked by transversal NW-SE oriented faults. The three subbasins show evidence of diachronic evolution with different subsidence rates and differences in their sedimentary records. The Buntsandstein sedimentary cycle started in the late Early Triassic (Smithian-Spathian) in the central and southern domains (Garraf and Prades), with conglomerates of alluvial fan origin followed by fluvial and aeolian sandstones. Source area of the fluvial sediments was nearby Paleozoic highs to the north and west, in contrast with the far-away source areas of the fluvial sediments in the Iberian Ranges, to the SW. These fluvial systems were interacting with migrating aeolian dune fields located towards the S, which developed in the shadow areas behind the barriers formed by the Paleozoic highs. These highs were separating the subbasins under arid and semi-arid climate conditions. The dominating winds came from the east where the westernmost coast of the Tethys Sea was located, and periods of water run-off and fields of aeolian dunes development alternated. Some of the fluvial systems were probably evaporating as they were mixed into the interdune areas, never reaching the sea. From the end of the Smithian to the Spathian, the Catalan Basin and neighbour peri-Tethys basins of the present-day southern France

  11. Biostratigraphic reappraisal of the Lower Triassic Sanga do Cabral Supersequence from South America, with a description of new material attributable to the parareptile genus Procolophon

    NASA Astrophysics Data System (ADS)

    Dias-da-Silva, Sérgio; Pinheiro, Felipe L.; Stock Da-Rosa, Átila Augusto; Martinelli, Agustín G.; Schultz, Cesar L.; Silva-Neves, Eduardo; Modesto, Sean P.

    2017-11-01

    The Sanga do Cabral Supersequence (SCS), comprises the Brazilian Sanga do Cabral Formation (SCF) and the Uruguayan Buena Vista Formation (BVF). So far, the SCS has yielded temnospondyls, parareptiles, archosauromorphs, putative synapsids, and a number of indeterminate specimens. In the absence of absolute dates for these rocks, a biostratigraphic approach is necessary to establish the ages of the SCF and the BVF. It is well established that the SCF is Early Triassic mainly due to the presence of the widespread Gondwanan reptile Procolophon trigoniceps. Conversely, the age of the BVF is subject of great controversy, being regarded alternatively as Permian, Permo-Triassic, and Early Triassic. The BVF has yielded the definite procolophonid Pintosaurus magnidentis. Procolophonoidea is one of the most diverse and conspicuous terrestrial tetrapod groups of the Lower Triassic Lystrosaurus Assemblage Zone in the Karoo Basin of South Africa, which preserves tetrapods from the aftermath of the end-Permian extinction event. Based on a previous interpretation that the fauna of the BVF is Permian, and in the reinterpretation of disarticulated vertebrae from SCF with 'swollen' neural arches as belonging to either seymouriamorphs or diadectomorphs, it was recently suggested that at least part of the SCF is Permian in age, which prompted this comprehensive reevaluation of both SCS's faunal content and geology. Moreoever, new, strikingly large procolophonid specimens (skull, vertebra, and a mandibular fragment) from the SCF are described and referred to the genus Procolophon. The large procolophonid vertebra described here contradicts the recent hypothesis that similar specimens from the SCF belong to seymouriamorphs or diadectomorphs, because its morphology is consistent with that found in Procolophon. There is not a single diagnostic specimen that supports the inference of Permian levels in the SCS. Accordingly, because all diagnostic and biostratigraphically informative fossils

  12. Early Triassic wrinkle structures on land: stressed environments and oases for life

    NASA Astrophysics Data System (ADS)

    Chu, Daoliang; Tong, Jinnan; Song, Haijun; Benton, Michael J.; Bottjer, David J.; Song, Huyue; Tian, Li

    2015-06-01

    Wrinkle structures in rocks younger than the Permian-Triassic (P-Tr) extinction have been reported repeatedly in marine strata, but rarely mentioned in rocks recording land. Here, three newly studied terrestrial P-Tr boundary rock succession in North China have yielded diverse wrinkle structures. All of these wrinkles are preserved in barely bioturbated shore-shallow lacustrine siliciclastic deposits of the Liujiagou Formation. Conversely, both the lacustrine siliciclastic deposits of the underlying Sunjiagou Formation and the overlying Heshanggou Formation show rich bioturbation, but no wrinkle structures or other microbial-related structures. The occurrence of terrestrial wrinkle structures in the studied sections reflects abnormal hydrochemical and physical environments, presumably associated with the extinction of terrestrial organisms. Only very rare trace fossils occurred in the aftermath of the P-Tr extinction, but most of them were preserved together with the microbial mats. This suggests that microbial mats acted as potential oases for the surviving aquatic animals, as a source of food and oxygen. The new finds suggests that extreme environmental stresses were prevalent both in the sea and on land through most of the Early Triassic.

  13. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    U-Pb SHRIMP zircon crystallization ages and Ar-Ar and K-Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U-Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar-Ar muscovite age of 182 ± 3 Ma and a K-Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U-Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K-Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K-Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K-Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian-Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198-182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern

  14. Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age Estimate for Angiosperms.

    PubMed

    Beaulieu, Jeremy M; O'Meara, Brian C; Crane, Peter; Donoghue, Michael J

    2015-09-01

    Dating analyses based on molecular data imply that crown angiosperms existed in the Triassic, long before their undisputed appearance in the fossil record in the Early Cretaceous. Following a re-analysis of the age of angiosperms using updated sequences and fossil calibrations, we use a series of simulations to explore the possibility that the older age estimates are a consequence of (i) major shifts in the rate of sequence evolution near the base of the angiosperms and/or (ii) the representative taxon sampling strategy employed in such studies. We show that both of these factors do tend to yield substantially older age estimates. These analyses do not prove that younger age estimates based on the fossil record are correct, but they do suggest caution in accepting the older age estimates obtained using current relaxed-clock methods. Although we have focused here on the angiosperms, we suspect that these results will shed light on dating discrepancies in other major clades. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Time-scale calibration by U-Pb geochronology: Examples from the Triassic Period

    NASA Astrophysics Data System (ADS)

    Mundil, R.

    2009-05-01

    )) and the Early-Middle Triassic (Olenekian-Anisian) boundary (247.2 Ma, (8, 9)), resulting in a surprisingly short duration of the Early Triassic which has implications for the timing of biotic recovery and major changes in ocean chemistry during this time. Furthermore, the Anisian-Ladinian boundary is constrained to 242.0 Ma by new U-Pb and 40Ar/39Ar ages. Radio-isotopic ages for the Late Triassic are scarce and the only reliable and biostratigraphically controlled age is from an upper Carnian tuff dated to 230.9 Ma (10), yielding a duration of more than 35 Ma for the Late Triassic. The resulting time-scale is at odds with the most recent compilation (11) but arguably more accurate because it is entirely based on U-Pb analyses applied to closed-system zircons with uncertainties at the permil level or better. 1. T. E. Krogh, Geochimica et Cosmochimica Acta 37, 485 (1973); 2. T. E. Krogh, Geochimica et Cosmochimica Acta 46, 637 (1982); 3. J. M. Mattinson, Chemical Geology 220, 47 (2005); 4. R. Mundil, K. R. Ludwig, I. Metcalfe, P. R. Renne, Science 305, 1760 (2004); 5. U. Schaltegger, J. Guex, A. Bartolini, B. Schoene, M. Ovtcharova, Earth and Planetary Science Letters 267, 266 (2008); 6. R. Mundil, P. R. Renne, K. K. Min, K. R. Ludwig, in Eos Trans. AGU, Fall Meet. Suppl. (2006), vol. 87(52), pp. V21A-0543; 7. T. Galfetti et al., Earth and Planetary Science Letters 258, 593 (2007). 8. M. Ovtcharova et al., Earth and Planetary Science Letters 243, 463 (2006). 9. J. Ramezani et al., Earth and Planetary Science Letters 256, 244 (2007). 10. S. Furin et al., Geology 34, 1009 (2006); 11. J. G. Ogg, in A Geologic Time Scale 2004 F. M. Gradstein, J. G. Ogg, A. G. Smith, Eds. (University Press, Cambridge, 2004) pp. 271-306.

  16. Footprints of large theropod dinosaurs and implications on the age of Triassic biotas from Southern Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Rafael Costa; Barboni, Ronaldo; Dutra, Tânia; Godoy, Michel Marques; Binotto, Raquel Barros

    2012-11-01

    Dinosaur footprints found in an outcrop of the Caturrita Formation (Rio Grande do Sul State, Southern Brazil), associated with a diverse and well preserved record of fauna and flora, reopen the debate about its exclusive Triassic age. The studied footprints were identified as Eubrontes isp. and are interpreted as having been produced by large theropod dinosaurs. The morphological characteristics and dimensions of the footprints are more derived than those commonly found in the Carnian-Norian, and are more consistent with those found during the Rhaetian-Jurassic. The trackmaker does not correspond to any type of dinosaur yet known from Triassic rocks of Brazil. Recent studies with the paleofloristic content of this unit also support a more advanced Rhaetian or even Jurassic age for this unit.

  17. A new high-precision 40Ar/39Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin E.; Mark, Darren F.; Lee, Martin R.; Simpson, Sarah L.

    2017-08-01

    The Rochechourt impact structure in south-central France, with maximum diameter of 40-50 km, has previously been dated to within 1% uncertainty of the Triassic-Jurassic boundary, at which time 30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic-Jurassic boundary at high precision, we have re-examined the structure's age using multicollector ARGUS-V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 ± 0.20/0.32 Ma (2σ, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic-Jurassic boundary by 5.6 ± 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported "paired" structures, the results provide no evidence for synchronous impacts in the Late Triassic. The widespread Central Atlantic Magmatic Province flood basalts remain the most likely cause of the Triassic-Jurassic mass extinction.

  18. Triassic actinopterygian fishes: the recovery after the end-Permian crisis.

    PubMed

    Tintori, Andrea; Hitij, Tomaž; Jiang, Dayong; Lombardo, Cristina; Sun, Zuoyu

    2014-08-01

    In the last 15 years, the discovery of several new actinopterygian fish faunas from the Early and Middle Triassic of the Tethys, cast new light on the timing, speed and range of their recovery after the end-Permian crisis. In addition to several new taxa having been described, the stratigraphical and geographical record of many others have been greatly extended. In fact, most of the new fossiliferous sites are in southern China, thus at the Eastern end of the Tethys, and furthermore a few are somewhat older (Chaohu, Panxian, Luoping) than the major classical Western Tethys sites (Monte San Giorgio). Following these new finds, it is possible to have a better definition of the Triassic recovery stages. Indeed, after a quite short phase till the end of the Smithian (Olenekian, Early Triassic) in which a rather consistent fauna was present all around the Pangea coasts, a major radiation occurred in the Early-Middle Anisian after the new Middle Triassic fish fauna already appeared in the late Early Triassic, thus occuring well before what was previously supposed from the Alps localities. Furthermore, the new assemblages from southern China point to an early broader differentiation among the basal neopterygians rather than in the 'subholosteans', the group that was then dominant in the Western Tethys since the Late Anisian. It stands that during the Norian a new basal neopterygian radiation gave rise to several new branches that dominated the remaining part of the Mesozoic. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  19. A new archosauriform (Reptilia: Diapsida) from the Manda beds (Middle Triassic) of southwestern Tanzania.

    PubMed

    Nesbitt, Sterling J; Butler, Richard J; Gower, David J

    2013-01-01

    Archosauria and their closest relatives, the non-archosaurian archosauriforms, diversified in the Early and Middle Triassic, soon after the end-Permian extinction. This diversification is poorly documented in most Lower and Middle Triassic rock sequences because fossils of early groups of archosauriforms are relatively rare compared to those of other amniotes. The early Middle Triassic (? late Anisian) Manda beds of southwestern Tanzania form an exception, with early archosaur skeletons being relatively common and preserved as articulated or associated specimens. The Manda archosaur assemblage is exceptionally diverse for the Middle Triassic. However, to date, no non-archosaurian archosauriforms have been reported from these rocks. Here, we name a new taxon, Asperoris mnyama gen. et sp. nov., from the Manda beds and thoroughly describe the only known specimen. The specimen consists of a well-preserved partial skull including tooth-bearing elements (premaxilla, maxilla), the nasal, partial skull roof, and several incomplete elements. All skull elements are covered in an autapomorphic highly rugose sculpturing. A unique combination of character states indicates that A. mnyama lies just outside Archosauria as a stem archosaur within Archosauriformes, but more precise relationships of A. mnyama relative to other early archosauriform clades (e.g., Erythrosuchidae) cannot be determined currently. Asperoris mnyama is the first confirmed non-archosaurian archosauriform from the Manda beds and increases the morphological and taxonomic diversity of early archosauriforms known from the Middle Triassic. The direct association of A. mnyama with species referable to Archosauria demonstrates that non-archosaurian archosauriforms were present during the rise and early diversification of Archosauria. Non-archosaurian archosauriforms and archosaurs co-occur in fossil reptile assemblages across Pangaea from the late Early Triassic to the end of the Late Triassic.

  20. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.

    2017-01-01

    Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.

  1. Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.

    1983-01-01

    Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.

  2. Paleogeographic regionalization of Triassic seas based on conodontophorids

    NASA Astrophysics Data System (ADS)

    Klets, T. V.

    2008-10-01

    Geographic differentiation of conodontophorids between northern and southern latitudes commenced in the Triassic since the early Induan. Cosmopolitan long-lived genera of predominantly smooth morphotypes without sculpturing were characteristic of high-latitude basins of the Panboreal Superrealm. Since the early Olenekian until the Carnian inclusive, this superrealm consisted of the Siberian Realm that extended over Northeast Asia and the Canada-Svalbard Realm that included the Svalbard Archipelago and northern regions of Canada. Throughout the Triassic period, conodontophorids characteristic of the Tethys-Panthalassa Superrealm spanning the Tethys and low-latitude zones of the Pacific were highly endemic, very diverse in taxonomic aspect, having well-developed sculpturing and tempos of morphological transformations. Distinctions between the Early-Middle Triassic conodontophorids from northern and southern zones were not as great as afterward, and their impoverished assemblages from southern Tethyan basins were close in some respects to the Boreal ones. Their habitat basins of that time can be grouped into the Mediterranean-Pacific and India-Pakistan realms. Hence, the extent of geographic differentiation of conodontophorids was not constant and gradually grew, as their taxonomic diversity was reducing in northern basins but relatively increasing in southern ones. The Panboreal e Tethys-Panthalassa superrealms of conodontophorids, which are most clearly recognizable, are close to first-rank paleobiochores (superrealms) established earlier for ammonoids and bivalve mollusks. Main factor that controlled geographic differentiation of Triassic conodontophorids was climatic zoning. Initially lower diversity of southern Tethyan assemblages points probably to relatively cooler water regime in the peri-Gondwanan part of the Tethys. The established patterns in geographic distribution of conodontophorids characterize most likely the real trend of their differentiation and

  3. Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin

    NASA Astrophysics Data System (ADS)

    Caravaca, Gwénaël; Thomazo, Christophe; Vennin, Emmanuelle; Olivier, Nicolas; Cocquerez, Théophile; Escarguel, Gilles; Fara, Emmanuel; Jenks, James F.; Bylund, Kevin G.; Stephen, Daniel A.; Brayard, Arnaud

    2017-07-01

    In the aftermath of the catastrophic end-Permian mass extinction, the Early Triassic records recurrent perturbations in the carbon isotope signal, most notably during the Smithian and through the Smithian/Spathian Boundary (SSB; 1.5 myr after the Permian/Triassic boundary), which show some of the largest excursions of the Phanerozoic. The late Smithian also corresponds to major biotic turnovers and environmental changes, such as temperature fluctuations, that deeply impacted the recovery after the end-Permian mass extinction. Here we document the paired carbon isotope signal along with an analysis of the trace and major elements at the long-known Hot Springs section (southeastern Idaho, USA). This section records Early Triassic sediments from the Griesbachian-Dienerian up to the lower Spathian. We show that the organic and carbonate δ13C variations mirror the signals identified at a global scale. Particularly, the middle Smithian-SSB event represented by a negative-positive isotopic couplet is well identified and is not of diagenetic origin. We also document a positive excursion potentially corresponding to the Dienerian/Smithian Boundary. Observed Smithian-Spathian excursions are recorded similarly in both the organic and carbonate reservoirs, but the organic matter signal systematically shows unexpectedly dampened variations compared to its carbonate counterpart. Additionally, we show that variations in the net isotopic effect (i.e., Δ13C) probably resulted from a complex set of forcing parameters including either a mixing between terrestrial and marine organic matter depending on the evolution of the depositional setting, or variations in the biological fractionation. We establish that the Δ13C signal cannot be directly related to CO2-driven temperature variations at Hot Springs. Even though the carbon isotope signal mirrors the Early Triassic variations known at the global scale, the Hot Springs signal probably also reflects local influences on the carbon

  4. Tetrapod localities from the Triassic of the SE of European Russia

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, Valentin P.; Tverdokhlebova, Galina I.; Surkov, Mikhail V.; Benton, Michael J.

    2003-01-01

    Fossil tetrapods (amphibians and reptiles) have been discovered at 206 localities in the Lower and Middle Triassic of the southern Urals area of European Russia. The first sites were found in the 1940s, and subsequent surveys, from the 1960s to the present day, have revealed many more. Broad-scale stratigraphic schemes have been published, but full documentation of the rich tetrapod faunas has not been presented before. The area of richest deposits covers some 900,000 km 2 of territory between Samara on the River Volga in the NW, and Orenburg and Sakmara in the SW. Continental sedimentary deposits, consisting of mudstones, siltstones, sandstones, and conglomerates deposited by rivers flowing off the Ural Mountain chain, span much of the Lower and Middle Triassic (Induan, Olenekian, Anisian, Ladinian). The succession is divided into seven successive svitas, or assemblages: Kopanskaya (Induan), Staritskaya, Kzylsaiskaya, Gostevskaya, and Petropavlovskaya (all Olenekian), Donguz (Anisian), and Bukobay (Ladinian). This succession, comprising up to 3.5 km of fluvial and lacustrine sediments, documents major climatic changes. At the beginning of the Early Triassic, arid-zone facies were widely developed, aeolian, piedmont and proluvium. These were replaced by fluvial facies, with some features indicating aridity. At the end of the Middle Triassic, deltaic and lacustrine-marsh formations were dominant, indicating more humid conditions. The succession of Early to Mid Triassic tetrapod faunas documents the recovery of life after the end-Permian mass extinction. The earliest faunas consist only of small, aquatic tetrapods, in low-diversity, low-abundance assemblages. Climbing the succession through the Early Triassic, more terrestrially adapted tetrapods appear, and larger herbivorous and carnivorous reptiles come to dominate in the Mid Triassic as ecosystems were rebuilt.

  5. The Lower Triassic sedimentary and carbon isotope records from Tulong (South Tibet) and their significance for Tethyan palaeoceanography

    NASA Astrophysics Data System (ADS)

    Brühwiler, Thomas; Goudemand, Nicolas; Galfetti, Thomas; Bucher, Hugo; Baud, Aymon; Ware, David; Hermann, Elke; Hochuli, Peter A.; Martini, Rossanna

    2009-12-01

    The Lower Triassic sedimentary and carbonate/organic carbon isotope records from the Tulong area (South Tibet) are documented in their integrality for the first time. New age control is provided by ammonoid and conodont biostratigraphy. The basal Triassic series consists of Griesbachian dolomitic limestones, similar to the Kathwai Member in the Salt Range (Pakistan) and to the Otoceras Beds in Spiti (India). The overlying thin-bedded limestones of Dienerian age strongly resemble the Lower Ceratite Limestone of the Salt Range. They are followed by a thick series of dark green, silty shales of Dienerian-early Smithian age without fauna that strikingly resemble the Ceratite Marls of the Salt Range. This interval is overlain by thin-bedded, light grey fossil-rich limestones of middle to late Smithian age, resembling the Upper Ceratite Limestone of the Salt Range. These are followed by a shale interval of early Spathian age that has no direct counterpart in other Tethyan sections. Carbonate production resumes during the late early and middle Spathian with the deposition of red, bioclastic nodular limestone ("Ammonitico Rosso" type facies). Apart from its colour this facies is similar to the one of the Niti Limestone in Spiti and of the Spathian nodular limestone in Guangxi (South China). As in other Tethyan localities such as Spiti, the early-middle Anisian part of the Tulong section is strongly condensed and is characterized by grey, thin-bedded limestones with phosphatized ammonoids. As for many other Tethyan localities the carbon isotope record from Tulong is characterized by a late Griesbachian-Dienerian positive δ13C carb excursion (2‰), and a very prominent positive excursion (5‰) at the Smithian-Spathian boundary, thus confirming the well-documented perturbations of the global carbon cycle following the Permian-Triassic mass extinction event.

  6. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism

    NASA Astrophysics Data System (ADS)

    Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Horacek, Micha; Qiu, Haiou; Song, Haijun; Tian, Li; Chen, Zhong-Qiang

    2013-06-01

    Vertical gradients in the δ13C of seawater dissolved inorganic carbon (Δδ13CDIC) can be estimated for paleomarine systems based on δ13Ccarb data from sections representing a range of depositional water depths. An analysis of eight Lower Triassic sections from the northern Yangtze Platform and Nanpanjiang Basin, representing water depths of ~ 50 to 500 m, allowed reconstruction of Δδ13CDIC in Early Triassic seas of the South China craton for seven time slices representing four negative (N) and three positive (P) carbon-isotope excursions: 8.5‰ (N1), 5.8‰ (P1), 3.5‰ (N2), 6.5‰ (P2), 7.8‰ (N3), - 1.9‰ (P3), and 2.2‰ (N4). These values are much larger than vertical δ13CDIC gradients in the modern ocean (~ 1-3‰) due to intensified stratification and reduced vertical mixing in Early Triassic seas. Peaks in Δδ13CDIC around the PTB (N1) and in the early to mid-Smithian (P2-N3) coincided with episodes of strong climatic warming, reduced marine productivity, and expanded ocean anoxia. The Dienerian-Smithian boundary marks the onset of a major mid-Early Triassic disturbance, commencing ~ 1 Myr after the latest Permian mass extinction, that we link to a second eruptive stage of the Siberian Traps. Inhospitable oceanic conditions generally persisted until the early Spathian, when strong climatic cooling caused re-invigoration of global-ocean circulation, leading to an interval of negative Δδ13CDIC values and a sharp increase in δ13Ccarb driven by upwelling of nutrient-rich deepwaters. These developments marked the end of the main eruptive stage of the Siberian Traps.

  7. Unappreciated diversification of stem archosaurs during the Middle Triassic predated the dominance of dinosaurs.

    PubMed

    Foth, Christian; Ezcurra, Martín D; Sookias, Roland B; Brusatte, Stephen L; Butler, Richard J

    2016-09-15

    Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.

  8. Anisian (Middle Triassic) marine ichnocoenoses from the eastern and western margins of the Kamdian Continent, Yunnan Province, SW China: Implications for the Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Feng, Xueqian; Chen, Zhong-Qiang; Woods, Adam; Pei, Yu; Wu, Siqi; Fang, Yuheng; Luo, Mao; Xu, Yaling

    2017-10-01

    Two Anisian (Middle Triassic) marine ichnocoenoses are reported from the Boyun and Junmachang (JMC) sections located along the eastern and western margins of the Kamdian Continent, Yunnan Province, Southwest China, respectively. The Boyun ichnoassemblage is middle Anisian in age and is dominated by robust Rhizocorallium, while the JMC ichnoassemblage is of an early Anisian age and is characterized by the presence of Zoophycos. The ichnoassemblage horizons of the Boyun section represent an inner ramp environment, while the JMC section was likely situated in a mid-ramp setting near storm wave base as indicated by the presence of tempestites. The ichnofossil-bearing successions are usually highly bioturbated in both the Boyun (BI 3-5, BPBI 5) and JMC (BI 3-4, BPBI 3-4) sections. Three large, morphologically complicated ichnogenera: 1) Rhizocorallium; 2) Thalassinoides; and, 3) Zoophycos characterize the Anisian ichnocoenoses. Of these, Rhizocorallium has mean and maximum tube diameters up to 20.4 mm and 28 mm, respectively, while Thalassinoides mean and maximum tube diameters are 14.2 mm and 22 mm, respectively. Zoophycos is present in the early Anisian strata of the JMC section, and represents the oldest known occurrence of this ichnogenus following the latest Permian mass extinction. Similar to coeval ichnoassemblages elsewhere in the world, the Yunnan ichnocoenoses embrace a relatively low ichnodiversity, but their burrows usually penetrate deeply into the sediment, and include large and complex Rhizocorallium and Thalassinoides. All of these ichnologic features are indicative of recovery stage 4 after the latest Permian crisis. Anisian ichnoassemblages occur globally in six different habitat settings, and all show similar ecologic characteristics except for slightly different degrees of ichnotaxonomic richness, indicating that depositional environment is not a crucial factor shaping the recovery of the trace-makers, but may have an impact on their ichnodiversity

  9. Tethys- and Atlas-related deformations in the Triassic Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.S.; Moore, S.R.; Quarles, A.I.

    1995-08-01

    Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less

  10. Middle-Upper Triassic and Middle Jurassic tetrapod track assemblages of southern Tunisia, Sahara Platform

    NASA Astrophysics Data System (ADS)

    Niedźwiedzki, Grzegorz; Soussi, Mohamed; Boukhalfa, Kamel; Gierliński, Gerard D.

    2017-05-01

    Three tetrapod track assemblages from the early-middle Mesozoic of southern Tunisia are reported. The strata exposed at the Tejra 2 clay-pit near the Medenine and Rehach site, located in the vicinity of Kirchaou, contain the first tetrapod tracks found in the Triassic of Tunisia. The Middle Jurassic (early Aalenian) dinosaur tracks are reported from the Mestaoua plain near Tataouine. In the Middle Triassic outcrop of the Tejra 2 clay-pit, tridactyl tracks of small and medium-sized dinosauromorphs, were discovered. These tracks represent the oldest evidence of dinosaur-lineage elements in the Triassic deposits of Tunisia. Similar tracks have been described from the Middle Triassic of Argentina, France and Morocco. An isolated set of the manus and pes of a quadrupedal tetrapod discovered in Late Triassic Rehach tracksite is referred to a therapsid tracemaker. The Middle Jurassic deposits of the Mestaoua plain reveal small and large tridactyl theropod dinosaur tracks (Theropoda track indet. A-C). Based on comparison with the abundant record of Triassic tetrapod ichnofossils from Europe and North America, the ichnofauna described here indicates the presence of a therapsid-dinosauromorph ichnoassociation (without typical Chirotheriidae tracks) in the Middle and Late Triassic, which sheds light on the dispersal of the Middle-Upper Triassic tetrapod ichnofaunas in this part of Gondwana. The reported Middle Jurassic ichnofauna show close similarities to dinosaur track assemblages from the Lower and Middle Jurassic of northwestern Africa, North America, Europe and also southeastern Asia. Sedimentological and lithostratigraphic data of each new tracksite have been defined on published data and new observations. Taken together, these discoveries present a tantalizing window into the evolutionary history of tetrapods from the Triassic and Jurassic of southern Tunisia. Given the limited early Mesozoic tetrapod record from the region, these discoveries are of both temporal and

  11. Depositional facies, environments and sequence stratigraphic interpretation of the Middle Triassic-Lower Cretaceous (pre-Late Albian) succession in Arif El-Naga anticline, northeast Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El-Azabi, M. H.; El-Araby, A.

    2005-01-01

    The Middle Triassic-Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short

  12. Triassic deposits of the Chukotka Arctic continental margin (sedimentary implications and detrital zircon data)

    NASA Astrophysics Data System (ADS)

    Tuchkova, Marianna; Sokolov, Sergey; Verzhbitsky, Vladimir

    2013-04-01

    Triassic clastic deposits of Chukotka are represented by rhythmic intercalation of sandstones, siltstones and mudstones. During the Triassic, sedimentation was represented by continental slope progradation. Detrital zircons from Triassic sedimentary rocks were collected for constrain its paleogeographic links to source terranes. Zircons populations from three Chukotka's samples are very similar, and youngest zircon ages show peaks at 236-255 Ma (Miller et al., 2006). Lower Triassic sandstones from the Chaun subterrane do not contain the young population 235-265 Ma that is characteristic of the Upper Triassic rocks from the Anyui subterrane and Wrangel Island. The young zircon population is missing also from the coeval Sadlerochit Group (Alaska) and Blind Fiord Formation of the Sverdrup basin (Miller et al., 2006; Omma et al., 2011). Our data of Triassic sandstones of Wrangel island demonstrate detrital zircons ages dominated by Middle Triassic (227-245 Ma), Carboniferous (309-332 Ma) and Paleoproterozoic (1808-2500 Ma) ages. The new data on Chukotka show that populations of detrital zircons from Chukotka, the Sverdrup basin, and Alaska, the Sadlerochit Mountains included, demonstrate greater similarity than it was previously thought. Consequently, it may be assumed that they originate from a single source situated in the north. The data on zircon age of gabbro-dolerite magmatism in eastern Chukotka (252 Ma. Ledneva et al., 2011) and K-Ar ages obtained for sills and small intrusive bodies (Geodynamics…, 2006) in Lower Triassic deposits allow the local provenance. The presence of products of synchronous magmatism and shallow-water facies in the Lower Triassic sequences confirm this assumption. At the same time, coeval zircons appear only in the Upper Triassic strata. It is conceivable that the young zircon population originates from intrusive, not volcanic rocks, which were subjected to erosion only in the Late Triassic. In our opinion, the assumption of the local

  13. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    USGS Publications Warehouse

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  14. Redescription of Bellerophon bittneri (Gastropoda: Triassic) from Wyoming.

    USGS Publications Warehouse

    Yochelson, E.L.; Boyd, D.W.; Wardlaw, B.

    1985-01-01

    Bellerophon bittneri Newell and Kummel is an Early Triassic bellerophontacean from the Dinwoody Formation in the Wind River Mountains. The available type material consists of one fair, but incomplete, external mold, which resembles a Bellerophon but is actually a Retispira. After repeated search, additional specimens were found at one locality in the southern Wind River Range of Wyoming; Retispira bittneri is redescribed from this new material. Like other Triassic bellerophontaceans, there is nothing unusual about the species apart from occurrence in the Mesozoic; it is clearly congeneric with Permian Retispira from underlying rocks. -Authors

  15. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    PubMed

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  16. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction

    PubMed Central

    Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo

    2016-01-01

    Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises. PMID:27340926

  17. Late Triassic paleolatitude of the Qiangtang block: Implications for the closure of the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yang, Tianshui; Zhao, Xixi; Fu, Jiajun; Yue, Yahui

    2015-08-01

    To better constrain the Late Triassic paleolatitude of the Qiangtang block and the closure of the Paleo-Tethys Ocean, a combined paleomagnetic and zircon U/Pb geochronological study has been conducted on the Upper Triassic Jiapila Formation volcanic rocks on the northern edge of the Qiangtang block of Central Tibet (34.1°N, 92.4°E). These rocks are dated to 204-213 Ma. Progressive thermal or alternating field demagnetization successfully isolated stable characteristic remanent magnetizations (ChRM) that pass both the fold and reversal tests, consistent with a primary magnetization. These are the first volcanic-based paleomagnetic results from pre-Cretaceous rocks of the Qiangtang block that appear to average secular variation well enough to yield a reliable paleolatitude estimate. Based on our new paleomagnetic data from Upper Triassic lavas, we conclude that the Late Triassic pole of the Qiangtang block was located at 64.0°N, 174.7°E, with A95 = 6.6 ° (N = 29). We compile published paleomagnetic data from the Qiangtang block to calculate a Late Triassic latitude for the Qiangtang block at 31.7 ± 3.0°N. The central Paleo-Tethys Ocean basin was located between the North China (NCB) and Tarim blocks to the north and the Qiangtang block to the south during Late Paleozoic-Early Mesozoic. A comparison of published Early Triassic paleopole from the Qiangtang block with the coeval paleopoles from the NCB and Tarim indicates that the Paleo-Tethys Ocean could not have closed during the Early Triassic and that its width was approximately ∼32-38° latitude (∼3500-4200 km). However, the comparison of our new combined Late Triassic paleomagnetic result with the Late Triassic poles of the NCB and Tarim, as well as numerous geological observations, indicates that the closure of the Paleo-Tethys Ocean at the longitude of the Qiangtang block most likely occurred during the Late Triassic.

  18. How was the Triassic Songpan-Ganzi basin filled? A provenance study

    USGS Publications Warehouse

    Enkelmann, E.; Weislogel, A.; Ratschbacher, L.; Eide, E.; Renno, A.; Wooden, J.

    2007-01-01

    The Triassic Songpan-Ganzi complex comprises >200,000 km2 of 5-15 km thick turbiditic sediments. Although surrounded by several magmatic and orogenic belts, the Triassic high- and ultrahigh-pressure Qinling-Tongbai-Hong'an-Dabie (QTHD) orogen, located several hundred kilometers to the east, was proposed as its major source. Middle to Late Triassic samples from the northern and southern Songpan-Ganzi complex, studied using detrital white mica 40Ar/39Ar ages, Si-in-white mica content, and detrital zircon U/Pb ages, suggest that the northern Songpan-Ganzi deposystem obtained detritus from the north: the north China block, east Kunlun, northern Qaidam, Qilian, and western Qinling; the southern Songpan-Ganzi deposystem was supplied from the northeasterly located Paleozoic QTHD area throughout the Ladinian and received detritus from the Triassic Hong'an-Dabie orogen during the Carnian, indicative of exhumation of the orogen at that time. The QTHD orogen fed the Norian samples in the southeastern southern Songpan-Ganzi deposystem, signifying long drainage channels along the western margin of the south China block. An additional supply from the Emeishan magmatic province and/or the Yidun arc is suggested by the paucity of white mica in the southern Songpan-Ganzi deposystem. Mica ages of Rhaetian sediments from the northwestern Sichuan basin best correlate with those of the Triassic QTHD orogen. Our Si-in-white mica data demonstrate that the high- and ultrahigh-pressure rocks of the Hong'an-Dabie Shan were not exposed in the Middle to Late Triassic. Copyright 2007 by the American Geophysical Union.

  19. Influx of Dissolved Silica in Shallow Marine Environments in the Early Rhaetian (Late Triassic): Implications for Timing of Supercontinental Rifting

    NASA Astrophysics Data System (ADS)

    Tackett, L.

    2017-12-01

    The Rhaetian Stage of the Late Triassic terminated with a mass extinction, but the late Norian-early Rhaetian paleoecological and geochemical transitions and their relationship to events leading up to the End-Triassic mass extinction are poorly understood. To address this issue, presented here is a multi-proxy dataset from New York Canyon, Nevada (USA) relating isotope chemostratigraphy (Sr, C, O), shallow marine benthic macrofossils, and microfossils. At this Panthalassan locality the Norian-Rhaetian boundary is characterized by a negative strontium isotope excursion that facilitates correlation with Tethyan deposits. In sedimentary horizons immediately below and above this excursion, siliceous demosponge spicules (desmids) are abundant components of the microfossil populations, and silicification of calcareous microfossils becomes common. In the sedimentary beds marking the main excursion, hexactinellid sponge spicules are abundant. These results indicate a large input of dissolved silica in shallow marine environments, while the negative strontium values are consistent with increased seafloor spreading and hydrothermal vent activity or basalt weathering, either scenario being a plausible silica source for the typically silica-limited sponges that proliferated during this interval. The biosedimentary features observed across the Norian-Rhaetian boundary are similar to those observed in the earliest Jurassic in marine sections around the world following the End-Triassic mass extinction, but no clear biotic turnover is observed across the Norian-Rhaetian boundary in this succession. Thus, biosedimentary shifts across the Norian-Rhaetian boundary may add important geochemical context to the end-Triassic mass extinction event.

  20. Re-Os Geochronology Pins Age and Os Isotope Composition of Middle Triassic Black Shales and Seawater, Barents Sea and Spitsbergen (Svalbard)

    NASA Astrophysics Data System (ADS)

    Xu, G.; Hannah, J. L.; Bingen, B.; Stein, H. J.; Yang, G.; Zimmerman, A.; Weitschat, W.; Weiss, H. M.

    2008-12-01

    Absolute age control throughout the Triassic is extraordinarily sparse. Two "golden spikes" have been added recently (http://www.stratigraphy.org/cheu.pdf) within the otherwise unconstrained Triassic, but ages of stage boundaries remain controversial. Here we report two Re-Os isochrons for Anisian (Middle Triassic) black shales from outcrop in western Svalbard and drill core from the Svalis Dome about 600 km to the SE in the Barents Sea. Black shales of the Blanknuten Member, Botneheia Formation, from the type section at Botneheia, western Spitsbergen (Svalbard), have total organic carbon (TOC) contents of 2.6 to 6.0 wt%. Rock-Eval data suggest moderately mature (Tmax = 440-450° C) Type II-III kerogens (Hydrogen Index (HI) = 232-311 mg HC/g TOC). Re-Os data yield a well-constrained Model 3 age of 241 Ma and initial 187Os/188Os (Osi) of 0.83 (MSWD = 16, n = 6). Samples of the possibly correlative Steinkobbe Formation from IKU core hole 7323/07-U-04 into the Svalis Dome in the Barents Sea (at about 73°30'N, 23°15'E) have TOC contents of 1.4 to 2.4%. Rock-Eval data suggest immature (Tmax = 410-430°) Type II-III kerogens (HI = 246-294 mg HC/g TOC). Re-Os data yield a precise Model 1 age of 239 Ma and Osi of 0.776 (MSWD = 0.2, n = 5). The sampled section of Blanknuten shale underlies a distinctive Frechitas (formerly Ptychites) layer, and is therefore assumed to be middle Anisian. The Steinkobbe core was sampled at 99-100 m, just above the Olenekian-Anisian transition. It is therefore assumed to be lower Anisian. The two isochron ages overlap within uncertainty, and fall within constraints provided by biozones and the current ICS-approved stage boundary ages. The Re-Os ages support the correlation of the Botneheia and Steinkobbe formations. The nearly identical Osi ratios suggest regional homogeneity of seawater and provide new information for the Os seawater curve, marking a relatively high 187Os/188Os ratio during profound ocean anoxia in the Middle Triassic.

  1. Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Huang, Chunju; Hinnov, Linda; Chen, Weizhe; Ogg, James; Tian, Wei

    2018-01-01

    A high-precision global timescale for the Early and Middle Triassic is the key to understanding the nature, pattern and rates of biotic recovery following the end-Permian mass extinction. The Guandao section of Guizhou Province of South China is an important reference section for the magnetic polarity pattern, conodont datums, geochemical anomalies and interpreted temperature history through the Anisian (Middle Triassic). We analyzed the high-resolution gamma-ray and magnetic susceptibility series from the complete Anisian stage. Intensity variations are indicative of fluctuating terrestrial clay influxes showing strong signals that match predicted astronomical solutions for eccentricity and precession. Astronomical tuning of these series to interpreted 405-kyr long-eccentricity cycles yields a 5.3 Myr duration for the Anisian at Guandao. When combined with the astrochronology of the Early Triassic, then the projected age of the Anisian-Ladinian boundary relative to the base-Triassic date of 251.9 Ma is 241.5 ± 0.1 Ma. This provides a 10-Myr reference timescale for other key geological events, including conodont zones, geomagnetic polarity chrons, rates of marine carbon- and oxygen isotope excursions and global sea-level changes, that were associated with the repeated biotic crises and recovery episodes after the end-Permian mass extinction. The middle Anisian humid phase in ca. 244-244.5 Ma was probably a global event, which may have been linked to the middle Anisian warming event and sea-level change. Sea-level fluctuations at Guandao generally correlate with those in western Tethyan and Boreal regions in time, confirming sea-level changes during the Anisian were of eustatic origin.

  2. Late Triassic closure of the Paleo-Tethys Ocean in Central Tibet implied by paleomagnetism of Middle Triassic lavas from the Qiantang block

    NASA Astrophysics Data System (ADS)

    Song, P.; Lin, D.; Lippert, P. C.; Li, Z.

    2017-12-01

    The closure of the Paleo-Tethys Ocean is a major event not only in the tectonic history of the Tibetan Plateau that pre-conditioned the plateau for subsequent orogenic events, but also in the paleogeographic evolution of eastern Pangea. Final closure of this equatorial ocean, however, remains disputed, with ages ranging from the Late Permian to the Middle Cretaceous; this huge discrepancy is largely the result of the lack of high-quality paleomagnetic data and ambiguous stratigraphic data from Mesozoic rocks from Central Tibet. A recent Late Triassic paleopole derived from lavas of the Qiangtang block suggests that the Paleo-Tethys Ocean must have closed between Middle and Late Triassic (Song et al., EPSL 2015). We test this prediction with a paleomagnetic study of Middle Triassic lavas from the Qiangtang block. These lavas were previously dated to Middle Triassic (ca. 242-240 Ma) using zircon U-Pb geochonology. Rock magnetic experiments demonstrate that hematite and magnetite are the main carriers of remanence. Progressive thermal and alternating field demagnetization successfully isolated stable characteristic remanent magnetizations. Although these directions pass fold tests, suggesting a primary magnetization, we are conducting additional rock magnetic and petrographic studies to verify the primary nature of this magnetization. If these directions are primary, then they establish the first lava-based paleomagnetic pole of Middle Triassic age from the Qiangtang block. This pole was located at 63.4°N, 198.8°E, A95=4.1° (N=27) and yields a paleolatitude of 22.7±4.1°N at the reference point (33.5°N, 92.0°E). A comparison of our new Middle Triassic pole from the Qiangtang block with coeval paleopoles from the North China (NCB) and Tarim blocks indicates that the Paleo-Tethys Ocean was approximately 5-10° of latitude ( 550-1100 km) wide during the Middle Triassic. Within the context of our previous work that demonstrated the Qiangtang, NCB, and Tarim blocks

  3. Filling the Triassic Geochronologic Gap: A Continuous Cored Record of Continental Environmental Change in Western North America

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Kent, D. V.; Geissman, J. W.; Mundil, R.; Gehrels, G. E.; Irmis, R. B.; Whiteside, J. H.; Schaller, M. F.

    2013-12-01

    The Triassic Period (252.2-201.6 Ma) is bracketed by two mass extinctions, witnessed the evolution of the major groups of modern tetrapods, saw giant bolide impacts, and was typified by generally high atmospheric CO2 and a lack of ice at the poles. Testing hypotheses relevant to these major features of the Triassic, as well as problems related to the Earth system in general, requires temporally well-defined records of environmental and biotic change, especially in terrestrial environments, which until recently were lacking. The NSF and ICDP funded ~500 m long core at Petrified Forest National Park, scheduled to be drilled in Fall, 2013, is part of an interdisciplinary, multi-institutional, Colorado Plateau Coring Project, and is a major step towards providing a network of such records. The core will recover virtually the entire pre-Owl-Rock-Member Late Triassic age Chinle and underlying Early-Middle Triassic age Moenkopi formations. A core is required despite excellent outcrop and a long and distinguished history of study because of ambiguities in local correlation, a lack of constraints on the temporal duration and resolution of biotic events, and an inability to make clear global correlations. Specifically, by integrating a densely sampled paleomagnetic record with high-resolution radioisotopic ages in unquestioned superposition, the new core will allow us to test at least five sets of hypotheses: (1) were marine and continental biotic turnover events in the Late Triassic coupled? (2) was there high faunal provinciality during the existence of the supercontinent of Pangea?; (3) is the time scale of the Newark basin astronomically calibrated GPTS for the Triassic accurate, particularly for the Norian age part that is relevant for mapping the chaotic evolution of the Solar System, as well as global correlations?; (4) is the supposed Carnian-Norian boundary in the Chinle actually a late middle Norian extinction coinciding with the 215.5 Ma Manicouagan impact?; (5

  4. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: evidence from a new genus and species, Grimmenodon aureum

    PubMed Central

    Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen

    2017-01-01

    ABSTRACT A new genus and species of pycnodontiform fishes, Grimmenodon aureum, from marginal marine, marine-brackish lower Toarcian (Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum, gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian (Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum, gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum. Journal of Vertebrate Paleontology. DOI: 10

  5. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: evidence from a new genus and species, Grimmenodon aureum.

    PubMed

    Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen

    2017-07-04

    A new genus and species of pycnodontiform fishes, Grimmenodon aureum , from marginal marine, marine-brackish lower Toarcian ( Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum , gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian ( Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum , gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum . Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679.

  6. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2015-04-01

    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the <100 ka level) now allows calibrating magmatic and biological timescales at resolution adequate for both groups of processes. Using these alignments allows (1) positioning the PTB in different depositional setting and (2) solving the age contradictions generated by the misleading use of the first occurrence (FO) of the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  7. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    PubMed Central

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-01-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone. PMID:28262815

  8. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-03-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone.

  9. Recovery collapse coincident with ongoing carbon cycle perturbations following the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Petsios, E.; Bottjer, D. J.

    2016-12-01

    The Permian-Triassic mass extinction, the largest extinction of the Phanerozoic, is attributed to volcanic outgassing from the Siberian Traps and the resulting climate change. Ongoing volcanism in the Early Triassic is implicated for continued carbon cycle instability following the initial event, reflected in large inorganic carbon isotope excursions throughout the 5 Mya interval. Recent paleoecological studies have shown that timing of recovery from the extinction in the Early Triassic is highly complex, differing between regions, with documented cases of "early" recovery in some environments. The importance of specific environmental factors, such as oxygen levels and sea surface temperatures, in aiding or hindering recovery following the extinction is the topic of ongoing study. Here we present an ecological survey of marine benthic communities from the Lower Triassic Blacktail Creek outcrop of the Dinwoody Formation, correlated bed-for-bed with inorganic carbon isotope values. We observe incipient recovery as communities show increasing richness and evenness throughout the section, followed by a `collapse' with a return of high dominance, low richness fauna coincident with large δ13Ccarb shifts. We observe a statistically significant correlation between the magnitude of δ13Ccarb excursions and benthic community complexity over a stratigraphic section, implying a shared causal mechanism acting at the local scale. The globally correlatable nature of these observed carbon isotope shifts, as well as an absence of lithologic evidence for oxygen limitation, points to thermal stress brought on by pulses of volcanism as the shared cause between recovery collapse and carbon cycle perturbations. We propose that the "early" recovery at Blacktail Creek was truncated by recurrent greenhouse gas induced thermal spikes, highlighting the interplay of local and global environmental conditions in expediting or hindering Early Triassic recovery.

  10. U-Pb Geochronology of non-marine Upper Triassic strata of the Colorado Plateau (western North America): implications for stratigraphic correlation and paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Mundil, R.; Irmis, R. B.; Keller, C. B.; Giesler, D.; Gehrels, G. E.

    2017-12-01

    The Triassic is a critical period in Earth history that witnessed the origin of modern ecosystems and frequent climate fluctuations, as well as major environmental events such as flood basalt volcanism and bolide impacts. The Chinle Formation contains a primary non-marine archive for past ecosystems in North America due to its fossil richness and well-studied sedimentology. Moreover, within these highly fossiliferous strata, a biotic turnover has been reported that has been hypothesized to coincide with one or more of the aforementioned environmental events. Unfortunately, few radioisotopic ages have been published for the Late Triassic, limiting our ability for lithological and paleoenvironmental correlations. In addition, the superposition of the Chinle Formation remains illusive due to frequent lateral facies changes and discontinuous outcrops across the Colorado Plateau. The 520 m long core 1A of the Colorado Plateau Coring Project from Petrified Forest National Park (PFNP) (Arizona) provides, for the first time, a continuous section of these early Mesozoic sedimentary strata. Many of the sand- and siltstones from this continuous succession throughout most of the Upper Triassic Chinle Formation contain euhedral zircons suitable for U-Pb analyses. We analyzed >300 crystals each from 10 samples using LA-ICPMS; these results indicated abundant Late Triassic crystals that appear to be closely associated with the depositional age of the host rock. We then selected the youngest grains from these samples to obtain precise CA-TIMS U-Pb single zircon ages in order to constrain the maximum depositional ages (using quantitative methods) of these formations. We are able to revise the proposed time scale (based on outcrop samples) for Upper Triassic strata at PFNP and evaluate whether the biotic turnover observed within the Sonsela Member of these strata coincides with the Manicouagan bolide impact event. This revised chronostratigraphic framework allows intercalibration

  11. A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey R.; Hu, Shi-xue; Zhang, Qi-Yue; Petsios, Elizabeth; Cotton, Laura J.; Huang, Jin-Yuan; Zhou, Chang-yong; Wen, Wen; Bottjer, David J.

    2018-01-01

    The Permian-Triassic bottleneck has long been thought to have drastically altered the course of echinoid evolution, with the extinction of the entire echinoid stem group having taken place during the end-Permian mass extinction. The Early Triassic fossil record of echinoids is, however, sparse, and new fossils are paving the way for a revised interpretation of the evolutionary history of echinoids during the Permian-Triassic crisis and Early Mesozoic. A new species of echinoid, Yunnanechinus luopingensis n. sp. recovered from the Middle Triassic (Anisian) Luoping Biota fossil Lagerstätte of South China, displays morphologies that are not characteristic of the echinoid crown group. We have used phylogenetic analyses to further demonstrate that Yunnanechinus is not a member of the echinoid crown group. Thus a clade of stem group echinoids survived into the Middle Triassic, enduring the global crisis that characterized the end-Permian and Early Triassic. Therefore, stem group echinoids did not go extinct during the Palaeozoic, as previously thought, and appear to have coexisted with the echinoid crown group for at least 23 million years. Stem group echinoids thus exhibited the Lazarus effect during the latest Permian and Early Triassic, while crown group echinoids did not.

  12. The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction.

    PubMed

    Fröbisch, Jörg; Angielczyk, Kenneth D; Sidor, Christian A

    2010-02-01

    Fossils from the central Transantarctic Mountains in Antarctica are referred to a new species of the Triassic genus Kombuisia, one of four dicynodont lineages known to survive the end-Permian mass extinction. The specimens show a unique combination of characters only present in this genus, but the new species can be distinguished from the type species of the genus, Kombuisia frerensis, by the presence of a reduced but slit-like pineal foramen and the lack of contact between the postorbitals. Although incomplete, the Antarctic specimens are significant because Kombuisia was previously known only from the South African Karoo Basin and the new specimens extend the taxon's biogeographic range to a wider portion of southern Pangaea. In addition, the new finds extend the known stratigraphic range of Kombuisia from the Middle Triassic subzone B of the Cynognathus Assemblage Zone into rocks that are equivalent in age to the Lower Triassic Lystrosaurus Assemblage Zone, shortening the proposed ghost lineage of this taxon. Most importantly, the occurrence of Kombuisia and Lystrosaurus mccaigi in the Lower Triassic of Antarctica suggests that this area served as a refuge from some of the effects of the end-Permian extinction. The composition of the lower Fremouw Formation fauna implies a community structure similar to that of the ecologically anomalous Lystrosaurus Assemblage Zone of South Africa, providing additional evidence for widespread ecological disturbance in the extinction's aftermath.

  13. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized ‘four-winged’ gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged ‘peltopleurid’ Peripeltopleurus, from the Middle Triassic (Ladinian, 235–242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the ‘cranial specialization–asymmetrical caudal fin–enlarged paired fins–scale reduction’ sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155

  14. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic-early Jurassic tectonics associated with the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Liang, Xiao; Wang, Genhou; Yuan, Guoli; Bons, Paul D.

    2018-03-01

    The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic-early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P-T data, and Ar-Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E-W-trending, 2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and 404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at 0.7-1.1 GPa and 400 °C. Our Ar-Ar dating of amphibole reveals rim-ward decreasing in age bands, including 242.4-241.2 Ma, ≥202.6-196.8, and 192.9-189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang ( 244-220 Ma); (2) syn-collisional slab-break off (223-202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth ( 202.6-197 Ma); and (4) post-collision contraction and reburial (195.6-188.7 Ma).

  15. Permian and Triassic microfloral assemblages from the Blue Nile Basin, central Ethiopia

    NASA Astrophysics Data System (ADS)

    Dawit, Enkurie L.

    2014-11-01

    Palynological investigation was carried out on surface samples from up to 400 m thick continental siliciclastic sediments, here referred to as “Fincha Sandstone”, in the Blue Nile Basin, central Ethiopia. One hundred sixty species were identified from 15 productive samples collected along a continuous road-cut exposure. Six informal palynological assemblage zones have been identified. These assemblage zones, in ascending order, are: “Central Ethiopian Permian Assemblage Zone - CEPAZ I”, earliest Permian (Asselian-Sakmarian); “CEPAZ II”, late Early Permian (Artinskian-Kungurian); CEPAZ III - Late Permian (Kazanian-Tatarian); “CETAZ IV”, Lower Triassic (Olenekian Induan); “CETAZ V”, Middle Triassic (Anisian Ladinian); “CETAZ VI”, Late Triassic (Carnian Norian). Tentative age ranges proposed herein are compared with faunally calibrated palynological zones in Gondwana. The overall composition and vertical distribution of miospores throughout the studied section reveals a wide variation both qualitatively and quantitatively. The high frequency of monosaccate pollen in CEPAZ I may reflect a Glossopterid-dominated upland flora in the earliest Permian. The succeeding zone is dominated by straite/taeniate disaccate pollen and polyplicates, suggesting a notable increase in diversity of glossopterids. The decline in the diversity of taeniate disaccate pollen and the concomitant rise in abundance of non-taeniate disaccates in CEPAZ III may suggest the decline in Glossopteris diversity, though no additional evidence is available to equate this change with End-Permian extinction. More diverse and dominant non-taeniate, disaccate, seed fern pollen assignable to FalcisporitesAlisporites in CETAZ IV may represent an earliest Triassic recovery flora. The introduction of new disaccate forms with thick, rigid sacci, such as Staurosaccites and Cuneatisporites, in CETAZ V and VI may indicate the emergence of new gymnospermous plants that might have favourably

  16. Geomicrobiological perspective on the pattern and causes of the 5-million-year Permo/Triassic biotic crisis

    NASA Astrophysics Data System (ADS)

    Xie, Shucheng; Wang, Yongbiao

    2011-03-01

    The pattern and causes of Permo/Triassic biotic crisis were mainly documented by faunal and terrestrial plant records. We reviewed herein the geomicrobiological perspective on this issue based on the reported cyanobacterial record. Two episodic cyanobacterial blooms were observed to couple with carbon isotope excursions and faunal mass extinction at Meishan section, suggestive of the presence of at least two episodic biotic crises across the Permian-Triassic boundary (PTB). The two episodes of cyanobacterial blooms, carbon isotope excursions and faunal mass extinction were, respectively, identified in several sections of the world, inferring the presence of two global changes across the PTB. Close associations among the three records (cyanobacterial bloom, shift in carbon isotope composition, and faunal extinction) were subsequently observed in three intervals in the Early Triassic, the protracted recovery period as previously thought, inferring the occurrence of more episodes of global changes. Spatiotemporal association of cyanobacterial blooms with volcanic materials in South China, and probably in South-east Asia, infers their causal relationship. Volcanism is believed to trigger the biotic crisis in several ways and to cause the close association among microbial blooms, the carbon isotope excursions and faunal mass extinctions in four intervals from the latest Permian to the Early Triassic. The major episodes of the well-known Siberian flood eruption are proposed to be responsible for the extinctions in the Early Triassic, but their synchronicity with the end-Permian extinction awaits more precise dating data to confirm. Geomicrobial records are thus suggestive of a long-term episodic biotic crisis (at least four episodes) lasting from the latest Permian to the end of the Early Triassic, induced by the global volcanic eruptions and sea level changes during Pangea formation.

  17. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    NASA Astrophysics Data System (ADS)

    Baresel, Bjoern; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-04-01

    High-precision U-Pb dating of single-zircon crystals by chemical abrasion-isotope dilution-thermal ionization mass spectrometry (CA-ID-TIMS) is applied to volcanic beds that are intercalated in sedimentary sequences across the Permian-Triassic boundary (PTB). By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and subsequent deposition, U-Pb zircon geochronology is the preferred approach for dating abiotic and biotic events, such as the formational PTB and the Permian-Triassic boundary mass extinction (PTBME). We will present new U-Pb zircon dates for a series of volcanic ash beds in shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. These high-resolution U-Pb dates indicate a duration of 90 ± 38 kyr for the Permian sedimentary hiatus and a duration of 13 ± 57 kyr for the overlying Triassic microbial limestone in the shallow water settings of the Nanpanjiang pull apart Basin. The age and duration of the hiatus coincides with the formational PTB and the extinction interval in the Meishan Global Stratotype Section and Point, thus strongly supporting a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate during the Griesbachian as indicated by terrestrial plants. Our model of the PTBME hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase likely released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced this transient cool

  18. Early Triassic alternative ecological states driven by anoxia, hyperthermals, and erosional pulses following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Pietsch, C.; Petsios, E.; Bottjer, D. J.

    2015-12-01

    The end-Permian mass extinction, 252 million years ago, was the most devastating loss of biodiversity in Earth's history. Massive volcanic eruptions of the Siberian Traps and the concurrent burning of coal, carbonate, and evaporite deposits emplaced greenhouse and toxic gasses. Hyperthermal events of the surface ocean, up to 40°C, led to reduced gradient-driven ocean circulation which yielded extensive equatorial oxygen minimum zones. Today, anthropogenic greenhouse gas production is outpacing carbon input modeled for the end-Permian mass extinction, which suggests that modern ecosystems may yet experience a severe biotic crisis. The Early Triassic records the 5 million year aftermath of the end-Permian mass extinction and is often perceived as an interval of delayed recovery. We combined a new, high resolution carbon isotope record, sedimentological analysis, and paleoecological collections from the Italian Werfen Formation to fully integrate paleoenvironmental change with the benthic ecological response. We find that the marine ecosystem experienced additional community restructuring events due to subsequent hyperthermal events and pulses of erosion. The benthic microfauna and macrofauna both contributed to disaster communities that initially rebounded in the earliest Triassic. 'Disaster fauna' including microbialites, microconchids, foraminifera, and "flat clams" took advantage of anoxic conditions in the first ~500,000 years, dominating the benthic fauna. Later, in the re-oxygenated water column, opportunistic disaster groups were supplanted by a more diverse, mollusc-dominated benthic fauna and a complex ichnofauna. An extreme temperature run-up beginning in the Late Dienerian led to an additional hyperthermal event in the Late-Smithian which co-occurred with increased humidity and terrestrial run-off. Massive siliciclastic deposits replaced carbonate deposition which corresponds to the infaunalization of the benthic fauna. The disaster taxa dominated

  19. New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil

    NASA Astrophysics Data System (ADS)

    Cabreira, Sergio F.; Schultz, Cesar L.; Bittencourt, Jonathas S.; Soares, Marina B.; Fortier, Daniel C.; Silva, Lúcio R.; Langer, Max C.

    2011-12-01

    Post-Triassic theropod, sauropodomorph, and ornithischian dinosaurs are readily recognized based on the set of traits that typically characterize each of these groups. On the contrary, most of the early members of those lineages lack such specializations, but share a range of generalized traits also seen in more basal dinosauromorphs. Here, we report on a new Late Triassic dinosaur from the Santa Maria Formation of Rio Grande do Sul, southern Brazil. The specimen comprises the disarticulated partial skeleton of a single individual, including most of the skull bones. Based on four phylogenetic analyses, the new dinosaur fits consistently on the sauropodomorph stem, but lacks several typical features of sauropodomorphs, showing dinosaur plesiomorphies together with some neotheropod traits. This is not an exception among basal dinosaurs, the early radiation of which is characterized by a mosaic pattern of character acquisition, resulting in the uncertain phylogenetic placement of various early members of the group.

  20. New Early Triassic trace fossil records from South China: implications for biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, M.; George, A. D.; Chen, Z.; Zhang, Y.

    2013-12-01

    New Early Triassic trace fossil assemblages are documented from the Susong and Tianshengqiao areas in South China to evaluate the mode and tempo of biotic recovery of epifaunal and infaunal organisms following the end-Permian mass extinction. The Susong succession is exposed in Anhui area of the Lower Yangtze region and comprises mudstone and carbonate facies that record overall shallowing from offshore to supratidal settings. The Tianshengqiao succession crops out in the Luoping area, Yuannan Province of the Upper Yangtze region, and consists of mixed carbonate and siliciclastic facies which were deposited in shallow marine to offshore settings. Bivalve and conodont biostratigraphy helps constrain the chronostratigraphic framework of the Lower Triassic successions in these two sections. Griesbachian to Dieneria ichnological records in both successions are characterized by low ichnodiversity, low ichnofabric indices (ii=1-2) and low bedding plane bioturbation indices (bpbi=1-2). Higher ii (ii= 3 and 4) corresponding to densely populated diminutive Skolithos in the Tianshengqiao succession suggest an opportunistic strategy during earliest Triassic deposition. Ichnological data from the Susong succession show an increase in ichnodiversity during the Smithian. A total of 12 ichnogenera including Arenicolites, Chondrites, Gyrochorte, Laevicyclus, Monocraterion, Palaeophycus, Phycodes, Plaolites, Thalassinoides, Treptichnus, Trichichnus and one problematic trace are identified. Ichnofabric indices (ii) and bpbi increase to moderate to high levels (ii = 4-5, bpbi= 3-5). Although complex traces such as Rhizocorallium are in Spathian strata in this section, the low levels of ichnodiversity, ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao succession, ichnofabric indices exhibit a moderate to high value (ii= 3 to 5), however, only six ichnogenera are found and Planolites burrows are consistently small (average diameter at 3

  1. High precision time calibration of the Permo-Triassic boundary mass extinction by U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Schaltegger, Urs

    2014-05-01

    U-Pb dating using Chemical Abrasion, Isotope Dilution Thermal Ionization Mass Spectrometry (CA-ID-TIMS) is the analytical method of choice for geochronologists, who are seeking highest temporal resolution and a high degree of accuracy for single grains of zircon. The use of double-isotope tracer solutions, cross-calibrated and assessed in different EARTHTIME labs, coinciding with the reassessment of the uranium decay constants and further improvements in ion counting technology led to unprecedented precision better than 0.1% for single grain, and 0.05% for population ages, respectively. These analytical innovations now allow calibrating magmatic and biological timescales at resolution adequate for both groups of processes. To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (i) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash beds interbedded with shallow to deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (ii) accurate quantitative biochronology based on ammonoids and conodonts and (iii) carbon isotope excursions across the PTB. Using these alignments allows (i) positioning the PTB in different depositional environments and (ii) solving age/stratigraphic contradictions generated by the index, water depth-controlled conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Besides the general improvement of the radio-isotopic calibration of the PTB at the ±100 ka level, this will also lead to a better understanding of cause and effect relations involved in this mass extinction.

  2. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J.; Farquhar, James; Henderson, Charles M.; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D.; Chen, Kefan; Shen, Yanan

    2017-02-01

    The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ˜85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.

  4. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia) and their provenance

    NASA Astrophysics Data System (ADS)

    Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna

    2017-08-01

    Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older

  5. Permian-Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Philipp, Ruy Paulo; Jelinek, Andrea Ritter; Ketzer, João Marcelo Medina; dos Santos Scherer, Claiton Marlon; Jamal, Daúd Liace; dos Reis, Adriano Domingos

    2017-06-01

    The Gondwana continent was the base of great basin inception, sedimentation and magmatism throughout the Cambrian to Middle Jurassic periods. The northwestern Mozambique igneous and metamorphic basement assemblages host the NW-trending Moatize Minjova Basin, which has great economic potential for coal and gas mining. This rift basin was activated by an S-SW stress field during the Early Permian period, as constrained by regional and field scale structural data. Tectonically induced subsidence in the basin, from the reactivation of NW-SE and NNE-SSW regional structures is well recorded by faults, folds and synsedimentary fractures within the Early Late Permian Moatize Formation. NW-SE, N-S and NE-SW field structures consist of post-Karoo reactivation patterns related to a NNE-SSW extension produced by the Pangea breakup and early inception stages of the Great East African Rift System. The Early Late Permian sequences of the Moatize-Minjova Basin are composed of fluvial meandering, coal-bearing beds of the Moatize Formation, which comprises mostly floodplain, crevasse splay and fluvial channel lithofacies associations, deposited in a cyclic pattern. This sequence was overlapped by a multiple-story, braided fluvial plain sequence of the Matinde Formation (Late Permian - Early Triassic). Lithofacies associations in the Matinde Formation and its internal relationships suggest deposition of poorly channelized braided alluvial plain in which downstream and probably lateral accretion macroforms alternate with gravity flow deposits. NW paleoflow measurements suggest that Permian fluvial headwaters were located somewhere southeast of the study area, possibly between the African and Antarctic Precambrian highlands.

  6. Paleomagnetic evidence for a Tertiary not Triassic age for rocks in the lower part of the Grober-Fuqua #1 well, southeastern Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Hudson, M.R.; Grauch, V.J.S.

    2003-01-01

    A sedimentary sequence penetrated in the lower part of the Grober-Fuqua #1 well in the southeastern Albuquerque Basin has previously been interpreted as either Triassic or Eocene in age. Paleomagnetic study of three specimens from two core fragments yielded a 54.5?? mean inclination of remanent magnetization relative to bedding. This inclination is like that expected in Tertiary time and is distinct from an expected low-angle Triassic inclination. Although the data are very few, when considered in combination with stratigraphic relations and the presence of a gravity low in this southeastern part of the basin, the paleomagnetic evidence favors a Tertiary age for strata in the lower part of the Grober-Fuqua #1 well.

  7. Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zheng, Yong-Fei; Chen, Yi-Xiang; Zhao, Zi-Fu; Xia, Xiao-Ping

    2018-02-01

    Granites derived from partial melting of sedimentary rocks are generally characterized by high δ18O values and abundant relict zircons. Such relict zircons are valuable in tracing the source rocks of granites and the history of crustal anatexis. Here we report in-situ U-Pb ages, O isotopes and trace elements in zircons from Triassic granites in the Zhuguangshan and Jiuzhou regions, which are located in the Nanling Range and the Darongshan area, respectively, in South China. Zircon U-Pb dating yields magma crystallization ages of 236 ± 2 Ma for the Zhuguangshan granites and 246 ± 2 Ma to 252 ± 3 Ma for the Jiuzhou granites. The Triassic syn-magmatic zircons are characterized by high δ18O values of 10.1-11.9‰ in Zhuguangshan and 8.5-13.5‰ in Jiuzhou. The relict zircons show a wide range of U-Pb ages from 315 to 2185 Ma in Zhuguangshan and from 304 to 3121 Ma in Jiuzhou. Nevertheless, a dominant age peak of 700-1000 Ma is prominent in both occurrences, demonstrating that their source rocks were dominated by detrital sediments weathered from Neoproterozoic magmatic rocks. Taking previous results for regional granites together, Neoproterozoic relict zircons show δ18O values in a small range from 5 to 8‰ for the Nanling granites but a large range from 5 to 11‰ for the Darongshan granites. In addition, relict zircons of Paleozoic U-Pb age occur in the two granitic plutons. They exhibit consistently high δ18O values similar to the Triassic syn-magmatic zircons in the host granites. These Paleozoic relict zircons are interpreted as the peritectic product during transient melting of the metasedimentary rocks in response to the intracontinental orogenesis in South China. Therefore, the relict zircons of Neoproterozoic age are directly inherited from the source rocks of S-type granites, and those of Paleozoic age record the transient melting of metasedimentary rocks before intensive melting for granitic magmatism in the Triassic.

  8. Biostratigraphic restudy documents Triassic/Jurassic section in Georges Bank COST G-2 well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousminer, H.L.; Steinkraus, W.E.; Hall, R.E.

    1984-04-01

    In 1977, the COST G-2 well as drilled in Georges Bank, 132 mi (212 km) east of Nantucket Island to a total depth of 21,874 ft (6667 m). Biostratigraphic studies of 363 sidewall and conventional cores and 695 cutting samples resulted in a detailed zonation from the Late Jurassic to the present. Restudy of the original samples, as well as new preparations from previously unstudied core material, resulted in revision of the zonation of the Late Jurassic and older section. On the basis of our study of pollen and spores, dinoflagellates, nannofossils, and foraminifers, we revised the age sequence asmore » follows: 5856 ft (1785 m) Late Jurassic (Thithonian); 6000 ft (1829 m) Kimmeridgian; 6420 ft (1957 m) Oxfordian; 6818 ft (2078 m) Callovian; 8200 ft (2499 m) Bathonian; 9677 ft (2950 m) Bajocian; 14567 ft (4440 m) Norian (Late Triassic). Norian dinoflagellate cysts and Tasmanites sp. indicate that intermittent normal marine sedimentation was taking place on Georges Bank as early as Norian time, although most of the Triassic section (+14,500 ft or 4420 m to T.D.) interpreted as having been deposited under evaporitic sabkha-like conditions. The Norian dinoflagellates (Noricysta, Heibergella, Hebecysta, Suessia, Dapcodinium, and Rhombodella) include species common to both Arctic Canada and the Tethyan region, indicating a possible Late Triassic marine connection.« less

  9. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    USGS Publications Warehouse

    Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.

    2004-01-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.

  10. Absence of Suction Feeding Ichthyosaurs and Its Implications for Triassic Mesopelagic Paleoecology

    PubMed Central

    Motani, Ryosuke; Ji, Cheng; Tomita, Taketeru; Kelley, Neil; Maxwell, Erin; Jiang, Da-yong; Sander, Paul Martin

    2013-01-01

    Mesozoic marine reptiles and modern marine mammals are often considered ecological analogs, but the extent of their similarity is largely unknown. Particularly important is the presence/absence of deep-diving suction feeders among Mesozoic marine reptiles because this would indicate the establishment of mesopelagic cephalopod and fish communities in the Mesozoic. A recent study suggested that diverse suction feeders, resembling the extant beaked whales, evolved among ichthyosaurs in the Triassic. However, this hypothesis has not been tested quantitatively. We examined four osteological features of jawed vertebrates that are closely linked to the mechanism of suction feeding, namely hyoid corpus ossification/calcification, hyobranchial apparatus robustness, mandibular bluntness, and mandibular pressure concentration index. Measurements were taken from 18 species of Triassic and Early Jurassic ichthyosaurs, including the presumed suction feeders. Statistical comparisons with extant sharks and marine mammals of known diets suggest that ichthyosaurian hyobranchial bones are significantly more slender than in suction-feeding sharks or cetaceans but similar to those of ram-feeding sharks. Most importantly, an ossified hyoid corpus to which hyoid retractor muscles attach is unknown in all but one ichthyosaur, whereas a strong integration of the ossified corpus and cornua of the hyobranchial apparatus has been identified in the literature as an important feature of suction feeders. Also, ichthyosaurian mandibles do not narrow rapidly to allow high suction pressure concentration within the oral cavity, unlike in beaked whales or sperm whales. In conclusion, it is most likely that Triassic and Early Jurassic ichthyosaurs were ‘ram-feeders’, without any beaked-whale-like suction feeder among them. When combined with the inferred inability for dim-light vision in relevant Triassic ichthyosaurs, the fossil record of ichthyosaurs does not suggest the establishment of modern

  11. Importance of carbon isotopic data of the Permian-Triassic boundary layers in the Verkhoyansk region for the global correlation of the basal Triassic layer

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. D.; Biakov, A. S.; Richoz, S.; Horacek, M.

    2015-01-01

    This paper is dedicated to a global correlation of marine Permian-Triassic boundary layers on the basis of partially published and original data on the δ13Corg and δ13Ccarb values of the Suol section (Setorym River, South Verkhoyansk region). The section consists of six carbon isotopic intervals, which are easily distinguishable in the carbon isotopic curves for a series of Permian-Triassic reference sections of Eurasia and Northern America, including paleontologically described sections of Central Iran, Kashmir, and Southern China. This suggests that the Permian-Triassic boundary in the Suol section is close to the carbon isotopic minimum of interval IV. In light of new data, we suggest considering the upper part of the Late Permian Changhsingian Stage and the lower substage of the Early Triassic Induan Stage of Siberia in the volumes of the rank Otoceras concavum zone and the Tompophiceras pascoei and Wordieoceras decipiens zones, respectively. The O. concavum zone of the Verkhoyansk region probably corresponds to the Late Changhsingian Hypophiceras triviale zone of Greenland. The carbon isotopic intervals II, III, IV, and V in the Permian-Triassic boundary layers of the Verkhoyansk region traced in a series of the reference sections of Eurasia correspond, most likely, to intensification of volcanic activity at the end of the Late Changhsingian and to the first massive eruptions of Siberian traps at the end of the Changhsingian and the beginning of the Induan Stages. New data indicate the possible survival of ammonoids of the Otoceratoidea superfamily at the species level after mass extinction of organisms at the end of the Permian.

  12. Corrected Late Triassic latitudes for continents adjacent to the North Atlantic.

    PubMed

    Kent, Dennis V; Tauxe, Lisa

    2005-01-14

    We use a method based on a statistical geomagnetic field model to recognize and correct for inclination error in sedimentary rocks from early Mesozoic rift basins in North America, Greenland, and Europe. The congruence of the corrected sedimentary results and independent data from igneous rocks on a regional scale indicates that a geocentric axial dipole field operated in the Late Triassic. The corrected paleolatitudes indicate a faster poleward drift of approximately 0.6 degrees per million years for this part of Pangea and suggest that the equatorial humid belt in the Late Triassic was about as wide as it is today.

  13. The Permian–Triassic transition in Colorado

    USGS Publications Warehouse

    Hagadorn, James S.; Whitely, Karen R.; Lahey, Bonita L.; Henderson, Charles M.; Holm-Denoma, Christopher S.

    2016-01-01

    The Lykins Formation and its equivalents in Colorado are a stratigraphically poorly constrained suite of redbeds and intercalated stromatolitic carbonates, which is hypothesized to span the Permian-Triassic boundary. Herein we present a preliminary detrital zircon geochronology, new fossil occurrences, and δ13C chemostratigraphy for exposures along the Front Range and in southeastern Colorado, to refine understanding of the unit's age and depositional history.Detrital zircons from the uppermost Lykins Formation and an overlying eolianite consist of a complex and highly diverse primary and multi-cycle grain population transported from Laurentian and Gondwanan terranes, potentially both by wind and water. Youngest concordant zircons do not rule out deposition of the uppermost Lykins Formation during a portion of Early Triassic time. Conodonts from the lower Lykins Formation require Middle Permian (Guadalupian) deposition. Conodont alteration indices of 1 indicate the unit has a shallow burial history and is amenable to paleomagnetic inquiry. Conodonts, together with other vertebrate, invertebrate, microfossil, and trace fossils, suggest a very shallow to emergent marine origin for the unit's most substantial carbonates, and hint at a marine origin for the unit's intercalated gypsum-anhydrite members. Chemostratigraphy corroborates field evidence of emergence and karst development capping certain units, like the Forelle Limestone Member of the Lykins Formation, where potential sequence boundaries appear to be punctuated by a short-lived meteoric signature.Results presented here are a progress report of ongoing work in these successions. This field trip consists of a brief tour through exposures of the Lykins Formation, in which we will examine well-known localities as well as view new ones for which we seek insights.

  14. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China; implications for control and growth of earliest Triassic microbialites

    NASA Astrophysics Data System (ADS)

    Mu, Xinan; Kershaw, Steve; Li, Yue; Guo, Li; Qi, Yuping; Reynolds, Alan

    2009-11-01

    High-resolution δ 13C CARB analysis of the Permian-Triassic boundary (PTB) interval at the Laolongdong section, Beibei, near the city of Chongqing, south China, encompasses the latest Permian and earliest Triassic major facies changes in the South China Block (SCB). Microbialites form a distinctive unit in the lowermost 190 cm above the top of the Changhsing Formation (latest Permian) at Laolongdong, comparable to a range of earliest Triassic sites in low latitudes in the Tethyan area. The data show that declining values of δ 13C CARB, well-known globally, began at the base of the microbialite. High positive values (+3 to 4 ppt) of δ 13C CARB in the Late Permian are interpreted to indicate storage of 12C in the deep waters of a stratified ocean, that was released during ocean overturn in the earliest Triassic, contributing to the distinctive fall in isotope values; this interpretation has been stated by other authors and is followed here. The δ 13C CARB curve shows fluctuations within the microbialite unit, which are not reflected in the microbialite structure. Comparisons between microbialite branches and adjacent micritic sediment show little difference in δ 13C CARB, demonstrating that the microbialite grew in equilibrium with surrounding seawater. The Early Triassic microbialites are interpreted to be a response to upwelling of bicarbonate-rich poorly oxygenated water in low latitudes of Tethys Ocean, consistent with current ocean models for the PTB interval. However, the decline of δ 13C CARB may be due to a combination of processes, including productivity collapse resulting from mass extinction, return of deep water to ocean surface, oxidation of methane released from methane hydrate destabilisation, and atmospheric deterioration. Nevertheless, build-up of bicarbonate-rich anoxic deep waters may be expected as a result of the partial isolation of Tethys, due to continental geography; release of bicarbonate-rich deep water, by ocean upwelling, in the

  15. Assessing the record and causes of Late Triassic extinctions

    USGS Publications Warehouse

    Tanner, L.H.; Lucas, S.G.; Chapman, M.G.

    2004-01-01

    Accelerated biotic turnover during the Late Triassic has led to the perception of an end-Triassic mass extinction event, now regarded as one of the "big five" extinctions. Close examination of the fossil record reveals that many groups thought to be affected severely by this event, such as ammonoids, bivalves and conodonts, instead were in decline throughout the Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Explanations for the biotic turnover have included both gradualistic and catastrophic mechanisms. Regression during the Rhaetian, with consequent habitat loss, is compatible with the disappearance of some marine faunal groups, but may be regional, not global in scale, and cannot explain apparent synchronous decline in the terrestrial realm. Gradual, widespread aridification of the Pangaean supercontinent could explain a decline in terrestrial diversity during the Late Triassic. Although evidence for an impact precisely at the boundary is lacking, the presence of impact structures with Late Triassic ages suggests the possibility of bolide impact-induced environmental degradation prior to the end-Triassic. Widespread eruptions of flood basalts of the Central Atlantic Magmatic Province (CAMP) were synchronous with or slightly postdate the system boundary; emissions of CO2 and SO2 during these eruptions were substantial, but the contradictory evidence for the environmental effects of outgassing of these lavas remains to be resolved. A substantial excursion in the marine carbon-isotope record of both carbonate and organic matter suggests a significant disturbance of the global carbon cycle at the system boundary. Release of methane hydrates from seafloor sediments is a possible cause for this isotope excursion, although the triggering mechanism and climatic effects of such a release remain uncertain. ?? 2003 Elsevier B.V. All rights reserved.

  16. Proliferation of MISS-related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: Evidence from the Lower Triassic of the Yiyang area, Henan Province, North China

    NASA Astrophysics Data System (ADS)

    Tu, Chenyi; Chen, Zhong-Qiang; Retallack, Gregory J.; Huang, Yuangeng; Fang, Yuheng

    2016-03-01

    Microbially induced sedimentary structures (MISSs) are commonly present in siliciclastic shallow marine settings following the end-Permian mass extinction, but have been rarely reported in the post-extinction terrestrial ecosystems. Here, we present six types of well-preserved MISSs from the upper Sunjiagou Formation and lower Liujiagou Formation of Induan (Early Triassic) age in the Yiyang area, Henan Province, North China. These MISSs include: polygonal sand cracks, worm-like structures, wrinkle structures, sponge pore fabrics, gas domes, and leveled ripple marks. Microanalysis shows that these MISSs are characterized by thin clayey laminae and filamentous mica grains arranged parallel to bedding plane as well as oriented matrix supported quartz grains, which are indicative of biogenic origin. Facies analysis suggests that the MISS-hosting sediments were deposited in a fluvial sedimentary system during the Early Triassic, including lake delta, riverbeds/point bars, and flood plain paleoenvironments. Abundant MISSs from Yiyang indicate that microbes also proliferated in terrestrial ecosystems in the aftermath of the Permian-Triassic (P-Tr) biocrisis, like they behaved in marine ecosystems. Microbial blooms, together with dramatic loss of metazoans, may reflect environmental stress and degradation of terrestrial ecosystems or arid climate immediately after the severe Permian-Triassic ecologic crisis.

  17. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Barth, Andrew P.; Tosdal, R. M.; Wooden, J. L.

    1990-11-01

    Triassic magmatism in the southwest U.S. Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and we suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited data for associated Triassic(?) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic(?) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to alkalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.

  18. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Tosdal, R.M.; Wooden, J.L.

    1990-11-10

    Triassic magmatism in the southwest US Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and the authors suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited datamore » for associated Triassic ( ) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic( ) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to akalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.« less

  19. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  20. End-Triassic mass extinction started by intrusive CAMP activity.

    PubMed

    Davies, J H F L; Marzoli, A; Bertrand, H; Youbi, N; Ernesto, M; Schaltegger, U

    2017-05-31

    The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ∼100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.

  1. End-Triassic mass extinction started by intrusive CAMP activity

    NASA Astrophysics Data System (ADS)

    Davies, J. H. F. L.; Marzoli, A.; Bertrand, H.; Youbi, N.; Ernesto, M.; Schaltegger, U.

    2017-05-01

    The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ~100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.

  2. A Basal Sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the Early Evolution of Sauropodomorpha

    PubMed Central

    Martinez, Ricardo N.; Alcober, Oscar A.

    2009-01-01

    Background The earliest dinosaurs are from the early Late Triassic (Carnian) of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species. Methodology/Principal Findings We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian) in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine. Conclusions/Significance We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic. PMID:19209223

  3. A reappraisal of the Middle Triassic chirotheriid Chirotherium ibericus Navás, 1906 (Iberian Range NE Spain), with comments on the Triassic tetrapod track biochronology of the Iberian Peninsula

    PubMed Central

    Castanera, Diego; Gasca, José Manuel; Canudo, José Ignacio

    2015-01-01

    assemblage composed of Dicynodontipus, Procolophonichnium, Rhynchosauroides, Rotodactylus, Chirotherium, Isochirotherium, Coelurosaurichnus and Paratrisauropus. The Iberian track record from the Anisian is coherent with the global biochronology proposed for Triassic tetrapod tracks. Nevertheless, the scarcity of track occurrences during the late Olenekian and Ladinian prevents analysis of the corresponding biochrons. Finally, although the Iberian record for the Upper Triassic is not abundant, the presence of Eubrontes, Anchisauripus and probably Brachychirotherium is coherent with the global track biochronology as well. Thus, the Triassic track record in the Iberian Peninsula matches the expected record for this age on the basis of a global biochronological approach, supporting the idea that vertebrate Triassic tracks are a useful tool in biochronology. PMID:26137425

  4. Preliminary Magnetostratigraphy of the Carnian to Early Norian (Late Triassic) Lower Chinle Group, Central and North-Central New Mexico

    NASA Astrophysics Data System (ADS)

    Zeigler, K. E.; Geissman, J. W.

    2006-12-01

    The Chama Basin of north-central New Mexico and the Zuni Mountains of central New Mexico contain several excellent outcrop exposures of the Upper Triassic Chinle Group. The Shinarump, Salitral and Poleo formations, which comprise the lower half of the Chinle Group, encompass the Carnian to early Norian stages of the Late Triassic, based on vertebrate biostratigraphy. Each of these units was sampled with a ~3m sampling interval at three localities in the Chama Basin and one locality in the Zuni Mountains. Sites spanning the gradational Shinarump/Salitral Formation contact yielded an in situ grand mean of D = 352.9°, I = 49.3°, α95 = 20.1°, k = 38.7. Sites in the El Cerrito Bed of the medial Salitral Formation yielded an in situ grand mean of D = 177.4°, I = 10.7°, α95 = 15.6°, k = 63.5. The Youngsville Member of the Salitral Formation and the Poleo Formation are exclusively of reverse polarity, with an in situ grand mean of D = 188.3°, I = 16.8°, α95 = 19.4°, k = 23.4 and D = 182.7°, I = -0.3°, α95 = 5.3°, k = 36.5 respectively. In general, the lower Chinle Group tends to be dominantly reversed polarity. The Shinarump Formation is noted for intense color mottling and the local occurrence of copper and uranium mineralization. The lower member of the Salitral Formation, the Piedra Lumbre Member, is often very mottled, with colors ranging from whites and yellows through reds, purples and blues that reflect intense pedogenic alteration of the sediments. The Youngsville Member is nearly uniformly brick red in color. However, several specimens from different sites in the Shinarump and both members of the Salitral Formation yielded incoherent magnetizations, suggesting that pedogenic alteration may have erased any original Late Triassic magnetization.

  5. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  6. Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): tracing variability in the sources

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U.

    2017-01-01

    Laser ablation ICP-MS U-Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian-Lower Carboniferous of the South Portuguese Zone (Phyllite-Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.

  7. Depositional evolution of permo-triassic karoo basins in Tanzania with reference to their economic potential

    NASA Astrophysics Data System (ADS)

    Kreuser, T.; Wopfner, H.; Kaaya, C. Z.; Markwort, S.; Semkiwa, P. M.; Aslandis, P.

    The Karoo basins of Tanzania contain in excess of 3000 m of sediments which were preserved in several NNE-NE striking half grabens or other structural basin conditions. They are all intracratonic basins, most of which filled with terrestrial sediments. In some basins situated nearer the coastal region short marine incursions occurred in the Late Permian. The Ruhuhu Rasin in SW Tanzania provides a typical depositional sequence of a Karoo basin in eastern Africa. Sedimentation commenced with glacigene deposits. These are of Late Carboniferous to Early Permian age and may be equated with other glacial successions in Africa and elsewhere in Gondwana. The glacigene beds are overlain by fluvial-deltaic coal-bearing deposits succeeded by arkoses and continental red beds. A transitionary formation of carbonaceous shales with impure coals gradually develops into thick lacustrine series which are topped by Late Permian bone bearing beds. The Triassic is characterized by a very thick fluvio-deltaic succession of siliciclastics resting with regional unconformity on the Permian. This Early Triassic sequence exhibits well-developed repetitive depositional cycles. Current azimuth measurements indicate fluctuating flow regimes in the Early Permian but relative stable source areas to the west of the basin later on. The depositional evolution of the Ruhuhu Basin is controlled by both tectonic and climatic factors. During basin evolution important energy resources were deposited such as considerable reserves of coal and source rocks of moderate potential for hydrocarbon generation. Uranium enrichment is observed in the Triassic arenaceous series where diagenetic alterations and subsequent cementation processes led to the formation of laumontite. Post Karoo dykes and plugs had only local effect on thermal evolution of potential source rocks. Enrichments of elements, i.e., Nb, Zr, Rb, Cr, and V present additional exploration targets. A comparison with the Karoo basins of the coastal

  8. Evolution of the Early Triassic marine depositional environment in the Croatian Dinarides

    NASA Astrophysics Data System (ADS)

    Aljinović, Dunja; Smirčić, Duje; Horacek, Micha; Richoz, Sylvain; Krystyn, Leopold; Kolar-Jurkovšek, Tea; Jurkovšek, Bogdan

    2014-05-01

    In the central part of the Dinarides in Croatia, the Early Triassic depositional sequence was investigated by means of litho-, bio- and chemostratigraphy at locality Plavno (ca. 1.000m thick). Conodont and δ13C-isotope analysis were a powerfull tool to determine stage and substage boundaries. The succession begins with the second conodont zone of the Griesbachian Isarcicella staeschei and I. isarcica with low δ13C-values and a steadily increase towards the Griesbachian-Dienerian boundary. Around that boundary a minor, short, negative excursion occurs. In the Dienerian the δ13C-values increase with a steepening of the slope towards the Dienerian-Smithian boundary. Around that boundary a maximum of +5o in shallow water carbonate occurs followed by a steep and continuous drop to low, often negative values in the Smithian. Just before the Smithian-Spathian boundary a steep rise to a second maximum is documented. It is followed by decline in the Spathian and a gentle increase to a rounded peak at the Spathian-Anisian boundary. In lithological sense Plavno succession has threefold division: 1) carbonates representing the oldest Early Triassic strata (early Griesbachian); 2) dominantly red clastics (shales, siltstones and sandstones) with intercalation of oncoid/ooid or bioclast rich grainstones (uppermost Griesbachian, Dienerian and Smithian) and 3) dominantly grey carbonaceous lime mudstones, marls and calcisiltites with ammonoids representing Spathian strata. In the oldest strata (Griesbachian) in macrocrystalline subhedral dolomites rare microspheres and foraminifers Earlandia and Cornuspira point to the stressful conditions related to the end Permian mass extinction. In the uppermost Griesbachian and Dienerian strata, within dominantly clastic deposition, rare coarse oncoliths with typical microbial cortices occur. Their presence fits to the interpretation of biotical-induced precipitation related to PTB extinction and can suggest still stressful condition. The

  9. A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental deposits: The Zechstein-Lower Buntsandstein transition in Germany

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Wang, Xu; Kirscher, Uwe; Kraft, Johannes; Schneider, Jörg W.; Götz, Annette E.; Joachimski, Michael M.; Bachtadse, Valerian

    2017-05-01

    The Central European Basin is very suitable for high-resolution multistratigraphy of Late Permian to Early Triassic continental deposits. Here the well exposed continuous transition of the lithostratigraphic Zechstein and Buntsandstein Groups of Central Germany was studied for isotope-chemostratigraphy (δ13Corg, δ13Ccarb, δ18Ocarb), major and trace element geochemistry, magnetostratigraphy, palynology, and conchostracan biostratigraphy. The analysed material was obtained from both classical key sections (abandoned Nelben clay pit, Caaschwitz quarries, Thale railway cut, abandoned Heinebach clay pit) and a recent drill core section (Caaschwitz 6/2012) spanning the Permian-Triassic boundary. The Zechstein-Buntsandstein transition of Central Germany consists of a complex sedimentary facies comprising sabkha, playa lake, aeolian, and fluvial deposits of predominantly red-coloured siliciclastics and intercalations of lacustrine oolitic limestones. The new data on δ13Corg range from - 28.7 to - 21.7 ‰ showing multiple excursions. Most prominent negative shifts correlate with intercalations of oolites and grey-coloured clayey siltstones, while higher δ13Corg values correspond to an onset of palaeosol overprint. The δ13Ccarb values range from - 9.7 to - 1.3 ‰ with largest variations recorded in dolomitic nodules from the Zechstein Group. In contrast to sedimentary facies shifts across the Zechstein-Buntsandstein boundary, major element values used as a proxy (CIA, CIA*, CIA-K) for weathering conditions indicate climatic stability. Trace element data used for a geochemical characterization of the Late Permian to Early Triassic transition in Central Germany indicate a decrease in Rb contents at the Zechstein-Buntsandstein boundary. New palynological data obtained from the Caaschwitz quarry section reveal occurrences of Late Permian palynomorphs in the Lower Fulda Formation, while Early Triassic elements were recorded in the upper part of the Upper Fulda Formation

  10. Silicified wood from the Permian and Triassic of Antarctica: Tree rings from polar paleolatitudes

    USGS Publications Warehouse

    Ryberg, P.E.; Taylor, E.L.

    2007-01-01

    The mass extinction at the Permian-Triassic boundary produced a floral turnover in Gondwana in which Paleozoic seed ferns belonging to the Glossopteridales were replaced by corystosperm seed ferns and other seed plant groups in the Mesozoic. Secondary growth (wood production) in both plant groups provides information on plant growth in relation to environment in the form of permineralized tree rings. Techniques utilized to analyze extant wood can be used on fossil specimens to better understand the climate from both of these periods. Late Permian and early Middle Triassic tree rings from the Beardmore Glacier area indicate an environment where extensive plant growth occurred at polar latitudes (~80–85°S, Permian; ~75°S, Triassic). A rapid transition to dormancy in both the Permian and Triassic woods suggests a strong influence of the annual light/dark cycle within the Antarctic Circle on ring production. Latewood production in each ring was most likely triggered by the movement of the already low-angled sun below the horizon. The plants which produced the wood have been reconstructed as seasonally deciduous, based on structural and sedimentologic evidence. Although the Late Permian climate has been reconstructed as cold temperate and the Middle Triassic as a greenhouse, these differences are not reflected in tree ring anatomy or wood production in these plant fossils from the central Transantarctic Mountains.

  11. Hg concentrations from Late Triassic and Early Jurassic sedimentary rocks: first order similarities and second order depositional and diagenetic controls

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    Mercury concentrations in sediments have recently gained prominence as a potential tool for identifying large igneous province (LIP) volcanism in sedimentary records. LIP volcanism coincides with several mass extinctions during the Phanerozoic, but it is often difficult to directly tie LIP activity with the record of extinction in marine successions. Here, we build on mercury concentration data reported by Thibodeau et al. (Nature Communications, 7:11147, 2016) from the Late Triassic and Early Jurassic of New York Canyon, Nevada, USA. Increases in Hg concentrations in that record were attributed to Central Atlantic Magmatic Province (CAMP) activity in association with the end-Triassic mass extinction. We expand the measured section from New York Canyon and report new mercury concentrations from Levanto, Peru, where dated ash beds provide a discrete chronology, as well as St. Audrie's Bay, UK, a well-studied succession. We correlate these records using carbon isotopes and ammonites and find similarities in the onset of elevated Hg concentrations and Hg/TOC in association with changes in C isotopes. We also find second order patterns that differ between sections and may have depositional and diagenetic controls. We will discuss these changes within a sedimentological framework to further understand the controls on Hg concentrations in sedimentary records and their implications for past volcanism.

  12. Evidence for Late Permian-Upper Triassic ocean acidification from calcium isotopes in carbonate of the Kamura section in Japan

    NASA Astrophysics Data System (ADS)

    Ye, F.; Zhao, L., Sr.; Chen, Z. Q.; Wang, X.

    2017-12-01

    Calcium and carbon cycles are tightly related in the ocean, for example, through continental weathering and deposition of carbonate, thus, very important for exploring evolutions of marine environment during the earth history. The end-Permian mass extinction is the biggest biological disaster in the Phanerozoic and there are several studies talking about variations of calcium isotopes across the Permian-Triassic boundary (PTB). However, these studies are all from the Tethys regions (Payne et al., 2010; Hinojosa et al., 2012), while the Panthalassic Ocean is still unknown to people. Moreover, evolutions of the calcium isotopes during the Early to Late Triassic is also poorly studied (Blattler et al., 2012). Here, we studied an Uppermost Permian to Upper Triassic shallow water successions (Kamura section, Southwest Japan) in the Central Panthalassic Ocean. The Kamura section is far away from the continent without any clastic pollution, therefore, could preserved reliable δ44/40Cacarb signals. Conodont zonation and carbonate carbon isotope also provide precious time framework which is necessary for the explaining of the δ44/40Cacarb profile. In Kamura, δ44/40Cacarb and δ13Ccarb both exhibit negative excursions across the PTB, the δ44/40Cacarb value in the end-Permian is 1.0398‰ then abrupt decrease to the minimum value of 0.1524‰. CO2-driven global ocean acidification best explains the coincidence of the δ44/40Cacarb excursion with negative excursions in the δ13Ccarb of carbonates until the Early Smithian(N1a, N1b, N1c, P1, N2, P2). In the Middle and the Late Triassic, the δ44/40 Cacarb average approximately 1.1‰. During the Middle and Late Triassic, strong relationships between δ44/40Cacarb and δ13Ccarb are collapsed, indicating a normal pH values of the seawater in those time. The Siberian Trap volcanism probably played a significant role on the δ44/40Cacarb until the late Early Triassic. After that, δ44/40Cacarb was mostly controlled by carbonate

  13. Palaeoclimatic conditions in the Late Triassic-Early Jurassic of southern Africa: A geochemical assessment of the Elliot Formation

    NASA Astrophysics Data System (ADS)

    Sciscio, Lara; Bordy, Emese M.

    2016-07-01

    The Triassic-Jurassic boundary marks a global faunal turnover event that is generally considered as the third largest of five major biological crises in the Phanerozoic geological record of Earth. Determining the controlling factors of this event and their relative contributions to the biotic turnover associated with it is on-going globally. The Upper Triassic and Lower Jurassic rock record of southern Africa presents a unique opportunity for better constraining how and why the biosphere was affected at this time not only because the succession is richly fossiliferous, but also because it contains important palaeoenvironmental clues. Using mainly sedimentary geochemical proxies (i.e., major, trace and rare earth elements), our study is the first quantitative assessment of the palaeoclimatic conditions during the deposition of the Elliot Formation, a continental red bed succession that straddles the Triassic-Jurassic boundary in southern Africa. Employing clay mineralogy as well as the indices of chemical alteration and compositional variability, our results confirm earlier qualitative sedimentological studies and indicate that the deposition of the Upper Triassic and Lower Jurassic Elliot Formation occurred under increasingly dry environmental conditions that inhibited chemical weathering in this southern part of Pangea. Moreover, the study questions the universal validity of those studies that suggest a sudden increase in humidity for the Lower Jurassic record and supports predictions of long-term global warming after continental flood basalt emplacement.

  14. Mercury anomalies as a proxy for large igneous province volicanism and effects on the carbon cycle in a U-Pb age-constrained section spanning the end-Triassic mass extinction, Levanto, Peru

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Rosas, S.; Bottjer, D. J.

    2017-12-01

    Understanding the causes of the end-Triassic extinction and their potential relationship to Central Atlantic Magmatic Province (CAMP) volcanism necessitates careful correlation of carbon cycle records (largely from marine sections) and volcanism (largely from terrestrial successions) in a robust chronological framework. Here, we report stable carbon isotopes and mercury concentrations and isotopes from the Levanto section in Northern Peru as a putative proxy for CAMP (a large igneous province) in a marine section. Levanto represents deposition well below storm wave base and is lithologically homogenous before, during, and after the end-Triassic extinction interval, making it ideal for detailed chemostratigraphy. Furthermore, abundant intercalated ash beds allow us to correlate mercury concentrations in the marine record directly with CAMP basalt ages, providing a test of the correspondence of mercury anomalies with the eruption of CAMP volcanics. Age dating and C isotope analyses provide an opportunity to explore orbital tuning of the carbon isotope record and ground truth it with existing U-Pb ages from the section, a feature not available in any other marine sections examined to date. The abundance of U-Pb dated ashes in the Levanto section allows us to correlate orbital tuning with other basins, which lack absolute age control, providing a better understanding for the C cycle changes associated with the Triassic-Jurassic boundary.

  15. Understanding Late Triassic low latitude terrestrial ecosystems: new insights from the Colorado Plateau Coring Project (CPCP)

    NASA Astrophysics Data System (ADS)

    Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.

    2017-12-01

    The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent

  16. Evidence for prosauropod dinosaur gastroliths in the Bull Run Formation (Upper Triassic, Norian) of Virginia

    USGS Publications Warehouse

    Weems, Robert E.; Culp, Michelle J.; Wings, Oliver

    2007-01-01

    Definitive criteria for distinguishing gastroliths from sedimentary clasts are lacking for many depositional settings, and many reported occurrences of gastroliths either cannot be verified or have been refuted. We discuss four occurrences of gastrolith-like stones (category 6 exoliths) not found within skeletal remains from the Upper Triassic Bull Run Formation of northern Virginia, USA. Despite their lack of obvious skeletal association, the most parsimonious explanation for several characteristics of these stones is their prolonged residence in the gastric mills of large animals. These characteristics include 1) typical gastrolith microscopic surface texture, 2) evidence of pervasive surface wear on many of these stones that has secondarily removed variable amounts of thick weathering rinds typically found on these stones, and 3) a width/length-ratio modal peak for these stones that is more strongly developed than in any population of fluvial or fanglomerate stones of any age found in this region. When taken together, these properties of the stones can be explained most parsimoniously by animal ingestion and gastric-mill abrasion. The size of these stones indicates the animals that swallowed them were large, and the best candidate is a prosauropod dinosaur, possibly an ancestor of the Early Jurassic gastrolith-producing prosauropod Massospondylus or Ammosaurus.Skeletal evidence for Upper Triassic prosauropods is lacking in the Newark Supergroup basins; footprints (Agrestipus hottoni and Eubrontes isp.) from the Bull Run Formation in the Culpeper basin previously ascribed to prosauropods are now known to be underprints (Brachychirotherium parvum) of an aetosaur and underprints (Kayentapus minor) of a ceratosaur. The absence of prosauropod skeletal remains or footprints in all but the uppermost (upper Rhaetian) Triassic rocks of the Newark Supergroup is puzzling because prosauropod remains are abundant elsewhere in the world in Upper Triassic (Carnian

  17. Sedimentary record of subsidence pulse at the Triassic/Jurassic boundary interval in the Slovenian Basin (eastern Southern Alps)

    NASA Astrophysics Data System (ADS)

    Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka

    2017-08-01

    In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary

  18. Palynofloral associations before and after the Permian-Triassic mass extinction, Kap Stosch, East Greenland

    NASA Astrophysics Data System (ADS)

    Schneebeli-Hermann, Elke; Hochuli, Peter A.; Bucher, Hugo

    2017-08-01

    The Permian-Triassic boundary (PTB) interval is known to document a major biodiversity crisis in the history of life. It is generally accepted that this crisis had a significant impact on marine invertebrates. The consequences for terrestrial ecosystems are still controversially discussed. Based on palynological analysis we present a high time resolution microfloral succession of the expanded Late Permian (Wuchiapingian)-Early Triassic (Dienerian) section from Kap Stosch, East Greenland. The quantitative distribution of palynomorphs (range charts and relative abundance data) allows for the differentiation of six distinct palynofloral associations. Ammonoids and conodonts provide independent age control for these assemblages. The Wuchiapingian association I, documented from the Ravnefjeld Formation, shows a typical Late Permian assemblage dominated by bisaccate and monosaccate pollen grains and Vittatina spp. It is separated from association II, present in the basal part of the Wordie Creek Formation, by an important hiatus. This association of Changhsingian or earliest Griesbachian age is characterised by the common occurrence of Ephedripites spp. and reduced abundance and diversity of Vittatina spp. Association III, dated as Griesbachian by the presence of ammonoids, is marked by high relative abundances of taeniate bisaccate pollen grains and high spore diversity. A distinct floral break occurs between the gymnosperm dominated Permian and Griesbachian floras and the lycopsid spore dominated Dienerian associations IV-VI. Ammonoid occurrences verify a Dienerian age for the latter associations. Association V is marked by the absence of non-taeniate bisaccate, striate monosaccate pollen grains, and Vittatina spp. Aratrisporites spp. a typical Triassic lycopsid spore occur consistently from this level onwards. Association VI is characterised by highest lycopsid spore abundances. Cluster analysis demonstrates that Griesbachian assemblages (associations II?-III) are

  19. Origin and tectonic evolution of upper Triassic Turbidites in the Indo-Burman ranges, West Myanmar

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Ding, Lin; Cai, Fulong; Wang, Houqi; Xu, Qiang; Zaw, Than

    2017-11-01

    The Pane Chaung Formation is exposed in the Indo-Burman Ranges, and has been involved in collision between the Indian Plate and West Burma Block. However, controversies exist over the provenance and paleogeographic reconstruction of the Pane Chaung Formation. This study presents new petrographical and detrital zircon Usbnd Pb ages and Hf isotopic data from the Pane Chaung Formation in Rakhine Yoma and Chin Hills, west Myanmar. The depositional age of the Pane Chaung Formation is Late Triassic, indicated by the Carnian-Norian Halobia fossils and maximum depositional ages between 233.0 ± 2.5 Ma and 206.2 ± 1.8 Ma. Upper Triassic sandstones contain 290-200 Ma detrital zircons, εHf(t) values of - 6 to 11 and TDMC of 1.6 to 0.6 Ga, interpreted to be derived from West Papua region. The most abundant zircon age population of 750-450 Ma is derived from Pan-African orogenic belts in Australia. Zircons of 1250-900 Ma age were derived from the Grenvillian orogen in Australia. Archean zircons are interpreted to be derived from the Yilgarn and Pilbara cratons in Western Australia. Detrital zircon ages of the Pane Chaung Formation are distinct from similar aged strata in Indochina and Sibumasu, but comparable to NW Australia (Carnarvon Basin) and Greater India (Langjiexue Formation). It is suggested that the Pane Chaung Formation was deposited in a Late Triassic submarine fan along the northern margin of Australia.

  20. Cranial Ontogeny of the Early Triassic Basal Cynodont Galesaurus planiceps.

    PubMed

    Jasinoski, Sandra C; Abdala, Fernando

    2017-02-01

    Ontogenetic changes in the skull and mandible of thirty-one specimens of Galesaurus planiceps, a basal non-mammaliaform cynodont from the Early Triassic of South Africa, are documented. The qualitative survey indicated eight changes in the craniomandibular apparatus occurred during growth, dividing the sample into three ontogenetic stages: juvenile, subadult, and adult. Changes in the temporal region, zygomatic arch, occiput, and mandible occurred during the transition from the subadult to adult stage at a basal skull length of 90 mm. At least four morphological and allometric differences divided the adult specimens into two morphs, indicating the presence of sexual dimorphism in Galesaurus. Differences include extensive lateral flaring of the zygomatic arches in the "male" morph resulting in a more anterior orientation of the orbits, and a narrower snout in the "female". This is the first record of sexual dimorphism in a basal cynodont, and the first time it is quantitatively documented in a non-mammaliaform cynodont. An ontogenetic comparison between Galesaurus and the more derived basal cynodont Thrinaxodon revealed differences in the timing and extent of sagittal crest development. In Galesaurus, the posterior sagittal crest, located behind the parietal foramen, developed relatively later in ontogeny, and the anterior sagittal crest rarely formed suggesting the anterior fibres of the temporalis were less developed than in Thrinaxodon. In contrast, craniomandibular features related to the masseters became more developed during the ontogeny of Galesaurus. The development of the adductor musculature appears to be one of the main factors influencing skull growth in these basal non-mammaliaform cynodonts. Anat Rec, 300:353-381, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. A Triassic plesiosaurian skeleton and bone histology inform on evolution of a unique body plan

    PubMed Central

    Wintrich, Tanja; Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Sander, P. Martin

    2017-01-01

    Secondary marine adaptation is a major pattern in amniote evolution, accompanied by specific bone histological adaptations. In the aftermath of the end-Permian extinction, diverse marine reptiles evolved early in the Triassic. Plesiosauria is the most diverse and one of the longest-lived clades of marine reptiles, but its bone histology is least known among the major marine amniote clades. Plesiosaurians had a unique and puzzling body plan, sporting four evenly shaped pointed flippers and (in most clades) a small head on a long, stiffened neck. The flippers were used as hydrofoils in underwater flight. A wide temporal, morphological, and morphometric gap separates plesiosaurians from their closest relatives (basal pistosaurs, Bobosaurus). For nearly two centuries, plesiosaurians were thought to appear suddenly in the earliest Jurassic after the end-Triassic extinctions. We describe the first Triassic plesiosaurian, from the Rhaetian of Germany, and compare its long bone histology to that of later plesiosaurians sampled for this study. The new taxon is recovered as a basal member of the Pliosauridae, revealing that diversification of plesiosaurians was a Triassic event and that several lineages must have crossed into the Jurassic. Plesiosaurian histology is strikingly uniform and different from stem sauropterygians. Histology suggests the concurrent evolution of fast growth and an elevated metabolic rate as an adaptation to cruising and efficient foraging in the open sea. The new specimen corroborates the hypothesis that open ocean life of plesiosaurians facilitated their survival of the end-Triassic extinctions. PMID:29242826

  2. Petrography and geochemistry of the Permian-Triassic boundary interval, Yangou section, South China: Implications for early Griesbachian seawater δ13CDIC gradient with depth

    NASA Astrophysics Data System (ADS)

    Li, Rong

    2017-04-01

    The carbon isotopic composition (δ13Ccarb) recorded in shelf carbonates has been widely used as a proxy for the isotopic composition (δ13CDIC) of surface ocean water to establish paleocean chemistry and circulation patterns. However, δ13Ccarb values do not necessarily preserve the δ13CDIC, due to post-depositional diagenetic alteration. In order to examine the early Griesbachian surface-to-deep δ13CDIC gradient with depth, the diagenetic features of the Permian-Triassic boundary interval (beds 18 to 35) from Yangou section, located in the Yangtze carbonate platform interior, South China, are delineated to compare with those of the slope GSSP Meishan section. The petrographic and geochemical observations show that the early Griesbachian carbonates in the Yangou section underwent pervasive dolomitization in its early diagenetic history. Three types of early replacement dolomites and one type of dolomite cement are present. The dolomite crystals display internal zonation, with high-Ca calcian dolomite (HCD) core being encased successively by calcite and an outermost Fe-rich HCD cortex. The initial dolomitization took place in anoxic seawater, and underwent subsequent diagenetic system involved with meteoric water. The two most negative δ13C values in claystones of Beds 21-3 and 35 are probably related to meteoric diagenesis. Above and/or below the meteorically influenced beds, the dolomite and calcite have uniformly positive δ13C values. The primary carbon isotopic compositions are probably preserved in the early Griesbachian carbonate from the platform Yangou section, which could probably be related to the poor formation of the outermost Fe-rich HCD cortex. Compared to the slope carbonate from the Meishan section, the platform carbonate from the Yangou section has lower primary δ13Ccarb values. It is estimated that the δ13CDIC gradient with depth between Yangou and Meishan is less than the previously suggested. The results highlight the need for evaluation

  3. Presence of the dinosaur Scelidosaurus indicates Jurassic age for the Kayenta Formation (Glen Canyon Group, northern Arizona)

    NASA Astrophysics Data System (ADS)

    Padian, Kevin

    1989-05-01

    The Glen Canyon Group (Moenave, Wingate, Kayenta and Navajo Formations) of northern Arizona represents an extensive outcrop of early Mesozoic age terrestrial sediments. The age of these formations has long been disputed because independent stratigraphic data from marine tie-ins, paleobotanical and palynological evidence, and radiometric calibrations have been scanty or absent. The fauna of the Kayenta Formation in particular has been problematic because it has appeared to contain both typical Late Triassic and Early Jurassic taxa Here I report that the principal evidence for Late Triassic taxa, dermal scutes previously assigned to an aetosaur, in fact belongs to the thyreophoran ornithischian dinosaur Scelidosaurus, previously known only as a washed-in form found in marine sediments in the Early Jurassic of England. The presence of this dinosaur represents the first vertebrate biostratigraphic tie-in of the Glen Canyon Group horizons with reliably dated marine deposits in Europe. Together with revised systematic assessments of other vertebrates and independent evidence from fossil pollen, it supports an Early Jurassic age for the Kayenta Formation and most or all of the Glen Canyon Group.

  4. New Data on the Clevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of Southern Brazil

    PubMed Central

    Hsiou, Annie Schmaltz; De França, Marco Aurélio Gallo; Ferigolo, Jorge

    2015-01-01

    The sphenodontian fossil record in South America is well known from Mesozoic and Paleogene deposits of Argentinean Patagonia, mainly represented by opisthodontians, or taxa closely related to the modern Sphenodon. In contrast, the Brazilian fossil record is restricted to the Caturrita Formation, Late Triassic of Rio Grande do Sul, represented by several specimens of Clevosauridae, including Clevosaurus brasiliensis Bonaparte and Sues, 2006. Traditionally, Clevosauridae includes several Late Triassic to Early Jurassic taxa, such as Polysphenodon, Brachyrhinodon, and Clevosaurus, the latter well-represented by several species. The detailed description of the specimen MCN-PV 2852 allowed the first systematic revision of most Clevosaurus species. Within Clevosauridae, Polysphenodon is the most basal taxon, and an IterPCR analysis revealed Brachrhynodon as a possible Clevosaurus; C. petilus, C. wangi, and C. mcgilli as possibly distinct taxonomic entities; and the South African Clevosaurus sp. is not closely related to C. brasiliensis. These data indicate the need of a deep phylogenetic review of Clevosauridae, in order to discover synapomorphic characters among the diversity of these Triassic/Jurassic sphenodontians. PMID:26355294

  5. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  6. The Permian-Triassic boundary & mass extinction in China

    USGS Publications Warehouse

    Metcalfe, I.; Nicoll, R.S.; Mundil, R.; Foster, C.; Glen, J.; Lyons, J.; Xiaofeng, W.; Cheng-Yuan, W.; Renne, P.R.; Black, L.; Xun, Q.; Xiaodong, M.

    2001-01-01

    The first appearance of Hindeodus parvus (Kozur & Pjatakova) at the Permian-Triassic (P-T) GSSP level (base of Bed 27c) at Meishan is here confirmed. Hindeodus changxingensis Wang occurs from Beds 26 to 29 at Meishan and appears to be restricted to the narrow boundary interval immediately above the main mass extinction level in Bed 25. It is suggested that this species is therefore a valuable P-T boundary interval index taxon. Our collections from the Shangsi section confirm that the first occurrence of Hindeodus parvus in that section is about 5 in above the highest level from which a typical Permian fauna is recovered. This may suggest that that some section may be missing at Meishan. The age of the currently defined Permian-Triassic Boundary is estimated by our own studies and a reassessment of previous worker's data at c. 253 Ma, slightly older than our IDTIMS 206Pb/238U age of 252.5 ??0.3 Ma for Bed 28, just 8 cm above the GSSP boundary (Mundil et al., 2001). The age of the main mass extinction, at the base of Bed 25 at Meishan, is estimated at slightly older than 254 Ma based on an age of >254 Ma for the Bed 25 ash. Regardless of the absolute age of the boundary, it is evident that the claimed <165,000 y short duration for the negative carbon isotope excursion at the P-T boundary (Bowring et al., 1998) cannot be confirmed. Purportedly extraterrestrial fullerenes at the boundary (Hecker et al., 2001) have equivocal significance due to their chronostratigraphic non-uniqueness and their occurrence in a volcanic ash.

  7. The Early Mesozoic volcanic arc of western North America in northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora

    2008-02-01

    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  8. An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate

    NASA Astrophysics Data System (ADS)

    Bernasconi, Stefano M.; Meier, Irene; Wohlwend, Stephan; Brack, Peter; Hochuli, Peter A.; Bläsi, Hansruedi; Wortmann, Ulrich G.; Ramseyer, Karl

    2017-05-01

    Variations in the sulfur isotope composition of dissolved marine sulfate through time reflect changes in the global sulfur cycle and are intimately related to changes in the carbon and oxygen cycles. A large shift in the sulfur isotope composition of sulfate at the Permian/Triassic boundary has been recognized for long time and a number of studies were carried out to understand the causes and significance of this shift. However, data for the Middle and Late Triassic are very sparse and the stratigraphic evolution of the sulfur isotope composition of seawater is poorly constrained due to the small number of samples analyzed and/or due to the limited stratigraphic intervals studied. Moreover, in the last few years the Triassic timescale has significantly changed due to a wealth of new radiometric and stratigraphic data. In this study we show that for the Late Permian and the Triassic it is possible to obtain a precise reconstruction of the evolution of the sulfur cycle, for parts of it at sub-million year resolution, by analyzing exclusively gypsum and anhydrite deposits. We base our reconstruction on new data from the Middle and Late Triassic evaporites of Northern Switzerland and literature data from evaporites from Germany, Austria, Italy and the Middle East. We propose a revised correlation between the well-dated marine Tethyan sections in northern Italy and the evaporites from Northern Switzerland and from the Germanic Basin calibrated to the newest radiometric absolute age scale. This new correlation allows for a precise dating of the evaporites and constructing a composite sulfur isotope evolution of seawater sulfate from the latest Permian (Lopingian Epoch) to the Norian. We show that a rapid positive shift of approximately 24‰ at the Permian-Triassic boundary can be used to constrain seawater sulfate concentrations in the range of 2-6 mM, thus higher than previous estimates but with less rapid changes. Finally, we discuss two possible evolution scenarios

  9. Carbon and oxygen isotope variations of the Middle-Late Triassic Al Aziziyah Formation, northwest Libya

    NASA Astrophysics Data System (ADS)

    Moustafa, Mohamed S. H.; Pope, Michael C.; Grossman, Ethan L.; Mriheel, Ibrahim Y.

    2016-06-01

    This study presents the δ13C and δ18O records from whole rock samples of the Middle-Late Triassic (Ladinian-Carnian) Al Aziziyah Formation that were deposited on a gently sloping carbonate ramp within the Jifarah Basin of Northwest Libya. The Al Aziziyah Formation consists of gray limestone, dolomite, and dolomitic limestone interbedded with shale. The Ghryan Dome and Kaf Bates sections were sampled and analyzed for carbon and oxygen isotope chemostratigraphy to integrate high-resolution carbon isotope data with an outcrop-based stratigraphy, to provide better age control of the Al Aziziyah Formation. This study also discusses the relation between the facies architecture of the Al Aziziyah Formation and the carbon isotope values. Seven stages of relative sea level rise and fall within the Ghryan Dome were identified based on facies stacking patterns, field observations and carbon stable isotopes. The Al Aziziyah Formation δ13C chemostratigraphic curve can be partially correlated with the Triassic global δ13C curve. This correlation indicates that the Al Aziziyah Formation was deposited during the Ladinian and early Carnian. No straight-forward relationship is seen between δ13C and relative sea level probably because local influences complicated systematic environmental and diagenetic isotopic effects associated with sea level change.

  10. Provenance of Permian-Triassic Gondwana Sequence Units Accreted to the Banda Arc: Constraints from U/Pb and Hf Analysis of Zircons and Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Flores, J. A.; Spencer, C. J.; Harris, R. A.; Hoiland, C.

    2011-12-01

    Analysis of zircons from Australian affinity Permo-Triassic units of the Timor region yield age distributions with large peaks at 230-400 Ma and 1750-1900 Ma (n=435). Similar zircon age peaks are also found in rocks from NE Australia and the eastern Cimmerian block. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the NW margin of Australia. The Cimmerian Block was removed from Gondwana during Early Permian rifting and initiation of the Neo-Tethys Ocean. Hf analysis of zircon from the Aileu Complex in Timor and Kisar shows bimodal (juvenial and evolved) magmatism in the Gondwana Sequence of NW Australia at ~300 Ma. The magmatic event produced basalt with rift valley and ocean floor geochemical affinities, and rhyolite. Similar rock types and isotopic signatures are also found in Permo-Triassic igneous units throughout the Cimmerian continental block. The part of the Cimmerian Block with zircon distributions most like the Gondwana Sequence of NW Australia is the terranes of northern Tibet and Malaysia. The large 1750-1900 Ma zircon peak is much more wide spread, and appears in terranes from Baoshan (SW China) to Borneo. The Permo-Triassic rocks of the Timor region fill syn-rift intracratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwana terranes will rejoin. However, it may be difficult to reconstruct the various ventures of they made over the past 300 Ma.

  11. New Ar/Ar single grain mineral ages from Korean orogenic belts with implications for the Triassic cooling and exhumation history

    NASA Astrophysics Data System (ADS)

    de Jong, Koenraad; Ruffet, Gilles; Han, Seokyoung

    2013-04-01

    The Korean peninsula is located in the eastern margin of the Eurasian continent where major late Palaeozoic to early Mesozoic continental collision zones, like the Central Asian Orogenic Belt and the Qinling-Dabie-Sulu Belt, merge with circum-Pacific subduction-accretion systems. Deciphering the tectonic evolution of Korea is thus crucial for the understanding of the amalgamation of East Asia. Classically, research in Korea has focused on the search for (ultra)high-pressure metamorphic rocks and their isotopic dating, most recently applying SHRIMP on Th- and U-bearing accessory minerals, in order to substantiate links with the Qinling-Dabie-Sulu Belt across the Yellow Sea in China. Instead of trying to date peak pressure conditions we focused on 40Ar/39Ar laser-probe step-heating dating of single grains of the fabric-forming minerals muscovite, biotite and amphibole, formed during retrograde recrystallisation and exhumation. This is a big advantage as their growth can be straightforwardly correlated to major phases of the tectono-metamorphic evolution of rocks. This approach helps to meet the major geochronological challenge of obtaining age estimates for the timing of specific tectono-metamorphic events in the Korean orogenic belts. The Korean peninsula comprises a number of Palaeoproterozoic high-grade gneiss terranes; only one of which has been affected by Permo-Triassic metamorphism: the Gyeonggi Massif. We concentrated on the uppermost Gyeonggi Massif and the overlying Imjingang Belt, to the North, and the ill-defined Hongseong zone to the West, both constituted by younger metamorphic rocks. Both belts contain rare lenses of mafic rocks with relics of high-pressure metamorphism. Hornblende from a corona-textured amphibolite from the lowermost part of the Imjingang Belt yielded a U-shaped age spectrum, the base of which is formed by four concordant steps with a weighted mean age of 242.8 ± 2.4 Ma (15% 39Ar release). Muscovites from strongly retrogressed and

  12. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs

    NASA Astrophysics Data System (ADS)

    Rothschild, B. M.; Xiaoting, Z.; Martin, L. D.

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15 % of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18 %) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  13. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs.

    PubMed

    Rothschild, B M; Xiaoting, Z; Martin, L D

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15% of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18%) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  14. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.; Yang, H.

    2006-01-01

    Using detrital zircon geochronology, turbidite deposystems fed from distinct sediment sources can be distinguished within the Songpan-Ganzi complex, a collapsed Middle to Late Triassic turbidite basin of central China. A southern Songpan-Ganzi deposystem initially was sourced solely by erosion of the Qinling-Dabie orogen during early Late Triassic time, then by Qinling-Dabie orogen, North China block, and South China block sources during middle to late Late Triassic time. A northern Songpan-Ganzi system was sourced by erosion of the Qinling-Dabie orogen and the North China block throughout its deposition. These separate deposystems were later tectonically amalgamated to form one complex and then uplifted as the eastern Tibet Plateau. ?? 2006 Geological Society of America.

  15. Precise age for the Permian-Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Cordey, Fabrice; Guodun, Kuang; Schaltegger, Urs

    2017-03-01

    This study is based on zircon U-Pb ages of 12 volcanic ash layers and volcanogenic sandstones from two deep water sections with conformable and continuous formational Permian-Triassic boundaries (PTBs) in the Nanpanjiang Basin (South China). Our dates of single, thermally annealed and chemically abraded zircons bracket the PTB in Dongpan and Penglaitan and provide the basis for a first proof-of-concept study utilizing a Bayesian chronology model comparing the three sections of Dongpan, Penglaitan and the Global Stratotype Section and Point (GSSP) at Meishan. Our Bayesian modeling demonstrates that the formational boundaries in Dongpan (251.939 ± 0.030 Ma), Penglaitan (251.984 ± 0.031 Ma) and Meishan (251.956 ± 0.035 Ma) are synchronous within analytical uncertainty of ˜ 40 ka. It also provides quantitative evidence that the ages of the paleontologically defined boundaries, based on conodont unitary association zones in Meishan and on macrofaunas in Dongpan, are identical and coincide with the age of the formational boundaries. The age model also confirms the extreme condensation around the PTB in Meishan, which distorts the projection of any stratigraphic points or intervals onto other more expanded sections by means of Bayesian age-depth models. Dongpan and Penglaitan possess significantly higher sediment accumulation rates and thus offer a greater potential for high-resolution studies of environmental proxies and correlations around the PTB than Meishan. This study highlights the power of high-resolution radio-isotopic ages that allow a robust intercalibration of patterns of biotic changes and fluctuating environmental proxies and will help recognizing their global, regional or local significance.

  16. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Luppo, Tomás; López de Luchi, Mónica G.; Rapalini, Augusto E.; Martínez Dopico, Carmen I.; Fanning, Christopher M.

    2018-03-01

    The Los Menucos Complex (northern Patagonia) consists of ∼6 km thick succession of acidic and intermediate volcanic and pyroclastic products, which has been traditionally assigned to the Middle/Late Triassic. New U/Pb (SHRIMP) zircon crystallization ages of 257 ± 2 Ma at the base, 252 ± 2 Ma at an intermediate level and 248 ± 2 Ma near the top of the sequence, indicate that this volcanic event took place in about 10 Ma around the Permian-Triassic boundary. This volcanism can now be considered as the effusive terms of the neighboring and coeval La Esperanza Plutono-Volcanic Complex. This indicates that the climax of activity of a large magmatic province in northern Patagonia was coetaneous with the end-Permian mass extinctions. Likely correlation of La Esperanza- Los Menucos magmatic province with similar volcanic and plutonic rocks across other areas of northern Patagonia suggest a much larger extension than previously envisaged for this event. Its age, large volume and explosive nature suggest that the previously ignored potential role that this volcanism might have played in climatic deterioration around the Permian-Triassic boundary should be investigated.

  17. Using Triple Oxygen Isotope Analyses of Biogenic Carbonate to Reconstruct Early Triassic Ocean Oxygen Isotopic Values and Temperatures

    NASA Astrophysics Data System (ADS)

    Gibbons, J. A.; Sharp, Z. D.; Atudorei, V.

    2017-12-01

    The calcite-water triple oxygen isotope fractionation is used to determine isotopic equilibrium and ancient ocean oxygen isotopic values and temperatures. Unlike conventional δ18O analysis where the formation water's isotopic value is assumed, paired δ17O-δ18O measurements allow for the water's isotopic composition to be calculated because there is only one unique solution for equilibrium fractionation using Δ17O-δ18O values (where Δ17O=δ17O-0.528δ18O). To a first approximation, the calcite-water equilibrium fractionation factor, θ (where θ=ln17α/ln18α), varies with temperature by 0.00001/°. The calcite-water equilibrium fractionation line was determined at two temperatures, 30° and 0°, by using modern carbonate samples that formed in ocean water with a δ18O value of 0‰. The θ values for the 30° and 0° samples are 0.52515 and 0.52486, respectively. Oxygen values were measured using complete fluorination in nickel tubes with BrF5 as the reaction reagent. We calibrated all oxygen values to the SMOW-SLAP scale by measuring SMOW, SLAP, San Carlos olivine, NBS-18, NBS-19, and PDB. The triple oxygen isotope calcite-water equilibrium fractionation line was applied to well preserved Early Triassic ammonite shells from the Western United States. Based on paired δ17O-δ18O measurements, the samples did not form in equilibrium with an ice-free ocean with an oxygen isotopic value of -1‰ or the modern ocean value of 0‰. Assuming the calcite is still primary and formed in equilibrium with the ocean water, our data indicate that the δ18O value of the ocean in the early Triassic was 3-5‰ lower than modern. Samples from the Smithian thermal maximum formed in water 10° warmer than samples from after the thermal maximum. Paired δ17O-δ18O measurements of pristine ancient carbonates may provide a better understanding of past ocean conditions during climate change events.

  18. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy.

    PubMed

    Labandeira, Conrad C; Kustatscher, Evelyn; Wappler, Torsten

    2016-01-01

    ) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian-Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant-insect interactions remain unknown.

  19. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy

    PubMed Central

    Labandeira, Conrad C.; Kustatscher, Evelyn

    2016-01-01

    ) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian–Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant–insect interactions remain unknown. PMID:27829032

  20. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania.

    PubMed

    Nesbitt, Sterling J; Barrett, Paul M; Werning, Sarah; Sidor, Christian A; Charig, Alan J

    2013-02-23

    The rise of dinosaurs was a major event in vertebrate history, but the timing of the origin and early diversification of the group remain poorly constrained. Here, we describe Nyasasaurus parringtoni gen. et sp. nov., which is identified as either the earliest known member of, or the sister-taxon to, Dinosauria. Nyasasaurus possesses a unique combination of dinosaur character states and an elevated growth rate similar to that of definitive early dinosaurs. It demonstrates that the initial dinosaur radiation occurred over a longer timescale than previously thought (possibly 15 Myr earlier), and that dinosaurs and their immediate relatives are better understood as part of a larger Middle Triassic archosauriform radiation. The African provenance of Nyasasaurus supports a southern Pangaean origin for Dinosauria.

  1. From Permo-Triassic lithospheric thinning to Jurassic rifting at the Adriatic margin: Petrological and geochronological record in Valtournenche (Western Italian Alps)

    NASA Astrophysics Data System (ADS)

    Manzotti, Paola; Rubatto, Daniela; Darling, James; Zucali, Michele; Cenki-Tok, Bénédicte; Engi, Martin

    2012-08-01

    Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic histories, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallisation at HT conditions; ages scatter from 263 to 294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.

  2. Paleomagnetism and magnetic fabric of the Triassic rocks from Spitsbergen

    NASA Astrophysics Data System (ADS)

    Dudzisz, K.; Szaniawski, R.; Michalski, K.; Manby, G.

    2017-12-01

    Understanding the origin and directions of the natural remanent magnetization and the tectonic deformation pattern reflected in magnetic fabric is of importance for investigation of the West Spitsbergen Fold and Thrust Belt (WSFTB) and its foreland. Previous research carried out on Triassic rocks from the study area concluded that these rocks record a composite magnetization of both, normal and reverse polarity, consisting of a primary Triassic remanence that is overlapped by a secondary post-folding component. Standard paleomagnetic procedures were conducted in order to determine the remanence components and a low-field AMS was applied to assess the degree and pattern of deformation. The AMS results from the WSFTB reveal a magnetic foliation that parallels the bedding planes and a dominantly NNW-SSE oriented magnetic lineation that is sub-parallel to the regional fold axial trend. These results imply a low to moderate degree of deformation and a maximum strain orientation parallel to that of the fold belt. These data are consistent with an orthogonal convergence model for the WSFTB formation. In turn, the magnetic fabric on the undeformed foreland displays a distinct NNE-SSW orientation that we attribute to the paleocurrent direction. Rock-magnetic analyses reveal that the dominant ferrimagnetic carriers are magnetite and titanomagnetite. The Triassic rocks are characterised by complicated NRM patterns often with overlapping unblocking temperature spectra of particular components. The dominant magnetisation is characterised, however, by a steep inclination of 70-80º. The derived paleomagnetic direction from the WSFTB falls on the Jurassic - recent sector of the apparent polar wander path (APWP) of Baltica after tectonic unfolding. These data imply that at least some of the identified secondary components could have originated before the Eurekan folding event (K/Pg), for example, in Early Cretaceous time which corresponds to the period of rifting events on Barents

  3. Iterative Evolution in Triassic Gondolelloidea (Conodonta)

    NASA Astrophysics Data System (ADS)

    Murat Kilic, Ali; Plasencia, Pablo; Guex, Jean; Hirsch, Francis

    2017-04-01

    The phylogeny and distribution of Triassic gondolelloid conodont multi-elements reveals aspects of their natural history. In conodont phylogeny, taxonomy incorporates the morphologic riposte to temperature as well as to eustatic cycles, expressed in speciation, radiation and extinction as these are not fortuitous and evolution uses diverse strategies such as heterochrony (progenesis and neoteny) in response to stress generating events. Proteromorphosis (reappearance of ancestral morphs) and paedomorphosis (retention of juvenile traits) is a reaction to sublethal environmental stress. It is often followed by radiation of fully developed forms, in the recovery stage after extinction, timely matching transgressions. Evolutionary retrogradation (neoteny) during eustatic high stands often precedes extinction. This was the case of the Alaunian Mockina whereafter the ultimate Misikella brought no post-Rhaetian recovery. The Late Triassic, an extremely long time span of 37 Ma represents 70 % of the total length of the period. Evolutionary rebounds after quasi extinction of subfamily Neogondolellinae, by radiation, out of the single surviving genus Paragondolella: Julian Metapolygnathus and Mazzaella, and Tuvalian-Lacian Metapolygnathus-Carnepigondolella-Ancyrogondolella. The survival of the clade throughout Alaunian and Sevatian took place by successive retrogradations (proteromorphosis) of the Alaunian Mockina and Sevatian-Rhaetian Misikella, bringing no ultimate post-Rhaetian recovery. The cryptic gondolellid features, encoded in "neospathid" proteromorphs permitted the conodont survival throughout the entire Triassic, signaling Dienerian, Anisian, Ladinian, Carnian, and Norian crises, extreme and ultimately vain in the terminal Rhaetian. Key words: Triassic; Conodonts; Phylogeny; Evolution; Proteromorphosis.

  4. Palaeoenvironments and palaeotectonics of the arid to hyperarid intracontinental latest Permian- late Triassic Solway basin (U.K.)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.

    2008-10-01

    The late Permian to late Triassic sediments of the Solway Basin consist of an originally flat-lying, laterally persistent and consistent succession of mature, dominantly fine-grained red clastics laid down in part of a very large intracontinental basin. The complete absence of body or trace fossils or palaeosols indicates a very arid (hyperarid) depositional environment for most of the sediments. At the base of the succession, thin regolith breccias and sandstones rest unconformably on basement and early Permian rift clastics. Overlying gypsiferous red silty mudstones, very fine sandstones and thick gypsum were deposited in either a playa lake or in a hypersaline estuary, and their margins. These pass upwards into thick-bedded, multi-storied, fine- to very fine-grained red quartzo-felspathic and sublithic arenites in which even medium sand is rare despite channels with clay pebbles up to 30 cm in diameter. Above, thick trough cross-bedded and parallel laminated fine-grained aeolian sandstones (deposited in extensive barchanoid dune complexes) pass up into very thick, multicoloured mudstones, and gypsum deposited in marginal marine or lacustrine sabkha environments. The latter pass up into marine Lower Jurassic shales and limestones. Thirteen non-marine clastic lithofacies are arranged into five main lithofacies associations whose facies architecture is reconstructed where possible by analysis of large exposures. The five associations can be compared with the desert pavement, arid ephemeral stream, sabkha, saline lake and aeolian sand dune environments of the arid to hyperarid areas of existing intracontinental basins such as Lake Eyre and Lake Chad. The accommodation space in such basins is controlled by gradual tectonic subsidence moderated by large fluctuations in shallow lake extent (caused by climatic change and local variation) and this promotes a large-scale layer-cake stratigraphy as exemplified in the Solway basin. Here, the dominant fine-grained mature

  5. Palaeo-equatorial temperatures and carbon-cycle evolution at the Triassic- Jurassic boundary: A stable isotope perspective from shallow-water carbonates from the UAE

    NASA Astrophysics Data System (ADS)

    Honig, M. R.; John, C. M.

    2013-12-01

    The Triassic-Jurassic boundary was marked by global changes including carbon-cycle perturbations and the opening of the Atlantic Ocean. These changes were accompanied by one of the major extinction events of the Phanerozoic. The carbon-cycle perturbations have been recorded in carbon isotope curves from bulk carbonates, organic carbon and fossil wood in several Tethyan locations and have been used for chemostratigraphic purposes. Here we present data from shallow-marine carbonates deposited on a homoclinal Middle Eastern carbonate ramp (United Arab Emirates). Our site was located at the equator throughout the Late Triassic and the Early Jurassic, and this study provides the first constraints of environmental changes at the low-latitudes for the Triassic-Jurassic boundary. Shallow-marine carbonate depositional systems are extremely sensitive to palaeoenvironmental changes and their usefulness for chemostratigraphy is being debated. However, the palaeogeographic location of the studied carbonate ramp gives us a unique insight into a tropical carbonate factory at a time of severe global change. Stable isotope measurements (carbon and oxygen) are being carried out on micrite, ooids and shell material along the Triassic-Jurassic boundary. The stable isotope results on micrite show a prominent negative shift in carbon isotope values of approximately 2 ‰ just below the inferred position of the Triassic-Jurassic boundary. A similar isotopic trend is also observed across the Tethys but with a range of amplitudes (from ~2 ‰ to ~4 ‰). These results seem to indicate that the neritic carbonates from our studied section can be used for chemostratigraphic purposes, and the amplitudes of the carbon isotope shifts provide critical constraints on the magnitude of carbon-cycle perturbations at low latitudes across the Triassic-Jurassic boundary. Seawater temperatures across the Triassic-Jurassic boundary will be constrained using the clumped isotope palaeo-thermometer applied

  6. Radiolarian biochronology of upper Anisian to upper Ladinian (Middle Triassic) blocks and tectonic slices of volcano-sedimentary successions in the Mersin Mélange, southern Turkey: New insights for the evolution of Neotethys

    NASA Astrophysics Data System (ADS)

    Tekin, U. Kagan; Bedi, Yavuz; Okuyucu, Cengiz; Göncüoglu, M. Cemal; Sayit, Kaan

    2016-12-01

    The Mersin Ophiolitic Complex located in southern Turkey comprises two main structural units; the Mersin Mélange, and a well-developed ophiolite succession with its metamorphic sole. The Mersin Mélange is a sedimentary complex including blocks and tectonic slices of oceanic litosphere and continental crust in different sizes. Based on different fossil groups (Radiolaria, Conodonta, Foraminifera and Ammonoidea), the age of these blocks ranges from Early Carboniferous to early Late Cretaceous. Detailed fieldwork in the central part of the Mersin Mélange resulted in identification of a number of peculiar blocks of thick basaltic pillow-and massive lava sequences alternating with pelagic-clastic sediments and radiolarian cherts. The oldest ages obtained from the radiolarian assemblages from the pelagic sediments transitional to the volcano-sedimentary succession in some blocks are middle to late Late Anisian. These pelagic sediments are overlain by thick sandstones of latest Anisian to middle Early Ladinian age. In some blocks, sandstones are overlain by clastic and pelagic sediments with lower Upper to middle Upper Ladinian radiolarian fauna. Considering the litho- and biostratigraphical data from Middle Triassic successions in several blocks in the Mersin Mélange, it is concluded that they correspond mainly to the blocks/slices of the Beysehir-Hoyran Nappes, which were originated from the southern margin of the Neotethyan Izmir-Ankara Ocean. As the pre-Upper Anisian basic volcanics are geochemically evaluated as back-arc basalts, this new age finding suggest that a segment of the Izmir-Ankara branch of the Neotethys was already open prior to Middle Triassic and was the site of intraoceanic subduction.

  7. Troglomorphism in the middle Triassic crinoids from Poland.

    PubMed

    Brom, Krzysztof R; Brachaniec, Tomasz; Salamon, Mariusz A

    2015-10-01

    In this paper, we document the Middle Triassic marine fauna recovered from the fissure/cave system of Stare Gliny (southern Poland) developed in the Devonian host dolomite. The fossils are mostly represented by in situ preserved and small-sized holdfasts of crinoids (Crinoidea) that are attached to the cave walls. Other fossils found in the cave infills include articulated brittle stars and brachiopods. Our findings constitute the oldest Mesozoic evidence for troglophile crinoids. We suggest that troglomorphism in these echinoderms was likely related to protection against predation, which underscores the magnitude of anti-predatory adaptations to increased predation pressure that occurred during the Early Mesozoic Marine Revolution.

  8. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    PubMed

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  9. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    PubMed Central

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic. PMID:25754468

  10. The Colorado Plateau Coring Project: A Continuous Cored Non-Marine Record of Early Mesozoic Environmental and Biotic Change

    NASA Astrophysics Data System (ADS)

    Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham

    2017-04-01

    The early Mesozoic is a critical time in earth history that saw the origin of modern ecosystems set against the back-drop of mass extinction and sudden climate events in a greenhouse world. Non-marine sedimentary strata in western North America preserve a rich archive of low latitude terrestrial ecosystem and environmental change during this time. Unfortunately, frequent lateral facies changes, discontinuous outcrops, and a lack of robust geochronologic constraints make lithostratigraphic and chronostratigraphic correlation difficult, and thus prevent full integration of these paleoenvironmental and paleontologic data into a regional and global context. The Colorado Plateau Coring Project (CPCP) seeks to remedy this situation by recovering a continuous cored record of early Mesozoic sedimentary rocks from the Colorado Plateau of the western United States. CPCP Phase 1 was initiated in 2013, with NSF- and ICDP-funded drilling of Triassic units in Petrified Forest National Park, northern Arizona, U.S.A. This phase recovered a 520 m core (1A) from the northern part of the park, and a 240 m core (2B) from the southern end of the park, comprising the entire Lower-Middle Triassic Moenkopi Formation, and most of the Upper Triassic Chinle Formation. Since the conclusion of drilling, the cores have been CT scanned at the University of Texas - Austin, and split, imaged, and scanned (e.g., XRF, gamma, and magnetic susceptibility) at the University of Minnesota LacCore facility. Subsequently, at the Rutgers University Core Repository, core 1A was comprehensively sampled for paleomagnetism, zircon geochronology, petrography, palynology, and soil carbonate stable isotopes. LA-ICPMS U-Pb zircon analyses are largely complete, and CA-TIMS U-Pb zircon, paleomagnetic, petrographic, and stable isotope analyses are on-going. Initial results reveal numerous horizons with a high proportion of Late Triassic-aged primary volcanic zircons, the age of which appears to be a close

  11. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction.

    PubMed

    Ezcurra, Martín D; Butler, Richard J

    2018-06-13

    One of the key faunal transitions in Earth history occurred after the Permo-Triassic mass extinction ( ca 252.2 Ma), when the previously obscure archosauromorphs (which include crocodylians, dinosaurs and birds) become the dominant terrestrial vertebrates. Here, we place all known middle Permian-early Late Triassic archosauromorph species into an explicit phylogenetic context, and quantify biodiversity change through this interval. Our results indicate the following sequence of diversification: a morphologically conservative and globally distributed post-extinction 'disaster fauna'; a major but cryptic and poorly sampled phylogenetic diversification with significantly elevated evolutionary rates; and a marked increase in species counts, abundance, and disparity contemporaneous with global ecosystem stabilization some 5 million years after the extinction. This multiphase event transformed global ecosystems, with far-reaching consequences for Mesozoic and modern faunas. © 2018 The Author(s).

  12. Detrital Zircon U-Pb and Hf-isotope Constrains on Basement Ages, Granitic Magmatism, and Sediment Provenance in the Malay Peninsula

    NASA Astrophysics Data System (ADS)

    Sevastjanova, Inga; Clements, Benjamin; Hall, Robert; Belousova, Elena; Pearson, Norman; Griffin, William

    2010-05-01

    the Malay Peninsula. Both Sibumasu and East Malaya basements are Paleoproterozoic, but of different ages. 176Hf/177Hfi ratios suggest that Permian-Triassic zircons were sourced from three major magmatic suites: (a) Permian crust-derived granitoids, (b) Early-Middle Triassic granitoids with a mixed mantle- and crust-derived source, and (c) Late Triassic crust-derived granitoids. This suggests three major Permian-Triassic episodes of magmatism in the Malay Peninsula. Two of these episodes (a and b) occurred in the Eastern Province. This suggests a multi-phase evolution of the East Malaya Volcanic Arc. Crust-derived zircon Hf-isotope signatures are unusual for a continental margin arc and may indicate contamination from older crust beneath the East Malaya fragment. A Late Permian-Early Triassic gap in magmatism and subsequent change of zircon source may indicate a micro-collision around 260-270 Ma (e.g. with an island arc or a seamount on the Paleo-Tethys oceanic crust). U-Pb ages and Hf-isotope composition of zircons sourced from the Main Range Province granitoids suggest that Sibumasu-East Malaya collision occurred by Late Triassic, but it is not clear when exactly this collision initiated. Different Hf-isotope signatures of Triassic zircons can be used as indicators of sediment provenance from the Malay Peninsula. Crust-derived signatures are diagnostic of Triassic zircons from the Main Range Province source, whereas mixed crust- and mantle-derived signatures of similar age zircons indicate Eastern Province source.

  13. The Triassic-Jurassic boundary in eastern North America

    NASA Technical Reports Server (NTRS)

    Olsen, P. E.; Comet, B.

    1988-01-01

    Rift basins of the Atlantic passive margin in eastern North America are filled with thousands of meters of continental rocks termed the Newark Supergroup which provide an unprecedented opportunity to examine the fine scale structure of the Triassic-Jurassic mass extinction in continental environments. Time control, vital to the understanding of the mechanisms behind mass extinctions, is provided by lake-level cycles apparently controlled by orbitally induced climate change allowing resolution at the less than 21,000 year level. Correlation with other provinces is provided by a developing high resolution magnetostratigraphy and palynologically-based biostratigraphy. A large number of at least local vertebrate and palynomorph extinctions are concentrated around the boundary with survivors constituting the earliest Jurassic assemblages, apparently without the introduction of new taxa. The palynofloral transition is marked by the dramatic elimination of a relatively high diversity Triassic pollen assemblage with the survivors making up a Jurassic assemblage of very low diversity overwhelmingly dominated by Corollina. Based principally on palynological correlations, the hypothesis that these continental taxonomic transitions were synchronous with the massive Triassic-Jurassic marine extinctions is strongly corroborated. An extremely rapid, perhaps catastrophic, taxonomic turnover at the Triassic-Jurassic boundary, synchronous in continental and marine realms is hypothesized and discussed.

  14. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  15. Late Triassic tropical climate of Pangea: Carbon isotopic and other insights into the rise of dinosaurs

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Lindström, S.; Irmis, R. B.; Glasspool, I.; Schaller, M. F.; Dunlavey, M.; Nesbitt, S. J.; Smith, N. D.; Turner, A. H.

    2015-12-01

    The rarity and species-poor nature of early dinosaurs and their relatives at low paleolatitudes persisted for 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New environmental reconstructions from stable carbon isotope ratios of preserved organic matter (δ13Corg), atmospheric pCO2 data based on the δ13C of soil carbonate, palynological, and wildfire data from charcoal from early dinosaur-bearing strata at low paleolatitudes in western North America show that variations in δ13Corg and palynomorph ecotypes are tightly correlated, displaying large and high-frequency excursions. These variations occurred within an environment characterized by elevated and increasing atmospheric pCO2, pervasive wildfires, and rapidly fluctuating extreme climatic conditions. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions until the end-Triassic, the large-bodied, fast-growing tachymetabolic dinosaurian herbivores were not. We hypothesize that the greater resources required by the herbivores made it difficult from them to adapt to the unstable conditions at low paleolatitudes in the Late Triassic.

  16. Triassic pollen date moroccan high atlas and the incipient rifting of pangea as middle carnian.

    PubMed

    Cousminer, H L; Manspeizer, W

    1976-03-05

    Palynomorphs from the High Atlas Mountains south of Marrakech define the Minutosaccus-Patinasporites Concurrent Range Zone, which is time-stratigraphically equivalent to the Swiss and English middle Keuper, type Carnian of Austria, and North American Triassic beds in Virginia, North Carolina, Pennsylvania, New Jersey, Texas, New Mexico, and Arizona, thus dating an early episode of continental rifting between Africa and North America.

  17. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    NASA Astrophysics Data System (ADS)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and

  18. CO2 and Amplification of Orbitally Forced Changes in the Hydrological Cycle across the end-Triassic extinction

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Schaller, M. F.; Palmer, M.; Milton, J. A.; Olsen, P. E.

    2016-12-01

    Models of increasing atmospheric pCO2 predict an intensification of the hydrological cycle coupled with warming, with an implied amplification of the effects of orbitally forced precipitation fluctuations. Supporting evidence exists for the Pleistocene, however such evidence has not yet been developed from ancient Mesozoic warm intervals that serve as partial analogues for greenhouse worlds. This study presents lithological, soil carbonate, and compound-specific hydrogen isotopic data (δD) from plant wax n-alkanes data from Late Triassic and Early Jurassic (pCO2values >1,000 ppm) marine and non-marine records from eastern North America and England with a particular emphasis on the end-Triassic mass extinction. In eastern North American Pangean rift basins, variance in lake level expression of the climatic precession cycle from lithology and compound-specific δD appears temporally linked to CO2 based on the soil carbonate proxy from the same strata. Cyclicity variance is high during times of high CO2 ( 4000 ppm) during most of the Late Triassic, drops precipitously as CO2 declines below 2,500 ppm during most of the Rhaetian, and dramatically increases when massive atmospheric CO2 increases ( 5,000 - 6,000 ppm) associated with the Central Atlantic Magmatic Province (and end-Triassic extinction) drove insolation-paced increases in precipitation. Cyclicity variance drops again as CO2 declines (<2,000 ppm) during the Jurassic. Preliminary data suggest significant variability in leaf wax δD corresponding to other environmental changes across the extinction interval. In addition, 87Sr/86Sr in marine strata (Tackett et al., 2014) tracks CO2 with a dramatic decrease from 0.70795 to 0.70765 suggesting a mechanistic link through weathering. Analyses of continuous paralic to marine samples, now underway, from the end-Triassic extinction and Triassic-Jurassic boundary interval at St. Audrie's Bay (Bristol Channel Basin) will test the generality of this pattern, in an area

  19. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures

  20. Syntectonic emplacement of the Triassic biotite-syenogranite intrusions in the Taili area, western Liaoning, NE China: Insights from petrogenesis, rheology and geochronology

    NASA Astrophysics Data System (ADS)

    Li, Weimin; Liu, Yongjiang; Jin, Wei; Neubauer, Franz; Zhao, Yingli; Liang, Chenyue; Wen, Quanbo; Feng, Zhiqiang; Li, Jing; Liu, Qing

    2017-05-01

    The North China Craton (NCC) is one of the oldest cratons in the world, and it recently becomes a hot study area because of large volumes of Mesozoic intrusions associated with lithospheric thinning contributing to cratonic destruction in late Mesozoic times. However, the timing of initial thinning and destruction is still controversial. The Taili area, western Liaoning Province, in the northeastern part of the NCC well exposes the Archean basement rocks and the Mesozoic magmatic rocks with variable plastic deformation. This study focuses on the syntectonic emplacement of the Triassic biotite-syenogranite intrusions, in order to understand their petrogenesis, timing as well as the geological significance. Zircon LA-ICP-MS U-Pb ages reveal that the biotite-syenogranites formed between 246 and 191 Ma, and contain many ancient (2564-2317 Ma) zircon xenocrysts. Geochemical data suggests that the biotite-syenogranites display an adakitic affinity with high Sr/Y = 135-167 and (La/Yb)N = 48-69, as well as negligible Eu anomalies (δEu = 0.87-0.94), high negative zircon εHf(t) values (-15.5 to -21.5) and ancient TDM2 ages (2246-2598 Ma). This data suggests that the parent magmas were generated from partial melting of thickened Archean lower crustal rocks probably due to the bidirectional amalgamation of the NCC with the NE China micro-blocks and the Yangtze Craton in its north and south, respectively. In the middle part of the Taili area, magmatic fabrics are well preserved in the biotite-syenogranite intrusion characterized by the strong preferred orientation of biotite and hornblende crystals, which parallel to the intrusion margin and are slightly oblique to the gneissosity of the sheared host Neoarchean granitic gneisses. The quartz grain size piezometer suggests that the paleo-differential stresses weaken toward to the central part of the intrusion, ranging from 21.40-22.22 MPa to 16.74-19.34 MPa, during quartz crystallization in the emplacement stage. This allow

  1. Detrital zircon U-Pb geochronology of Cambrian to Triassic miogeoclinal and eugeoclinal strata of Sonora, Mexico

    USGS Publications Warehouse

    Gehrels, G.E.; Stewart, John H.

    1998-01-01

    One hundred and eighty two individual detrital zircon grains from Cambrian through Permian miogeoclinal strata, Ordovician eugeoclinal rocks, and Triassic post-orogenic sediments in northwestern Sonora have been analyzed. During Cambrian, Devonian, Permian, and Triassic time, most zircons accumulating along this part of the Cordilleran margin were shed from 1.40-1.45 and 1.62-1.78 Ga igneous rocks that are widespread in the southwestern United States and northwestern Mexico. Zircons with ages of approximately 1.11 Ga are common in Cambrian strata and were apparently shed from granite bodies near the sample site. The sources of 225-280 Ma zircons in our Triassic sample are more problematic, as few igneous rocks of these ages are recognized in northwestern Mexico. Such sources may be present but unrecognized, or the grains could have been derived from igneous rocks of the appropriate ages to the northwest in the Mojave Desert region, to the east in Chihuahua and Coahuila, or to the south in accreted(?) arc-type terranes. Because the zircon grains in our Cambrian and Devonian to Triassic samples could have accumulated in proximity to basement rocks near their present position or in the Death Valley region of southern California, our data do not support or refute the existence of the Mojave-Sonora megashear. Ordovician strata of both miogeoclinal and eugeoclinal affinity are dominated by >1.77 Ga detrital zircons, which are considerably older than most basement rocks in the region. Zircon grains in the miogeoclinal sample were apparently derived from the Peace River arch area of northwestern Canada and transported southward by longshore currents. The eugeoclinal grains may also have come from the Peace River arch region, with southward transport by either sedimentary or tectonic processes, or they may have been shed from off-shelf slivers of continents (perhaps Antarctica?) removed from the Cordilleran margin during Neoproterozoic rifting. It is also possible that the

  2. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  3. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins

    NASA Astrophysics Data System (ADS)

    Sato, Ana María; Llambías, Eduardo J.; Basei, Miguel A. S.; Castro, Carlos E.

    2015-11-01

    The intermediate to acid Choiyoi Magmatic Province is the most conspicuous feature along the Late Paleozic continental margin of southwestern Gondwana, and is generally regarded as the possible source for the widespread ash fall deposits interlayered with sedimentary sequences in the adjacent Gondwana basins. The Choiyoi magmatism is geologically constrained between the early Permian San Rafael orogenic phase and the Triassic extensional Huarpica phase in the region of Argentine Frontal Cordillera, Precordillera and San Rafael Block. In order to better assess the Choiyoi magmatism in Argentine Frontal Cordillera, we obtained 6 new LA-ICPMS U-Pb ages between 278.8 ± 3.4 Ma and 252.5 ± 1.9 Ma from plutonic rocks of the Colangüil Batholith and an associated volcanic rock. The global analysis of age data compiled from Chilean and Argentine Late Paleozoic to Triassic outcrops allows us to identify three stages of magmatism: (1) pre-Choiyoi orogenic magmatism, (2) Choiyoi magmatism (286-247 Ma), and (3) post-Choiyoi magmatism related to extensional tectonics. In the Choiyoi stage is there an eastward shift and expansion of the magmatism to the southeast, covering an extensive region that defines the Choiyoi magmatic province. On the basis of comparison with the ages from volcanogenic levels identified in the coeval Gondwana basins, we propose: (a) The pre-Choiyoi volcanism from the Paganzo basin (320-296 Ma) probably has a local source in addition to the Frontal Cordillera region. (b) The pre-Choiyoi and Choiyoi events identified in the Paraná basin (304-275 Ma) are likely to have their source in the Chilean Precordillera. (c) The early stage of the Choiyoi magmatism found in the Sauce Grande basin (284-281 Ma) may have come from the adjacent Las Matras to Chadileuvú blocks. (d) The pre-Choiyoi and Choiyoi events in the Karoo basins (302-253 Ma) include the longest Choiyoi interval, and as a whole bear the best resemblance to the age records along the Chilean and

  4. Stratigraphic distribution, taphonomy and paleoenvironments of Spinicaudata in the Triassic and Jurassic of the Paraná Basin

    NASA Astrophysics Data System (ADS)

    Jenisch, Alan Gregory; Lehn, Ilana; Gallego, Oscar Florencio; Monferran, Mateo Daniel; Horodyski, Rodrigo Scalise; Faccini, Ubiratan Ferrucio

    2017-12-01

    exoskeletons is likely a function of parameters, e.g., the transport duration, the distance from life position, and the magnitude of events causing their final burial. Within the observed species, the recognition of Eustheria minuta in the stratigraphic level of the Passo das Tropas creek corroborates an age for these deposits between the late Middle Triassic and early Upper Triassic. The presence of a new form, likely related to the family Fushunograptidae in sediments from the Caturrita Formation, suggests a Jurassic age for these deposits.

  5. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Zhang, Yang; Huang, Chunju; Ogg, James; Hinnov, Linda; Wang, Yongdong; Zou, Zhuoyan; Li, Liqin

    2017-10-01

    The time scale of the Late Triassic Epoch has a divergence of age models, especially for the durations of competing definitions for its Rhaetian Stage (uppermost Triassic). The astrochronology derived from relative depth of lacustrine-bearing clastic successions and astronomically tuned geomagnetic polarity time scale (APTS) of the Newark Supergroup of eastern North America provides a basis for the Late Triassic time scale. However, the Newark APTS has been challenged regarding its age scale and completeness; therefore an independent astronomical-tuned magnetic polarity zonation is required to verify the upper Newark APTS reference scale. We compiled a 6.5 million year (myr) APTS with magnetic stratigraphy from four sections of the lacustrine-fluvial, dinosaur-track-bearing Xujiahe Formation in the Sichuan Basin of South China that also has dating from detrital zircons and regional biostratigraphy. Variations in natural gamma-ray and magnetic susceptibility that reflect variable continental weathering in the source regions of the Xujiahe Formation are paced by Milankovitch cycles, especially the 100-kyr short eccentricity and 405-kyr long eccentricity. The cycle-tuned magnetostratigraphy of the Xujiahe Formation is compared directly via the magnetic-polarity zones to the depth ranks of the Newark Supergroup that are indicative of relative depths of lacustrine facies. The Sichuan APTS indicates that there is no significant hiatus between the sedimentary succession and the basalt flows at the top of the Newark Supergroup. The Sichuan APTS is compatible with the magnetostratigraphy from the candidate Global Boundary Stratotype Section and Point (GSSP) for the Norian-Rhaetian boundary interval at the Pignola-Abriola of South Italy, but does not extend downward to the proposed GSSP in Austria associated with the longer Rhaetian option. The earliest dinosaur tracks in China are from the middle of this Xujiahe Formation, therefore are implied to be middle Rhaetian in age

  6. Triassic metasediments in the internal Dinarides (Kopaonik area, southern Serbia): stratigraphy, paleogeographic and tectonic significance

    NASA Astrophysics Data System (ADS)

    Schefer, Senecio; Egli, Daniel; Missoni, Sigrid; Bernoulli, Daniel; Fügenschuh, Bernhard; Gawlick, Hans-Jürgen; Jovanović, Divna; Krystyn, Leopold; Lein, Richard; Schmid, Stefan M.; Sudar, Milan N.

    2010-04-01

    Strongly deformed and metamorphosed sediments in the Studenica Valley and Kopaonik area in southern Serbia expose the easternmost occurrences of Triassic sediments in the Dinarides. In these areas, Upper Paleozoic terrigenous sediments are overlain by Lower Triassic siliciclastics and limestones and by Anisian shallow-water carbonates. A pronounced facies change to hemipelagic and distal turbiditic, cherty metalimestones (Kopaonik Formation) testifies a Late Anisian drowning of the former shallow-water carbonate shelf. Sedimentation of the Kopaonik Formation was contemporaneous with shallow-water carbonate production on nearby carbonate platforms that were the source areas of diluted turbidity currents reaching the depositional area of this formation. The Kopaonik Formation was dated by conodont faunas as Late Anisian to Norian and possibly extends into the Early Jurassic. It is therefore considered an equivalent of the grey Hallstatt facies of the Eastern Alps, the Western Carpathians, and the Albanides-Hellenides. The coeval carbonate platforms were generally situated in more proximal areas of the Adriatic margin, whereas the distal margin was dominated by hemipelagic/pelagic and distal turbiditic sedimentation, facing the evolving Neotethys Ocean to the east. A similar arrangement of Triassic facies belts can be recognized all along the evolving Meliata-Maliac-Vardar branch of Neotethys, which is in line with a ‘one-ocean-hypothesis’ for the Dinarides: all the ophiolites presently located southwest of the Drina-Ivanjica and Kopaonik thrust sheets are derived from an area to the east, and the Drina-Ivanjica and Kopaonik units emerge in tectonic windows from below this ophiolite nappe. On the base of the Triassic facies distribution we see neither argument for an independent Dinaridic Ocean nor evidence for isolated terranes or blocks.

  7. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.

    2017-07-01

    The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (˜201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic-Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic-Jurassic boundary (separated by ˜200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean-atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery.

  8. Calibration of the Permo-Triassic Magnetostratigraphic Time Scale: Constraints from the Dewey Lake Formation, West Texas

    NASA Astrophysics Data System (ADS)

    Chang, S.; Knight, K. B.; Renne, P. R.

    2005-12-01

    Magnetostratigraphy is potentially a powerful tool for deciphering the high resolution chronostratigraphy of events across the Permo-Triassic boundary, but few well-dated polarity reversals exist to serve as calibration. Red beds of the Dewey Lake Formation (DLF) of West Texas span three reversed polarity intervals (Steiner, 2001) in a section of the DLF at Caprock Canyons State Park, where two tuffs occur. Sanidine separated from these tuffs was analyzed by 40Ar/39Ar methods. Single crystal laser fusion 40Ar/39Ar analyses of 40 grains from the upper tuff yield a weighted mean age of 249.9 ± 2.4 Ma (2σ errors here and throughout). The clustering of single crystal data provides some assurance against xenocrystic contamination. Two age spectra from multigrain sanidine separates from the lower tuff yielded integrated ages of 248.9 ± 2.8 Ma and 249.7 ± 2.8 Ma and consistent plateau ages of 249.2 ± 2.4 Ma and 249.6 ± 2.4 Ma. Two age spectra from multigrain upper tuff sanidines lack strict plateaus but with overall flat age spectra, with integrated ages of 249.7 ± 2.8 Ma and 250.3 ± 2.8 Ma and plateau-like segments (>70% of 39Ar released) with ages of 249.9 ± 2.6 Ma and 249.9 ± 2.6 Ma, respectively. These results, compared with 40Ar/39Ar data (using the same FCs = 28.02 Ma standard calibration) from the GSSP section at Meishan, China, suggest that the Permo-Triassic boundary (249.8 Ma; recalculated from Renne et al., 1995) definitely occurs within the lower Dewey Lake Formation. The two tuffs, which bracket a normal to reverse geomagnetic polarity transition polarity (Steiner, 2001), have indistinguishable ages. The age of this Permo-Triassic polarity transition is thus best represented by the weighed average of their ages, ca. 249.7 Ma (based on accepted calibrations of the 40Ar/39Ar system). Further such constraints will facilitate high-resolution comparison of terrestrial and marine records across this critical time interval.

  9. Integrative stratigraphy during extreme environmental changes and biotic recovery time: The Early Triassic in Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Richoz, Sylvain; Krystyn, Leopold; Algeo, Thomas; Bhargava, Om

    2014-05-01

    The understanding of extreme environmental changes as major extinction events, perturbations of global biogeochemical cycles or rapid climate shifts is based on a precise timing of the different events. But especially in such moving environments exact correlations are difficult to establish what underlines the necessity of an integrated stratigraphy by using all tools at disposition. A Lower Triassic section at Mud in the Spiti Valley (Western Himalaya, India) is a candidate section for the GSSP of the Induan-Olenekian Boundary (IOB). The succession was deposited in a deep-shelf setting on the southern margin of the Neotethys Ocean. The section contains abundant fossils allowing a very precise regional biostratigraphy and displays no signs of sedimentary breaks. Analysis of pelagic faunas proves a significant, two-step radiation phase in ammonoids and conodonts close to the Induan-Olenekian boundary. These diversifications are coupled with a short-termed positive δ13Ccarb excursion of global evidence. The Spiti δ13Ccarb excursion displays, however, different amplitude and biostratigraphic position than in other relevant sections for this time interval. In this study, we analyzed δ13Ccarb, δ13Corg, and δ15Norg as well as major, trace, and REE concentrations for a 16-m-thick interval spanning the mid-Griesbachian to early Spathian substages, to better constrains the chain of events. Prior to the first radiation step, high difference gradient between the δ13Ccarb values of tempestite beds with shallow carbonate and carbonate originated in deeper water is interpreted as a sign of a stratified water column. This effect disappears with the onset of better oxygenated conditions at the time of the ammonoid-conodont radiation, which correspond as well to δ13Ccarb, δ13Corg and δ15Norg positive excursions. A decrease in Mo and U concentrations occurring at the same point suggests a shift toward locally less reducing conditions. The second step coincided with the

  10. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    NASA Astrophysics Data System (ADS)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  11. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation

    PubMed Central

    2014-01-01

    Background The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable ‘wildcards’ in morphological phylogenetic analyses, reducing phylogenetic resolution. Results We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Conclusions Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and

  12. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation.

    PubMed

    Butler, Richard J; Sullivan, Corwin; Ezcurra, Martín D; Liu, Jun; Lecuona, Agustina; Sookias, Roland B

    2014-06-10

    The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable 'wildcards' in morphological phylogenetic analyses, reducing phylogenetic resolution. We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and Argentina demonstrates that early

  13. The origin and early radiation of dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Nesbitt, Sterling J.; Irmis, Randall B.; Butler, Richard J.; Benton, Michael J.; Norell, Mark A.

    2010-07-01

    Dinosaurs were remarkably successful during the Mesozoic and one subgroup, birds, remain an important component of modern ecosystems. Although the extinction of non-avian dinosaurs at the end of the Cretaceous has been the subject of intense debate, comparatively little attention has been given to the origin and early evolution of dinosaurs during the Late Triassic and Early Jurassic, one of the most important evolutionary radiations in earth history. Our understanding of this keystone event has dramatically changed over the past 25 years, thanks to an influx of new fossil discoveries, reinterpretations of long-ignored specimens, and quantitative macroevolutionary analyses that synthesize anatomical and geological data. Here we provide an overview of the first 50 million years of dinosaur history, with a focus on the large-scale patterns that characterize the ascent of dinosaurs from a small, almost marginal group of reptiles in the Late Triassic to the preeminent terrestrial vertebrates of the Jurassic and Cretaceous. We provide both a biological and geological background for early dinosaur history. Dinosaurs are deeply nested among the archosaurian reptiles, diagnosed by only a small number of characters, and are subdivided into a number of major lineages. The first unequivocal dinosaurs are known from the late Carnian of South America, but the presence of their sister group in the Middle Triassic implies that dinosaurs possibly originated much earlier. The three major dinosaur lineages, theropods, sauropodomorphs, and ornithischians, are all known from the Triassic, when continents were joined into the supercontinent Pangaea and global climates were hot and arid. Although many researchers have long suggested that dinosaurs outcompeted other reptile groups during the Triassic, we argue that the ascent of dinosaurs was more of a matter of contingency and opportunism. Dinosaurs were overshadowed in most Late Triassic ecosystems by crocodile-line archosaurs and

  14. Oblique wedge extrusion of UHP/HP complexes in the Late Triassic: structural analysis and zircon ages of the Atbashi Complex, South Tianshan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Bakirov, Apas

    2017-04-01

    The exhumation and tectonic emplacement of eclogites and blueschists takes place in forearc accretionary complexes by either forearc- or backarc-directed extrusion, but few examples have been well analysed in detail. Here we present an example of oblique wedge extrusion of UHP/HP rocks in the Atbashi accretionary complex of the Kyrgyz South Tianshan. The Atbashi Eclogite-Blueschist Complex (AEBC) is a conventional, formal name for the Atbashi Formation that contains pelitic to siliceous schists alternating with HP/UHP eclogites and blueschists. The main belt of the AEBC strikes SW-NE mostly parallel to the Atbashi-Inylchek Fault. Our field mapping and structural analysis demonstrate that the Atbashi Eclogite-Blueschist Complex is situated in a complicated duplex formed by a northerly dextral transpression system and a southerly sinistral transtension system, both of which contain a series of strike-slip duplexese at several scales. The two shear systems suggest that the Atbashi Complex underwent a unique oblique south- westward extrusion with a general plunge to the NE, the horizontal projection of which is sub-parallel to the strike of the major structures. This indicates that the Atbashi Complex was extruded obliquely southwestwards during eastward penetration of the southern tip of the Yili- Central Tianshan Arc of the Kazakhstan Orocline during the Late Triassic. Also, to constrain the extrusion of the AEBC and to place it in its temporal framework during docking of the Tarim Craton to the southern margin of the Ili-Tianshan Arc, we report new zircon U-Pb isotopic data for four eclogites and one garnet-bearing quartz-schist, in order to document the timing event during extrusion. The youngest ages of the eclogites and the garnet-bearing quartz-schist may be Late Triassic of 217-221 Ma and 223.9 Ma, respectively, suggesting that the main extrusion was later than previously proposed and that the final orogenesis was not completed until the Late Triassic. The HP

  15. Wildfires in the Triassic of Gondwana Paraná Basin

    NASA Astrophysics Data System (ADS)

    Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter

    2018-03-01

    This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.

  16. Provenance analysis and tectonic setting of the Triassic clastic deposits in Western Chukotka, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Tuchkova, M. I.; Sokolov, S.; Kravchenko-Berezhnoy, I. R.

    2009-09-01

    The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.

  17. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    pink stage, with an increase in the amount and size of sericite and hematite inclusions. The latter causes the red coloration of the altered rocks. Regional layout Regional distribution of the alterations which affect the Carboniferous igneous and volcanic formations beneath the Jurassic sedimentary cover lead to associate these alterations to the Triassic unconformity. Besides, albitized facies show generally both topographic and regional arrangements, with more altered facies occurring in the mountain highs and in the external parts of the massifs and unaltered facies occurring in the river valleys and in the central parts of the massifs. Moreover, the haematite associated with these albitized basement rocks has been dated from Early Trias by means of paleomagnetism (Ricordel et al, 2007). From this layout and dating, it is deduced that albitization is related to the development of a deep weathering profile (up to 150 m deep) during a long-lasting exposure of the Triassic erosional unconformity (regolith). Geochemistry and paleoenvironmental setting It has to be highlighted that, this alteration may not behave like an "ordinary" weathering profile and occurred under unusual, or at least very specific, geological settings. The scale of the profiles (over 100 m depth) relates this alteration rather to a groundwater environment. The weak mobility of most chemical elements may point to a groundwater with very low outflows and deep water table. This may occur in very subdued landscape and in arid climatic conditions. It has also to be pointed that this alteration may have lasted for several 10's of Ma. Albite formation at low temperature may be envisioned consequently in alkaline, confined waters with sufficient concentrations of sodium and silica. Early attempts of modeling (Schmitt, 1994) have also indicated that a high Na+/K+ ratio is as well probably required. Petrographic data also indicate an import of sodium by the weathering solutions, without any clear enrichment

  18. Atmospheric Carbon Injection Linked to End-Triassic Mass Extinction

    NASA Astrophysics Data System (ADS)

    Ruhl, Micha; Bonis, Nina R.; Reichart, Gert-Jan; Damsté, Jaap S. Sinninghe; Kürschner, Wolfram M.

    2011-07-01

    The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least ~12 × 103 gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.

  19. Atmospheric carbon injection linked to end-Triassic mass extinction.

    PubMed

    Ruhl, Micha; Bonis, Nina R; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S; Kürschner, Wolfram M

    2011-07-22

    The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least ~12 × 10(3) gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.

  20. The restricted gemuk group: A triassic to lower cretaceous succession in southwestern alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; Blodgett, R.B.; Pessagno, E.A.; Tucker, R.D.; Harris, A.G.

    2007-01-01

    New data from an Upper Triassic to Lower Cretaceous deep marine succession-the herein reinstated and restricted Gemuk Group-provide a vital piece of the puzzle for unraveling southwestern Alaska's tectonic history. First defined by Cady et al. in 1955, the Gemuk Group soon became a regional catchall unit that ended up as part of at least four different terranes. In this paper we provide the first new data in nearly half a century from the Gemuk Group in the original type area in Taylor Mountains quadrangle and from contiguous rocks to the north in Sleetmute quadrangle. Discontinuous exposure, hints of complex structure, the reconnaissance level of our mapping, and spotty age constraints together permit definition of only a rough stratigraphy. The restricted Gemuk Group is at least 2250 m thick, and could easily be at least twice as thick. The age range of the restricted Gemuk Group is tightened on the basis of ten radiolarian ages, two new bivalve ages, one conodont age, two U-Pb zircon ages on tuff, and U-Pb ages of 110 detrital zircons from two sandstones. The Triassic part of the restricted Gemuk Group, which consists of intermediate pillow lavas interbedded with siltstone, chert, and rare limestone, produced radiolarians, bivalves, and conodonts of Carnian and Norian ages. The Jurassic part appears to be mostly siltstone and chert, and yielded radiolarians of Hettangian- Sinemurian, Pliensbachian-Toarcian, and Oxfordian ages. Two tuffs near the Jurassic-Cretaceous boundary record nearby arc volcanism: one at 146 Ma is interbedded with red and green siltstone, and a second at ca. 137 Ma is interbedded with graywacke turbidites. Graywacke appears to be the dominant rock type in the LowerCretaceous part of the restricted Gemuk Group. Detrital zircon analyses were performed on two sandstone samples using SHRIMP. One sandstone yielded a dominant age cluster of 133-180 Ma; the oldest grain is only 316 Ma. The second sample is dominated by zircons of 130-154 Ma; the

  1. Phylogenetic relationships of the triassic archaeosemionotus deecke (halecomorphi, ionoscopiformes) from the 'perledo fauna'.

    PubMed

    López-Arbarello, Adriana; Stockar, Rudolf; Bürgin, Toni

    2014-01-01

    The lagerstätten in the Monte San Giorgio have provided excellent fossils representing one of the most important windows to the marine life during the Triassic. Among these fossils, fishes are abundant and extraordinarily well preserved. Most of these fishes represent extinct lineages and were difficult to understand and classify during the early years after discovery. These difficulties usually led to a mixture of species under the same taxonomic name. This is the case of fishes referred to the genus Archaeosemionotus. The name bearing type of A. connectens, the type species of this genus, represents a basal halecomorph, but most other fishes referred to this genus represent basal ginglymodians. Therefore, we conducted this study to clarify the taxonomic status and phylogenetic relationships of A. connectens, which is a member of the family Furidae (Halecomorphi, Ionoscopiformes) representing the second cladistically supported evidence of ionoscopiforms in the Triassic and it is thus one of the two oldest reliable records of this group. Ionoscopiforms have a long stratigraphic range, though their fossil record is rather patchy. In our analysis, the sister taxon of Archaeosemionotus is Robustichthys from the Anisian of China, and they together form a clade with Furo, which is known from several localities ranging from the Early to the Late Jurassic. Other ionoscopiforms are so far known from the Kimmeridgian to the Albian and it is thus evident that recent efforts have concentrated on the later history of the group (Late Jurassic to Cretaceous). The phylogenetic relationships obtained for the Ionoscopiformes do not show a clear palaeobiogeographic pattern, but give important new insights into the origin, divergence date and early history of this clade.

  2. The evidence for ocean acidification across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Martindale, R. C.; Greene, S. E.; Ritterbush, K. A.; Bottjer, D. J.; Corsetti, F. A.; Berelson, W.

    2012-12-01

    The end-Triassic extinction is one of the "Big Five" mass extinctions of the Phanerozoic and until recently no consensus regarding the cause of this extinction has been established. Over the last decade, a robust temporal correlation between the eruption of the Central Atlantic Magmatic Province (CAMP) and the end-Triassic extinction has been established. This correlation has led to the speculation that the release of CO2 and volatiles from the CAMP flood basalts induced a carbon cycle perturbation that acidified the Triassic oceans. It has also been suggested that an acidification event could have been the key mechanism that caused the end-Triassic marine ecosystem collapse. By combining observations and data from multiple fields such as volcanology, paleoceanography, chemostratigraphy, paleontology, and sedimentology, one can assess whether or not there was an ocean acidification event and to what degree it contributed to the extinction. The eruption of the CAMP flood basalts began at the very end of the Triassic period, albeit before the official Triassic-Jurassic (T-J) boundary, (defined as the first Jurassic ammonite). CAMP is one of the largest continental flood basalts of the Phanerozoic (2-4 million cubic km) and was emplaced extremely rapidly (<1.6-2 Myr) in three to five pulses (possibly hundreds to tens of thousands of years). The massive injection of CAMP CO2 and other volcanic volatiles over such a short period of time would have caused a major change in ocean carbonate chemistry and, if short enough in duration, could have caused significant declines in oceanic carbonate saturation state (an ocean acidification event), possibly even undersaturating parts of the surface ocean with respect to aragonite and calcite. Although the change in saturation state of the ocean is extremely difficult to detect or quantify in the rock record, there is a distinct paucity of primary carbonate sediments in the T-J boundary interval, consistent with an ocean

  3. A high resolution magnetostratigraphic profile across the Permian-Triassic boundary in the Southern Sydney Basin, eastern Australia

    NASA Astrophysics Data System (ADS)

    Belica, M. E.; Tohver, E.; Nicoll, R.; Denyszyn, S. W.; Pisarevsky, S.; George, A. D.

    2016-12-01

    The Permian-Triassic boundary (PTB) is associated with the largest mass extinction in Phanerozoic geologic history. Despite several decades of intense study, there is ongoing debate regarding the exact timing of extinction and the global correlation of marine and terrestrial P-T sections. The terrestrial record is hampered by a lack of index fossils; however, magnetostratigraphy offers an opportunity for correlation because it relies on the global synchronicity of magnetic reversals. A magnetostratigraphic profile across the Permian-Triassic boundary has been obtained from a stratigraphically continuous terrestrial section in the Southern Sydney Basin of eastern Australia. The 60 m section is located within the Narrabeen Group, which consists of fluvial to lacustrine sandstones and mudstones. Paleomagnetic samples were collected at one meter intervals to determine a detailed reversal record. Samples were stepwise thermally demagnetized to isolate a primary remanence, and magnetic susceptibility was measured in the field at 30 cm intervals with values ranging from -0.047-2.50 (10-3 SI units). Three normal and three reverse magnetozones were detected after removal of a low temperature overprint, and the results show good agreement with the Global Magnetic Polarity Timescale as well as marine Permian-Triassic sections where the PTB is well constrained. Furthermore, a reverse polarity subchron has been identified within the normal magnetozone spanning the PTB similar to results published from the Netherlands and China. The magnetic stratigraphy suggests that the Narrabeen Group was deposited during the late Changhsingian to early Induan, and provides a revised placement of the PTB in the lower Wombarra Claystone. Integration of the magnetostratigraphy with existing isotopic datasets suggests that the terrestrial extinction in eastern Australia occurred 7.5 m below the PTB in the Changhsingian Coalcliff Sandstone. A tuff within a coal seam underlying the Coalcliff

  4. A New Look at the Magnetostratigraphy and Paleomagnetism of the Upper Triassic to Lower Jurassic Moenave Formation, St. George Area, Southwestern Utah.

    NASA Astrophysics Data System (ADS)

    Donohoo-Hurley, L. L.; Geissman, J. W.; Lucas, S. G.; Roy, M.

    2006-12-01

    Paleomagnetic data from rocks exposed on and off the Colorado Plateau provide poles that young westward during the Late Triassic (to about 52^{O} E longitude) and young eastward during the Early Jurassic. This pattern has been used to posit the existence of a J-1 cusp in the North American APW path at the Triassic- Jurassic boundary (TJB), at about 199.6 Ma. Considerable debate has focused on the morphology and placement of the J-1 cusp due to poorly exposed and/or incompletely sampled sections, debates about the magnitude of Colorado Plateau rotation, and disagreements regarding stratigraphic relationships. Red beds of the Whitmore Point (~25 m of mostly lacustrine deposits) and Dinosaur Canyon (~55 m of hematitic fluvial sandstones and siltstones) members of the Moenave Formation (MF) are inferred to have been deposited across the TJB based on palynostratigraphy and vertebrate biostratigraphy. Two previously unsampled sections (Leeds and Warner Valley) of the MF are well exposed near St. George, Utah, and located in the transition zone that defines the western boundary of the Colorado Plateau. Preliminary data from samples collected from the Whitmore Point and Dinosaur Canyon members yield exclusively normal polarity magnetizations, which is consistent with previous studies and the normal polarity TJB magnetozone. Thermal demagnetization response suggests that the remanence is carried mainly in hematite. The degree of hematite pigmentation varies in both sections, and several Leeds sites show a weak overprint component that unblocks by 400^{O}-450^{O} C, with a higher unblocking temperature components, consistent with an Early Triassic Late Jurassic age that fully unblock around 670^{O}-680^{O} C. Individual beds (treated as specific sites) in part of the Dinosaur Canyon Member yield site mean directions with declinations between about 020 and 030, and may define the easternmost position (i.e. 60-50^{O} E latitude) of the NAMAPW path and thus the approximate the

  5. Magnetostratigraphic correlations of Permian-Triassic marine-to-terrestrial sections from China

    USGS Publications Warehouse

    Glen, J.M.G.; Nomade, S.; Lyons, J.J.; Metcalfe, I.; Mundil, R.; Renne, P.R.

    2009-01-01

    We have studied three Permian–Triassic (PT) localities from China as part of a combined magnetostratigraphic, 40Ar/39Ar and U–Pb radioisotopic, and biostratigraphic study aimed at resolving the temporal relations between terrestrial and marine records across the Permo-Triassic boundary, as well as the rate of the biotic recovery in the Early Triassic. The studied sections from Shangsi (Sichuan Province), Langdai (Guihzou Province), and the Junggar basin (Xinjiang Province), span marine, paralic, and terrestrial PT environments, respectively. Each of these sections was logged in detail in order to place geochronologic, paleomagnetic, geochemical, conodont and palynologic samples within a common stratigraphic context. Here we present rock-magnetic, paleomagnetic and magnetostratigraphic results from the three localities.At Shangsi, northern Sichuan Province, we sampled three sections spanning Permo-Triassic marine carbonates. Magnetostratigraphic results from the three sections indicate that the composite section contains at least eight polarity chrons and that the PT boundary occurs within a normal polarity chron a short distance above the mass extinction level and a reversed-to-normal (R-N) polarity reversal. Furthermore, the onset of the Illawarra mixed interval lies below the sampled section indicating that the uppermost Permian Changhsingian and at least part of the Wuchiapingian stages postdate the end of the Kiaman Permo-Carboniferous Reversed Superchron.At Langdai, Guizhou Province, we studied magnetostratigraphy of PT paralic mudstone and carbonate sediments in two sections. The composite section spans an R-N polarity sequence. Section-mean directions pass a fold test at the 95% confidence level, and the section-mean poles are close to the mean PT pole for the South China block. Based on biostratigraphic constraints, the R-N transition recorded at Langdai is consistent with that at Shangsi and demonstrates that the PT boundary occurred within a normal

  6. Position of the Triassic-Jurassic boundary and timing of the end-Triassic extinctions on land: Data from the Moenave Formation on the southern Colorado Plateau, USA

    USGS Publications Warehouse

    Lucas, S.G.; Tanner, L.H.; Donohoo-Hurley, L.; Geissman, J.W.; Kozur, H.W.; Heckert, A.B.; Weems, R.E.

    2011-01-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, U.S.A., represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present a synthesis of new biostratigraphic and magnetostratigraphic data collected from across the Moenave Formation outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These data include palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four overlapping magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracans) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation, stratigraphically well above the highest occurrence of crurotarsan body fossils or footprints. Correlation to marine sections based on this placement indicates that major terrestrial vertebrate extinctions preceded marine extinctions across the Triassic-Jurassic boundary and therefore were likely unrelated to the Central Atlantic Magmatic Province (CAMP) volcanism. ?? 2011 Elsevier B.V.

  7. Coupled organic and carbonate δ13C records of the late Triassic and early Jurassic in northern Italy: implications for carbon cycling during the aftermath of the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Bachan, A.; van de Schootbrugge, B.; Payne, J.

    2011-12-01

    A large protracted positive carbon isotope excursion has been observed in the lowermost Jurassic following the end-Triassic mass extinction. However, the lack of paired records from carbonate rocks (δ13Ccarb) and organic carbon (δ13Corg) and limited biostratigraphic constraints leave open the possibility that variations in δ13Ccarb and δ13Corg are not correlative and do not represent a shift in the δ13C of the global carbon pool. Consequently, the long term carbon cycle behavior following the end-Triassic mass extinction remains incompletely understood. Here we present the first extended, coupled δ13Ccarb and δ13Corg records of the uppermost Triassic and lowermost Jurassic from stratigraphic sections in the Lombardy Basin of northern Italy. The large positive excursion previously observed in the carbonates also occurs in the organics from the same samples, but with a smaller magnitude. Because few post-depositional mechanisms affect the isotopic composition of Ccarb and Corg in similar ways, the correspondence of the two curves presents strong support for a primary origin for the large positive isotopic excursion. The more muted response of the organics is consistent with variation in the fractionation between carbonates and organic carbon, mixing of contemporaneous organic matter with extrabasinal organic carbon of a constant isotopic composition, or some combination of the two. In either case, the occurrence of the positive excursion in multiple locations globally in both carbonates and organic matter is best explained by a change in the isotopic value of the global carbon reservoir. The elevated δ13C values and increased magnitude of the difference between the carbonates and organics is consistent with the predicted biogeochemical consequences of heightened pCO2. The coincidence of the extinction and carbon cycle disturbance with emplacement of the Central Atlantic Magmatic Province suggests that volatiles derived from its emplacement were the likely

  8. Paleomagnetism of the Late Triassic Hound Island Volcanics: Revisited

    USGS Publications Warehouse

    Haeussler, Peter J.; Coe, Robert S.; Onstott, T.C.

    1992-01-01

    The collision and accretion of the Alexander terrane profoundly influenced the geologic history of Alaska and western Canada; however, the terrane's displacement history is only poorly constrained by sparse paleomagnetic studies. We studied the paleomagnetism of the Hound Island Volcanics in order to evaluate the location of the Alexander terrane in Late Triassic time. We collected 618 samples at 102 sites in and near the Keku Strait, Alaska, from the Late Triassic Hound Island Volcanics, the Permian Pybus Formation, and 23-Ma gabbroic intrusions. We found three components of magnetization in the Hound Island Volcanics. The high-temperature component (component A) resides in hematite and magnetite and was found only in highly oxidized lava flows in a geographically restricted area. We think it is primary, or acquired soon after eruption of the lavas, principally because the directions pass a fold test. The paleolatitude indicated by this component (19.2° ± 10.3°) is similar to those determined for various portions of Wrangellia, consistent with the geologic interpretation that the Alexander terrane was with the Wrangellia terrane in Late Triassic time. We found two overprint directions in the Hound Island Volcanics. Component B was acquired 23 m.y. ago due to intrusion of gabbroic dikes and sills. This interpretation is indicated by the similarity of upper-hemisphere directions in the Hound Island Volcanics to those in the gabbro. Component C, found in both the Hound Island Volcanics and the Permian Pybus Formation, is oriented northeast and down, fails a regional fold test, and was acquired after regional deformation around 90 to 100 Ma. This overprint direction yields a paleolatitude similar to, but slightly higher than, slightly older rocks from the Coast Plutonic Complex, suggesting that the Alexander terrane was displaced 17° in early Late Cretaceous time. The occurrence of these two separate overprinting events provides a satisfying explanation of the

  9. Tectono-sedimentary evolution of the Permian-Triassic extension event in the Zagros basin (Iran): results from analogue modelling

    NASA Astrophysics Data System (ADS)

    Madani-kivi, M.; Zulauf, G.

    2015-12-01

    Since the 1970s, the largest oil and gas reservoirs have been discovered in the Permian-Early Triassic formationsin Saudi Arabia. Thus, this time period is important for the discovery of new oil reserves in Iran. The Arabian passivecontinental margin has undergone lithospheric extension during the Permian-Triassic, which led to the formation of theNeo-Tethys. The aim of this paper is to describe the development of the continental rift basin in the Zagros region basedon the tectono-sedimentological evolution. We have studied well-log data to specify the distribution of synrift depositsin the Zagros and have related this information to the modelling. Environmental changes indicated by various sedimentarysequences, from a siliciclastic basin to a carbonate platform setting, are described. The Cambrian Hormuz salt, whichoverlies the metamorphosed Precambrian basement, becomes effective as a basal detachment layer influencing the styleof overburden deformation during the Permian-Triassic extension event. We have investigated the formation of variousstructures linked to the presence or absence of the Hormuz layer by analogue modelling and relating these structures to theLate Palaeozoic sedimentation. Based on results of the analogue modelling, we argue that the basal detachment layer (Hormuzseries) has contributed to the various structural styles of the extensional basin development in the Fars domain and theLorestan domain.

  10. Zircon U-Pb ages, Hf isotope data, and tectonic implications of Early-Middle Triassic granitoids in the Ailaoshan high-grade metamorphic belt of Southeast Tibet

    NASA Astrophysics Data System (ADS)

    Wu, Wenbin; Liu, Junlai; Chen, Xiaoyu; Zhang, Lisheng

    2017-04-01

    The Ailaoshan tectonic belt, where the effects of the Paleo-Tethyan ocean evolution and Indian-Eurasian plate collision are superimposed, is one of the most significant geological discontinuities in western Yunnan province of southeast Tibet. An Ailaoshan micro-block within the belt is bounded by the Ailaoshan suture zone to the west and the Red River Fault to the east, and consists of low- and high-grade metamorphic belts. Late Permian-Middle Triassic granitoids that are widely distributed to the west of the Ailaoshan suture zone and within the Ailaoshan micro-block may yield significant information on the Tethyan tectonic evolution of the Ailaoshan tectonic belt. This study reports new LA-ICP-MS zircon U-Pb geochronology and Hf isotope data of four granitoids from the Ailaoshan high-grade metamorphic belt. Zircon grains from the Yinjie granitoid do not have inherited cores and yield a weighted mean U-Pb age of 247.1 ± 2.0 Ma. The zircon ɛ Hf( t) values range from 7.8 to 12.1, and Hf model ages from 775 to 546 Ma, indicating that the granitoid was derived from juvenile crust. The rims of zircons from the Majie and Yuanjiang granitoids yield weighted mean U-Pb ages of 239.5 ± 1.8 and 237.9 ± 2.6 Ma, respectively, whereas the cores yield ages of 1608-352 Ma. The ɛ Hf( t) values of zircon rims range from -20.4 to -5.3, yielding Hf model ages from 2557 to 1606 Ma and suggesting that the source magma of the Majie and Yuanjiang granitoids was derived from ancient crust. An additional granitoid located near the Majie Village yields a zircon U-Pb age of 241.2 ± 1.0 Ma. Based on our geochronological and geochemical data, combined with geological observations, we propose that the Ailaoshan micro-block was derived from the western margin of the Yangtze block, and is comparable to the Zhongzan and Nam Co micro-blocks. The presence of late Permian mafic rocks with rift-related geochemical characteristics within the Ailaoshan micro-block, together with granitoids derived

  11. Phylogenetic Relationships of the Triassic Archaeosemionotus Deecke (Halecomorphi, Ionoscopiformes) from the ‘Perledo Fauna’

    PubMed Central

    López-Arbarello, Adriana; Stockar, Rudolf; Bürgin, Toni

    2014-01-01

    The lagerstätten in the Monte San Giorgio have provided excellent fossils representing one of the most important windows to the marine life during the Triassic. Among these fossils, fishes are abundant and extraordinarily well preserved. Most of these fishes represent extinct lineages and were difficult to understand and classify during the early years after discovery. These difficulties usually led to a mixture of species under the same taxonomic name. This is the case of fishes referred to the genus Archaeosemionotus. The name bearing type of A. connectens, the type species of this genus, represents a basal halecomorph, but most other fishes referred to this genus represent basal ginglymodians. Therefore, we conducted this study to clarify the taxonomic status and phylogenetic relationships of A. connectens, which is a member of the family Furidae (Halecomorphi, Ionoscopiformes) representing the second cladistically supported evidence of ionoscopiforms in the Triassic and it is thus one of the two oldest reliable records of this group. Ionoscopiforms have a long stratigraphic range, though their fossil record is rather patchy. In our analysis, the sister taxon of Archaeosemionotus is Robustichthys from the Anisian of China, and they together form a clade with Furo, which is known from several localities ranging from the Early to the Late Jurassic. Other ionoscopiforms are so far known from the Kimmeridgian to the Albian and it is thus evident that recent efforts have concentrated on the later history of the group (Late Jurassic to Cretaceous). The phylogenetic relationships obtained for the Ionoscopiformes do not show a clear palaeobiogeographic pattern, but give important new insights into the origin, divergence date and early history of this clade. PMID:25296174

  12. Pre-, syn-, and postcollisional stratigraphic framework and provenance of upper triassic-upper cretaceous strata in the northwestern talkeetna mountains, alaska

    USGS Publications Warehouse

    Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.

    2007-01-01

    Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain

  13. The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Lozovsky, V. R.; Balabanov, Yu. P.; Karasev, E. V.; Novikov, I. V.; Ponomarenko, A. G.; Yaroshenko, O. P.

    2016-07-01

    The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic-Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian-Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian-Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.

  14. New material and revision of Melanorosaurus thabanensis, a basal sauropodomorph from the Upper Triassic of Lesotho

    PubMed Central

    Allain, Ronan

    2016-01-01

    Melanorosaurus is a genus of basal sauropodomorph that currently includes two species from Southern Africa. In this paper, we redescribe the holotype femur of Melanorosaurus thabanensis from the Elliot Formation of Lesotho, as well as associated remains. The stratigraphic position of this taxon is reviewed, and it is clear that it comes from the Lower Elliot Formation being, therefore, Late Triassic in age, and not Early Jurassic as originally described. The knowledge of the anatomy of the basal sauropodomorph of Thabana Morena is enhanced by the description of six new skeletal elements from the type locality. The femur and the ilium from Thabana Morena are diagnostic and characterized by unusual proportions. The first phylogenetic analysis including both this specimen and Melanorosaurus is conducted. This analysis leads to the conclusion that the femur described in the original publication of Melanorosaurus thabanensis can no longer be referred to Melanorosaurus. For these reasons, we hereby create Meroktenos gen. nov. to encompass Meroktenos thabanensis comb. nov. PMID:26855874

  15. Body Size Evolution in Conodonts from the Cambrian through the Triassic

    NASA Astrophysics Data System (ADS)

    Schaal, E. K.; Morgan, D. J.; Payne, J.

    2013-12-01

    The size of an organism exercises tremendous control over its physiology, life history, and ecology, yet the factors that influence body size evolution remain poorly understood. One major limitation is the lack of appropriate datasets spanning long intervals of evolutionary time. Here, we document size trends in conodonts (tooth-like microfossils from marine chordates) because they evolved rapidly and are known to change size during intervals of environmental change. By measuring photographs from the Catalogue of Conodonts (Ziegler 1982), we compiled a database of conodont P1 element measurements for 575 species and subspecies from the Cambrian through Triassic periods. Because tooth size correlates with body size in conodont animals and their extant relatives, conodont element length can serve as a proxy for the size of the conodont animal. We find that mean and maximum size across species increased during the early Paleozoic, peaked during the Devonian-Mississippian, and then generally decreased until conodonts went extinct at the end of the Triassic. We used regression analyses to compare conodont mean size trends to potential environmental predictors, such as changing atmospheric pO2, atmospheric pCO2, and sea level. Conodont size exhibited poor correlation with these environmental factors, suggesting that conodont evolution may have been more strongly influenced by other environmental covariates or ecological variables such as predation and competition.

  16. A Triassic aquatic protorosaur with an extremely long neck.

    PubMed

    Li, Chun; Rieppel, Olivier; LaBarbera, Michael C

    2004-09-24

    By Middle Triassic time, a number of reptile lineages had diversified in shallow epicontinental seas and intraplatform basins along the margins of parts of Pangea, including the giraffe-necked protorosaurid reptile Tanystropheus from the Western Tethys (Europe and the Middle East), which grew to approximately 5 to 6 m long. Here we report another long-necked fossil, Dinocephalosaurus, from southwestern China, recently collected in Middle Triassic marine deposits approximately 230 million years old. This taxon represents unambiguous evidence for a fully aquatic protorosaur. Its extremely elongated neck is explained as an adaptation for aquatic life, perhaps for an increase in feeding efficiency.

  17. Geomorphological stability of Permo-Triassic albitized profiles - case study of the Montseny-Guilleries High (NE Iberia)

    NASA Astrophysics Data System (ADS)

    Parcerisa, D.; Casas, L.; Franke, C.; Gomez-Gras, D.; Lacasa, G.; Nunez, J. A.; Thiry, M.

    2010-05-01

    Massif paleoalteration profiles (≥ 200 m) occur in the upper parts of the Montseny-Guilleries High (NE Catalan Coastal Ranges). The profiles consist of hard albitized-chloritized-hematized facies in the lower part and softer kaolinized-hematized facies in the upper part of the section. Preliminary paleomagnetic data show Triassic ages for both, the albitized and the kaolinized parts, and point to a surficial formation altered under oxidising conditions. Similar paleoalteration profiles have already been described and dated to Triassic ages elsewhere in Europe [Schmitt, 1992; Ricordel et al., 2007; Parcerisa et al., 2009]. These Permian-Triassic alterations are following a succession of different mineral transformations from the top to the base of the profile: 1) Red facies are defined by an increase in the amount and size of haematite crystals leading to the red colour of the rocks. The increase on haematite content is pervasively affecting the whole rock and is accompanied by the kaolinitization of the feldspars. 2) Pink facies: here, the granite shows an uniform pink colouration, which is mainly due to the albitization of the primary Ca-bearing plagioclases, accompanied by a precipitation of minute haematite, sericite, and calcite crystals inside the albite. Additionally primary biotite is fully chloritized. The pink granites are much more resistant to the present-day weathering than the "unaltered" facies at the base of the profile. 3) Spotted facies is characterized by a partial alteration of the rock, which caused a pink-screened aspect to the rock. The alteration developed along the fractures and is less well developed or absent in the non-fractured zones. In the pink-screened facies, the plagioclases are partially albitized and contain numerous hematite inclusions. Biotites are usually almost entirely chloritized. 4) Unaltered facies: These granites are coloured white to greyish, containing plagioclase and K-feldspar that do not show any trace of

  18. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  19. Investigating A Unique Open Ocean Geochemical Record Of the End Triassic Mass Extinction from Panthalassa

    NASA Astrophysics Data System (ADS)

    Marroquín, S. M.; Gill, B. C.; Them, T. R., II; Trabucho-Alexandre, J. P.; Aberhan, M.; Owens, J. D.; Gröcke, D. R.; Caruthers, A. H.

    2017-12-01

    The end-Triassic mass extinction ( 201 Ma) was a time of intense disturbance for marine communities. This event is estimated to have produced as much as a loss of 80% of known marine species. The protracted interval of elevated extinction rates is also characterized by a major carbon cycle perturbation and potentially widespread oxygen deficiency within the oceans. While the causes of extinction and environmental feedbacks are still debated it is hypothesized to have been triggered by massive volcanism associated with the Central Atlantic Magmatic Province flood basalts. However, our understanding of the Latest Triassic-Earliest Jurassic interval is limited due to the lack of well-preserved stratigraphic successions outside of the Tethys Ocean (present day Europe), with most of the records from epicontinental and marginal marine settings. To expand our understanding of this critical interval, our study seeks to document biological and environmental changes elsewhere. Specifically, we document and reconstruct these changes in the equatorial Panthalassan Ocean. We will present new data from a sedimentary succession preserved in the Wrangell Mountains of Alaska that spans the Late Triassic through Early Jurassic. The sedimentary succession represents a mixed carbonate-siliciclastic ramp that was deposited at tropical latitudes, adjacent to an island arc in the open Panthalassan Ocean. This succession affords a unique view of open marine conditions, and also holds the potential for excellent temporal control as it contains abundant ash layers throughout, as well as, key ammonite and bivalve fossil occurrences that provide biostratigraphic control. We will present an integrated geochemical and paleontological record from this site using several geochemical proxies (carbon, δ13Ccarb and % total organic carbon, sulfur, δ34S, as well as pyrite contents and iron speciation) along with ammonite and bivalve occurrence data to reconstruct the record of environmental and

  20. The Chachil Limestone (Pliensbachian-earliest Toarcian) Neuquén Basin, Argentina: U-Pb age calibration and its significance on the Early Jurassic evolution of southwestern Gondwana

    NASA Astrophysics Data System (ADS)

    Leanza, H. A.; Mazzini, A.; Corfu, F.; Llambías, E. J.; Svensen, H.; Planke, S.; Galland, O.

    2013-03-01

    New radiometric U-Pb ages obtained on zircon crystals from Early Jurassic ash layers found within beds of the Chachil Limestone at its type locality in the Chachil depocentre (southern Neuquén Basin) confirm a Pliensbachian age (186.0 ± 0.4 Ma). Additionally, two ash layers found in limestone beds in Chacay Melehue at the Cordillera del Viento depocentre (central Neuquén Basin) gave Early Pliensbachian (185.7 ± 0.4 Ma) and earliest Toarcian (182.3 ± 0.4 Ma) U-Pb zircon ages. Based on these new datings and regional geological observations, we propose that the limestones cropping out at Chacay Melehue are correlatable with the Chachil Limestone. Recent data by other authors from limestones at Serrucho creek in the upper Puesto Araya Formation (Valenciana depocentre, southern Mendoza) reveal ages of 182.16 ± 0.6 Ma. Based on these new evidences, we consider the Chachil Limestone an important Early Jurassic stratigraphic marker, representing an almost instantaneous widespread flooding episode in western Gondwana. The unit marks the initiation in the Neuquén Basin of the Cuyo Group, followed by widespread black shale deposition. Accordingly, these limestones can be regarded as the natural seal of the Late Triassic -earliest Jurassic Precuyano Cycle, which represents the infill of halfgrabens and/or grabens related to a strong extensional regime. Paleontological evidence supports that during Pliensbachian-earliest Toarcian times these limestones were deposited in western Gondwana in marine warm water environments.

  1. Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China

    NASA Astrophysics Data System (ADS)

    Yuan, Dong-Xun; Zhang, Yi-Chun; Shen, Shu-Zhong

    2018-02-01

    A major discrepancy for the age of the Selong Group from middle Cisuralian (Early Permian) to Changhsingian resulted from previous reports of Sakmarian, Kungurian and Guadalupian (Middle Permian) conodonts and Lopingian (Late Permian) brachiopods. Recently, Cisuralian and Guadalupian conodonts were reported again from the Selong Group and the basal part of the Kangshare Formation at the Selong section, but the age discrepancy remains. We present our conodont materials based on large samples collected from the Selong Group and our interpretation based on identifications using a sample population approach. Three conodont zones are recognized in our re-investigation of the upper part of the Selong Group. They include the Vjalovognathus sp., the Mesogondolella hendersoni, and the M. sheni zones, in ascending order. These zones are overlain by the basal Triassic Hindeodus parvus Zone and the Otoceras woodwardi Zone. Our reassessment of conodonts reported by previous studies from Selong and nearby sections suggest that all specimens consistently point to a Lopingian age; the upper part of the Selong Group is latest Changhsingian in age based on the presence of Clarkina orchardi and Mesogondolella sheni. Previously reported early Cisuralian and Guadalupian conodonts are misidentified using a form species concept. A hiatus may be present at the erosional surface between the Selong Group and the Waagenites Bed of the basal part of the Kangshare Formation. However, the hiatus is minimal because conodont and brachiopod assemblages above and below this surface are very similar, and it results from a latest Changhsingian transgression just before the extinction that follows a global latest Changhsingian regression. There is a distinct rapid end-Permian mass extinction at Selong within the Waagenites Bed, as indicated by the disappearances of all benthic brachiopods, rugose corals and Permian bryozoans. The burst of Clarkina species in the Waagenites Bed and throughout the

  2. Permo-Triassic arc-like granitoids along the northern Lancangjiang zone, eastern Tibet: Age, geochemistry, Sr-Nd-Hf isotopes, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun

    2018-05-01

    Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence

  3. U-Pb Detrital Zircon Ages from Sarawak: Changes in Provenance Reflecting the Tectonic Evolution of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. T.; Galin, T.; Hall, R.

    2014-12-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. Five sedimentary basins are distinguished with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic of the Sadong-Kuching Basin and were sourced by a Carnian to Norian volcanic arc and erosion of Cathaysian rocks containing zircons of Paleoproterozoic age. Sandstones of the Upper Jurassic to Cretaceous Bau-Pedawan Basin have distinctive zircon populations indicating a major change of tectonic setting, including initiation of subduction below present-day West Sarawak in the Late Jurassic. A wide range of inherited zircon ages indicates various Cathaysian fragments as major source areas and the arrival of the SW Borneo Block following subduction beneath the Schwaner Mountains in the early Late Cretaceous. After collision of the SW Borneo Block and the microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension were responsible for basin development on land from the latest Cretaceous onwards, probably in a strike-slip setting. The first episode formed the Kayan Basin in the Latest Cretaceous (Maastrichtian) to Early Paleocene, and the second formed the Ketungau Basin and the Penrissen Sandstone in the Middle to Late Eocene. Zircons indicate nearby volcanic activity throughout the Early Cenozoic in NW Borneo. Inherited zircon ages indicate an alternation between Borneo and Tin Belt source rocks. A large deep marine basin, the Rajang Basin, formed north of the Lupar Line fault. Zircons from sediments of the Rajang Basin indicate they are of similar age and provenance as the contemporaneous terrestrial sediments to the south suggesting a narrow steep continental Sundaland margin at the

  4. Revision of the Dysmorphoptilidae (Hemiptera: Cicadomorpha: Prosboloidea) of the Queensland Triassic-Part 2.

    PubMed

    Lambkin, Kevin J

    2016-03-15

    The extinct hemipteran family Dysmorphoptilidae was a major component of the Triassic insect fauna of Queensland preserved at the Denmark Hill, Dinmore, Mount Crosby and Gayndah fossil insect sites. A total of 13 species have now been identified, of which eight species in five genera were examined in the first part of this revision. This second part revises the remaining five species in three genera. Eoscartoides Evans, 1956 (= Mesonirvana Evans, 1956, syn. nov.), comprising Eoscartoides bryani Evans, 1956 (= Mesonirvana abrupta Evans, 1956, syn. nov.) (Mount Crosby), Eoscartoides orthocladus (Tillyard, 1922) comb. nov. (Denmark Hill), and Eoscartoides dmitryi sp. nov. (Dinmore), is distinguished by a strongly developed arc-like strigil in the basal costal space, a very short stem of RA, and a deeply forked M1+2. The monotypic Eoscarterella Evans, 1956, with type species Eoscarterella media Evans, 1956 (Mount Crosby), has a strongly lobate tegmen with peculiar surface sculpture and M1+2 simple. Eoscartoides and Eoscarterella differ from most dysmorphoptilids in having more or less lobate tegmina with even margins (without the antero-apical emargination so typical of the family), as well as the early entry of RA1 into the costal margin and the associated extensive and antero-apically positioned RA2. These characters are also shared with two other dysmorphoptilids, the Australian Permian Belmontocarta Evans and an unnamed Triassic species from Kyrgyzstan, and the four thus form a distinct subgroup within the family. On the other hand, the monotypic Trifidella Evans, 1956 (= Alotrifidus Evans, 1956, syn. nov.), with type species Trifidella perfecta Evans, 1956 (= Alotrifidus interruptus Evans, 1956, syn. nov.) (Mount Crosby), is a more typical dysmorphoptilid with a distinct emargination, RA entering the margin much more apically, and RA2 of limited extent. Trifidella is presumably the sister of the Queensland Triassic Dysmorphoptiloides Evans, sharing the basal

  5. Geochemical evidences for palaeoclimatic fluctuations at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael; Jan, Irfanullah; Kürschner, Wolfram Michael; Gier, Susanne

    2017-04-01

    The Triassic-Jurassic boundary interval reveals a change from warm-arid to a warm and humid climate in the Tethyan domain. Sea-level reconstruction records across the European basins during this interval reveal an end-Triassic global regression event and is linked to the Central Atlantic Magmatic Province (CAMP) activity and Pangaea breakup. In the Tethyan Salt Range of Pakistan a succession of Upper Triassic dolomites/green-black mudstones (Kingriali Formation), overlying quartzose sandstone, mudstones, laterites and Lower Jurassic conglomerates/pebbly sandstones (Datta Formation) provides information on the palaeoclimatic evolution of the area. Preliminary palynological results from the mudstones indicate a Rhaetian age for the Kingriali Formation and a Hettangian age for the Datta Formation. X-ray diffraction (XRD) analysis of the mudstones (upper part of the Kingriali Formation) indicates the presence of mainly illite while kaolinite is a minor component. The kaolinite content, a reflection of the advanced stage of chemical weathering and hence warm-humid conditions, increases up-section in the overlying sandstone-mudstone succession. The overlying laterite-bauxite horizons lack illite/smectite and are entirely composed of kaolinite, boehmite and haematite. At places these kaolinite rich horizons are mined in the area (Western Salt Range). The bulk rock geochemistry of the succession confirms a similar trend. The Chemical Index of Alteration (CIA) displays an increasing trend from the Upper Triassic shales (CIA 75-80) through the overlying sandstones/mudstones-laterites to the overlying quartz rich sandstones and mudstones (CIA 90-97). The overall results for the succession reveal an increasing chemical maturity trend (increase in the intensity of chemical weathering) from Rhaetian to Hettangian thereby supporting a change from warm-arid to a warm-humid palaeoclimate, probably extreme greenhouse conditions.

  6. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo foreland basin

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.

    2018-07-01

    Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.

  7. The end-triassic mass extinction event

    NASA Technical Reports Server (NTRS)

    Hallam, A.

    1988-01-01

    The end-Triassic is the least studied of the five major episodes of mass extinction recognized in the Phanerozoic, and the Triassic-Jurassic boundary is not precisely defined in most parts of the world, with a paucity of good marine sections and an insufficiency of biostratigraphically valuable fossils. Despite these limitations it is clear that there was a significant episode of mass extinction, affecting many groups, in the Late Norian and the existing facts are consistent with it having taken place at the very end of the period. The best record globally comes from marine strata. There was an almost complete turnover of ammonites across the T-J boundary, with perhaps no more than one genus surviving. About half the bivalve genera and most of the species went extinct, as did many archaeogastropods. Many Paleozoic-dominant brachiopods also disappeared, as did the last of the conodonts. There was a major collapse and disappearance of the Alpine calcareous sponge. Among terrestrial biota, a significant extinction event involving tetrapods was recognized. With regard to possible environmental events that may be postulated to account for the extinctions, there is no evidence of any significant global change of climate at this time. The existence of the large Manicouagan crater in Quebec, dated as about late or end-Triassic, has led to the suggestion that an impact event might be implicated, but so far despite intensive search no unequivocal iridium anomaly or shocked quartz was discovered. On the other hand there is strong evidence for significant marine regression in many parts of the world. It is proposed therefore that the likeliest cause of the marine extinctions is severe reduction in habitat area caused either by regression of epicontinental seas, subsequent widespread anoxia during the succeeding transgression, or a combination of the two.

  8. Evolutionary and Ecological Sequelae of Mass Extinctions: Examples From the Continental Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Whiteside, J. H.

    2003-12-01

    after the boundary. Species flocks of semionotid fishes dominated earliest Jurassic giant rift lakes in eastern North America, but not Triassic or later Early Jurassic lakes in the same basins. Based on footprint data, it is quite possible that there were also species flocks of morphologically similar ceratosaurian theropod dinosaurs in the Early Jurassic.

  9. Influence of climate change and marine chemistry on ecological shifts following the Triassic/Jurassic mass extinction

    NASA Astrophysics Data System (ADS)

    Ritterbush, K. A.; West, A. J.; Berelson, W.; Rosas, S.; Bottjer, D. J.; Yager, J. A.; Corsetti, F. A.

    2014-12-01

    Two aspects of the Triassic/Jurassic transition that seem incongruous are increasing warming and increasing ecological dominance by siliceous sponges on shallow shelves. Warming is interpreted from proxy data showing increased atmospheric carbon dioxide concentrations associated with eruption pulses of the Central Atlantic Province (CAMP) basalts across rifting Pangea. Post-extinction ecological dominance by siliceous sponges is found in recent field investigations of Nevada and Peru, and literature on the Austrian Alps. Whereas evidence from the Panthalassan siliceous sponge ramps of the early Jurassic clearly records deposition on sub- and tropical shallow shelves (a warm environment), modern sponge occupations of comparable intensity exist only in deep and cold environments. Resolving this apparent contrast requires consideration of silica cycling. Silica is a limiting nutrient for siliceous sponges, and the post-extinction sponges of the earliest Jurassic show desmid spicule morphologies matching modern phenotypic indicators of high silica concentration. During the Triassic the major documented biosiliceous sink was radiolarian deep sea chert deposits despite a major species-level turnover at the extinction. Diatoms did not exist in the Triassic. A major alteration to silica cycling in the early Jurassic could have resulted from increased terrigenous supply for two reasons: increased atmospheric carbon dioxide would likely intensify continental weathering, and the extensive flood basalts produced an easily-weathered silica source. Simple box model calculations allow consideration of supply vs demand, and of the pace of possible changes. Potential weathering rates of silica are contrasted with recent published data on sponge silica sequestration, showing that the presence of the CAMP basalts alone could support increased sponge abundance across tropical carbonate shelves. Estimates of doubling and residence times in a simple one-box model show that the change in

  10. High-resolution stratigraphic analyses of Permian-Triassic core material recovered in central Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sleveland, Arve; Planke, Sverre; Zuchuat, Valentin; Franeck, Franziska; Svensen, Henrik; Midtkandal, Ivar; Hammer, Øyvind; Twitchett, Richard; Deltadalen Study Group

    2017-04-01

    The Siberian Traps voluminous igneous activity is considered a likely trigger for the Permian-Triassic global extinction event. However, documented evidence of the Siberian Traps environmental effects decreases away from the centre of volcanic activity in north-central Russia. Previous research on the Permian-Triassic boundary (PTB) mostly relies on field observations, and resolution has thus depended on outcrop quality. This study reports on two 90 m cored sedimentary successions intersecting the PTB in Deltadalen, Svalbard, providing high-quality material to a comprehensive documentation of the stratigraphic interval. Sequence stratigraphic concepts are utilised to help constrain the Permian-Triassic basin development models in Svalbard and the high-Arctic region. The cored sections are calibrated with outcrop data from near the drill site. One core has been systematically described and scanned using 500-μm and 200-μm resolution XRF, hyperspectral imagery and microfocus CT (latter only on selected core sections). The base of both cores represents the upper 15 m of the Permian Kapp Starostin Formation, which is dominated by green glauconitic sandstones with spiculitic cherts, and exhibit various degrees of bioturbation. The Kapp Starostin Formation is in turn sharply overlain by 2 m of heavily reworked sand- and mudstones, extensively bioturbated, representing the base of the lower Triassic Vikinghøgda Formation. These bioturbated units are conformably overlain by 9 m of ash-bearing laminated black shale where signs of biological activity both on micro- and macro-scale are limited, and is thus interpreted to have recorded the Permian-Triassic extinction interval. Descriptive sedimentology and sequence stratigraphic concepts reveal the onset of relative sea level rise at the Vikinghøgda Formation base. The disappearance of bioturbation and extensive presence of pyrite in the overlying laminated black shale of the Vikinghøgda Formation suggest near anoxic

  11. Preliminary Earth System Modeling (cGENIE) of Paired Organic and Inorganic Carbon Isotope Records to Investigate Carbon Cycle Behavior During the Triassic-Jurassic Transition

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; Stellmann, J. L.; West, A. J.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    The stable C isotope composition of marine carbonate and organic C yields information regarding major changes in global carbon cycling over geologic time. Excursions from baseline C isotope compositions during the Late Triassic and early Jurassic coincide with the end-Triassic mass extinction. Much remains to be understood about the global extent of these excursions, and about their causes. Here, we use observations from a record from Northern Peru (Levanto) to generate hypotheses concerning C cycle changes, focusing on comparison to other sections spanning the Triassic-Jurassic boundary. Our observations include a decoupling between organic and inorganic C isotopes in some records, broad similarities in the pattern of excursions between sections, and a potential offset between the major ocean basins (Tethys and Panthalassa) in both inorganic and organic C isotope records. We are currently adapting a spatially resolved Earth System Model (cGENIE) for this time period with the goal of using this model to explore possible mechanistic causes of these observations, aiming to tie the C isotope records to changes in global carbon cycle dynamics at the time.

  12. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of

  13. The post collisional metamorphic evolution from Ultra High Temperature to Amphibolite facies metamorphism in the Odesan area during the Triassic collision between the North and South China cratons.

    NASA Astrophysics Data System (ADS)

    Lee, Byung Choon; Oh, Chang Whan; Kim, Tae Sung; Yi, Kee Wook

    2015-04-01

    The Odaesan Gneiss Complex (OGC) is the eastern end of the Hongseong-Odesan collision belt in Korean Peninsula which is the extension of the Dabie-Sulu collision belt between the North and South China blocks. The OGC mainly consists of banded and migmatitic gneiss with porphyritic granitoid and amphibolite. The banded gneiss can be subdivided into garnet-biotite and garnet-orthopyroxene banded gneisses. The highest metamorphic P/T conditions of the migmatitic and garnet-biotite banded gneiss were 760-820°C/6.3-7.2kbar and 810-840°C/7.2-7.8kbar respectively. On the other hand, the garnet-orthopyroxene banded gneiss records 940-950°C/10.5-10.7kbar that is corresponded to UHT metamorphic condition. These data indicate that the peak UHT metamorphic condition of the study area was preserved only within the garnet-orthopyroxene banded gneiss because its lower water content than other gneisses and UHT metamorphic mineral assemblage was completely replaced by the granulite facies metamorphism in other gneisses due to their higher water content than the garnet-orthopyroxene banded gneiss. Finally all gneisses experienced amphibolite facies retrograde metamorphism which is observed locally within rocks, such as garnet rim and surrounding area. The peak UHT metamorphism is estimated to occur at ca. 250-230 Ma using SHRIMP zircon U-Pb age dating and was caused by the heat supplied from asthenospheric mantle through the opening formed by slab break-off during early post collision stage. The calculated metamorphic conditions represent that geothermal gradient of the study area during the post collision stage was 86°C/kbar indicating the regional low-P/T metamorphic event. Besides the Triassic metamorphic age, two Paleoproterozoic metamorphic ages of ca. 1930 and 1886 Ma are also recognized by the SHRIMP age dating from the banded gneisses and Paleoproterozoic emplacement age of ca. 1847 Ma is identified from the porphyritic granitoid which formed in the within plate tectonic

  14. Ophiuroids Discovered in the Middle Triassic Hypersaline Environment

    PubMed Central

    Salamon, Mariusz A.; Niedźwiedzki, Robert; Lach, Rafał; Brachaniec, Tomasz; Gorzelak, Przemysław

    2012-01-01

    Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological, sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be taken when using fossil echinoderms in paleoenvironmental reconstructions. PMID:23185442

  15. First early Mesozoic amber in the Western Hemisphere

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1991-01-01

    Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors

  16. Triassic North American paleodrainage networks and sediment dispersal of the Chinle Formation: A quantitative approach utilizing detrital zircons

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Umbarger, K.

    2017-12-01

    The Triassic Chinle Formation is a fluvial succession deposited in a backarc setting across the present-day Colorado Plateau of the southwestern United States. Existing studies have proposed various mechanisms responsible for the unique stratigraphic architecture and depositional sequences of the Chinle. However, these studies lack necessary age control to correlate stratigraphic patterns with contemporaneous mechanisms. This study will collect new samples for detrital zircon analysis, as well as upgrade existing samples (to n=300) from Dickinson and Gehrels (2008), to improve the resolution of Triassic sediment provenance from source-to-sink. The improved dataset allows appraisal of the multiple provenance terranes that contributed to the Chinle depositional system to delineate and reconstruct paleodrainage patterns. The additional samples will be collected systematically from the base of the Chinle, and vertically throughout the section to capture a regional story of how the continental scale drainage reorganized through time. U-Pb ages of detrital zircons will be utilized to provide quantitative fingerprinting information to constrain interpretations for the origin and transport history of the Chinle fluvial succession in time and space.

  17. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic.

    PubMed

    Gueidan, Cécile; Ruibal, Constantino; de Hoog, G S; Schneider, Harald

    2011-10-01

    Non-lichenized rock-inhabiting fungi (RIF) are slow-growing melanized ascomycetes colonizing rock surfaces in arid environments. They possess adaptations, which allow them to tolerate extreme abiotic conditions, such as high UV radiations and extreme temperatures. They belong to two separate lineages, one consisting in the sister classes Dothideomycetes and Arthoniomycetes (Dothideomyceta), and the other consisting in the order Chaetothyriales (Eurotiomycetes). Because RIF often form early diverging groups in Chaetothyriales and Dothideomyceta, the ancestors of these two lineages were suggested to most likely be rock-inhabitants. The lineage of RIF related to the Chaetothyriales shows a much narrower phylogenetic spectrum than the lineage of RIF related to Dothideomyceta, suggesting a much more ancient origin for the latter. Our study aims at investigating the times of origin of RIF using a relaxed clock model and several fossil and secondary calibrations. Our results show that the RIF in Dothideomyceta evolved in the late Devonian, much earlier than the RIF in Chaetothyriales, which originated in the middle Triassic. The origin of the chaetothyrialean RIF correlates well with a period of recovery after the Permian-Triassic mass extinction and an expansion of arid landmasses. The period preceding the diversification of the RIF related to Dothideomyceta (Silurian--Devonian) is also characterized by large arid landmasses, but temperatures were much cooler than during the Triassic. The paleoclimate record provides a good explanation for the diversification of fungi subjected to abiotic stresses and adapted to life on rock surfaces in nutrient-poor habitats. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Discovery of silicified lacustrine micro-fossils and stromatolites: Triassic-Jurassic Fundy Group, Nova Scotia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, B.

    A unique assemblage of silicified invertebrate and algal fresh-water lake fossils has been discovered in the Scots Bay Formation at the top of the Triassic-Jurassic Fundy Group of the Fundy Basin in Nova Scotia. This is important because the basins of the eastern North American Triassic-Jurassic rift system have not yielded many invertebrate and algal fossils. These new finds will contribute significantly to evolutionary, paleoecological and biostratigraphic studies of fresh-water Mesozoic deposits. Silicified fossils have been extracted from chert-bearing, mixed carbonate and siliciclastic lithologies. They include ostracodes, gastropods, rare bivalves, charaphytes (algae), stromatolites, and chert nodules cored with well-preserved woodymore » tissues of tree trunks. Possible algal filaments occur in the silicified stromatolites. This association of charaphytes, ostracodes, microscopic gastropods and stromatolites is found in carbonate lakes today. The Scots Bay Formation is probably a near-shore carbonate facies of the more widespread silicilastic lacustrine McCoy Brook Formation. The gastropods and ostracodes, studied by SEM, indicate a Jurassic age for the Scots bay Formation, confirming speculations based on other data.« less

  19. The Inception of the Colorado Plateau Coring Project: Filling the Triassic Geochronologic Gap and Providing a Continuous Record of Continental Environmental Change in Western Equatorial Pangea

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Olsen, P. E.; Kent, D. V.; Irmis, R. B.; Gehrels, G. E.; Mundil, R.; Parker, W.; Bachmann, G. H.; Kurschner, W. M.; Sha, J.

    2014-12-01

    The Triassic Period was punctuated by two of the largest Phanerozoic mass-extinctions and witnessed the evolution of elements of the modern biota and the advent of the age of dinosaurs. A rich archive of biotic and environmental changes on land for the early Mesozoic is on the Colorado Plateau, which despite over 100 years of study still remains poorly calibrated in time and poorly registered to other global records. Over 15 years ago, a diverse team of scientists began to develop the concept of a multi-phase, long term Colorado Plateau Coring Project (CPCP). Planning involved two major meetings (DOSECC/NSFICDP supported in Fall, 2007, St. George, UT; and International Continental Drilling Program (ICDP) supported in Spring, 2009, Albuquerque, NM). The National Park Service embraced the concept of Phase One drilling at Petrified Forest National Park (PFNP) in northern Arizona, which exposes one of the most famous and best studied successions of the continental Triassic on Earth, and the Phase One target was decided. Most drilling operation costs were secured from ICDP in Summer, 2010. In late 2013, following more recent NSF support, the research team, utilizing Ruen Drilling Inc., drilled a continuous ~530 m core (60o plunge) through the entire section of Triassic strata (Chinle and Moenkopi fms.) in the north end and a ~240 m core (75o plunge) in lower Chinle and all Moenkopi strata at the south end of the PFNP. Our continuous sampling will place this record in a reliable quantitative and exportable time scale, as a reference section in which magnetostratigraphic, geochronologic, environmental, and paleontologic data are registered to a common thickness scale with unambiguous superposition using pristine samples. The cores are being scanned at the High Resolution X-ray Computed Tomography Facility at UT Austin. They will be transported to the LacCore National Lacustrine Core Facility at U Minnesota, where they will be split, imaged, and scanned for several

  20. The new Permian-Triassic paleomagnetic pole for the East European Platform corrected for inclination shallowing

    NASA Astrophysics Data System (ADS)

    Fetisova, A. M.; Veselovskiy, R. V.; Scholze, F.; Balabanov, Yu. P.

    2018-01-01

    The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation-Inclination (E-I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian-Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian-Triassic (P-Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that 250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P-Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of "stable" Europe (the East European platform and West European plate).

  1. Basin geodynamics and sequence stratigraphy of Upper Triassic to Lower Jurassic deposits of Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup

    2016-05-01

    Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both

  2. Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny

    NASA Astrophysics Data System (ADS)

    Oliver, Grahame; Prave, Anthony

    2013-10-01

    A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7 Ba to 209 Ma with significant populations at ˜245 Ma and 220 Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.

  3. Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China

    NASA Astrophysics Data System (ADS)

    Wang, Ruiliang; Zhang, Shuichang; Brassell, Simon; Wang, Jiaxue; Lu, Zhengyuan; Ming, Qingzhong; Wang, Xiaomei; Bian, Lizeng

    2012-07-01

    Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8-10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary.

  4. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.

  5. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record

    PubMed Central

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  6. Supradapedon revisited: geological explorations in the Triassic of southern Tanzania

    PubMed Central

    da Rosa, Átila A.S.; Montefeltro, Felipe C.

    2017-01-01

    The upper Triassic deposits of the Selous Basin in south Tanzania have not been prospected for fossil tetrapods since the middle of last century, when Gordon M. Stockley collected two rhynchosaur bone fragments from the so called “Tunduru beds”. Here we present the results of a field trip conducted in July 2015 to the vicinities of Tunduru and Msamara, Ruvuma Region, Tanzania, in search for similar remains. Even if unsuccessful in terms of fossil discoveries, the geological mapping conducted during the trip improved our knowledge of the deposition systems of the southern margin of the Selous Basin during the Triassic, allowing tentative correlations to its central part and to neighbouring basins. Moreover, we reviewed the fossil material previously collected by Gordon M. Stockley, confirming that the remains correspond to a valid species, Supradapedon stockleyi, which was incorporated into a comprehensive phylogeny of rhynchosaurs and found to represent an Hyperodapedontinae with a set of mostly plesiomorphic traits for the group. Data gathered form the revision and phylogenetic placement of Su. stockleyi helps understanding the acquisition of the typical dental traits of Late Triassic rhynchosaurs, corroborating the potential of hyperodapedontines as index fossils of the Carnian-earliest Norian. PMID:29152419

  7. An unusual archosaurian from the marine Triassic of China

    NASA Astrophysics Data System (ADS)

    Li, Chun; Wu, Xiao-Chun; Cheng, Yen-Nien; Sato, Tamaki; Wang, Liting

    2006-04-01

    A new Triassic archosaurian from China shows a number of aquatic specializations, of which the most striking is the extreme lateral compression of the long tail. Others that may also reflect aquatic adaptations include platelike scapula and coracoid, elongate neck with extremely long and slender ribs, and reduction of osteoderms. In contrast, its pelvic girdle and hind limb have no aquatic modifications. Anatomic features, taphonomy, and local geological data suggest that it may have lived in a coastal-island environment. This lifestyle, convergent with some Jurassic marine crocodyliforms that lived at least 40 million years later and the saltwater species of extant Crocodylus, contradicts with the prevailing view that Triassic archosaurians were restricted to nonmarine ecosystems. Its mosaic anatomy represents a previously unknown ecomorph within primitive archosaurians.

  8. Examining early-diagenetic processes as a chief sink for carbonate in the aftermath of the Triassic-Jurassic crisis: Hettangian concretions of Muller Canyon, NV, USA

    NASA Astrophysics Data System (ADS)

    Ritterbush, K. A.; Loyd, S. J.; Corsetti, F. A.; Bottjer, D. J.; Berelson, W.

    2015-12-01

    Tectonic, climate, and biotic changes across the Triassic-Jurassic transition appear to have resulted in a "carbonate gap" in the rock record of many shallow marine environments. Ecological state changes documented in near-shore settings in both Tethys and Panthassa show an earliest Jurassic switch to sponge-dominated biosiliceous sedimentation regimes. The Sunrise Formation exposed in the Gabbs Valley Range of Nevada (USA) records a peculiar juxtaposition of Hettangian carbonate-rich strata that contain demosponge spicules as the primary bioclast. It is unclear 1) why biocalcifiers were not recorded in higher abundance in this near-shore back-arc basin setting; 2) why carbonates formed following a biosiliceous regime; and 3) what the lithology indicates about post-extinction marine geochemical dynamics. Detailed sedimentological, paleontological, and geochemical analyses were applied to a 20-m thick sequence of limestone and chert in the Muller Canyon area, which is the Auxiliary Stratotype for the Triassic/Jurassic boundary. Concretion anatomy, bioclast microfacies, and oxygen and carbon isotopic signatures all indicate the Hettangian limestones are chiefly diagenetic concretions that all formed very shallowly, some essentially at the sediment-water interface. We infer that local bottom waters and/or pore waters were supersaturated with respect to calcium carbonate and that this contributed to widespread concretion sedimentation independent of biomineralization. Ecological incumbency of the demosponge meadows may have been supported by concurrent augmentation of marine silica concentration and this apparently proved inhospitable to re-colonization of benthic biocalcifying macrofauna. Together the biotic and lithologic consequences of the extinction represent million-year scale ecological restructuring and highlight early diagenetic precipitation as a major sink in long-term regional carbonate cycling. Perhaps the widespread 'carbonate gap' is actually a gap in

  9. High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary.

    PubMed

    Benson, Roger B J; Evans, Mark; Druckenmiller, Patrick S

    2012-01-01

    Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.

  10. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.

    PubMed

    Barrett, Paul M; Butler, Richard J; Mundil, Roland; Scheyer, Torsten M; Irmis, Randall B; Sánchez-Villagra, Marcelo R

    2014-09-22

    Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  12. Middle Triassic back-arc basalts from the blocks in the Mersin Mélange, southern Turkey: Implications for the geodynamic evolution of the Northern Neotethys

    NASA Astrophysics Data System (ADS)

    Sayit, Kaan; Bedi, Yavuz; Tekin, U. Kagan; Göncüoglu, M. Cemal; Okuyucu, Cengiz

    2017-01-01

    The Mersin Mélange is a tectonostratigraphic unit within the allochthonous Mersin Ophiolitic Complex in the Taurides, southern Turkey. This chaotic structure consists of blocks and tectonic slices of diverse origins and ages set in a clastic matrix of Upper Cretaceous age. In this study, we examine two blocks at two different sections characterized by basaltic lava flows alternating with radiolarian-bearing pelagic sediments. The radiolarian assemblage extracted from the mudstone-chert alternation overlying the lavas yields an upper Anisian age (Middle Triassic). The immobile element geochemistry suggests that the lava flows are predominantly characterized by sub-alkaline basalts. All lavas display pronounced negative Nb anomalies largely coupled with normal mid-ocean basalt (N-MORB)-like high field strength element (HFSE) patterns. On the basis of geochemical modelling, the basalts appear to have dominantly derived from spinel-peridotite and pre-depleted spinel-peridotite sources, while some enriched compositions can be explained by contribution of garnet-facies melts from enriched domains. The overall geochemical characteristics suggest generation of these Middle Triassic lavas at an intra-oceanic back-arc basin within the northern branch of Neotethys. This finding is of significant importance, since these rocks may represent the presence of the oldest subduction zone found thus far from the Neotethyan branches. This, in turn, suggests that the rupturing of the Gondwanan lithosphere responsible for the opening of the northern branch of Neotethys should have occurred during the Lower Triassic or earlier.

  13. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. Amore » second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.« less

  14. Sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, east-central, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodspeed, T.H.; Elrick, M.; Lucas, S.G.

    1993-04-01

    The Lower Triassic Sinbad Fm (20--30 m thick) in the San Rafael Swell of east-central Utah is high energy carbonate deposits that conformably overlie tidal flat/fluvial channel deposits of the Black Dragon Fm. The Torrey Fm conformably overlies the Sinbad Fm and consists primarily of siliciclastic tidal flat and fluvial deposits. Five facies (in ascending order) are characteristic of the Sinbad Fm: (1) bioturbated calcisiltite with calcite-replaced evaporite nodules and ripple laminations, (2) skeletal-oolitic-intraclastic packstone and grainstone, (3) slightly bioturbated, mechanically laminated, pelletal calcisiltite (5) trough cross-bedded, peloidal to oolitic grainstone, and (5) thin-bedded, skeletal-pelletal-oolitic grainstone with mud to wackestonemore » drapes. Regional facies relationships of the Sinbad Fm indicate initial deepening followed by shallowing. The skeletal-intraclastic packstone and grainstone facies represents maximum flooding. This facies thickens to the northwest and contains an open marine molluscan fauna of ammonites, bivalves, gastropods and scaphopods. The ammonites are indicative of the Tardus Zone of late Smithian age. Deposits above the maximum flooding zone (MFZ) are restricted foreshoal, pelletal calcisiltite, oolitic shoal, and backshoal skeletal-oolitic (with a restricted fauna of molluscs and ostracods) deposits. This shallowing-upward sequence represents the early HST. The Sinbad Fm represents the MFZ and early HST of a 150-m-thick depositional sequence of rocks with the Black Dragon FM representing the TST, and the Torrey Fm representing the late HST.« less

  15. Multivariate analyses reveal a new assemblage of diverse and small archosauriforms (Reptilia, Diapsida) from the Upper Triassic of India

    NASA Astrophysics Data System (ADS)

    Shafi Bhat, Mohd; Ray, Sanghamitra; Mohan Datta, Pradipendra

    2017-04-01

    of the teeth collected from the Tiki Formation are similar to that of other known Late Triassic archosauriforms such as Protecovasaurus, Revueltosaurus, Pekinosaurus and Crosbysaurus Although more analyses are required for precise taxonomic identification, the current study highlights a large array of Late Triassic archosauriforms from India, which so far remained unknown. References: Hammer, O., Harper, D.A.T. 2006. Paleontological data analysis. Blackwell Publishing, Ltd., Malden, USA. Heckert, A.B. 2004. Late Triassic microvertebrates from the Upper Triassic Chinle Group (Otischalkian-Adamanian: Carnian), southwestern U.S.A.: New Mexico Museum of Natural History and Science Bulletin 27:1-170. Irmis, R.B., Parker, W.G., Nesbitt, S.J., Liu, J. 2007. Early ornithischian dinosaurs: the Triassic record. Historical Biology 19: 3-22.

  16. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction

    PubMed Central

    Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.

    2017-01-01

    The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (∼201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic–Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic–Jurassic boundary (separated by ∼200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean–atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery. PMID:28630294

  17. Sedimentology and ichnology of two Lower Triassic sections in South China: Implications for the biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, Mao; George, Annette D.; Chen, Zhong-Qiang

    2016-09-01

    Biotic recovery following the end-Permian mass extinction was investigated using trace fossil and facies analysis of two Lower-Middle Triassic sections in South China. The Susong section (Lower Yangtze Sedimentary Province) comprises a range of carbonate and mudstone facies that record overall shallowing from offshore to intertidal settings. The Tianshengqiao section (Upper Yangtze Sedimentary Province) consists of mixed carbonate and siliciclastic facies deposited in shallow marine to offshore settings. Griesbachian to Dienerian ichnological records in both sections are characterized by low ichnodiversity, low ichnofabric indices (1-2) and low bedding plane bioturbation indices (1-2). Higher ichnofabric indices (3 and 4), corresponding to a dense population of diminutive ichnotaxon, in the Tianshengqiao section suggest opportunistic infaunal biotic activity during the earliest Triassic. Ichnological data from the Susong section show an increase in ichnodiversity during the late Smithian with 11 ichnogenera identified and increased ichnofabric indices of 4-5 and bedding plane bioturbation indices of 3-5. Although complex traces such as Rhizocorallium are present in Spathian-aged strata in this section, low ichnodiversity and ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao section, ichnofabric indices are moderate to high (3-5) although only six ichnogenera are present and Planolites burrows are consistently small in Smithian and Spathian strata. Complex traces, such as large Rhizocorallium and Thalassinoides, and large Planolites, did not appear until the Anisian. Ichnological results from both sections record the response of organisms to unfavourable environmental conditions although the Susong section shows earlier recovery during the Smithian prior to latest Smithian-Spathian decline. This decline may have resulted from a resurgence of euxinic to anoxic marine environment in various regions of South China

  18. Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction?

    NASA Astrophysics Data System (ADS)

    Schoepfer, Shane D.; Algeo, Thomas J.; Ward, Peter D.; Williford, Kenneth H.; Haggart, James W.

    2016-10-01

    The end-Triassic mass extinction has been characterized as a 'greenhouse extinction', related to rapid atmospheric warming and associated changes in ocean circulation and oxygenation. The response of the marine nitrogen cycle to these oceanographic changes, and the extent to which mass extinction intervals represent a deviation in nitrogen cycling from other ice-free 'greenhouse' periods of Earth history, remain poorly understood. The well-studied Kennecott Point section in Haida Gwaii, British Columbia, Canada, was deposited in the open Panthalassic Ocean, and is used here as a test case to better understand changes in the nitrogen cycle and marine productivity from the pre-crisis greenhouse of the Rhaetian to the latest-Rhaetian crisis interval. We estimated marine productivity from the late Norian to the early Hettangian using TOC- and P-based paleoproductivity transform equations, and then compared these estimates to records of sedimentary nitrogen isotopes, redox-sensitive trace elements, and biomarker data. Major negative excursions in δ15N (to ≤ 0 ‰) correspond to periods of depressed marine productivity. During these episodes, the development of a stable pycnocline below the base of the photic zone suppressed vertical mixing and limited N availability in surface waters, leading to low productivity and increased nitrogen fixation, as well as ecological stresses in the photic zone. The subsequent shoaling of euxinic waters into the ocean surface layer was fatal for most Triassic marine fauna, although the introduction of regenerated NH4+ into the photic zone may have allowed phytoplankton productivity to recover. These results indicate that the open-ocean nitrogen cycle was influenced by climatic changes during the latest Triassic, despite having existed in a greenhouse state for over 50 million years previously, and that low N availability limited marine productivity for hundreds of thousands of years during the end-Triassic crisis.

  19. Kerogen morphology and geochemistry at the Permian-Triassic transition in the Meishan section, South China: Implication for paleoenvironmental variation

    NASA Astrophysics Data System (ADS)

    Sawada, Ken; Kaiho, Kunio; Okano, Kazuki

    2012-08-01

    Detailed fluorescent microscopic observations and organic geochemical analyses for insoluble sedimentary organic matter (kerogens) are conducted on the end-Permian to earliest Triassic sediments in the Meishan section A of South China. The main objectives of the present study are to reconstruct variations of marine and terrestrial environments, and to evaluate bulk characteristics of terrestrial input in the palaeo-Tethys ocean for the Permian-Triassic boundary (PTB). Most of kerogens in the Meishan section are mainly composed of marine algae-derived amorphous organic matter, while terrestrial plant-derived amorphous organic matter is remarkably dominant in the mass extinction horizon reported previously. The relative abundances of marine organic matter may vary depending on marine production rather than terrestrial input in the palaeo-Tethys associated with changing terrestrial vegetation. We also identified aromatic furans as major compounds in kerogen pyrolysate of all layers. It is possible that sources of aromatic furans with alkyl group, fungi and lichen, proliferated as disaster biota in terrestrial ecosystem through the PTB. Higher abundances of herbaceous organic matter are observed in the layers above the mass extinction horizon. However, the conifer biomarker retene can be identified in kerogen pyrolysates of all layers. These results imply that the productions of herbaceous plants increased as dominant pioneer biota in early stage of recovery for terrestrial ecosystem after its collapse, but also that woody plant potentially continued to be produced in land area throughout the end-Permian and earliest-Triassic.

  20. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - With emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2009-01-01

    , possibly Euparkeria, probably made the Brachychirotherium trackways that have been found across much of Central Europe. Large lepidosaurs such as Tanystrophaeus probably hunted in the tidal ponds and channels, where they locally produced Synaptichnium tracks. Recently discovered tracks made by a basal prosauropod are the world's oldest record of this group of dinosaurs, occurring in beds that have an age of about 243.5 Ma. (Pelsonian substage). This shows that very large prosauropods existed much earlier than was previously believed. These prosauropod tracks, along with tracks of small bipedal dinosaurs found in the Alps and Eastern France, show that by the middle part of the Middle Triassic the radiation and diversification of dinosaurs was already in progress. In the Germanic Basin, aquatic-adapted paraxial swimming sauropterygians are not known to have left tracks, except for occasional subaquatic swimming scratch-mark "trackways" within the coastal tidal flat zone. Marine-adapted aquatic reptiles migrated into the Germanic Basin with increasing frequency in the upper part of the Middle Triassic, when the bathymetry of the Germanic Basin was at its deepest following a strong regression that occurred due to basin uplift in the middle part of the Middle Triassic. These large marine reptiles included Pistosaurus, the ichthyosaurs Cymbospondylus or Mixosaurus, and many placodonts such as Cyamodus, Placodus and Paraplacodus, which fed on macroalgae and seem to have been the Triassic sea cows of their day. The distribution of these reptiles was mainly controlled by tectonics, but eustatic changes in sea level also were important and produced widespread environmental changes across the tidal flats up until their disappearance in the Germanic Basin in the late Middle Triassic. The initial break-up of Pangaea already had started in Middle Triassic time, and this event had begun to drastically change environments all over Central Europe. It is very interesting that dinosaurs

  1. A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina.

    PubMed

    Alcober, Oscar A; Martinez, Ricardo N

    2010-10-19

    Herrerasauridae comprises a basal clade of dinosaurs best known from the Upper Triassic of Argentina and Brazil, which have yielded remains of Herrerasaurus ischigualastensis and Staurikosaurus pricei, respectively. Systematic opinion regarding the position of Herrerasauridae at the base of Dinosauria has varied. Here we describe a new herrerasaurid, Sanjuansaurus gordilloi gen. n., sp. n., based on a partial skeleton from Carnian-age strata of the the Upper Triassic Ischigualasto Formation of northwestern Argentina. The new taxon is diagnosed by numerous features, including long, band-shaped and posterolaterally oriented transverse process on the posterior cervical vertebrae; neural spines of the sixth to eighth dorsal vertebrae, at least, bearing acute anterior and posterior processes; scapula and coracoid with everted lateral margins of the glenoid; and short pubis (63% of the femoral length). Phylogenetic analysis placed Sanjuansaurus within a monophyletic Herrerasauridae, at the base of Theropoda and including Herrerasaurus and Staurikosaurus. The presence of Sanjuansaurus at the base of the Ischigualasto Formation, along with other dinosaurs such as Herrerasaurus, Eoraptor, Panphagia, and Chromogisaurus suggests that saurischian dinosaurs in southwestern Pangea were already widely diversified by the late Carnian rather than increasing in diversity across the Carnian-Norian boundary.

  2. Early Triassic change in the erosional level in the eastern part of the Bohemian Massif revealed by detrital garnet assemblages from the Buntsandstein siliciclastics of southern Poland

    NASA Astrophysics Data System (ADS)

    Kowal-Linka, Monika; Walczak, Klaudia

    2017-04-01

    Garnets, as constituents of various magmatic and metamorphic rocks, show different chemical compositions depending on the type of magma or primary rock, the temperature, and the pressure. This diversity of chemical compositions makes detrital garnets a very useful tool for provenance analysis and deciphering changes in erosional levels of source areas. Preliminary works reveal that the Lower and Middle Buntsandstein terrigenous and marine sandstones cropping out in southern Poland (50˚ 28'20"N, 18˚ 04'33"E and 50˚ 27'35"N, 18˚ 07'23"E) are characterized by very different heavy mineral assemblages (HMA) and types of detrital garnets. The aim of the research is to recognize the source areas and causes of these distinct variations using petrographic analysis, heavy mineral analysis, and electron probe microanalysis. During the Early Triassic, the area under study was located between two landmasses: the eastern margin of the Bohemian Massif (BM) to the west and Pre-Carpathian Land (PCL) to the east. Presently, the sampled area is situated ˜50 km from the NE margin of the BM, which consists of many garnet-bearing rocks and is a presumable source area for the examined grains. The PCL was hidden under the Carpathians during the Alpine orogeny and knowledge of its composition is very limited. Petrographic analysis shows that the older sandstones are red to rusty quartz arenites with a hematite-rich matrix and well-rounded grains (aeolian deposits). The younger sandstones are bicolored quartz wackes (dirty pink with grey patches) with a calcite matrix and angular to rounded grains (shallow marine deposits). The arenites contain zircon, tourmaline, and rutile grains accompanied by garnet, staurolite, apatite, and topaz. The opaque heavy minerals include ilmenite, ilmenite-rutile aggregates, magnetite and rarely chromian spinel. In contrast, the HMA from the wackes consist mostly of garnets, while the minerals listed above occur in subordinate amounts. The garnets from

  3. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  4. Do schizophrenia patients age early?

    PubMed

    Shivakumar, Venkataram; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Ravi, Vasanthapuram; Gangadhar, Bangalore N

    2014-08-01

    The etiopathogenesis of schizophrenia is poorly understood. Within the proposed "neurodegeneration paradigm", observations have been put forth for "accelerated aging" in this disorder. This proposition is largely based on the neuroscience research that demonstrates progressive changes in brain as well as other systemic abnormalities supportive of faster aging process in patients with this disorder. In this review, we have summarized the literature related to the concept of early aging in schizophrenia. These studies include P300 abnormalities & visual motion discrimination, neuroimaging findings, telomere dynamics as well as neuropathology of related brain regions. We also propose a role of vitamin D, neuroimmunological changes and elevated oxidative stress as well as mitochondrial dysfunction in addition to the above factors with 'vitamin-D deficiency' as the central paradox. Put together, the evidence supporting early aging in schizophrenia is compelling and this requires further systematic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Permian-triassic paleogeography and stratigraphy of the west Netherlands basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speksnijder, A.

    1993-09-01

    During the Permian, the present West Netherlands basin (WNB) was situated at the southernmost margin of the southern Permian basin (SPB). The thickness of Rotilegende sandstones therefore is very much reduced in the WNB. The relatively thin deposits of the Fringe Zechstein in the WNB, however, also contrast strongly in sedimentary facies with thick evaporite/carbonate alternations in the main SPB to the north, although the classic cyclicity of Zechstein deposition still can be recognized. The Fringe Zechstein sediments are mainly siliciclastic and interfinger with both carbonates and anhydrites toward the evaporite basin. End members are thin clay layers that constitutemore » potential seals to underlying Rotliegende reservoirs and relatively thick sandstones (over 100 m net sand) in the western part of the WNB. Nevertheless, favorable reservoir/seal configurations in the Fringe Zechstein seem to be sparse because only minor hydrocarbon occurrences have been proven in the area to date. The situation is dramatically different for the Triassic in the WNB. The [open quotes]Bunter[close quotes] gas play comprises thick Fringe Buntsandstein sandstones (up to 250 m), vertically sealed by carbonates and anhydritic clays of the Muschelkalk and Keuper formations. The Bunter sandstones are largely of the same age as the classic Volpriehausen, Detfurth, and Hardegsen alluvial sand/shale alternations recognized elsewhere, but the upper onlapping transgressive sands and silts correlate with evaporitic clays of the Roet basin to the north. A total volume of 65 x 10[sup 9]m[sup 3] of gas has so far been found in the Triassic Bunter sandstones of the WNB.« less

  6. Evolution of a Permo-Triassic sedimentary melange, Grindstone terrane, east-central Oregon

    USGS Publications Warehouse

    Blome, C.D.; Nestell, M.K.

    1991-01-01

    Perceives the Grindstone rocks to be a sedimentary melange composed of Paleozoic limestone slide and slump blocks that became detached from a carbonate shelf fringing a volcanic knoll or edifice in Late Permian to Middle Triassic time and were intermixed with Permian and Triassic slope to basinal clastic and volcaniclastic rocks in a forearc basin setting. Paleogeographic affinities of the Grindstone limestone faunas and volcaniclastic debris in the limestone and clastic rocks all indicate deposition in promixity to an island-arc system near the North American craton. -from Authors

  7. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  8. Evolving Mantle Sources in Postcollisional Early Permian-Triassic Magmatic Rocks in the Heart of Tianshan Orogen (Western China)

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Cawood, Peter A.; Wyman, Derek A.; Wang, Qiang; Zhao, Zhen-Hua

    2017-11-01

    Magmatism postdating the initiation of continental collision provides insight into the late stage evolution of orogenic belts including the composition of the contemporaneous underlying subcontinental mantle. The Awulale Mountains, in the heart of the Tianshan Orogen, display three types of postcollisional mafic magmatic rocks. (1) A medium to high K calc-alkaline mafic volcanic suite (˜280 Ma), which display low La/Yb ratios (2.2-11.8) and a wide range of ɛNd(t) values from +1.9 to +7.4. This suite of rocks was derived from melting of depleted metasomatized asthenospheric mantle followed by upper crustal contamination. (2) Mafic shoshonitic basalts (˜272 Ma), characterized by high La/Yb ratios (14.4-20.5) and more enriched isotope compositions (ɛNd(t) = +0.2 - +0.8). These rocks are considered to have been generated by melting of lithospheric mantle enriched by melts from the Tarim continental crust that was subducted beneath the Tianshan during final collisional suturing. (3) Mafic dikes (˜240 Ma), with geochemical and isotope compositions similiar to the ˜280 Ma basaltic rocks. This succession of postcollision mafic rock types suggests there were two stages of magma generation involving the sampling of different mantle sources. The first stage, which occurred in the early Permian, involved a shift from depleted asthenospheric sources to enriched lithospheric mantle. It was most likely triggered by the subduction of Tarim continental crust and thickening of the Tianshan lithospheric mantle. During the second stage, in the middle Triassic, there was a reversion to more asthenospheric sources, related to postcollision lithospheric thinning.

  9. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  10. Evidence of volcanic induced environmental stress during the end-Triassic event

    NASA Astrophysics Data System (ADS)

    Lindström, Sofie; Sanei, Hamed; van de Schootbrugge, Bas; Krarup Pedersen, Gunver; Dybkjær, Karen; van der Weijst, Carolien; Hovedskov Hansen, Katrine

    2015-04-01

    The end-Triassic biotic crisis is generally explained by massive input of CO2 and/or methane to the atmosphere linked to the formation of the Central Atlantic Magmatic Province. Such massive volcanism can be compared to industrial pollution releasing large amounts of the greenhouse gases CO2 and SO2 to the atmosphere. Indeed, the fossil record provides evidence of major perturbations in the δ13C-record of both calcareous and organic material. In the marine realm loss of calcifying organisms provides evidence of ocean acidification due to the increased pCO2, while in the terrestrial realm physiological responses in fossil plants indicate intense global warming across the Triassic-Jurassic boundary. Changing climatic conditions is further indicated by charcoal records from Greenland, Denmark, Sweden and Poland showing increased wildfire activity. Increased reworking of palynological material and marked changes in fluvial style in terrestrial successions seem to indicate an increased hydrological cycle. Here we examine and compare two proxies, Mercury and palynology, that may both, each in their own way, indicate volcanic induced environmental stress. Mercury (Hg) is one of the most toxic elements on the planet, with volcanic emissions being the largest natural input to the Hg-cycle. The temporal distribution of Hg in relation to organic matter can provide evidence of atmospheric Hg loading on the marine ecosystem. In the terrestrial realm, pollen and spores are known to be sensitive bioindicators of atmospheric pollution and environmental stress. Quantitive abundances of aberrant, and thus probably non-viable, pollen and spores are often used to assess environmental impact on polluted sites today. We present, compare and discuss Hg and aberrant spore/pollen records from the stratigraphically well-constrained Triassic-Jurassic boundary succession at Stenlille in the Danish Basin, and the possible impact of these data on the interpretation of events during end-Triassic

  11. Long-term oceanic changes prior the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Clémence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas; Korte, Christoph

    2014-05-01

    A number of potential causes and kill mechanisms have been proposed for the end-Triassic mass extinction such as palaeoclimatic and sea-level variations, massive volcanism and ocean acidification. Recent analysis of the stomatal index and density of fossil leaves and geochemical research on pedogenic carbonate nodules are suggestive of rising atmospheric CO2 concentration and fluctuating climate in the Rhaetian. It seems therefore probable that the end-Triassic event was preceded by large climatic fluctuations and environmental perturbations in the Rhaetian which might have partly affected the composition and diversity of the terrestrial and marine biota prior to the end-Triassic interval. The Northern Calcareous Alps (NCA) has long been favored for the study of the Rhaetian, since the GSSP of the Triassic/Jurassic (T/J) boundary and other important T/J sections are situated in this region. However, the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform and oceanic basin deposits in the NCA. Intraplatform Rhaetian sections from the Koessen Formation bear a few minor intervals of shales with enrichments in organic matter, some of which are associated to carbon isotopic excursions. Oceanic sections from the Hallstatt Basin are characterized at the base by very cyclic marl-limestone alternations. Higher up in the section, sediments progressively turn into pure shale deposits and the top of the Formation is characterized by organic

  12. Early-Life Intelligence Predicts Midlife Biological Age

    PubMed Central

    Caspi, Avshalom; Belsky, Daniel W.; Harrington, Honalee; Houts, Renate; Israel, Salomon; Levine, Morgan E.; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Moffitt, Terrie E.

    2016-01-01

    Objectives: Early-life intelligence has been shown to predict multiple causes of death in populations around the world. This finding suggests that intelligence might influence mortality through its effects on a general process of physiological deterioration (i.e., individual variation in “biological age”). We examined whether intelligence could predict measures of aging at midlife before the onset of most age-related disease. Methods: We tested whether intelligence assessed in early childhood, middle childhood, and midlife predicted midlife biological age in members of the Dunedin Study, a population-representative birth cohort. Results: Lower intelligence predicted more advanced biological age at midlife as captured by perceived facial age, a 10-biomarker algorithm based on data from the National Health and Nutrition Examination Survey (NHANES), and Framingham heart age (r = 0.1–0.2). Correlations between intelligence and telomere length were less consistent. The associations between intelligence and biological age were not explained by differences in childhood health or parental socioeconomic status, and intelligence remained a significant predictor of biological age even when intelligence was assessed before Study members began their formal schooling. Discussion: These results suggest that accelerated aging may serve as one of the factors linking low early-life intelligence to increased rates of morbidity and mortality. PMID:26014827

  13. A giant Late Triassic ichthyosaur from the UK and a reinterpretation of the Aust Cliff ‘dinosaurian’ bones

    PubMed Central

    De la Salle, Paul; Massare, Judy A.; Gallois, Ramues

    2018-01-01

    The largest reported ichthyosaurs lived during the Late Triassic (~235–200 million years ago), and isolated, fragmentary bones could be easily mistaken for those of dinosaurs because of their size. We report the discovery of an isolated bone from the lower jaw of a giant ichthyosaur from the latest Triassic of Lilstock, Somerset, UK. It documents that giant ichthyosaurs persisted well into the Rhaetian Stage, and close to the time of the Late Triassic extinction event. This specimen has prompted the reinterpretation of several large, roughly cylindrical bones from the latest Triassic (Rhaetian Stage) Westbury Mudstone Formation from Aust Cliff, Gloucestershire, UK. We argue here that the Aust bones, previously identified as those of dinosaurs or large terrestrial archosaurs, are jaw fragments from giant ichthyosaurs. The Lilstock and Aust specimens might represent the largest ichthyosaurs currently known. PMID:29630618

  14. Timing of the End-Triassic Extinctions on Land: the Moenave Formation on the Southern Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Lucas, S. G.; Tanner, L. H.; Geissman, J. W.; Hurley, L. L.; Kozur, H.; Heckert, A.; Kuerschner, W.; Weems, R.

    2010-12-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, USA represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present here a synthesis of new biostratigraphic and magnetostratigraphic data collected from the Moenave Formation across the outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These include, palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracan) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation. This placement supports the conclusion that terrestrial extinctions preceded marine extinctions across the Triassic-Jurassic boundary and likely were unrelated to CAMP volcanism.

  15. Rock magnetism and magnetic fabric of the Triassic rocks from the West Spitsbergen Fold-and-Thrust Belt and its foreland

    NASA Astrophysics Data System (ADS)

    Dudzisz, Katarzyna; Szaniawski, Rafał; Michalski, Krzysztof; Chadima, Martin

    2018-03-01

    Magnetic fabric and magnetomineralogy of the Early Triassic sedimentary rocks, collected along the length of the West Spitsbergen Fold-and-Thrust Belt (WSFTB) and from subhorizontal beds on its foreland, is presented with the aim to compare magnetic mineralogy of these areas, determine the carriers of magnetic fabric and identify tectonic deformation reflected in the magnetic fabric. Magnetic mineralogy varies and only in part depends on the lithology. The magnetic fabric at all sampling sites is controlled by paramagnetic minerals (phyllosilicates and Fe-carbonates). In the fold belt, it reflects the low degree of deformation in a compressional setting with magnetic lineation parallel to fold axis (NW-SE). This is consistent with pure orthogonal compression model of the WSFTB formation, but it also agrees with decoupling model. Inverse fabric, observed in few sites, is carried by Fe-rich carbonates. In the WSFTB foreland, magnetic lineation reflects the Triassic paleocurrent direction (NE-SW). The alternation between normal and inverse magnetic fabric within the stratigraphic profile could be related to sedimentary cycles.

  16. Climatically driven biogeographic provinces of Late Triassic tropical Pangea.

    PubMed

    Whiteside, Jessica H; Grogan, Danielle S; Olsen, Paul E; Kent, Dennis V

    2011-05-31

    Although continents were coalesced into the single landmass Pangea, Late Triassic terrestrial tetrapod assemblages are surprisingly provincial. In eastern North America, we show that assemblages dominated by traversodont cynodonts are restricted to a humid 6° equatorial swath that persisted for over 20 million years characterized by "semiprecessional" (approximately 10,000-y) climatic fluctuations reflected in stable carbon isotopes and sedimentary facies in lacustrine strata. More arid regions from 5-20 °N preserve procolophonid-dominated faunal assemblages associated with a much stronger expression of approximately 20,000-y climatic cycles. In the absence of geographic barriers, we hypothesize that these variations in the climatic expression of astronomical forcing produced latitudinal climatic zones that sorted terrestrial vertebrate taxa, perhaps by excretory physiology, into distinct biogeographic provinces tracking latitude, not geographic position, as the proto-North American plate translated northward. Although the early Mesozoic is usually assumed to be characterized by globally distributed land animal communities due to of a lack of geographic barriers, strong provinciality was actually the norm, and nearly global communities were present only after times of massive ecological disruptions.

  17. Early-Life Intelligence Predicts Midlife Biological Age.

    PubMed

    Schaefer, Jonathan D; Caspi, Avshalom; Belsky, Daniel W; Harrington, Honalee; Houts, Renate; Israel, Salomon; Levine, Morgan E; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Moffitt, Terrie E

    2016-11-01

    Early-life intelligence has been shown to predict multiple causes of death in populations around the world. This finding suggests that intelligence might influence mortality through its effects on a general process of physiological deterioration (i.e., individual variation in "biological age"). We examined whether intelligence could predict measures of aging at midlife before the onset of most age-related disease. We tested whether intelligence assessed in early childhood, middle childhood, and midlife predicted midlife biological age in members of the Dunedin Study, a population-representative birth cohort. Lower intelligence predicted more advanced biological age at midlife as captured by perceived facial age, a 10-biomarker algorithm based on data from the National Health and Nutrition Examination Survey (NHANES), and Framingham heart age (r = 0.1-0.2). Correlations between intelligence and telomere length were less consistent. The associations between intelligence and biological age were not explained by differences in childhood health or parental socioeconomic status, and intelligence remained a significant predictor of biological age even when intelligence was assessed before Study members began their formal schooling. These results suggest that accelerated aging may serve as one of the factors linking low early-life intelligence to increased rates of morbidity and mortality. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Upper Triassic limestones from the northern part of Japan: new insights on the Panthalassa Ocean and Hokkaido Island

    NASA Astrophysics Data System (ADS)

    Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana

    2017-04-01

    In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to

  19. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction

    PubMed Central

    Jiang, Da-Yong; Motani, Ryosuke; Huang, Jian-Dong; Tintori, Andrea; Hu, Yuan-Chao; Rieppel, Olivier; Fraser, Nicholas C.; Ji, Cheng; Kelley, Neil P.; Fu, Wan-Lu; Zhang, Rong

    2016-01-01

    Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation. PMID:27211319

  20. A new Triassic shortening-extrusion tectonic model for Central-Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Shi, Guanzhong; Xu, Bei

    2015-09-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontal E-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests an NNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  1. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei

    2017-04-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontalE-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests anNNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  2. Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision.

    PubMed

    Zhang, Yu-Xiu; Jin, Xin; Zhang, Kai-Jun; Sun, Wei-Dong; Liu, Jian-Ming; Zhou, Xiao-Yao; Yan, Li-Long

    2018-01-17

    The Triassic eclogite-bearing central Qiangtang metamorphic belt (CQMB) in the northern Tibetan Plateau has been debated whether it is a metamorphic core complex underthrust from the Jinsha Paleo-Tethys or an in-situ Shuanghu suture. The CQMB is thus a key issue to elucidate the crustal architecture of the northern Tibetan Plateau, the tectonics of the eastern Tethys, and the petrogenesis of Cenozoic high-K magmatism. We here report the newly discovered Baqing eclogite along the eastern extension of the CQMB near the Baqing town, central Tibet. These eclogites are characterized by the garnet + omphacite + rutile + phengite + quartz assemblages. Primary eclogite-facies metamorphic pressure-temperature estimates yield consistent minimum pressure of 25 ± 1 kbar at 730 ± 60 °C. U-Pb dating on zircons that contain inclusions (garnet + omphacite + rutile + phengite) gave eclogite-facies metamorphic ages of 223 Ma. The geochemical continental crustal signature and the presence of Paleozoic cores in the zircons indicate that the Baqing eclogite formed by continental subduction and marks an eastward-younging anticlockwise West-East Qiangtang collision along the Shuanghu suture from the Middle to Late Triassic.

  3. Integrated multi-stratigraphic study of the Coll de Terrers late Permian-Early Triassic continental succession from the Catalan Pyrenees (NE Iberian Peninsula): A geologic reference record for equatorial Pangaea

    NASA Astrophysics Data System (ADS)

    Mujal, Eudald; Fortuny, Josep; Pérez-Cano, Jordi; Dinarès-Turell, Jaume; Ibáñez-Insa, Jordi; Oms, Oriol; Vila, Isabel; Bolet, Arnau; Anadón, Pere

    2017-12-01

    The most severe biotic crisis on Earth history occurred during the Permian-Triassic (PT) transition around 252 Ma. Whereas in the marine realm such extinction event is well-constrained, in terrestrial settings it is still poorly known, mainly due to the lack of suitable complete sections. This is utterly the case along the Western Tethys region, located at Pangaea's equator, where terrestrial successions are typically build-up of red beds often characterised by a significant erosive gap at the base of the Triassic strata. Henceforth, documenting potentially complete terrestrial successions along the PT transition becomes fundamental. Here, we document the exceptional Coll de Terrers area from the Catalan Pyrenees (NE Iberian Peninsula), for which a multidisciplinary research is conducted along the PT transition. The red-bed succession, located in a long E-W extended narrow rift system known as Pyrenean Basin, resulted from a continuous sedimentary deposition evolving from meandering (lower Upper Red Unit) to playa-lake/ephemeral lacustrine (upper Upper Red Unit) and again to meandering settings (Buntsandstein facies). Sedimentary continuity is suggested by preliminary cyclostratigraphic analysis that warrants further analysis. Our combined sedimentological, mineralogical and geochemical data infer a humid-semiarid-humid climatic trend across the studied succession. The uppermost Permian strata, deposited under an orbitally controlled monsoonal regime, yields a relatively diverse ichnoassemblage mainly composed of tetrapod footprints and arthropod trace fossils. Such fossils indicate appropriate life conditions and water presence in levels that also display desiccation structures. These levels alternate with barren intervals formed under dry conditions, being thus indicative of strong seasonality. All these features are correlated with those reported elsewhere in Gondwana and Laurasia, and suggest that the Permian-Triassic boundary might be recorded somewhere around

  4. New Evidence for opening of the Black Sea; U-Pb analysis of detrital zircons and paleocurrent measurements of the Early Cretaceous turbidites

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Kylander-Clark, Andrew R. C.

    2015-04-01

    Shelf to submarine turbidite fan deposits of the Early Cretaceous crop out over a large area along the southern coast of the Black Sea. Early Cretaceous turbidites have a thickness of over 2000 meters in the Central Pontides. The shelf of this turbidite basin, represented by shallow marine clastics and carbonates, crops out along the Black Sea coast between Zonguldak and Amasra. Paleocurrent directions in the Lower Cretaceous turbidites were measured in 90 localities using mostly flute and groove casts and to a lesser extend cross-beds. At the eastern part of the basin, the paleocurrents were from north to south. It is scattered in the west of the basin, however, the main paleocurrent directions were from the north. Detrital zircons were analyzed using LA-ICP-MS in eleven samples from the turbiditic sandstones and two samples from the shelf sandstones. Four samples are from the western part (two samples from shelf sediments), four samples from the central part and five samples from the eastern part of the Lower Cretaceous basin. 1085 of 1348 zircon analyses are concordant with rates of 95-105% and the zircon ages range between 141 ± 4 Ma (Berriasian) and 3469 ± 8 Ma (Paleoarchean). 22% of the detrital zircon ages are Paleoproterozoic, 20% Archean, 16% Carboniferous, 13% Neoproterozoic, 8% Permian, 6% Triassic, 5% Mesoproterozoic and 11% other ages. In the western part of the basin the Carboniferous zircons constitute the main population with a less dominant peak at Ordovician, Cambrian and Late Neoproterozoic. The zircons from the center of the basin show scattered distribution with dominant populations in the Triassic, Permian, Carboniferous, Silurian, Paleoproterozoic, Early Neoproterozoic-Late Mesoproterozoic, and minor peak at Late Neoarchean. On the other hand, zircons from the eastern most part of the basin, show dominant peaks in the Paleoproterozoic, Mesoarchean and Permian with minor peaks in Triassic, Carboniferous and Silurian. Anatolia and the Balkans

  5. Paleomagnetic and AMS study of Permian and Triassic rocks from the Hronic Nappe and Paleogene rocks from the Central Carpathian Paleogene Basin, Western Carpathians

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Madzin, Jozef; Bučová, Jana; Grabowski, Jacek; Plašienka, Dušan; Aubrecht, Roman

    2017-04-01

    The Hronic (Choč) units form the highest cover nappe system of the Central Western Carpathians which was emplaced over the Fatric (Krížna) nappe system during the Late Cretaceous. The Permian (red beds and lava flows) and Triassic (sediments) rocks, the main targets of our study, were affected only by diagenetic or very low-grade, burial-related recrystallization and were tilted and transported together. The pre-late Cretaceous sequence is overlapped by Paleogene mainly flysch sequences. Three laboratories (Bratislava, Budapest and Warsaw) were involved in standard paleomagnetic processing and AMS measurements of the samples, while Curie-points were determined in Budapest. The site/locality mean paleomagnetic directions obtained were significantly different from the local direction of the present Earth magnetic field, indicating the long term stability of the paleomagnetic signal. The magnetic fabrics varied from un-oriented to dominantly schistose with well-defined lineations. The latter were normally subhorizontal, although subvertical maxima also occurred among the Triassic sediments. Shallow inclinations, after tilt corrections, suggest near-equatorial position for most of the Permian and Lower Triassic, while around 20°N for the Middle-Upper Triassic localities. The paleomagnetic declinations are interpreted in terms of CW tectonic rotations, which are normally larger for the Permian than for the Triassic samples, although there are some differences within the same age groups. This may be attributed to differential movements during nappe emplacement or subsequent tectonic disturbances. For two localities from the Paleogene cover sequence of the Hronic units, close to the main sampling area (Low Tatra Mts) of the present study documented fairly large CCW rotations, thus obtained additional evidence for the general CCW rotation of the Central Western Carpathians during the Cenozoic. Thus, we conclude that the Cenozoic CCW rotation was pre-dated by large CW

  6. Geochemical and palynological records for the end-Triassic Mass-Extinction Event in the NE Paris Basin (Luxemburg)

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Natascha; van de Schootbrugge, Bas; Thein, Jean; Fiebig, Jens; Franz, Sven-Oliver; Hanzo, Micheline; Colbach, Robert; Faber, Alain

    2016-04-01

    the sections shows clear signs of strong anoxia. Sedimentological observations reveal several horizons with soft sediment deformation (seismites). These are attributed to strong earthquake during the initial breakup of Pangea. The lowermost horizon at the base of the Argiles de Levallois Member exceeds the seismites in thickness and shows an erosional base and a chaotic sedimentation structure. Its sedimentological characteristics as well as its stratigraphic age makes it a possible candidate for a tsunami deposit triggered by the Rochechouart impact. As such, drill cores from Luxembourg and sourrounding areas (Eifel, W-Germany; NE-Lorraine, France) preserve a unique archive with great potential for unraveling the causes and consequences of the end-Triassic mass-extinction event.

  7. Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Martelat, Jean-Emmanuel; Guillot, Stéphane; Braun, Jean

    2018-01-01

    We present a new conceptual model to explain the first order Permian-Triassic evolution of the whole > 30 000 km long Pangea margin facing the Panthalassa ocean. Compilation of available geological, geochemical, geochronogical and paleomagnetic data all along this system allowed us to distinguish three part of the margin: western Laurentia, western Gondwana and eastern Gondwana. These segments record distinct tectonic and magmatic events, which all occur synchronously along the whole margin and correlate well with the main geodynamic events of this period, i.e. subduction of the Paleotethys mid-ocean ridge at 310-280 Ma, opening of the Neotethys at 280-260 Ma, counterclockwise rotation of Pangea at 260-230 Ma and closure of the Paleotethys at 230-220 Ma. Between 260 and 230 Ma, the reorganization of the Tethyan realm triggered the up to 35° rotation of Pangea around an Euler pole located in northernmost South America. This implied both an increase and a decrease of the convergence rate between the margin and the Panthalassa ocean, north and south of the Euler pole, respectively. Thus, the Permian-Triassic Pangean margin was marked: in western Laurentia by marginal sea closure, in western Gondwana by widespread bimodal magmatic and volcanic activity, in eastern Gondwana by transpressive orogenic phase. Therefore, we propose that the Permian-Triassic evolution of the outward margin of Pangea was controlled by the Tethyan realm reorganization.

  8. First 'Rauisuchian' archosaur (Pseudosuchia, Loricata) for the Middle Triassic Santacruzodon assemblage zone (Santa Maria Supersequence), Rio Grande do Sul State, Brazil.

    PubMed

    Lacerda, Marcel B; Schultz, Cesar L; Bertoni-Machado, Cristina

    2015-01-01

    The 'Rauisuchia' are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis.

  9. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jaya, Asri; Nishikawa, Osamu; Hayasaka, Yasutaka

    2017-11-01

    The zircon U-Pb and muscovite K-Ar age from the Bantimala, Barru and Biru basement complexes in the South Arm of Sulawesi, Indonesia provide new information regarding the timing of magmatism, metamorphism and sedimentation in this region and have implications for the origin and evolution of the study area. The study area is at the juncture between the southeast margin of Sundaland and Bird's Head-Australia. The age of both the zircon U-Pb of detrital materials in the Bantimala Complex and the muscovite K-Ar of amphibolite in the Biru Complex fall in the Late Early Cretaceous (between 109 and 115 Ma), which is a similar age range to previous data for both the sedimentary and metamorphic rocks. The youngest detrital zircon in the schist samples from the Barru Complex fall into the Triassic in age (between 243 and 247 Ma). These age data indicate that the protolith of all three basement complexes were involved in the subduction system and metamorphosed in the late Early Cretaceous, but there are several differences in their deposition environment under and out of the influence of the late Early Cretaceous magmatism in the Bantimala and Barru Complexes, respectively. Felsic igneous activities are confirmed in the Late Cretaceous and the Eocene by the zircon U-Pb age of igneous rocks intruding or included as detrital fragments in three basement complexes. These dates are similar to those reported from the Meratus Complex of South Kalimantan. The detrital zircon age distributions of the basement rocks in the South Arm of Sulawesi display predominant Mesozoic (Cretaceous and Triassic) and Paleozoic populations with a small population of Proterozoic ages supporting the hypothesis that the West Sulawesi block originated from the region of the circum Bird's Head-Australian, namely the Inner Banda block. The absence of Jurassic zircon age population in the South Arm of Sulawesi suggests the division of the South Arm of Sulawesi from the Inner Banda block in early stage of

  10. Partitioned transpression in the Triassic Aghdarband basin: evidence for a Cimmerian deformation in NE IRAN:

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Zanchetta, Stefano; Balini, Marco; Ghassemi, Mohammad Reza

    2014-05-01

    The Lower-Middle Triassic Aghdarband Basin, NE Iran, consists of a strongly deformed arc-related marine succession deposited along the southern margin of Eurasia (Turan domain) in a highly mobile tectonic context. The marine deposits are unconformably covered by Upper Triassic continental beds, marking the Cimmerian collision of Iran with Eurasia. The Aghdarband Basin is a key-area for the study of the Cimmerian events, as the Triassic units were severely folded and thrust short time after the collision and were unconformably covered by the gently deformed Middle Jurassic succession which seals the Cimmerian structures. The Triassic deposits form a north-verging thrust stack interacting with an important left-lateral strike-slip shear zone exposed in the northernmost part of the basin. Transpressional structures as strike-slip faults and vertical folds are here associated with high angle reverse faults forming intricate positive flower structures. Systematic asymmetry of major and parasitic folds, as well as their geometrical features indicate that they generated in a left-lateral transpressional regime roughly coeval to thrust imbrication to the south, as a consequence of a marked strain partitioning. Aim of this presentation is to describe in detail the deformational structures of the Aghdarband region, based on structural mapping and detailed original mesoscopic field analyses, resuming from the excellent work performed in the '70s by Ruttner (1991). Our work is focused on the pre mid-Jurassic structures which can be related to the final stages of the Cimmerian deformation resulting from the oblique collision of the Iranian microplate with the southern margin of Eurasia, the so-called Turan domain. We will finally discuss the kinematic significance of the Late Triassic oblique convergence zone of Aghdarband in the frame of strain partitioning in transpressional deformation. Structural weakness favouring strain partitioning can be related to inversion of syn

  11. 40Ar-39Ar Ages of the Large Impact Structures Kara and Manicouagan and their Relevance to the Cretaceous-Tertiary and the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Trieloff, M.; Jessberger, E. K.

    1992-07-01

    Since the discovery of the iridium enrichment in Cretaceous- Tertiary boundary clays by Alvarez et al. (1980) the search for the crater of the K/T impactor is in progress. Petrographic evidence at the K/T boundary material points towards an impact into an ocean as well as onto the continental crust, multiple K/T impacts are now being considered (Alvarez and Asaro, 1990). One candidate is the Kara crater in northern Siberia of which Kolesnikov et al. (1988) determined a K-Ar isochrone age of 65.6 +- 0.5 Ma, regarding this as indicating that the Kara bolide is at least one of the K/T impactors. Koeberl et al. (1990) determined ^40Ar-^39Ar ages of six impact melts ranging from 70 to 82 Ma and suggested rather an association to the Campanian- Maastrichtian boundary, another important extinction horizon 73 Ma ago (Harland et al., 1982). We dated with the ^40Ar-^39Ar technique four impact melts, KA2- 306, KA2-305, SA1-302 and AN9-182. The spectra have rather well- defined plateaus, shown with highly extended age scales (Fig. 1). The plateau ages range from 69.3 to 71.7 Ma. Our data do not support an association either with the Cretaceous-Tertiary or with the Campanian-Maastrichtian boundary. We deduce an age of 69-71 Ma for the Kara impact structure. Nazarov et al. (1991) have demonstrated by isotopic hydrogen studies that the Kara bolide impacted on dry land, while the last regression at the target area before the end of the Cretaceous occurred 69-70 Ma ago. Our data are consistent with an impact shortly after the regression. We further dated impact metamorphic anorthosite samples (10BD5 and 10BD3C) of the Manicouagan crater, Canada, which may be related to the Triassic-Jurassic boundary (McLaren and Goodfellow, 1990). The samples consist of two different phases, one degassing at low temperatures yielding a plateau age of 212 Ma and another phase which was degassed during the cratering event to varying degrees with apparent ages increasing up to 950 Ma, the age of the

  12. Sea level reconstructions and non-marine sedimentation at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael

    2016-04-01

    The environmental changes during the Triassic-Jurassic boundary interval and the associated mass extinction event are still strongly debated. Sea-level reconstruction records during this interval reveal an end-Triassic global regression event. Erosion and karstification at the top of Triassic sediments, and Lower Jurassic fluvial channels with reworked Triassic clasts indicate widespread regression in the European basins. Laterite at the top of the Triassic, and quartzose conglomerates/sandstones at the base of the Jurassic indicate a fluvial/terrestrial onset in Iran and Afghanistan. Abrupt emergence, erosion and facies dislocation, from the Triassic dolomites (Kingriali Formation) to Lower Jurassic fluvial/continental quartzose conglomerates/pebbly sandstones (Datta Formation) occur in the Tethyan Salt Range of Pakistan. Sedimentological analyses indicate marine regression and emergence under tropical-subtropical conditions (Greenhouse conditions) and negates the possibility of glacial influence in this region. Field evidences indicate the presence of an undulatory surface at the base of the Jurassic and a high (Sargodha High) is present south of the Salt Range Thrust, the southern boundary of the basin. Furthermore, geophysical data (mostly seismic sections) in different parts of the basin display normal faults in the basement. These features are interpreted as horst and graben structures at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau. The Lower Jurassic Datta Formation appears to have been deposited in an overall graben fill settings. Similar normal faults and graben fill geometries are observed on seismic sections in Tanzania, Mozambique, Madagascar and other regions of the southeastern margin of the African Plate and are related to the Karoo rift system. To summarize, the basement normal faults and the graben fill features at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau can be correlated to similar features common in the Karoo

  13. New carbon-isotope evidence from the Polish Basin for a major carbon-cycle perturbation at the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Pointer, Robyn; Hesselbo, Stephen; Littler, Kate; Pieńkowski, Grzegorz; Hodbod, Marta

    2016-04-01

    Carbon-isotope analysis of fossil plant material from a Polish core provides new evidence of a perturbation to the atmospheric carbon-cycle at the Triassic-Jurassic boundary (~201 Ma). The Triassic-Jurassic boundary was a time of extreme climate change which also coincided with the end-Triassic mass extinction. The new data will allow us to identify climatic changes in the Polish Basin across the Triassic-Jurassic boundary and evaluate these changes on a broader scale by comparison to data from other sites located around the world. The Niekłan borehole core, located in the southern Polish Basin, provides a ~200 metre-long terrestrial record spanning the Rhaetian and Hettangian, including the Triassic-Jurassic boundary (~208-199 Ma). The Niekłan core consists of interbedded fluvial and lacustrine sediments containing preserved plant material and thus provides an excellent opportunity to study both terrestrial palaeoenvironmental changes in the Polish Basin and perturbations in the carbon-cycle more broadly. Carbon-isotope analysis of macrofossil plant material and microscopic woody phytoclasts from the Niekłan core reveals a negative carbon-isotope excursion (CIE) of ~-3‰ at the end of the Rhaetian, before a gradual return to more positive values thereafter. The negative CIE suggests an injection of isotopically-light carbon into the atmosphere occurred just before the Triassic-Jurassic boundary. Likely sources of this carbon include volcanogenic gases, methane released from gas hydrates, or a combination of the two. The negative CIE seen in plant material at Niekłan is also recorded in a variety of geological materials from contemporaneous sites world-wide. These time-equivalent, but geographically separated, records indicate that the negative CIE recorded in the Niekłan plant material is the result of a regional or global carbon-cycle perturbation and is not merely a local signal. Future work will focus on using a range of palaeoenvironmental proxies in

  14. Vertebrate biochronology of late Triassic red beds in New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.P.

    1989-09-01

    Four vertebrate biochrons can be recognized in Late Triassic strata of New Mexico: (A) Metoposaurus-Rutiodon-Desmatosuchus-Calyptosuchus-Placerias occurs in the Los Esteros member of the Santa Rosa formation near Lamy and is less well known from the lower Petrified Forest Member of the Chinle Formation near San Ysidro, at Mesa del Oro, near Fort Wingate, at Ojo Huelos, and in the Joyita hills. (B) Anaschisma-Belodon-Typothorax-Desmatosuchus-Paratypothorax occurs in the lower Bull Canyon formation in Bull Canyon and near Tucumcari, in the Trujillo Formation near Tucumcari, and possibly in the Travesser Formation of the Dry Cimarron valley, the Petrified Forest Member near Carthage, andmore » the Garita Creek formation near Lamy and Conchas Lake. (C) Anaschisma-Belodon-Typothorax occurs in the upper Bull Canyon formation in Bull Canyon, in the upper Petrified Forest Member near San Ysidro, at Ghost Ranch, near Albuquerque (Correo Sandstone Bed), and possibly in the Sloan Canyon Formation of the Dry Cimarron valley. (D) Anaschisma-new phytosaur, cf. Typothorax-new sphenosuchian, occurs in the Redonda Formation near Tucumcari. The biochronologic ranges of significant vertebrate taxa within New Mexico follow: metoposaurs - Metoposaurus (A-B ), Anaschisma (B-D); phytosuars - Rutiodon (A), Belodon (B-C), new taxon (D); aetosaurs - Calyptosuchus (A), Desmatosuchus (A-B), Paratypothorax (B), Typothorax (B-D ); rauisuchians - Postosuchus (A-B), Chatterjeea (B-C); sphenosuchians - new taxon 1 (A), Hesperosuchus (B), new taxon 2 (D); dinosaurs - ornithischians (B), Coelophysis (C), other theropods (B-C); therapsids - Placerias (A), Pseudotriconodon (C). Biochron A may be Carnian in age, whereas biochrons B-D are probably early to middle ( ) Norian.« less

  15. Some contrasting biostratigraphic links between the Baker and Olds Ferry Terranes, eastern Oregon

    USGS Publications Warehouse

    Nestell, Merlynd K.; Blome, Charles D.

    2016-01-01

    New stratigraphic and paleontologic data indicate that ophiolitic melange windows in the Olds Ferry terrane of eastern Oregon contain limestone blocks and chert that are somewhat different in age than those present in the adjacent Baker terrane melange. The melange windows in the Olds Ferry terrane occur as inliers in the flyschoid Early and Middle Jurassic age Weatherby Formation, which depositionally overlies the contact between the melange-rich Devonian to Upper Triassic rocks of the Baker terrane on the north, and Upper Triassic and Early Jurassic volcanic arc rocks of the Huntington Formation on the south. The Baker terrane and Huntington Formation represent fragments of a subduction complex and related volcanic island arc, whereas the Weatherby Formation consists of forearc basin sedimentary deposits. The tectonic blocks in the melange windows of the Weatherby Formation (in the Olds Ferry terrane) are dated by scarce biostratigraphic evidence as Upper Pennsylvanian to Lower Permian and Upper Triassic. In contrast, tectonic blocks of limestone in theBaker terrane yield mostly fusulinids and small foraminifers of Middle Pennsylvanian Moscovian age at one locality.Middle Permian (Guadalupian) Tethyan fusulinids and smaller foraminifers (neoschwagerinids and other Middle Permian genera) are present at a few other localities. Late Triassic conodonts and bryozoans are also present in a few of the Baker terrane tectonic blocks. These limestone blocks are generally embedded in Permian and Triassic radiolarian bearing chert or argillite. Based on conodont, radiolarian and fusulinid data, the age limits of the meange blocks in the Weatherby Formation range from Pennsylvanian to Late Triassic.

  16. Synchronism of the Siberian Traps and the Permian-Triassic boundary

    USGS Publications Warehouse

    Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.I.; Stepanov, V.

    1992-01-01

    Uranium-lead ages from an ion probe were taken for zircons from the ore-bearing Noril'sk I intrusion that is comagmatic with, and intrusive to, the Siberian Traps. These values match, within an experimental error of ??4 million years, the dates for zircons extracted from a tuff at the Permian-Triassic (P-Tr) boundary. The results are consistent with the hypothesis that the P-Tr extinction was caused by the Siberian basaltic flood volcanism. It is likely that the eruption of these magmas was accompanied by the injection of large amounts of sulfur dioxide into the upper atmosphere, which may have led to global cooling and to expansion of the polar ice cap. The P-Tr extinction event may have been caused by a combination of acid rain and global cooling as well as rapid and extreme changes in sea level resulting from expansion of the polar ice cap.

  17. First 'Rauisuchian' archosaur (Pseudosuchia, Loricata) for the Middle Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence), Rio Grande do Sul State, Brazil

    PubMed Central

    Lacerda, Marcel B.; Schultz, Cesar L.; Bertoni-Machado, Cristina

    2015-01-01

    The ‘Rauisuchia’ are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis. PMID:25714091

  18. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida

    NASA Astrophysics Data System (ADS)

    Pritchard, Adam C.; Nesbitt, Sterling J.

    2017-10-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.

  19. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida

    PubMed Central

    Nesbitt, Sterling J.

    2017-01-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda. PMID:29134065

  20. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida.

    PubMed

    Pritchard, Adam C; Nesbitt, Sterling J

    2017-10-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.

  1. Radiolarian biostratigraphy of the Quinn River Formation, Black Rock terrane, north-central Nevada: correlations with eastern Klamath terrane geology

    USGS Publications Warehouse

    Blome, C.D.; Reed, K.M.

    1995-01-01

    The Quinn River Formation, Black Rock terrane, Quinn River Crossing, is one of the few Nevadan sections of Permian and Triassic strata that are unaffected by Sonoman deformation. The formation consists of: 1) a basal tuff overlain by limestone and ferruginous dolomite, 2) interbedded radiolarian-bearing chert and argillite, 3) siltstone and carbonaceous shale, and 4) partly volcaniclastic rocks. All but the uppermost (barren) chert samples contain Late Permian radiolarian taxa. These radiolarians suggest that early Wordian conodonts reported from near the top of the chert and argillite unit are reworked. Poorly preserved Early(?) or Middle triassic radiolarians and Middle Triassic ammonites and pectenacid bivalves from the middle part of the volcaniclastic unit indicate the Early Triassic deposition cannot be documented at Quinn River. The ages of the Quinn River brachiopod, conodont, and radiolarian faunas resemble those of the Dekkas and Pit Formations, eastern Klamath terrane, northern California. The analogous Quinn River and eastern Klamath rock types and faunal ages, as well as similar hiatuses in their stratigraphic records, suggest that they may be lateral equivalents that formed in the same island-arc sedimentary basin. -from Authors

  2. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China

    NASA Astrophysics Data System (ADS)

    Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei

    2017-08-01

    The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the

  3. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, R.

    2013-05-01

    The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and

  4. Disentangling Diagenesis From the Rock Record: An Example From the Permo-Triassic Wordie Creek Formation, East Greenland

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Turchyn, A. V.; Wignall, P. B.; Newton, R. J.; Vane, C. H.

    2018-01-01

    The measurement of isotope ratios in sedimentary rocks deposited over geological time can provide key insights to past environmental change over important intervals in the past. However, it is important to be aware that secondary alteration can overprint the original isotopic records. We demonstrate this principle using high-resolution carbon, sulfur, and oxygen isotope measurements in organic carbon, pyrite, and carbonate minerals (δ13Corg, δ34Spyr, δ34SCAS, δ13Ccarb, and δ18Ocarb) and kerogen analyses (HI and OI) from the Wordie Creek Formation, East Greenland. These sediments were initially deposited across the Permo-Triassic transition, but as we will show, the carbonate record has been altered by interaction with meteoric water significantly after initial deposition. Comparison of the better preserved organic carbon and pyrite records with a proximal Permo-Triassic sequence reveals significant pyrite-sulfur isotope variability across the Permo-Triassic transition. This regional heterogeneity argues against basin-wide euxinia and instead suggests localized changes in sulfur fractionation in response to variations in organic carbon flux. This hypothesis can be used to explain seemingly inconsistent regional trends in other sulfur isotopes across the Permo-Triassic transition.

  5. Climatically driven biogeographic provinces of Late Triassic tropical Pangea

    PubMed Central

    Whiteside, Jessica H.; Grogan, Danielle S.; Olsen, Paul E.; Kent, Dennis V.

    2011-01-01

    Although continents were coalesced into the single landmass Pangea, Late Triassic terrestrial tetrapod assemblages are surprisingly provincial. In eastern North America, we show that assemblages dominated by traversodont cynodonts are restricted to a humid 6° equatorial swath that persisted for over 20 million years characterized by “semiprecessional” (approximately 10,000-y) climatic fluctuations reflected in stable carbon isotopes and sedimentary facies in lacustrine strata. More arid regions from 5–20°N preserve procolophonid-dominated faunal assemblages associated with a much stronger expression of approximately 20,000-y climatic cycles. In the absence of geographic barriers, we hypothesize that these variations in the climatic expression of astronomical forcing produced latitudinal climatic zones that sorted terrestrial vertebrate taxa, perhaps by excretory physiology, into distinct biogeographic provinces tracking latitude, not geographic position, as the proto-North American plate translated northward. Although the early Mesozoic is usually assumed to be characterized by globally distributed land animal communities due to of a lack of geographic barriers, strong provinciality was actually the norm, and nearly global communities were present only after times of massive ecological disruptions. PMID:21571639

  6. A Re-Examination of the Bedout High, Offshore Canning Basin, Western Australia - Possible Impact Site for the Permian-Triassic Mass Extinction Event?

    NASA Astrophysics Data System (ADS)

    Becker, L.; Nicholson, C.; Poreda, R. J.

    2002-12-01

    The Bedout High, located offshore Canning basin in Western Australia, is an unusual structure and its origin remains problematic. K-Ar dating of volcanic samples encountered at total depth in the Lagrange-1 exploration well indicated an age of about 253+/-5 Ma consistent with the Permian-Triassic boundary event. Gorter (PESA News, pp. 33-34, 1996) speculates that the Bedout High is the uplifted core (30 km) of a circular feature, some 220 km across, formed by the impact of a large bolide (cometary or asteroidal) with the Earth near the end-Permian. Accepting a possible impact origin for the Bedout structure, with the indicated dimensions, would have had profound effects on global climate as well as significant changes in lithotratigraphic, biostratigraphic and chemostratigraphic indicators as seen in several Permian-Triassic boundary locations worldwide. In this work, we re-examine some of the structural data previously presented by Gorter (1996) using some additional seismic lines. We have also evaluated several impact tracers including iridium, shocked quartz, productivity collapse, helium-3, chromium-53 and fullerenes with trapped noble gases from some Permian-Triassic boundary sites in the Tethys and Circum-Pacific regions. Our findings suggest that the Bedout structure is a good candidate for an oceanic impact at the end Permian, triggering the most severe mass extinction in the history of life on Earth.

  7. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman

    2017-04-01

    Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.

  8. Status Report on the 40Ar/39Ar and U/Pb Dating of Tuffs in the Dewey Lake Formation of West Texas Towards Constraining the Permo-Triassic Magnetostratigraphic Time Scale

    NASA Astrophysics Data System (ADS)

    Chang, S.; Renne, P. R.; Mundil, R.

    2007-12-01

    A detailed magnetic polarity time scale for the Permo-Triassic Boundary interval, critical for correlating events in marine and terrestrial paleoenvironments, is not yet well-established. Recently, late Permian magnetostratigraphic studies have been reported for non-marine sections in Europe and South Africa (Szurlies et al., 2003; Nawrocki, 2004; Ward et al., 2005). However, these sections are devoid of index fossil suitable for correlation with marine successions and also lack age constraints from radioisotopic dating methods. In other words, it is dubious to correlate these magnetostratigraphic data with the GSSP Permo-Triassic boundary and mass extinction. The Dewey Lake red beds formation of West Texas, believed to be the youngest Permian formation in North America, has yielded high-quality paleomagnetic data (Molina-Garza et al., 1989; Steiner, 2001) and contains several silicic tuffs potentially enabling high-resolution calibration of the magnetic polarity time scale in this critical age range. The tuffs have yet to be placed into a regional stratigraphic or magnetostratigraphic framework, and it is unclear exactly how many distinct eruptive units are represented by the 7 distinct samples collected to date from widely separated (>160 km) localities. 40Ar/39Ar (sanidine and biotite) and U/Pb (zircon) studies reveal that all 7 sampled tuffs were probably erupted within several hundred ka of the Permo-Triassic boundary as dated at the Meishan GSSP section (Renne et al., 1995; Mundil et al., 2004) but results thus far are inadequate to convincingly resolve age differences between the various samples. U/Pb dating of some samples is severely challenged by Pb-loss from the zircons despite application of the Mattinson (2005) annealing/chemical abrasion technique. 40Ar/39Ar data have been obtained from as many as four different irradiations in order to reduce neutron fluence related error. We observe the familiar ~1% bias between U/Pb and 40Ar/39Ar ages. Biotite

  9. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, B.; Quan, T. M.; Lindström, S.; Püttmann, W.; Heunisch, C.; Pross, J.; Fiebig, J.; Petschick, R.; Röhling, H.-G.; Richoz, S.; Rosenthal, Y.; Falkowski, P. G.

    2009-08-01

    One of the five largest mass extinctions of the past 600million years occurred at the boundary of the Triassic and Jurassic periods, 201.6million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.

  10. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis.

    PubMed

    Dunhill, Alexander M; Wills, Matthew A

    2015-08-11

    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.

  11. Bone microstructure and the evolution of growth patterns in Permo-Triassic therocephalians (Amniota, Therapsida) of South Africa

    PubMed Central

    Botha-Brink, Jennifer

    2014-01-01

    Therocephalians were a speciose clade of nonmammalian therapsids whose ecological diversity and survivorship of the end-Permian mass extinction offer the potential to investigate the evolution of growth patterns across the clade and their underlying influences on post-extinction body size reductions, or ‘Lilliput effects’. We present a phylogenetic survey of limb bone histology and growth patterns in therocephalians from the Middle Permian through Middle Triassic of the Karoo Basin, South Africa. Histologic sections were prepared from 80 limb bones representing 11 genera of therocephalians. Histologic indicators of skeletal growth, including cortical vascularity (%CV) and mean primary osteon diameters (POD), were evaluated in a phylogenetic framework and assessed for correlations with other biologically significant variables (e.g., size and robusticity). Changes in %CV and POD correlated strongly with evolutionary changes in body size (i.e., smaller-bodied descendants tended to have lower %CV than their larger-bodied ancestors across the tree). Bone wall thickness tended to be high in early therocephalians and lower in the gracile-limbed baurioids, but showed no general correlation with cross-sectional area or degree of vascularity (and, thus, growth). Clade-level patterns, however, deviated from previously studied within-lineage patterns. For example, Moschorhinus, one of few therapsid genera to have survived the extinction boundary, demonstrated higher %CV in the Triassic than in the Permian despite its smaller size in the extinction aftermath. Results support a synergistic model of size reductions for Triassic therocephalians, influenced both by within-lineage heterochronic shifts in survivor taxa (as reported in Moschorhinus and the dicynodont Lystrosaurus) and phylogenetically inferred survival of small-bodied taxa that had evolved short growth durations (e.g., baurioids). These findings mirror the multi-causal Lilliput patterns described in marine faunas

  12. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland

    PubMed Central

    Surmik, Dawid; Boczarowski, Andrzej; Balin, Katarzyna; Dulski, Mateusz; Szade, Jacek; Kremer, Barbara; Pawlicki, Roman

    2016-01-01

    Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment. PMID:26977600

  13. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland.

    PubMed

    Surmik, Dawid; Boczarowski, Andrzej; Balin, Katarzyna; Dulski, Mateusz; Szade, Jacek; Kremer, Barbara; Pawlicki, Roman

    2016-01-01

    Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment.

  14. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries

    NASA Astrophysics Data System (ADS)

    Xie, Shucheng; Algeo, Thomas J.; Zhou, Wenfeng; Ruan, Xiaoyan; Luo, Genming; Huang, Junhua; Yan, Jiaxin

    2017-02-01

    Microbial communities are known to expand as a result of environmental deterioration during mass extinctions, but differences in microbial community changes between extinction events and their underlying causes have received little study to date. Here, we present a systematic investigation of microbial lipid biomarkers spanning ∼20 Myr (Middle Permian to Early Triassic) at Shangsi, South China, to contrast microbial changes associated with the Guadalupian-Lopingian boundary (GLB) and Permian-Triassic boundary (PTB) mass extinctions. High-resolution analysis of the PTB crisis interval reveals a distinct succession of microbial communities based on secular variation in moretanes, 2-methylhopanes, aryl isoprenoids, steranes, n-alkyl cyclohexanes, and other biomarkers. The first episode of the PTB mass extinction (ME1) was associated with increases in red algae and nitrogen-fixing bacteria along with evidence for enhanced wildfires and elevated soil erosion, whereas the second episode was associated with expansions of green sulfur bacteria, nitrogen-fixing bacteria, and acritarchs coinciding with climatic hyperwarming, ocean stratification, and seawater acidification. This pattern of microbial community change suggests that marine environmental deterioration was greater during the second extinction episode (ME2). The GLB shows more limited changes in microbial community composition and more limited environmental deterioration than the PTB, consistent with differences in species-level extinction rates (∼71% vs. 90%, respectively). Microbial biomarker records have the potential to refine our understanding of the nature of these crises and to provide insights concerning possible outcomes of present-day anthropogenic stresses on Earth's ecosystems.

  15. High sedimentation rates in the Early Triassic after latest Permian mass extinction: Carbonate production is main factor in non-Arctic regions

    NASA Astrophysics Data System (ADS)

    Horacek, Micha; Brandner, Rainer

    2016-04-01

    A substantial change in sedimentation rates towards higher values has been documented from the Late Permian to the Lower Triassic. Although it is assumed and also has been shown that the deposition of siliciclastic material increased in the Lower Triassic due to stronger erosion because of loss of land cover and increased chemical and physical weathering with extreme climate warming, the main sediment production occurred by marine carbonate production. Still, carbonate production might have been significantly influenced by weathering and erosion in the hinterland, as the transport of dust by storms into the ocean water probably was a main nutrient source for microbial carbonate producers, because "normal" nutrient supply by ocean circulation, i. e. upwelling was strongly reduced due to the elevated temperatures resulting in water-column stratification . Sediment accumulation was also clearly influenced by the paleo-geographic and latitudinal position, with lower carbonate production and sedimentation rates in moderate latitudes. The existence of a "boundary clay" and microbial carbonate mounds and layers in the immediate aftermath of the latest Permian mass extinction points towards a development from a short-timed acid ocean water - resulting in a carbonate production gap and the deposition of the boundary clay towards the deposition of the microbial mounds and layers due to the microbial production of micro-environments with higher alkalinity allowing the production of carbonate. After the return of the ocean water to normal alkalinity planktic production of carbonate resulted in a very high sedimentation rate, especially taking into account the absence of carbonate producing eukaryotic algae and animals.

  16. Integrated geophysical study of the Triassic salt bodies' geometry and evolution in central Tunisia

    NASA Astrophysics Data System (ADS)

    Azaiez, Hajer; Amri, Dorra Tanfous; Gabtni, Hakim; Bedir, Mourad; Soussi, Mohamed

    2008-01-01

    A comprehensive study, integrating gravity, magnetic and seismic reflection data, has been used to resolve the complex Triassic salt body geometry and evolution in central Tunisia. Regional seismic lines across the study area show a detachment level in the Upper Triassic evaporites, associated with chaotic seismic facies below the Souinia, Majoura, and Mezzouna structures. The Jurassic and Lower Cretaceous seismic horizons display pinching-outs and onlapping around these structures. A stack-velocity section confirms the existence of a high-velocity body beneath the Souinia Mountain. Regional gravity and magnetic profiles in this area were elaborated from ETAP (the Tunisian Firm of Petroleum Activities) measure stations. These profiles were plotted following the same layout from the west (Souinia) to the east (Mezzouna), across the Majoura and Kharrouba mountains. They highlight associated gravity and magnetic negative anomalies. These gravity and magnetic data coupled to the reflection seismic data demonstrate that, in the Souinia, Majoura, and El Hafey zones, the Triassic salt reaches a salt pillow and a salt-dome stage, without piercing the cover. These stages are expressed by moderately low gravity anomalies. On the other hand, in the Mezzouna area (part of the North-South Axis), the Triassic salt had pierced its cover during the Upper Cretaceous and the Tertiary, reaching a more advanced stage as a salt diapir and salt wall. These stages express important low gravity and magnetic anomalies. These results confirm the model of Tanfous et al. (2005) of halokinetic movements by fault intrusions inducing, from the west to the east, structures at different stages of salt pillow, salt dome, and salt diapir.

  17. Aspects of the palynology of the Chinle Formation (Upper Triassic), Colorado Plateau, Arizona, Utah, and New Mexico

    USGS Publications Warehouse

    Scott, Richard A.

    1982-01-01

    This study deals with 16 palynological samples from Arizona, New Mexico, and Utah, that represent six members of the Chinle Formation of Late Triassic age. The samples, in ascending sequence, show a gradual change in the spore-bisaccate ratio from a preponderance of spores to numerical dominance of bisaccate pollen grains. This change is interpreted to indicate a climatic trend toward increasing aridity. The trend is thought to represent the decreasing energy phase of the oldest of three depositional cycles posited by Lupe (1977, 1979). The late Karnian age indicated for the Chinle Formation by pollen and spores is based on material from the lower part of the formation, leaving open the possibility that the upper part of the Chinle may be younger.

  18. Palaeomagnetism of the Early Permian Mount Leyshon Intrusive Complex and Tuckers Igneous Complex, North Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Clark, D. A.; Lackie, M. A.

    2003-06-01

    This study provides reliable, precisely defined and well-dated Early Permian (286 +/- 6 Ma) palaeomagnetic poles for Australia from the Mount Leyshon Intrusive Complex (MLIC) and the Tuckers Igneous Complex (TIC). Both complexes are associated with prominent negative magnetic anomalies, indicating the presence of rocks carrying stable remanence of reverse polarity, with a Koenigsberger ratio greater than unity. The characteristic remanence carried by the intrusive phases and by locally remagnetized, contact-metamorphosed host rocks is always of reverse polarity, consistent with acquisition during the Permo-Carboniferous (Kiaman) Reverse Superchron. The corresponding palaeopoles confirm that Australia occupied high latitudes in the Early Permian. The pole positions are: MLIC: lat. = 43.2 °S, long. = 137.3 °E dp = 6.0°, dm = 6.4° Q= 6; TIC: lat. = 47.5 °S, long. = 143.0 °E, dp = 6.0°, dm = 6.6° Q= 6. Permian palaeomagnetic overprinting is detectable at considerable distances from the MLIC (2-3 km), well beyond the zone of visible alteration. The primary nature of the Early Permian palaeomagnetic signature is established by full baked contact/aureole tests at both localities. Other new data from Australia are consistent with the poles reported here. Comparison of the Australian, African and South American Apparent Polar Wander Paths (APWP) suggests that mean Permian and Triassic poles from West Gondwana, particularly from South America, are biased by remagnetization in the Jurassic-Cretaceous and that the Late Palaeozoic-Mesozoic APWP for Gondwana is best defined by Australian data. The Australian APWP exhibits substantial movement through the Mesozoic. Provided only that the time-averaged palaeofield was zonal, the Early Triassic palaeomagnetic data from Australia provide an important palaeogeographic constraint that the south geographic pole was within, or very close to, SE Australia around 240 Ma. The new Early Permian poles are apparently more consistent

  19. Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement

    NASA Astrophysics Data System (ADS)

    Yager, Joyce A.; West, A. Joshua; Corsetti, Frank A.; Berelson, William M.; Rollins, Nick E.; Rosas, Silvia; Bottjer, David J.

    2017-09-01

    Changes in δ13Ccarb and δ13Corg from marine strata occur globally in association with the end-Triassic mass extinction and the emplacement of the Central Atlantic Magmatic Province (CAMP) during the break up of Pangea. As is typical in deep time, the timing and duration of these isotopic excursions has remained elusive, hampering attempts to link carbon cycle perturbations to specific processes. Here, we report δ13Ccarb and δ13Corg from Late Triassic and Early Jurassic strata near Levanto, Peru, where intercalated dated ash beds permit temporal calibration of the carbon isotope record. Both δ13Ccarb and δ13Corg exhibit a broad positive excursion through the latest Triassic into the earliest Jurassic. The first order positive excursion in δ13Corg is interrupted by a negative shift noted in many sections around the world coincident with the extinction horizon. Our data indicate that the negative excursion lasts 85 ± 25 kyrs, longer than inferred by previous studies based on cyclostratigraphy. A 260 ± 80 kyr positive δ13Corg shift follows, during which the first Jurassic ammonites appear. The overall excursion culminates in a return to pre-perturbation carbon isotopic values over the next 1090 ± 70 kyrs. Via chronologic, isotopic, and biostratigraphic correlation to other successions, we find that δ13Ccarb and δ13Corg return to pre-perturbation values as CAMP volcanism ceases and in association with the recovery of pelagic and benthic biota. However, the initiation of the carbon isotope excursion at Levanto predates the well-dated CAMP sills from North America, indicating that CAMP may have started earlier than thought based on these exposures, or that the onset of carbon cycle perturbations was not related to CAMP.

  20. The roles of ecological first principles and evolutionary contingency in unraveling ecosystem response and reconstruction during the Permian-Triassic transition.

    NASA Astrophysics Data System (ADS)

    Roopnarine, P. D.; Weik, A.; Dineen, A.; Angielczyk, K.

    2016-12-01

    The Permian-Triassic mass extinction (PTME) is the most severe mass extinction recorded in Earth's history. Effects on the biosphere were complicated and often contradictory, e.g. selective species extinctions and exceptional species survival; prolonged miniaturization of some Early Triassic clades but rapid increases of size in others; and both simplified and complex trophic structures in various E. Triassic ecosystems. Here we present the results of a new generalized model of paleocommunity global stability (number of species capable of persistent coexistence in the absence of external perturbation), suggesting that community dynamics in response to species extinction, and the addition of new species in the aftermath of the PTME, is best understood as a complex outcome of predictable community dynamics and contingent, unpredictable evolutionary pathways. We applied the model to the best known PTME transitional terrestrial ecosystem, the Karoo Basin of South Africa. The model verifies previous claims that global stability scales negatively with increasing species richness and the strength of interspecific interactions. We also show that global stability scales negatively with intrinsic population growth rates. Taxon-rich Permian communities could therefore have persisted only under a restricted range of those parameters. Communities during three phases of the PTME, however, exhibited greater global stability than would be predicted from the pre-PTME communities. Those communities could therefore have maintained relative stabilities under a broader range of parameters, implying that species could have adapted by modifying life history and ecological traits with lesser negative consequences to community stability. The earliest post-PTME community with increased species richness, however, was less stable than would be predicted from pre-PTME communities. In both the extinction and aftermath communities, nonlinear deviations from the general scaling of stability

  1. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    USGS Publications Warehouse

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  2. Utilizing borehole electrical images to interpret lithofacies of fan-delta: A case study of Lower Triassic Baikouquan Formation in Mahu Depression, Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Zhang, Changmin; Tang, Yong; Qu, Jianhua; Guo, Xudong; Sun, Yuqiu; Zhu, Rui; Zhou, Yuanquan (Nancy)

    2017-11-01

    Large-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T1b1 and T1b2, but sandstones, siltstones and mudstones are more developed in T1b3. The main sedimentary textures are massive beddings, cross beddings and scour-and-fill structures. Parallel and horizontal beddings are more developed in T1b3 relatively. On integrated analysis of the lithology and sedimentary structure, eight lithofacies from electrical images, referred to as image lithofacies, is established for the fan-deltas. Granules to coarse-pebbles within massive beddings, granules to coarse-pebbles within cross and parallel beddings, siltstones within horizontal and massive beddings are the most developed lithofacies respectively in T1b1, T1b2 and T1b3. It indicates a gradual rise of the lake level of Mahu depression during the Early Triassic, with the fan-delta aprons retrograding towards to the margin of the basin. Therefore, the borehole electrical imaging log compensate for the limitation of cores of the Baikouquan Formation, providing an effective new approach to interpret the lithofacies of fan-delta.

  3. Timing is everything - implications of a new correlation of Triassic-Jurassic boundary successions and the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Lindström, Sofie; van de Schootbrugge, Bas; Pedersen, Gunver K.; Alsen, Peter; Thibault, Nicolas; Hansen, Katrine H.; Dybkjær, Karen; Bjerrum, Christian J.; Nielsen, Lars Henrik

    2017-04-01

    Understanding mass extinctions requires a clear insight into the stratigraphy of boundary sections, which allows for long-distance correlations and correct distinction of the sequence of events. However, even after the ratification of a Global Stratotype Section and Point, global correlations of Triassic-Jurassic boundary (TJB) successions are hampered by the fact that many of the traditionally used fossil groups were severely affected by the end-Triassic mass extinction (ETE). Recently, a new correlation of key TJB successions in Europe, U.S.A. and Peru, based on a combination of biotic (palynology and ammonites), geochemical (δ13Corg) and radiometric (U/Pb ages) constraints, was presented. This new correlation has an impact on the causality and temporal development during the end-Triassic event, as it indicates that the bulk of the hitherto dated, high-titanium, quartz normalized volcanism of the Central Atlantic Magmatic Province (CAMP) preceded or was contemporaneous to the onset of the mass extinction. It further shows that the maximum phase of the mass extinction, which affected both the terrestrial and marine ecosystems, was associated with a major regression and repeated, enhanced earthquake activity in Europe. A subsequent transgression resulted in the formation of hiati or condensed successions in many areas in Europe. Later phases of volcanic activity of the CAMP, producing low titanium, quartz normalized and high-iron, quartz normalized basaltic rocks, continued close to the first occurrence of Jurassic ammonites and the defined TJB. This new correlations enables a reconstruction of the sequence of events; including records of e.g. pCO2 from soil carbonates and plant fossils, rare earth elements, biomarkers, charcoal, which allows an insight into the causality of this biotic crises.

  4. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  5. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades

    PubMed Central

    Rey, Kévin; Amiot, Romain; Fourel, François; Abdala, Fernando; Fluteau, Frédéric; Jalil, Nour-Eddine; Liu, Jun; Rubidge, Bruce S; Smith, Roger MH; Steyer, J Sébastien; Viglietti, Pia A; Wang, Xu; Lécuyer, Christophe

    2017-01-01

    The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (δ18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the δ18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism. DOI: http://dx.doi.org/10.7554/eLife.28589.001 PMID:28716184

  6. Early Executive Function at Age Two Predicts Emergent Mathematics and Literacy at Age Five

    PubMed Central

    Mulder, Hanna; Verhagen, Josje; Van der Ven, Sanne H. G.; Slot, Pauline L.; Leseman, Paul P. M.

    2017-01-01

    Previous work has shown that individual differences in executive function (EF) are predictive of academic skills in preschoolers, kindergartners, and older children. Across studies, EF is a stronger predictor of emergent mathematics than literacy. However, research on EF in children below age three is scarce, and it is currently unknown whether EF, as assessed in toddlerhood, predicts emergent academic skills a few years later. This longitudinal study investigates whether early EF, assessed at two years, predicts (emergent) academic skills, at five years. It examines, furthermore, whether early EF is a significantly stronger predictor of emergent mathematics than of emergent literacy, as has been found in previous work on older children. A sample of 552 children was assessed on various EF and EF-precursor tasks at two years. At age five, these children performed several emergent mathematics and literacy tasks. Structural Equation Modeling was used to investigate the relationships between early EF and academic skills, modeled as latent factors. Results showed that early EF at age two was a significant and relatively strong predictor of both emergent mathematics and literacy at age five, after controlling for receptive vocabulary, parental education, and home language. Predictive relations were significantly stronger for mathematics than literacy, but only when a verbal short-term memory measure was left out as an indicator to the latent early EF construct. These findings show that individual differences in emergent academic skills just prior to entry into the formal education system can be traced back to individual differences in early EF in toddlerhood. In addition, these results highlight the importance of task selection when assessing early EF as a predictor of later outcomes, and call for further studies to elucidate the mechanisms through which individual differences in early EF and precursors to EF come about. PMID:29075209

  7. Early Executive Function at Age Two Predicts Emergent Mathematics and Literacy at Age Five.

    PubMed

    Mulder, Hanna; Verhagen, Josje; Van der Ven, Sanne H G; Slot, Pauline L; Leseman, Paul P M

    2017-01-01

    Previous work has shown that individual differences in executive function (EF) are predictive of academic skills in preschoolers, kindergartners, and older children. Across studies, EF is a stronger predictor of emergent mathematics than literacy. However, research on EF in children below age three is scarce, and it is currently unknown whether EF, as assessed in toddlerhood, predicts emergent academic skills a few years later. This longitudinal study investigates whether early EF, assessed at two years, predicts (emergent) academic skills, at five years. It examines, furthermore, whether early EF is a significantly stronger predictor of emergent mathematics than of emergent literacy, as has been found in previous work on older children. A sample of 552 children was assessed on various EF and EF-precursor tasks at two years. At age five, these children performed several emergent mathematics and literacy tasks. Structural Equation Modeling was used to investigate the relationships between early EF and academic skills, modeled as latent factors. Results showed that early EF at age two was a significant and relatively strong predictor of both emergent mathematics and literacy at age five, after controlling for receptive vocabulary, parental education, and home language. Predictive relations were significantly stronger for mathematics than literacy, but only when a verbal short-term memory measure was left out as an indicator to the latent early EF construct. These findings show that individual differences in emergent academic skills just prior to entry into the formal education system can be traced back to individual differences in early EF in toddlerhood. In addition, these results highlight the importance of task selection when assessing early EF as a predictor of later outcomes, and call for further studies to elucidate the mechanisms through which individual differences in early EF and precursors to EF come about.

  8. Early Children's Literature and Aging

    ERIC Educational Resources Information Center

    McGuire, Sandra L.

    2016-01-01

    Increased longevity is a worldwide phenomenon placing emphasis on the need for preparation for life's later years. Today's children will be the older adults of tomorrow. A resource that can help to educate them about aging and prepare them for the long life ahead is early children's literature (Preschool-Primary). This literature can provide…

  9. The precise temporal calibration of dinosaur origins.

    PubMed

    Marsicano, Claudia A; Irmis, Randall B; Mancuso, Adriana C; Mundil, Roland; Chemale, Farid

    2016-01-19

    Dinosaurs have been major components of ecosystems for over 200 million years. Although different macroevolutionary scenarios exist to explain the Triassic origin and subsequent rise to dominance of dinosaurs and their closest relatives (dinosauromorphs), all lack critical support from a precise biostratigraphically independent temporal framework. The absence of robust geochronologic age control for comparing alternative scenarios makes it impossible to determine if observed faunal differences vary across time, space, or a combination of both. To better constrain the origin of dinosaurs, we produced radioisotopic ages for the Argentinian Chañares Formation, which preserves a quintessential assemblage of dinosaurian precursors (early dinosauromorphs) just before the first dinosaurs. Our new high-precision chemical abrasion thermal ionization mass spectrometry (CA-TIMS) U-Pb zircon ages reveal that the assemblage is early Carnian (early Late Triassic), 5- to 10-Ma younger than previously thought. Combined with other geochronologic data from the same basin, we constrain the rate of dinosaur origins, demonstrating their relatively rapid origin in a less than 5-Ma interval, thus halving the temporal gap between assemblages containing only dinosaur precursors and those with early dinosaurs. After their origin, dinosaurs only gradually dominated mid- to high-latitude terrestrial ecosystems millions of years later, closer to the Triassic-Jurassic boundary.

  10. Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile

    NASA Astrophysics Data System (ADS)

    Hervé, F.; Fanning, C. M.; Pankhurst, R. J.

    2003-05-01

    Zircon SHRIMP U-Pb age patterns are reported for 13 metasedimentary rocks from the low grade metamorphic complexes of the Patagonian Andes. Combined with four recently published patterns, these provide the first detailed survey of the provenance of these complexes. The youngest dated zircons, corresponding to maximum sedimentation ages, are Devonian-Late Triassic in the eastern Andes metamorphic complex, Carboniferous in the main range metamorphic complex, Permian in the Duque de York complex, and Late Triassic in the Chonos metamorphic complex. In the last two cases, these ages are in agreement with their respective fossil ages. Older components in the eastern Andes metamorphic complex include a large proportion of Proterozoic (predominantly 1000-1200 Ma) zircons, which may indicate distribution, probably by rivers, of detrital material from regions currently in northern South America, Africa, or east Antarctica. The abundance of Proterozoic zircons is very much less in the Duque de York complex, possibly because of the rise of an inferred Permian magmatic arc related to the Gondwanan orogeny and consequent westward migration of the watershed. A Late Triassic magmatic episode is registered in the Chonos metamorphic complex, where reappearance of significant Proterozoic zircons indicates exhumation of the cratonic areas or of recycled sedimentary material.

  11. Children of Two to Three Years of Age in France: Early Childhood Settings and Age Divisions

    ERIC Educational Resources Information Center

    Garnier, Pascale; Rayna, Sylvie; Brougère, Gilles; Rupin, Pablo

    2017-01-01

    In a French early childhood care and education system that is strongly divided by age and institution, the current research studies the collective life of children at the pivotal age of two to three years of age in four different early childhood settings: (1) a group of "grands" (nursery) in a "crèche" (daycare centre), (2) a…

  12. A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: Implications for the terrestrial end Triassic extinction

    NASA Astrophysics Data System (ADS)

    Suarez, Celina A.; Knobbe, Todd K.; Crowley, James L.; Kirkland, James I.; Milner, Andrew R. C.

    2017-10-01

    The Late Triassic is a period of abrupt climate change associated with a disruption to the global carbon cycle usually ascribed to the emplacement of the Central Atlantic Magmatic Province (CAMP). Geochronologic, paleontologic, and geochemical studies have shown that the CAMP was likely the major factor for the end-Triassic extinction (ETE), however, difficulties correlating and dating terrestrial strata has left the nature of the terrestrial extinction in question. The lacustrine Whitmore Point Member (WPM) of the Moenave Formation is ideal for investigating these details because it is reported to be Late Triassic to Early Jurassic. However, currently there are conflicting age constraints between biostratigraphy and magnetostratigraphy. In this study we attempt to elucidate the ETE by incorporating C-isotope chemostratigraphy and detrital zircon geochronology. Detrital zircon geochronology suggests the upper part of the Dinosaur Canyon Member (DCM) is younger (201.33 ± 0.07/0.12/0.25 Ma) than the ETE (201.564 Ma) suggesting the ETE is in the middle to lower DCM, in agreement with track biostratigraphy (first occurrence of Eubrontes, Anomoepus, and Batrachopus). Meanwhile a distinct negative carbon isotope (NCIE) excursion (-5.5‰) occurs at the base of the WPM at Potter Canyon, AZ with a more subtle NCIE at the base of the WPM at Black Canyon, UT (-2.0‰) that may correlate to the initial NCIE at the ETE. However, the WPM NCIE is correlated to the preservation of organic C (relative %C) suggesting it may be either related to local lake productivity and biases in organic matter preservation or may be a negative CIE in the Jurassic Hettangian stage. With the addition of the detrital zircon data, we suggest the M2r reversal at the base of the WPM is a reversal in the Hettangian (the H24r, H25r, or H26r) and the ETE is within the DCM. Additional C-isotope analysis of the DCM is necessary to determine if the initial NCIE that is the hallmark of the ETE occurs in

  13. Tectonothermal evolution of the Triassic flysch in the Bayan Har Orogen, Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wang, Hejing; Rahn, Meinert; Zhou, Jian

    2018-01-01

    The Bayan Har Orogen comprises a major part of the "Qingzang-Dianxi fold region" in western China. It preserves important information of the tectono-thermal evolution covering the time span from the closure of the Paleo-Tethys Ocean up to the formation of the Himalayas. Low temperature metamorphic indicators, such as mineral assemblages, illite "crystallinity" (IC), chlorite "crystallinity" (CC), illite polytype, b-cell dimension of K-white micas, geothermometry of selected minerals were analyzed. The values of Kübler index (KI) of the Triassic flysch in the Bayan Har Orogen range from 0.23-1.63°Δ2θ while Árkai index (ÁI) in a range of 0.21-0.60°Δ2θ. Iso-thermal zones mapped with KI describe a pair of anchizones and an anchiregion within the Bayan Har Orogen: the "Giant Yushu Anchizone" in the southwest (extending > 750 km long and 100 km wide), the "Zaling-Eling-Lakes Anchizone" in the center (about 150 km long and 40 km wide) and the "Xing-Tong-Zhe Anchiregion" in the northeast (covering an area of roughly 60,000 km2). They are separated by diagenetic zones. Peak metamorphic conditions are estimated around 280-330 °C and a low to intermediate (N. New Hampshire) pressure type. A slight change with increasing then decreasing pressure was observed from SW to NE. The relationship between anchimetamorphic pattern of Triassic flysch and large-scale folds and faults indicates syn- to post structural metamorphism. Compression at the end of the Triassic, induced by the interaction of the Tarim, North China and Indian blocks caused the closure of the Paleo-Tethys Ocean and led to the folding of the Triassic flysch within the Paleo-Tethys Ocean basin. Anchimetamorphism may have been caused by crustal thickening of > 10 km due to an accretionary wedge setting and a temperature increase in those rocks due to burial. Such a regional metamorphic pattern would provide important information for reconstruction of palaeotectonic-palaeogeograph and the evolutionary history

  14. Successful Aging: Early Influences and Contemporary Characteristics

    ERIC Educational Resources Information Center

    Pruchno, Rachel A.; Wilson-Genderson, Maureen; Rose, Miriam; Cartwright, Francine

    2010-01-01

    Purpose: Positing that successful aging has independent, yet related, dimensions that are both objective and subjective, we examine how early influences and contemporary characteristics define 4 groups of people. Design and Methods: Data were gathered from 5,688 persons aged 50-74 years living in New Jersey who participated in telephone…

  15. Applying tracer techniques to determine recharge rate, groundwater age and travel times in Permo-Triassic sandstones.

    NASA Astrophysics Data System (ADS)

    Butcher, Andrew; Gallagher, Alexander; Darling, W. George; Gooddy, Daren; Burke, Sean

    2010-05-01

    The Eden Valley in East Cumbria is underlain by Permo-Triassic sandstone, the major aquifer in Northwest England. Rising nitrate trends in some boreholes has prompted collaborative research into flow systems and timescales in the area. The use of slurry and artificial fertilisers following agricultural intensification during the 1980s is believed to be responsible for the rise in nitrate concentrations. The broad aim of this research is to enable prediction of future nitrate concentrations at abstraction boreholes and in groundwater discharge to surface water. The approach taken has been to study groundwater processes along a 4km transect (approximating a groundwater flowline) in order to estimate groundwater travel timescales through the sandstone and thin superficial Till . A combination of porewater sampling during borehole coring, discrete interval sampling using a borehole packer system, geophysical logging and imaging were employed to develop physical and hydrochemical profiles. Separate tracer techniques were used to estimate recharge rates at different parts of the transect. Tracers used were: deuterium and bromide through Till, nitrate, chloride and tritium through the unsaturated zone and CFCs and SF6 within the saturated zone. Tracer profiles in Till demonstrated a correspondence between Till thickness, type of cultivation and recharge rate. In the thick unsaturated zone of the sandstone they suggested relatively rapid groundwater recharge rates. Key fractures or fracture zones in the saturated sandstone were identified and sampled. The hydrochemistry (particularly nitrate) of samples from discrete intervals in the profiles exhibited a remarkably good relationship with the proportion of modern water (and year of recharge) for example, the age of groundwater increasing to c. 1950 towards the bottom of a 90m borehole. This work demonstrates that the combination of discrete sampling and dating of groundwater is a powerful tool in characterising groundwater

  16. A hyper-robust sauropodomorph dinosaur ilium from the Upper Triassic-Lower Jurassic Elliot Formation of South Africa: Implications for the functional diversity of basal Sauropodomorpha

    NASA Astrophysics Data System (ADS)

    McPhee, Blair W.; Choiniere, Jonah N.

    2016-11-01

    It has generally been held that the locomotory habits of sauropodomorph dinosaurs moved in a relatively linear evolutionary progression from bipedal through "semi-bipedal" to the fully quadrupedal gait of Sauropoda. However, there is now a growing appreciation of the range of locomotory strategies practiced amongst contemporaneous taxa of the latest Triassic and earliest Jurassic. Here we present on the anatomy of a hyper-robust basal sauropodomorph ilium from the Late Triassic-Early Jurassic Elliot Formation of South Africa. This element, in addition to highlighting the unexpected range of bauplan diversity throughout basal Sauropodomorpha, also has implications for our understanding of the relevance of "robusticity" to sauropodomorph evolution beyond generalized limb scaling relationships. Possibly representing a unique form of hindlimb stabilization during phases of bipedal locomotion, the autapomorphic morphology of this newly rediscovered ilium provides additional insight into the myriad ways in which basal Sauropodomorpha managed the inherited behavioural and biomechanical challenges of increasing body-size, hyper-herbivory, and a forelimb primarily adapted for use in a bipedal context.

  17. Late Triassic granitic rocks of the Central Qiangtang Orogenic Belt, northern Tibet: tracing crustal thickening through post-collisional silicic magmatism

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, J.

    2017-12-01

    The Central Qiangtang Orogenic Belt (CQOB) was formed through Triassic continental collision between the Southern and Northern Qiangtang terranes. Numerous granitic intrusions occur along the CQOB, forming a Late Triassic granitic belt that stretches 1000 km from west to east. This Central Qiangtang granitic belt was believed to constitute most of the CQOB. Therefore, the CQOB thus provides a typical composite orogen for the study of relationships between granitoid magmatism and orogenic processes. Recently, many studies have been carried out, and the close relationship of the magmatic belt with the evolutionary history of the CQOB is well established. Late Triassic intrusive rocks are widely exposed in the Riwanchaka area of Central Qiangtang, northern Tibet. In this study, new U-Pb zircon ages reveal that Late Triassic magmatism in Riwanchaka took place at ca 225-205 Ma, coeval with exhumation of the metamorphic rocks in Central Qiangtang. Our new and previously published data enable us to correlate the subduction-related volcanic arc rocks in the Riwanchaka area to a post-collisional extension setting related to slab break-off during northward subduction of the Paleo-Tethys Ocean seafloor. Geochemical characteristics suggested that the samples from CQOB can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios and (La/Yb)N (chondrite-normalized) ratios. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The crustal structure and evolution of the CQOB are considered on the basis of available data and variations in Sr/Y, La/Yb, and Hf isotopic ratios. Temporal geochemical and Hf isotopic changes, diagnostic of crustal thickening, indicate that the CQOB was greatly

  18. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  19. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Xun; Ma, Chang-Qian; Lai, Zhong-Xin; Marks, Michael A. W.; Zhang, Chao; Zhong, Yu-Fang

    2015-12-01

    A comprehensive study on zircon U-Pb age dating, whole-rock geochemistry and Sr-Nd isotope data has been conducted on the mafic rocks of the Xiazhuang uranium ore district and adjacent regions in South China. Based on field work and petrographic features, three rock types (the Kuzhukeng gabbro, the WNW-trending dolerite dykes and the NNE-trending lamprophyre dykes) are distinguished. Early Jurassic SHRIMP and LA-ICPMS ages of zircon for the Kuzhukeng gabbro (198 ± 1 Ma) and WNW-trending dolerite dykes (193 ± 4 Ma) have been obtained, which are 50 Ma older than previously thought (being Cretaceous). These geochronologic data provide new evidence for the rarely identified Early Jurassic magmatisms in South China. Whole-rock geochemical data for the Kuzhukeng gabbro and WNW-trending dolerite dykes are similar, both of which being higher in FeO and TiO2 but lower in SiO2 and K2O than the NNE-trending lamprophyre dykes. Trace element characteristics and Sr-Nd isotope data indicate arc-like signatures similar to the Cretaceous southeast coast basalts of China for the lamprophyre dykes, but an OIB-like geochemical affinity for the high-TiO2 mafic rocks similar to the Permo/Triassic Emeishan flood basalts and the Middle Jurassic Ningyuan alkaline basalts. We propose that the lamprophyre dykes formed in an arc volcanic system driven by the subduction of the paleo-Pacific plate. In contrast, the Kuzhukeng gabbro and associated dolerite dykes record the post-orogenic (Indosinian) extension event in the Tethyan tectonic regime. This further implies that the Indosinian extension may have lasted until the Early Jurassic, and therefore, the subduction of the paleo-Pacific plate in south China was probably later than this period. Most U deposits of the Xiazhuang area are located at the intersection between the WNW-trending dolerite dykes and the NNE-trending faults within the Triassic granites of eastern Guidong complex, South China. Previous metallogenesis studies assumed that

  20. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zheng, J.; Wang, B.

    2017-12-01

    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  1. Milankovitch cyclicity in the paleotropical, fluvial, Late Triassic age strata recovered by the Colorado Plateau Coring Project (CPCP)

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Mundil, R.; Kent, D.; Rasmussen, C.

    2017-12-01

    Two questions addressed by the CPCP are: 1) is Milankovitch-paced climate cyclicity recorded in the fluvial Late Triassic age Chinle Formation ( 227-202 Ma); and 2) do geochronological data from the Chinle support the Newark-Hartford astrochronological polarity time scale (1) (APTS). To these ends we examined the upper 157 m (stratigraphic thickness) of Petrified Forest National Park core 1A (Owl Rock, Petrified Forest, and upper Sonsela members), consisting mostly of massive red paleosols and less important fluvial sandstones. A linear age model tied to new U-Pb zircon CA ID-TIMS dates from core 1A, consistent with published data from outcrop (2), yields a duration of about 5 Myr for this interval. Magnetic susceptibility variations, interpreted as reflecting penecontemporaneous soil and sandstone redox conditions, show a clear 12 m cycle corresponding to a 400 kyr cycle based on Fourier analysis in both core and hole. Similar cyclicity is apparent in spectrophotometric data, largely reflecting hematite variability. Weak, higher frequency cycles are present consistent with 100 kyr variability. There is no interpretable 20 kyr signal. Such cyclicity is not an anticipated direct effect of Milankvitch insolation variations, but must reflect non-linear integration of variability that changes dramatically at the eccentricity-scale, brought about by the sedimentary and climate systems. Our results support a direct 405 kyr-level correlation between the fluvial medial Chinle and lacustrine Newark Basin section (middle Passaic Formation), consistent with new and published (3) paleomagnetic polarity stratigraphy from the Chinle, showing that the Milankovitch eccentricity cycles are recorded in lower accumulation rate fluvial systems. Our results also independently support the continuity of the Newark Basin section and corroborate the Newark-Hartford APTS, not allowing for a multi-million year hiatus in the Passaic Formation, as has been asserted (4). We anticipate further

  2. New mayfly genera from the Middle Triassic of Poland and their evolutionary and paleogeographic implications (Ephemerida: Litophlebiidae, Vogesonymphidae).

    PubMed

    Sinitshenkova, Nina D; Aristov, Daniil S; Wegierek, Piotr; Żyła, Dagmara

    2015-04-24

    Two new mayfly genera and species from the Triassic deposits of the Pałęgi area (southeast Poland) are described. This is the first description of aquatic insects from the Pałęgi locality. Triassolitophlebia palegica gen. et sp. nov. (Litophlebiidae) is established on the basis of an isolated forewing. This is the first finding of this family in the Northern Hemisphere, known previously only from the Molteno Formation (South Africa). This is also the first mayfly family from the Triassic which has been found in both Hemispheres, providing additional evidence of the presumed similarity of aquatic insect faunas in the Southern and Northern Hemispheres during the Triassic. The consistent wing venation of ancient mayflies with homonomous wings could be evidence that they originated from the same ancestor. The second new mayfly, Palegonympha triassica gen. et sp. nov. (Vogesonymphidae), is described on the basis of a single fossil nymph (imprint of the exuviae) and indicates the similarity of the Pałęgi arthropod assemblage to that described from the Middle Triassic of France. The presence of a mayfly nymph in the last instar stage suggests not only that the Pałęgi deposit represents a fluvial environment with well-oxygenated and limpid water but also that these conditions lasted long enough to allow for such development.

  3. A Unique Late Triassic Dinosauromorph Assemblage Reveals Dinosaur Ancestral Anatomy and Diet.

    PubMed

    Cabreira, Sergio Furtado; Kellner, Alexander Wilhelm Armin; Dias-da-Silva, Sérgio; Roberto da Silva, Lúcio; Bronzati, Mario; Marsola, Júlio Cesar de Almeida; Müller, Rodrigo Temp; Bittencourt, Jonathas de Souza; Batista, Brunna Jul'Armando; Raugust, Tiago; Carrilho, Rodrigo; Brodt, André; Langer, Max Cardoso

    2016-11-21

    Dinosauromorpha includes dinosaurs and other much less diverse dinosaur precursors of Triassic age, such as lagerpetids [1]. Joint occurrences of these taxa with dinosaurs are rare but more common during the latest part of that period (Norian-Rhaetian, 228-201 million years ago [mya]) [2, 3]. In contrast, the new lagerpetid and saurischian dinosaur described here were unearthed from one of the oldest rock units with dinosaur fossils worldwide, the Carnian (237-228 mya) Santa Maria Formation of south Brazil [4], a record only matched in age by much more fragmentary remains from Argentina [5]. This is the first time nearly complete dinosaur and non-dinosaur dinosauromorph remains are found together in the same excavation, clearly showing that these animals were contemporaries since the first stages of dinosaur evolution. The new lagerpetid preserves the first skull, scapular and forelimb elements, plus associated vertebrae, known for the group, revealing how dinosaurs acquired several of their typical anatomical traits. Furthermore, a novel phylogenetic analysis shows the new dinosaur as the most basal Sauropodomorpha. Its plesiomorphic teeth, strictly adapted to faunivory, provide crucial data to infer the feeding behavior of the first dinosaurs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): Paleogeographic constraints from U-Pb-Hf in zircons

    NASA Astrophysics Data System (ADS)

    Abbo, Avishai; Avigad, Dov; Gerdes, Axel; Güngör, Talip

    2015-06-01

    The Tauride block in Turkey is a peri-Gondwana, Cadomian-type terrane that rifted from the Afro-Arabian margin of Gondwana in the Permo-Triassic and re-accreted to Arabia in the Neogene. In the Karacahisar dome in the southern-central Taurides, Neoproterozoic basement metasediments and intrusive rocks are overlain by Cambro-Ordovician, Carboniferous and Triassic sediments. We studied U-Pb-Hf in zircons from major rock units exposed in Karacahisar in order to constrain the Cadomian crustal evolution of the Taurides, to evaluate the provenance of the Neoproterozoic and overlying sediments, to constrain the paleogeography of the Taurides, and to assess their linkage to Gondwana. The Neoproterozoic metasediments are low-grade metamorphic wacke-type turbidites that evolved in a broad back-arc basin peripheral to Afro-Arabia. Their detrital zircon U-Pb signal comprises a preponderance (40-68%) of Neoproterozoic-aged zircons (peak ages defined at 635 and 830 Ma), indicating that the sedimentary pile was built mainly from the erosion of Pan-African terranes from Afro-Arabia. The εHf values of the younger population (635 Ma) are mostly positive, indicating derivation from a juvenile arc, whereas Cryogenian-Tonian detrital zircons spread vertically (- 25 < εHf < 15), indicating a different provenance where mixing of juvenile magmas with Paleoproterozoic to Neoarchean crust was widespread. An unusually high proportion of pre-Neoproterozoic zircons is found in all Cadomian metasediments, including up to 31% Grenvillian-aged (ca. 1.0 Ga) and up to 35% of ca. 2.5 Ga zircons; about a third of the latter possess positive εHf values. Because only minor exposures of 1.0 and 2.5 Ga crustal vestiges are currently known in North Africa and Arabia, we infer that pre-Neoproterozoic terranes were dispersed within the Cadomian realm itself. The youngest detrital zircons in all Cadomian metasediments concentrate at 0.58 Ga, indicating that the proto-Cadomian back-arc basin was formed

  5. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    PubMed

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  6. Key goals and indicators for successful aging of adults with early-onset disability.

    PubMed

    LaPlante, Mitchell P

    2014-01-01

    Substantial improvements have occurred in the longevity of several groups of individuals with early-onset disabilities, with many now surviving to advanced ages. This paper estimates the population of adults aging with early-onset disabilities at 12-15 million persons. Key goals for the successful aging of adults with early-onset disabilities are discussed, emphasizing reduction in risks for aging-related chronic disease and secondary conditions, while promoting social participation and independence. However, indicators suggest that elevated risk factors for aging-related chronic diseases, including smoking, obesity, and inactivity, as well as barriers to prevention and the diminished social and economic situation of adults with disabilities are continuing impediments to successful aging that must be addressed. Increased provider awareness that people with early-onset disabilities are aging and can age successfully and the integration of disability and aging services systems are transformative steps that will help adults with early-onset disability to age more successfully. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The metallogeny of Late Triassic rifting of the Alexander terrane in southeastern Alaska and northwestern British Columbia

    USGS Publications Warehouse

    Taylor, C.D.; Premo, W.R.; Meier, A.L.; Taggart, J.E.

    2008-01-01

    A belt of unusual volcanogenic massive sulfide (VMS) occurrences is located along the eastern margin of the Alexander terrane throughout southeastern Alaska and northwestern British Columbia and exhibits a range of characteristics consistent with a variety of syngenetic to epigenetic deposit types. Deposits within this belt include Greens Creek and Windy Craggy, the economically most significant VMS deposit in Alaska and the largest in North America, respectively. The occurrences are hosted by a discontinuously exposed, 800-km-long belt of rocks that consist of a 200- to 800-m-thick sequence of conglomerate, limestone, marine elastic sedimentary rocks, and tuff intercalated with and overlain by a distinctive unit of mafic pyroclastic rocks and pillowed flows. Faunal data bracket the age of the host rocks between Anisian (Middle Triassic) and late Norian (late Late Triassic). This metallogenic belt is herein referred to as the Alexander Triassic metallogenic belt. The VMS occurrences show systematic differences in degree of structural control, chemistry, and stratigraphic setting along the Alexander Triassic metallogenic belt that suggest important spatial or temporal changes in the tectonic environment of formation. At the southern end of the belt, felsic volcanic rocks overlain by shallow-water limestones characterize the lower part of the sequence. In the southern and middle portion of the belt, a distinctive pebble conglomerate marks the base of the section and is indicative of high-energy deposition in a near slope or basin margin setting. At the northern end of the belt the conglomerates, limestones, and felsic volcanic rocks are absent and the belt is composed of deep-water sedimentary and mafic volcanic rocks. This northward change in depositional environment and lithofacies is accompanied by a northward transition from epithermal-like structurally controlled, discontinuous, vein- and pod-shaped, Pb-Zn-Ag-Ba-(Cu) occurrences with relatively simple mineralogy

  8. Early-life inflammation, immune response and ageing.

    PubMed

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  9. Early-life inflammation, immune response and ageing

    PubMed Central

    2017-01-01

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. PMID:28275145

  10. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath

    NASA Astrophysics Data System (ADS)

    Chen, Zhong-Qiang; Tong, Jinnan; Liao, Zhuo-Ting; Chen, Jing

    2010-08-01

    The Permian/Triassic (P/Tr) transition is ecologically assessed based on examining 23 shelly communities from five shallow platform, ramp and shelf basin facies Permian-Triassic boundary (PTB) sections in South China. The shelly communities have undergone two major collapses coinciding with the two episodes of the end-Permian mass extinction. The first P/Tr extinction event devastated shelly communities in all types of settings to some extent. The basin communities have been more severely impacted than both platform and ramp communities. The survival faunas have rebounded more rapidly in shallow niches than in relatively deep habitats. The second P/Tr crisis destroyed the survival communities in shallow setting and had little impact on the basin communities in terms of community structures. The early Griesbachian communities are overall low-diversity and high-dominance. The governorship switch from brachiopods to bivalves in marine communities has been facilitated by two pulses of the end-Permian mass extinction and the whole takeover process took about 200 ka across the P/Tr boundary. Bivalve ecologic takeover initially occurred immediately after the first P/Tr extinction in shallow water habitats and was eventually completed in all niches after the second P/Tr event. Some post-extinction communities have the irregular rarefaction curves due to the unusual community structures rather than sampling intensities.

  11. Mobile Learning and Early Age Mathematics

    ERIC Educational Resources Information Center

    Peled, Shir; Schocken, Shimon

    2014-01-01

    The ability to develop engaging simulations and constructive learning experiences using mobile devices is unprecedented, presenting a disruption in educational practices of historical proportions. In this paper we describe some of the unique virtues that mobile learning hold for early age mathematics education. In particular, we describe how…

  12. Small head circumference at birth and early age at adiposity rebound.

    PubMed

    Eriksson, J G; Kajantie, E; Lampl, M; Osmond, C; Barker, D J P

    2014-01-01

    The adiposity rebound is the age in childhood when body mass index is at a minimum before increasing again. The age at rebound is highly variable. An early age is associated with increased obesity in later childhood and adult life. We have reported that an early rebound is predicted by low weight gain between birth and 1 year of age and resulting low body mass index at 1 year. Here, we examine whether age at adiposity rebound is determined by influences during infancy or is a consequence of foetal growth. Our hypothesis was that measurements of body size at birth are related to age at adiposity rebound. Longitudinal study of 2877 children born in Helsinki, Finland, during 1934-1944. Early age at adiposity rebound was associated with small head circumference and biparietal diameter at birth, but not with other measurements of body size at birth. The mean age at adiposity rebound rose from 5.8 years in babies with a head circumference of ≤33 cm to 6.2 in babies with a head circumference of >36 cm (P for trend = 0.007). The association between thinness in infancy and early rebound became apparent at 6 months of age. It was not associated with adverse living conditions. In a simultaneous regression, small head circumference at birth, high mother's body mass index and tall maternal stature each had statistically significant trends with early adiposity rebound (P = 0.002, <0.001, 0.004). We hypothesize that the small head size at birth that preceded an early adiposity rebound was the result of inability to sustain a rapid intra-uterine growth trajectory initiated in association with large maternal body size. This was followed by catch-up growth in infancy, and we hypothesize that this depleted the infant's fat stores. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Origin and geodynamic significance of the early Mesozoic Weiya LP and HT granulites from the Chinese Eastern Tianshan

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Juan; He, Zhen-Yu; Zhang, Ze-Ming; Klemd, Reiner; Xiang, Hua; Tian, Zuo-Lin; Zong, Ke-Qing

    2015-12-01

    The Chinese Tianshan in the southwestern part of the Central Asian Orogenic Belt (CAOB) is characterized by a variety of high-grade metamorphic rocks, which provide critical constraints for understanding the geodynamic evolution of the CAOB. In this paper, we present detailed petrological and zircon U-Pb geochronological studies of the Weiya low-pressure and high-temperature (LP-HT) granulites of the Chinese Eastern Tianshan. These granulites were previously considered to be a product of a regional metamorphic orogenic event. Due to different bulk-rock chemistries the Weiya granulites, which occur as lenses within the contact metamorphic aureole of the Weiya granitic ring complex, have a variety of felsic-pelitic and mafic granulites with different textural equilibrium mineral assemblages including garnet-cordierite-sillimanite-bearing granulites, cordierite-sillimanite-bearing granulites, cordierite-orthopyroxene-bearing granulites, and orthopyroxene-clinopyroxene-bearing granulites. Average P-T thermobarometric calculations and conventional geothermobarometry indicates that the Weiya granulites underwent early prograde metamorphism under conditions of 600-650 °C at 3.2-4.2 kbar and peak metamorphism of 750-840 °C at 2.9-6.3 kbar, indicating a rather high geothermal gradient of ca. 60 °C/km. Zircon U-Pb LA-ICP-MS dating revealed metamorphic ages between 244 ± 1 to 237 ± 3 Ma, which are in accordance with the crystallization age of the Weiya granitic ring complex. We suggest that the formation of the Weiya granulites was related to contemporaneous granitic magmatism instead of a regional metamorphic orogenic event. In addition, a Late Devonian metamorphic age of ca. 380 Ma was recorded in zircon mantle domains from two pelitic samples which is consistent with the metamorphic age of the Xingxingxia metamorphic complex in the Chinese Eastern Tianshan. This suggests that the mantle domains of the zircon grains of the Weiya granulites probably formed during the

  14. Large-Diameter Burrows of the Triassic Ischigualasto Basin, NW Argentina: Paleoecological and Paleoenvironmental Implications

    PubMed Central

    Colombi, Carina E.; Fernández, Eliana; Currie, Brian S.; Alcober, Oscar A.; Martínez, Ricardo; Correa, Gustavo

    2012-01-01

    Large-diameter ichnofossils comprising three morphotypes have been identified in the Upper Triassic Ischigualasto and Los Colorados formations of northwestern Argentina. These burrows add to the global record of the early appearance of fossorial behavior during early Mesozoic time. Morphotypes 1 and 2 are characterized by a network of tunnels and shafts that can be assigned to tetrapod burrows given similarities with previously described forms. However, differences in diameter, overall morphology, and stratigraphic occurrence allow their independent classification. Morphotype 3 forms a complex network of straight branches that intersect at oblique angles. Their calcareous composition and surface morphology indicate these structures have a composite biogenic origin likely developed due to combined plant/animal interactions. The association of Morphotypes 1 and 2 with fluvial overbank lithologies deposited under an extremely seasonal arid climate confirms interpretations that the early appearance of burrowing behavior was employed by vertebrates in response to both temperature and moisture-stress associated with seasonally or perpetually dry Pangean paleoclimates. Comparisons of burrow morphology and biomechanical attributes of the abundant paleovertebrate fauna preserved in both formations permit interpretations regarding the possible burrow architects for Morphotypes 1 and 2. In the case of the Morphotype 1, the burrow constructor could be one of the small carnivorous cynodonts, Ecteninion or Probelesodon. Assigning an architect for Morphotype 2 is more problematic due to mismatches between the observed burrow morphology and the size of the known Los Colorados vertebrates. PMID:23227195

  15. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen

    NASA Astrophysics Data System (ADS)

    Cao, Kai; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Zhang, Ke-Xin

    2015-12-01

    How and when the northwestern Tibetan Plateau originated and developed upon pre-existing crustal and topographic features is not well understood. To address this question, we present an integrated analysis of detrital zircon U-Pb and fission-track double dating of Cenozoic synorogenic sediments from the Kekeya and Sanju sections in the southwestern Tarim Basin. These data help establishing a new chronostratigraphic framework for the Sanju section and confirm a recent revision of the chronostratigraphy at Kekeya. Detrital zircon fission-track ages present prominent Triassic-Early Jurassic (∼250-170 Ma) and Early Cretaceous (∼130-100 Ma) static age peaks, and Paleocene-Early Miocene (∼60-21 Ma) to Eocene-Late Miocene (∼39-7 Ma) moving age peaks, representing source exhumation. Triassic-Early Jurassic static peak ages document unroofing of the Kunlun terrane, probably related to the subduction of Paleotethys oceanic lithosphere. In combination with the occurrence of synorogenic sediments on both flanks of the Kunlun terrane, these data suggest that an ancient West Kunlun range had emerged above sea level by Triassic-Early Jurassic times. Early Cretaceous fission-track peak ages are interpreted to document exhumation related to thrusting along the Tam Karaul fault, kinematically correlated to the Main Pamir thrust further west. Widespread Middle-Late Mesozoic crustal shortening and thickening likely enhanced the Early Mesozoic topography. Paleocene-Early Eocene fission-track peak ages are presumably partially reset. Limited regional exhumation indicates that the Early Cenozoic topographic and crustal pattern of the West Kunlun may be largely preserved from the Middle-Late Mesozoic. The Main Pamir-Tam Karaul thrust belt could be a first-order tectonic feature bounding the northwestern margin of the Middle-Late Mesozoic to Early Cenozoic Tibetan Plateau. Toward the Tarim basin, Late Oligocene-Early Miocene steady exhumation at a rate of ∼0.9 km/Myr is likely

  16. Lattice Modeling of Early-Age Behavior of Structural Concrete.

    PubMed

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M; Bolander, John E

    2017-02-25

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential.

  17. Lattice Modeling of Early-Age Behavior of Structural Concrete

    PubMed Central

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M.; Bolander, John E.

    2017-01-01

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential. PMID:28772590

  18. U-Pb ages and metamorphic evolution of the La Pampa Gneisses: Implications for the evolution of the Chilenia Terrane and Permo-Triassic tectonics of north Central Chile

    NASA Astrophysics Data System (ADS)

    Álvarez, Javier; Mpodozis, Constantino; Blanco-Quintero, Idael; García-Casco, Antonio; Arriagada, César; Morata, Diego

    2013-11-01

    The La Pampa Gneisses are an enclave of orthogneisses emplaced within late Paleozoic to Triassic granitoids of the Chollay Batholith, in the Cordillera Frontal, to the east of Vallenar. Previous geochronological data (a Rb/Sr “errorchron” of 415 ± 4 Ma) allowed to some authors to suggest that these rocks were part of the Chilenia Terrane accreted to Gondwana during the Middle Devonian (ca. 390 Ma). New petrographic, chemical and geothermobarometric studies, together with U-Pb geochronological data show that the protolith of the La Pampa Gneisses derives from peraluminous tonalites emplaced during the Pennsylvanian at 306.5 ± 1.8 Ma, ruling out the hypothesis considering these rocks as remnant of the pre-collisional Chilenia basement. The tonalites were metamorphosed between 5.06 and 5.58 kbar and 709-779 °C during the middle Permian (267.6 ± 2.1 Ma), possibly in conjunction with the San Rafael tectonic event and the emplacement of the oldest granitoids of the Chollay Batholith. A new intrusive episode occurred at ca. 240 Ma, followed by exhumation and cooling during a regional Triassic extensional episode.

  19. Carbonate "Clumped" Isotope Determination of Seawater Temperature During the End-Triassic Extinction Event

    NASA Astrophysics Data System (ADS)

    Gammariello, R. T., Jr.; Petryshyn, V. A.; Ibarra, Y.; Greene, S. E.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.

    2014-12-01

    Stromatolites are laminated sedimentary structures that are commonly thought to be created by cyanobacteria, either through the trapping and binding of sediment, or through metabolically-induced precipitation. However, stromatolite formation is poorly understood. In general, stromatolite abundance was higher in the Proterozoic than the Phanerozoic, but notable increases in stromatolite abundance occur in association with Phanerozoic mass extinction events. Here, we focus on stromatolites from the latest Triassic Cotham Marble (United Kingdom) that are associated with the extinction interval. The end-Triassic mass extinction is coincident with large-scale volcanism in the Central Atlantic Magmatic Province (CAMP) and the associated breakup of Pangea. Some hypothesize that CAMP-associated increases in atmospheric CO2 led to a rise in global temperatures and ocean acidification that caused or enhanced the extinction. In order to quantify the role of climate change with respect to the end-Triassic mass extinction, we applied the carbonate "clumped" isotope paleothermometer to the well-preserved Cotham Marble stromatolites. The stromatolites were deposited in the shallow Tethys Sea, and today occur in several localities across the southwestern UK. The stromatolites alternate on the cm scale between laminated and dendrolitic microstructures and each was microdrilled for clumped isotope analysis. The two microstructures display different temperatures of formation, where the dendrolitic portions apparently grew under cooler conditions than laminated layers, and younger layers grew in cooler conditions than older layers. Our results suggest that temperature fluctuated and potentially trended towards amelioration of the warm temperatures during the deposition of the Cotham Marble.

  20. Parallel δ 13C and Conifer Physiognomic Trends Across the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Olsen, P. E.; Sambrotto, R. N.; Cornet, B.

    2003-12-01

    The Triassic-Jurassic mass extinction event ( ˜200 Ma) had a profound effect on biotic evolution, and herein we describe trends in cheirolepidaceous conifer leaf physiognomy from the Pangean tropics (present northeastern USA) that at least broadly parallel a negative δ 13C excursion recorded in the same strata. The physiognomic changes appear at an abrupt (<10 ky) negative carbon isotope excursion (1) synchronous with a previously described palynological extinction level, fern spike, and Ir anomaly (2), and continue through a prolonged negative excursion, lasting 900 ky (through all three CAMP basaltic extrusive events), encompassing most of the Hettangian age. The physiognomic changes seen in the cheirolepidaceous conifer leafy shoot forms Brachyphyllum and Pagiophyllum through the δ 13C excursions include primarily the development of microphyllous leaves with thickened cuticle and sunken papillate stomata (3). These floral modifications are consistent with intense thermal stress plausibly due to very high atmospheric CO2 concentrations and corroborate McElwain's (4) thermal damage hypothesis for the Triassic-Jurassic transition that was originally based on different plant taxa from the higher Pangean latitudes in present Greenland and Sweden. Subsequently, a 2- to 5-fold increase in the area of leafy shoots in strata of latest Hettangian age suggest a return to lower thermal stress levels perhaps due to lower CO2, despite the fact that eastern North America continued to drift into more arid latitudes. The floral physiognomic changes associated with the negative δ 13C excursion and likely very elevated CO2 levels is in many ways a microcosm of the Mesozoic in which the dominance of cheiroleps apparently overlaps with the highest CO2 levels of the Mesozoic (5). References. (1) Whiteside JH, Olsen PE, Sambrotto RN. 2003. Geol. Soc. Amer. Abst. Prog. (in press). (2) Olsen PE et al., Science 296:1305-1307 (3) Cornet B. 1989. in Olsen PE, Schlische RW, Gore PJW

  1. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  2. Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction

    PubMed Central

    2018-01-01

    The Permian–Triassic mass extinction (PTME) had an enormous impact on life in three ways: by substantially reducing diversity, by reshuffling the composition of ecosystems and by expelling life from the tropics following episodes of intense global warming. But was there really an ‘equatorial tetrapod gap', and how long did it last? Here, we consider both skeletal and footprint data, and find a more complex pattern: (i) tetrapods were distributed both at high and low latitudes during this time; (ii) there was a clear geographic disjunction through the PTME, with tetrapod distribution shifting 10–15° poleward; and (iii) there was a rapid expansion phase across the whole of Pangea following the PTME. These changes are consistent with a model of generalized migration of tetrapods to higher latitudinal, cooler regions, to escape from the superhot equatorial climate in the earliest Triassic, but the effect was shorter in time scale, and not as pronounced as had been proposed. In the recovery phase following the PTME, this episode of forced range expansion also appears to have promoted the emergence and radiation of entirely new groups, such as the archosaurs, including the dinosaurs. PMID:29321300

  3. Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction.

    PubMed

    Bernardi, Massimo; Petti, Fabio Massimo; Benton, Michael J

    2018-01-10

    The Permian-Triassic mass extinction (PTME) had an enormous impact on life in three ways: by substantially reducing diversity, by reshuffling the composition of ecosystems and by expelling life from the tropics following episodes of intense global warming. But was there really an 'equatorial tetrapod gap', and how long did it last? Here, we consider both skeletal and footprint data, and find a more complex pattern: (i) tetrapods were distributed both at high and low latitudes during this time; (ii) there was a clear geographic disjunction through the PTME, with tetrapod distribution shifting 10-15° poleward; and (iii) there was a rapid expansion phase across the whole of Pangea following the PTME. These changes are consistent with a model of generalized migration of tetrapods to higher latitudinal, cooler regions, to escape from the superhot equatorial climate in the earliest Triassic, but the effect was shorter in time scale, and not as pronounced as had been proposed. In the recovery phase following the PTME, this episode of forced range expansion also appears to have promoted the emergence and radiation of entirely new groups, such as the archosaurs, including the dinosaurs. © 2018 The Authors.

  4. [Immune system aging rate in patients with early forms of chronic cerebrovascular diseases].

    PubMed

    Kochetkova, N G; Al'tman, D Sh; Teplova, S N

    2009-01-01

    Using the Bioage and Snake software the immune and cardiovascular system aging rate was diagnosed in patients having early forms of chronic cerebrovascular diseases (CCVD). The indicators of biological, cardiopulmonary and immunological age were studied in patients showing early symptoms of cerebrovascular insufficiency and dyscirculatory encephalopathy of the 1st stage. The rate of age-dependent physiological changes was diagnosed compared to general body aging rate. Some specific patterns of immune system aging were found in patients with early forms of CCVDs, the cardinal aging symptoms (heterotropia, heterochronia) were verified.

  5. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province.

    PubMed

    Blackburn, Terrence J; Olsen, Paul E; Bowring, Samuel A; McLean, Noah M; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, E Troy; Et-Touhami, Mohammed

    2013-05-24

    The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way.

  6. Corrected Paleolatitudes for Pangea in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Kent, D.; Tauxe, L.

    2004-12-01

    A series of continental basins that developed during rifting of the Pangea supercontinent in the early Mesozoic are now distributed along the margins of the North Atlantic and their preserved contents (mainly redbeds and CAMP basalts) have often been targets of paleomagnetic studies. A continuous record of paleolatitudinal drift and a geomagnetic polarity time scale for ~35 Myr of the Late Triassic and earliest Jurassic have been derived from several of the basins in eastern North America and provide a precise spatio-temporal framework for detailed paleogeographic analysis. However, reported paleomagnetic directions from Jameson Land in East Greenland are anomalously shallow with respect to coeval sections in North America, a discrepancy that is too large to be explained by uncertainties in the reconstruction of Greenland to North America. Therefore, either the magnetizations of the Jameson Land (and perhaps other early Mesozoic rift basin) sediments are biased by inclination error or the Late Triassic time-averaged field included significant nondipole (axial octupole) contributions. According to a new statistical geomagnetic field model (Tauxe and Kent, 2004) constrained by paleomagnetic data from young lava flows, these two phenomena result in very different distributions of paleomagnetic directions, providing a basis to diagnose and correct for inclination error in sufficiently large paleomagnetic datasets. The resulting congruence of independent data from sedimentary and igneous rocks ranging over thousands of kilometers and 10s of millions of years can be taken as strong support that a geocentric axial dipole field similar to the last 5 Myr was operative more than 200 Myr ago. The corrected paleolatitudes indicate a faster rate of poleward motion of this sector of Pangea and broader continental climate belts in the Late Triassic and earliest Jurassic.

  7. Lithofacies, age, depositional setting, and geochemistry of the Otuk Formation in the Red Dog District, northwestern Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Burruss, Robert A.; Blome, Charles D.

    2013-01-01

    Complete penetration of the Otuk Formation in a continuous drill core (diamond-drill hole, DDH 927) from the Red Dog District illuminates the facies, age, depositional environment, source rock potential, and isotope stratigraphy of this unit in northwestern Alaska. The section, in the Wolverine Creek plate of the Endicott Mountains Allochthon (EMA), is ~82 meters (m) thick and appears structurally uncomplicated. Bedding dips are generally low and thicknesses recorded are close to true thicknesses. Preliminary synthesis of sedimentologic, paleontologic, and isotopic data suggests that the Otuk succession in DDH 927 is a largely complete, albeit condensed, marine Triassic section in conformable contact with marine Permian and Jurassic strata. The Otuk Formation in DDH 927 gradationally overlies gray siliceous mudstone of the Siksikpuk Formation (Permian, based on regional correlations) and underlies black organic-rich mudstone of the Kingak(?) Shale (Jurassic?, based on regional correlations). The informal shale, chert, and limestone members of the Otuk are recognized in DDH 927, but the Jurassic Blankenship Member is absent. The lower (shale) member consists of 28 m of black to light gray, silty shale with as much as 6.9 weight percent total organic carbon (TOC). Thin limy layers near the base of this member contain bivalve fragments (Claraia sp.?) consistent with an Early Triassic (Griesbachian-early Smithian) age. Gray radiolarian chert dominates the middle member (25 m thick) and yields radiolarians of Middle Triassic (Anisian and Ladinian) and Late Triassic (Carnian-late middle Norian) ages. Black to light gray silty shale, like that in the lower member, forms interbeds that range from a few millimeters to 7 centimeters in thickness through much of the middle member. A distinctive, 2.4-m-thick interval of black shale and calcareous radiolarite ~17 m above the base of the member has as much as 9.8 weight percent TOC, and a 1.9-m-thick interval of limy to cherty

  8. Repeated Carbon-Cycle Disturbances at the Permian-Triassic Boundary Separate two Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Nicol, J. A.; Watson, L.; Claire, M.; Buick, R.; Catling, D. C.

    2004-12-01

    Non-marine organic matter in Permian-Triassic sediments from the Blue Mountains, eastern Australia shows seven negative δ13C excursions of up to 7%, terminating with a positive excursion of 4%. Fluctuations start at the late Permian Glossopteris floral extinction and continue until just above the palynological Permian-Triassic boundary, correlated with the peak of marine mass extinction. The isotopic fluctuations are not linked to changes in depositional setting, kerogen composition or plant community, so they evidently resulted from global perturbations in atmospheric δ13C and/or CO2. The pattern was not produced by a single catastrophe such as a meteorite impact, and carbon-cycle calculations indicate that gas release during flood-basalt volcanism was insufficient. Methane-hydrate melting can generate a single -7% shift, but cannot produce rapid multiple excursions without repeated reservoir regeneration and release. However, the data are consistent with repeated overturning of a stratified ocean, expelling toxic gases that promoted sequential mass extinctions in the terrestrial and marine realms.

  9. Gratitude From Early Adulthood to Old Age.

    PubMed

    Allemand, Mathias; Hill, Patrick L

    2016-02-01

    Are there age differences in gratitude from early adulthood to old age? The current studies tested several ways by which an association between age and dispositional gratitude may present, by considering multiple measures on both fronts. We used data from three cross-sectional studies (total N = 1,736; total age range: 19-94). The results indicated that (a) age effects in gratitude are more likely to occur for subjective age in terms of future time perspective (i.e., people's perceptions of their remaining opportunities and time) than chronological age; (b) chronological age effects are more domain specific than general in nature; and (c) they are more likely to occur for the instrumental domain as compared to the interpersonal domain. Finally, the results indicated that (d) perceived future time, particularly with respect to remaining opportunities, mediates the relation between chronological age and general gratitude. Overall, the findings suggest that gratitude is subject to a variety of developmental influences across adulthood. © 2014 Wiley Periodicals, Inc.

  10. Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada

    USGS Publications Warehouse

    Silberling, Norman J.; Nichols, K.M.

    1982-01-01

    Cephalopods and bivalves of the genus Daonella occur at certain levels throughout the Middle Triassic section in the Humboldt Range, northwestern Nevada. These fossiliferous strata are assigned to the Fossil Hill Member and upper member of the Prida Formation, which here forms the oldest part of the Star Peak Group. The distribution and abundance of fossils within the section is uneven, partly because of original depositional patterns within the dominantly calcareous succession and partly because of diagenetic secondary dolomitization and hydrothermal metamorphism in parts of the range.Lower and middle Anisian fossil localities are restricted to the northern part of the range and are scattered, so that only three demonstrably distinct stratigraphic levels are represented. Cephalopods from these localities are characteristic of the Caurus Zone and typify the lower and upper parts of the Hyatti Zone, a new zonal unit whose faunas have affinity with those from the older parts of the Varium Zone in Canada.The upper Anisian and lowermost Ladinian, as exposed in the vicinity of Fossil Hill in the southern part of the range, are extremely fossiliferous. Cephalopod and Daonella shells form a major component of many of the limestone interbeds in the calcareous fine-grained clastic section here. Stratigraphically controlled bedrock collections representing at least 20 successive levels have been made from the Fossil Hill area, which is the type locality for the Rotelliformis, Meeki, and Occidentalis Zones of the upper Anisian and the Subasperum Zone of the lower Ladinian. Above the Subasperum Zone fossils are again scarce; upper Ladinian faunas representing the Daonella lommeli beds occur at only a few places in the upper member of the Prida Formation.Although unevenly fossiliferous, the succession of Middle Triassic cephalopod and Daonella faunas in the Humboldt Range is one of the most complete of any known in the world. Newly collected faunas from this succession provide

  11. Facies architecture of a Triassic rift-related Silicic Volcano-Sedimentary succession in the Tethyan realm, Peonias subzone, Vardar (Axios) Zone, northern Greece; Regional implications

    NASA Astrophysics Data System (ADS)

    Asvesta, Argyro; Dimitriadis, Sarantis

    2010-06-01

    In northern Greece, along the western edge of the Paleozoic Vertiscos terrane (Serbomacedonian massif) and within the Peonias subzone - the eastern part of the Vardar (Axios) Zone - a Silicic Volcano-Sedimentary (SVS) succession of Permo(?)-Skythian to Mid Triassic age records the development of a faulted continental margin and the formation of rhyolitic volcanoes along a continental shelf fringed by neritic carbonate accumulations. It represents the early rifting extensional stages that eventually led to the opening of the main oceanic basin in the western part of the Vardar (Axios) Zone (the Almopias Oceanic Basin). Even though the SVS succession is deformed, altered, extensively silicified and metamorphosed in the low greenschist facies, primary textures, original contacts and facies relationships are recognized in some places allowing clues for the facies architecture and the depositional environment. Volcanic and sedimentary facies analysis has been carried out at Nea Santa and Kolchida rhyolitic volcanic centres. Pyroclastic facies, mostly composed of gas-supported lapilli tuffs and locally intercalated accretionary lapilli tuffs, built the early cones which were then overridden by rhyolitic aphyric and minor K-feldspar-phyric lava flows. The characteristics of facies, especially the presence of accretionary lapilli, imply subaerial to coastal emplacement at this early stage. The mature and final stages of volcanism are mostly represented by quartz-feldspar porphyry intrusions that probably occupied the vents. At Nea Santa area, the presence of resedimented hyaloclastite facies indicates subaqueous emplacement of rhyolitic lavas and/or lobes. Moreover, quartz-feldspar-phyric sills and a partly extrusive dome featuring peperites at their margins are inferred to have intruded unconsolidated, wet carbonate sediments of the overlying Triassic Neritic Carbonate Formation, in a shallow submarine environment. The dome had probably reached above wave-base as is

  12. A Major Unconformity Between Permian and Triassic Strata at Cape Kekurnoi, Alaska Peninsula: Old and New Observations on Stratigraphy and Hydrocarbon Potential

    USGS Publications Warehouse

    Blodgett, Robert B.; Sralla, Bryan

    2008-01-01

    A major angular unconformity separates carbonates and shales of the Upper Triassic Kamishak Formation from an underlying unnamed sequence of Permian agglomerate, volcaniclastic rocks (sandstone), and limestone near Puale Bay on the Alaska Peninsula. For the first time, we photographically document the angular unconformity in outcrop, as clearly exposed in a seacliff ~1.3 mi (2.1 km) west of Cape Kekurnoi in the Karluk C?4 and C?5 1:63,360-scale quadrangles. This unconformity is also documented by examination of core chips, ditch cuttings, and (or) open-hole electrical logs in two deep oil-and-gas-exploration wells (Humble Oil & Refining Co.?s Bear Creek No. 1 and Standard Oil Co. of California?s Grammer No. 1) drilled along the Alaska Peninsula southwest of Puale Bay. A third well (Richfield Oil Corp.?s Wide Bay Unit No. 1), south of and structurally on trend with the other two wells, probed deeply into the Paleozoic basement, but Triassic strata are absent, owing to either a major unconformity or a large fault. Here we briefly review current and newly acquired data on Permian and Triassic rocks of the Puale Bay-Becharof Lake-Wide Bay area on the basis of an examination of surface and subsurface materials. The resulting reinterpretation of the Permian and Triassic stratigraphy has important economic ramifications for oil and gas exploration on the Alaska Peninsula and in the Cook Inlet basin. We also present a history of petroleum exploration targeting Upper Triassic reservoirs in the region.

  13. An integrated perspective on the Permian-Triassic "Great Dying"

    NASA Astrophysics Data System (ADS)

    Algeo, T. J.

    2017-12-01

    The 252-Ma end-Permian mass extinction (EPME), marked by the loss of 90% of marine invertebrate species, was the largest biocrisis in Earth history. Intensive study of this "Great Dying" has led to major insights and a broad consensus regarding many aspects of this event. The ultimate trigger is regarded as eruption of the Siberian Traps Large Igneous Province (STLIP), which released large quantities of greenhouse gases (CO2 and CH4) and sulfate aerosols, triggering a catastrophic global warming of 10°C and acidification of both land surfaces and the surface ocean. On land, a massive die-off of vegetation led to a transient episode of rapid soil erosion and a longer-term increase in weathering rates linked to elevated temperatures. In the ocean, widespread anoxia developed concurrently with the EPME, triggered by ocean-surface warming that reduced dissolved oxygen solubility in seawater and that intensified vertical stratification. Expanded anoxia led to massive burial of organic matter and reduced sulfur, although the evidence for this is indirect (C, U and S isotopes); few organic-rich deposits of Early Triassic age have been found, suggesting that organic sedimentation occurred mainly on continental slopes or in the deep ocean. Other aspects of the end-Permian crisis remain under debate. For example, there is no consensus regarding changes in marine productivity levels in the aftermath of the EPME, which would have been stimulated by enhanced subaerial weathering but depressed by reduced overturning circulation-the evidence to date may favor localized positive and negative changes in productivity. Also under scrutiny is evidence for volcanic eruptions and environmental perturbations during the 100 kyr prior to the EPME, which are likely to have occurred but remain poorly dated and quantified. The greatest uncertainty, however, may surround the nature of the proximate kill mechanism(s) during the EPME. Many hypotheses have been advanced including mechanisms

  14. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China).

    PubMed

    Sha, Jingeng; Olsen, Paul E; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-03-24

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth's geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic-Early Jurassic (∼198-202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth-Mars orbital resonance was in today's 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.

  15. Age at Menarche Is Associated with Divergent Alcohol Use Patterns in Early Adolescence and Early Adulthood

    ERIC Educational Resources Information Center

    Richards, Meghan A.; Oinonen, Kirsten A.

    2011-01-01

    A cross-sectional retrospective design was employed to examine the relationship between age at menarche (AAM) and alcohol use patterns from middle childhood (age 7) to early adulthood in 265 University-aged women. Earlier menarche was associated with: (a) earlier ages at first drink and first intoxication, (b) greater use between ages 9 and 14…

  16. Possible climate effects of the CAMP intrusive and extrusive activity and its influence on the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Davies, J.; Valeriani, L.; Preto, N.; Cirilli, S.; Panfili, G.; Dal Corso, J.; Vasconcellos, E.; Ernesto, M.; Youbi, N.; Callegaro, S.

    2017-12-01

    The end-Triassic global climate changes were probably triggered by the emplacement of the CAMP (Central Atlantic magmatic province). Here we explore the possibility that CAMP intrusions triggered global warming, while CAMP eruptions triggered short-lived cooling events. The main phase of the end-Triassic environmental changes and mass extinction was marked by two carbon isotopic excursions (CIEs). Based on stratigraphic and geochronologic data, we show that the earliest CAMP intrusions were emplaced at ca. 201.6 Ma prior to the first CIE (Davies et al., 2017). The main phase of CAMP magmatism started during the first CIE at ca. 201.5 Ma and continued until the second CIE and the Triassic-Jurassic boundary (at ca. 201.3 Ma). In particular, intrusion of the over 1 million cubic km of basaltic sills in Amazonia (Brazil) and of widespread sills from North America and Africa occurred within this interval. Multidisciplinary analyses show that organic matter rich sediments close to the sills from Brazil, Morocco, and the USA underwent contact metamorphism and organic carbon depletion. Such process may have released large amounts of thermogenic gases (CO2 and CH4) leading to global perturbation of the carbon cycle and to global warming. The timing of CAMP volcanic eruptions is well constrained by combined geochronologic, stratigraphic and palynologic data. In Morocco, newly observed palynological assemblages for sediments at the top of the lava piles are nearly identical to those found at the base of the volcanic sequences. These new data combined with carbon isotopic data indicate that over 95% of the CAMP lava flows in Morocco erupted during a short time interval at the very beginning of the end-Triassic extinction interval. A similar scenario applies possibly to the lava flows from North America. CAMP basalts are quite sulfur rich (up to 1800 ppm) suggesting that CAMP eruptions emitted large amounts of SO2. Such emissions lead possibly to short-lived cooling events

  17. Suicide in Elementary School-Aged Children and Early Adolescents.

    PubMed

    Sheftall, Arielle H; Asti, Lindsey; Horowitz, Lisa M; Felts, Adrienne; Fontanella, Cynthia A; Campo, John V; Bridge, Jeffrey A

    2016-10-01

    Suicide in elementary school-aged children is not well studied, despite a recent increase in the suicide rate among US black children. The objectives of this study were to describe characteristics and precipitating circumstances of suicide in elementary school-aged children relative to early adolescent decedents and identify potential within-group racial differences. We analyzed National Violent Death Reporting System (NVDRS) surveillance data capturing suicide deaths from 2003 to 2012 for 17 US states. Participants included all suicide decedents aged 5 to 14 years (N = 693). Age group comparisons (5-11 years and 12-14 years) were conducted by using the χ 2 test or Fisher's exact test, as appropriate. Compared with early adolescents who died by suicide, children who died by suicide were more commonly male, black, died by hanging/strangulation/suffocation, and died at home. Children who died by suicide more often experienced relationship problems with family members/friends (60.3% vs 46.0%; P = .02) and less often experienced boyfriend/girlfriend problems (0% vs 16.0%; P < .001) or left a suicide note (7.7% vs 30.2%; P < .001). Among suicide decedents with known mental health problems (n = 210), childhood decedents more often experienced attention-deficit disorder with or without hyperactivity (59.3% vs 29.0%; P = .002) and less often experienced depression/dysthymia (33.3% vs 65.6%; P = .001) compared with early adolescent decedents. These findings raise questions about impulsive responding to psychosocial adversity in younger suicide decedents, and they suggest a need for both common and developmentally-specific suicide prevention strategies during the elementary school-aged and early adolescent years. Further research should investigate factors associated with the recent increase in suicide rates among black children. Copyright © 2016 by the American Academy of Pediatrics.

  18. Suicide in Elementary School-Aged Children and Early Adolescents

    PubMed Central

    Sheftall, Arielle H.; Asti, Lindsey; Horowitz, Lisa M.; Felts, Adrienne; Fontanella, Cynthia A.; Campo, John V.

    2016-01-01

    BACKGROUND AND OBJECTIVES: Suicide in elementary school–aged children is not well studied, despite a recent increase in the suicide rate among US black children. The objectives of this study were to describe characteristics and precipitating circumstances of suicide in elementary school–aged children relative to early adolescent decedents and identify potential within-group racial differences. METHODS: We analyzed National Violent Death Reporting System (NVDRS) surveillance data capturing suicide deaths from 2003 to 2012 for 17 US states. Participants included all suicide decedents aged 5 to 14 years (N = 693). Age group comparisons (5–11 years and 12–14 years) were conducted by using the χ2 test or Fisher’s exact test, as appropriate. RESULTS: Compared with early adolescents who died by suicide, children who died by suicide were more commonly male, black, died by hanging/strangulation/suffocation, and died at home. Children who died by suicide more often experienced relationship problems with family members/friends (60.3% vs 46.0%; P = .02) and less often experienced boyfriend/girlfriend problems (0% vs 16.0%; P < .001) or left a suicide note (7.7% vs 30.2%; P < .001). Among suicide decedents with known mental health problems (n = 210), childhood decedents more often experienced attention-deficit disorder with or without hyperactivity (59.3% vs 29.0%; P = .002) and less often experienced depression/dysthymia (33.3% vs 65.6%; P = .001) compared with early adolescent decedents. CONCLUSIONS: These findings raise questions about impulsive responding to psychosocial adversity in younger suicide decedents, and they suggest a need for both common and developmentally-specific suicide prevention strategies during the elementary school–aged and early adolescent years. Further research should investigate factors associated with the recent increase in suicide rates among black children. PMID:27647716

  19. Preterm birth-associated cost of early intervention services: an analysis by gestational age.

    PubMed

    Clements, Karen M; Barfield, Wanda D; Ayadi, M Femi; Wilber, Nancy

    2007-04-01

    Characterizing the cost of preterm birth is important in assessing the impact of increasing prematurity rates and evaluating the cost-effectiveness of therapies to prevent preterm delivery. To assess early intervention costs that are associated with preterm births, we estimated the program cost of early intervention services for children who were born in Massachusetts, by gestational age at birth. Using the Pregnancy to Early Life Longitudinal Data Set, birth certificates for infants who were born in Massachusetts between July 1999 and June 2000 were linked to early intervention claims through 2003. We determined total program costs, in 2003 dollars, of early intervention and mean cost per surviving infant by gestational age. Costs by plurality, eligibility criteria, provider discipline, and annual costs for children's first 3 years also were examined. Overall, 14,033 of 76,901 surviving infants received early intervention services. Program costs totaled almost $66 million, with mean cost per surviving infant of $857. Mean cost per infant was highest for children who were 24 to 31 weeks' gestational age ($5393) and higher for infants who were 32 to 36 weeks' gestational age ($1578) compared with those who were born at term ($725). Cost per surviving infant generally decreased with increasing gestational age. Among children in early intervention, mean cost per child was higher for preterm infants than for term infants. At each gestational age, mean cost per surviving infant was higher for multiples than for singletons, and annual early intervention costs were higher for toddlers than for infants. Compared with their term counterparts, preterm infants incurred higher early intervention costs. This information along with data on birth trends will inform budget forecasting for early intervention programs. Costs that are associated with early childhood developmental services must be included when considering the long-term costs of prematurity.

  20. Determining the Cause of the Late Triassic Adamanian-Revueltian Vertebrate Faunal Turnover in Western North America: Climate Change, Bolide Impact, or no Extinction at All?

    NASA Astrophysics Data System (ADS)

    Martz, J. W.

    2016-12-01

    The Triassic was one of the most critical intervals in terrestrial vertebrate history, during which both adaptive radiation and extinction played roles in shaping the future of Mesozoic ecosystems. In recent years, it has become increasingly clear that the transition from the globally diverse ecosystems of the Triassic to the more uniformly dinosaur-dominated ecosystems of the later Mesozoic was complex, involving a variety of environmental changes on both local and global levels. The Adamanian-Revueltian faunal turnover is a putative faunal turnover event identified in the Upper Triassic Chinle Formation of the western United States which involved a decline in diversity among crocodylian-line archosaurs and the extinction of several taxa coincident with the appearance or increase in abundance of other taxa. Careful lithostratigraphic and biostratigraphic work in Petrified Forest National Park in northern Arizona has identified the stratigraphic horizon at which this turnover is likely to have occurred, and sedimentology and improved radioisotopic calibration indicates that the turnover was early Alaunian (middle Norian) and at least roughly coincident with both the Manicouagan bolide impact and an abrupt shift towards a more arid climate in the western United States. However, testing the reality of the turnover and its coincidence with particular environmental changes requires the application of statistical methods highly dependent on the sample sizes and stratigraphic distribution of vertebrate fossils. The problem is exacerbated by the fact that for some vertebrates, the turnover is characterized by changes in abundance rather than range termination, which is more difficult to evaluate statistically, and that some fossils can only be assigned to higher taxa. Moreover, radioisotopic calibration of the putative turnover horizon is coarse, suggesting that correlating faunal turnovers to distant events is more difficult than correlating them to local environmental

  1. Conodont biostratigraphy of the Permian-Triassic boundary sequence at Lung Cam, Vietnam

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Nestell, Merlynd K.; Nestell, Galina P.; Ellwood, Brooks B.; Lan, Luu Thi Phuong

    2015-01-01

    The occurrences of a few specimens of Clarkina and many specimens of Hindeodus at the Permian-Triassic boundary section at Lung Cam, Vietnam allow accurate graphic correlation to the P-T boundary stratotype at Meishan, China. One species of Clarkina, ten species and two subspecies of Hindeodus, and the apparatuses of Hindeodus latidentatus and Merrillina ultima are described and illustrated.

  2. Age of acquisition in sport: starting early matters.

    PubMed

    Hernandez, Arturo E; Mattarella-Micke, Andrew; Redding, Richard W T; Woods, Elizabeth A; Beilock, Sian

    2011-01-01

    Although the age at which a skill is learned (age of acquisition [AoA]) is one of the most studied predictors of success in domains ranging from language to music, very little work has focused on this factor in sports. In order to uncover how the age at which a skill is learned relates to how athletes cognitively represent that skill, we asked a group of skilled golfers who learned to play golf before (early learners) or after (late learners) the age of 10 to take a series of putts on an indoor putting green. Golfers putted in isolation (single-task condition), while monitoring a stream of words presented over a loudspeaker (dual-task condition), or while being instructed to attend to specific aspects of their golf swing (skill-focused condition). Early and late learners putted equally well in the single-task and dual-task conditions. However, in the skill-focused condition, golfers who learned earlier performed worse than those who learned later. The results are consistent with the notion that AoA influences the manner in which sports, like other domains such as language and music, are represented in memory.

  3. Permian-Triassic thermal anomaly of the active margin of South America as a result of plate kinematics reorganization

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Guillot, Stéphane; Martelat, Jean-Emmanuel; Braun, Jean

    2013-04-01

    From Permian to Triassic times, tectonic plate reorganization provoked Pangaea breakup, counterclockwise rotation of Gondwana, closing of the Paleo-Tethys Ocean and opening of the Neo-Tethys oceanic realm. Meanwhile, the switch from arc volcanism to widespread S-type magmatism along the western South American active margin around 275-265 Ma is symptomatic of the onset of a large-scale Permian-Triassic thermal anomaly (PTTA)affecting the whole margin. Here we report metamorphic and U-Pb geochronological results from the El Oro metamorphic complex in the forearc zone of southwestern Ecuador, which recorded the last step, at 230-225 Ma, of the PTTA. The change in the drift direction of Gondwana from north to east at ca. 270 Ma was related to plate reorganization and provoked the verticalization of the subducted Panthalassa slab. As the slab verticalized, strong heat advection produced a high heat flow beneath the active margin inducing the development of a huge thermal anomaly responsible for the PTTA, which lasted 30 Ma. This voluminous magmatic activity culminated at the Permian-Triassic boundary, and may have contributed to the degradation of life conditions on the Earth surface.

  4. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-07

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.

  5. The Triassic upwelling system of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Yurchenko, I.; Graham, S. A.

    2017-12-01

    The Middle to Upper Triassic Shublik Formation of Arctic Alaska is a laterally and vertically heterogeneous rock unit that has been analyzed both in outcrop and in the subsurface. The Shublik Formation sediments are distinguished by a characteristic set of lithologies that include glauconitic, phosphatic, organic-rich, and cherty facies consistent with a coastal upwelling zone deposition interpretation. It is often recognized by abundance of impressions and shells of distinctive Triassic bivalves. To understand main controls on lithofacies distributions, this study reviews and refines lithologic and paleoenvironmental interpretations of the Shublik Formation, and incorporates the newly acquired detailed geochemical analyses of two complete Shublik cores. This work focuses on organic geochemistry (analyses of biomarkers and diamondoids), chemostratigraphy (hand-held XRF), and iron speciation analysis to reconstruct paleoproductivity and redox conditions. Based on the available evidence, during Shublik deposition, an upwelling-influenced open shelf resulted in high nutrient supply that stimulated algal blooms leading to high net organic productivity, reduced water transparency, oxygen deficiency, and water column stratification. Evidence of such eutrophic conditions is indicated by the lack of photic benthic organisms, bioturbation and trace fossils, and dominance of the monospecific light-independent epibenthic bivalves. The flat, subcircular, thin shells of these carbonate-secreting organisms allowed them to adapt to dysoxic conditions, and float on soft, soupy, muddy substrate. The distinctive clay- and organic-rich facies with abundant bivalves occurred on the mid to outer stable broad shelf, and were deposited when organic productivity at times overlapped with periods of increased siliciclastic input controlled by sea level and changes in local sediment dispersal systems, and therefore are more spatially and temporally localized than the widespread clay

  6. Telomere length and early severe social deprivation: linking early adversity and cellular aging

    PubMed Central

    Drury, SS; Theall, K; Gleason, MM; Smyke, AT; De Vivo, I; Wong, JYY; Fox, NA; Zeanah, CH; Nelson, CA

    2012-01-01

    Accelerated telomere length attrition has been associated with psychological stress and early adversity in adults; however, no studies have examined whether telomere length in childhood is associated with early experiences. The Bucharest Early Intervention Project is a unique randomized controlled trial of foster care placement compared with continued care in institutions. As a result of the study design, participants were exposed to a quantified range of time in institutional care, and represented an ideal population in which to examine the association between a specific early adversity, institutional care and telomere length. We examined the association between average relative telomere length, telomere repeat copy number to single gene copy number (T/S) ratio and exposure to institutional care quantified as the percent of time at baseline (mean age 22 months) and at 54 months of age that each child lived in the institution. A significant negative correlation between T/S ratio and percentage of time was observed. Children with greater exposure to institutional care had significantly shorter relative telomere length in middle childhood. Gender modified this main effect. The percentage of time in institutional care at baseline significantly predicted telomere length in females, whereas the percentage of institutional care at 54 months was strongly predictive of telomere length in males. This is the first study to demonstrate an association between telomere length and institutionalization, the first study to find an association between adversity and telomere length in children, and contributes to the growing literature linking telomere length and early adversity. PMID:21577215

  7. Depositional ages of clastic metasediments from Samos and Syros, Greece: results of a detrital zircon study

    NASA Astrophysics Data System (ADS)

    Löwen, Kersten; Bröcker, Michael; Berndt, Jasper

    2015-01-01

    Siliciclastic metasediments from the islands of Samos and Syros, Cycladic blueschist unit, Greece, were studied to determine maximum sedimentation ages. Four samples from the Ampelos unit on Samos yielded age distribution spectra that range from ~320 Ma to ~3.2 Ga with a dominance of Cambrian-Neoproterozoic zircons (500-1,100 Ma). The youngest well-constrained age groups cluster at 500-550 Ma. Our results allow to link the Samos metasediments with occurrences showing similar age distribution patterns elsewhere in the eastern Mediterranean region (Greece, Turkey, Libya, Israel and Jordan) that record the influx of `Pan-African' detritus. The lack of post-500-Ma zircons in the Samos samples is in marked contrast to the data from Syros that indicates Triassic to Cretaceous depositional ages. The samples from Syros were collected from the matrix of a meta-ophiolitic mélange that is exposed near the top of the metamorphic succession as well as from outcrops representing the basal part of the underlying marble-schist sequence. The zircon populations from Syros were mainly supplied by Mesozoic sources dominated by Triassic protolith ages. Subordinate is the importance of pre-Triassic zircons, but this may reflect bias induced by the research strategy. Sediment accumulation continued until Late Cretaceous time, but the overall contribution of Jurassic to Cretaceous detritus is more limited. Zircon populations are dominated by grains with small degree of rounding suggesting relatively short sediment transportation. Available observations are in accordance with a model suggesting deposition close to the magmatic source rocks.

  8. Modeling old-age wealth with endogenous early-life outcomes: The case of Mexico

    PubMed Central

    DeGraff, Deborah S.; Wong, Rebeca

    2014-01-01

    This paper contributes to the literature on the life course and aging by examining the association between early-life outcomes and late-life well being, using data from the Mexican Health and Aging Study. Empirical research in this area has been challenged by the potential endogeneity of the early-life outcomes of interest, an issue which most studies ignore or downplay. Our contribution takes two forms: (1) we examine in detail the potential importance of two key life-cycle outcomes, age at marriage (a measure of family formation) and years of educational attainment (a measure of human capital investment) for old-age wealth, and (2) we illustrate the empirical value of past context variables that could help model the association between early-life outcomes and late-life well being. Our illustrative approach, matching macro-level historical policy and census variables to individual records to use as instruments in modeling the endogeneity of early-life behaviors, yields a statistically identified two-stage model of old-age wealth with minimum bias. We use simulations to show that the results for the model of wealth in old age are meaningfully different when comparing the approach that accounts for endogeneity with an approach that assumes exogeneity of early-life outcomes. Furthermore, our results suggest that in the Mexican case, models which ignore the potential endogeneity of early-life outcomes are likely to under-estimate the effects of such variables on old-age wealth. PMID:25170434

  9. Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)

    NASA Astrophysics Data System (ADS)

    Pomoni-Papaioannou, F.

    The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating

  10. Paleomagnetism and Magnetostratigraphy of Upper Permian to Lower Triassic (?) Beaufort Group Strata at Bethulie, Karoo Basin, Free State Province, South Africa

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Gastaldo, R. A.; Neveling, J.; Makubalo, S.

    2017-12-01

    A multifaceted approach to understand the timing of interpreted environmental changes during the Late Permian to possibly Early Triassic (?) time in the Beaufort Group strata of the Karoo Basin includes work to establish robust magnetic polarity records for sections previously interpreted to encompass end-Permian extinction events. Demonstrating the preservation of an early-acquired remanence (RM) in Karoo strata is required for a robust magnetostratigraphy. Yet, this is challenging due to thermochemical effects related to the Early Jurassic (ca. 183 Ma) Karoo Large Igneous Province (LIP), and the NE to SW increase in burial diagenesis attending Cape Fold Belt tectonism. Documentation of a primary RM in these strata, which appears to be preserved in some areas, requires careful laboratory- and field-based assessment. We report data from 53 sites collected at the well-studied Bethulie section, Free State Province, in which several <2 m wide Karoo LIP dikes crop out. We obtained 7-10+ independent samples per individual horizon to assess ChRM uniformity. Strata well-removed from dikes yield both normal and reverse polarity ChRM. It is always the case that the first-removed RM is a NNW seeking, moderate to steep negative-inclination ChRM (normal polarity); NRM intensities are typically 1 to 5 mA/m. Sites BT15 and BT21, which are located in strata lying some 4 m below the often-cited "event bed" interval inferred to be the terrestrial expression of the Permian/Triassic boundary, is dominated by a well-defined reverse RM with a normal overprint RM unblocked below 400oC, implying elevated temperatures (i.e., 100 to 250oC+) for ca. 1 Ma (+/-). Contact tests are positive but complicated. Host strata collected in distances equal to or less than 1-2 dike widths from the intrusions have been thermally remagnetized and demonstrate high NRM intensities (> 50 mA/m). Collectively, we interpret these data to indicate that any ChRM, with the exception of those from host strata in

  11. Where Is ELSA? The Early to Late Shift in Aging

    PubMed Central

    Buchler, Norbou; Dobbins, Ian G.; Cabeza, Roberto

    2012-01-01

    Studies of cognitive and neural aging have recently provided evidence of a shift from an early- to late-onset cognitive control strategy, linked with temporally extended activity in the prefrontal cortex (PFC). It has been uncertain, however, whether this age-related shift is unique to PFC and executive control tasks or whether the functional location might vary depending on the particular cognitive processes that are altered. The present study tested whether an early-to-late shift in aging (ELSA) might emerge in the medial temporal lobes (MTL) during a protracted context memory task comprising both anticipatory cue (retrieval preparation) and retrieval probe (retrieval completion) phases. First, we found reduced MTL activity in older adults during the early retrieval preparation phase coupled with increased MTL activity during the late retrieval completion phase. Second, we found that functional connectivity between MTL and PFC regions was higher during retrieval preparation in young adults but higher during retrieval completion in older adults, suggesting an important interactive relationship between the ELSA pattern in MTL and PFC. Taken together, these results critically suggest that aging results in temporally lagged activity even in regions not typically associated with cognitive control, such as the MTL. PMID:22114083

  12. Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Chen, Chun-Liang; Bagas, Leon; Liu, Yuan; Han, Ning; Kang, Huan; Wang, Ze-Hai

    2017-08-01

    The Xing-Mong Orogenic Belt (XMOB) is located in the eastern part of the Central Asian Orogenic Belt (CAOB) and has experienced multiple tectonic events. The Baiyinnuoer Pb-Zn deposit may be a rare case that documents two periods of mineralization in the tectonically complex XMOB. There are two types of Pb-Zn mineralization in the deposit: (1) skarn-type ore, hosted by the skarn in the contact zone between marble and granodiorite and within the marble and (2) vein-type ore, hosted by crystal tuff and feldspar porphyry. This study revealed that the host rocks, mineral assemblages, mineralization occurrences, S-Pb isotopes, and ages between the two types of ore are notably different. Zircon U-Pb dating indicates that the granodiorite was emplaced in the Early Triassic (244 ± 1 to 242 ± 1 Ma), the crystal tuff was deposited in the Early Cretaceous (140 ± 1 to 136 ± 1 Ma), and the feldspar porphyry was intruded in the Early Cretaceous (138 ± 2 to 136 ± 2 Ma). The first skarn mineralization occurred at ∼240 Ma and the second vein-type Pb-Zn mineralization took place between 136 and 129 Ma. Thus the Triassic orebodies were overprinted by Early Cretaceous mineralization. The sphalerite and galena from the skarn mineralization have higher δ34S values (-4.7 to +0.3‰) than the sphalerite, galena and aresenopyrite from the vein-type mineralization (-7.5 to -4.2‰), indicating different sulfur sources or ore-forming processes for the two types of mineralization. The Pb isotopic compositions of the two types of ore are very similar, suggesting similar lead sources. Geochemistry and Nd-Pb-Hf isotopic systematics of the igneous rocks in the region show that the Triassic granodiorite was generated from hybridization of mafic and felsic magmas due to strong crust-mantle interaction under the collisional setting that resulted following the closure of the Paleo-Asian Ocean and the collision of North China and Siberian cratons at the end of the Permian; while the

  13. Analysis, prediction, and case studies of early-age cracking in bridge decks

    NASA Astrophysics Data System (ADS)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  14. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  15. Subduction of Proterozoic to Late Triassic continental basement in the Guatemala suture zone: A petrological and geochronological study of high-pressure metagranitoids from the Chuacús complex

    NASA Astrophysics Data System (ADS)

    Maldonado, Roberto; Ortega-Gutiérrez, Fernando; Ortíz-Joya, Guillermo A.

    2018-05-01

    Many continental subduction complexes contain abundant granitic rocks coexisting with minor volumes of eclogite-facies rocks. Characterization of granitic protoliths is crucial to decipher the origin of subducted continental crust, whereas knowledge of its metamorphic evolution is required to constrain the mechanisms of burial and exhumation. In this work we present geochronological and petrological evidence that demonstrate the occurrence of a subducted Proterozoic to Late Triassic granitic basement in the Chuacús complex of central Guatemala. Metagranitoids exposed in this area are interlayered with eclogite and other high-pressure rocks, and their structure is considerably variable due to strain partitioning during deformation. Laser ablation-inductively coupled plasma-mass spectrometry U-Pb zircon data from two ferroan metagranites yield protolith crystallization ages of ca. 1.1 Ga and their trace-element abundances suggest an origin related to intraplate magmatism, while a high-silica, peraluminous metagranite is dated at 1.0 Ga and was probably originated by partial melting of a high-grade continental crust. On the other hand, two megacrystic to augen metagranitoids yield protolith crystallization ages of ca. 224 Ma, which are identical within errors to the protolith age of hosted eclogitic metabasites. Their high incompatible trace element abundances together with the observed spatial-temporal relationships with mafic protoliths suggest that Late Triassic bimodal magmatism in the Chuacús complex was probably originated in a within-plate setting. Regardless of their age or structure, the studied metagranites preserve evidences for high-pressure metamorphic equilibration, such as the occurrence of Ca-rich garnet (XCa up to 0.52) in association with phengite (Si contents of up to 3.4 pfu) and rutile. The integration of Zr-in-rutile thermometry and phengite barometry allows the peak metamorphic conditions to be constrained at 640-680 °C and 13 kbar. This

  16. Tectonic evolution of the Songpan Garzê and adjacent areas (NE Tibet) from Triassic to Present : a synthesis.

    NASA Astrophysics Data System (ADS)

    Roger, F.; Jolivet, M.; Malavieille, J.

    2009-04-01

    The 12th May 2008 Wenchuan earthquake in the Longmen Shan occurred on a large thrust fault largely inherited from an Indosinian structure itself probably controlled by an older structural heritage of the South China block continental margin. Within the whole northeast Tibet region, such a structural inheritance has had a major impact on the Tertiary deformation. It appears of primary importance to assess the pre-Tertiary tectonic evolution of the main blocks involved to understand the actual deformation in the eastern edge of Tibet. Over the past decades, the Proterozoic to Cenozoic tectonic, metamorphic and geochronologic history of the Longmen Shan and Songpan Garzê area have been largely studied. We present a synthesis of the tectonic evolution of the Songpan Garzê fold and thrust belt from Triassic to present. The Songpan-Garzê belt was formed during closure of a wide oceanic basin filled with a thick (5 to 15 km) sequence of Triassic flyschoid sediments [10]. Closure of the basin due to Triassic subduction involved strong shortening, intense folding and faulting of the Triassic series. A large-scale décollement, that presently outcrops along the eastern boundary of the belt (Danba area), allowed the growth of a wide and thick accretionary wedge [9]. It develops in the Paleozoic and Triassic series and separates the accretionary prism from an autochthonous crystalline basement [5, 12, 6] which shares many similarities with the basement of the Yangtze Craton (0.7-0.9 Ga). To the north and northwest, below the thickened Triassic series of the belt, the composition (oceanic or continental) of the basement remains unknown. During the Indosinian orogeny the emplacement of orogenic granites (220 - 150 Ma) was associated to crustal thickening [12, 13, 17, 15]. The isotopic composition of granitoids shows that their magma source were predominantly derived from melting of the proterozoic basement with varying degrees of sedimentary material and negligible mantle

  17. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    NASA Astrophysics Data System (ADS)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  18. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-01

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437

  19. Remagnetization mechanisms in Triassic red beds from South China

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Zhao, Xiang; Roberts, Andrew P.; Yang, Zhenyu; Jin, Chunsheng; Liu, Jianxing

    2017-12-01

    Paleogeographic reconstructions based on paleomagnetic data rely on the reliability of the natural remanent magnetization (NRM) as a primary geomagnetic signal. Remagnetizations, however, can be common in many rock types, including late Paleozoic and Mesozoic red beds, and they complicate paleogeographic interpretations. Extracting the primary NRM from partially remagnetized rocks, and understanding the remagnetization mechanism are important in these contexts. We carried out a systematic paleomagnetic study of red bed samples from the Triassic Huangmaqing Formation, Nanjing (32.0°N, 118.9°E), South China. Two NRM components carried by secondary and primary hematite are isolated in 47 of the 94 samples studied, where the latter component has a direction in stratigraphic coordinates of D = 29.2 °, I = 34.6 ° (α95 = 10.9 °, 47 samples from 6 sites) that yields a paleopole of λ = 60.8°N, ϕ = 228.1°E, dp / dm = 12.5 / 7.2, which is consistent with Triassic pole positions for the South China Block. A secondary chemical remanent magnetization (CRM) (D = 227.1 °, I = 80.8 °, α95 = 7.3 °) is documented in all 94 samples from 10 sites and is carried by pigmentary hematite that is inferred to have been generated by magnetite oxidation during orogenic activity. This secondary component has steep inclinations and is interpreted to have been influenced by a combination of the remanence carried by original parent magnetite, the orogenic stress field, and the prevailing geomagnetic field direction during deformation. This CRM direction is recorded commonly by red beds from the South China Block, and is significant for regional tectonic studies in the area.

  20. The Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean: evidence from analyses of OIB-type basalts and OIB-derived phonolites in northern Tibet

    NASA Astrophysics Data System (ADS)

    Fan, Jian-Jun; Li, Cai; Liu, Jin-Heng; Wang, Ming; Liu, Yi-Ming; Xie, Chao-Ming

    2017-12-01

    In this paper, we present new major and trace element chemical data for the basalts and phonolites of the Nare ocean island fragment (NaOI), as well as zircon U-Pb age data and Hf isotope compositions for the NaOI phonolites in the middle segment of the Bangong-Nujiang Suture Zone, northern Tibet. Our aim is to assess the genesis of these rocks and to reconstruct the Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean (BNTO). The NaOI retains an ocean island-type double-layered structure comprising a basaltic basement and an oceanic sedimentary cover sequence (conglomerate and limestone, the latter accompanied by layers of erupted phonolite near the top of the sequence). The basalts in the NaOI are enriched in light rare earth elements and high field strength elements (Nb, Ta, Zr, Hf, and Ti), and they exhibit chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns similar to those of ocean island basalts. Taking into consideration their high Dy/Yb, Sm/Yb, and La/Sm ratios, we conclude that the NaOI basalts were derived from the partial melting of garnet peridotite in the mantle. The NaOI phonolites have LREE-enriched chondrite-normalized REE patterns with negative Eu anomalies (Eu/Eu* = 0.41-0.43) and primitive mantle-normalized trace element patterns with enrichments in Nb, Ta, Zr, and Hf, and depletions in Ba, U, Sr, P, and Ti. Given the high contents of Nb (172-256 ppm), Ta (11.8-16.0 ppm), Zr (927-1117 ppm), and Hf (20.8-26.9 ppm), and the very low contents of MgO (0.11-0.25 wt%), the very low Mg# values (5-10), and the near-zero contents of Cr (1.27-7.59 ppm), Ni (0.43-7.19 ppm), and Co (0.11-0.38 ppm), and the small and homogeneously positive ɛ Hf(t) values (+ 4.9 to + 9.5), we infer that the NaOI phonolites were formed by the fractional crystallization of an OIB-derived mafic parent magma. The phonolites of the NaOI contain zircons that yielded U-Pb ages of 239 and 242 Ma, indicating that the NaOI formed during

  1. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  3. Reworked calcretes: their significance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Gómez-Gras, D.; Alonso-Zarza, A. M.

    2003-05-01

    The Permian and Triassic of Minorca (Balearic Islands) consists of a 670-m-thick, red, alluvial succession that includes in situ calcrete profiles and reworked calcrete material. In the Permian succession, the calcretes vary from laminar forms developed on the Carboniferous basement to weakly developed nodular calcretes in fluvial sediments. The palaeosols in the Triassic are mostly dolomitic, and the profiles reach up to Stage III of soil development (Spec. Pap.-Geol. Surv. Am. 203, (1995) 1). The clasts, formed through reworking of the palaeosol profiles, are about 0.5-10 cm across and include mosaics of calcite/dolomite crystals, brecciated clasts, rhizolith fragments, and aggregates of clay and/or silt. These clasts appear in three different types of deposits. Type 1 corresponds to lenticular bodies that fill small scour surfaces, and consists only of intraformational conglomerates. These deposits are interpreted as ephemeral channels and sheet-floods that represent the interfluvial drainage systems that captured only the precipitation falling on the alluvial plain. Type 2 includes sand dune 3-D bodies with flat bottoms and convex tops. These bodies are about 20 cm high and 2 m wide, and were formed by floodwaters that flowed down the levees of the major streams. Type 3 channel deposits contain reworked calcretes and extrabasinal clasts, which overlie erosive surfaces and are found in layers within cross-bedded sandstones and conglomerates. These are interpreted as channel-floor lag deposits of major channels that entered from distant uplands and drained the alluvial plain. Variations in the aggradation rates of the floodplain resulted in five different infill stages. In the lowstand to early transgressive interval, as in stages I (P1) and IV (B1), the fluvial deposits filled palaeovalleys; calcretes and reworked calcrete deposits were of difficult formation (apart from terraces) and preservation. Accommodation space was at its greatest in the transgressive

  4. Early Parenthood and Coming of Age in the 1990s.

    ERIC Educational Resources Information Center

    Rosenheim, Margaret K., Ed.; Testa, Mark F., Ed.

    This book examines how early parenthood differs historically, cross-nationally (in Korea and Sweden), and by class, race, and age in the United States. Contributors discuss how consequential is early parenthood for the future social and economic well-being of parents and children, whether postponing childbearing beyond the teenage years would…

  5. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction.

    PubMed

    Zhang, Feifei; Romaniello, Stephen J; Algeo, Thomas J; Lau, Kimberly V; Clapham, Matthew E; Richoz, Sylvain; Herrmann, Achim D; Smith, Harrison; Horacek, Micha; Anbar, Ariel D

    2018-04-01

    Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (δ 238 U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our δ 238 U record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO 4 3- concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.

  6. Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China.

    PubMed

    Hu, Shixue; Zhang, Qiyue; Feldmann, Rodney M; Benton, Michael J; Schweitzer, Carrie E; Huang, Jinyuan; Wen, Wen; Zhou, Changyong; Xie, Tao; Lü, Tao; Hong, Shuigen

    2017-10-26

    Horseshoe crabs are classic "living fossils", supposedly slowly evolving, conservative taxa, with a long fossil record back to the Ordovician. The evolution of their exoskeleton is well documented by fossils, but appendage and soft-tissue preservation is extremely rare. Here we analyse details of appendage and soft-tissue preservation in Yunnanolimulus luopingensis, a Middle Triassic (ca. 244 million years old) horseshoe crab from Yunnan Province, SW China. The remarkable preservation of anatomical details including the chelicerae, five pairs of walking appendages, opisthosomal appendages with book gills, muscles, and fine setae permits comparison with extant horseshoe crabs. The close anatomical similarity between the Middle Triassic horseshoe crabs and their recent analogues documents anatomical conservatism for over 240 million years, suggesting persistence of lifestyle. The occurrence of Carcinoscorpius-type claspers on the first and second walking legs in male individuals of Y. luopingensis indicates that simple chelate claspers in males are plesiomorphic for horseshoe crabs, and the bulbous claspers in Tachypleus and Limulus are derived.

  7. Inclination Shallowing in the Permian/Triassic Boundary Sedimentary Sections of the East European Platform: the New Paleomagnetic Pole and its Significance for GAD Hypothesis

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Fetisova, A. M.; Balabanov, Y.

    2017-12-01

    One of the key challenges which are traditionally encountered in studying the paleomagnetism of terrigenous sedimentary strata is the necessity to allow for the effect of shallowing of paleomagnetic inclinations which takes place under the compaction of the sediment at the early stages of diagenesis and most clearly manifests itself in the case of midlatitude sedimentation. Traditionally, estimating the coefficient of inclination flattening (f) implies routine re-deposition experiments and studying their magnetic anisotropy (Kodama, 2012), which is not possible in every standard paleomagnetic laboratory. The Elongation-Inclination (E/I) statistical method for estimating the coefficient of inclination shallowing, which was recently suggested in (Tauxe and Kent, 2004), does not require the investigation of the rock material in a specially equipped laboratory but toughens the requirements on the paleomagnetic data and, primarily, regarding the volume of the data, which significantly restricts the possibilities of the post factum estimation and correction for inclination shallowing. We present the results of the paleomagnetic reinvestigation of the some key sections of the Upper Permian and Lower Triassic rocks located on the East European Platform. The obtained paleomagnetic data allowed us to estimate the coefficient of inclination shallowing by the E/I method and calculate a new P-Tr paleomagnetic pole for Europe. The absence of a statistically significant difference between the mean Siberian, European and North American Permian-Triassic paleomagnetic poles allow us to conclude that 252 Ma the configuration of the Earth's magnetic field was predominantly dipole. We believe that the assumption of the non-dipolarity of the geomagnetic field at the Permian-Triassic boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), arose due to the failure to take into account the

  8. Primary early correction of tetralogy of Fallot irrespective of age.

    PubMed

    Kantorova, Andrea; Zbieranek, Kai; Sauer, Henning; Lilje, Christian; Haun, Christoph; Hraska, Viktor

    2008-04-01

    The policy of early repair of patients with tetralogy of Fallot, irrespective of age, as opposed to initial palliation with a shunt, remains controversial. The aim of our study was to analyze the midterm outcome of primary early correction of tetralogy of Fallot. Between 1996 and 2005, a total of 61 consecutive patients less than 6 months of age underwent primary correction of tetralogy of Fallot in two institutions. The median age at surgery was 3.3 months, and 27 patients (44%) were younger than 3 months of age, including 12 (20%) newborns. We analyzed the patients in 2 groups: those younger than 3 months of age, and those aged between 3 and 6 months. There was one early (1.6%), and one late death. Actuarial survival was 98.4%, 96.7%, 96.7% at 1, 5, and 10 years respectively, with a median follow up of 4.5 years. There was no difference in survival, bypass time, lengths of ventilation, and hospital stay between the groups. A transjunctional patch was placed significantly more often in the patients younger than 3 months (p = 0.039), with no adverse effect on survival and morbidity during the follow-up. Freedom from reoperation was 98.2%, 92.2%, and 83% at 1, 5, and 10 years respectively, with no difference between the groups. Elective primary repair of tetralogy of Fallot in asymptomatic patients is delayed beyond 3 months of age. In symptomatic patients, primary repair of tetralogy of Fallot is performed irrespective of age, weight and preoperative state. This approach is safe, and provides an excellent midterm outcome with acceptable morbidity and rates of reintervention. The long-term benefits of this approach must be established by careful follow-up, with particular emphasis on arrhythmias, right ventricular function, and exercise performance.

  9. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones

    DOE PAGES

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; ...

    2016-12-29

    The end-Triassic mass extinction coincided with a negative δ 13 C excursion, consistent with release of 13C-depleted CO 2 from the Central Atlantic Magmatic Province. However, the amount of carbon released and its effects on ocean chemistry are poorly constrained. The co upled nature of the carbon and calcium cycles allows calcium isotopes to be used for constraining carbon cycle dynamics and vice versa. We present a high-resolution calcium isotope (δ 44/40 Ca) record from 100 m of marine limestone spanning the Triassic/Jurassic boundary in two stratigraphic sections from northern Italy. Immediately above the extinction horizon and the associated negativemore » excursion in δ 13 C, δ 44/40 Ca decreases by ca. 0.8‰ in 20 m of section and then recovers to preexcursion values. Coupled numerical models of the geological carbon and calcium cycles demonstrate that this δ 44/40 Ca excursion is too large to be explained by changes to seawater δ 44/40 Ca alone, regardless of CO 2 injection volume and duration. Less than 20% of the δ 44/40 Ca excursion can be attributed to acidification. The remaining 80% likely reflects a higher proportion of aragonite in the original sediment, based largely on high concentrations of Sr in the samples. Our study demonstrates that coupled models of the carbon and calcium cycles have the potential to help distinguish contributions of primary seawater isotopic changes from local or diagenetic effects on the δ 44/40 Ca of carbonate sediments. Finally, differentiating between these effects is critical for constraining the impact of ocean acidification during the end-Triassic mass extinction, as well as for interpreting other environmental events in the geologic past.« less

  10. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas

    The end-Triassic mass extinction coincided with a negative δ 13 C excursion, consistent with release of 13C-depleted CO 2 from the Central Atlantic Magmatic Province. However, the amount of carbon released and its effects on ocean chemistry are poorly constrained. The co upled nature of the carbon and calcium cycles allows calcium isotopes to be used for constraining carbon cycle dynamics and vice versa. We present a high-resolution calcium isotope (δ 44/40 Ca) record from 100 m of marine limestone spanning the Triassic/Jurassic boundary in two stratigraphic sections from northern Italy. Immediately above the extinction horizon and the associated negativemore » excursion in δ 13 C, δ 44/40 Ca decreases by ca. 0.8‰ in 20 m of section and then recovers to preexcursion values. Coupled numerical models of the geological carbon and calcium cycles demonstrate that this δ 44/40 Ca excursion is too large to be explained by changes to seawater δ 44/40 Ca alone, regardless of CO 2 injection volume and duration. Less than 20% of the δ 44/40 Ca excursion can be attributed to acidification. The remaining 80% likely reflects a higher proportion of aragonite in the original sediment, based largely on high concentrations of Sr in the samples. Our study demonstrates that coupled models of the carbon and calcium cycles have the potential to help distinguish contributions of primary seawater isotopic changes from local or diagenetic effects on the δ 44/40 Ca of carbonate sediments. Finally, differentiating between these effects is critical for constraining the impact of ocean acidification during the end-Triassic mass extinction, as well as for interpreting other environmental events in the geologic past.« less

  11. Tetrapod tracks in Permo–Triassic eolian beds of southern Brazil (Paraná Basin)

    PubMed Central

    Dentzien-Dias, Paula; Lucas, Spencer G.; Schultz, Cesar L.

    2018-01-01

    Tetrapod tracks in eolianites are widespread in the fossil record since the late Paleozoic. Among these ichnofaunas, the ichnogenus Chelichnus is the most representative of the Permian tetrapod ichnological record of eolian deposits of Europe, North America and South America, where the Chelichnus Ichnofacies often occurs. In this contribution, we describe five sets of tracks (one of which is preserved in cross-section), representing the first occurrence of Dicynodontipus and Chelichnus in the “Pirambóia Formation” of southern Brazil. This unit represents a humid desert in southwestern Pangea and its lower and upper contacts lead us to consider its age as Lopingian–Induan. The five sets of tracks studied were compared with several ichnotaxa and body fossils with appendicular elements preserved, allowing us to attribute these tracks to dicynodonts and other indeterminate therapsids. Even though the “Pirambóia Formation” track record is sparse and sub-optimally preserved, it is an important key to better understand the occupation of arid environments by tetrapods across the Permo–Triassic boundary. PMID:29796341

  12. Tetrapod tracks in Permo-Triassic eolian beds of southern Brazil (Paraná Basin).

    PubMed

    Francischini, Heitor; Dentzien-Dias, Paula; Lucas, Spencer G; Schultz, Cesar L

    2018-01-01

    Tetrapod tracks in eolianites are widespread in the fossil record since the late Paleozoic. Among these ichnofaunas, the ichnogenus Chelichnus is the most representative of the Permian tetrapod ichnological record of eolian deposits of Europe, North America and South America, where the Chelichnus Ichnofacies often occurs. In this contribution, we describe five sets of tracks (one of which is preserved in cross-section), representing the first occurrence of Dicynodontipus and Chelichnus in the "Pirambóia Formation" of southern Brazil. This unit represents a humid desert in southwestern Pangea and its lower and upper contacts lead us to consider its age as Lopingian-Induan. The five sets of tracks studied were compared with several ichnotaxa and body fossils with appendicular elements preserved, allowing us to attribute these tracks to dicynodonts and other indeterminate therapsids. Even though the "Pirambóia Formation" track record is sparse and sub-optimally preserved, it is an important key to better understand the occupation of arid environments by tetrapods across the Permo-Triassic boundary.

  13. Geology and U-Pb Zircon ages of the Kavacik Leucogranite in the Bornova Flysch Zone (Western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Güngör, Talip; Hasözbek, Altuǧ; Akal, Cüneyt; Mertz-Kraus, Regina; Peştemalci Üregel, Reyhan

    2016-04-01

    The Bornova Flysch Zone comprises an olistostrome-melange situated NE-SW direction between the Izmir Ankara Suture Zone and the Menderes Massif. The Bornova Flysch Zone is mainly composed of slightly deformed Late Cretaceous to Paleocene sandstone and shale with Mesozoic limestone and oceanic crustal associations. These large-scale blocks in the matrix of the Bornova Flysch Zone are mostly defined as limestone, basalt, serpentinite and radiolarian cherts. In this study, granitic bodies, situated in the Bornova Flysch Zone, named as Kavacik leucogranite is examined for the first time, in terms its geological features and its U-Pb zircon crystallization ages. Kavacik leucogranite displays a typical granitic texture and its composition indicates ranging between granitic to granodioritic in composition with lack of mafic minerals. The geochemical features of the granite indicate the I-type and subalkaline nature of the granitic body. The geochemical signatures of the Kavacik granite points out Volcanic Arc Granitoids as similarly seen in Karaburun granite. U-Pb zircon LA ages were also obtained from the Kavacik granite ranging between 224.5 ± 2.0 Ma and 230.0 ± 2.8 Ma. Early Triassic zircon ages are also previously observed in the Karaburun Peninsula (Karaburun Granite) and the Menderes Massif (Odemis-Kiraz Submassif). The initial geological boundary relation of the Kavacik Leucogranite is not clear in the field and likely displays tectonic boundary features in the matrix of the Bornova Flysch Zone. Overall, the geochemical features of the Kavacik leucogranite and similar leucomagmatic bodies in the Western Anatolia points out the subduction-related tectonic setting is favorable during the Triassic time.

  14. Sedimentological and Stratigraphic Associations of Earlandia Foraminifera; in the Early Triassic Succession of Khuff Carbonates; Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Adam, Ammar; Kaminski, Michael; Abdullatif, Osman

    2017-04-01

    This work reports the first discovery Earlandia foraminifera in the Triassic succession of the Middle East, within the Upper Khartam Member of the Khuff Formation. The study area is located in central Saudi Arabia where four outcrop localities were logged in detail for sedimentology and micropaleontology. More than 300 samples were collected for detailed sedimentological and micropaleontological analysis. Of these, only six samples recovered fossil Earlandia; these are dominantly observed in the interlaminated quartz-bearing recrystallized limestone lithofacies type. The Earlandia occur in associations with quartz grains, peloids, ooids, ostracods, bivalves, bryozoans, cephalopods, and stromatolites. The defined fossils of Earlandia are restricted to the lower fourth-order sequence of the Upper Khartam member; where non-skeletal grains (mostly oolitic grainstones) prevail. The skeletal grains along with the Earlandia occur as a thin (20 cm) transgressive lag. Furthermore, the regional occurrences of the Earlandia are consistent with the previously established high-frequency sequence stratigraphic scheme, therefore, the Earlandia could be used as a biomarker for regional biostratigraphic correlation and enhance the high-resolution sequence stratigraphic correlations of the Upper Khartam Member. Essentially, the detailed sedimentological and micropaleontological analysis (Earlandia foraminifera) indicates a plate-wide extensive shallow epeiric sea. The latter is gently dipping and sporadically connected to the open marine system.

  15. Development of a high resolution chemostratigraphy for the Late Triassic-Early Jurassic Newark Basin

    NASA Astrophysics Data System (ADS)

    Kinney, S.; Olsen, P. E.; Chang, C.

    2017-12-01

    The 6.7 km of continuous core recovered from the paleo-tropical Triassic-Jurassic Newark rift basin during the Newark Basin Coring Project (NBCP) has provided a wealth of data since the conclusion of drilling 25 years ago. These cores comprise the longest ( 30 Myr) continuously-cored record of orbitally-paced environmental change and have informed our understanding in several different areas including tropical climate change, history of CO­2, mass extinctions, the geological time scale, and solar system dynamics. Despite the utility of NBCP cores for these endeavors, a critical missing dataset is a comprehensive characterization of their geochemical variations relevant to paleoenvironmental and paleoclimatic interests, largely a consequence of the cost of analyses at an appropriate resolution using conventional techniques. With the advent of new technology permitting the rapid acquisition of reliable geochemical data, such limitations may no longer be an obstacle for constructing a high-resolution chemostratigraphic record for the NBCP. We present the results of a proof-of-concept study using both ICP-MS-calibrated scanning ITRAX XRF and handheld Laser Induced Breakdown Spectroscopy (LIBS) using the SciAps Z-300. We will show elemental abundances at resolutions as high as 500 mm obtained using these methods from correlative sections of the Titusville and Nursery cores (Lockatong Fm.). These sections are sufficiently long to capture orbital variations and include the range of lithologies present throughout the entire section. Our preliminary results are consistent with previous, semi-quantitative means (e.g., depth ranks) of assessing Milankovitch-scale orbital variations and are also consistent with core and hole geophysical data, demonstrating that these methods can acquire meaningful geochemical data from the entire NBCP. With continued work, we aim to provide an objective characterization of orbitally-paced lake level cyclicity using geochemical proxy

  16. Zircon ages delimit the provenance of a sand extrudite from the Botucatu Formation in the Paraná volcanic province, Iraí, Brazil.

    PubMed

    Pinto, Viter M; Hartmann, Léo A; Santos, João O S; McNaughton, Neal J

    2015-09-01

    Ion microprobe age determinations of 102 detrital zircon crystals from a sand extrudite, Cretaceous Paraná volcanic province, set limits on the origin of the numerous sand layers present in this major flood basalt province. The zircon U-Pb ages reflect four main orogenic cycles: Mesoproterozoic (1155-962 Ma), latest Proterozoic-early Cambrian (808-500 Ma) and two Palaeozoic (Ordovician- 480 to 450 Ma, and Permian to Lower Triassic- 296 to 250 Ma). Two additional small concentrations are present in the Neoarchean (2.8 to 2.6 Ga) and Paleoproterozoic (2.0 to 1.7 Ga). Zircon age peaks closely match the several pulses of igneous activity in the Precambrian Brazilian Shield and active orogeny in Argentina. A main delimitation of the origin of the sand is the absence of zircon ages from the underlying Cretaceous basalts, thus supporting an injectite origin of the sand as an extrudite that emanated from the paleoerg that constitutes the Botucatu Formation.

  17. Age, tectonic setting, and metallogenic implication of Phanerozoic granitic magmatism at the eastern margin of the Xing'an-Mongolian Orogenic Belt, NE China

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Ren, Yunsheng; Zhao, Hualei; Yang, Qun; Shang, Qingqing

    2017-08-01

    The eastern margin of the Xing'an-Mongolian Orogenic Belt is characterised by widespread Phanerozoic granitic magmatism, some of which is closely related to significant ore mineralisation. This paper presents new geochronological, petrogenetic, and tectonic data for selected intrusions. Zircon U-Pb geochronology for five granitoid plutons indicates they were emplaced during the middle-late Permian (264-255 Ma) and Cretaceous (106-94 Ma), and thus granitic magmatism occurred throughout the Phanerozoic, Permian (268-252 Ma), Early-Middle Triassic (248-240 Ma), Early Jurassic (183 Ma), and Cretaceous (112-94 Ma). The Permian granitoids consist of monzogranite, granodiorite, tonalite, and quartz diorite, characterised by enrichment in Na2O (3.60-4.72 wt.%), depletion in K2O (0.97-2.66 wt.%), and a negative correlation between P2O5 and SiO2. Together with the presence of hornblende, these geochemical features are indicative of an I-type affinity. The Permian granitic magmatism is associated with quartz-vein-type tungsten deposits (252 Ma; unpublished Sm-Nd isochron age), which formed in an active continental margin setting related to subduction of the Palaeo-Asian Ocean. The Cretaceous quartz diorites have an adakitic affinity, having relatively high Sr (374-502 ppm), low Yb (0.51-0.67 ppm) and Y (8.7-10.7 ppm), and high Sr/Y (39.4-46.8) and (La/Yb)N values (16.2-34.7), suggesting that they were related to the partial melting of subducted oceanic crust. In addition, they are associated with porphyry Au-Cu deposits. We conclude that the Cretaceous granitic rocks and associated porphyry Au-Cu mineralisation occurred in an extensional tectonic setting related to the subduction of the Palaeo-Pacific Plate beneath the Eurasian Plate. In addition, the large-scale Early-Middle Triassic syn-collisional granite belt at the eastern margin of the Xing'an-Mongolian Orogenic Belt extends from the middle of Jilin Province to the Wangqing-Hunchun region, constraining the timing of the

  18. Permo Triassic unconformity-related Au-Pd mineralisation, South Devon, UK: new insights and the European perspective

    NASA Astrophysics Data System (ADS)

    Shepherd, Tom J.; Bouch, Jon E.; Gunn, Andrew G.; McKervey, John A.; Naden, Jonathan; Scrivener, Richard C.; Styles, Michael T.; Large, Duncan E.

    2005-07-01

    An integrated mineralogical-geochemical study of unconformity-related Au-Pd occurrences within and around the Permo Triassic basins of southwest England, UK, has confirmed the importance of low temperature (86±13°C), hydrothermal carbonate veins as hosts for the mineralisation. Fluid inclusion data for the carbonate gangue, supported by stable isotope (13C and 18O) and radiogenic (87Sr/86Sr) data, have identified three principal fluids: (1) a reducing calcic brine [>25 wt% salinity, <0.5 NaCl/(NaCl+CaCl2)] originating in the sub-unconformity basement and an expression of advanced mineral fluid interaction; (2) an oxidising sodic brine [~16 wt% salinity, >0.9 NaCl/(NaCl+CaCl2)] originating in the post-unconformity red beds under evaporitic conditions, and (3) an oxygenated, low salinity groundwater (<3 wt% salinity). The sodic brine is reasoned to be the parent metalliferous fluid and to have acquired its enrichment in Au and Pd by the leaching of immature sediments and intra-rift volcanic rocks within the local Permo Triassic basins. Metal precipitation is linked to the destabilisation of Au and Pd chloride complexes by either mixing with calcic brines, dilution by groundwaters or interaction with reduced lithologies. This explains the diversity of mineralised settings below and above the unconformity and their affinity with red bed brines. The paucity of sulphide minerals, the development of selenides (as ore minerals and as mineral inclusion in gold grains), the presence of rhodochrosite and manganoan calcites (up to 2.5 wt% Mn in calcite) and the co-precipitation of hematite and manganese oxides are consistent with the overall high oxidation state of the ore fluids. A genetic model is proposed linking Permo Triassic red beds, the mixing of oxidising and reducing brines, and the development of unconformity-related precious metal mineralisation. Comparison with other European Permo Triassic basins reveals striking similarities in geological setting, mineralogy

  19. Early age damage quantification of actively restrained concrete using inverse analysis

    NASA Astrophysics Data System (ADS)

    Albanna, Ali

    Early-age cracking can be a significant problem in concrete pavements, floors, and bridge decks. Cracking occurs when the volumetric changes associated with drying, hydration, and temperature reduction are prevented. Good knowledge about the characteristics of early age concrete is necessary to achieve reliable crack control. Volumetric changes due to shrinkage depend on the type of concrete and its components. It has been found that light weight aggregates can work as internal reservoir to supply the concrete matrix with water that is needed during the early age; this process is called internal curing. Also fibers can give more ductility to the concrete and produce less shrinkage. There is a need to better understand the effects of early age uniaxial restraint on long term concrete mechanical performance. In this study, two types of concrete were studied (high performance fiber reinforced concrete and ordinary concrete) under actively restrained loading conditions to assess the effect on the long term fracture toughness and energy. Single edge notched specimens having dimensions of 250 mm x 150 mm x 75 mm and a notch to depth ratio of 0.33 were caste and used in both direct tension and three point bending. The direct tension tests were carried out on a direct tension loading frame constructed in house that was supplied with two mechanical jacks and load cell.

  20. Distinctive Triassic megaporphyritic monzogranite: Evidence for only 160 km offset along the San Andreas Fault, southern California

    NASA Astrophysics Data System (ADS)

    Frizzell, Virgil A., Jr.; Mattinson, James M.; Matti, Jonathan C.

    1986-12-01

    Distinctive megaporphyritic bodies of monzogranite to quartz monzonite that occur in the Mill Creek region of the San Bernardino Mountains and across the San Andreas fault on Liebre Mountain share identical modal and chemical compositions, intrusive ages, and petrogenesis and similar thermal histories. Both bodies are strontium-rich and contain large potassium feldspar phenocrysts and hornblende. U-Pb determinations on zircon from both bodies indicate Triassic intrusive ages (215 Ma) and derivation, in part, from homogeneous Precambrian continental crust. U-Pb analyses on apatite and sphene and K-Ar analyses on hornblende and biotite show that the bodies suffered a Late Cretaceous thermal event (70-75 Ma). The strong similarities between the two bodies suggest that they constitute segments of a formerly continuous pluton that has been offset about 160 km by movement on the San Andreas fault, about 80 km less than the generally accepted distance. Plutons having monzonitic compositions, reassembled with the megaporphyritic bodies are used as a piercing point, form a relatively coherent province within the varied suite of Mesozoic batholithic and prebatholithic rocks in southern California.

  1. Evolution of the carbon cycle and seawater temperature from the Triassic-Jurassic boundary to the Early Toarcian based on brachiopod geochemistry

    NASA Astrophysics Data System (ADS)

    Müller, Tamás; Tomašových, Adam

    2017-04-01

    The ecological crisis and extinction at the end of the Triassic coincides with several environmental perturbations such as global temperature rise, ocean acidification and carbon isotope anomalies, with a large observed negative carbon isotope excursion (CIE) in the Late Rhaetian as well. Followed by the ETE, the Early Jurassic was characterized by marked fluctuations of the global seawater temperature and carbon cycle. Carbon isotope records are showing positive and remarkable negative excursions. A particular example of these phenomena is connected to the Toarcian Oceanic Anoxic Event (TOAE). The δ13C record of the TOAE is showing a negative excursion of a high magnitude, suggesting the injection of large amount of light carbon into the ocean-atmosphere system, coinciding with rapid global warming and widespread anoxia. Beside the TOAE there are many other, smaller scale carbon isotope anomalies and environmental perturbations at the Sinemurian-Pliensbachian transition or at the Pliensbachian-Toarcian boundary. In our study, we provide new brachiopod δ13C, δ18O, and Mg/Ca data from the time interval starting in the Rhaetian till the end of the Early Toarcian. Considering the strong resistance of brachiopod shells against diagenesis, our aim is to reconstruct seawater temperature, seawater Mg/Ca, and carbon cycle evolution based on a reliable geochemical proxy database of the studied time interval. The samples have been collected from various localities across Europe achieving a good, at least ammonite subzone scale resolution for the Rhaetian stage and for the Lower Jurassic. The geochemical preservation of the shell material have been tested by several approaches. Thin-sections were made from the shells and analyzed by electron microprobe and ICP-OES to evaluate their preservation by assessing concentrations of Fe, Mn, Sr, and their ratios (Mn/Ca, Sr/Ca). Considering the various elemental composition data of fossil and recent brachiopods published by several

  2. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

    PubMed

    Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I

    2009-09-01

    Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.

  3. The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance

    PubMed Central

    Kammerer, Christian F.; Melo, Tomaz P.; Paes Neto, Voltaire D.; Ribeiro, Ana Maria; Da-Rosa, Átila A. S.; Schultz, Cesar L.; Soares, Marina Bento

    2017-01-01

    In this contribution we report the first occurrence of the enigmatic African probainognathian genus Aleodon in the Middle-early Late Triassic of several localities from the state of Rio Grande do Sul in southern Brazil. Aleodon is unusual among early probainognathians in having transversely-expanded postcanine teeth, similar to those of gomphodont cynognathians. This genus was previously known from the Manda Beds of Tanzania and the upper Omingonde Formation of Namibia. The Brazilian record of this genus is based upon multiple specimens representing different ontogenetic stages, including three that were previously referred to the sectorial-toothed probainognathian Chiniquodon theotonicus. We propose a new species of Aleodon (A. cromptoni sp. nov.) based on the specimens from Brazil. Additionally, we tentatively refer one specimen from the upper Omingonde Formation of Namibia to this new taxon, strengthening biostratigraphic correlations between these strata. Inclusion of A. cromptoni in a phylogenetic analysis of eucynodonts recovers it as the sister-taxon of A. brachyrhamphus within the family Chiniquodontidae. The discovery of numerous specimens of Aleodon among the supposedly monospecific Chiniquodon samples of Brazil raises concerns about chiniquodontid alpha taxonomy, particularly given the extremely broad geographic distribution of Chiniquodon. The discovery of Brazilian Aleodon and new records of the traversodontid Luangwa supports the hypothesis that at least two subzones can be recognized in the Dinodontosaurus Assemblage Zone. PMID:28614355

  4. Extreme Modification of the Tetrapod Forelimb in a Triassic Diapsid Reptile.

    PubMed

    Pritchard, Adam C; Turner, Alan H; Irmis, Randall B; Nesbitt, Sterling J; Smith, Nathan D

    2016-10-24

    The tetrapod forelimb is one of the most versatile structures in vertebrate evolution, having been co-opted for an enormous array of functions. However, the structural relationships between the bones of the forelimb have remained largely unchanged throughout the 375 million year history of Tetrapoda, with a radius and ulna made up of elongate, paralleling shafts contacting a series of shorter carpal bones. These features are consistent across nearly all known tetrapods, suggesting that the morphospace encompassed by these taxa is limited by some sort of constraint(s). Here, we report on a series of three-dimensionally preserved fossils of the small-bodied (<1 m) Late Triassic diapsid reptile Drepanosaurus, from the Chinle Formation of New Mexico, USA, which dramatically diverge from this pattern. Along with the crushed type specimen from Italy, these specimens have a flattened, crescent-shaped ulna with a long axis perpendicular to that of the radius and hyperelongate, shaft-like carpal bones contacting the ulna that are proximodistally longer than the radius. The second digit supports a massive, hooked claw. This condition has similarities to living "hook-and-pull" digging mammals and demonstrates that specialized, modern ecological roles had developed during the Triassic Period, over 200 million years ago. The forelimb bones in Drepanosaurus represent previously unknown morphologies for a tetrapod and, thus, a dramatic expansion of known tetrapod forelimb morphospace. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Late Triassic (Carnian) lamproites from Noril'sk, polar Siberia: Evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexei V.; Demonterova, Elena I.; Savatenkov, Valery M.; Perepelov, Alexander B.; Ryabov, Viktor V.; Shevko, Artem Y.

    2018-01-01

    Two typical lamproitic dykes were found in Noril'sk region of the north-western Siberian Craton, which according to mineralogical, geochemical and isotopic criteria belong to anorogenic, non-diamondiferous type of lamproites. According to the geologic relationships, they cut through the Noril'sk-1 intrusion of the Siberian flood basalt province and thus are younger than 251 Ma. 40Ar/39Ar dating of the two dykes yielded ages of 235.24 ± 0.19 Ma and 233.96 ± 0.19 Ma, showing that they were emplaced in Carnian of the Late Triassic, about 16 Ma after the flood basalt event. There are some indications that there were multiple lamproitic dyke emplacements, including probably emplacement of diamondiferous lamproites, which produced Carnian-age diamond-rich placer deposits in other parts of the Siberian Craton and in adjacent regions. Lead isotope modelling shows that the source of the studied lamproites was formed with participation of recycled crust, which underwent modification of its U/Pb ratio as early as 2.5 Ga. However, the exact mechanism of the recycling cannot be deciphered now. It could be either through delamination of the cratonic crust or subduction of a mix of ancient terrigenous sediments into the mantle transition zone.

  6. Early-late life trade-offs and the evolution of ageing in the wild.

    PubMed

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-05-07

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing-the disposable soma and the antagonistic pleiotropy theories-and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Early life determinants of frailty in old age: the Helsinki Birth Cohort Study.

    PubMed

    Haapanen, M J; Perälä, M M; Salonen, M K; Kajantie, E; Simonen, M; Pohjolainen, P; Eriksson, J G; von Bonsdorff, M B

    2018-04-12

    there is evidence suggesting that several chronic diseases have their origins in utero and that development taking place during sensitive periods may affect the aging process. We investigated whether early life determinants would be associated with frailty in old age. at a mean age of 71 years, 1,078 participants belonging to the Helsinki Birth Cohort Study were assessed for frailty according to the Fried frailty criteria. Early life measurements (birth weight, length, mother body mass index [BMI] and parity) were obtained from birth, child welfare and school health records. Multinomial regression analysis was used to assess the association between early life determinants and frailty in old age. weight, length and BMI at birth were all inversely associated with frailty in old age. A 1 kg increase in birth weight was associated with a lower relative risk ratio (RRR) of frailty (age and sex-adjusted RRR = 0.40, 95% CI: 0.19, 0.82) compared to non-frailty. Associations persisted after adjusting for several confounding factors. Compared to cohort members in the upper middle class, those who as adults worked as manual workers or belonged to the lower middle class, were at an increased risk of frailty. those who were small at birth were at an increased risk of developing frailty in old age, suggesting that frailty is at least partly programmed in early life. A less privileged socioeconomic status in adulthood was associated with an increased risk of frailty in old age.

  8. Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of the Neuquén Basin

    NASA Astrophysics Data System (ADS)

    Naipauer, Maximiliano; Tapia, Felipe; Mescua, José; Farías, Marcelo; Pimentel, Marcio M.; Ramos, Victor A.

    2015-12-01

    The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U-Pb (LA-MC-ICP-MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian-Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U-Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian-Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests

  9. Gestational age-dependent risk factors for preterm birth: associations with maternal education and age early in gestation.

    PubMed

    Auger, Nathalie; Abrahamowicz, Michal; Wynant, Willy; Lo, Ernest

    2014-05-01

    Preterm birth (PTB) before 37 weeks can occur over a wide range of gestational ages, but few studies have assessed if associations between risk factors and PTB vary over the duration of gestation. We sought to evaluate if associations between two major risk factors (maternal education and age) and PTB depend on gestational age at delivery. We estimated hazard ratios of PTB for education and age in a time-to-event analysis using a retrospective cohort of 223,756 live singleton births from the province of Québec, Canada for the years 2001-2005. Differences in hazards of maternal education and age with PTB were assessed over gestational age in a Cox proportional hazards model using linear and nonlinear time interaction terms, adjusting for maternal characteristics. Associations of PTB with lower (vs. higher) education and older (vs. younger) age strengthened progressively at earlier gestational ages, such that the risk of PTB for maternal education and age was not constant over the course of gestation. Associations of PTB with risk factors such as maternal low education and older age may be stronger early in gestation. Models that capture the time-dependent nature of PTB may be useful when the goal is to assess associations at low gestational ages, and to avoid masked or biased associations early in gestation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Boosting Early Development: The Mixed Effects of Kindergarten Enrollment Age

    ERIC Educational Resources Information Center

    Zhang, Jiahui; Xin, Tao

    2012-01-01

    This study aimed to investigate the effects of kindergarten enrollment age on four-year-old Chinese children's early cognition and problem behavior using multilevel models. The sample comprised of 1,391 pre-school children (the mean age is 4.58 years old) from 74 kindergartens in six different provinces. The results demonstrated curvilinear…

  11. Community stability and selective extinction during the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2015-10-01

    The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives.

  12. Organizations' Ways of Employing Early Retirees: The Role of Age-Based HR Policies.

    PubMed

    Oude Mulders, Jaap; Henkens, Kène; Schippers, Joop

    2015-06-01

    We examine whether from an organizational perspective it is possible to distinguish different ways of employing early retirees and explore how the employment of early retirees is related to the application of 4 age-based human resource (HR) policies, namely demotion, offering training opportunities to older workers, offering early retirement, and allowing flexible working hours. We perform a latent class analysis on a sample of 998 Dutch organizations in order to categorize them based on 3 dimensions of their employment of early retirees. We then run a multinomial logistic regression to relate the employment of early retirees to the 4 age-based HR policies. We distinguish 4 types of organizations based on their way of employing early retirees: nonusers (52.6%), users for mainly standard work (20.8%), users for mainly nonstandard work (9.8%), and users for standard and nonstandard work (16.7%). We find that organizations that apply demotion, offer early retirement, and allow flexible working hours are more likely to be users for mainly standard work. Also, organizations that do not offer early retirement are less likely to employ early retirees. Age-based HR policies, especially demotion, offering early retirement, and allowing flexible working hours, are conducive to the employment of early retirees for mainly standard work. Broader implementation of these policies may provide opportunities for older workers to make a more gradual transition from work to retirement. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    PubMed

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  14. The Association of Kindergarten Entry Age with Early Literacy Outcomes

    ERIC Educational Resources Information Center

    Huang, Francis L.; Invernizzi, Marcia A.

    2012-01-01

    The authors investigated whether age at kindergarten entry was associated with early literacy achievement gaps and if these gaps persisted over time. Using the kindergarten age eligibility cutoff date, they created 2 groups of students who represented the oldest and youngest children in a cohort of students in high-poverty, low-performing schools.…

  15. Records of Triassic volcanism in Pangean Great Lakes, and implications for reconstructing the distal effects of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.

    2017-12-01

    Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as

  16. The Pangaean megamonsoon - evidence from the Upper Triassic Chinle Formation, Colorado Plateau

    USGS Publications Warehouse

    Dubiel, R.F.; Totman, Parrish J.; Parrish, J.M.; Good, S.C.

    1991-01-01

    The Chinle was deposited between about 5?? to 15??N paleolatitude in the western equatorial region of Pangaea, a key area for documenting the effects of the monsoonal climate. This study summarizes sedimentological and paleontologic data from the Chinle Formation on the Colorado Plateau and integrates that data with paleoclimatic models. The evidence for abundant moisture and seasonality attest to the reversal of equatorial flow and support the hypothesis that the Triassic Pangaean climate was dominated by monsoonal circulation. -from Authors

  17. Working Memory in Early-School-Age Children with Asperger's Syndrome

    ERIC Educational Resources Information Center

    Cui, Jifang; Gao, Dingguo; Chen, Yinghe; Zou, Xiaobing; Wang, Ya

    2010-01-01

    Using a battery of working memory span tasks and n-back tasks, this study aimed to explore working memory functions in early-school-age children with Asperger's syndrome (AS). Twelve children with AS and 29 healthy children matched on age and IQ were recruited. Results showed: (a) children with AS performed better in digit and word recall tasks,…

  18. Early growth patterns are associated with intelligence quotient scores in children born small-for-gestational age.

    PubMed

    Varella, Marcia H; Moss, William J

    2015-08-01

    To assess whether patterns of growth trajectory during infancy are associated with intelligence quotient (IQ) scores at 4 years of age in children born small-for-gestational age (SGA). Children in the Collaborative Perinatal Project born SGA were eligible for analysis. The primary outcome was the Stanford-Binet IQ score at 4 years of age. Growth patterns were defined based on changes in weight-for-age z-scores from birth to 4 months and 4 to 12 months of age and consisted of steady, early catch-up, late catch-up, constant catch-up, early catch-down, late catch-down, constant catch-down, early catch-up & late catch-down, and early catch-down & late catch-up. Multivariate linear regression was used to assess associations between patterns of growth and IQ. We evaluated patterns of growth and IQ in 5640 children. Compared with children with steady growth, IQ scores were 2.9 [standard deviation (SD)=0.54], 1.5 (SD=0.63), and 2.2 (SD=0.9) higher in children with early catch-up, early catch-up and later catch-down, and constant catch-up growth patterns, respectively, and 4.4 (SD=1.4) and 3.9 (SD=1.5) lower in children with early catch-down & late catch-up, and early catch-down growth patterns, respectively. Patterns in weight gain before 4 months of age were associated with differences in IQ scores at 4 years of age, with children with early catch-up having slightly higher IQ scores than children with steady growth and children with early catch-down having slightly lower IQ scores. These findings have implications for early infant nutrition in children born SGA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. A middle Permian ophiolite fragment in Late Triassic greenschist- to blueschist-facies rocks in NW Turkey: An earlier pulse of suprasubduction-zone ophiolite formation in the Tethyan belt

    NASA Astrophysics Data System (ADS)

    Topuz, Gültekin; Okay, Aral I.; Schwarz, Winfried H.; Sunal, Gürsel; Altherr, Rainer; Kylander-Clark, Andrew R. C.

    2018-02-01

    The Eastern Mediterranean region within the Tethyan belt is characterised by two main pulses of suprasubduction-zone ophiolite formation during the Early-Middle Jurassic and Late Cretaceous. Despite vast exposures of the Permo-Triassic accretionary complexes, related suprasubduction-zone ophiolites and the timing of subduction initiation leading to the formation of Permo-Triassic accretionary complexes are unknown so far. Here we report on a 40 km long and 0.3 to 1.8 km wide metaophiolite fragment within transitional greenschist- to blueschist-facies oceanic rocks from NW Turkey. The metaophiolite fragment is made up mainly of serpentinite and minor dykes or stocks of strongly sheared metagabbro with mineral assemblages involving actinolite/winchite, chlorite, epidote, albite, titanite and phengite. The metagabbro displays (i) variable CaO and MgO contents, (ii) anomalously high Mg# (= 100 ∗ molar MgO/(MgO + FeOtot)) of 75-88, and (iii) positive Eu anomalies, together with low contents of incompatible elements such as Ti, P and Zr, suggesting derivation from former plagioclase cumulates. The serpentinites comprise serpentine, ± chlorite, ± talc, ± calcite and relict Cr-Al spinel surrounded by ferrichromite to magnetite. Relict Cr-Al spinels are characterised by (i) Cr/(Cr + Al) ratios of 0.45-0.56 and Mg/(Mg + Fe2 +) ratio of 0.76-0.22, (ii) variable contents of ZnO and MnO, and (iii) extremely low TiO2 contents. Zn and Mn contents are probably introduced into Cr-Al spinels during greenschist- to blueschist metamorphism. Compositional features of the serpentinite such as (i) Ca- and Al-depleted bulk compositions, (ii) concave U-shaped, chondrite-normalised rare earth element patterns (REE) with enrichment of light and heavy REEs, imply that serpentinites were probably derived from depleted peridotites which were refertilised by light rare earth element enriched melts in a suprasubduction-zone mantle wedge. U-Pb dating on igneous zircons from three metagabbro

  20. The end-Triassic mass extinction: A new correlation between extinction events and δ13C fluctuations from a Triassic-Jurassic peritidal succession in western Sicily

    NASA Astrophysics Data System (ADS)

    Todaro, Simona; Rigo, Manuel; Randazzo, Vincenzo; Di Stefano, Pietro

    2018-06-01

    A new δ13Ccarb curve was obtained from an expanded peritidal succession in western Sicily and was used to investigate the relationships between isotopic signatures and biological events on carbonate platforms across the Triassic-Jurassic boundary (TJB). The resulting curve shows two main negative carbon isotopic excursions (CIEs) that fit well with the "Initial" and "Main" CIEs that are recognized worldwide and linked to the End-Triassic Extinction (ETE). In the studied section, the first negative CIE marks the disappearance of the large megalodontids, which were replaced by small and thin-shelled specimens, while the "Main" CIE corresponds to the last occurrence (LO) of the megalodontids and, approximately 50 m upsection, to the total demise of the Rhaetian benthic foraminifer community. Upward, the carbon curve shows a positive trend (ca. +1‰) and a gradual recovery of the benthic communities after an approximately 10 m-thick barren interval populated only by the problematic alga Thaumatoporella parvovesiculifera. A comparison between the Mt. Sparagio δ13Ccarb curve and other coeval Ccarb and Corg curves from carbonate platform, ramp and deep basin successions indicates similar isotopic trends; however, the diverse magnitudes and responses of benthic communities confirm that the carbon cycle perturbations have been globally significant, and were influenced by external forces such as CAMP volcanism. The multiphase nature of the extinction pulses could have been caused by local environmental changes related to transgression/regression phenomena. Overall, this study adds new data and a new timing to the effect of the acidification process on carbon productivity and benthic communities in different environments across the TJB.

  1. Early Childhood Predictors of School-Age Children's Reports of Sibling Relationships.

    ERIC Educational Resources Information Center

    Poris, Michelle P.

    This study examined the associations between the early family environment, older siblings' early characteristics, and later sibling relationships. Participating were 37 families with infants and preschool-age older siblings who were observed in the laboratory at 3 time points and followed-up 3 years later. Findings indicated that parents' early…

  2. School Age Outcomes of Children Diagnosed Early and Later with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Clark, Megan Louise Erin; Vinen, Zoe; Barbaro, Josephine; Dissanayake, Cheryl

    2018-01-01

    Early diagnosis of Autism Spectrum Disorder is considered best practice, increasing access to early intervention. Yet, many children are diagnosed after 3-years. The current study investigated the school age outcomes of children who received an early and later diagnosis of ASD. The cognitive and behavioural outcomes of children diagnosed early (n…

  3. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Plafker, George; Nokleberg, W. J.; Lull, J. S.

    1989-04-01

    The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.

  4. Detrital zircon geochronology of some neoproterozoic to triassic rocks in interior alaska

    USGS Publications Warehouse

    Bradley, D.C.; McClelland, W.C.; Wooden, J.L.; Till, A.B.; Roeske, S.M.; Miller, M.L.; Karl, Susan M.; Abbott, J.G.

    2007-01-01

    We report 777 U-Pb SHRIMP detrital zircon ages from thirteen sandstones and metasandstones in interior Alaska. About sixty grains per sample were analyzed; typically, half to three-fourths of these were concordant within ?? 10%. Farewell terrane. Two quartzites were collected from Ruby quadrangle and a third from Taylor Mountains quadrangle. All three are interpreted to represent a low stratigraphic level in the Nixon Fork platform succession; the samples from Ruby quadrangle are probably late Neoproterozoic, and the sample from Taylor Mountains quadrangle is probably Cambrian in age. The youngest detrital zircon in any of the three is 851 Ma. The two Ruby quadrangle samples area almost identical: one has a major age cluster at 1980-2087 and minor age clusters at 944-974 and 1366-1383 Ma; the other has a major age cluster at 1993-2095 Ma and minor age clusters at 912-946 and 1366-1395 Ma. The Taylor Mountains sample shows one dominant peak at 1914-2057 Ma. Notably absent are zircons in the range 1800-1900 Ma, which are typical of North American sources. The detrital zircon populations are consistent with paleontological evidence for a peri- Siberian position of the Farewell terrane during the early Paleozoic. Mystic subterrane of the Farewell terrane. Three graywackes from flysch of the Mystic subterrane, Talkeetna quadrangle, were sampled with the expectation that all three were Pennsylvanian. Asample from Pingston Creek is Triassic (as revealed by an interbedded ash dated at ca. 223 Ma) and is dominated by age clusters of 341-359 and 1804-1866 Ma, both consistent with a sediment source in the Yukon-Tanana terrane. Minor age clusters at 848-869 and 1992-2018 Ma could have been sourced in the older part of the Farewell terrane. Still other minor age clusters at 432-461, 620-657, 1509-1536, and 1627-1653 Ma are not readily linked to sources that are now nearby. Asample from Surprise Glacier is mid-Mississippian or younger. Adominant age cluster at 1855-1883 and a

  5. Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, M.D.

    1993-08-01

    During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit,more » Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.« less

  6. Rewriting the Central European Early Bronze Age Chronology: Evidence from Large-Scale Radiocarbon Dating

    PubMed Central

    Knipper, Corina; Friedrich, Ronny; Kromer, Bernd; Lindauer, Susanne; Radosavljević, Jelena; Wittenborn, Fabian; Krause, Johannes

    2015-01-01

    The transition from the Neolithic to the Early Bronze Age in Central Europe has often been considered as a supra-regional uniform process, which led to the growing mastery of the new bronze technology. Since the 1920s, archaeologists have divided the Early Bronze Age into two chronological phases (Bronze A1 and A2), which were also seen as stages of technical progress. On the basis of the early radiocarbon dates from the cemetery of Singen, southern Germany, the beginning of the Early Bronze Age in Central Europe was originally dated around 2300/2200 BC and the transition to more complex casting techniques (i.e., Bronze A2) around 2000 BC. On the basis of 140 newly radiocarbon dated human remains from Final Neolithic, Early and Middle Bronze Age cemeteries south of Augsburg (Bavaria) and a re-dating of ten graves from the cemetery of Singen, we propose a significantly different dating range, which forces us to re-think the traditional relative and absolute chronologies as well as the narrative of technical development. We are now able to date the beginning of the Early Bronze Age to around 2150 BC and its end to around 1700 BC. Moreover, there is no transition between Bronze (Bz) A1 and Bronze (Bz) A2, but a complete overlap between the type objects of the two phases from 1900–1700 BC. We thus present a revised chronology of the assumed diagnostic type objects of the Early Bronze Age and recommend a radiocarbon-based view on the development of the material culture. Finally, we propose that the traditional phases Bz A1 and Bz A2 do not represent a chronological sequence, but regionally different social phenomena connected to the willingness of local actors to appropriate the new bronze technology. PMID:26488413

  7. Vitamin D Status and Early Age-Related Macular Degeneration in Postmenopausal Women

    PubMed Central

    Millen, Amy E.; Voland, Rick; Sondel, Sherie A.; Parekh, Niyati; Horst, Ronald L.; Wallace, Robert B.; Hageman, Gregory S.; Chappell, Rick; Blodi, Barbara A.; Klein, Michael L.; Gehrs, Karen M.; Sarto, Gloria E.; Mares, Julie A.

    2010-01-01

    Objective The relationship between serum 25-hydroxyvitamin D (25(OH)D) concentrations (nmol/L) and the prevalence of early age-related macular degeneration (AMD) was investigated among participants of the Carotenoids in Age-Related Eye Disease Study. Methods Stereoscopic fundus photographs, taken from 2001–2004, assessed AMD status. Baseline (1994–1998) serum samples were available for 25(OH)D assays in 1,313 women with complete ocular and risk factor data. Odds ratios (ORs) and 95% confidence intervals (CIs) for early AMD (n=241), among 1,287 without advanced disease, were estimated with logistic regression and adjusted for age, smoking, iris pigmentation, family history of AMD, cardiovascular disease, diabetes, and hormone therapy use. Results In multivariate models, no significant relationship was observed between early AMD and 25(OH)D (OR for quintile 5 vs. 1=0.79, 95% CI=0.50–1.24; p for trend=0.47). A significant age interaction (p=0.0025) suggested selective mortality bias in women ≥75 years: serum 25(OH)D was associated with decreased odds of early AMD in women <75 years (n=968) and increased odds in women ≥75 years (n=319) (OR for quintile 5 vs. 1=0.52, 95% CI=0.29–0.91; p for trend=0.02 and 1.76, 95% CI=0.77–4.13; p for trend=0.05, respectively). Further adjustment for body mass index and recreational physical activity, predictors of 25(OH)D, attenuated the observed association in women <75 years. Additionally, among women <75 years, intake of vitamin D from foods and supplements was related to decreased odds of early AMD in multivariate models; no relationship was observed with self-reported time spent in direct sunlight. Conclusions High serum 25(OH)D concentrations may protect against early AMD in women <75 years. PMID:21482873

  8. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  9. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    PubMed

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  10. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    PubMed Central

    Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495

  11. Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events

    NASA Astrophysics Data System (ADS)

    Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid

    2017-06-01

    Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo

  12. Model Development and Trial of Early Detection Manual for the Special Needs Children at Early Age Education Level

    ERIC Educational Resources Information Center

    Anwar, Zainul; Ingarianti, Tri Muji; Suryaningrum, Cahyaning

    2016-01-01

    This research was aimed to produce the manual for early detection for ABK at the level of early age education (PAUD = "Pendidikan Anak Usia Dini"). Research was "action research" with stages as proposed by Buunk and Van Vugt. Metodology of research these stages were called as PATH ("Problem-Analysis-Test…

  13. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.

    PubMed

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-08-07

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.

  14. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors

    PubMed Central

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-01-01

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals. PMID:28783128

  15. Geochronology and Regional Correlation of Continental Permo-Triassic Sediments in West Texas

    NASA Astrophysics Data System (ADS)

    Mitchell, W.; Renne, P. R.; Mundil, R.; Chang, S.; Geissman, J. W.; Tabor, N. J.; Mack, G.

    2011-12-01

    Although many aspects of marine sections spanning the Permian-Triassic boundary (PTB) have been studied in great detail across a broad paleogeographic area, less is known about the timing, pace, and extent of environmental changes and extinctions across this boundary in continental environments, particularly along the Panthalassa margin. Extensive outcrops in the Ochoan Series of west Texas provide an opportunity to investigate the terrestrial record spanning the PTB. The presence of several silicic tuffs in these sections allows for precise radioisotopic dating using both U-Pb and 40Ar/39Ar techniques. Dated strata then serve as a calibration basis for paleomagnetic and lithostratigraphic studies and facilitate stratigraphic correlation across the few to hundreds of kilometers separating study sites. Depending on the possible correlations, as many as seven tuffs have been identified in this region, the ages of which are within about a million years of the chronometrically-defined PTB at the Meishan section in China at ca. 252 Ma. Data obtained thus far indicate that the PTB occurs within the Quartermaster/Dewey Lake Formation. With the aims of determining the number and ages of distinct tuffs found and facilitating a well-correlated regional stratigraphy among the studied sections, we present preliminary radioisotopic age determinations of, and correlations among, these tuffs using the zircon U-Pb system, 40Ar/39Ar dating where possible, as well as mineral chemistry. Our results include the first dated tuff in the Ochoan Series that lies within the Alibates Formation which underlies the Dewey Lake Fm. Other samples in progress from the various tuffs in the region, in combination with results from magneto- and chemostratigraphy, will significantly expand the areal coverage of these strata and lead towards a greatly improved chronostratigraphic framework.

  16. Early Jurassic extensional inheritance in the Lurestan region of the Zagros fold-and-thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Parente, Mariano; Vitale, Stefano; Puzone, Francesco; Erba, Elisabetta; Bottini, Cinzia; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    It has long been recognized that the tectonic architecture of the Zagros mountain belt was strongly controlled by inherited structures previously formed within the Arabian plate. These preexisting features span in age from the pre-Cambrian to the Mesozoic, showing different trends and deformation styles. Yet, these structures are currently not fully understood. This uncertainty is partly related with the paucity of exposures, which rarely allows a direct observation of these important deformation features. The Lurestan Province of Iran provides a remarkable exception, since it is one of the few places of the Zagros mountain belt where exposures of Triassic and Jurassic rocks are widespread. In this area we carried out structural observations on Mesozoic extensional structures developed at the southern margin of the Neo-Tethyan basin. Syn-sedimentary extensional faults are hosted within the Triassic-Cretaceous succession, being particularly abundant in the Jurassic portion of the stratigraphy. Early to Middle Jurassic syn-sedimentary faults are observed in different paleogeographic domains of the area, and their occurrence is coherent with the subsequent transition from shallow-water to deep-sea basin environments, observed in a wide portion of the area. Most of the thrusts exposed in the area may indeed be interpreted as reactivated Jurassic extensional faults, or as reverse faults whose nucleation was controlled by the location of preexisting normal faults, as a result of positive inversion during crustal shortening and mountain building.

  17. Association of early- and adult-life socioeconomic circumstances with muscle strength in older age.

    PubMed

    Cheval, Boris; Boisgontier, Matthieu P; Orsholits, Dan; Sieber, Stefan; Guessous, Idris; Gabriel, Rainer; Stringhini, Silvia; Blane, David; van der Linden, Bernadette W A; Kliegel, Matthias; Burton-Jeangros, Claudine; Courvoisier, Delphine S; Cullati, Stéphane

    2018-05-01

    socioeconomic circumstances (SEC) during a person's lifespan influence a wide range of health outcomes. However, solid evidence of the association of early- and adult-life SEC with health trajectories in ageing is still lacking. This study assessed whether early-life SEC are associated with muscle strength in later life-a biomarker of health-and whether this relationship is caused by adult-life SEC and health behaviours. we used data from the Survey of Health Ageing and Retirement in Europe, a 12-year population-based cohort study with repeated measurement in six waves (2004-15) and retrospective collection of life-course data. Participants' grip strength was assessed by using a handheld dynamometer. Confounder-adjusted logistic mixed-effect models were used to examine the associations of early- and adult-life SEC with the risk of low muscle strength (LMS) in older age. a total of 24,179 participants (96,375 observations) aged 50-96 living in 14 European countries were included in the analyses. Risk of LMS was increased with disadvantaged relative to advantaged early-life SEC. The association between risk of LMS and disadvantaged early-life SEC gradually decreased when adjusting for adult-life SEC for both sexes and with unhealthy behaviours for women. After adjusting for these factors, all associations between risk of LMS and early-life SEC remained significant for women. early-life SEC are associated with muscle strength after adjusting for adult-life SEC and behavioural lifestyle factors, especially in women, which suggests that early life may represent a sensitive period for future health.

  18. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile: evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District

    NASA Astrophysics Data System (ADS)

    Zentilli, Marcos; Maksaev, Victor; Boric, Ricardo; Wilson, Jessica

    2018-04-01

    The MMH porphyry type copper-molybdenum deposit in northern Chile is the newest mine in the Chuquicamata District, one of largest copper concentrations on Earth. Mineralized Eocene-Oligocene porphyry intrusions are hosted by essentially barren Triassic granodiorites. Despite a century of exploitation, geologists still have problems in the mine distinguishing the Triassic granodiorite from the most important ore-carrying Eocene porphyries in the district. To resolve the problem, internally consistent high-quality geochemical analyses of the Triassic and Tertiary intrusives were carried out: explaining the confusion, they show that the rock units in question are nearly identical in composition and thus respond equally to hydrothermal alteration. In detail, the only difference in terms of chemical composition is that the main Eocene-Oligocene porphyries carry relatively less Fe and Ni. Unexpectedly, the mineralized Eocene-Oligocene porphyries have consistently less U and Th than other Tertiary intrusions in the district, a characteristic that may be valuable in exploration. The supergiant copper-molybdenum deposits in the Central Andes were formed within a narrow interval between 45 and 31 Ma, close to 7% of the 200 My duration of "Andean" magmatism, which resulted from subduction of oceanic lithosphere under South America since the Jurassic. Although recent work has shown that subduction was active on the margin since Paleozoic times, pre-Andean (pre-Jurassic) "Gondwanan" magmatism is often described as being very different, having involved crustal melting and the generation of massive peraluminous rhyolites and granites. This study shows that the indistinguishable Late Triassic and Eocene-Oligocene intrusions occupy the same narrow NS geographic belt in northern Chile. If it is accepted that magma character may determine the potential to generate economic Cu-Mo deposits, then Late Triassic volcano-plutonic centres in the same location in the South American margin

  19. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet

    NASA Astrophysics Data System (ADS)

    Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato

    2017-04-01

    The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit

  20. Growth curve analyses of the relationship between early maternal age and children's mathematics and reading performance.

    PubMed

    Torres, D Diego

    2015-03-01

    Regarding the methods used to examine the early maternal age-child academic outcomes relationship, the extant literature has tended to examine change using statistical analyses that fail to appreciate that individuals vary in their rates of growth. Of the one study I have been able to find that employs a true growth model to estimate this relationship, the authors only controlled for characteristics of the maternal household after family formation; confounding background factors of mothers that might select them into early childbearing, a possible source of bias, were ignored. The authors' findings nonetheless suggested an inverse relationship between early maternal age, i.e., a first birth between the ages of 13 and 17, and Canadian adolescents' mean math performance at age 10. Early maternal age was not related to the linear slope of age. To elucidate whether the early maternal age-child academic outcomes association, treated in a growth context, is consistent with this finding, the present study built on it using US data and explored children's mathematics and reading trajectories from age 5 on. Its unique contribution is that it further explicitly controlled for maternal background factors and employed a three-level growth model with repeated measures of children nested within their mothers. Though the strength of the relationship varied between mean initial academic performance and mean academic growth, results confirmed that early maternal age was negatively related to children's mathematics and reading achievement, net of post-teen first birth child-specific and maternal household factors. Once maternal background factors were included, there was no statistically significant relationship between early maternal age and either children's mean initial mathematics and reading scores or their mean mathematics and reading growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Smith, Roger M. H.; Rubidge, Bruce S.

    2018-02-01

    Important palaeoenvironmental differences are identified during deposition of the latest Permian Daptocephalus Assemblage Zone (DaAZ) of the South African Beaufort Group (Karoo Supergoup), which is also divided into a Lower and Upper subzone. A lacustrine floodplain facies association showing evidence for higher water tables and subaqueous conditions on the floodplains is present in Lower DaAZ. The change to well-drained floodplain facies association in the Upper DaAZ is coincident with a faunal turnover as evidenced by the last appearance of the dicynodont Dicynodon lacerticeps, the therocephalian Theriognathus microps, the cynodont Procynosuchus delaharpeae, and first appearance of the dicynodont Lystrosaurus maccaigi within the Ripplemead member. Considering the well documented 3-phased extinction of Karoo tetrapods during the Permo-Triassic Mass Extinction (PTME), the facies transition between the Lower and Upper DaAZ represents earlier than previously documented palaeoenvironmental changes associated with the onset of this major global biotic crisis.

  2. Problem Behaviour at Early Age--Basis for Prediction of Asocial Behaviour

    ERIC Educational Resources Information Center

    Krneta, Dragoljub; Ševic, Aleksandra

    2015-01-01

    This paper analyzes the results of the study of prevalence of problem behaviour of students in primary and secondary schools. The starting point is that it is methodologically and logically justified to look for early forms of problem behaviour of students, because it is likely that adult convicted offenders at an early school age manifested forms…

  3. Anachronistic facies from a drowned Lower Triassic carbonate platform: Lower member of the Alwa Formation (Ba'id Exotic), Oman Mountains

    NASA Astrophysics Data System (ADS)

    Woods, Adam D.; Baud, Aymon

    2008-09-01

    The lower member of the Alwa Formation (Lower Olenekian), found within the Ba'id Exotic in the Oman Mountains (Sultanate of Oman), consists of ammonoid-bearing, pelagic limestones that were deposited on an isolated, drowned carbonate platform on the Neotethyan Gondwana margin. The strata contain a variety of unusual carbonate textures and features, including thrombolites, Frutexites-bearing microbialites that contain synsedimentary cements, matrix-free breccias surrounded by isopachous calcite cement, and fissures and cavities filled with large botryoidal cements. Thrombolites are found throughout the study interval, and occur as 0.5-1.0 m thick lenses or beds that contain laterally laterally-linked stromatactis cavities. The Frutexites-bearing microbialites occur less frequently, and also form lenses or beds, up to 30 cm thick; the microbialites may be laminated, and often developed on hardgrounds. In addition, the Frutexites-bearing microbialites also contain synsedimentary calcite cement crusts and botryoids (typically < 1 cm thick) that harbour layers or pockets of what appear to be bacterial sheaths and coccoids, and are indicative of biologically mediated precipitation of the cement bodies. Slumping following lithification led to fracturing of the limestone and the precipitation of large, botryoidal aragonite cements in fissures that cut across the primary fabric. Environmental conditions, specifically palaeoxygenation and the degree of calcium carbonate supersaturation, likely controlled whether the thrombolites (high level of calcium carbonate supersaturation associated with vertical mixing of water masses and dysoxic conditions) or Frutexites-bearing microbialites (low level of calcium carbonate supersaturation associated with anoxic conditions and deposition below a stable chemocline) formed. The results of this study point to continued environmental stress in the region during the Early Triassic that likely contributed to the uneven recovery from the

  4. Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity.

    PubMed

    Sibille, E; Su, J; Leman, S; Le Guisquet, A M; Ibarguen-Vargas, Y; Joeyen-Waldorf, J; Glorioso, C; Tseng, G C; Pezzone, M; Hen, R; Belzung, C

    2007-11-01

    Normal aging of the brain differs from pathological conditions and is associated with increased risk for psychiatric and neurological disorders. In addition to its role in the etiology and treatment of mood disorders, altered serotonin (5-HT) signaling is considered a contributing factor to aging; however, no causative role has been identified in aging. We hypothesized that a deregulation of the 5-HT system would reveal its contribution to age-related processes and investigated behavioral and molecular changes throughout adult life in mice lacking the regulatory presynaptic 5-HT(1B) receptor (5-HT(1B)R), a candidate gene for 5-HT-mediated age-related functions. We show that the lack of 5-HT(1B)R (Htr1b(KO) mice) induced an early age-related motor decline and resulted in decreased longevity. Analysis of life-long transcriptome changes revealed an early and global shift of the gene expression signature of aging in the brain of Htr1b(KO) mice. Moreover, molecular changes reached an apparent maximum effect at 18-months in Htr1b(KO) mice, corresponding to the onset of early death in that group. A comparative analysis with our previous characterization of aging in the human brain revealed a phylogenetic conservation of age-effect from mice to humans, and confirmed the early onset of molecular aging in Htr1b(KO) mice. Potential mechanisms appear independent of known central mechanisms (Bdnf, inflammation), but may include interactions with previously identified age-related systems (IGF-1, sirtuins). In summary, our findings suggest that the onset of age-related events can be influenced by altered 5-HT function, thus identifying 5-HT as a modulator of brain aging, and suggesting age-related consequences to chronic manipulation of 5-HT.

  5. Early childhood predictors of age of initiation to use of cannabis: a birth prospective study.

    PubMed

    Hayatbakhsh, Reza; Williams, Gail M; Bor, William; Najman, Jake M

    2013-05-01

    Early age of cannabis use predicts subsequent illicit drug abuse and other psychosocial problems. Identification of factors associated with early cannabis use may contribute to the development of preventive interventions. This study aimed to examine the early life predictors of age of initiation to cannabis. Data were from Mater Hospital and University of Queensland Study of Pregnancy, a population-based prospective birth cohort study. Participants were a cohort of 3488 young adults who self-reported frequency and age of onset of cannabis use at the 21 year follow up. Of 3488 young adults, 48.9% (51.8% men and 46.4% women) reported having ever used cannabis. For those who had ever used cannabis, age of onset had mean and median of 15.8 and 16.0 years, respectively. In multivariate analysis child's gender, change in maternal marital status, quality of marital relationship, maternal cigarette smoking and alcohol consumption and maternal depression when the child was 5 years statistically significantly predicted age of initiation to cannabis use. The present study explores the impact of early childhood factors associated with age of onset of cannabis use. It is suggested that the family environment within which children are reared, including factors such as parents' marital circumstances, has a major influence on initiation to cannabis use in adolescence. Research is needed to disentangle the pathways of association between these early life factors and early initiation to use of cannabis. © 2012 Australasian Professional Society on Alcohol and other Drugs.

  6. The precise temporal calibration of dinosaur origins

    PubMed Central

    Marsicano, Claudia A.; Irmis, Randall B.; Mancuso, Adriana C.; Mundil, Roland; Chemale, Farid

    2016-01-01

    Dinosaurs have been major components of ecosystems for over 200 million years. Although different macroevolutionary scenarios exist to explain the Triassic origin and subsequent rise to dominance of dinosaurs and their closest relatives (dinosauromorphs), all lack critical support from a precise biostratigraphically independent temporal framework. The absence of robust geochronologic age control for comparing alternative scenarios makes it impossible to determine if observed faunal differences vary across time, space, or a combination of both. To better constrain the origin of dinosaurs, we produced radioisotopic ages for the Argentinian Chañares Formation, which preserves a quintessential assemblage of dinosaurian precursors (early dinosauromorphs) just before the first dinosaurs. Our new high-precision chemical abrasion thermal ionization mass spectrometry (CA-TIMS) U–Pb zircon ages reveal that the assemblage is early Carnian (early Late Triassic), 5- to 10-Ma younger than previously thought. Combined with other geochronologic data from the same basin, we constrain the rate of dinosaur origins, demonstrating their relatively rapid origin in a less than 5-Ma interval, thus halving the temporal gap between assemblages containing only dinosaur precursors and those with early dinosaurs. After their origin, dinosaurs only gradually dominated mid- to high-latitude terrestrial ecosystems millions of years later, closer to the Triassic–Jurassic boundary. PMID:26644579

  7. Age effects on preattentive and early attentive auditory processing of redundant stimuli: is sensory gating affected by physiological aging?

    PubMed

    Gmehlin, Dennis; Kreisel, Stefan H; Bachmann, Silke; Weisbrod, Matthias; Thomas, Christine

    2011-10-01

    The frontal hypothesis of aging predicts an age-related decline in cognitive functions requiring inhibitory or attentional regulation. In Alzheimer's disease, preattentive gating out of redundant information is impaired. Our study aimed to examine changes associated with physiological aging in both pre- and early attentive inhibition of recurrent acoustic information. Using a passive double-click paradigm, we recorded mid-latency (P30-P50) and late-latency (N100 and P200) evoked potentials in healthy young (26 ± 5 years) and healthy elderly subjects (72 ± 5 years). Physiological aging did not affect auditory gating in amplitude measures. Both age groups exhibited clear inhibition in preattentive P50 and attention-modulated (N100) components, whereas P30 was not attenuated. Irrespective of age, the magnitude of inhibition differed significantly, being most pronounced for N100 gating. Inhibition of redundant information seems to be preserved with physiological aging. Early attentive N100 gating showed the maximum effect. Further studies are warranted to evaluate sensory gating as a suitable biomarker of underlying neurodegenerative disease.

  8. A Middle Triassic pachypleurosaur (Diapsida: Eosauropterygia) from a restricted carbonate ramp in the Western Carpathians (Gutenstein Formation, Fatric Unit): paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Čerňanský, Andrej; Klein, Nicole; Soták, Ján; Olšavský, Mário; Šurka, Juraj; Herich, Pavel

    2018-02-01

    An eosauropterygian skeleton found in the Middle Triassic (upper Anisian) Gutenstein Formation of the Fatric Unit (Demänovská dolina Valley, Low Tatra Mountains, Slovakia) represents the earliest known occurrence of marine tetrapods in the Western Carpathians. The specimen represents a partly articulated portion of the postcranial skeleton (nine dorsal vertebrae, coracoid, ribs, gastral ribs, pelvic girdle, femur and one zeugopodial element). It is assigned to the Pachypleurosauria, more precisely to the Serpianosaurus-Neusticosaurus clade based on the following combination of features: (1) small body size; (2) morphology of vertebrae, ribs and femur; (3) tripartite gastral ribs; and (4) microanatomy of the femur as revealed by μCT. Members of this clade were described from the epicontinental Germanic Basin and the Alpine Triassic (now southern Germany, Switzerland, Italy), and possibly from Spain. This finding shows that pachypleurosaur reptiles attained a broader geographical distribution during the Middle Triassic, with their geographical range reaching to the Central Western Carpathians. Pachypleurosaurs are often found in sediments formed in shallow, hypersaline carbonate-platform environments. The specimen found here occurs in a succession with vermicular limestones in a shallow subtidal zone and stromatolitic limestones in a peritidal zone, indicating that pachypleurosaurs inhabited hypersaline, restricted carbonate ramps in the Western Carpathians.

  9. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction.

    PubMed

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P

    2016-11-08

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  10. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P.

    2016-11-01

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  11. New Paleomagnetic Data from Upper Permian and Lower Triassic Volcanic Sequences from Hua Binh, Quynh Nhai, and Thuan Chau Localities, Northwest Veitnam and Their Bearing on the Accretion History of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Chi, C. T.

    2015-12-01

    New paleomagnetic data from Upper Permian to Lower Triassic volcanic rocks sampled in NW Vietnam provide more quantitative constraints on the paleogeographic setting of crustal elements that comprise the Song Da Terrane, east of the Song Ma suture, between the South China block (SCB) and north Indochina. These include results from 12 sites (125 samples) from basalts of the Vien Nam Formation, exposed at Hoa Binh Dam; eight sites (74 samples) from basalts of the Cam Thuy Formation near Thuan Chau; and 19 sites (198 samples) from andesites and basalts of the Vien Nam Formation near Quynh Nhai. The collection is limited by the quality of exposures and quantity of independent flows. Most sites yield interpretable magnetizations in progressive demagnetization, and the response implies that characteristic remanent magnetization (ChRM) components are carried by low-titanium magnetite or hematite, or a combination of both; these are isolated from secondary components. Rock magnetic data and petrography support the retention of an early-acquired thermoremanent magnetization in most sites. The Vien Nam Formation mafic volcanic rocks yield a grand mean, in geographic coordinates, of D=33.8o, I=-28.4o ( a95 = 9.5o, k =30.3, N=9 accepted sites), and a pole position at Lat=41.1N, Long=239.8E and a paleolatitude at ~15o S during the Late Permian to Early Triassic. Permian basalts of the Cam Thuy Formation provide a grand mean, corrected for structural tilt, of D=216.1o, I=+10.5o, a95=8.9o, k=107.8, and N= 4, with a pole position at Lat=45.6N, Long=226.8E. Volcanic rocks at the Quynh Nhai locality likely yield the most robust paleofield determination, as the data set is of dual polarity and passes a reversal test. The tilt corrected grand mean (normal polarity) is D=48.3o, I=-10.0o, a95=8.0o, k=27.7, N = 13, and this in turn yields an inferred paleomagnetic pole at Lat=35.7N, Long=217.4E, and a paleolatitude of 5.1oS for the late Permian. Compared with the Late Permian-Early

  12. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    PubMed

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  13. Structural complexity at and around the Triassic-Jurassic GSSP at Kuhjoch, Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Palotai, M.; Pálfy, J.; Sasvári, Á.

    2017-10-01

    One of the key requirements for a Global Stratotype Section and Point (GSSP) is the absence of tectonic disturbance. The GSSP for the Triassic-Jurassic system boundary was recently defined at Kuhjoch, Northern Calcareous Alps, Austria. New field observations in the area of the Triassic-Jurassic boundary GSSP site demonstrate that the overturned, tight, and almost upright Karwendel syncline was formed at semibrittle deformation conditions, confirmed by axial planar foliation. Tight to isoclinal folds at various scales were related to a tectonic transport to the north. Brittle faulting occurred before and after folding as confirmed by tilt tests (the rotation of structural data by the average bedding). Foliation is ubiquitous in the incompetent units, including the Kendlbach Formation at the GSSP. A reverse fault (inferred to be formed as a normal fault before folding) crosscuts the GSSP sections, results in the partial tectonic omission of the Schattwald Beds, and thus makes it impossible to measure a complete and continuous stratigraphic section across the whole Kendlbach Formation. Based on these observations, the Kuhjoch sections do not fulfil the specific requirement for a GSSP regarding the absence of tectonic disturbances near boundary level.

  14. Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis.

    PubMed

    Heimdal, Thea H; Svensen, Henrik H; Ramezani, Jahandar; Iyer, Karthik; Pereira, Egberto; Rodrigues, René; Jones, Morgan T; Callegaro, Sara

    2018-01-09

    The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO 2 . In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206 Pb/ 238 U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth.

  15. Impact of diagenesis and low grade metamorphosis on Triassic sabkha dolomite δ26Mg

    NASA Astrophysics Data System (ADS)

    Immenhauser, A.; Geske, A.; Richter, D.; Buhl, D.; Niedermayr, A.

    2012-12-01

    Dolomite is a common rock forming mineral in the geological record but its value as archive of ancient seawater δ26Mg signatures and their variations in time are at present underexplored. Unknown factors include the sensitivity of δ26Mg ratio to processes in the diagenetic and low grade metamorphic domain. Here, we document and discusses the first detailed δ26Mg data set from early diagenetic and burial dolomites. Samples come from the Upper Triassic Hauptdolomit (Dolomia Principale; The Dolomites, Italy) and include coeval dolmicrites that underwent differential burial diagenesis in a temperature range between about 100 and more than 350°C. As indicated by dolmicrite 87/86Sr ratios, sabkha calcian D1 dolomites precipitated from evaporated seawater and stabilized at an early diagenetic stage to D2 dolomites analysed here. With increasing burial temperature, dolomite δ26Mg ratio scatter in the data set decreases with increasing Mg/Ca ratio and degree of order. Specifically, δ26Mg ratio variability is reduced from ~0.7‰ at burial temperatures beneath 100°C to about ~0.2‰ at temperatures in excess of 350°C, respectively, with mean δ26Mg values ranging constantly near -1.9‰. This suggests that, at least for the rock buffered system investigated here, dolmicrite δ26Mg proxy data are conservative and preserve near pristine values even at elevated burial temperatures. At present, the main element of uncertainty is the Mg-isotope fractionation factor between (evaporated) seawater and dolomite. A possible solution to this problem includes the compilation of a data from modern sabkha environments including pore water and calcian dolomite δ26Mg isotope signatures.

  16. Osteology of a new specimen of Macrocnemus aff. M. fuyuanensis (Archosauromorpha, Protorosauria) from the Middle Triassic of Europe: potential implications for species recognition and paleogeography of tanystropheid protorosaurs

    NASA Astrophysics Data System (ADS)

    Jaquier, Vivien P.; Fraser, Nicholas C.; Furrer, Heinz; Scheyer, Torsten M.

    2017-11-01

    Over the past two decades, a wealth of marine and terrestrial reptiles, including protorosaurian archosauromorphs, has been described from Triassic shales and limestone layers in southern China. Recovered from the eastern margin of the Tethys Ocean, these forms often show remarkable similarities to taxa that were previously known and described from Europe, i.e., the western Tethyan margin. One protorosaurian that is known from the western and the eastern Tethyan province is the genus Macrocnemus, with currently three recognized species: 1) M. bassanii from the Middle Triassic Besano Formation and Meride Limestone (late Anisian – early Ladinian), UNESCO World Heritage Site Monte San Giorgio, Ticino, Switzerland; 2) M. obristi from the Prosanto Formation (early Ladinian) of the Ducan area, Grisons, Switzerland; and 3) M. fuyuanensis from the Falang Formation (Ladinian), Yunnan Province, southern China. Recently a new specimen, PIMUZ T 1559, from the upper Besano Formation at Meride, Ticino, Switzerland, was prepared, revealing a disarticulated skeleton which includes most of the cranium and lower jaw, pre-caudal vertebral column and ribs, the forelimbs, and girdle elements. Unambiguously assignable to the genus Macrocnemus, it evinces particularly gracile elongated cervical ribs, as well as a humerus/radius ratio that is comparable only to that of M. fuyuanensis from southern China. Based on this feature we tentatively recognize the new specimen as M. aff. fuyuanensis from Europe. The position and exquisite preservation of the clavicle and interclavicle in this specimen allows a revision of the shoulder girdle of Macrocnemus when articulated, which also has implications for closely related protorosaurian taxa, such as the long-necked Tanystropheus. Furthermore, differences in the shape and morphology of the interclavicle including pointed wing-like lateral processes and a short, fusiform caudal process represent rare discrete characters that allow separation of the

  17. Risk Factors in Preschool Children for Predicting Asthma During the Preschool Age and the Early School Age: a Systematic Review and Meta-Analysis.

    PubMed

    Bao, Yixia; Chen, Zhimin; Liu, Enmei; Xiang, Li; Zhao, Deyu; Hong, Jianguo

    2017-11-18

    The aim of this study was to identify risk factors of asthma among children < 6 years old (preschool age) for predicting asthma during the preschool age and early school age (≤ 10 years of age). MEDLINE, Cochrane, EMBASE, and Google Scholar databases were searched until June 30, 2017. Prospective or retrospective cohort and case-control studies were included. Studies had to have evaluated risk factors or a predictive model for developing asthma in children ≤ 6 years of age or persistent asthma in early school age. A total of 17 studies were included in the analysis. Factors associated with developing asthma in children ≤ 10 years of age (both pre-school and early school age) included male gender (pooled OR = 1.70, P < 0.001), atopic dermatitis (pooled OR = 2.02, P < 0.001), a family history of asthma (pooled OR = 2.20, P < 0.001), and serum IgE levels ≥ 60 kU/l or having specific IgE (pooled OR = 2.36, P < 0.001). A history of exposure to smoke or wheezing was also associated with persistent asthma in early school age (pooled OR = 1.51, P = 0.030 and pooled OR = 2.59, P < 0.001, respectively). In general, asthma predictive models (e.g., API, PIAMA, PAPS) had relatively low sensitivity (range, 21% to 71.4%) but high specificity (range, 69% to 98%). The study found that male gender, exposure to smoke, atopic dermatitis, family history of asthma, history of wheezing, and serum IgE level ≥ 60 kU/l or having specific IgE were significantly associated with developing asthma by either preschool or early school age. Asthma predictive models can be developed by those risk factors.

  18. Absolute Plate Motion Control Since the Triassic from the Cocos Slab and its Associated Subduction Record in Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.; Spakman, W.

    2017-12-01

    A positive wave speed anomaly interpreted as the Cocos slab stretches from the uppermost mantle at the Middle America trench in the west, to the lowermost mantle below the Atlantic in the east. The length and continuity of this slab indicates long-lived, uninterrupted eastward subduction of the attached Cocos Plate and its predecessor, the Farallon Plate. The geological record of Mexico contains Triassic to present day evidence of subduction, of which the post-Late Cretaceous phase is of continental margin-style. Interpretations of the pre-Upper Cretaceous subduction-related rock assemblages are under debate, and vary from far-travelled exotic intra-oceanic island arc character to in-situ extended continental margin origin. We present new paleomagnetic data that show that Triassic, Jurassic and Cretaceous subduction-related rocks from the Vizcaíno Peninsula and the Guerrero terrane have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. The entire Triassic-present day subduction record, and hence, reconstructed trench location, can therefore be linked to the Cocos slab, which provides control on longitudinal plate motion of North America since the time of Pangea. Compared to the latest state of the art mantle frames, in which longitudes are essentially unconstrained for pre-Cretaceous times, our reconstructed absolute position of North America requires a significant westward longitudinal shift for Mesozoic times.

  19. Origin of the Permian-Triassic komatiites, northwestern Vietnam

    NASA Astrophysics Data System (ADS)

    Hanski, Eero; Walker, Richard J.; Huhma, Hannu; Polyakov, Gleb V.; Balykin, Pavel A.; Tran Trong Hoa; Ngo Thi Phuong

    Rare examples of Phanerozoic komatiites are found in the Song Da zone, NW Vietnam. These komatiites were erupted through continental crust and may belong to the SE extension of the Permo-Triassic Emeishan volcanic province located in SW China. They provide a good opportunity to study the source characteristics of starting plume magmas in a continental flood basalt province. Erupted on late-Permian carbonate rocks, the komatiitic rocks are interbedded with low-Ti olivine basalts. Basaltic komatiites display pyroxene spinifex textures, while more magnesian rocks (MgO up to 32 wt.%) are porphyritic, containing a single, cognate population of euhedral to elongated olivine phenocrysts with Fo up to 93.0%. This suggests a highly magnesian parental magma with 22-23 wt.% MgO. In terms of major and minor elements, the komatiites are similar to the ca. 89 Ma old Gorgona Island komatiites of Colombia. The Song Da komatiites are also strongly light-rare-earth-element- (LREE) depleted (CeN/YbN 0.30-0.62) and have unfractionated heavy rare earth element (HREE) patterns. The komatiites have high Os concentrations (up to 7.0 ppb), low but variable Re/Os ratios, and define an isochron with an age of 270+/-21 Ma, and an initial 188Os/187Os ratio of 0.12506+/- 0.00041 (γOs=+0.02+/-0.40). The Os isotopic systematics of the komatiites show no effects of crustal contamination. In contrast, their initial ɛNd values range from +3 to +8, reflecting varying but generally small degrees of contamination with Proterozoic sialic basement material. Associated low-Ti basalts have low initial ɛNd values (-0.8 to -7.5), high initial γOs values (>=15), flat or LREE-enriched REE patterns, and Nb-Ta depletion. These characteristics are also attributed to variable extents of crustal contamination.

  20. An alternative plate tectonic model for the Palaeozoic Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand Burma)

    NASA Astrophysics Data System (ADS)

    Ferrari, O. M.; Hochard, C.; Stampfli, G. M.

    2008-04-01

    An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan-Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous-Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous-Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian-Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko-Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.

  1. Coercive Family Process and Early-Onset Conduct Problems From Age 2 to School Entry

    PubMed Central

    Smith, Justin D.; Dishion, Thomas J.; Shaw, Daniel S.; Wilson, Melvin N.; Winter, Charlotte C.; Patterson, Gerald R.

    2013-01-01

    The emergence and persistence of conduct problems during early childhood is a robust predictor of behavior problems in school and future maladaptation. In this study we examined the reciprocal influences between observed coercive interactions between children and caregivers, oppositional and aggressive behavior, and growth in parent report of early childhood (ages 2–5) and school-age conduct problems (age 7.5 and 8.5). Participants were drawn from the Early Steps multisite randomized prevention trial that includes an ethnically diverse sample of male and female children and their families (N = 731). A parallel process growth model combining latent trajectory and cross-lagged approaches revealed the amplifying effect of observed coercive caregiver–child interactions on children's noncompliance, whereas child oppositional and aggressive behaviors did not consistently predict increased coercion. The slope and initial levels of child oppositional and aggressive behaviors and the stability of caregiver–child coercion were predictive of teacher-reported oppositional behavior at school age. Families assigned to the Family Check-Up condition had significantly steeper declines in child oppositional and aggressive behavior and moderate reductions in oppositional behavior in school and in coercion at age 3. Results were not moderated by child gender, race/ethnicity, or assignment to the intervention condition. The implications of these findings are discussed with respect to understanding the early development of conduct problems and to designing optimal strategies for reducing problem behavior in early childhood with families most in need. PMID:24690305

  2. Coercive family process and early-onset conduct problems from age 2 to school entry.

    PubMed

    Smith, Justin D; Dishion, Thomas J; Shaw, Daniel S; Wilson, Melvin N; Winter, Charlotte C; Patterson, Gerald R

    2014-11-01

    The emergence and persistence of conduct problems (CPs) during early childhood is a robust predictor of behavior problems in school and of future maladaptation. In this study we examined the reciprocal influences between observed coercive interactions between children and caregivers, oppositional and aggressive behavior, and growth in parent report of early childhood (ages 2-5) and school-age CPs (ages 7.5 and 8.5). Participants were drawn from the Early Steps multisite randomized prevention trial that includes an ethnically diverse sample of male and female children and their families (N = 731). A parallel-process growth model combining latent trajectory and cross-lagged approaches revealed the amplifying effect of observed coercive caregiver-child interactions on children's noncompliance, whereas child oppositional and aggressive behaviors did not consistently predict increased coercion. The slope and initial levels of child oppositional and aggressive behaviors and the stability of caregiver-child coercion were predictive of teacher-reported oppositional behavior at school age. Families assigned to the Family Check-Up condition had significantly steeper declines in child oppositional and aggressive behavior and moderate reductions in oppositional behavior in school and in coercion at age 3. Results were not moderated by child gender, race/ethnicity, or assignment to the intervention condition. The implications of these findings are discussed with respect to understanding the early development of CPs and to designing optimal strategies for reducing problem behavior in early childhood with families most in need.

  3. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Quan, Tracy M.; van de Schootbrugge, Bas; Field, M. Paul; Rosenthal, Yair; Falkowski, Paul G.

    2008-06-01

    The Triassic-Jurassic (T-J) boundary was one of the largest but least understood mass extinction events in the Phanerozoic. We measured bulk organic nitrogen and carbon isotopes and trace metal concentrations from a core near Mingolsheim (Germany) to infer paleoenvironmental conditions associated with this event. Poorly fossiliferous claystones across the boundary have relatively low δ15N values and low concentrations of redox-sensitive elements, characteristic of an oxic environment with significant terrestrial input. The Early Jurassic features enrichment in δ15N coincident with high redox-sensitive element concentrations, indicating an increase in water column denitrification and decreased oxygen concentrations. These redox state variations are concordant with shifts in abundance and species composition in terrestrial and marine microflora. We propose that the mass extinction at the T-J boundary was caused by a series of events resulting in a long period of stratification, deep-water hypoxia, and denitrification in this region of the Tethys Ocean basin.

  4. Early Enrollees and Peer Age Effect: First Evidence from INVALSI Data

    ERIC Educational Resources Information Center

    Ordine, Patrizia; Rose, Giuseppe; Sposato, Daniela

    2015-01-01

    This paper estimates peer age effect on educational outcomes of Italian pupils attending primary school by exploiting changes in enrollment rules over the last few years. The empirical procedure allows to understand if there is selection in classroom formation, arguing that in the absence of pupils sorting by early age at school entry, it is…

  5. Mixed-Age Grouping in Early Childhood--Creating the Outdoor Learning Environment

    ERIC Educational Resources Information Center

    Rouse, Elizabeth

    2015-01-01

    Children attending centre-based early childhood care and education programmes across Australia are most likely to be grouped according to age and development. While multi- or mixed-age grouping has been seen to have positive benefits on young children's learning and pro-social behaviours, this approach is not usually adopted in the organisation of…

  6. Late Triassic paleomagnetic result from the Baoshan Terrane, West Yunnan of China: Implication for orientation of the East Paleotethys suture zone and timing of the Sibumasu-Indochina collision

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Huang, Baochun; Yan, Yonggang; Zhang, Donghai

    2015-11-01

    In order to better understand the paleogeographic position of the Baoshan Terrane in the northernmost part of the Sibumasu Block during formation of the Pangea supercontinent, a paleomagnetic study has been conducted on Late Triassic basaltic lavas from the southern part of the Baoshan Terrane in the West Yunnan region of Southwest China. Following detailed rock magnetic investigations and progressive thermal demagnetization, stable characteristic remanent magnetizations (ChRMs) were successfully isolated from Late Triassic Niuhetang lava flows. The ChRMs are of dual polarity and pass fold and reversal tests with magnetic carriers dominated by magnetite and subordinate oxidation-induced hematite; we thus interpret them as a primary remanence. This new paleomagnetic result indicates that the Baoshan Terrane was located at low paleolatitudes of ∼15°N in the Northern Hemisphere during Late Triassic times. Together with available paleomagnetic data from the Baoshan Terrane and surrounding areas, a wider paleomagnetic comparison supports the view that the East Paleotethys Ocean separated the Sibumasu and Indochina blocks and closed no later than Late Triassic times. We argue that the currently approximately north-to-south directed Changning-Menglian suture zone is very likely to have been oriented nearly east-to-west at the time of the Sibumasu-Indochina collision.

  7. Early Histories of School-Aged Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Loe, Irene M.; Balestrino, Maria D.; Phelps, Randall A.; Kurs-Lasky, Marcia; Chaves-Gnecco, Diego; Paradise, Jack L.; Feldman, Heidi M.

    2008-01-01

    In a prospective study of developmental outcomes in relation to early-life otitis media, behavioral, cognitive, and language measures were administered to a large, diverse sample of children at 2, 3, 4, 6, and 9-11 years of age (N = 741). At 9-11 years of age, 9% of the children were categorized as having attention-deficit/hyperactivity disorder…

  8. Mitigation strategies for early-age shrinkage cracking in bridge decks.

    DOT National Transportation Integrated Search

    2010-04-01

    Early-age shrinkage cracking has been observed in many concrete bridge decks in Washington State and elsewhere around the U.S. The cracking increases the effects of freeze-thaw damage, spalling, and corrosion of steel reinforcement, thus resulting in...

  9. Cyclo-, magneto-, and bio-stratigraphic constraints on the duration of the CAMP event and its relationship to the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Olsen, Paul E.; Kent, Dennis V.; Et-Touhami, Mohammed; Puffer, John

    Early Mesozoic tholeiitic flood basalts of the Central Atlantic Magmatic Province (CAMP) are interbedded throughout much of their extent with cyclical lacustrine strata, allowing Milankovitch calibration of the duration of the extrusive episode. This cyclostratigraphy extends from the Newark basin of the northeastern US, where it was first worked out, to Nova Scotia and Morocco and constrains the outcropping extrusive event to less than 600 ky in duration, beginning roughly 20 ky after the Triassic-Jurassic boundary, and to within one pollen and spore zone and one vertebrate biochron. Based principally on the well-known Newark astronomically calibrated magnetic polarity time scale with new additions from the Hartford basin, the rather large scatter in recent radiometric dates from across CAMP (>10 m.y. ), centering on about ˜200 m.y., is not likely to be real. Rather, the existing paleomagnetic data from both intrusive and extrusive rocks suggest emplacement of nearly all the CAMP within less than 3 m.y. of nearly entirely normal polarity. The very few examples of reversed magnetizations suggest that some CAMP activity probably occurred just prior to the Triassic-Jurassic boundary. Published paleomagnetic and 40Ar/39Ar data from the Clubhouse Crossroads Basalt are reviewed and with new paleomagnetic data suggest that alteration and possible core misorientation could be responsible for the apparent differences with the CAMP. The Clubhouse Crossroads Basalt at the base of the Coastal Plain of South Carolina and Georgia provides a link to the volumetrically massive volcanic wedge of seaward dipping reflectors present in the subsurface off the southeastern US that may be part of the same igneous event, suggesting that the CAMP marks the formation of the oldest Atlantic oceanic crust.

  10. The influence of living conditions in early life on life satisfaction in old age.

    PubMed

    Deindl, Christian

    2013-03-01

    This article examines the influence of living conditions in early life on life satisfaction in old age in eleven Western European countries. It combines the influence of individual conditions, for example housing and family background, with country characteristics in the decade of birth. Using pooled data from the second and third wave of the Survey of Health, Ageing and Retirement in Europe, multilevel models show that early life living conditions have an influence on life satisfaction in old age. Furthermore, interaction effects between current and past living conditions show that adverse living conditions strengthen the effect of early life on life satisfaction in later life and therefore are an indication of cumulative inequality over the life course. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    PubMed

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Early-age monitoring of cement structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  13. Normal aging delays and compromises early multifocal visual attention during object tracking.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-02-01

    Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.

  14. Early Cretaceous wedge extrusion in the Indo-Burma Range accretionary complex: implications for the Mesozoic subduction of Neotethys in SE Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Ji'en; Xiao, Wenjiao; Windley, Brian F.; Cai, Fulong; Sein, Kyaing; Naing, Soe

    2017-06-01

    The Indo-Burma Range (IBR) of Myanmar, the eastern extension of the Yarlung-Tsangpo Neotethyan belt of Tibet in China, contains mélanges with serpentinite, greenschist facies basalt, chert, sericite schist, silty slate and unmetamorphosed Triassic sandstone, mudstone and siltstone interbedded with chert in the east, and farther north high-pressure blueschist and eclogite blocks in the Naga Hills mélange. Our detailed mapping of the Mindat and Magwe sections in the middle IBR revealed a major 18 km antiformal isocline in a mélange in which greenschist facies rocks in the core decrease in grade eastwards and westwards symmetrically `outwards' to lower grade sericite schist and silty slate, and at the margins to unmetamorphosed sediments, and these metamorphic rocks are structurally repeated in small-scale imbricated thrust stacks. In the Mindat section the lower western boundary of the isoclinal mélange is a thrust on which the metamorphic rocks have been transported over unmetamorphosed sediments of the Triassic Pane Chaung Group, and the upper eastern boundary is a normal fault. These relations demonstrate that the IBR metamorphic rocks were exhumed by wedge extrusion in a subduction-generated accretionary complex. Along strike to the north in the Naga Hills is a comparable isoclinal mélange in which central eclogite lenses are succeeded `outwards' by layers of glaucophane schist and glaucophanite, and to lower grade greenschist facies sericite schist and slate towards the margins. In the Natchaung area (from west to east) unmetamorphosed Triassic sediments overlie quartzites, sericite schists, actinolite schists and meta-volcanic amphibolites derived from MORB-type basalt, which are in fault contact with peridotite. Olivine in the peridotite has undulatory extinction suggesting deformation at 600-700 °C, similar to the peak temperature of the amphibolite; these relations suggest generation in a metamorphic sole. The amphibolites have U/Pb zircon ages of 119

  15. Chronology of Fluctuating Sea Levels since the Triassic

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  16. Geochemistry of a Triassic dyke swarm in the North Patagonian Massif, Argentina. Implications for a postorogenic event of the Permian Gondwanide orogeny

    NASA Astrophysics Data System (ADS)

    González, Santiago N.; Greco, Gerson A.; González, Pablo D.; Sato, Ana M.; Llambías, Eduardo J.; Varela, Ricardo

    2016-10-01

    Permo-Triassic magmatism is widespread in the eastern North Patagonian Massif and has been related to the Gondwanide orogeny. Although a magmatic arc setting is widely accepted for the Permian plutonic rocks, the origin and geotectonic setting for the Triassic plutonic and volcanic rocks are still unknown. A NW-SE Triassic dyke swarm composed of andesites and latites with minor rhyolites was previously described in the Sierra Grande - Rincon de Paileman area. The dyke swarm was associated with extensional tectonics which was linked to a postorogenic process. In this paper we present new geochemical data of the rocks that form the swarm. Trachyandesites and rhyolites were separated based on their geochemical characteristics. Both groups may be considered originated from different sources. On the other hand, the content of incompatible elements (LILE and HFSE) indicates a strong relation between the swarm and an active continental margin. The samples also show a transitional signature between continental-arc and postcollisional or anorogenic settings. The new geochemical data on the dyke swarm support the idea of a magmatism that was linked to a postorogenic extensional tectonic regime related to a continental magmatic arc. Such an extension started in the Paleopacific margin of Pangea during the Anisian and might indicate the beginning of the Pangea break-up.

  17. Mass-wasting triggered by the end-Triassic mass-extinction

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, Bas; Vecoli, Marco; Strother, Paul; Lindstrom, Sofie; Oschmann, Wolfgang

    2014-05-01

    The end-Triassic dieback of tree-forming vegetation across NW Europe and the proliferation of a low-growing herbaceous pioneer vegetation composed of ferns and fern allies, likely had a major impact on weathering and erosion of emerged land masses. In a recently drilled core from northern Germany (Schandelah), palynological analyses provide evidence for this scenario. The uppermost Rhaetian Triletes Beds show increasing amounts of reworked Palaeozoic acritarchs and prasinophytes of up to 30% of the palynomorph fraction. Most of the acritarchs are singletons and can be assigned to Ordovician and Silurian species, such as Ankyrotrochus crispum, Oppilatala eoplanktonica, and Evittia spp. The average age of the reworked acritarch assemblages is observed to increase during the latest Rhaetian, leading to an inverted stratigraphy among Palaeozoic species. Further North, in the Stenlille cores from the Danish Basin, reworked Palaeozoic palynomorphs appear to constitute mainly sphaeromorphic prasinophytes and other Palaeozoic microfossils such as chitinozoans and carboniferous spores. Further south, at Mingolsheim (S Germany) the Triletes Beds contain a clear sign of soil reworking, including mycorrhizal fungal remains and cysts from probable soil organisms. These peculiar changes in palynological assemblages go hand-in-hand with important changes in sedimentology. The reworking of soil and bedrock is occurring in an interval that also contains evidence for earthquake activity in the form of widespread seismites. All these observations may be attributed to a number of mutually non-exclusive mechanisms, including decreased plant cover, an intensified hydrological cycle due to greenhouse warming, and the doming of the Central Atlantic Magmatic Province leading to continental-scale tectonic steepening of basin margins.

  18. The Evolution of the Tethysides during the Medial to Late Triassic

    NASA Astrophysics Data System (ADS)

    Saǧdıç, Nurbike G.; Celâl Şengör, A. M.

    2016-04-01

    The Triassic is a time of widespread rifting within the future Alpides of the circum-Mediterranean countries. However, this rifting had little to do with the later, Sinemurian-Hettangian rifting that penetrated the Tethyan realm from the Atlantic Ocean. The eastern part of the rifting occurred south of the Palaeo-Tethys and seems to have been related to stretching above its extensional arc. Evidence for his stretching is seen in the Karakaya-Pelagonian-Pindos- Meliata-Hallstatt zones and the Eastern Mediterranean. The Eastern Mediterranean is separated from the other extensional zones by a Mikrasian continental fragment that had begun separating from Gondwana-Land already during the Permian. The rifting propagated eastward along the Carpathians (Transylvanian Nappes) and the Eastern and the Southern Alps from where it entered the future Provençal chains and finally the Pyrenees where evaporites were laid down in extensional basins. In the south, an area of rifting went from the Eastern Mediterranean into the High Atlas thus delimiting an Iberapulian continental fragment. The Iberapulian fragment became divided into an Iberian and an Apulian parts later during the Hettangian-Sinemurian rifting that also invaded the earlier extensional areas in the Atlas. The extension directions during the medial and late Triassic are controlled by the tectonics of the eastern end of the Palaeo-Tethys. Along its northern margin, i.e., along the Scythides, right-lateral motion dominated. Along the northern margin of the Mikrasian fragment subduction was nearly head-on (slightly oblique so as to impose a slight right-lateral motion along the arc), but the stretching along the Karakaya rift zones was probably orthogonal because of the similarly orthogonal stretching in the Eastern Mediterrarean. The kinematics is dependent on what sort of motion is imposed onto the Palaeo-Tethyan plate (s) along its (their) northern margin and the direction of stretching in the Eastern Mediterranean

  19. Permo-Triassic vertebrate extinctions: A program

    NASA Technical Reports Server (NTRS)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  20. The development of the Middle Triassic tectonical controlled Germanic Basin of Central Europe and the palaeoenvironmental related distribution of marine and terrestrial reptiles

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2010-05-01

    -Italy). Bolletino della Società Paleontologica Italiana, 41 (1), 37-40. Bachmann, G.H. and Aref, M.A.M., 2005. A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), Southwest Germany. Sedimentary Geology 180, 75-89. De Zanche, V. and Farabegoli, E. 1988. Anisian paleogeographic evolution in the Central-Western Southern Alps. Memoirs Scientifique Geologique 40, 399-411. Demathieu, G.R. 1985. Trace fossil assemblages in Middle Triassic marginal marine deposits, eastern border of the Massif Central, France. Societe Economie Paléontologie et Mineralogie, Special Publications, 35, 53-66. Diedrich, C. 2005. Actuopalaeontological trackway experiments with Iguana on intertidal flat carbonates of the Arabian Gulf - a comparison to fossil Rhynchosauroides tracks of Triassic carbonate tidal flat megatracksites in the European Germanic Basin. Senckenbergiana maritime, 35 (2), 203-220. Diedrich, C. 2008a. Millions of reptile tracks - Early to Middle Triassic carbonate tidal flat migration bridges of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 410-423. Diedrich, C. 2008b. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - with emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Global and Planetary Change, 65 (2009), 27-55. Diedrich, C. 2009a. The vertebrates of the Anisian/Ladinian boundary (Middle Triassic) from Bissendorf (NW Germany) and their contribution to the anatomy, palaeoecology, and palaeobiogeography of the Germanic Basin reptiles. Palaeogeography, Palaeoclimatology, Palaeoecology, 273 (2009), 1-16. Diedrich, C. 2009b. Die Saurierspuren-Grabung im basalen Mittleren Muschelkalk (Anis, Mitteltrias) von Bernburg (Sachsen-Anhalt). Archäologie in Sachsen-Anhalt, Sonderband 2009, 1-62. Diedrich, 2010a. Palaeoecology of Placodus gigas (Reptilia) and other placodontids - macroalgae feeder of the Middle Triassic in the Germanic Basin of Central Europe and